
Chapter 5
Psychological Constructs as Organizing
Principles

Denny Borsboom

Abstract Klaas Sijtsma has suggested that psychological constructs, such as those
invoked in the study of intelligence, personality, and psychopathology, should be
understood as organizing principles with respect to elements of behavior, including
item response behavior. In a discussion in the journal Psychometrika, Sijtsma
(Psychometrika, 71(3), 451–455 (2006)) contrasted this position with the common
cause interpretation of Item Response Theory (IRT) models and the associated
theory of validity that I had articulated some years earlier (Borsboom,Psychological
Review, 111(4), 1061–1071 (2004)), arguing that this theory of validity was far too
strong given the immature status of psychological constructs. In the present chapter,
I present an alternative understanding of IRT models in terms of psychometric
networks, which is inspired by Sijtsma’s idea of constructs as organizing principles.
From the weak premise that psychological constructs organize behaviors, in the
sense of identifying behavioral elements that structurally hang together, in the
present chapter, I show how one can build up a psychometric approach that can
motivate and guide the use of tests in psychology in the absence of strong common
cause interpretations.

5.1 Introduction

Psychometrics is an intrinsically multidisciplinary project, and like all multi-
disciplinary projects, it tends to disintegrate into unconnected monodisciplinary
components if left to its own devices. Klaas Sijtsma is one among a small group
of psychometricians who have spent their careers trying to protect the brittle but
essential connections between substance, mathematics, and philosophy. In this
respect, Klaas and I are kindred spirits, because both of us have tried to find a
balance between the messy reality of psychometric practice, the idealized structures
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of psychometric modeling, and the conceptual questions of what psychological
measurement is and how it should be optimized.

Despite these shared commitments, in the past, Sijtsma and I also have defended
different positions on the core question of how psychometrics should relate to its
neighbors. Sijtsma has argued that psychometrics should operate as an auxiliary
discipline to psychology, i.e., it should seek a partnership in which it plays the role
of helper (Sijtsma 2006). I have tended to take a more directive position, primarily
because I doubt that psychologists are sufficiently interested in measurement to
tackle the problems involved (Borsboom 2006; Borsboom et al. 2004).

Unfortunately, the theoretical basis required for the research program I cham-
pioned (Borsboom et al. 2004) is often unattainable in psychology, as Sijtsma
(2006) astutely observed, because standard measurement models in psychometrics
are unrealistic given the substance matter of psychology. In recent work, however,
alternatives to standard measurement models have been developed that seem to align
much more naturally to the way that psychologists think; in these models, constructs
are not seen as common causes of manifest variable, but as network structures that
connect such variables (Borsboom et al. 2021). It turns out that these models are
actually finely tuned to a comment that Sijtsma (2006) made in discussion we had in
Psychometrika, in which he presented the viewpoint that psychological constructs
should operate as “organizing principles” that specify which psychometric items
“hang together.”

In this chapter, I aim to bring this idea of Sijtsma (2006) in contact with the
field of network psychometrics, which has been recently developed on the basis
of the network perspective on psychometric constructs (Marsman et al. 2018;
Borsboom et al. 2021; Van Borkulo et al. 2014; Cramer et al. 2010) to arrive
at an alternative conceptualization of psychometrics in the context of network
models. I first review the standard interpretation of latent variables as common
causes, after which I discuss an alternative interpretation in terms of structurally
connected variables. Finally, I examine the important psychological concepts of
unidimensionality, reliability, and validity from this viewpoint.

5.2 Item Response Theory and Common Cause Structures

Item Response Theory (IRT) models the response of a person i to an item j as a
function of a set of item and person parameters through an Item Response Function
(IRF) that maps each combination of the parameters to a probability distribution
over the item responses. In the case that there is only one person parameter θi , we
have a unidimensional model. A commonly used example of such a model is the
well-known Rasch (1960) model, in which the IRF is logistic and each item has one
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parameter, βj , which controls the location of the IRF:

.P(Xij = 1|θi, βj ) = eθi−βj

1 + eθi−βj
(5.1)

Because of its ease of application, mathematical tractability, and favorable measure-
ment properties, the Rasch model is popular among psychometricians. It is heavily
used in fields like educational testing, intelligence and personality research, and the
study of psychopathology. The model will therefore serve well as a leading example
in the current chapter.

Looking at the Rasch model, it is evident that the item response probabilities are
the result of a trade-off function between the item and person parameters, which
are often called “difficulty” and “ability,” reflecting the origin of the model in
educational measurement. This trade-off is possible because θ and β are on the
same scale, which means that “difficulty” and “ability” are, in an important sense,
exchangeable: “having a higher level of ability” is equivalent to “making an easier
set of items,” not just in a figurative mode of speech, but exactly. The fact that all of
the IRFs that describe a set of items are controlled by a single person parameter
then means that each of the item difficulties trades off against the same ability.
This, in turn, suggests that θ functions as a common cause of the item responses
(Reichenbach 1956; Pearl 2009; Haig 2005a,b).

It is useful to briefly consider the notion of a common cause, as introduced by
Reichenbach (1956), to establish this parallel. Reichenbach (1956) dealt with the
situation in which a binary common cause, C, has two binary events A and B as
its effects. In this case, a common cause is required to satisfy three conditions: (1)
P(A|C) > P(A|¬C) and P(B|C) > P(B|¬C), (2) P(A ∩ B) > P(A)P(B),
and (3) P(A ∩ B|C) = P(A|C)P(B|C). A classic example considers the relation
between yellow-stained fingers (A) and lung cancer (B) as a function of smoking
(C): the probability of both yellow-stained fingers and lung cancer is increased,
given smoking (condition 1) yellow-stained fingers and lung cancer are positively
associated (condition 2), and smoking “screens off” the association between
yellow-stained fingers and lung cancer, rendering them conditionally independent
(condition 3).

Translating this to a situation with m dichotomous effect variables Xj , j =
1, . . . ,m and a continuous common cause θ , as would match most IRT models,
Reichenbach’s conditions become:

1. P(Xj = 1|θ) is increasing in θ .
2. P(Xj = 1,Xk = 1) > P(Xj = 1)P (Xk = 1) for all j, k.
3. .P(x1, . . . , xj , . . . , xm|θ) = ∏m

j=1 P(xj |θ) = ∏m
j=1 P(Xj = 1|θ)xj

P (Xj = 0|θ)1−xj .

Condition 1 is satisfied in the Rasch model, as the logistic function (1) is strictly
increasing in θ . Condition 2, positive association, is a well-known consequence
of every unidimensional monotone latent variable model (Holland & Rosenbaum
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1986) including that of Rasch. Condition 3 is local independence, a common
property of IRT models, including that of Rasch. Thus, the Rasch model conforms
to a common cause structure.

In fact, conditions 1–3 are satisfied in all unidimensional models for dichotomous
item responses that have increasing IRFs, like the popular model of Birnbaum
(1968). In less restrictive models, like the Mokken (1971) nonparametric model and
its generalization, the monotone latent variable model (Holland & Rosenbaum 1986;
Junker & Sijtsma 2001), a weaker form of monotonicity (i.e., that P(Xj = 1|θ)

is non-decreasing in θ ) exists that does not strictly conform to these conditions;
however, in such models, the latent variable can be conceived of as the common
cause of subsets of item responses, in those regions of θ where the corresponding
items’ IRFs are all increasing. Thus, Reichenbach’s (1956) common cause structure
applies to the relation between θ and the item responses in a broad class of IRT
models.

This appears to be more than a statistical coincidence, because several other
psychometric concepts have strong parallels with the causal modeling literature as
well. For instance, in a measurement context, it is sensible to require that θ mediates
the effects of a set of external factors {V } on the set of items {X}. That is, if {X}
measures θ , then changes in the item response probabilities induced by conditioning
on group variables (e.g., sex) or interventions (e.g., therapy) should affect the item
responses only indirectly, that is, through θ . In causal terms, this means that θ should
“block” all causal paths from variables in {V } to variables in {X}. Via the criterion
of d-separation (Pearl 2009), this implies the following conditional independence
relation for all variables in {X,V }:

.F(x|θ) = F(x|θ, v), (5.2)

for all (θ , v), where F(x|θ, v) denotes the value of the conditional distribution
function of X evaluated at the point (θ , v). In the psychometric literature, (2) is well
known as the requirement of measurement invariance (Mellenbergh 1989; Meredith
1993; Millsap 2007). Interpreted causally, measurement invariance thus requires
that no variables except for θ exert a direct causal effect on the item responses.

The idea that θ acts as a common cause of the item responses also matches the
way many substantive researchers think about latent variables. Spearman (1904)
set up the common factor model to analyze cognitive tests in accordance with
this notion, as he interpreted general intelligence, or g, as a source of individual
differences present in a wide range of cognitive tests (see also Jensen (1999), for
a similar view); the condition of vanishing tetrads that Spearman introduced as
a model test is currently seen as one of the hallmark conditions of the common
cause model (Bollen & Ting 1993). In personality research, putative latent variables
such as those in the Five-Factor Model are likewise seen as causes of behaviors; for
instance, McCrae and Costa Jr. (2008) argue such things as “E[xtraversion] causes
party-going” (p. 288). Finally, in clinical psychology, Reise and Waller (2009) note
that “to model item responses to a clinical instrument [with IRT], a researcher must
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first assume that the item covariation is caused by a continuous latent variable”
(p. 26).

Thus, not just the “letter” (i.e., the formal correspondence given above) but also
the “spirit” of latent variable modeling is driven by the idea that our item responses
are the effects of a common attribute that underlies the observations, represented in
the model structure by the symbol θ . As Reise and Waller (2009) note, this “sets
limits on the type of constructs that can be appropriately modeled by IRT” (p. 26);
namely, the type of constructs for which this is sensible is the type for which,
minimally, it can be expected that the items will behave as if they are a function
of a common cause.

5.3 The Causal Account of Test Validity

The common cause understanding of latent variable models is strong but clear.
In 2004, I developed a straightforward consequence of the causal interpretation
of measurement models for the concept of validity (Borsboom et al. 2004). My
reasoning was that, if psychological constructs like depression or intelligence
signify common cause of test scores, and validity refers to the question of whether
these test scores measure what they should measure, then the core of any validity
argument must lie in specifying the psychological processes by which the relevant
psychological attributes play their causal role. This idea applies naturally for certain
test types; an example may involve items as used in working memory capacity tests.
In these tests, participants are instructed to recall different sequences of letters or
numbers, while they are simultaneously executing another task (e.g., counting back
from 100 to 0). Plausibly, one’s success in recalling the sequence 2, 6, 4, 7, 2 and
the sequence 4, 6, 3, 8, 9, 4, 3, 4, 5 depend on the same resource, namely, working
memory capacity. Clearly, then, working memory capacity acts as a common cause
with respect to the individual differences in item responses.

This type of causal argument says how individual differences in a psychological
attribute, which affects all of the item responses, are translated into individual
differences in test scores. In my view, this forms the core of the validity concept.
If one thinks about it, such specifications are not hard to come by in cases where
questions of validity actually have a definite answer. Such examples, in my view,
are too scarcely considered in validity theory. In fact, the idea that validity questions
are unanswerable is taken for granted in certain lines of thinking about validity
(one received view is that “validity is a never-ending process”). However, there
are actually measurement problems that have been solved and validity questions
that have been answered. And typically, the answer to a question like “why does
instrument X measure attribute Y ?” hinges on a specification of how the instrument
works (i.e., specifies a causal process where the measured attribute is the starting
point and the meter readings are the endpoint). Why do mercury thermometers
measure temperature? Because higher temperatures cause the mercury to expand
and hence the meter rises. Why does the composition of air trapped in the Arctic
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ice measure historical global carbon dioxide emissions? Because higher emissions
cause more carbon dioxide in the relevant air pockets and higher concentrations
of carbon dioxide cause higher readings in spectral analysis of the air contained in
these pockets. Why does the item “what is your age?” measure age? Because people
know how old they are and, if willing, will be able to supply that information.

If available, the causal answer to validity questions is the most forceful answer
there is. It is explicit, testable, and suggestive of changes that might improve
the measurement device. However, it is also a very taxing answer. It requires a
convincing account of how the measured attributes exert their causal effects, and
theories that can motivate such accounts are scarce in psychology (although they do
exist, as some of the above examples show).

In 2004, I believed that this type of analyses could be made to work in psychology
at large and should be investigated vigorously. Our task as psychometricians, in
my view, was to come up with good analyses of response behavior in which the
measured attribute played a causal role. It looked like that kind of analysis was there
for the taking with the combination of advanced modeling techniques, cognitive
diagnostic models, and good psychological theory. However, some colleagues were
skeptical. Klaas Sijtsma was one of them (Sijtsma 2006). In response to a paper in
which I pushed the causal psychometric account to its extreme (Borsboom 2006),
he articulated doubts with respect to the research program I was advocating:

Borsboom’s assumption about the ontology and causality of psychological attributes seems
to lead to a very restrictive conception of the process of construct validation: Elegant in its
rigor but impractical for psychology (and many others areas). It seems to me that we still
know so little about the functioning of the human brain in general and cognitive processes
including those underlying personality traits and attitudes in particular, that it is difficult
even to say what an ‘attribute’ is. In the absence of such knowledge, I prefer to consider
psychological attributes as organizational principles with respect to behavior. Thus, my
point of view is that psychological attributes define which behaviors hang together well and
are useful to the degree in which tests sampling these behaviors play a role in predicting
interesting psychological phenomena.

With some reluctance, I have to admit defeat to this charge when it comes to the
more abstract entities in the psychometric pantheon—that is, the big psychometric
players like general intelligence, neuroticism, attitudes, and psychopathological
conditions. In the years that followed the conceptual articulation of the causal
validity program, I attempted to come up with good measurement theories for such
constructs but ultimately failed to provide a believable analysis in causal terms.
Although this research line of mine is undocumented and impossible to replicate—a
failure to construct conceptual analyses leads to the theoretical equivalent of a file-
drawer problem; one can hardly publish failures to come up with a new theory—I
did try hard. Apart from a few isolated successes (most notably the analysis of IRT
model results in terms of drift diffusion parameters as developed by my colleague
Han van der Maas (Van der Maas et al. 2011)), it just didn’t work.1

1 Naturally, that I could not come up with good theories of test validity does not mean that nobody
else could. Perhaps I didn’t use the right framework; perhaps I just approached the problem from
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In fact, that is an understatement. If one attempts to specify how general
intelligence causes responses to the item “Who wrote the Iliad?”, how depression
leads to sad mood, and how attitudes influence the answer to questions like “do you
think Trump is a good leader?”, one arrives at theories that are far too strong and
far too simplistic. In fact, the very idea that traits like intelligence, extraversion,
and psychopathological syndromes are causes of human behavior, including the
behavior that involves ticking boxes on questionnaires, appears to be rather far-
fetched, more akin to Moliere’s virtus dormitiva than to any serious appreciation
of the psychological complexity of the constructs in question.2 B.F. Skinner (1987)
once stated that “as soon as you have formed the noun ability from the adjective
able, you are in trouble,” and indeed that seems to be accurate for many of the
abilities and traits invoked in psychometric theory.

5.4 Structural Connections

The general failure to come up with adequate measurement theories forms an
interesting contrast with the relative ease with which one can concoct psychometric
models. Taking desirable measurement properties as axiomatic for measurement
models, it is possible to deduce the general form and structure that psychometric
models should have and work out the distributions of data they imply. This is what,
in my view, psychometricians have been most successful at over the course of the
past century. One can easily imagine the tests and theories employed in psychology
today to become a laughing stock for future generations, but the intricate building of
interrelated statistical measurement models of IRT, which Klaas Sijtsma and others
erected in the past decades, will remain an important entry in the scientific record.

Because such models have more to do with philosophical ideas on what good
measurements should look like, than with psychological ideas about whatever it
is we are measuring, psychometric models are in my view best seen as applied
philosophy of science. The models one can deduce from general philosophical
measurement desiderata range from very strong to extremely weak. The Rasch
model in Eq. 5.1 is an example of a strong model. Rasch (1960) started from
some desirable measurement axioms (e.g., things that would be nice to have, like
separate identifiability of person and item characteristics) and then deduced the

the wrong angle; may others come and do it better. However, as they say, insanity is trying the
same thing over and over again and expecting different results, so it seemed more sensible to
reconceptualize my problems than to keep trying.
2 As an aside, if test score use and interpretation would actually require theories of this kind, then
the whole scientific project of psychometrics would be in serious trouble, perhaps even trouble
of the end-of-story kind. Realizing this, in hindsight, it is unsurprising that the reception of my
validity theory was mixed. One influential validity theorist stated informally that what I said might
all be good and true, but that my definition of validity would never be accepted because theories
that specify how psychological constructs cause item scores “would not hold up in court.”
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model formula in Eq. 5.1 as a consequence. One can also proceed from much
weaker requirements and deduce weaker models as a result (Holland & Rosenbaum
1986; Ellis & Junker 1997); this more realistic approach is the cornerstone of
nonparametric IRT, to which Junker and Sijtsma (2001) and Sijtsma and Molenaar
(2002) provide excellent introductions.

The focus on desirable measurement properties leads to simple models. The
Rasch model in Eq. 5.1 is one example, but basically all models in the IRT family
(Mellenbergh 1994) are variants of the general structure. Usually, that structure
specifies how people’s position on a relatively simple latent variable (e.g., a point
on a continuous line, membership of a latent category) is coordinated with a
specific probability distribution over the item responses. Because nearly all models
specify a form of conditional independence, in which the observed variables are
independent given the latent variable, they can typically be understood along the
lines of Reichenbach (1956) as explained in the previous paragraph. Thus, nearly all
models can be understood as specifying a (possibly somewhat convoluted) common
cause model.

However, if we think for a moment about, say, relations between symptoms
of depression, attitude items, or cognitive processes, it is hard to see how causal
interpretations of such simple models could possibly be on target. After all, it would
be a small miracle if human behavior, embedded in a nexus of complex interactions
between factors at genetic, physiological, psychological, and social levels, were
literally governed by a model structure as simple as Eq. (5.1) and its relatives.

This realization, however, presents us with a paradox. This is because the
latent variable modeling approach in topics, like intelligence, personality, and
psychopathology, has not fared as badly as one should expect, given the complexity
of human behavior. Although measurement models rarely fit adequately, they do
generally provide a reasonable description of the data; for instance, the fact that the
general factor of intelligence is now in the company of general factors of personality
and psychopathology is not accidental. In recent years, I have investigated the
hypothesis that the reason for this is that the tests used in such domains depend
on distinct attributes and processes that do not depend on a common cause, but
are structurally connected through relations that can reasonably be approximated
by pairwise interactions; these pairwise interactions, in turn, generate probability
distributions that tend to fit latent variable models reasonably well.

What does it mean for variables to be structurally connected? To preempt some
obvious misinterpretations, let me first say what I do not mean. First, I do not mean
to say that structurally connected variables merely correlate. Ice cream consumption
and murder rates are famously correlated across the months of the year, but not
structurally connected. Second, to be structurally connected does not necessarily
mean that variables stand in directed causal relations. Sad mood and suicidal
ideation, for instance, are probably to some extent involved in some reciprocal
reinforcement process, but it is unlikely that this relation is of the smoking-causes-
lung-cancer kind that modern theories of causality (e.g., Pearl (2009)) present as
axiomatic. In addition, I intentionally cover cases where different items are in
part related through semantic or logical pathways. For example, some items in
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personality questionnaires contain very similar wordings, which leads responses to
be structurally connected, but the queried attributes are unlikely to stand in directed
causal relations.

As a working definition, I propose variables to be structurally connected if
they (or their probability distributions) cannot vary independently. This definition
is extremely broad and covers a wide variety of cases where relations between
variables are systematic (i.e., they are not merely correlated) but not necessarily
causally directed. For variables to be structurally connected thus means that these
variables represent elements of behavior that, in the words of Sijtsma (2006), “hang
together.”

Here are some examples. Responses to the item “do you think Trump is a good
leader?” are structurally connected with responses to the item “do you like Trump?”
because people strive to keep their attitude elements consistent. Responses to the
item “do you like parties?” are structurally connected with responses to the item
“did you like the last party you went to?” because the latter assesses a memory trace
that a respondent will also use in answering the former. Responses to the item “have
you felt fatigued over the past 2 weeks?” are structurally connected with responses
to the item “have you slept more than usual over the past 2 weeks?” because
people who are tired will tend to sleep more. Responses to the item “have you felt
fatigued over the past 2 weeks?” are also structurally connected with responses to
the item “have you slept less than usual over the past 2 weeks?” because people
who don’t sleep well tend to get tired. In each of these cases, the relevant variables
cannot vary independently, because they share meaning, are causally related, share
resources, or are intertwined in development.3 In contrast, responses to the item “do
you like parties?” are not structurally connected with responses to the item “who
wrote the Iliad?”, because these variables can vary independently. For the same
reason, responses to the item “have you felt fatigued over the past 2 weeks?” are
not structurally connected with responses to the item “do you think Trump is a good
leader?”.

5.5 Network Representations of Psychological Constructs

Shifting attention from a common cause principle to the idea of structural connec-
tions between variables invites a different way of setting up our basic psychometric
apparatus. I propose to denote the structural connection between two variables Xj

and Xk with a tilde:

.Structural connection ≡ Xj ∼ Xk (5.3)

3 In a very weak interpretation of causality, one could say structural connections are a type of causal
relations, but I think this stretches the meaning of the term beyond the limits of usefulness.
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.Xj ∼ Xk means that the variables in question cannot vary independently. One
way of making this idea more precise might be taken by saying that intervening
on Xj will affect Xk and vice versa, i.e., implying a bidirectional causal relation
between the variables in question that can be expressed using the concept of a Do-
operator (Pearl 2009). The Do-operator is used in the causality literature to represent
interventions on a system in order to provide a semantics for causal relations. In
particular, a causal effect of Xj on Xk would be expressed as P(Xk |Do(Xj =
xj )) �= P(Xk), i.e., a causal effect means that the probability distribution of Xk

is not the same under manipulations that force Xj to take different values xj . In the
present case, one could imagine that a structural connection may be taken to imply
bidirectional causal dependence:

.Xj ∼ Xk ⇒ P(Xj |Do(Xk = xk)) �= P(Xj ) ∧ P(Xk |Do(Xj = xj )) �= P(Xk)

(5.4)

This type of characterization in causal terms may be useful to flesh out specific
formalizations of structural dependence.4 For instance, given the causality calculus,
the causal formulation implies the statistical consequence that two variables cannot
be rendered statistically independent, given any other variable at our disposal. Thus,
given a set of variables {X} that characterize a system under study, if a structural
connection exists between Xj and Xk , this implies that when conditioning on the
complement set {Xc} (all variables in {X} excluding Xj and Xk):

.Xj �⊥⊥ Xk|Xc (5.5)

In other words, the variables are not statistically independent given everything
else we can measure on the system. Ordinarily, the set {X} will be a pragmatically
chosen collection of variables, and the question of whether any two variables are
structurally connected is studied relative to this collection. It would be interesting
to investigate what other choices would be sensible to define the set {X} or what it
means for {X} to characterize the system under study, but I will not pursue these
questions here and will simply assume {X} to be composed of whatever a researcher
chooses to include in the data. Also, for convenience, I will assume the bidirectional
causal relation to be symmetric (i.e., equally strong in both directions) although I
don’t think much hinges on that.

For a given set of variables, the above definitions imply a network structure
to which standard representations of network psychometrics apply. In particular,

4 I hasten to add that the above characterization should be seen as one of the various ways to make
the idea of a structural connection concrete and not as definitional. Also I do not intend the notion
of structural connection to require such things as decomposability (de Boer et al. 2021) and similar
kinds of atomistic conception of the world of variables, which seems to have become common in
the language of causality. Thus, the implication is not biconditional as the causal analysis does
not exhaust the possibilities and may depend on auxiliary assumptions that are not satisfied in
psychometrics.
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Fig. 5.1 A network of five
variables. Edges between
variables indicate that the
relevant variables are
structurally connected

1

2

34

5

Eq. 5.5 defines a Pairwise Markov Random Field (PMRF), which has the attractive
graphical representation as a network in which variables that are not directly
connected are conditionally independent given the other variables. For binary
variables, the PMRF can be estimated in various ways, for instance, through the
R-package IsingFit (Van Borkulo et al. 2014).

Figure 5.1 provides an example network. Variables are represented as nodes, and
structural connections as edges. The set of nodes that is connected to node j is
known as the neighborhood of j and denoted Nj . We assume that the probability
distribution of the variables has the Markov property, i.e., that it factorizes according
to the graph structure. This implies that the joint probability distribution can be
represented as log-linear model that includes main effects for all variables and
pairwise interactions for any two variables that are connected in the graph. However,
for my current purposes, it is more convenient to think of the model in terms of a
set of logistic regressions, where each node is regressed only on the variables in its
neighborhood:

.logit(Xj ) = αj +
∑

k∈Nj

βjkXk (5.6)

This formulation is the model used in the IsingFit representation (Van Borkulo
et al. 2014). Now let us consider the relation between Eq. 5.6 and the typical IRT
representation as in Eq. 5.1. Willem Heiser (personal communication) has observed
that this representation connects the network approach to an older tradition in
psychometrics, namely, that of image factor analysis (Guttman 1953). Image factor
analysis is an approach to factor analysis that explicitly aims to avoid the use of
latent variables. In image factor analysis, the regression of a variable on all other
variables in the data creates the variable’s image (the weighted sumscore formed
by the regression), while the residual of that regression defines its anti-image. The
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IsingFit representation of the network model could be seen as an extension of the
image factor analysis model to the dichotomous case; in this interpretation, the
regression model defines the image of Xj (Guttman 1953).

5.6 Reinterpreting Psychometric Concepts

In the IRT model, the items are related to a single person parameter, and the
regression parameter for that function depends only on the item considered. In the
logistic regression formulation of the network model, the items are related to a set of
independent variables, and the regression parameters are different for each of them.
In the IRT formulation, the predictor is latent. In the logistic regression formulation,
it is observed.

However, there are also similarities. In both cases, we see a generalized
regression with a parameter that depends on the item (the intercept in the logistic
regression, the difficulty parameter in the IRT model) and a regression parameter
that controls the slope of the regression of the item on the predictor term. That
predictor, in the IRT model, is the latent variable. In the logistic regression, it is a
set of scores on the neighboring items. These scores are weighted by regression
weights. We can imagine collecting the combined effects of all predictors in a
weighted sumscore of the variables in the item j ’s neighborhood, which for person
i we may denote as

.N+
ij =

∑

k∈Nj

βjkXik (5.7)

Now things start to look quite analogous if we express person i’s expected score
as a function of the latent variable model,

.P(Xij = 1|θi, βj ) = eθi−βj

1 + eθi−βj
, (5.8)

and as a function of the regression model. We can make this similarity most
apparent by putting the regression in the same form as the IRT model through
suitable transformations of parameters, representing the model in terms of a trade-
off between the internal field (the effects of the other nodes in the network) and the
external field (e.g., in case the regression coefficients equal unity, this would directly
correspond to the intercept parameter in Eq. 5.6 transformed to .α∗

j = −αj ):

.P(Xij = 1|N+
ij , α∗

j ) = e
N+

ij −α∗
j

1 + e
N+

ij −α∗
j

(5.9)
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Using this representation, we see that the neighborhood score .N+
ij plays a role

that is analogous to that of the latent variable θ in the IRT model, while the intercept
of the regression .α∗

j is the analogue of item difficulty in IRT. Via the concept of
structural connection, one can think of any specific item as standing under the
influence of the variables in its neighborhood, not in the sense that its value is
directly caused by these, as in a billiard ball causation picture, but in the sense
that the item’s probability distribution cannot change independent of that of its
neighbors. In a nontrivial sense, therefore, the item measures the influence of its
neighbors: ceteris paribus, the more neighbors of item j are positive (take value
X = 1), the more j will tend to be positive as well.5

The relation between the latent variable in IRT and the neighborhood score
in network analysis in the dichotomous case mirrors the relation between latent
variables in factor analysis and components in image factor analysis for the
continuous case (Guttman 1953); also, the centrality measure of predictability
that has been proposed in the network literature (Haslbeck & Waldorp 2018) is
highly similar to the index of determination discussed in Guttman (1953). Finally,
note that the dimensionality of the neighborhood scores is the same as that of
the data (i.e., there are as many neighborhood scores as variables); a reduction
of these neighborhood scores could be achieved through, for instance, a principal
component analysis, which would compress the neighborhood scores into a smaller
dimensionality. In the case where the network is fully connected, one would then
expect the neighborhood scores to approximate unidimensionality, while a sparsely
connected network would not.

Although the alignment between IRT and network models that I have constructed
here is not as mathematically elegant as those used in the direct equivalence proofs
between multidimensional IRT and Ising models that are now in the literature
(Marsman et al. 2018; Epskamp et al. 2018), the logistic regression of an item
on a neighborhood score has intuitive appeal and facilitates reinterpretation of
psychometric concepts. This is because we can keep in mind the analogy between
the latent variable and the neighborhood score. Substituting the concept of a
neighborhood score in a network of structural connections for the concept of a
common cause of item responses leads to several straightforward consequences
for psychometric practice. In the following, I review some of the most important
psychometric concepts from this point of view.

5 The relation between the item and the targeted latent variable is typically represented in an Item
Characteristic Curve (ICC). Of course, we can do the same in the network model, if we put .N+

ij

on the x-axis and the probability of a positive item response on the y-axis; we may call this curve
a Network Response Function (NRF). The items will have different neighborhoods, which means
the NRFs have different domains, but the general concept clearly is similar.
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5.6.1 Unidimensionality

The notion of unidimensionality plays a very important role in psychometrics. It
encodes the idea that the correlations between item responses can be represented as
a function of a single dimension. In the parlance of IRT, unidimensionality means
that the logits of the expected scores of the items (the true item scores) are perfectly
correlated, which means that if one knows a person’s true score on one item, one
cannot learn anything new about the ordering of the persons on the latent variable
by consulting the other items. In terms of the causal interpretation of measurement
models, this represents the hypothesis that the different items trade off against
precisely the same ability.

Networks in general are unlikely to satisfy such requirements, but they can
approximate them (and often do). This works as follows. If one looks at Fig. 5.1,
it is clear that the variables have very different neighborhoods. Node 1 only has
one neighbor (node 4), while node 4 has four (nodes 1, 2, 3, and 5). Clearly, in
this case, the covariance matrix will depart from unidimensionality significantly.
However, if one imagines an ever more densely connected network, one can see
that the neighborhoods of different nodes will overlap more and more. Thus, the
neighborhood scores of different items will get more and more correlated. In a
perfectly connected network, the neighborhoods of any two nodes will differ by only
one term (the scores on the evaluated nodes themselves, which are not part of their
own neighborhood). Thus, the closer the network approaches perfect connectivity,
the closer it will get to unidimensionality. In the network literature, this means
that the network can be approximated by the so-called mean field approximation,
which essentially substitutes a single number for all of the node neighborhoods
(Finnemann et al. 2021). In a nontrivial sense, the latent variable in a unidimensional
psychometric model corresponds to the mean field in a network model, which in turn
is strongly related to the first factor of an image factor analysis (Guttman 1953).

One can also see that, as the network gets larger, the neighborhoods get ever
more close. I conjecture that this, in effect, realizes the same process that Ellis and
Junker (1997) describe through the concept of a tail measure. A tail measure is
the equivalent of a sumscore on an infinite item domain, which Ellis and Junker
(1997) showed is an adequate interpretation of a latent trait. Similarly, I suggest
that an infinitely large network will produce equivalent tail measures on items’
neighborhood scores, as in the limit all neighborhoods will coincide in terms of
their ordering of persons. Thus, from a network perspective, unidimensionality
can be interpreted as a measure of network homogeneity. Interestingly, a perfectly
connected network with invariant edge weights (a so-called Curie-Weiss model)
turns out to be statistically equivalent to the Rasch model (Marsman et al. 2018).
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5.6.2 Reliability

It would not be much of an overstatement to say that Classical Test Theory (CTT)
was invented to furnish a basis for the notion of reliability: the degree to which true
scores are linearly predictable from observed scores. The most important estimator
of reliability, Cronbach’s α, is controversial in psychometrics, both because of
misinterpretations of the concept and because it is statistically inferior to other
estimators (Sijtsma 2009). However, it is probably also the most important quantity
psychometrics has delivered, as it regulates the composition and size of item sets
used in practical test applications.

Reliability is commonly seen as a property of a test.6 That is, it is a measurement
concept, which indicates to what extent the total test score contains “measurement
error.” However, it is a well-kept secret among psychometricians that the noise
in our test scores is rarely identifiable as measurement error independent of the
psychometric model. Typically, what we call measurement error is simply variance
that simply cannot be explained from the latent variable model (for whatever
reason). Why this unexplained variance should be interpreted as measurement error
is rarely explicated.

Interestingly, in the network representation, the psychometric representation of
sumscore reliability is not (only) a measurement concept. Even if all items are
measured without error, the network may still leave variance unexplained, for
instance, because the items do not hang together perfectly (i.e., there is wiggle
room for individual items given the other items) or because the network is not
fully connected. This may very well be a property of a construct rather than of
the measurement instrument. Indeed, Dalege and van der Mass (2020) hold that
implicit measures of attitudes are necessarily unreliable because in the situation
where people do not attend to the attitude, the attitude network operates in a high
entropy regime (i.e., the network is weakly connected).

What does reliability imply, from a network perspective? In my view, high
reliability means that the state of the individual items is highly predictable from
the neighborhood scores. That is, the network has a low entropy (Dalege & van der
Maas 2020), because the structural connections between items are strong so that
items tend to align. Interestingly, low entropy implies that more extreme sumscores
will become more prevalent, which will lead to higher variance of the sumscore.
Thus, from a network perspective, the ratio of the sum of the item variances to the
total test score variance—a standard operationalization of reliability—is actually a
measure of how strongly connected the network is.

6 This is fundamentally mistaken because, even on its own terms, CTT represents reliability as
a test×population interaction (Mellenbergh 1996), but I will ignore this here and assume the
population given.
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5.6.3 Validity

As I noted earlier, in the past, I have articulated and defended the idea that validity
is a causal concept, which hinges on the degree to which the measured attribute
(represented as a latent variable) influences the item scores. Clearly, in the network
representation, there is no latent variable (except as a mathematical representation of
the joint probability distribution of the network; Epskamp et al. (2018)). Hence, the
causal interpretation of validity is not on offer for the network as a whole. However,
that conception can still be operational for the individual items in a network, for
instance, if one asks whether the depression item “have you slept less than usual over
the past 2 weeks?” actually measures insomnia (Cramer et al. 2010). In addition, if
different items depend on a variable that is not represented in the network (i.e., a
latent variable), then a latent variable model can be used to analyze that part of the
network (e.g., in a latent network model; see Epskamp et al. (2017)), and in this
case, the latent variable can be conceptualized as a common cause, which renders
the causal account of validity applicable.

But what can one say about the validity of a test if the items in that test in
fact measure properties that are structurally connected, rather than a single latent
attribute? If the network model is true, then the construct label (e.g., “depression,”
“intelligence,” “neuroticism”) does not refer to such a latent attribute but to the
network as a whole. Thus, when we ask “does this depression questionnaire actually
measure depression?”, the question should be understood as “do the variables
assessed through the items included in this questionnaire actually correspond
to the nodes in the depression network?”. This, in turn, leads to the question
“which nodes are part of the depression network?”. And it is here, I submit,
that the psychometric construct fulfills its function as an organizing principle. A
construct label such as “depression” does not designate a latent attribute targeted
in the measurement procedure, but instead indicates a family of variables that are
structurally connected to produce the coordinated behavior of the network as a
whole that we phenomenologically recognize as the overall state of individuals we
are interested in.

Thus, the organizing principle of psychological constructs involves a simple but
important task: to identify which nodes should be part of the network. In the special
case that items are questions (rather than observations of behavior or other modes of
investigating the human system, such as brain states or genetic profiles), this means
that psychological constructs fulfill their main function in the area traditionally
referred to as content validity. This is ironic, because in the literature on validity
theory, content validity is typically seen as an outdated concept, if not an inferior
one (Guion 1980). If the combination of Sijtsma’s “hanging together” and network
psychometrics is in the right ball park, content validity may thus well see a revival.
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5.7 Discussion

In the present chapter, I have offered a reinterpretation of standard psychometric
concepts in terms of a network perspective, in which item responses are viewed as
structurally connected components in a network. This perspective aligns remarkably
well with the idea that item responses merely “hang together” (Sijtsma 2006). In the
presented scheme, the role of the psychological construct is radically shifted: the
construct label does not designate a latent variable that acts as a common cause with
respect to the item responses, but a set of relevant properties that are structurally
connected. The primary task of the construct theory, so understood, is to indicate
which of the many potentially relevant properties actually is part of the psychometric
network, i.e., is part of the set of structurally connected variables.

This is quite a different way of thinking about the function of construct theories,
but it seems to fit psychological practice quite well. Whenever I proposed to
substantive psychologists that their theories should provide information with respect
to the question of how a latent attribute determined the responses to questionnaire
items, they looked at me as if they witnessed water burning. However, most of
these same psychologists will have little problems in identifying why certain items
should be included in a test. Usually, their answers either implicitly or explicitly
explain how the items tap attributes that hang together systematically. The reasons
behind these connections can vary wildly from area to area, so they cannot be
uniformly fleshed out. However, in many cases, the connections in question suggest
that variables bear a connection that is stronger than mere association and weaker
than directional causation. I have tried to capture this notion in the term “structural
connection.”

My exploration of the mathematical conceptualization and the theoretical con-
sequences of this idea has been preliminary. Especially the connection to the work
by Ellis and Junker (1997) seems to harbor some interesting secrets that I have not
developed here. In particular, because in a positive manifold that is consistent with
a unidimensional factor model, pairwise conditional associations are always weaker
than unconditional ones (Van Bork et al. 2018), it seems that in such cases the size
of networks is limited by the strength of the structural connections that they consist
of. That is, mathematically, a set of items that realizes an item domain can grow
without bound (in fact, this is required for the proofs in Ellis and Junker (1997)).
But a fully connected network like the Curie-Weiss model discussed in Marsman
et al. (2018) cannot grow without bound, unless the conditional associations in the
network get ever smaller in the process. It seems to me that this will not always be
attainable. In other words, sets of items that cover a fully connected network may
have a limited size. This would induce the notion of a construct that features a finite
item domain which, to my knowledge, has not yet been developed in psychometrics.

As noted in the introduction to this chapter, psychometricians have many
alliances. Their models, while cast in the language of mathematics, have an impor-
tant connection to substantive realms (e.g., psychology, education, etc.) as well as to
conceptual ideas about the nature of measurement. These alliances often clash. What
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is desirable from the point of view of measurement theory (e.g., additivity of the
model, separability of parameters, simplicity, and parsimony) is often substantively
speaking unrealistic. On the other hand, processes that are relevant from a substan-
tive point of view (e.g., in terms of cognitive processes involved in psychometric
tests) often lead to theoretical models that are mathematically intractable and
that do not respect the strictures that the occupants of measurement theory’s
ivory tower proscribe as normative. The challenge is therefore to find conceptions
of psychometric constructs that have a natural representation as mathematical
structures, so that they can play the essential role of connecting psychological theory
to empirical observation—the cardinal purpose of measurement. Latent variables
are one such conception and network structures another. However, it would be idle
to think that the possibilities are exhausted by these representations, and I hope that
future psychometricians will come up with many others, so that our discipline will
remain a vibrant and developing one that honors the psycho in psychometrics.
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