
A Secure Decentralized
Privacy-Preserving Healthcare System
Using Blockchain

Aderonke Thompson, Hafiz Odekunle, and Boniface Alese

1 Introduction

Healthcare is a concentrated knowledge space in which vast quantities of informa-
tion are processed, accessed, and distributed all the time [2]. Storing and sharing
a massive number of records is necessary and challenging due to the sensitivity
of health information and others that restrict data, regarding security and privacy.
In the healthcare field, knowledge exchange is vitally essential for diagnosis and
decision making. Information exchange is vital for medical professionals to be able
to communicate with each other and pass patient information to the competent
authority for other purposes, such as testing. The exchange of medical information
must be achieved across a safe network and must also ensure that the privacy of
patients is maintained.

Healthcare blockchain is an innovation that helps to safely customize stable
health data, share it by blending the complete real-time information of a patient’s
health, and store it as a secured healthcare arrangement [5]. This technology permits
transactions by participants in dispersed, permanent, straightforward, secure, and
auditory ways, which allow access to records from the first transaction, which can
be confirmed and examined by any entity. The chain is continually developing and
new blocks holding references, that is, a hash value is being added to the existing
block [3]. Blockchain is structured as a peer-to-peer (P2P) network that links with
numerous network nodes. All the nodes in the system have a public key and a private
key for securing information exchange. Blockchain transaction uses a public key for
encryption to guarantee consistency, irreversible, and non-reputability of records
while decryption of the message uses the private key for integrity and verification of

A. Thompson (�) · H. Odekunle · B. Alese
Federal University of Technology, Akure, Nigeria
e-mail: afthompson@futa.edu.ng; bkalese@futa.edu.ng

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Daimi et al. (eds.), Principles and Practice of Blockchains,
https://doi.org/10.1007/978-3-031-10507-4_9

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10507-4_9&domain=pdf

 885
56845 a 885 56845 a

mailto:afthompson@futa.edu.ng

10925 56845 a 10925 56845 a

mailto:bkalese@futa.edu.ng

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-10507-4_9

186 A. Thompson et al.

every transaction made by node [5]. In this regard, only the public key and private
key authentic messages go to the network for affirmation [1]. The challenge of
the technique is that solitary clients with a particular private key are permitted to
sign the transaction. Also, mistakes during transmission of the information lead to
system failure, for example, confirming an advanced signature. The transactions that
are considered legitimate are broadcasted in the network domain by the miners. The
miners decide data transactions to admit in the distributed public ledger based on the
chosen consensus protocol used, for examples proof-of-work (PoW) and proof-of-
stake (PoS). The approval nodes check that the communicated block encompasses
large transactions and references the former block in the chain utilizing the matching
hash value. Thus, attaining these requirements implies that the new blocks are added
to the blockchain; otherwise, it drops the block.

2 Overview and Related Work

There are different types of blockchains based on the managed data, on the
accessibility of such data, and on what operation can be performed by the user.
These include public permissionless, consortium (public permission), and private.

Public permissionless: This is a state-of-the-art public blockchain protocols based
on proof-of-work (PoW) consensus algorithms with open source and not per-
mission. Anyone can participate as a node or miner without permission. All
data in the blockchain is accessible and visible to everyone, although parts of
the blockchain can be encrypted to secure data and preserve user’s anonymity.
Examples are Bitcoin, Ethereum, or Litecoin.

Consortium (public permissioned): This type of blockchain operates under the
leadership of a group. As opposed to public blockchain, they do not allow any
person with access to the Internet to participate in the process of verifying
transactions; only a selected group of nodes can participate in the distributed
consensus process. It is used within one or across many institutions. When a
consortium blockchain is created within one institution (e.g., financial sector), it
is initiated for restricted public use and fractionally centralized. On the other
hand, a consortium between institutions (e.g., insurance companies, financial
institutions, governmental institutions) is unlocked for public use while still
having created a relatively centralized trust.

Private: In a private blockchain, write permissions are kept centralized to one trusted
organization, while read permissions may be public or restricted. A private
blockchain only allows selected nodes to connect to the network. It is, therefore,
yet a distributed centralized network. Private blockchains control which nodes
can perform transactions, execute smart contracts, or act as miners. It is used
for private purposes. Hyperledger Fabric and Ripple are examples of blockchain
platforms that only support private blockchain networks. Table 1 presents the
summary of the types of blockchain.

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 187

Table 1 Difference between public, consortium, and private blockchain

Public Consortium Private

Participants Permissioned
Identified
Trusted

Permissioned
Identified
Trusted

Permissioned
Identified
Trusted

Consensus
Mechanisms

Proof of Work, Proof
of Stake, etc.
Large energy
consumption.
No finality
51% attack

Voting or multi-party
consensus algorithm
Lighter
Faster
Low energy
consumption
Enable finality

Voting or multi-party
consensus algorithm
Lighter
Faster
Low energy
consumption
Enable finality

Access Open Read/Write Permissioned Read and
/or Write

Permissioned Read and
/or Write

Transaction
Approval
Frequency

Long
Bitcoin: 10min or
more

Short Short

Speed Slower Faster Faster
Security Proof of Work

Proof of Stake
Other Consensus
Mechanisms

Approved participants Approved participants

2.1 Consensus Protocols

In a world where trust is expensive, it is essential to understand the unstable nature
of trust and to figure out some measures of consensus among ourselves in respect to
that which we hold as “truth.” For the blockchain network to continue as functional,
its peers need to come to terms with a specific state of the distributed ledger and on
a way for storing data into blocks. Such terms are known as a distributed consensus
protocol and it affirms the chronological order of generated transactions.

2.1.1 Proof-of-Work (PoW)

PoW is carried out by miners who conducted through miners competing to solve
a cryptographic problem—also known as a hash puzzle. These miners help to
verify every Bitcoin transaction, where it involves producing a hash-based PoW
that is based on previous transaction blocks (read up on the Merkle Tree for more
information) and forms a new branch with a new transaction block. This means that
the work is moderately difficult for the miners to perform but easy for the network to
verify. The first miner who manages to produce the PoW is awarded some Bitcoins.
Over time, the amount of Bitcoin awarded decreases.

188 A. Thompson et al.

2.1.2 Proof-of-Stake (PoS)

Unlike PoW where new transaction blocks are created based on computational work
done by solving a complex cryptographic puzzle, PoS allows a forger (instead of a
miner) to stake any amount of cryptocurrency held, to be probabilistically assigned
a chance to be the one validating the block—the probability based on the amount
of cryptocurrency staked. Additionally, for most PoS systems, instead of receiving a
cryptocurrency reward (in the above case, the Bitcoin miners receives some Bitcoins
for solving a PoW), the forgers instead take the transaction fees as rewards.

The idea of putting coins to be “staked” prevents bad actors from making
fraudulent validations—upon false validation of transactions, the amount staked
will be forfeited. Hence, this incentivizes forgers to validate legitimately. In the
recent year, PoS has gained attention, with Ethereum switching towards a PoS from
a PoW consensus system.

2.1.3 Delegated Proof-of-Stake (DPoS)

DPoS is similar to PoS in regard to staking but has a different and a more democratic
system that is said to be fair. Like PoS, token holders stake their tokens in this
consensus protocol. Instead of the probabilistic algorithm in PoS, token holders
within a DPoS network are able to cast votes proportional to their stake to appoint
delegates to serve on a panel of witnesses—these witnesses secure the blockchain
network. In DPoS, delegates do not need to have a large stake, but they must
compete to gain the most votes from users.

It provides better scalability compared to PoW and PoS as there are fully
dedicated nodes who are voted to power the blockchain. Block producers can be
voted in or out at any time, and hence the threat of tarnishing their reputation and
loss of income plays a major role against bad actors [10]. No doubt, DPoS seems to
result in a semi-centralized network, but it is traded off for scalability.

Like PoS, DPoS has also gained attention over the years with several projects
adopting this consensus algorithm. Since it was invented by Dan Larimer, DPoS has
been refined continuously, from BitShares to Steem and now in EOS.

2.1.4 Proof-of-Authority (PoA)

PoA is known to bear many similarities to PoS and DPoS, where only a group
of preselected authorities (called validators) secure the blockchain and can produce
new blocks. New blocks on the blockchain are created only when a super majority is
reached by the validators. The identities of all validators are public and verifiable by
any third party—resulting in the validator’s public identity performing the role of
proof-of-stake. As these validators’ identities are at stake, the threat of their identity
being ruined incentivizes them to act in the best interest of the network.

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 189

Since PoA’s trust system is predetermined, concerns have been raised that
there might be a centralized element with this consensus algorithm. However,
it can be argued that semi-centralization could actually be appropriate within
private/consortium blockchains—in exchange for improved scalability. Newer
blockchain start-ups have ventured into implementing PoA. In addition, Ethereum
testnets like Rinkeby and Kovan explores the use of a PoA consensus algorithm.

2.1.5 Access Control Mechanism with Smart Contract for Data Sharing

Sharing healthcare data is considered to be a critical approach to improve the quality
of healthcare service and reduce medical costs. Though current EHR systems bring
much convenience, many obstacles still exist in the healthcare information systems
in practice, hinder secure and scalable data sharing across multiple organizations,
and thus limit the development of medical decision making and research [7]. From
the foregoing, there are risks of the single-point attack and data leakage in a
centralized system. Besides, patients cannot preserve the ownership of their own
private data to share with someone who they trust. It may result in unauthorized
use of private data by curious organizations. Furthermore, different competing
organizations lacking partnership trust are not willing to share data, which would
also hinder the development of data sharing [9].

In this case, it is necessary to ensure security and privacy protection and return
the control right of data back to users in order to encourage data sharing. It is
relatively simply to deal with security and privacy issues when data reside in a single
organization, but it will be challenging in the case of secure health information
exchange across different domains. Meanwhile, it also needs to further consider
a suitable technique to boost efficient collaboration in the medical industry.

Securing access control mechanism as one of the common approaches requires
that only authorized entities can access sharing data. This mechanism includes
access policy commonly consisting of access control list (ACL) associated with data
owner. ACL is a list of requestors who can access data and related permissions (read,
write, update) to specific data. Authorization is a function of granting permission to
authenticated users in order to access the protected resources following predefined
access policies. The authentication process always comes before the authorization
process. Access policies of this mechanism mainly focus on who is performing
which action on what data object for which purposes. Traditional access control
approaches for EHRs sharing are deployed, managed, and run by third parties. Users
always assume that third parties (e.g., cloud servers) perform authentication and
access requests on data usage honestly. However, in fact, the server is honest but
curious. It is promising that combining blockchain with access control mechanism
is to build a trustworthy system. Users can realize secure self-management of
their own data and keep shared data private. In this new model, patients can
predefine access permissions (authorize, refuse, revoke), operation (read, write,
update, delete), and duration to share their data by smart contracts on the blockchain
without the loss of control right. Smart contracts can be triggered on the blockchain

190 A. Thompson et al.

once all of preconditions are met and can provide audit mechanism for any request
recorded in the ledger as well. There are many existing studies and applications
applying smart contract for secure healthcare data sharing. A study proposed that
patients can authorize access to their record only under predefined conditions
(research of a certain type, and for a given time range) [15].

Smart contract placed directly on the blockchain verifies whether data requestors
meet these conditions to access the specified data. If the requestor does not have the
access rights, the system will abort the session. Similarly, smart contracts in a study
[4] can be used for granting and revocation of access right and notifying the updated
information as providers move in and out of networks.

Researchers designed a decentralized record management system based on
blockchain, called MedRec [1]. In this system, patient-provider relationship contract
is deployed between any two nodes in which patients manage and share medical
records with healthcare providers. Providers can add or modify this record in the
case of patient’s permissions. Data access record is preserved in the block to track
the malicious entities when violated access activities happen. They also designed
a simple graphical interface tool that allows patients to share off-chain data with
fine-grained access control.

The similar design is proposed in [13]. Researchers developed an access protocol
based on smart contract through admin component when mobile users send the
request [12]. Smart contract will verify any transaction by predefined policies of
access protocol to prevent malicious attack and achieve reliable EHRs sharing. But
curious miners may infer personal information during the mining process due to
the processing transactions including area ID, mobile gateway ID, and patient ID. A
study creatively adopted the channel scheme of Hyperledger Fabric, which separates
different types of activities for users in the different channels to share different
grained data [8]. Chaincode (smart contract) can be launched in the channel with
different access type, permissioned operations, and selective shared data specified
in the certificate by data owners. In addition to data sharing, such a channel scheme
makes good use of Fabric to enhance data privacy.

2.2 Smart Contract

A smart contract is a tamper-proof computer program or protocol that can verify and
execute itself. Nick Szabo comes up with the idea of smart contract in 1994. It allows
executing code without the third parties. A smart contract comprises of the value,
address, functions, and state. It accepts transaction as an input and triggers event
as the output after executing the corresponding code. Implementation of function
logic determines the state of the contract. The necessity of smart contract has been
the major focus since the emergence of blockchain technology in 2008 when the
technology comes into existence through Bitcoin cryptocurrency because it has the
capacity to publicly maintain database and peer-to-peer transactions securely and
create a trustful environment. Smart contracts are auditable and irreversible. All the

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 191

transaction information is present in a smart contract, and it executes automatically.
A smart contract is machine readable, an event-driven program, autonomous, and
distributed.

Solidity is a high-level language used to implement smart contracts. Developing
blockchain platform of solidity are Ethereum, ErisDB, Zeppelin, and Counterparty.
According to Nick Szabo, the contractual clauses (collateral, bonding, delineation
of property rights) should be encoded and embedded in the required hardware
and software. This helps to minimize the requirement of any trusted third party
for communication using smart contracts and at the same time makes the system
secure against any malicious attack. In the case of blockchain-based smart contracts,
contracts are nothing but scripts residing on the blockchain, which has the ability to
execute them. One can trigger a transaction to a smart contract by using the unique
addresses assigned to it by the blockchain technology. Let us take an example to
better understand the working of smart contracts. Suppose you want to sale your
house or rent your apartment to someone, then you can simply deploy a smart
contract in an existing blockchain network. Information regarding the property
can be stored in the blockchain and anyone belonging to that network can access
that information, but they cannot change it. In this way, you can find a buyer for
your property without the need of any third party. For a wide range of potential
applications, blockchain-based smart contracts could offer a number of benefits:

• Speed and real-time updates
• Accuracy
• Lower execution risk
• Fewer intermediaries
• Lower cost
• New business or operational models (Fig. 1)

With the technology growing fast, human living standard also grows vastly. In
the recent use of developed devices and supporting technology, human can monitor
his or her health condition just sitting at home. There are lots of devices that are
already developed to read different attributes in the human body. These data can be
collected using low-end device and processing locally to get quick information [17].
Blockchain technology helps to maintain the privacy of the patients and maintained

Fig. 1 Structure of smart contract

192 A. Thompson et al.

data in digital ledger format. A smart contract can be used in that system to make
the system more reliable and automated. Using a smart contract, human can write
some terms and conditions which could be applied once data are collected. Then it
will execute these smart contracts and trigger corresponding events.

The blockchain has the capability to boost data sharing in healthcare. Researchers
provide an easier way for patients to govern their medical data by developing App
HGD (Healthcare Data Gateway) which is built in blockchain technology [14]. All
data are managed using data management layer and stored on blockchain cloud.
Patients’ data are accessible solely via an authorized user; in addition, data replica
may be enforced to be destroyed when the authorized time elapsed.

A study also proposed an exchange network approach for health information
[15]. The two contributions are as follows: it makes use of electronic health record
(EHR) semantic and design checking to organize all EHRs in the blockchain
network to solve the issue of interoperability. Also, an algorithm is proposed to
select the next miner randomly to reduce the power and system resources used in
computation of POW. In addition, it is suggested that privacy and anonymity can
be provided using blockchain encryption, smart contracts, and privacy-preserving
keyword searches, but detailed approaches were not included.

Researchers proposed a medical system called MedRec which was based on
smart contracts for effective and simpler administration of EHRs [2]. Registrar
contracts (RCs) are used to map the user’s identification string to their Ethereum
addresses to keep anonymity of the users. Summary contracts (SCs) contained links
that referenced patient-provider relationships (PPRs) to ensure that all the medical
records of patients are connected. How patients’ data are managed and accessed is
defined in PPRs. However, the detailed approaches to solve an issue such as how to
encrypt the patients’ EHR, accessed by authorized users, user authentication, etc.

A study proposed a blockchain and MedRec-based way to deal with unravel
security issues such as confidentiality, access control, privacy, audibility, and
integrity in sharing healthcare data [16]. The barriers are tackled by using a
signcryption and attribute-bases authentication (ABA) to ensure that process of data
sharing is secure. The proposed model provides the following services: (1) Data
authenticity—the validness of patients’ EHRs can be confirmed by who access the
information. (2) Data integrity—it ensures that stored patients’ EHRs are guided
against altering. (3) Data confidentiality—patients’ EHRs are stored securely and
stayed discreet from the unapproved user.

Researchers adopt Ethereum blockchain smart contracts to achieve efficient
collaboration, data integrity, and protection of patient privacy. Protecting healthcare
professional’s privacy and securing links to establish an interoperability end-to-end
reachable network among independent healthcare system are provided by [9]. The
research solves the problem by storing the patient health records in a secure off-
chain database and makes a secure socket to trade authorization-based access to
tolerant information utilizing standard public key cryptography.

A study formulated a data sharing mechanism using Blockchain [9]. The mecha-
nism was made up of three components, namely, client, control system, and storage.
It is an efficient, secure identity-based authentication and key agreement protocol.

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 193

An effective security measure based on personality validation and key understanding
protocol is adopted to assure user anonymity and authenticity. Keys were generated
to execute client confirmation and enrollment, client verification, and request
creation. A study proposes a structure that characterizes some authorization access
rules through the Hyperledger Fabric [11], where a service provider can access
medical record of patients in a crisis condition under the limitations of patient’s
permission through the system. Smart contract handled authorization and fetching
of data of all transactions from ledger which makes the framework secured, efficient,
and auditable.

3 Methodology

Blockchain is invented for storing financial-related records and provides a structure
for actualizing a decentralized system. Each node of the blockchain interacts with
another via cryptographically encrypted information exchange, and the transaction-
based state system of the blockchain is known as smart contracts [6]. It was first
fully implemented by Ethereum. A smart contract is client rights management
tools that provide coordination and enforcement frameworks for network participant
agreements without traditional legal contracts being required [7]. For instance, a
smart contract characterizes the application logic that executes at whatever point an
exchange happens in the trading of digital money.

Ethereum smart contracts create intelligent and logical representations of existing
health data stored on each node on the network. The smart contract contains
the metadata of a patient’s data, access permission, and data integrity. The con-
tract enforces that each transaction made on the blockchain system conveys a
cryptographically signed information to oversee these traits. Contracts implement
approaches to create data exchanges by valid blockchain transactions only and
execute any set of rules consigning a specific health record; so far it can be
processed.

3.1 System Design

The design integrates each node to an existing EHR system. Each node, specifically
representing healthcare providers, is expected to have already databases with
medical records saved on servers connected to the network.

The system design is made up of three layers, namely, data collection layer, data
repository layer, and data sharing layer.

Data collection layer In this layer, electronic health records (HER) are generated
by a service provider, i.e., a medical doctor. The EHRs are signed by a medical
doctor using content extraction signature (CES) scheme and the signed EHRs are

194 A. Thompson et al.

forwarded to the patients. Patients can extract sensitive information of EHR and
create authentic extraction signature in order to avert privacy in case there is leakage
during the data sharing.

Data repository layer This layer is responsible for storing the EHR and its
indexes. The layer comprises of the following components:

1. EHR manager: This represents the different health institutions in the local
system; these local systems are connected to blockchain network; the primary
role of the system in our design is to store the EHRs and generate indexes that
points to the stored EHR. The EHR manager consist of the following:

(a) API library: API library will manage and control the operation of the system.
The API executes a function call to interact with blockchain by parsing
blockchain protocol to connect with an Ethereum client.

(b) Ethereum client: This operates an extensive set of tasks, which include
peer-to-peer network connection, encoding transactions, and transmitting
transactions in addition to keeping a verified local copy of the blockchain.

(c) Database manager: This manages access to the node’s local database and
ensures permission governance storage on the blockchain. The database
manager checks the blockchain contracts for address verification request
which is acceptable to query access. On verifying the address, the query is
run on the node’s local database and then results are returned to the client.

2. Blockchain server: This serves like a cloud server, which is responsible for saving
and communicating the electronic health records (EHRs). The EHR storage
location links and predefined access permission (smart contracts) of the patients
are stored in the blockchain. The smart contract ensures that data are shared
securely and records each access request and activities in the blockchain for the
purpose of auditing in the future (Fig. 2).

Data sharing layer The authorized users (patients, healthcare providers,
researchers) can initiate a request for patients’ EHRs which can be granted or denied
based on the predefined conditions set by the patients. Also, patient can revoke
access given to a user at any given time. The logical and intelligent access control
is designed using Ethereum’s smart contract. The contract contains the storage link
of patient’s EHRs, access permission, and timestamp. The contract enforces that
each transaction made on the blockchain system carries a cryptographically signed
instructions to manage data integrity. The smart contract is structured as follows:

(a) Identity catalog contract (ICC): Identity catalog contract is one of the major
contracts deployed on electronic health record management system (EHRMS);
this contract only occurs once and invokes by every node present on EHRM
network. It maps patient identity strings to their Ethereum address public key
and provider IP address (Fig. 3).

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 195

Fig. 2 Proposed system design

(b) Relationship contract (RC): The relationship contract established a patient-
provider relationship (PPR) between all entities who have access to EHR of
a particular patient. For each contract, one patient and provider are connected to
it. The PPR is also made up of a list of unlimited third parties who are granted
permission to only view the patient EHR. Patient, provider, and third-party
relationships are stored on the blockchain and enable the third party to locate
all providers in EHRMS network that has access to a particular patient’s EHR
instead of searching for them one after the other. EHRMS enables the patient
to have total control over who accesses their EHR and complete audits of their
EHR which are being accessed through PPR contracts.

196 A. Thompson et al.

Fig. 3 Relationship graph between contract and network nodes

(c) Inventory contract (IC): IC holds a list of references to RC, representing all
the participant’s previous and current transactions with other nodes in the
system. The contract represents actors in EHRM. Patients communicate the
system by utilizing an inventory contract as a proxy. Information about entities
present in the system are stored in these contracts. Information stored on the
contract include patient-provider relationship (PPR) and some addresses that
are associated with the individual account. These contracts require only for the
patient as it serves as a pointer to all PPR that is stored in one place on the
blockchain and also for easier retrieval PPR if the patient needs to recover their
account using recovery secrete text.

3.2 Content Extraction Signature

In this work, document processing operation call extraction is used to remove certain
selected part of the signed EHR before it is stored in the EHR manager and available
for user on the blockchain network. This is done to revoke sensitive data that prevent

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 197

anonymous participation of patients on the blockchain. Content extraction signature
allows a patient P, the owner of EHRs which was signed by a doctor D, to extract
part of EHRs and send only those parts to a user U, which helps us to assure the
patient’s privacy.

The content extraction signature (CES) scheme can be defined as follows:
CES = (GK, Sig, Ext, Ver) which represents four algorithms, namely, key gener-
ation algorithm, signature generation algorithm, signature extraction algorithm, and
signature verification algorithm.

3.2.1 Key Generation GK(k)

This algorithm chooses a security parameters k and generates a public/private key
pair (pk, sk).

Pick a large prime number P and a generator g in Zp

y ← pg;

Q ← (p-1)(g-1);
Select a random number q in such a way that gcd(q,Q) = 1.
Compute:
d ← q-1mody;
Publish Public Key pk ← (y,q) and Private Key pk ← (y,q,d)
Algorithm 2

3.2.2 Signature Generation Algorithm Sig (SK, M, CEAS)

This algorithm accepts private key (sk), EHRs document (M), and a content
extraction signature structure CEAS and produce content extraction signature σF .

Parse Doctor private key sk ← (y, q, d); Patients EHR, M and
Content Extraction Signature Structure CEAS
N ← Len(M);
T ← {0,1};
For i ε[n]
h[i] ← H(CEAS||T||i||Mi);
σ[i] ← h[i]dmod y;
σF ← H(CEAS||T||<σ[i]>iε[n]);
Return σF

3.2.3 Signature Extraction Algorithm Ext(pk,M, σF,X)

This algorithm accepts a public key pk, a EHR document M, a Content extraction
signature σF , an extraction subset X, and produce an extracted signature σE.

Parse pk = (y,q)
Parse σF ← H(CEAS||T||<σ[i]>iε[n])
σ ← ∏

i∈Xσ[i] mod y
σE ← (CEAS,T,σ)
Return σE

198 A. Thompson et al.

3.2.4 Signature Verification Algorithm Ver(pk,M
′
, σE)

This algorithm accepts a public key pk, an extracted subdocument M
′
, and an

extracted signature ,σE, and produces a verification decision d ∈ {Acc,Rej}, where
Acc implies “Accept” and Rej indicates “Reject.”

Parse pk = (y,q)
Parse σE ← (CEAS,T,σ)
Parse M1

X’ ← CI(M’):n ← len(M’)
For i∈X‘
h[i] ← H(CEAS,T,n,i,M’[i])
if
σq ≡ ∏

i∈X‘h[i](mod y) and X‘ ∈ CEAS
Return Acc
Else Return Rej

4 Implementation

The designed system, electronic health record management system (EHRMS),
works by joining three components together: (1) a front end which is a web
application that allows patients/provider to access EHRMS; (2) an EHR manager
that communicates with provider databases, and file system; and (3) an Ethereum
blockchain that controls access rights to EHRM and connects each EHR manager
to the peer-to-peer network. In summary, patients initiate access contracts that are
saved on the blockchain. Therefore, the contracts determine providers’ actor that
should be permitted to access the EHR.

4.1 Front End

This is a component of the system that the user interacts with. All patients and
service providers communicate with the system through this interface. The front end
was developed using React framework. React is a JavaScript library for building a
user interface with simple views for each state of the application; it communicates
to the local and remote server through WebSockets. Users’ private keys and other
details are stored on local machines while providers use a remote server to store
information of users that have a relationship with them (Figs. 4 and 5).

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 199

Fig. 4 EHRMS front end landing page

Fig. 5 Service provider home page

200 A. Thompson et al.

4.2 EHR Manager

The EHR manager segment of EHRMS connects with the basic file system
and facilitates correspondence between EHRMS hubs. It is essentially written in
GoLang, albeit a few collaborations with the blockchain network require script
written in JavaScript.

Remote procedure calls (RPCs) are orders given by one PC to conjure functions
on another. The protocol is transport rationalist and can be applied to the Transmis-
sion Control Protocol (TCP), Hypertext Transfer Protocol (HTTP), WebSocket, and
different protocols for sharing information over the web. EHRMS utilizes RPC in
two different ways, between the users and a local database, and between the users
and a remote provider database.

Local RPCs are utilized to interface between parts of the user interface written
in JavaScript and the EHR manager written in GoLang. The EHR manager
is fundamental for composing client information to the host file system. This
incorporates usernames, passwords, and secret texts.

4.3 Ethereum Proof-of-Authority

Blockchain network was set up with three different systems. Each system represents
the provider node, and each node was set into motion as a validator to the genesis
block on the proof-of-authority (PoA) blockchain.

PoA is an algorithm the makes use of consensus mechanism that relied on the
identity at stake. In PoA, an authorized account known as validator approved all the
transactions and blocks chained into the network (Fig. 6).

In EHRMS, the validator provides a service known as the Ether Faucet, and
the Ether Faucet is the fulfillment of the value of the ether required to perform

Fig. 6 Smart contract calls on the Ganache platform

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 201

a transaction on the network. Because of convenience, this process is obscure for
system users. EHRMS requests for enough ether necessary to carry out transactions
from a provider, for all transactions made by a user. This usually happens when
patients perform their contract with an agent or when a provider becomes a validator.
Providers that are validators automatically generate ether, as nodes endorse the
blocks. Three specific types of smart contracts have been created, compiled, and
deployed on the PoA blockchain to handle access control to EHR using a solidity
programming language. The smart contracts are summary contracts, contracts for
patient-provider relationships (PPRs), and contracts for registrars contracts. The
compiler generates byte code, and each byte code is uploaded to blockchain EVM
to represent a specific operation. The compiler generates byte code, and each byte
code is uploaded to blockchain EVM to represent specific operation.

4.4 Storing EHR

A patient (P) has an encounter with a medical doctor (D) and the D generates a
health record as EHRs for P. The D sends EHRs to P; upon acquiring the EHRs,
P uploads the indexes of the EHR to the blockchain with the catalog of authorized
user (U).

EHRMS allows each user to create a pair of keys during registration, the doctor
(D) creates content extraction on EHRs using a pair of keys (pk, sk) and encrypt
EHRs using symmetric key kd for the purpose of confidentiality. All users in the
blockchain network possess public key (pki) and private key (ski) to accomplish
data sharing.

In our system, CES scheme is used to extract sensitive information from EHR
to assure patient privacy. The doctor serrates EHRs into nine parts (name, age, sex,
ID, contact, next of kin, medical history, diagnosis, prescription), and it is denoted
as M = {m1,m2,m3, m4, m5,m6, m7, m8, m9}. Then the doctor defines the
content extraction access structure CEAS = {2, 3, 7, 9} to avert virulent extraction.
The process of content extraction signature is started by generating public/private
key (pk, sk) using key generation algorithm. Next is for the D to sign the EHR
data M using the signature extraction algorithm. After the completion of signature
algorithm, the D encrypts EHR (M, hii ∈ [1, 9], σF ,CEAS, T) and patient’s public key
pkp and sends both encrypted data to patient P.

Message = {
Ekd

(
M,hii∈[1,9], σF , CEAS, T

)
, Epkp (kd)

}
(1)

Upon receiving the encrypted data from D, P decrypt kd and get M. The P uses
CEAS to extract content of the signature and the corresponding EHR using signature
extraction algorithm.

Data = {(Mi, hi, T) , σE} (2)

202 A. Thompson et al.

P stores the extract signature and corresponding EHR in EHR manager and
returns the storage location link. P partakes in the blockchain and anonymously
by presenting the signed storage location link SIGskp(Ind), and then a request (Rq)
is sent to the blockchain where i ∈ CI(M

′
) and t is timestamp.

Rq = {
SIGskp (Indi) ,H (Indi) , Epkp (Indi) , t

}
(3)

Indi = (linki, hi, t) (4)

After receiving, the request validator checks the validity of each transaction and
collates all data during the period into a data set Dataset = {Rq, t}. The validator
forms a new data block by hash the data set Datahash = H(Dataset, t), and digital

signature SIGskv

(
Dataset ,Datahash. The validator broadcasts the data block to

all the nodes on the blockchain.

V alidator → All : Dblock =
{
Dataset,Datahash,pkvi

, SIGskvi
(Dataset , Datahash)

}
(5)

4.5 Sharing of EHR

To ensure save sharing of EHRs, P predefines access permission in the smart
contract, i.e., access right and access activity, for instance, write, read, and duration
of access. Smart contract is automatically prompted to run the corresponding
operation once the predefined condition set is met. Data sharing process starts
by initiating an EHR sharing request transaction (Rq) to the blockchain network.
User U makes this request which includes the access target (ID), object to access
(obj), and access content. Validators accept the transaction request and verify the U
identity. If U is valid, the transaction will be stored in the blockchain.

U → V alidator : Rq = (ID, obj, ind, t) , ind ∈ [1, 9] (6)

If access conditions are met by the request, smart contract is prompted to decrypt
the indexes of EHRs with patient private key skp and retires the cipher-text of
indexes to U: else the request is rejected.

Message = Epku (indi, t) (7)

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 203

Table 2 Key recovery query
execution time with varying
database size

Key recovery/DB size 100 (ms) 1000 (ms) 10,000 (ms)

1 1.75 1.78 1.84
10 1.80 2.20 2.13
100 2.00 7.80 9.88
1000 4.38 11.00 13.12

5 Evaluation

This section gives a performance study based on a series of experiments conducted
to evaluate our system (EHRMS). We will first explain how the public key is
obtained.

The first test was to determine a user’s public key retrieval time connecting the
EHR manager (gateway) database. We employed MySQL database system in the
tests, on a host PC with Debian 9.8 OS, 4 GB RAM, and an Intel Core I5 1.6 GHz
processor. Another machine running Ubuntu 18.04 LTS with 8 GB RAM and an
Intel Core I5 2.3 GHz processor served as the EHR manager (gateway). Using three
database sizes: 100, 1000, and 10,000 EHR, 1, 10,100 keys fetching time-taken
was measured. For each database size, Table 2 illustrates the query execution time
to obtain certain keys number. It is observed that the query execution time varies
depending on the retrieved keys as well as the size of the database.

The contracts are developed and implemented in a private blockchain using
Ganache and Truffle. Ganache, a personal Ethereum blockchain for developers’
smart contracts, construct smart contracts, decentralized applications (dApps), test
software, and inspect state while maintaining control of the chain. Truffle is an
Ethereum virtual machine-based programming environment, testing framework and
asset pipeline for blockchains (EVM). The first thing that was noticed during the
network’s construction was the maximum amount of gas that each block could
hold. Ganache uses 6,721,975 gas blocks by default, while Main-net presently uses
8,000,000 gas blocks. We initially confirmed the gas cost of the smart contract
we designed before setting the limit quantity of gas per block on the developed
blockchain. The system executes an address mapping that changes a contract’s
privacy preferences, as indicated in the method in Fig. 7. The contract cannot be
updated if the EHR manager determines that it does not include the requestor’s
address. We believe that one or more research institutions may request surveillance;
thus each must have its own registered address.

A smart contract uses a certain quantity of gas, which is then stored on the
Ethereum blockchain. We conducted studies to determine the gas cost of each
contract by adjusting the number of addresses meet the user’s privacy settings. Table
3 displays the results collected. As can be seen, the cost of gas rises as the number of
addresses mapped in the contract grows. We picked ten addresses for each contract
since storing values on the Ethereum network has gotten expensive.

The limit amount of gas is set for each block to store 10 contracts based on the
value acquired in the previous experiment. Table 4 compares contracts saved in our

204 A. Thompson et al.

Fig. 7 Privacy preference smart contract

Table 3 Gas cost varying the
address quantity

Addresses Gas cost

1 183,733 gas
10 320,090 gas
100 1,524,958 gas

Table 4 Contracts stored by
block in different networks

Network Gas cost

Default Ganache 11
Ethereum Main-net 13
EHRMS Network 10

network to those stored in Main-net and the regular Ganache network. The results
demonstrate that the number of contracts saved in our network with Main-net and
Ganache differs by a slight margin. Because the gas size of each block in Main-net
varies over time, this variation has no effect on the network’s functionality.

Then, a limit of 320,090 gas per block is established in our network, allowing us
to store exactly 10 contracts every block. Because we employ a private blockchain,
this value has no impact on network performance.

To register and verify the contract, the registration time of contracts in the
blockchain was evaluated through the gateway, taking into account that each stored
EHR refers to a contract. For this experiment, we used an Ubuntu 18.04 LTS system
with 2 GB of RAM and an Intel Core i7 3.8 GHz processor to host our blockchain.
By establishing a link with the blockchain, we next used the web3.js package to
register and validate the contracts. Following that, we measured the time it took to
register 1, 10, and 100 contracts. The results are shown in Table 5. We deduced from

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 205

Table 5 Execution time for
contract catalogue in
blockchain

Contract Execution time (s)

1 0.63
10 4.80
100 39.20

Table 6 Execution time to
obtain a contract in
blockchain

Blocks Execution time (s)

1 0.53
10 0.57
100 0.59

these findings that time-taken to register transactions in a blockchain varies linearly
with the number of contracts being registered at the same time.

Following that, the address of each contract generated was used to search the
blockchain for it and analyze the gateway’s connection time to the blockchain. We
ignored the time it takes for the gateway to retrieve the contract address from the
database. As shown in Table 6, an increase in the number of blocks has no effect on
the time it takes to obtain a contract recorded on the blockchain.

5.1 Security Assessment

We will assess the security of the developed smart contract in this part. We use a
methodology to identify the primary sorts of attacks that can be carried out against
smart contracts in this evaluation. We discovered three plausible contract assaults
among them:

1. Reentrancy: Calling a smart contract function many times by different users
can result in inconsistencies in the function’s final result. We choose to use the
change Preferences method for n different users in order to evaluate this attack
in our contract.

2. Front-running: A changePreference() transaction can be observed in the plat-
form’s mempool (i.e., memory pool) before it is processed, allowing a person
to react in advance. The memory pool serves as a repository for unconfirmed
transactions. A transaction is created and then sent to the network and stored
in the mempool. We want to check how numerous transactions in the mempool
behave in our tests.

3. Gas limit denial of service (DoS): When a user attempts to exceed a block’s gas
limit with one or more transactions, the transaction is refused, and the transaction
is not executed. In our experiments, we try to find an exploit in the contract that
allows us to go above the gas limit.

To carry out the first sort of attack (Reentrancy), we used multiple addresses on
the blockchain to call the changePreferences() function at the same time. We did
this by registering the addresses that might have access to the blockchain in the

206 A. Thompson et al.

Table 7 Reentrancy attack
result varying the number of
addresses

Addresses Expected result Final result

2 True True
5 False False
10 True True

Table 8 DoS probability in
relation to contract
complexity

Complexity Probability of DoS

O(1) Impossible
O(1) High
O(n 2) Extremely high
O(2 n) Extremely high
O(n!) Extremely high

smart contract. As previously stated, the maximum number of addresses that may
be stored in a contract is ten; thus the test was limited to that number. We check
whether the flow of calls to a single contract function can cause inconsistencies in it
in this test.

According to the results obtained, the contract established was not influenced
by the Reentrancy attack, as shown in Table 7. We discovered that the attack was
ineffective due to the changePreferences() function’s simplicity. This assault may
have an impact on contracts with a higher level of complexity.

The Front-Running attack was carried done by observing the transaction mem-
pool in Truffle Console and using the changeMonitoringType() method. We wanted
to find the blockchain transaction in the mempool after running the method. How-
ever, because we use a private blockchain with few transactions, the function was
executed immediately. As a result, there was no time to complete another transaction
before the previous one was completed. Another factor contributing to this effect
was the contract’s simplicity, which shows that when the changeMonitoringType()
function was called, a new block was formed. The Bloom filter record displayed
tries to protect the user’s privacy and defend against third-party attacks.

We investigated the contract to generate denial of service attacks in the third test
(Gas Limit DoS). We used both contract’s functionalities in this experiment. This
test, unlike the first, seeks to generate an exploit in the contract in order to surpass the
block’s gas limit. Unlike the Reentrancy attack, which aims to maliciously change
the value of a transaction using an exploit without exceeding the block’s gas limit,
this sort of attack prevents a transaction from being executed.

Based on the results of the tests, we discovered that the contract we built is
tamper-proof against Gas Limit DoS. Because of the smart contract’s simplicity,
when a function is called several times, it is processed promptly, preventing DoS
attacks. However, we discovered that the algorithm’s complexity has a direct impact
on this security concern. The created algorithm’s complexity is classified as O(1),
making the attack unachievable. When the contract design is not done appropriately,
Table 8 shows the possibility of a DoS attack occurring based on the complexity of
the algorithm.

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 207

To show the contract’s intricacy, we utilized the Surya tool to create a graphic
representation. Surya is a smart contract system utility tool that gives a multitude of
visual outputs as well as information about the contracts’ structure. It also allows
you to query the function call graph for manual contract inspection. The contract
functions do not interact with one another and cannot be invoked externally by other
smart contracts. This method simplifies contracts and eliminates security concerns.

We used the audit tool Mythril to assess the security of the constructed smart
contract, as we did in the previous experiment. Mythril is an Ethereum Virtual
Machine bytecode security analysis tool. It employs symbolic execution, Satisfiabil-
ity Modulo Theories (SMTs) solution, and taints analysis to uncover security issues
in smart contracts. This program looks for code that could lead to inconsistencies in
security and can uncover flaws in Ethereum and other platforms’ smart contracts.

The security warning MythX SWC-103 appears in the report generated by the
Mythril program. When we specify in the contract a distinct version of the pragma
utilized in the compiler, a floating pragma is issued. Version 0.6.4 was used to create
the contract while version 0.6.7 was used by the solidity compiler installed on the
PC used in the tests. This technique can be problematic since old versions of the
pragma can cause errors in the contract’s execution. To fix the problem, we’ll need
to update the contract to utilize the same compiler version as the machine.

5.1.1 Privacy and Sharing

Patients’ privacy is preserved by separating each patient’s identity from provider
identities. A new Ethereum account is created for separate patient-provider relation-
ship by health providers. This enables the patient to establish public relationships
with providers without exposing personal information of the individual who are
involved in the relationships. But, communication is done indirectly via their
provider’s account; nonetheless, the account is for patients’ transactions provision
with ether.

Also, the system employs content extraction signature (CES) scheme to remove
sensitive part of EHR signed by the doctors. CES generates the valid signature
extraction which cannot be forged without the private key of the signer.

We restrict the amount of data to be stored on the blockchain to a small set
by creating the reference the EHR. The references and predefine permissions are
stored on the chain. It is important that every patient should have some data
storage as on-chain. A 9727-byte executed transaction creates an identity catalogue
contract. Thereafter, respective patient and provider relationship requires a 5007-
byte transaction, with contract updates entailing 220 bytes. This effectively provides
estimation of the required bytes for storage by every single node.

208 A. Thompson et al.

5.1.2 Storage Management

Blockchains need all the nodes to store information and links it to the blockchain
because blockchain cannot save massive data. If these data are stored directly in the
blockchain network, it will increase computational overhead and storage burden due
to the fixed and limited block size. However, data privacy leakage is imminent. We
restrict the amount of data to be stored on the blockchain to a small set by creating
index of the EHR, which references the HER coupled with the index that is stored
on the blockchain.

We apply the architecture for off-chain storage since it enhances large storage
volumes of encrypted original EHR service provider local storage, and blockchain
for on-chain verification only stores few indexes of the corresponding raw data.
This reduces the blockchain storage load and private data integrity and privacy.
Moreover, users can leave and rejoin the system at any time, and then get access
to their historical record according to the index downloaded from the most recent
block in the blockchain.

5.1.3 Data Audit

EHRMS also relies on audit log management as security mechanism since some
exceptions may have resulted from the misuse of access privileges or dishonest
behavior by data requestors. Audit log serves as proofs when disputes arise to hold
users accountable for their interactions with patient record. Thus, immutable public
ledger and smart contract in the blockchain provide immutable record for all of
access requests to achieve traceability and accountability. Audit log majorly consists
of important information such as timestamp of logged event, requester user, data
owner ID, access type (create, query, update), and validation result of the request.

6 Conclusion

Electronic health record management systems rely on sharing architectures that are
state of the art to maintain privacy. The design makes use of a private blockchain,
smart contracts, and CES for anonymization. Because each patient’s records are kept
separate, their privacy is protected. For each patient-provider connection, healthcare
professionals are generating a new Ethereum account to assist individuals in
establishing public relations with providers without releasing personal information.
Despite the fact that communication isn’t done directly through the main account of
their supplier, ether is also used to provide patient transactions. The system employs
content extraction signature (CES) scheme to remove the sensitive part of EHR
signed by the doctors. CES generates the valid signature extraction which cannot be
forged without the private key of the signer.

A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain 209

As a web application, the developed system can be used on a variety of platforms,
including PCs and mobile devices. By allowing all network nodes to check and
disseminate all transactions and block them according to the established rules
defined in the smart contracts, the system strikes a balance between security and
comfort.

The use of decentralization concepts and blockchain frameworks to develop
robust, user-specific, and interoperable EHR systems is demonstrated in this study.
Data access is managed by Ethereum smart contracts, which keep verification
logs and EHR entries and enable patients with comprehensive record reviews,
care auditability, and knowledge exchange through multiple storage and provider
networks.

The findings validated the viability of the architecture as designed. According to
the outcome of the research, the applied smart contract is impervious to a variety of
attacks. With regard to security considerations, the approach utilized in this work to
build a basic complexity contract supported the proposed design. To be clear, more
sophisticated structures may require even more complicated contracts.

In these situations, a more thorough security study is required in order to
discover any weaknesses that could jeopardize the contract’s correct functioning.
The research presented in this publication builds on prior findings by Yue et al.
[14]. It is worthy to note that emphasis is on the established architecture’s security,
converging entirely on the smart contracts structure, in addition to providing more
details about the proposal and evaluating its performance. As a consequence of the
performance and safety testing, we are able to show that the proposed architecture
can be implemented.

References

1. A. Azaria, A. Ekblaw, T. Vieira, A. Lippman, Medrec: Using blockchain for medical data
access and permission management, in IEEE Open and Big Data (OBD) International
Conference, (2016), pp. 25–30

2. A. Ekblaw, A. Azaria, J.D. Halamka, A. Lippman, A case study for Blockchain in healthcare:
“medrec” prototype for electronic health records. Medical Research Data 13, 13 (2016)

3. F. Arlindo, S.Flavio, R. Vladimir, L.Angela, and M.Marcos, Electronic Health Records using
Blockchain Technology. Future Internet for Smart Cities funded by CNPq, 2018, proc.
465446/2014-0, CAPES proc. 88887.136422/2017-00, and FAPESP, proc. 2014/50937-1

4. D. Alevtina, X. Zhigang, R. SamueL, S. Michael, W. Fusheng, Secure and trustable electronic
medical records sharing using blockchain. AMIA Ann Symp Proc, 23 (2017)

5. L. Jingwei, L. Xiaolu, Y. Lin, Z. Hongli, D. Xiaojiang, G. Mohsen, BPDS: A blockchain based
privacy-preserving data sharing for electronic medical records. IEEE Glob. Commun. Conf.
(GLOBECOM), 22–27 (2018)

6. S. Alexaki, G. Alexandris, V. Katos, N. Petroulakis, Blockchain-based electronic patient
records for regulated circular healthcare jurisdictions, in IEEE 23rd International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks, (2018) https://
ieeexplore.ieee.org/abstract/document/851495

7. A. Siyal, A. Junejo, M. Zawish, K. Ahmed, A. Khalil, G. Soursou, Applications of blockchain
technology in medicine and healthcare: challenges and future perspectives. Cryptography
(2019). https://doi.org/10.3390/cryptography3010003

https://ieeexplore.ieee.org/abstract/document/851495
http://doi.org/10.3390/cryptography3010003

210 A. Thompson et al.

8. L. Wanitcharakkhakul, S. Rotchanakitumnuai, Blockchain technology acceptance in electronic
medical record system, in Proceedings of the 17th International Conference on Electronic
Business, (2018), pp. 53–58

9. Q. Xia, E. Sifah, A. Smahi, S. Amofa, X. Zhang, BBDS: Blockchain-based data sharing for
electronic medical records in cloud environments. Published in Information. (2017). https://
doi.org/10.3390/info8020044

10. M. Holbl, M. Kompara, A. Kamišalic, A. Zlatolas, A systematic review of the use of blockchain
in healthcare. In symmetry. (2018). https://doi.org/10.3390/sym10100470

11. A. Rajput, Q. Li, A. Ahvanooey, I. Masood, EACMS: Emergency access control management
system for personal health record based on blockchain. IEEE Access 7, 84304–84317 (2019)

12. D. Nguyen, P. Pathirana, M. Ding, A. Eneviratne, Blockchain for secure EHRs sharing of
mobile cloud based E-Health systems. IEEE Access 7, 66792–66806 (2019)

13. R. Guo, H. Shi, Q. Zhao, D. Zheng, Secure attribute-based signature scheme with multiple
authorities for blockchain in electronic health records systems. IEEE Access 6, 11676–11686
(2017)

14. Y. Xiao, W. Huiju, J. Dawei, L. Mingqiang, J. Wei, Healthcare data gateways: Found healthcare
intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40, 218 (2016). https:/
/doi.org/10.1007/s10916-016-0574-6

15. K. J. Peterson, R. Deeduvanu, P. Kanjamala, & K. Mayo, “A blockchain-based approach to
health information exchange networks”, 2016.

16. Y. Huihui, and Y. Bian, “A blockchain-based approach to the secure sharing of healthcare data”
2017.

17. A.J. Zargar, M. Manzoor, T. Mukhtar, Encryption/decryption using elliptical curve cryptogra-
phy. Int. J. Adv. Res. Comp. Sci. 8(7) (2017)

http://doi.org/10.3390/info8020044
http://doi.org/10.3390/sym10100470
http://doi.org/10.1007/s10916-016-0574-6

	A Secure Decentralized Privacy-Preserving Healthcare System Using Blockchain
	1 Introduction
	2 Overview and Related Work
	2.1 Consensus Protocols
	2.1.1 Proof-of-Work (PoW)
	2.1.2 Proof-of-Stake (PoS)
	2.1.3 Delegated Proof-of-Stake (DPoS)
	2.1.4 Proof-of-Authority (PoA)
	2.1.5 Access Control Mechanism with Smart Contract for Data Sharing

	2.2 Smart Contract

	3 Methodology
	3.1 System Design
	3.2 Content Extraction Signature
	3.2.1 Key Generation GK(k)
	3.2.2 Signature Generation Algorithm Sig (SK, M, CEAS)
	3.2.3 Signature Extraction Algorithm Ext(pk,M,σF,X)
	3.2.4 Signature Verification Algorithm Ver(pk,M,σE)

	4 Implementation
	4.1 Front End
	4.2 EHR Manager
	4.3 Ethereum Proof-of-Authority
	4.4 Storing EHR
	4.5 Sharing of EHR

	5 Evaluation
	5.1 Security Assessment
	5.1.1 Privacy and Sharing
	5.1.2 Storage Management
	5.1.3 Data Audit

	6 Conclusion
	References

