
Chapter 21
A Sparse Latent Class Model for
Polytomous Attributes in Cognitive
Diagnostic Assessments

Siqi He, Steven Andrew Culpepper, and Jeff Douglas

Abstract Diagnostic models (DMs) have been widely applied to binary response
data. However, in the field of educational and psychological measurement, a wealth
of ordinal data are collected to measure latent structures where the traditional binary
attributes may not adequately describe the complex response patterns. Considering
that, we propose an extension of the sparse latent class model (SLCM) with ordinal
attributes, with the purpose of fully exploring the relationships between attributes
and response patterns. Furthermore, we discuss the strict and generic identifiability
conditions for the ordinal SLCMs. We apply the model to the Short Dark Triad data
and revisit the underlying personality structure. Evidence supports that SLCMs have
better model fit to this real data than the exploratory factor models. We also confirm
the efficiency of a Gibbs algorithm in recovering the empirical item parameters via a
Monte Carlo simulation study. This study discusses a way of constructing DMs with
ordinal attributes which helps broaden its applicability to personality assessment.

21.1 Introduction

Cognitive diagnostic assessments, aimed at providing fine-grained information
about respondents’ mastery of latent attributes, have gained increasing research
attention in recent decades. The considerable expansion of cognitive diagnostic
models (CDMs) has heightened the need for an inclusive and comprehensive
modeling approach, where the sparse latent class models (SLCM; Chen et al. 2020)
have served this purpose to fit most existing CDMs in an exploratory fashion.

The SLCM was originally proposed with binary attributes, including the deter-
ministic input, noisy, “and” gate model (DINA; De La Torre 2009; Junker &
Sijtsma 2001); the deterministic input, noisy, “or” gate model (DINO; J. L. Templin
& Henson, 2006); the reduced non-compensatory reparameterized unified model
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(NC-RUM; DiBello et al. 1995; Templin et al. 2010) and the compensatory-
RUM model (C-RUM; Hagenaars 1993; Maris 1999); and the family of general
diagnostic models (De La Torre 2011; Henson et al. 2009; von Davier 2005).
With binary representations of latent attributes, examinees’ attribute patterns are
composed of either “mastery” or “non-mastery.” However, binary attributes are
sometimes not accurate enough to describe the level of mastery as respondents can
theoretically possess a specific attribute to different extents. Bolt and Kim (2018)
provided empirical evidence that attributes derived from the fraction subtraction
test (Tatsuoka 1987) are oversimplified if defined as binary. In addition, previous
research also found that allowing attributes to have multiple levels improved the
model-data fit (Haberman et al. 2008; von Davier 2018). These justifications support
that assuming multiple levels of attributes are sometimes more desirable than binary
levels. Therefore, developing CDMs with polytomous attributes would maximize
the understanding of response patterns in binary or even polytomous data.

Many existing CDMs have been developed to measure polytomous responses,
such as the Ordered Category Attribute Coding DINA model (OCAC-DINA;
Karelitz 2004), the reduced reparameterized unified models (R-RUM; Templin
2004), the log-linear cognitive diagnostic model (LCDM ; Templin & Bradshaw(
2013), the general diagnostic models (GDM; von Davier 2005), and the pG-DINA
model (Chen & Culpepper 2020). Based on whether the interactions between
attributes are considered, these models can be further specified as the main-effect
cognitive diagnostic models (i.e., the OCAC-DINA, R-RUM, LCDM, and GDM)
and the all-effect cognitive diagnostic models (i.e., the pG-DINA). The former
involves only the main effects of the required attributes, whereas the latter involves
both the main effects and interaction effects. With the between-attribute interaction
effects being considered, we are able to discover all types of attribute relationships
and how they can affect the observed responses. A fully saturated model is the
most general parameterization of the joint attribute distribution, where all the
main effects and interaction effects are taken into consideration. However, the
challenge is, when the attributes or attribute levels increase, the item parameters
increase exponentially. This risk of the overparameterization makes its application
restricted to the confirmatory settings. The fact is for confirmatory models, accurate
scoring requires the correct specification of item-attribute relationship. Otherwise,
misspecification of the item structure could result in inaccurate classification. To this
end, an exploratory model has been instrumental in promoting our understanding of
the item-attribute structures when they are not prespecified.

With the intention of constructing an exploratory SLCM model, the key concern
is to determine whether polytomous attributes are necessary and how many inter-
mediate levels are appropriate. With data-defined polytomous attributes, the levels
of attributes and their interpretations can be derived from the model-fitting process.
With expert-defined polytomous attributes, the justifications of attribute levels can
be provided by experts in the related areas, especially in the area of educational
testing and psychopathology. In this study, we take on the first approach to explore
the attribute dimensions and levels. Once an adequate model size is determined, we
can move to the formal estimation of model parameters.
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This chapter is organized in the following sections. The 2. A Sparse Latent Class
Model with Polytomous Attributes section introduces the model parameterization
and discusses the identifiability conditions for the model. The 3. Gibbs Sampling
section provides a Gibbs algorithm for Markov chain Monte Carlo estimation with
the potential to enforce the identifiability and monotonicity constraints. The 4. An
Empirical Application section illustrates how well the model fits the Short Dark
Triad (SD3) data compared to an exploratory item factor model and performs a
Monte Carlo simulation study to assess the statistical properties and feasibility of
our model. The 5. Discussion section provides a summary of this study and some
potential directions for future research.

21.2 A Sparse Latent Class Model with Polytomous
Attributes

21.2.1 Model Configurations

21.2.1.1 Unstructured Mixture Model

Consider a scale that consists of J items and K underlying attributes. We denote
the vector of response probabilities for a latent class c on item j as .θ cj =(
θcj0, . . . , θcj,P−1

)′, where the element .θcjp represents the probability of observing
the response category p on item j by the latent class c. Note that the scale can be
either dichotomous (.P = 2) or polytomous (.P > 2). Given the vector of response
probability .θ cj , the probability of observing an ordinal response .yj is written
as

.P
(
yj | θ cj , η

′v = c
) =

P−1∑

p=0

θcjpI
(
yj = p

)
, (21.1)

where .yj ∈ {0, · · · , P − 1} and .I is an indicator function. To describe the observed
response patterns .

∏J
j=1 Pj , we introduce a collection of K ordinal attributes with

M levels. In this setting, a total of .MK latent classes can be created. Let the
latent class index be .c ∈ {0, . . . ,MK − 1}; each latent class has a K-vector of
latent ordinal attributes .η ∈ {0, . . . ,M − 1}K that can be mapped to an integer
index c via bijection .η′v = c with .v = (MK−1,MK−2, . . . , 1)′. Next, we
assume the membership in class c follows a multinomial distribution with structural
parameters .πc ∈ {π0, . . . , πMK−1} where .πc denotes the probability of membership

in latent class c and .
∑MK−1

c=0 πc = 1. By integrating out the latent class variable
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c, we can write the likelihood of observing a random vector .y = (y1, . . . , yJ )

as

.p(y | Θ,π) =
MK−1∑

c=0

πc

J∏

j=1

P
(
yj | θ cj , η

′v = c
)
, (21.2)

where .Θ ∈ R
J×MK×P denotes the response probability array and .π denotes the

structural parameter vector. In a sample of N respondents, we denote the ordinal
responses for respondent i as .yi , .i = 1, . . . , N . The likelihood of observing this
sample is

.p(Y | Θ,π) =
n∏

i=1

p(yi | Θ,π), (21.3)

where .Y denoted the .N × J response matrix.
In addition, a cumulative link function .�(·) is proposed to define the ordinal

responses (Culpepper 2019). Specifically, we compute the probability of response
category p by taking the difference in two adjacent cumulative probabilities. The
response probability for latent class c on item j is written as

.θcjp = �
(
τj,p+1 − μcj

) − �
(
τj,p − μcj

)
. (21.4)

�
(
τj,p − μcj

) = P
(
yj ≤ p | μcj , τj,p

)
, (21.5)

where .τ ∈ {τj,0, . . . , τj,P }. We define .τj,0 = −∞, .τj,P = ∞ which result
in .�

(
τj,0 − μcj

) = 0, .�
(
τj,P − μcj

) = 1. Here, .μcj is the latent class mean
parameter discussed in the next section. .�(τj,p − μcj ) denotes the cumulative
probability of a response at level p or less.

The assumption of local independence implies the response distribution .Y given
.B and .π can be presented as

.p(Y | B,π) =
J∏

j=1

p
(
Y j | βj ,π

) =
N∏

i=1

MK−1∑

c=0

πc

J∏

j=1

p(yij | βj ,αi = αc),

(21.6)

where .yij refers to individual i’s response on item j and .αi denotes the attribute
profile vector for individual i.

21.2.1.2 Structured Mixture Model

A challenge with unstructured mixture model is that, as K or M increases, the
number of parameters per item .MK grows exponentially. To reduce the number
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of parameters, we impose a specific structure on .μcj by representing .μcj as .μcj :=
α′

cβj where .αc is attribute profile design vector and .βj is an item parameter vector
of the same length as .αc. A saturated model is the most general exploratory model
which includes all the main- and higher-order interaction terms of predictors.Within
the saturated model framework, K attributes with M levels lead to a total number
of .MK predictors. We let .A = (α0, . . . ,αMK−1) be a .MK × MK design matrix
which comprises the attribute profile vector .α for each latent class. Moreover, we
let .B = (β1, . . . ,βJ ) be a .J × MK item coefficient matrix. In this way, since we
assume a sparse pattern on .B explained later, the number of effective parameters is
greatly reduced.

We code the attribute profile .η as the design vector .α using a cumulative coding
strategy. Specifically, for attribute k, we define

.ak = (1,I(ηk ≥ 1), . . . ,I(ηk ≥ M − 1))′ , (21.7)

so that .ak incorporates an intercept for the first element and main effects for the
exceeding different attribute levels. Therefore, the attribute design vector for an
arbitrary class can be written as

.α = (
a′
1 ⊗ · · · ⊗ a′

K

)′
, (21.8)

where .
⊗

is the Kronecker product sign which frames all possible cross-level
interactions between K attributes. Below we illustrate how the coding system works
with a specific example.

Table 21.1 displays the attribute profile matrix .A for a saturated SLCM with
.K = 2 attributes and .M = 4 levels per attribute, where the first column prints
the latent class integer c and the second column prints the latent class label in the
way that each digit represents to which level latent classes master the attributes.
For instance, latent class “12” in the column name implies the possession of the
first attribute to the first level, and the remaining columns in the table refer to the
predictors which compose the attribute profile vector .α as Eq. 21.8 describes. The
design vector .α contains intercept component “00”; main-effect components “01,”
“02,” “03,” “10,” “20,” and “30”; and two-way interaction components “11,” “12,”
“13,” “21,” “22,” “23,” “31,” “32,” and “33.” For instance, label “11” in the row name
corresponds to the cross-attribute effect between the first level of attribute 1 and the
first level of attribute 2. For latent class “12” ( .η1 = 1, .η2 = 2), component “11”
(.a1 = 1, a2 = 1) is active given the coding rule .η1 ≥ 1 and .η2 ≥ 1. Specifically, for
latent class “12” (i.e., .η1 = 1, η2 = 2), the active components refer to “00,” “01,”
“02,” “10,” “11,” and “12” columns.

21.2.1.3 Model Identifiability

Model identifiability issues have received considerable attention in the study
of CDMs. Traditionally, parameter constraints derived for model identifiability
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Table 21.1 Example design matrix A of latent classes by attribute predictors for .K = 2, .M = 4

.α

c .η 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 02 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 03 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 10 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

5 11 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

6 12 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

7 13 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

8 20 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

9 21 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

10 22 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

11 23 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

12 30 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

13 31 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

14 32 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

15 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

are often imposed on a design Q-matrix. The Q-matrix specifies item-attribute
relationships by showing which attributes each item measures but not showing how
attributes interact to affect response probabilities. Conversely, in SLCM, a sparsity
matrix .	J×MK substitutes the role of the traditional Q-matrix but takes the inter-
attribute relationships into consideration. The sparsity matrix .	J×MK depicts the
underlying pattern of the item parametermatrix .B , where J denotes the total amount
of items and .MK denotes the total amount of predictors. An element .δ = 1 suggests
its corresponding .β is active, whereas an element .δ = 0 suggests its corresponding
.β is 0.

Definition 2.1 presents a classic notion of likelihood identifiability where a
different set of parameter values leads to different values of likelihood. To this end,
a model must be identifiable to elicit consistent parameter estimates. Based on the
work established by Culpepper (2019) for the SLCM with binary attributes and
ordinal responses, and the work by Chen et al. (2020) with binary attributes and
dichotomous responses, we propose identifiability conditions for the SLCM with
ordinal responses and ordinal attributes.

Definition 2.1 A parameter set .	(π,B) is identifiable, if there are two sets of
parameters .(π ,B) and .(π̄ , B̄) such that .P(π,B) = P(π̄, B̄) implies .π = π̄ ,
.B = B̄.
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We define a parameter space .	(π,B) for the latent class proportion parameter
.π and the item coefficient parameter .B as

.	(π,B) = {(π,B) : π ∈ 	1(π),B ∈ 	2(B)}, (21.9)

where .	1(π) = {π ∈ R
MK : ∑MK−1

c=0 πc = 1, πc > 0} and .	2(B) = {B ∈
R

J×MK }.
Conditioned on the attribute profile vector .α, the joint distribution of .Y is a

product of multinomial distributions represented by a .PJ vector:

.Pα(B) =
J⊗

j=1

θ cj , (21.10)

where .
⊗

refers to the Kronecker product and .θ cj = (
θcj0, . . . , θcj,P−1

)′
. Further,

the marginal distribution of .Y over the proportion parameter .π is

.P (π ,B) =
∑

α

παPα(B). (21.11)

21.2.1.4 Monotonicity Constraints

Imposing monotonicity constraints ensures that mastering any irrelevant skills to
an item will not increase the endorsing probability. Xu (2017) and Xu and Shang
(2018) proposed the monotonicity constraints as follows:

.min
c∈S0

μcj ≥ μc0j , . (21.12)

max
c∈S0

μcj < min
c∈S1

μcj = max
c∈S1

μcj , (21.13)

where .c0 represents the latent class that does not own any relevant attribute and
.μc0j denotes its latent class mean parameters. .S0 denotes a set of latent classes
that own at least one but not all relevant attributes, and .S1 denotes a set of latent
classes that own all the relevant attributes. Given .μcj = β ′

jαc, we can derive a lower
bound condition .Lcj for each item parameters .βcj that if .βcj is lower bounded, the
constraints above are satisfied. The derivation details can be found in Chen et al.
(2020).
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21.2.1.5 Strict Identifiability

Theorem 2.2 The parameter space 	(π,B) is strictly identifiable if conditions
(S1) and (S2) are satisfied.

(S1) When 
 matrix takes the form of 
 =
⎛

⎝
D1

D2

D∗

⎞

⎠ after row swapping where D1,

D2 ∈ Ds ,Ds=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D ∈ {0, 1}K×MK : D=

⎡

⎢
⎢
⎢
⎣

0 1′
M−1 0 . . . 0 . . . 0

0 0 1′
M−1 . . . 0 . . . 0

... 0 0
. . . 0 . . .

...

0 0 0 . . . 1′
M−1 . . . 0

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Note: 1M−1 is a vector of 1 of length M − 1 which represents the activeness
of an attribute on all M − 1 levels.

(S2) In D∗, for any attribute k = 1, 2, . . . ,K , there exists an item j > 2K ,
such that all the main-effect components regarding this attribute are active
(δj,k0, δj,k1, . . . , δj,k(M−1)) = 1.

The proof details are provided in Appendix “Strict Identifiability Proof”.

21.2.1.6 Generic Identifiability

In this section, we propose the generic identifiability condition in (G1) and (G2) in
Theorem 2.4. The generic condition is less stringent than the strict conditions (S1)
and (S2) given in 2.2. Generic identifiability allows part of the model parameters
to be non-identifiable such that these exceptional values are of measure zero in the
parameter space.

Definition 2.3 A parameter set .	
(π,B) is generically identifiable if the
Lebesgue measure of the unidentifiable space .C
 with respect to .	
(π,B) is
zero.

Theorem 2.4 The parameter space .		(π ,B) is generically identifiable if condi-
tion (G1) and (G2) are satisfied.

(G1) When .
 matrix takes the form of .
 =
⎛

⎝
D1

D2

D∗

⎞

⎠ after row swapping where .D1,

.D2 .∈ Dg , .Dg=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D ∈ {0, 1}K×MK : D=

⎡

⎢
⎢
⎢
⎣

∗ 1′
M−1 ∗ . . . ∗ . . . ∗

∗ ∗ 1′
M−1 . . . ∗ . . . ∗

... ∗ ∗ . . . ∗ . . .
...

∗ ∗ ∗ . . . 1′
M−1 . . . ∗

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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Note: .1M−1 is a vector of 1 of length .M − 1 which represents the activeness
of a specific attribute on all levels.

(G2) In .D∗, for any attribute .k = 1, 2, . . . ,K , there exists an item .j > 2K ,
such that all the main-effect components regarding this attribute are active
.(δj,k0, δj,k1, . . . , δj,k,M−1) = 1.

The proof details are provided in Appendix “Generic Identifiability Proof”.

21.3 Gibbs Sampling

Following the Bayesian model formulation displayed in Sect. 21.2.1, this section
outlines an MCMC approach for the proposed SLCM models. First, we introduce
a deterministic relationship between the observed ordinal response .Yij and a
continuous augmented latent variable .Y ∗

ij as Eqs. 21.14 and 21.15 show. The
augmented variable .Y ∗

ij is generated from a normal distribution conditioned on the
latent class mean parameter .μij = α′

iβj . If .Y
∗
ij falls into the range .[τjp, τj,p+1), the

random variable .Yij takes the value of p.

.Yij =
P∑

p=0

pI(τjp ≤ Y ∗
ij < τj,p+1). (21.14)

Y ∗
ij |αi ,βj ∼ N(α′

iβj , 1) (21.15)

We consider a multinomial prior for latent attribute variable .αi as .αi ∼
Multinomial(π). The latent class structural probability .π follows a conjugate
Dirichlet distribution .π ∼ Dirichlet (d0) with hyperparameter .d0 = 1′

MK .
In addition, we adopt a spike and slab prior for .B as Culpepper (2019) described.

For each single .β parameter, we formulate the Bayesian model as follows:

.βjc|δjc ∼
{
N

(
0, σ 2

β

)
I(βjc > Ljc) δjc = 1

I (βjc = 0
)

δjc = 0

δjc|ω ∼ Bernoulli (ω)

ω ∼ Beta (w0, w1) ,

where .(σ 2
β ,w0, w1) are user-specified hyperparameters and .Ljc refers to the lower

bound for satisfying the monotonicity constraints mentioned in Sect. 21.2.1.4. Noted
that the intercepts in .	 are always set to be active with .δj0 = 1.
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As a binary variable, we sample .δjc from the following conditional distribution:

.δjc | y∗
j ,A,βj (c), ω, σ 2

β ∼ Bernoulli(ω̃jc), (21.16)

where .A = (α1, . . . ,αMK ) refers to the attribute profile matrix, .y∗
j is the augmented

responses vector, and .βj (c) is the coefficient vector .βj that discards the p-th
element. Once .δjc is updated, we update .βj(c) given the full conditional distribution:

.βjc | y∗
j ,A,βj (c), ω, σ 2

β , δjc ∼ N
(
μ̃jc, σ̃

2
c

)
[I(βjc > Ljc)]δjc [I(βjc = 0)]1−δjc .

(21.17)

Given Eqs. 21.16 and 21.17, the Bernoulli parameter .ω̃jc is derived as

.wjc =
w
(

−Ljc

σβ
)
−1

( σ̃c

σβ
)
(

μ̃jc−Ljc

σ̃c
)exp(

μ̃2
jc

2σ̃ 2
c
)

w
(
−Ljc

σβ
)−1( σ̃c

σβ
)
(

μ̃jc−Ljc

σ̃c
)exp(

μ̃2
jc

2σ̃c
) + 1 − w

. (21.18)

μ̃jc = σ̃ 2
c A′

c(y
∗
jc − A(c)βj (c)). (21.19)

σ̃ 2
c = (A′

cAc + σβ
−2)−1 (21.20)

where .Ac refers to the c-th column in the design matrix A. Note the derivation
details can be found in Chen et al. (2020). The full MCMC sampling process is
summarized in Algorithm 1, whereas Algorithm 2 presents the detailed sampling
steps of the parameter matrix .B and .	.

21.4 An Empirical Application

21.4.1 Short Dark Triad

In the past decade, a great interest has been directed to measure the dark pattern of
behaviors, goals, and characters. The Dark Triad (DT; Paulhus & Williams 2002) is
one of the most popularly studied personality constructs, which encompasses three
substantive dimensions: Machiavellianism, narcissism, and psychopathy. However,
different studies have made contrasting conclusions on the construct of the DT
(Persson et al. 2019). For instance, Furnham et al. (2013) have argued that
psychopathy sometimes subsumes Machiavellianism and narcissism inadvertently.
Others have declared that Machiavellianism and psychopathy have the same
core and should be deemed as the same measure (Garcia & Rosenberg 2016;
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Glenn & Sellbom 2015; McHoskey et al. 1998). Traditionally, assessment of
the DT often requires distinct measures for each dimension. To simplify the
process of data collection, a measure, namely, Short Dark Triad (SD3; Jones
& Paulhus 2014), was created with 27 items selected in a 5-point Likert-type
scale (1, “Strongly disagree”; 2,“Slightly disagree”; 3,“Neutral”; 4,“Slightly agree”;
and 5, “Strongly agree”). The SD3 items are shown in Appendix “Short Dark
Triad” .

In this study, we investigate the latent construct underlying the SD3 scale through
exploratory SLCMs. The dataset are available on the Open Psychometrics website
(https://openpsychometrics.org/tests/SD3/), where we select a random sample of
.N = 5000 observations. Original item affiliations to the three dimensions can
be inferred from the item index in Appendix “Short Dark Triad” (“M” refers
to “Machiavellianism”; “N” refers to “narcissism”; “P” refers to “psychopa-
thy”).

21.4.2 Model Comparisons

Traditionally, exploratory factor analysis (EFA; Furnham et al. 2014) has been the
most popular tool to excavate latent constructs underlying manifest variables in a
self-reported questionnaire. Unlike EFA models which treat personality traits as
continuous variables, the SLCM allows us to explore the potential for interpreting
the personality trait as discrete variables. The purpose of this section is to (1) fit
exploratory SLCM with different attributes (.K = 2, 3, 4) and attribute levels (.M =
2, 3, 4) and (2) compare the exploratory SLCM to EFA models with (.K = 2, 3, 4)
factors.

Using a Bayesian approach, we apply a tenfold cross-validation approach to
estimate out-of-sample predictive accuracy using within-sample estimates. We
choose the k-fold cross-validation approach due to its simplicity compared to the
leave-one-out method. Considering that an increasing number of folds help reduce
the bias term (Vehtari & Lampinen 2002) caused by data split, we partition the DT3
dataset (.N = 5000) into ten subsets .{yk | k = 1, . . . , 10}. One fold is used as testing
data .(N = 500), and the remaining folds are used as training data .(N = 4500).
For fold k, the testing and training data are denoted as .yk and .y(−k), respectively.
For each training data .y(−k), we employ the algorithm discussed in Sect. 21.3 to
obtain posterior draws of the exploratory SLCM and computed posterior means as
the point estimates for .B and .	. Thresholds .τ are fixed to be .τ = {−∞, 0, 2, 4,∞}.
We run 10 Markov chain Monte Carlo (MCMC) chains, and for each MCMC
chain, a total of .80,000 iterations are generated. Specifically, within each chain,
the first .20,000 iterations are discarded as burn-in samples, and the left .60,000
iterations are retained as posterior samples. Finally, one chain is chosen out of the
ten MCMC chains as it generated the highest marginal likelihood. Note here the

https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
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point estimates are computed by taking element-wise means for the item parameter
matrix .B and the structural parameter vector .π over posterior distributions. With
the posterior distributions estimated from the training data, we then evaluate model
fit in the testing data using log point-wise predictive density (lpd) which is defined
as

. lpd =
10∑

k=1

∑

i∈yk

logp
(
yi | y(−k)

)

=
10∑

k=1

∑

i∈yk

log
∫

p
(
yi | �k

)
p
(
�k | y(−k)

)
d�k, i ∈ yk, (21.21)

where .�k = {Bk,πk} represents the item parameters estimated from the training
data .y(−k). To compute lpd in practice, we evaluate the integration of .�k using
MCMC posterior draws, and the log point-wise predictive density for data points in
the testing data .yk is written as

.l̂pdk =
∑

i∈yk

log
1

S

S∑

s=1

fm

(
yi | Bk,s ,π

)
, (21.22)

where .Bk,s are the .sth draws from the posterior distributions given the training data
.y(−k) and i is the index of individuals. The complete log predictive density can be

calculated by summing all observations over the 10-folds as .l̂pd = ∑10
k=1 l̂pdk .

Furthermore, the marginal likelihood of response .yi for the .sth draws is
written as

.fm

(
yi | Bk,s,π

)
=
∑

α
k,s
i

fc(yi | Bk,s,α
k,s
i )g(α

k,s
i | π), (21.23)

where the latent variable .α
k,s
i is integrated out with the hyperparameter .π . Since

data .yij are independent response data conditioned on the model parameter .βj and
the attribute pattern .αi , we have

.fc

(
yi | Bk,s,α

k,s
i

)
=

J∏

j=1

P−1∑

p=0

1(yij = p)P(yij = p | β
k,s
j ,α

k,s
i ) (21.24)

For EFA models, we apply the function “MCMCordfactanal” in the R
package MCMCpack (Martin et al. 2011) to perform Bayesian estimation for
posterior inference. We use its default setting of .10,000 burn-in and .20,000
mcmc iterations, and for each training sample .y(−k), we take 500 posterior
draws to compute predictive accuracy in testing sample .yk . Similar to SLCM,
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we calculate the lpd criterion for the EFA models wherein the integration
in Eq. (21.22) is obtained via the function “hcubature” in the R package
cubature (Narasimhan et al. 2020). A higher lpd value indicates a model
with higher prediction accuracy. Note that, considering the variety of latent
variables assumed by SLCM and EFA, we use the marginal likelihoods .fm

instead of the conditional likelihoods .fc in the predictive likelihood function
.fm

(
yi | Bk,s ,π

)
.

As seen in Table 21.2, inclusion of more factors leads to a superior fit of
EFA models for the reason that more nuisance variance is considered. In the two-
dimensional case of .K = 2, the SLCM (.lpd ≥ −183595.3) performs better than
the EFA (.lpd = −186914.5) if the attribute is ordinal .M ≥ 3. Furthermore, in
the three-/four-dimensional case of .K ≥ 3, the SLCM consistently outperform the
EFA regardless of the choice of M . Overall, the lpd of SLCM shows a slight rise
when the dimension K or attribute level M increases, suggesting that increasing
either the dimension or attribute level could improve the model fit. At this point, the
best fitting model is the SLCM with .K = 2 attributes and .M = 4 attribute levels
(.lpd = −183,443.2).

Given the information concerning the relative model fit, we estimated an
exploratory SLCM with .K = 2 and .M = 4 in the same SD3 dataset (.N =
5000). We ran 10 chains of length .80,000 with a burn-in of .20,000 iterations
and keep the chain with the highest marginal likelihood. Figure 21.1 displays
the estimated sparse structure of .B, where we can summarize the two attributes
as (1) narcissism and (2) Machiavellianism. The x-axis of Fig. 21.1 presents the
predictors, where 01, 02, and 03 refer to the main-effect predictors of Machi-
avellianism; 10, 20, and 30 refer to the main-effect predictors of narcissism;
and sparsity of the matrix is reflected on the fact that loadings manifest on the
main-effect predictors. To this end, we can obtain a rough conclusion on the
item and attribute relationships. In particular, items M1–M9, P1, P3, P5, P6,
and P9 load mostly on Machiavellianism; items N1–N4, N6–N8, P2, and P7
load on narcissism; and items N5, N9, P4, and P8 load equally on the two
dimensions.

Table 21.2 Model
comparison results in lpd,
SD3 (.N = 5000)

Dimension EFA SLCM

.K = 2 .−186,914.5 .M = 2 .−189,320.7

.M = 3 .−183,595.3

.M = 4 .−183,443.2

.K = 3 .−185,898.2 .M = 2 .−183,929.6

.M = 3 .−183,916.3

.M = 4 .−183,902.9

.K = 4 .−184,743.8 .M = 2 .−183,577.2

.M = 3 .−183,552.5

.M = 4 .−183,532.1
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Fig. 21.1 Estimated .B matrix for DT3 data under SLCM with .K = 2, .M = 4

Fig. 21.2 Estimated item category response function by latent class and category probability
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Fig. 21.3 Dominant responses by latent classes and items

As a fully saturated model, interactions can take place between any level of any
two attributes. Figure 21.2 are stack barplots that clearly depict how increases in
attributes correspond to changes in category response probabilities. The x- and y-
axes indicate the latent classes and response probabilities; the stacked bars represent
the five response categories. The barplots selectively present the item category
response function for items M1, M7, N2, and P7. Item M1 has active coefficients
.β00 = 2.0, .β01 = 0.5, .β02 = 0.6, .β03 = 0.8, .β21 = 0.3, .β22 = 0.1, and .β23 = 0.2.
We can see that all main-effect terms regarding Machiavellianism manifest, while
narcissism is active only on the interaction terms. In Fig. 21.3, latent classes 10, 20,
and 30 that represents the group are less likely to endorse category 5 (5 = “Strongly
agree) compared to other latent classes.

The active coefficients of item N2 are .β10 = 1.3, .β30 = 1.2, .β32 = 0.3, and
.β33 = 0.9. We can tell that narcissism is more significant than Machiavellianism. In
Fig. 21.3, latent classes 01, 02, and 03 which reflects the mastery of three levels on
narcissism are most likely to endorse category 1 (5 = “Strongly disagree) compared
to other latent classes.

Moreover, Fig. 21.3 shows the dominant response category for each latent class
on the 27 items. Given a specific item, the value on the table represents the response
category which a latent class has the highest probabilities to endorse over the other
response categories.
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21.4.3 Monte Carlo Simulation Study

This section presents a simulation study to evaluate the parameter recovery rate for
SLCM with different sample sizes. We use the previous estimates of item parameter
.B and the structural parameter .π (see Appendix “Empirical Item Parameters”) as
the population parameters. Specifically, we have .J = 27 items and assume the
underlying dimension is .K = 2 and attribute level is .M = 4. The sample size
is set to be .n = 1000, 2000, 3000, with each sample size condition replicated for
100 times. For each replicated dataset, we run 10 chains where each single chain
has a total of .60,000 iterations with a burn-in sample of .20,000 inside. The chain
with the highest likelihood is chosen to perform posterior inference and compute the
recovery accuracy. Note here we generate different attribute profiles .α and responses
.Y per replication.

The estimation accuracy of .B is evaluated in terms of the mean absolute
deviation (MAD) for each single .β. For each replication, we record the posterior
mean of each single parameter in .B as the estimates. Next, we compute the
absolute deviation between the estimates and the true parameters. Then, we take
the average of the absolute deviation over replications. Table 21.3 enunciates the
MAD of .βs with its activeness into consideration. In specific, the first row “.B	”
refers to the MAD averaged over the entire matrix .B. The second row “.B	=1”
and the third row “.B	=0” refer to the MAD averaged over the locations where
.δs = 1 and .δs = 0, respectively. Likewise, we also compute and record the
mean absolute deviation (MAD) for each .π . Table 21.4 presents the recovery
rate of .	 in terms of the proportion of entries that are correctly recovered.
The first row “.	” refers to the proportion of correctly recovered .δs over the
whole matrix. The second row “.	 = 1” and the third row “.	 = 0” refer
to the proportion of 1’s and 0’s in the population .	 matrix that are correctly
recovered.

The result in Table 21.3 shows that the average EAD for .B is .0.100, .0.069
and .0.052 for sample sizes of .n = 1000, 2000, and 3000. The average EAD for
.π is .0.009, .0.008, and .0.007 corresponding to sample sizes of .n = 1000, 2000,
and 3000. Additionally, Table 21.4 shows the recovery rate for .D is .0.883, .0.913,

Table 21.3 Mean absolute
deviation (MAD) of .B and .π

.n = 1000 .n = 2000 .n = 3000

.B	 0.100 0.069 0.052

.B	=1 0.237 0.166 0.128

.B	=0 0.046 0.031 0.022

.π 0.009 0.008 0.007

Table 21.4 Recovery
accuracy of .	

.n = 1000 .n = 2000 .n = 3000

.	 0.883 0.913 0.931

.	 = 1 0.702 0.773 0.814

.	 = 0 0.954 0.968 0.976
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and .0.932 for sample sizes of .n = 1000, 2000, and 3000. As seen, for both of
them, the estimation accuracy rises as the sample size increases. Furthermore, in
Table 21.3, we observe that the active entries in .B have a larger bias than the
inactive entries. Similarly, we have at least .0.954 of the inactive entries in .D that
are correctly estimated as “0” and at least .0.702 of the active entries in .D that are
correctly estimated as “1.” The simulation results support that the model can be
mostly recovered by our Gibbs algorithm.

21.4.4 Model Convergence

To evaluate the convergence of the Gibbs sampler, we generate three chains
for the SLCM with .K = 2 and .M = 4 under the most computationally
intensive condition .N = 3000. For each of the latent class mean parameter .μ

and the structural parameter .π , the Gelman-Rubin proportional scale reduction
factor (PSRF), also known as .R̂, is calculated. A .R̂ value of below .1.2 indicates
the acceptable convergence. In our simulation, the maximum .R̂ is found to
be .0.97 for .π and .1.06 for .μ, with the .80,000 iterations and .20,000 burn-in
samples inside. Therefore, we conclude the MCMC chains have reached a steady
state.

21.5 Discussion

In this study, we propose a strict and generic model identifiability condition for
SLCM with polytomous attributes, which expands the work of SLCM with binary
attributes by Chen et al. (2020) and Culpepper (2019). We develop a Gibbs
sampling algorithmwith the design of enforcing the identifiability and monotonicity
constraints. Specifically, with strict identifiability conditions imposed, we notice that
the MCMC chains are often trapped and have a slow move forward. A possible
explanation is that the strict conditions are too restrictive for the chains to search
the right parameter space. Without explicitly enforcing the strict identifiability
constraints, the models convergence in .80,000 draws with estimates satisfying
the proved generic identifiability conditions. The simulation results demonstrate
that the algorithm is efficient in recovering the parameters in different sample
sizes.

Overall, our study is innovative in the following aspects. First, we provide a
successful case study of applying SLCM to a personality scale. Personality have
traditionally been viewed as continuous traits instead of discrete categories, and
factor analysis (FA) approach which assumes continuous latent variables is often
used in personality measurement. However, with the estimated person scores, it
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is always a critical issue to identify cut-offs and classify individuals into different
classes. To this end, if variables can be viewed more or less categorical, we can rely
on the models with discrete latent variables to provide fine-grained information on
the individual differences. Another advantagewith discrete latent variables lies in its
greatly reduced parameter space, with a potential of facilitating sampling. Overall,
our study provides new insights into interpreting personality traits as a discrete
measure. Plus, the model also has the potential of being applied to educational
settings and contributes to better measurement for educational intervention (Chen
& Culpepper 2020).

Second, our study, for the first time, compares SLCM and EFA models from
an exploratory perspective. We found the SLCM fit significantly better than the
EFA models with a higher prediction accuracy in several configurations. This
finding has important implications for promoting applications of CDMs to the areas
outside of educational measurement, where another early example is by Cho (2016)
who has explored the construct validity of emotional intelligence in situational
judgmental tests. In addition, our analysis of the item-attribute structures underlying
SD3 supports the previous finding by Persson et al. (2019) that Machiavellianism
and psychopathy are subsumable constructs. Moreover, they found the subscale
composite scores for the three constructs contain relatively little specific variance,
with an implication that reporting the total scores is more appropriate for SD3 than
reporting the subscale scores. In our result, most items do not follow a simple
structure pattern, which further support this statement that dimensions of SD3 are
somewhat inseparable.

Third, from a methodology perspective, our paper addresses the model identi-
fiability concerns of SLCM with polytomous attributes. The strict identifiability
condition is way too restrictive in practice. For instance, when the number of
attributes is relatively large compared to the items, (e.g., close to half the number of
items), enforcing strict identifiability is equivalent to presuming a simple structure
on all items. For personality assessment, a simple item structure is often unrealistic
to achieve. For this reason, the generic identifiability that loosens some constraints
broadens the model applicability.

There are still several recommendations for future study. First, although the
MCMC chains successfully converge to the posterior distributions, the Gibbs
samplers are still not efficient enough in exploring the parameter space. We have
to run several chains and conduct a likelihood selection to find the one with best
mixing. The difficulty of mixing could be due to the complexity of the saturated
model wherein we have 16 parameters per item. To solve the mixing issue, future
work is required to develop more flexible moves in the algorithm that can break
local traps or jump between difference spaces.

Second, instead of framing the SLCM in an unstructured way, it is interesting
to include a higher-order factor model (Culpepper & Chen 2019; De La Torre
& Douglas 2004; Henson et al. 2009) or a multivariate normal distribution with
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a vector of thresholds and a polychoric correlation matrix (Chen & Culpepper
2020; Henson et al. 2009; Templin et al. 2008) in the latent class structure. There
is also abundant room for future progress in selecting the competing structures
for . π .

Third, it is also possible to prespecify the number of attributes with a more
established approach. For instance, Chen et al. (2021) present a crimp sampling
algorithm to jointly infer the number of attribute for DINA model. In our study, the
choice of attribute level is limited by the study design. Future work with focus on
the selection of attribute level is greatly suggested.

Algorithm 1 Full Gibbs sampling algorithm
Data: YN×J ; π ; α1:N ; BJ×MK ; τ ; AMK×MK ; chain length T

Result: Y ∗; π ; α
for t in (1, · · · , T ) do

for j in (1, · · · , J ) do
for c ∈ (0, · · · ,MK − 1) do

for yij ∈ {0, · · · , P − 1} do
θjc,yij

= 
(τyij+1 − α′
cβj ) − 
(τyij

− α′
cβj );

end
end

end
for i in (1, · · · , N) do

Sample αi from multinomial distribution;

P (αi = αc | π , yi ) ∝ πc

∏J
j=1 θcj,yij

∑MK −1
c=0 πc

∏J
j=1 θcj,yij

;

end
for c ∈ (0, · · · ,MK − 1) do

Sample π from Dirichlet distribution;

P (π | A) ∝ ∏MK−1
c=0 π

∑N
i=1 I (αi=αc)+doc

c

end
for j in (1, · · · , J ) do

for i in (1, · · · , N) do
Sample y∗

ij from truncated normal distribution;
P (y∗

ij | αi, βj ) ∝ N(α′
iβj , 1)I (τj,yij

< y∗
ij < τj,yij+1)

end
end
Sample B and 	 from Algorithm 2

end
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Algorithm 2 Full Gibbs sampling algorithm: .B; .	

Data: Hyperparameters σβ , w, w0, w1; Y 0 from Algorithm 1
Result: B ,	
for t in (1, · · · , T ) do

for c in (1, · · · ,MK − 1) do
σ̃ 2

c = 1
A′

cAc+σβ
−2 ;

for j in 1, · · · , J do
μ̃jc = σ̃ 2

c A′
c(Y

0
j − A(c)βj(c));

L ← max
{
maxα∈L1 −γ ′

α,maxα∈L0 γ ′
α − γ ′

qj

}
;

if (L ≤ 0) and the identifiability condition is satisfied then

wjc =
w
( −L

σβ
)
−1

(
σ̃ 2c
σ 2
β

)
1
2 
(

μ̃jc−L

σ̃c
)exp(

μ̃2
jc

2σ̃ 2c
)

w
( −L
σβ

)−1(
σ̃ 2c
σ 2
β

)
1
2 
(

μ̃jc−L

σ̃c
)exp(

μ̃2
jc

2σ̃c
)+1−w

;

Sample δjc from Bernoulli(wjc)
end
if δjc = 1 then

Sample βjc from a truncated normal distribution;
P (βjc | μ̃jc, σ̃c, δjc = 1) ∝ N(μ̃jc, σ̃

2
c )I (βjc > L)

else
βjc = 0

end
end

end
Sample w from Beta(

∑
j,c(1 − δjc) + w0,

∑
j,c δjc + w1)

end

Appendices

Short Dark Triad

See Table 21.5.
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Table 21.5 Short dark triad items in the original item affiliation

Statements

M1 It’s not wise to tell your secrets.

M2 I like to use clever manipulation to get my way.

M3 Whatever it takes, you must get the important people on your side.

M4 Avoid direct conflict with others because they may be useful in the future.

M5 It’s wise to keep track of information that you can use against people later.

M6 You should wait for the right time to get back at people.

M7 There are things you should hide from other people because they don’t need to know.

M8 Make sure your plans benefit you, not others.

M9 Most people can be manipulated.

N1 People see me as a natural leader.

N2 I hate being the center of attention.

N3 Many group activities tend to be dull without me.

N4 I know that I am special because everyone keeps telling me so.

N5 I like to get acquainted with important people.

N6 I feel embarrassed if someone compliments me.

N7 I have been compared to famous people.

N8 I am an average person.

N9 I insist on getting the respect I deserve.

P1 I like to get revenge on authorities.

P2 I avoid dangerous situations.

P3 Payback needs to be quick and nasty.

P4 People often say I’m out of control.

P5 It’s true that I can be mean to others.

P6 People who mess with me always regret it.

P7 I have never gotten into trouble with the law.

P8 I enjoy having sex with people I hardly know.

P9 I’ll say anything to get what I want.

Empirical Item Parameters

See Table 21.6.
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Strict Identifiability Proof

The proof is mainly based on Kruskal’s theorem (Kruskal 1976, 1977) and the
tripartition strategy proposed by Allman et al. (2009). We first introduce the
probability matrix .H (	,B) and its Kruskal rank in Definitions 1 and 2.

Definition 1 The class-response matrix .H (	,B) is a matrix of size .MK × PJ ,
wherein the rows denote attribute patterns and the columns denote response patterns.
An arbitrary element .(αc, y) in .H (	,B) presents the probability of observing a
response pattern .y from the latent class with attribute profile .αc:

.H c,j (	,B) = P(Y = y | βj ,αc) =
J∏

j=1

P−1∑

p=0

θcjpI(p = yj ), (21.25)

Definition 2 (Kruskal Rank) The Kruskal rank of matrix .H is the largest number
j such that every set of j columns in .H is independent. If .H has full row rank, the
Kruskal rank of .H is its row rank.

Theorem 3 (Allman et al. 2009) Consider a general latent class model with r

classes and .J items, where .J ≥ 3. Suppose all entries of .π are positive. If there
exists a tripartition of the item set .J = 1, 2, . . . , J that divides .J into three disjoint,
nonempty subsets .J1, .J2, and .J3 such that the Kruskal ranks of the three class-
response matrices .H 1, .H 2, and .H 3 satisfy

.I1 + I2 + I3 ≥ 2r + 2,

then the parameters of the model are uniquely determined, up to label switching.

To prove the model parameters are uniquely determined, we need to find three
subsets of items in SLCMs that satisfy Theorem 3. Suppose we have three disjoint,
nonempty subsets .J1, .J2, and .J3, the marginal probability of response .Y can be
reframed as a three-way tensor .T of dimension .P |J1| × P |J2| × P |J3|. Specifically,
the .(y1, y2, y3)-th element in .T is the marginal probability of the products of the
three subsets items:

.T (y1,y2,y3) = P
(
YJ1 = y1,YJ2 = y2,YJ3 = y3 | B,π

)

=
∑

c

πcP
(
YJ1 = y1,YJ2 = y2,YJ3 = y3 | B,αc

)

=
∑

c

πcP
(
YJ1 = y1 | B1,αc

)
P
(
YJ2 = y2 | B2,αc

)

× P
(
YJ3 = y3 | B3,αc

)
. (21.26)

In other words, tensor .T can be decomposed as an outer product of three vectors:
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.T =
∑

c

πcHαc (D1,B1) ⊗ Hαc (D2,B2) ⊗ Hαc (D3,B3),

where .Hαc (Di ,B i ) represents a row vector of .MK in the class-probability matrix
.H (Di ,B i ) of size .MK × PJI .

Kruskal (1976, 1977) and Allman et al. (2009) state that if the sum of the Kruskal
ranks of .H (D1,B1), .H (D2,B2), and .H (D3,B3) is greater or equal to .2MK + 2,
the tensor decomposition is unique up to the row rescaling and label switching. Now
we will give the proof by showing the existence of three item subsets .J1, .J2, and
.J3. If the corresponding item-attribute matrices .D1, .D2, .D3 satisfy the structure
of .Ds,Ds , andD∗ in Theorem 2.2, the Kruskal rank sum of their class-probability
matrix .H 1, .H 2, and .H 3 satisfies the minimum requirement .2MK +2, and the model
parameters are uniquely determined.

Proof 4 shows if .D1 and .D2 take the form of .Ds in Theorem 2.2, the class-
response matrices .H (D1,B1) and .H (D2,B2) have a full Kruskal row rank of .MK .

Proof 4 .Ds is the defined item structure matrix of dimension .K × MK in
Theorem 2.2, wherein the k-th item loads on all of the levels in attribute k, i.e.,
.δk = (δk,0, . . . , .δk,M−1) = 1, and the corresponding item parameters .βk,m �= 0 for
.m ∈ {0, . . . ,M−1}. The class-response matrix .H (Ds,Bs ) of dimension .MK ×PK

can be written as the Kronecker product of K sub-matrices .H k:

.H (Ds ,Bs ) :=
K⊗

k=1

H k

=
K⊗

k=1

⎡

⎢
⎢⎢
⎢
⎣

�(τ1 − μk,0) �(τ2 − μk,0) − �(τ1 − μk,0) . . . 1 − �(τ(P−1) − μk,0)

�(τ1 − μk,1) �(τ2 − μk,1) − �(τ1 − μk,1) . . . 1 − �(τ(P−1) − μk,1)

�(τ1 − μk,2) �(τ2 − μk,2) − �(τ1 − μk,2) . . . 1 − �(τ(P−1) − μk,2)

�(τ1 − μk,M−1) �(τ2 − μk,M−1) − �(τ1 − μk,M−1) . . . 1 − �(τ(P−1) − μk,M−1)

⎤

⎥
⎥⎥
⎥
⎦

,

(21.27)

where .H k can be viewed as the attribute-category matrix of dimension .M × P

for the k-th item in .Ds . In .H k , the rows indicate the attribute levels and columns
indicate the response categories.

Given the item parameters are all nonzero .βk,m �= 0, the latent class mean
parameter .μk,m is different from each other given .μk,0 = βk,0, .μk,1 = βk,0 +
βk,1,.μk,2 = βk,0 + βk,1 + βk,2, and .μk,M−1 = βk,0 + βk,1 + · · · + βk,M−1. Then,
the rows in matrix .H k are not linearly dependent so that .H k is of full row Kruskal
rank, namely, .rank(H k) = M . For each item k in .Ds , we have .rank(H k) = M .
According to the property of Kronecker products, .H (Ds,Bs ) = ⊗K

k=1 H k is also
full Kruskal row rank with .rank(H (Ds ,Bs)) = MK .

The following Proof 5 shows if .D3 takes the form of .D∗ in Theorem 2.2, the
class-response matrix .H (D3,B3) has Kruskal row rank of 2.
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Proof 5 Condition (S2) in Theorem2.2 ensures the main-effect components of each
attribute to be nonzero in at least one item in .D∗ so that .D∗ can distinguish every
pair of latent classes. Specifically, there must exist an item .j0 in .D∗ that any two
latent class .c1 and .c2 has different response probability matrix, i.e., .Θj0,c1 �= Θj0,c2 .
Therefore, there must exist two rows in .H (D∗,B∗) that are independent of each
other, implying that the Kruskal rank of .H (D∗,B∗) is at least 2.

With Proofs 4 and 5, we have .rank(H 1) + rank(H 2) + rank(H 3) ≥ 2MK + 2.

Generic Identifiability Proof

In the context of SLCMs, the item structure matrix .	 is a sparse matrix, so the real
parameter space should be of dimension less than .J × MK . To be differentiated
from Eq. 21.9, we denote the parameter space with a sparsity structure .	 as

.		(π ,B) = {(π ,B) : π ∈ 	1(π),B ∈ 	∗
	(B)}, (21.28)

where .	∗
	(B) presents the parameter space for .B which have nonzero entry at

position .β when the corresponding .δ = 1. Then, we define the unidentifiable
parameter set .C	 as

.C	 = {(π ,B) :P(π ,B) = P(π̃, B̃), (π ,B) �∼ (π̄, B̄),

(π ,B) ∈ 		(π,B), (π̃, B̃) ∈ 	
	̃
(π ,B)}. (21.29)

As Definition 2.3 stated, .		(π,B) is a generically identifiable parameter space if
the unidentifiable set .C	 is of measure zero within .		(π,B).

Similar to the strict identifiability proof, we will use the tripartition strategy to
find three item subsets .J1, .J2, and .J3 that generate a tensor decomposition of
.D1, .D2, and .D3. We proceed to show if .D1, .D2, and .D3 satisfy the structure of
.Dg,Dg, andD∗ in Theorem 2.4, the Kruskal rank sum of the corresponding class-
probability matrices .H 1, .H 2, and .H 3 satisfies the minimum requirement .2MK +2.

Proof 6 For .H 1 and .H 2, we use Theorem 7 to show that .rank(H 1) = MK

and .rank(H 2) = MK hold almost everywhere in .	D1 and .	D2 , respectively.
Different from the Theorem 4 in Chen et al. (2020), we perform a transpose
multiplication to the response-class matrix .H (Dg,Bg) so that it can be transformed
into a square matrix .H (Dg,Bg)

′H (Dg,Bg) which has an accessible determinant
function. Given Proof 10, we show .GD(B) → R is a real analytical function of .B ,
and then we know .λ	D (A) has the Lebesgue measure zero. By Theorem 7, we can
infer that .H (Dg,Bg) is a full row rankmatrix. Therefore, if .D1 ∈ Dg and .D2 ∈ Dg ,
we have .rank(H 1) + rank(H 2) = 2MK holds almost everywhere in .	D1

⊗
	D2 .
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Theorem 7 Given .D ∈ Dg, the corresponding class-response matrix .H (D,B) is
of full rank except some values of .B from a measure zero set with respect to .�D ,
i.e.,

.λ	D {B ∈ �D : det[H (D,B)′H (D,B) = 0]} = 0,

where .λ	D (A) denotes the Lebesgue measure of set A with respect to .�D.

Proposition 8 If .f : Rn → R is a real analytic function which is not identically
zero, then the set .{x : f (x) = 0} has Lebesgue measure zero.
Remark 9 .GD(B) = det[H (	,B)′H (	,B)] : 	D → R is a real analytic
function of .B.

Proof 10 .GD(B) is a composition function:

.GD(B) = det[H (	,B)′H (	,B)] = h[(θα0, . . . , θα
MK−1

)′(θα0, . . . , θα
MK−1

)]

where .h(θ ) : [0, 1]K×MK
denotes a polynomial function and .θαc represents

the probability vector for the latent class .αc, which can be further written as
the difference of two CDFs. A polynomial function is a real analytic function.
Since the CDF is an integral of a real analytic function, the composition of real
analytic functions (difference between two CDFs) is still a real analytic function.
Furthermore, .h(θ) is also a real analytic function of .B. .GD(B), as a determinant of
.h(θ)′h(θ), is also a real analytic function.

Proof 11 For .H 3, if .D3 takes the form of .D∗ in [S2], we can infer that there
must exist an item .j0 in .D3 that for any two latent classes .c1 and .c2, we have
.μj0,c1 �= μj0,c2 . Then we have at least two rows in matrix .H (D3,B3) to be
independent of each other, implying that the Kruskal rank of .H (D3,B3) is at least
2. The exceptional case could exist when .βk,m = 0 holds for some k and m, which
has Lebesguemeasure zero with respect to .		∗ . Consequently, .rank(H 3) ≥ 2 holds
almost everywhere in .		∗

With Proofs 6 and 5, we have .rank(H 1) + rank(H 2) + rank(H 3) ≥ 2MK + 2
holds almost everywhere in .		(π ,B).



440 S. He et al.

References

Allman, E. S., Matias, C., Rhodes, J. A., et al. (2009). Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6), 3099–3132.
https://doi.org/10.1214/09-AOS689

Bolt, D. M., & Kim, J.-S. (2018). Parameter invariance and skill attribute continuity in the DINA
model. Journal of Educational Measurement, 55(2), 264–280. https://doi.org/10.1111/jedm.
12175

Chen, Y., Culpepper, S., & Liang, F. (2020). A sparse latent class model for cognitive diagnosis.
Psychometrika, 85(1), 121–153. https://doi.org/10.1007/s11336-019-09693-2

Chen, Y., & Culpepper, S. A. (2020). A multivariate probit model for learning trajectories: A
fine-grained evaluation of an educational intervention. Applied Psychological Measurement,
44(7–8), 515–530. https://doi.org/10.1177/0146621620920928

Chen, Y., Liu, Y., Culpepper, S. A., & Chen, Y. (2021). Inferring the number of attributes for the
exploratory DINA model. Psychometrika, 86(1), 30–64. https://doi.org/10.1007/s11336-021-
09750-9

Cho, S. H. (2016). An application of diagnostic modeling to a situational judgment test assessing
emotional intelligence (Unpublished doctoral dissertation). University of Illinois at Urbana-
Champaign.

Culpepper, S. A. (2019). An exploratory diagnostic model for ordinal responses with binary
attributes: Identifiability and estimation. Psychometrika, 84(4), 921–940. https://doi.org/10.
1007/s11336-019-09683-4

Culpepper, S. A., & Chen, Y. (2019). Development and application of an exploratory reduced
reparameterized unified model. Journal of Educational and Behavioral Statistics, 44(1), 3–24.
https://doi.org/10.3102/1076998618791306

De La Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational
and Behavioral Statistics, 34(1), 115–130. https://doi.org/10.3102/1076998607309474

De La Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199.
https://doi.org/10.1007/s11336-011-9207-7

De La Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis.
Psychometrika, 69(3), 333–353. https://doi.org/10.1007/BF02295640

DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic
assessment likelihood-based classification techniques. In R. L. B. P. D. Nichols & S. F.
Chipman (Eds.), Cognitively diagnostic assessment (pp. 361–390). Routledge. https://doi.org/
10.4324/9780203052969

Furnham, A., Richards, S., Rangel, L., & Jones, D. N. (2014). Measuring malevolence: Quanti-
tative issues surrounding the dark triad of personality. Personality and Individual Differences,
67, 114–121. https://doi.org/10.1016/j.paid.2014.02.001

Furnham, A., Richards, S. C., & Paulhus, D. L. (2013). The dark triad of personality: A 10 year
review. Social and Personality Psychology Compass, 7(3), 199–216. https://doi.org/10.1111/
spc3.12018

Garcia, D., & Rosenberg, P. (2016). The dark cube: dark and light character profiles (Vol. 4). PeerJ
Inc. https://doi.org/10.7717/peerj.1675

Glenn, A. L., & Sellbom, M. (2015). Theoretical and empirical concerns regarding the dark triad
as a construct. Journal of Personality Disorders, 29(3), 360–377. https://doi.org/10.1521/pedi_
2014_28_162

Haberman, S. J., von Davier, M., & Lee, Y.-H. (2008). Comparison of multidimensional item
response models: Multivariate normal ability distributions versus multivariate polytomous
ability distributions. ETS Research Report Series, 2008(2), i–25. https://doi.org/10.1002/j.
2333-8504.2008.tb02131

Hagenaars, J. A. (1993). Loglinear models with latent variables (No. 94). Sage Publications, Inc.
https://dx.doi.org/10.4135/9781412984850

https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1214/09-AOS689
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1111/jedm.12175
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1007/s11336-019-09693-2
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1177/0146621620920928
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-021-09750-9
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998618791306
https://doi.org/10.3102/1076998607309474
https://doi.org/10.3102/1076998607309474
https://doi.org/10.3102/1076998607309474
https://doi.org/10.3102/1076998607309474
https://doi.org/10.3102/1076998607309474
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.4324/9780203052969
https://doi.org/10.4324/9780203052969
https://doi.org/10.4324/9780203052969
https://doi.org/10.4324/9780203052969
https://doi.org/10.4324/9780203052969
https://doi.org/10.4324/9780203052969
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1016/j.paid.2014.02.001
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.1111/spc3.12018
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.7717/peerj.1675
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1521/pedi_2014_28_162
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://doi.org/10.1002/j.2333-8504.2008.tb02131
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850
https://dx.doi.org/10.4135/9781412984850


21 A Sparse Latent Class Model for Polytomous Attributes in Cognitive. . . 441

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis
models using log-linear models with latent variables. Psychometrika, 74(2), 191–210. https://
doi.org/10.1007/s11336-008-9089-5

Jones, D. N., & Paulhus, D. L. (2014). Introducing the short dark triad (SD3) a brief measure of
dark personality traits. Assessment, 21(1), 28–41. https://doi.org/10.1177/1073191113514105

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and
connections with nonparametric item response theory. Applied Psychological Measurement,
25(3), 258–272. https://doi.org/10.1177/01466210122032064

Karelitz, T. M. (2004). Ordered category attribute coding framework for cognitive assessments
(Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.

Kruskal, J. B. (1976). More factors than subjects, tests and treatments: an indeterminacy theorem
for canonical decomposition and individual differences scaling. Psychometrika, 41(3), 281–
293. https://doi.org/10.1007/BF02293554

Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18(2),
95–138. https://doi.org/10.1016/0024-3795(77)90069-6

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2),
187–212. https://psycnet.apa.org/doi/10.1007/BF02294535

Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov chain monte carlo in R.
Journal of Statistical Software, 42(9), 1–21. https://doi.org/10.18637/jss.v042.i09

McHoskey, J. W., Worzel, W., & Szyarto, C. (1998). Machiavellianism and psychopathy. Journal
of Personality and Social Psychology, 74(1), 192. https://doi.org/10.1037/0022-3514.74.1.192

Narasimhan, B., Johnson, S. G., Hahn, T., Bouvier, A., & Kiêu, K. (2020). cubature: Adaptive
multivariate integration over hypercubes [Computer software manual]. (R package version
2.0.4.1)

Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavel-
lianism, and psychopathy. Journal of Research in Personality, 36(6), 556–563. https://doi.org/
10.1016/S0092-6566(02)00505-6

Persson, B. N., Kajonius, P. J., & Garcia, D. (2019). Revisiting the structure of the short dark triad.
Assessment, 26(1), 3–16. https://doi.org/10.1177/1073191117701192

Tatsuoka, K. K. (1987). Toward an integration of item-response theory and cognitive error diag-
nosis. In Diagnostic monitoring of skill and knowledge acquisition (pp. 453–488). Lawrence
Erlbaum Associates, Inc. https://doi.org/10.4324/9780203056899

Templin, J. (2004). Generalized linear mixed proficiency models for cognitive diagnosis. (Unpub-
lished doctoral dissertation). University of Illinois at Urbana-Champaign.

Templin, J., & Bradshaw, L. (2013). Measuring the reliability of diagnostic classification model
examinee estimates. Journal of Classification, 30(2), 251–275. http://dx.doi.org/10.1007/
s00357-013-9129-4

Templin, J., Henson, R. A., et al. (2010). Diagnostic measurement: Theory, methods, and
applications. Guilford Press.

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive
diagnosis models. Psychological Methods, 11(3), 287–305. https://doi.org/10.1037/1082-989x.
11.3.287

Templin, J. L., Henson, R. A., Templin, S. E., & Roussos, L. (2008). Robustness of hierarchical
modeling of skill association in cognitive diagnosis models. Applied Psychological Measure-
ment, 32(7), 559–574. https://doi.org/10.1177/0146621607300286

Vehtari, A., & Lampinen, J. (2002). Bayesian model assessment and comparison using cross-
validation predictive densities. Neural Computation, 14(10), 2439–2468. https://doi.org/10.
1162/08997660260293292

von Davier, M. (2005). A general diagnostic model applied to language testing data. ETS Research
Report Series, 2005(2), i–35. https://doi.org/10.1348/000711007x193957

von Davier, M. (2018). Diagnosing diagnostic models: From von neumann’s elephant to model
equivalencies and network psychometrics. Measurement: Interdisciplinary Research and Per-
spectives, 16(1), 59–70. https://doi.org/10.1080/15366367.2018.1436827

https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/1073191113514105
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1007/BF02293554
https://doi.org/10.1007/BF02293554
https://doi.org/10.1007/BF02293554
https://doi.org/10.1007/BF02293554
https://doi.org/10.1007/BF02293554
https://doi.org/10.1007/BF02293554
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://psycnet.apa.org/doi/10.1007/BF02294535
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.18637/jss.v042.i09
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1037/0022-3514.74.1.192
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.1177/1073191117701192
https://doi.org/10.1177/1073191117701192
https://doi.org/10.1177/1073191117701192
https://doi.org/10.1177/1073191117701192
https://doi.org/10.1177/1073191117701192
https://doi.org/10.1177/1073191117701192
https://doi.org/10.4324/9780203056899
https://doi.org/10.4324/9780203056899
https://doi.org/10.4324/9780203056899
https://doi.org/10.4324/9780203056899
https://doi.org/10.4324/9780203056899
https://doi.org/10.4324/9780203056899
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
http://dx.doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1037/1082-989x.11.3.287
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1177/0146621607300286
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1348/000711007x193957
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/15366367.2018.1436827


442 S. He et al.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of
Statistics, 45(2), 675–707. http://www.jstor.org/stable/44245820

Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of
the American Statistical Association, 113(523), 1284–1295. https://doi.org/10.1080/01621459.
2017.1340889

http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889

	21 A Sparse Latent Class Model for Polytomous Attributes in Cognitive Diagnostic Assessments
	21.1 Introduction
	21.2 A Sparse Latent Class Model with Polytomous Attributes
	21.2.1 Model Configurations
	21.2.1.1 Unstructured Mixture Model
	21.2.1.2 Structured Mixture Model
	21.2.1.3 Model Identifiability
	21.2.1.4 Monotonicity Constraints
	21.2.1.5 Strict Identifiability
	21.2.1.6 Generic Identifiability


	21.3 Gibbs Sampling
	21.4 An Empirical Application
	21.4.1 Short Dark Triad
	21.4.2 Model Comparisons
	21.4.3 Monte Carlo Simulation Study
	21.4.4 Model Convergence

	21.5 Discussion
	Appendices
	Short Dark Triad
	Empirical Item Parameters
	Strict Identifiability Proof
	Generic Identifiability Proof

	References




