
Chapter 8
Handling Missing Data in Principal
Component Analysis Using Multiple
Imputation

Joost R. van Ginkel

Abstract Principal component analysis (PCA) is a widely used tool for establishing
the dimensional structure in questionnaire data. Whenever questionnaire data are
incomplete, the missing data need to be treated prior to carrying out a PCA. Several
methods exist for handling missing data prior to carrying out a PCA. The current
chapter first discusses the most recent developments regarding the treatment of
missing data in PCA. Next, of these methods, the method that is most promising
both from a theoretical and practical point of view will be discussed in more
detail, namely, multiple imputation. Finally, some extensions of multiple imputation
to other PCA-related techniques or to statistics within PCA beyond the basics
are discussed, and some general recommendations regarding the use of PCA on
multiply imputed datasets in different statistical software packages will be given.

8.1 Introduction

One important part of establishing the psychometric properties of a test or question-
naire is determining its dimensional structure. Oftentimes measurement instruments
measure different aspects of the same psychological construct. For example, a
questionnaire may measure different ways in which one can be religious (Hills et
al., 2005) or different aspects of schizotypal personality disorder (Mata et al., 2005).

Although establishing the dimensional structure of a measurement instrument
is mostly done in personality assessment, there are also situations in educational
settings where dimensionality of a measurement instrument may be relevant. For
example, in a school setting, one may be interested in students’ attitudes towards
different types of bullying (Boulton et al., 1999) or different aspects of students’
well-being (Borgonovi & Pál, 2016). As the developer of such measurement instru-
ments, you may want to know whether its items indeed measure the specific aspect
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of the trait that they are intended to measure. In such cases a statistical technique is
used that establishes which items measure which aspect of the underlying construct.
One widely used technique for this purpose is principal component analysis (PCA).

In practice, many datasets that are used for determining the dimensional structure
of questionnaires suffer from missing data. When data are incomplete, this com-
plicates the use of PCA or any analyses that are aimed towards determining the
dimensional structure. When missing data are not properly handled, erroneous con-
clusions may be drawn about dimensional structure of the measurement instrument.
It is therefore important that missing data are properly treated prior to determining
the dimensional structure.

The current chapter is going to focus on a situation where one is interested in
determining the dimensional structure of a test or questionnaire using PCA in an
incomplete dataset. In the first part of this chapter, an overview of the most recent
developments of missing data handling in PCA will be given. In this overview,
several methods for handling missing data in PCA are going to be discussed. The
second part will focus on the method that is the most promising one both from
a theoretical and practical point of view in more detail: multiple imputation. The
chapter will end with some extensions of missing data handling in PCA to statistics
within PCA beyond the basics and to PCA-related techniques, and some general
recommendations regarding the use of PCA on multiply imputed datasets in several
statistical software packages are given.

8.2 Principal Component Analysis

Within a questionnaire, different subsets of items may exist that each are supposed
to measure a different aspect of the same construct. Such a subset is also called a
subscale. In PCA, the goal is to reduce a large number of continuous variables J to
a smaller number of components, K. Although theoretically the variables need to
be continuous, in practice PCA is regularly applied to items measured on a Likert
scale.

SupposeZ is the standardized dataset consisting of the responses of I respondents
to J items. In PCA, by means of a singular value decomposition, Z is decomposed
as:

Z = U�V′ (8.1)

Here, U is a column wise orthonormal N × J matrix, V is a column wise
orthonormal J × J matrix, and � is a J × J diagonal matrix with the singular values
on the main diagonal. The singular values are the square roots of the eigenvalues.
An important part of the output in PCA that gives insight in how the items in the data
are related to the different underlying components is the J × J component matrix.
This matrix is computed as A = N −1/2V� and contains the correlations between
the variables and the components. These correlations coincide with the regression
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coefficients (loadings) from multivariate multiple regression of the item scores on
the principal components.

In the original singular value decomposition, there are as many components
as there are variables. However, usually only the first few components explain a
substantial portion of the variance of the variables in Z. Additionally, given that
a goal in PCA is to reduce the original number of variables J to a smaller set
of dimensions K (K < J) and given that in PCA the dimensions are represented
by the components, usually only a smaller number of components K are used for
interpretation (there are several ways for determining K. See, for example, Furr,
2018, pp. 85–92). The resulting reduced component matrix is denoted by AK (J ×
K).

For interpretational purposes the resulting AK matrix may be rotated using
either Varimax rotation or Oblique rotation (Harman, 1976). The rotated component
matrix is denoted .A∗

K .

8.3 Missing Data

As already mentioned in the introductory section, in the data collection process,
it may happen that not all respondents provide answers to all the questions in
the questionnaire. Reasons for this may be that a respondent finds a question too
personal, that (s)he accidentally skipped a question, (s)he did not understand the
question, and so on. When respondents have not answered all the questions, this
results in a dataset with missing data.

When data are incomplete, this might have consequences for the PCA that is
carried out next. Before the PCA can be carried out, the missing data need to be
handled. Several ways to deal with missing data in PCA exist (to be discussed
later on), ranging from very simple to highly advanced. However, each of these
methods makes either explicit or implicit assumptions about the underlying process
that caused the missing data, also called the missingness mechanism. Rubin (1976)
and Little and Rubin (2002) defined three main missingness mechanisms, namely,
missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). As these missingness mechanisms are extensively described by
Rubin (1987), Little and Rubin (2002), and various other literature on missing data,
they will only briefly be discussed here.

8.3.1 Missingness Mechanisms

When the data are MCAR, there is no relation between the missing values and any
observed or unobserved information. Consequently, the missing data are randomly
scattered across the dataset. Under MAR, missing data may depend on observed
data but not on unobserved data. It could be, for example, that within different age
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groups, respondents have different amounts of missing data on the questions in the
questionnaire. If, however, age is observed for all respondents and within each age
group the missing data are randomly scattered across the data, then the missingness
is MAR. Finally, MNAR is any missingness mechanism that does not qualify as
either MCAR or MAR. Thus, under MNAR the missingness depends either on a
variable that was not included in the data collection process (e.g., the older people
get, the more missing data they have, and age not being observed) or on the value of
the missing score itself (people with higher scores on an item in the questionnaire
being more likely not to answer the item than people with low scores), or both.

8.3.2 Methods for Handling Missing Data

Methods for dealing with missing data in PCA range from ad hoc to highly
advanced. Among the ad hoc procedures are listwise deletion and pairwise deletion;
a few examples of advanced methods are missing data passive (Meulman, 1982;
Takane & Oshima-Takane, 2003), regularized PCA (Josse et al., 2009), EM-
covariances (Bernaards & Sijtsma, 2000), and multiple imputation (Rubin, 1987;
Van Ginkel & Kroonenberg, 2014). Although the methods mentioned here are not
exhaustive, with the exception of listwise deletion and pairwise deletion, they all
have in common that they are advanced in the sense that they all carry out the PCA
in a statistically sound way, without throwing away any data.

In the abovementioned references, usually the performance of only one of these
methods was compared with the performance of other less advanced methods (such
as substituting the variable mean for each missing value) or with different variants
of the same method. However, none of these studies compared all of these advanced
methods with each other. Van Ginkel et al. (2014) did a simulation study in which
they compared all of the abovementioned methods. Before discussing the results
of their study, each of these methods will be discussed in more detail first. In so
doing they will be categorized into three categories, namely, traditional methods,
simultaneous methods, and sequential methods.

8.3.2.1 Traditional Methods

The traditional methods described by Van Ginkel et al. (2014) are listwise deletion
and pairwise deletion. Listwise deletion deletes every case with at least one missing
value on any of the variables in the PCA from the analysis. Since usually more
data points are thrown away than there are missing data points, listwise deletion
is very wasteful. An additional problem of listwise deletion is that in general,
unbiased results of statistical analyses are only guaranteed when the data are
MCAR. However, in PCA, component loadings are intrinsically biased. This has to
do with the fact that they are bound to −1 and +1, as in normal correlations (Fisher,
1915). Consequently, in PCA the question is not whether loadings are biased as a
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result of listwise deletion, but how much more biased they are than without missing
data.

Like listwise deletion, pairwise deletion deletes cases with missing data for
the calculation of the component loadings, but in doing so it uses more observed
information than listwise deletion does. Pairwise deletion calculates the component
loadings from a PCA in a slightly different way than is described in Sect. 8.2.
Rather than carrying out a singular value decomposition on the standardized
dataset, pairwise deletion computes the component loadings by performing an
eigenvalue decomposition on the correlation matrix (technical details are discussed
in Tabachnick & Fidell, 2001, pp. 591–595). In doing so it also deletes cases
with missing values, but does this for each variable pair for which a correlation is
computed, separately. Consequently, in pairwise deletion more information is used
than in listwise deletion.

Although pairwise deletion uses more information from the data than listwise
deletion does, an implicit assumption is still that the data are MCAR. An additional
disadvantage of pairwise deletion is that since each correlation is based on different
cases, combinations of correlations may occur that together form a correlation
matrix that is not positive semi-definite. Consequently, computational problemsmay
occur when computing the component loadings.

8.3.2.2 Simultaneous Methods

Van Ginkel et al. (2014) discussed two methods that estimate the loadings of the
PCA and handle the missing data in the process, namely, missing data passive
(Meulman, 1982; Takane & Oshima-Takane, 2003) and regularized PCA (Josse et
al., 2009). Since both methods estimate the PCA and in the process also handle the
missing data while not throwing away any information, these methods were referred
to as simultaneous methods.

The idea of missing data passive is that a weight matrix of 1’s (observed data) and
0’s (unobserved data) is used in a weighted homogeneity analysis, a categorical form
of PCA. Regularized PCA, on the other hand, is based on PCA using weighted least
squares (Kiers, 1997; Grung &Manne, 1998). In weighted least squares, after filling
starting values for the missing data, an iterative algorithm is used that alternates
between a regression analysis predicting the component scores from the current
estimates of the loadings and a regression analysis predicting the loadings from the
current estimates of the component scores. At each iteration, the estimates for the
missing data are updated. Regularized PCA is based on the same principle. The
difference with weighted least squares is that regularized PCA uses a smoothing
procedure for estimating the missing data in the process. This smoothing procedure
is especially useful when many components are extracted as weighted least squares
may break down in case of many components.

The simultaneous methods have two theoretical advantages over pairwise dele-
tion. Firstly, they do not throw away data like pairwise deletion does. Secondly, as
long as the missing data are related to variables that take part in the PCA, using
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these methods will not introduce any additional bias in the component loadings as a
result of deviations from MCAR.

8.3.2.3 Sequential Methods

Lastly, Van Ginkel et al. (2014) discussed two methods that treat the missing
data separately from the calculation of the component loadings: EM-covariances
(Bernaards & Sijtsma, 2000) and multiple imputation (Rubin, 1987). In EM-
covariances, first an expectation-maximization algorithm (EM; Dempster et al.,
1977) is used to obtain full information maximum likelihood estimates of the means
and covariances of the data under the assumption that the data are multivariate
normally distributed. Next, the covariances of the variables that are part of the PCA
are converted to correlations, and an eigenvalue decomposition of this correlation
matrix is carried out to obtain the component loadings.

EM-covariances has the same theoretical advantages over pairwise deletion that
missing data passive and regularized PCA have. However, whereas missing data
passive and regularized PCA can only handle MAR mechanisms where the missing
data depend on variables that are included in the PCA, EM-covariances can also
handle MAR mechanisms where the missingness depends on variables outside the
PCA, as long as they are included in the maximum likelihood estimation of the
covariance matrix.

Multiple imputation is perhaps the most widely recommended method for
dealing with missing data. This procedure works in three steps. In the first step, the
missing data are estimated multiple (M) times according to a statistical model that
accurately describes the structures present in the data. This results in M complete
versions of the incomplete dataset, which only differ in the estimates for the missing
data. In the second step, the statistical analysis of interest is applied to each of the
M completed datasets, resulting M different outcomes of the same analysis (in the
current context, a PCA). Finally, the results of the M analyses are combined into
one overall result, using specific calculations, denoted combination rules (for the
specific PCA context, combination rules will be discussed in Sects. 8.5.1 and 8.5.2).

Like EM-covariances, multiple imputation can handle any MAR mechanism,
regardless of whether the missingness depends on a variable within the PCA or
outside the PCA. However, an additional advantage of multiple imputation is that
the multiply imputed data can be used for almost any type of statistical analysis
other than PCA, whereas the means and covariance matrices of EM-covariances
can only be used as the input for analyses that use means and covariances.
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8.3.2.4 Which Method for Handling Missing Data in PCA Is the Preferred
One?

In this subsection a short summary of the results found by Van Ginkel et al. (2014)
is given. Based on the results and on the theoretical properties of each method, a
recommendation is given on which method is generally the best one to use.

To determine the performance of each method, Van Ginkel et al. (2014) studied
three quality measures in their simulation study, namely, the root mean squared bias
(RMSB) of the component loadings, the mean bias (MB) of the component loadings,
and the average number of items assigned to the incorrect component, denoted
the classification error (CE). The RMSB, MB, and CE were defined as follows:
Suppose that .a∗

jk is the population component loading of item j on Varimax rotated
component k and .â∗

jk,d is the corresponding loading for the incomplete simulated
dataset d (d = 1, . . . , D) in a specific condition of the simulation study (specific
missing data handling method, specific percentage of missingness, etc.). For the
specific condition, the RMSB is:

RMSB = 1

D

∑D

d=1

√√√√√
J∑

j=1

∑K

k−1

(
â∗
jk,d − a∗

jk

)2
/JK, (8.2)

and the MB is:

MB = 1

JKD

∑D

d=1

∑J

j=1

∑K

k−1

(
â∗
jk,d − a∗

jk

)
. (8.3)

As for the CE, define f as the component number of the component for which it
holds that

a∗
jf = max

(∣∣∣a∗
j1

∣∣∣ , . . . ,
∣∣∣a∗

jK

∣∣∣
)

and g as the component number of the component for which it holds that

â∗
jg,d = max

(∣∣∣â∗
j1,d

∣∣∣ , . . . ,
∣∣∣â∗

jK,d

∣∣∣
)

.

Next, based on guidelines by Comrey and Lee (1992) that state that loadings below
0.32 should not be interpreted, define:

wj, d = 0 if .max
(∣∣∣a∗

j1

∣∣∣ , . . . ,
∣∣∣a∗

jK

∣∣∣
)

< 0.32 and .max
(∣∣∣â∗

j1,d

∣∣∣ , . . . ,
∣∣∣â∗

jK,d

∣∣∣
)

< 0.32

wj, d = 0 if .max
(∣∣∣a∗

j1

∣∣∣ , . . . ,
∣∣∣a∗

jK

∣∣∣
)

> 0.32 and .max
(∣∣∣â∗

j1,d

∣∣∣ , . . . ,
∣∣∣â∗

jK,d

∣∣∣
)

> 0.32

and f = g
wj, d = 1 otherwise.
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For the specific condition, the CE is:

CE = 1

D

∑D

d=1

∑J

j=1
wj,d . (8.4)

The results of the traditional methods will be discussed first. Van Ginkel et
al. (2014) studied the performance of all methods under both MCAR, MAR, and
MNAR. The bias of the individual component loadings was not studied so it remains
unclear how much bias in component loading deviations from MAR introduced for
the advanced methods and how much bias deviations from MCAR introduced for
listwise deletion and pairwise deletion. However, it became clear from the study
that listwise deletion did not perform well on either the RMSB, the MB, or the
CE, regardless of the missingness mechanism. Additionally, for high percentages
of missing data, listwise deletion was not even feasible because after removing the
incomplete cases, no or too few complete cases were left to analyze. In short, based
on the results of Van Ginkel et al. (2014), listwise deletion is not recommended for
PCA.

As for pairwise deletion, Van Ginkel et al. (2014) found that this method actually
gave satisfactory results on all three quality measures, regardless of the missingness
mechanism. Additionally, computational problems did not occur in the situations
studied by Van Ginkel et al. (2014). However, the latter does not mean that these
problems cannot occur in practice, so using pairwise deletion in practice may not
always be feasible.

Regarding the simultaneous methods, Van Ginkel et al. (2014) found that, firstly,
missing data passive generally gave results that were similar to pairwise deletion
with respect to the outcome measures and that missingness mechanism did not have
a substantial effect on the performance of missing data passive. Regularized PCA,
on the other hand, produced results that were slightly worse than those of pairwise
deletion and missing data passive. Thus, despite their theoretical advantages over
pairwise deletion, they do not seem to show in the quality measures in the study by
Van Ginkel et al. (2014).

Finally, regarding the sequential methods, Van Ginkel et al. (2014) found
that regarding the outcome measures multiple imputation and EM-covariances
performed similar to pairwise deletion. Thus, despite the theoretical advantages of
multiple imputation and EM-covariances over the other methods, this does not really
seem to show in the quality measures either. This leaves us with the question which
method is the preferred one.

Of all the methods discussed in the previous subsections, multiple imputation is
the method that is most preferred from a theoretical point of view because it will
not introduce additional bias in component loadings under any MAR mechanism.
Not considering lower benchmark listwise deletion, pairwise deletion is the least
preferred method from a theoretical point of view because it assumes MCAR, and
it may run into computational problems. However, Van Ginkel et al. (2014) showed
that although multiple imputation was one of the better performing methods, it
did not perform any better than pairwise deletion. Furthermore, pairwise deletion
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(together with listwise deletion) is the simplest method for handling missing data
in PCA (it is included in most statistical software packages and does not require
any additional preprocessing of the data). This raises the question whether pairwise
deletion should not be preferred over any missing data handling method for PCA at
all times, including multiple imputation. Not quite, as being simple and performing
well on a number of outcome measures may not necessarily be the only criteria for
preferring a missing data method in PCA over others. There are other things that
may have to be taken into consideration as well.

Firstly, even though it did not occur in the simulation study by Van Ginkel et al.
(2014), in practice computational problems may still occur using pairwise deletion.
Secondly, even when computational problems do not occur, then still the question is
what the sample size is that the PCA solution is based on as some correlations are
computed for different cases and different number of cases than others.

Thirdly, sometimes researchers may be interested in confidence intervals of
principal component loadings. Van Ginkel and Kiers (2011) developed ways
to construct bootstrap confidence intervals for component loadings in multiply
imputed datasets (more on this in Sect. 8.4) and showed that these ways performed
well regarding coverage of the population loadings. For pairwise deletion there is
no way to construct bootstrap confidence intervals of the component loadings.

Finally, and most importantly, a practical advantage of multiple imputation over
all other methods for handling missing data including pairwise deletion is that
multiple imputation provides the researcher a complete dataset which can be used
for other statistical analyses as well. In practice, a dataset is almost never subjected
to one single statistical analysis, so it is desirable to have a general solution for all
analyses that are carried out on the dataset, such that all analyses on these datasets
are comparable regarding sample size, regarding the cases used, and regarding the
data points (both observed and imputed). When not imputing the data and analyzing
only the usable data however, for some analyses listwise deletion will be applied
(and for each of these analyses, different cases may be used, depending on which
variables are included in the specific analysis), for other analyses full information
maximum likelihood will be applied, and yet for other analyses, pairwise deletion
(as in PCA) will be applied. This will make the statistical analyses mutually
incomparable.

Additionally, while pairwise deletion may give good results for PCA, this is not
necessarily the case for other analyses that are applied to the dataset. It has been well
established that multiple imputation performs better regarding bias and coverage
of parameters than methods based on deleting data (listwise/pairwise deletion).
Consequently, when a researcher decides not to impute the data, conclusions
regarding PCA may be valid, but conclusions based on other statistical analyses
on the same dataset may not.

In short, although from the study of Van Ginkel et al. (2014) we cannot conclude
that multiple imputation necessarily recovers the PCA solution better than pairwise
deletion does, there are numerous other advantages of multiple imputation over
pairwise deletion in PCA. For the remainder of this chapter we are hence going to
take the standpoint that multiple imputation is to be recommendedmost for handling



150 J. R. van Ginkel

missing data in PCA. Hence, we are going to get into more detail about multiple
imputation in the context of PCA in the next section.

8.4 Multiple Imputation in Principal Component Analysis

As already said in Sect. 8.3.2.3, multiple imputation works in three steps: (1) the
imputation step, where multiple estimates for the missing data are generated; (2)
the analysis step, where each of the resulting M imputed datasets is analyzed using
the statistical analysis of interest; and (3) the combination of the M results into
one overall result. Various methods for generating multiple estimates of the missing
data in step 1 have been developed, and various texts have been written on them
(e.g., Schafer, 1997; Van Buuren, 2018). The general process of generating multiple
imputed values for the missing data is not tied to PCA as an analysis for the data,
but is generally the same for all statistical analyses that follow after the data have
been multiply imputed. Consequently, technical details regarding the process of
generating multiple imputed values are not further discussed here. The interested
reader is referred to Van Buuren (2018).

In the context of PCA, the second step in the multiple imputation process is
carrying out a PCA on each of the M complete versions of the incomplete dataset.
This step has already been explained in Sect. 8.2 so this step will not be discussed
here either. This leaves us with the third and final step of the multiple imputation
process: the combination ofM PCA results into one overall PCA result. Van Ginkel
and Kroonenberg (2014) discussed combination techniques for the results of PCA
in multiply imputed data, which will be discussed next.

8.4.1 Combining the Component Loadings

8.4.1.1 The Problem of Traditional Combination Rules When Applied
to PCA

Once a PCA has been obtained from each of the M imputed datasets, this leaves us
withM sets of component loadings. The question is how these component loadings
are combined into one overall set of component loadings. Rubin (1987) defined
combination rules for a parameter estimate with its statistical test and confidence
interval. An overall parameter estimate is obtained by averaging the M estimates of
the parameter. Considering a component loading ajk,m on variable j on component
k to be a parameter estimate of imputed dataset m, a direct application of Rubin’s
combination rules for parameter estimates would come down to averaging the M
component loadings ajk,m.

Van Ginkel and Kroonenberg (2014) argued that averaging component loadings
across M imputed datasets has three potential problems. Firstly, the order of the
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components may not be the same for all M imputed datasets. For example, in
one imputed dataset, a set of items may load highest on the first component,
while in another imputed dataset, this same set may load highest on the second
component. This may especially happen when two adjacent components have near
equal variance.

Secondly, many questionnaires contain both indicative items (a higher score
means a higher amount of the underlying construct) and contraindicative items
(a higher score means a lower amount of the underlying construct). When a
specific subscale of a questionnaire contains about as many indicative items as
contraindicative items, it could happen that in one or more imputed datasets, the
signs of the loadings are reversed compared to those of the other imputed datasets.
When averaging these loadings, their signs may cancel each other out, resulting in
an average loading lower than the average of the absolute values.

A third disadvantage is that even when sign changes of loadings switching of
the order of components do not occur among the M AK, m matrices, then still the
M matrices are not optimally aligned as a result of rotational freedom. Because of
this rotational freedom, the average solution is computed across solutions that have
more variation among each other than necessary (e.g., Chatterjee, 1984; Markus,
1994; Milan & Whittaker 1995; Linting et al. 2007).

8.4.1.2 Using Generalized Procrustes Analysis for Combining
the Component Loadings

A procedure that can resolve all of the three abovementioned problems is Gener-
alized Procrustes analysis (Ten Berge, 1977; Gower, 1975). Generalized Procrustes
analysis was originally proposed to derive one overall component solution from
several ones, not necessarily obtained frommultiply imputed data (e.g., from several
different studies). However, Van Ginkel and Kroonenberg (2014) proposed this
procedure to explicitly combine the results of several PCA solutions obtained from
M imputed datasets. In a simulation study, they showed that this method gave better
results regarding RMSB (see Eq. (8.2)) than averaging of component loadings did.

In the context of M PCA solutions obtained from M imputed datasets, gen-
eralized Procrustes analysis works as follows. Suppose that we have unrotated
component matrix AK, m of imputed dataset m (m = 1, . . . , M). We need an
orthogonal K × K rotation matrix Tm for each of the M imputed datasets that
minimizes the sum of squared distances between the transformed loading matrices,
given by:

f (T1, . . . ,TM) =
∑

i<j

tr
(
AK,iTi − AK,iTi

)′ (AK,jTj − AK,jTj

)
. (8.5)

The rotation matrices T1, . . . , TM are obtained using a procedure that is a
generalization of the classical orthogonal Procrustes problem (Green, 1952; Gower,
1971). In the classical Procrustes problem, we have two matrices A and B where A
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needs to be optimally rotated to B. The required rotation matrix for this problem is
found as follows: supposeQLV

′
is the singular value decomposition of matrix A

′
B.

The rotation matrix T is obtained by:

T = QV′. (8.6)

Finally, A can be optimally rotated to B by post-multiplyingA by T.
When optimally rotating M component matrices towards each other, we can use

an algorithm by Ten Berge (1977, p. 272). Suppose t is the iteration number, and
starting at t = 1, the algorithm has the following steps:

Step 0: Set Tm = I for m = 2, . . . ,M.
Step 1: Rotate AK, 1 optimally to .B = ∑M

m=2 AK,mTm using rotation matrix T1 as

computed in the right-hand side of Eq. (8.6), yielding .AK,1T
(t)
1 .

Step 2: Rotate AK, 2 optimally to .B = AK,1T
(t)
1 + ∑M

m=3 AK,mTm, yielding

.AK,2T
(t)
2 .

StepM: Rotate AK, M optimally to .
∑M−1

m=1 AK,mT
(t)
m , yielding .AK,MT(t)

M .

Step M + 1: Rotate .AK,1T
(t)
1 optimally to .B = ∑M

m=2 AK,mT
(t)
m , yielding

.AK,1T
(t+1)
1 .

Next, the steps 2–M are repeated, where t increases with 1 at each iteration, until
convergence. Once convergence has been achieved, the mean of all transformed
solutions, also denoted the centroid solution AK, C, is used as the pooled PCA
solution for the M imputed datasets. Like a PCA solution in complete data, AK, C
can be rotated either with an orthogonal or an oblique transformation.

8.4.2 Uncertainty About the Component Loadings

In the traditional way in which PCA is used, usually no statistical tests or confidence
intervals are computed. There are procedures for confidence intervals of population
component loadings (more on this in Sect. 8.5), but normally PCA is mainly used
without any statistical testing.

However, in multiple imputation uncertainty is created about parameter estimates
by the fact that for each imputed dataset the imputed values differ and that this
results in slightly different sets of PCA loadings for each imputed dataset. Although
AK, C gives an impression of what the actual sample loadings without missing data
would have been, there is still uncertainty about this centroid solution as a result of
the variation of the imputed values.

Van Ginkel and Kroonenberg (2014) discussed a procedure to show variation in
the component loadings as a result of imputation uncertainty. Using this procedure
a loading plot of one component against the other is created, which shows both the
centroid solution represented by dots and the uncertainty of the centroid solution
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Fig. 8.1 Loading plot of a Varimax rotated four-component solution of components 2 and 3,
applied to a multiply imputed dataset with M = 100 imputations. The loading plot shows both
the centroids and their convex hulls

represented by areas surrounding the dots. These areas are called convex hulls.
Figure 8.1 displays a loading plot that includes both the centroid solution of the
M PCAs and the convex hulls.

The surface of the convex hulls may serve as a measure of uncertainty about the
PCA loadings. These surfaces may be computed in the following way. Each convex
hull may be decomposed as several triangles. Suppose a triangle has three sides,
namely, a, b, and c, and we define s = (a + b + c)/2. See Fig. 8.2. By using Heron’s
rule dating back to before 200 BC, the surface of one triangle can be determined as√
[s(s−a)(s−b)(s−c)]. Doing this for all triangles that the convex hull is composed

of, and adding up the surfaces, the total surface of the convex hull is obtained.
It should be noted that the convex hulls do not in any way intend to represent

some kind of confidence intervals of the population loadings with a specific
coverage percentage. All the convex hulls do is give the reader some visual
impression of where the uncertainty in the PCA solution lies as a result of the
missing data. A loading with a large convex hull is estimated with more uncertainty
than a loading with a small convex hull, and the larger a convex hull is, the
more cautious we must be regarding the interpretation of its loading. However, in
order to assign some more absolute meaning to the convex hulls, Van Ginkel and
Kroonenberg (2014) also studied what percentage of the J × K sample loadings
that would be obtained if no data were missing is covered by the convex hulls under
various circumstances. What they found was that under M = 100 imputations, the
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Fig. 8.2 Surface of one triangle in one of the convex hulls

convex hulls usually capture about 80% of the loadings that would be obtained if
no data were missing, with percentages of missing data up to 15%. Based on these
results, they gave a rough guideline to use M = 100 imputations if the researcher
wants about 80% of the true sample loadings to fall within the corresponding convex
hulls.

Finally, it should be noted that it is possible to use the convex hulls in the form of
confidence intervals, using convex hull peeling (Green, 1981) or confidence ellipses
(e.g., Josse et al., 2011). However, these confidence intervals do not make any
statistical inference about a population loading, only about the true sample loading
if no data were missing. A procedure for constructing confidence intervals of the
population loadings will be discussed next.

8.5 Extensions

8.5.1 Confidence Intervals of the Component Loadings

As already mentioned in Sect. 8.4.2, in complete data there is the possibility of
constructing confidence intervals of population component loadings. Analytical
lower and upper bounds of confidence intervals have been derived by various
authors (Girshick, 1939; Anderson, 1963; Archer & Jennrich, 1973; Ogasawara,
2000, 2002). However, these analytical confidence intervals have either been derived
under the assumption that the data are multivariate normally distributed (Girshick,
1939; Anderson, 1963; Archer & Jennrich, 1973; Ogasawara, 2000), or they require
a large sample size (Ogasawara, 2002).

Alternatively, bootstrap confidence intervals may be used for component load-
ings (Chatterjee, 1984; Efron & Tibshirani, 1994; Kiers, 2004; Lambert et al., 1990,
1991; Linting et al., 2007; Lorenza-Seva& Ferrando, 2003; Markus, 1994; Milan &
Whittaker, 1995; Raykov & Little, 1999). Timmermans et al. (2007) studied two
bootstrap procedures for component loadings in a simulation study, namely, the
percentile method and the bias-corrected and accelerated (BCa) method (Efron,
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1987). They found that both bootstrap procedures give better results regarding
coverage of the component loadings than analytic methods.

Van Ginkel and Kiers (2011) proposed procedures to combine the bootstrap
confidence intervals of both the percentile method and the BCa method. Suppose
that in the complete data case B, bootstrap samples are drawn for constructing
confidence intervals of the loadings in AK , and the central (1 − 2α) part of the
cumulative bootstrap distribution is the confidence interval. Van Ginkel and Kiers
(2011) used the centroid solution AK, C as the component matrix (see Sect. 8.4.1.2).
Next, they drew B bootstrap samples from each of the M imputed datasets and
used the central (1 − 2α) part of the total of B × M bootstrap samples as the
confidence interval. They did this for both the percentile method and the BCa
method. In a simulation study, they investigated the statistical properties of their
proposed procedures, and they turned out to produce coverage percentages close
to the theoretical percentages, for various confidence widths (90%, 95%, and 99%
coverage). The interested reader is referred to their paper.

8.5.2 Three-Mode Analysis

Three-mode analysis (e.g., Kroonenberg, 2008) is an extension of principal compo-
nent analysis. It is used in datasets that consist of three different modes, for example,
respondents (first mode) and questions on a questionnaire (second mode) at several
different time points (third mode). The PCA model can be extended to a situation
with three modes in several ways. The three most well-known extensions for three-
mode data are the Tucker2 model (Tucker, 1972), the Tucker3model (Tucker, 1966),
and the Parafac model (Harshman, 1970; Carroll & Chang, 1970).

What all three models have in common is that they replace the singular value
matrix � in Eq. (8.1) with a three-dimensional core array that also models the
properties of the third mode, represented by different slices. Additionally, while
in PCA � is always a square diagonal matrix, in the Tucker2 and Tucker3 model,
the number of rows, columns, and slices of the core array are not necessarily the
same. This implies that each mode (respondents, variables, time points) may be
summarized by a different number of components. Furthermore, while the PCA
model in Eq. (8.1) only has a matrix containing the scores of each respondent on the
components (U) and a matrix with scores of each variable on the components (V),
the Parafac and Tucker3 model also contain a matrix with scores of the third mode
on the components.

Kroonenberg and Van Ginkel (2012) proposed rules for combining the results of
the Tucker2model in multiply imputed datasets. These combination rules are similar
to the proposed combination rules discussed in Sect. 8.4.1.2. They involve applying
generalized Procrustes analysis to both the three-mode equivalent of matrix U and
of matrix V and by calculating the core matrix from both these two matrices and the
M imputed datasets using matrix algebra. For the exact procedure, see Kroonenberg
and Van Ginkel (2012).
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Van Ginkel and Kroonenberg (2017) found that multiple imputation in combi-
nation with generalized Procrustes analysis produced good results of three-mode
analysis in terms of RMSB (Eq. (8.2)) as compared to generalized least squares (see
Sect. 8.3.2.2), the default method for handling missing data in three-mode analysis.
It is, however, hard to tell what the specific influence of the combination techniques
is on the RMSB, as for three-mode analysis there are no other combination
techniques available than the one proposed by Kroonenberg and Van Ginkel (2012),
to compare the procedure with.

8.6 Implementation in Software

Nowadays, most standard statistical software packages have included at least some
procedure for creating multiply imputing incomplete datasets. Thus, when applying
a PCA to an incomplete dataset, the question is not so much how to find a software
package that can multiply impute the data as there are various options for that. The
question is more which software package to use for combining the results of PCA
on an incomplete dataset once it has been multiply imputed.

The software program 3WayPack (The Three-Mode Company, 2021) is a
freeware program that can be used for several three-mode models. The package also
includes an option of using generalized Procrustes analysis. The program requires
plain text as input, which is not really convenient when PCA results of multiply
imputed datasets are printed in software specific output as they need to be converted
to plain text first.

Alternatively, one can use the shapes package in R (Dryden & Mardia, 2016).
This package can perform generalized Procrustes analysis. However, this package
is more generally meant for the statistical analysis of landmark shapes and just
happens to be also usable for combining results of PCA applied to multiply imputed
dataset.

If one wants to stay completely within the framework of PCA on multiply
imputed datasets, then the SPSS macro GPA.sps (Van Wingerde & Van Ginkel,
2021) may be used. This macro has been developed for applied researchers who
use SPSS for their basic analyses and who want to combine the results of PCA
within SPSS. The macro reads PCA output that has been saved to an SPSS data file,
performs the calculations, and provides the (possibly Varimax rotated) matrix AK, C
in a new output. Plots with convex hulls as shown in Fig. 8.1 can also be printed.

8.7 Limitations and Final Considerations

Finally, a few limitations within the framework of PCA of multiply imputed
datasets, and some points to take into consideration, will be discussed. As pointed
out in this chapter, combination rules for component loadings in multiply imputed



8 Handling Missing Data in Principal Component Analysis Using Multiple Imputation 157

datasets have been developed and investigated (e.g., Van Ginkel & Kiers, 2011; Van
Ginkel & Kroonenberg, 2014; Van Ginkel et al., 2014). However, in PCA usually
more outcomes are used and/or interpreted than only the component loadings.

For example, the component scores of the persons may need to be used for
further analysis. At the moment not much has been written on how to compute
component scores for multiply imputed datasets. Although not explicitly stated in
their paper, Buisman et al. (2020) computed component scores for each imputed
dataset m by standardizing the data to Zm and using .Vm = Zm

√
NAK,C . It has not

been investigated, however, how this ad hoc solution performs in terms of bias in
subsequent statistical analyses with these component scores.

As a second example, no combination rules have been defined for the proportion
of variance accounted for by the extracted components. One could construct a
pooled � matrix using a similar procedure for constructing the core three-way
array in three-mode analysis discussed in Sect. 8.5.2 (also, see Kroonenberg &
Van Ginkel, 2012). Next, the first K singular values of the pooled � could
be used for getting a measure for the total amount of explained variance. At
present the theoretical properties of such a solution have not been derived nor
investigated. Consequently, it is currently unknown how closely such an estimate of
the proportion of explained variance resembles the proportion of explained variance
that would have been obtained if the data had been complete.

In short, there are still things that remain to be developed and investigated
regarding the pooling of estimates and statistics within PCA applied to multiply
imputed data. This is more generally a problem of multiple imputation. Rubin
(1987) provided only very general combination rules for statistical analyses that
can be applied when a parameter estimate or a set of parameter estimates is tested
for significance. For some statistics and analyses that do not directly fit into that
framework, additional combination rules have been developed since Rubin (1987),
but for other statistics and analyses, there is still work to be done regarding
combination rules. Whenever applied researchers are interested in statistics or
analyses for which no combination rules are available yet, they are often inclined to
set aside multiple imputation as a method for handling their missing data altogether.

However, Van Ginkel et al. (2020) argue that even when combination rules for
specific analyses and statistics are lacking, it may not always be harmful to use
something ad hoc. Even without a theoretical justification, ad hoc solutions can
still give a rough but reasonable indication of what the actual statistic would have
been without missing data. Additionally, since PCA is usually (but not always) used
without any statistical testing, one cannot draw erroneous conclusions as a result
of type I or type II errors. Even when something as simple as averaging �’s across
imputed datasets is done, this will probably still give a good indication of howmany
of the components contribute substantially to the explained total variance and which
do not.

In summary, when a PCA needs to be carried out on an incomplete dataset,
multiple imputation may be a good tool to handle the missing data. Although
pairwise deletion does not necessarily give worse results than multiple imputation,
multiple imputation comes with many other advantages, such as all analyses being
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applied to the dataset being comparable regarding sample size and cases being
included in the analyses. Besides, pairwise deletion has the disadvantage that
computational problems may occur. Estimates of component loadings in multiply
imputed datasets can readily be computed using generalized Procrustes analysis.
Other statistics in PCA may not have combination rules as of yet, but using some
quick-and-dirty procedures may not be harmful for the given purposes of PCA.
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