
Chapter 14
A Bayesian Test for the Association
of Binary Response Distributions

Rudy Ligtvoet

Abstract Item response theory models impose testable restrictions on the observed
distribution of the response variables. In this chapter, the inequality restrictions
are investigated imposed by Mokken’s model of monotone homogeneity (MH)
for binary item response variables. A Bayesian test for the observable property of
variables being associated is proposed for the trivariate distributions of all triplets of
items. This test applies to a wide range of item response theory models that extend
beyond the MH model assumptions.

List of Abbreviations

MH Mokken’s (1971) model of monotone homogeneity.
SPOD Strongly positive orthant dependence (Definition 1).
A Variables being associated (Definition 2).
CI Assumption of (local or) conditional independence.
UD Assumption of unidimensionality.
M Assumption of (latent) monotonicity.
LND Assumption of local non-negative dependence.
DINA The deterministic inputs, noisy, AND gate model.

14.1 Introduction

Mokken scale analysis consists of a collection of diagnostics to assess the assump-
tion underlying the model of monotone homogeneity (MH; Mokken, 1971; Mokken
& Lewis, 1982; Molenaar & Sijtsma, 2000; Sijtsma, 1988; Van der Ark, 2007; see
List of Abbreviations section). The MH model allows for ordinal inferences about
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a latent variable based on the observed responses to the item variables that make up
a test. For example, for binary item variables, the MH model implies a stochastic
ordering on the latent variable by the sum of the item scores (Grayson 1988; Ghurye
& Wallace 1959; Huynh 1994; Ünlü 2008). The assumptions that constitute the MH
model are useful in applications when ordinal inferences are required and no further
(parametric) assumptions are deemed either necessary or appropriate.

The diagnostic statistics most prominently used in Mokken scale analysis are the
scalability coefficients, which are calculated from the bivariate distribution of pairs
of item variables (Loevinger 1948; Molenaar 1991; Warrens 2008). The MH model
requires that these scalability coefficients are all non-negative, whereas any negative
coefficient discredits or invalidates the model assumptions. However, non-negative
scalability coefficients are not sufficient for the MH model. A more restrictive
demand of the model is the requirement of non-negative partial correlations, for
all triplets of items (Ellis 2014). The restrictions imposed on the trivariate item
distributions by this latter requirement are part of a wider class of properties of
multivariate positive dependence. Examples of these properties are multivariate
total positivity (Ellis 2015; Karlin & Rinott 1980) and conditional association
(Holland & Rosenbaum 1986; Rosenbaum 1984), which are also implied (necessary
but not sufficient) by the MH model.

A set of assumptions, other than those that define the MH model, was proposed
by Holland (1981), with the aim of testing a wider range of item response theory
model. These assumptions pertain to perfect scores (all zeros or ones) on subsets
of item variables and hold, if and only if any subset of item variables satisfies the
property of strongly positive orthant dependence (SPOD; Joag-Dev, 1983). Because
conditional association implies SPOD (Definition 1 below), it follows that SPOD
includes the MH model as a special case (Holland & Rosenbaum 1986).

In this chapter, a Bayesian test is proposed for a wide range of models for
binary response data. This test is based on the observable property of variables
being associated (A; Esary et al., 1967; Walkup, 1968), but applied to all trivariate
distributions of triplets of item variables (cf. non-negative partial correlations). In
the following section, I introduce some properties of latent variable models and the
observable properties that are implied by these models. In Sect. 14.3, the restrictions
imposed on the data distribution by the testable properties are expressed in terms of
inequality constraints on the log-odds ratios related to the multinomial parameters.
This allows for a convenient way of expressing the Bayes factor in favor of property
A. The analysis of response data using the Bayes factor is illustrated in Sect. 14.4,
followed by a short discussion in Sect. 14.5.

14.2 Preliminaries and Notation

Let .X = (X1, . . . , XJ ) denote the random vector containing the J binary item
response variables. The (real) latent vector .θ is introduced through the law of total
probability, .P(X = x) = ∫

P(X = x|θ)dG(θ), with its distribution function
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G further left unspecified. To define a model, several conditions are considered.
The first of these conditions is that of local or conditional independence (CI):
.X1, . . . , XJ are conditionally independent, given .θ. The latent vector is said to be
unidimensional (UD), whenever .θ = θ (scalar-valued). The conditions of CI and UD
alone, however, are not enough to impose testable restrictions on the distribution of
.X (Suppes & Zanotti 1981). The additional condition of monotonicity (M) states
that the item response functions .P(Xj = 1|θ) are (element-wise) non-decreasing
in .θ, for all .j = 1, . . . , J . Holland and Rosenbaum (1986) referred to a model that
assumes CI and M as a monotone latent variable model, whereby the additional
assumption UD defines Mokken’s (1971) MH model for .(X, θ).

14.2.1 Strongly Positive Orthant Dependence

Holland (1981) proposed a set of conditions, with the purpose of providing a test of
a wide range of item response theory models. He showed that these conditions hold,
if and only if X satisfies the observable property of SPOD (Joag-Dev 1983), for any
selection of variables from X.

Definition 1 The vector X is said to satisfy the property of SPOD (X is SPOD), if
for any partition X = (Y,Z), the following three inequalities hold:

.
P(Y = 1)P (Z = 1) ≤ P(X = 1), P (Y = 0)P (Z = 0) ≤ P(X = 0),

and P(Y = 1)P (Z = 0) ≥ P(Y = 1,Z = 0).
(14.1)

For the special case J = 3, there are only three distinct (non-empty) partitions
of X to consider, with Y = Xi and Z = (Xj ,Xk), for i = 1, 2, 3 and j, k �= i. This
is because, for J = 3, the first two inequalities in Definition 1 imply (if and only if)
the last inequality for both Y = Xi and Y = (Xj ,Xk). For example, for Y = X1
and p(x) = P(X = x), with u = (0, 1, 1), the first inequality implies that

.
P(X1 = 1)(p(u) + p(1)) ≤ p(1) ⇔ p(u)/p(1) ≤ 1/P (X1 = 1) − 1
⇔ p(1)/p(u) ≥ 1/P (X1 = 0) − 1 ⇔ P(X1 = 0)(p(1) + p(u)) ≥ p(u),

(14.2)

where the last expression corresponds to the third inequality in Definition 1, for
Y = (X2,X3).

For the general case (any J ), the condition of local non-negative dependence
(LND) is obtained from Definition 1, by conditioning each term on θ . The following
result by Holland (1981, Theorem 2) shows that SPOD provides a characterization
of a wide class of latent variable models for binary response variables.
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Theorem 1 (Holland, 1981) The binary random vector X is SPOD, if and only if
UD and LND hold, and for any partition X = (Y,Z), both

.
P(Y = 1|θ) is non-decreasing in θ and
P(Y = 0|θ) is non-increasing in θ.

(14.3)

The set of conditions listed in Theorem 1 contain the MH model as a special
case (Holland & Rosenbaum 1986), where Holland (1981) referred to Eq. 14.3 as
monotonicity of the subtest characteristic curves.

14.2.2 Variables Being Associated

Holland (1981) generalized the conditions that define the MH model (i.e., UD, CI,
and M) by relaxing the CI condition and replacing M by Eq. 14.3. Alternatively,
one may replace the UD restriction by less restrictive constraints on the multidi-
mensional vector θ, to obtain a multivariate version of the MH model for (X, θ).
Here, one such relaxation is considered, namely, that θ is A.

Definition 2 (Esary et al., 1967) The random vector θ is said to be associated with
(θ is A), whenever the covariance between φ(θ) and ϕ(θ) is non-negative, for any
(element-wise) non-decreasing functions φ and ϕ, for which the involved expected
values are defined.

If θ is A, then any selection of variables from θ is also A, which follows by taking
φ and ϕ to pertain only to the selected variables. Assuming CI and M, the following
testable result is obtained (Holland & Rosenbaum, 1986, Theorem 8, referring for
the proof to Jogdeo, 1978).

Theorem 2 (Jogdeo, 1978) If θ is A, CI and M imply that X is also A.

Proof Together, M and CI imply that E[φ(x)|θ] is non-decreasing in θ for any non-
decreasing function φ (e.g., Holland & Rosenbaum, 1986, Lemma 2). Also, X|θ is
A, because of CI (Esary et al. 1967, Theorem 2.1). Then, by the Theorem in Jogdeo
(1978, p. 234), (X, θ) is A, and X is also A, because any subset of associated random
variables satisfies A. ��
The MH model is a special case of the conditions in Theorem 2, which in turn are a
special case of the conditions in Theorem 1, as property A implies property SPOD
(e.g., Holland & Rosenbaum, 1986, p. 1536).

Another example of a model that satisfies the conditions in Theorem 2 can
be obtained by considering α = (α1, . . . , αK) to be a binary random vector of
latent attributes. The DINA model (Doignon & Falmagne 2012; Tatsuoka 1995) is
a response model for cognitive assessment, with a successful outcome expected on
an item, if all the relevant attributes are possessed. The relevance of the attributes
for item j is determined by the binary vector (qj1, . . . , qjK), which is usually fixed
in advance for all items. For the response functions, let P(Xj = 1|α) = P(Xj =
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1|ξj = 0)P (Xj = 1|ξj = 1), with ln(ξj ) = qj1 ln(α1) + . . . + qjK ln(αK). Then,
the DINA model implies condition M, if and only if P(Xj = 1|ξj = 0) ≤ P(Xj =
1|ξj = 1) (Junker & Sijtsma 2001).

Proposition 1 Assuming CI and M, the DINA model implies that X is A, if (α, η)

satisfies the MH model, with η denoting a second-order latent variable.

Proof The MH model for (α, η) implies that α is A, so that (X,α) satisfies the
conditions of Theorem 2 (replacing θ by α). ��

The second-order latent variable in Proposition 1 can be thought of the cognitive
growth that stimulates the development of the attributes, with η positively related to
the total number of attributes under the MH model. The purpose of Proposition 1 is,
however, not to propose another cognitive diagnostic model, but rather to illustrate
the generality of the conditions in Theorem 2.

14.3 Restrictions on the Log-Odds Ratios

Both the property of SPOD and A impose a number of inequality restrictions on the
distribution of .X. In order to test these restrictions, it is convenient to denote by .p
the vector containing the elements .p(x) = P(X = x), arranged in lexicographical
order of .x (with elements on the right running faster from 0 to 1). Also assume that
.p > 0. Then, the restrictions imposed by either of the properties can be concisely
expressed in terms of inequality restrictions on the log-odds ratios, as

.K ln(Mp) ≥ 0, (14.4)

(cf. Bartolucci & Forcina, 2005) with .K = Iv ⊗ (1,−1,−1, 1) and .Iv is the identity
matrix of dimensions v equal to the number of restriction. The matrix .M is a binary
design matrix which can be adapted to pertain to the restrictions of either A or
SPOD. For example, for .J = 2, take .v = 1 and .M = I4, so that Eq. 14.4
yields .ln p(0, 0) − ln p(0, 1) − ln p(1, 0) + ln p(1, 1) ≥ 0, which corresponds to
.Cov(X1,X2) ≥ 0.

Walkup (1968) listed the set of all pairs of binary non-decreasing functions that
characterize property A, for up to four items. For .J = 3, there are nine such pairs
of function. One example of such a pair corresponds to Cov.(X2,X3) ≥ 0. It can be
verified that this restriction is obtained from Eq. 14.4 using .M = (1, 1) ⊗ I4. Let
.pk denote the kth element of .p, with .p1 = p(0), p2 = p(0, 0, 1), . . . , p8 = p(1).
Another example imposes the restriction Cov.(1 − (1 − X1)(1 − X2),X3) ≥ 0,
which corresponds to the restriction .ln p1 − ln(p3 + p5 + p7) − ln p2 + ln(p4 +
p6 + p8) ≥ 0, obtained from Eq. 14.4, using “.⊗” for the Kronecker product, as
.M = (I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′, (1, 1) ⊗ I2 ⊗ (0, 1)′). By going though all .v = 9
pairs of functions listed by Walkup (1968), and stacking on top of one another all the
corresponding design matrices, we find that property A holds for .J = 3, if Eq. 14.4
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holds, with design matrix

.M =

⎡

⎢
⎢
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⎢
⎢
⎢
⎢
⎢
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⎣
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M8

M9

⎤

⎥
⎥
⎥
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⎥
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⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1) ⊗ I4

I2 ⊗ (1, 1) ⊗ I2

I4 ⊗ (1, 1)

I2 ⊗ ((1, 0)′ ⊗ (1, 1)) ⊗ I2

I2 ⊗ (I2, (0, 1)′ ⊗ (1, 1))

(I2 ⊗ (1, 0)′ ⊗ (1, 1), I4)

(I4, I2 ⊗ (0, 1)′ ⊗ (1, 1))

((1, 1) ⊗ I2 ⊗ (1, 0)′, I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′)
(I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′, (1, 1) ⊗ I2 ⊗ (0, 1)′)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.5)

The matrix .M in Eq. 14.5 consists of .v = 9 stacked matrices .M1, . . . ,M9, each of
dimensions .4 × 8.

The following result shows that SPOD and A coincide in case .J = 3.

Theorem 3 For .J = 3 binary variables and .p > 0, property A is satisfied if and
only if property SPOD is satisfied for all subsets of variables.

Proof For any subset of two variables from .X = (X1,X2,X3), SPOD implies
that the covariance between the two variables are non-negative. This corresponds
to .M1, .M2, and .M3 in Eq. 14.5 for the three distinct subsets .(X2,X3), .(X1,X3),
and .(X1,X3), respectively. The remainder of the proof consists of going through
the process of exhaustively listing all restrictions imposed by SPOD for .J = 3
and expressing these in terms of the log-odds ratios. It can then be shown that
.M4, . . . ,M9 of the design matrix .M in Eq. 14.5 match one-to-one with those
obtained for property SPOD. As an example, consider the inequality .P(Y =
1)P (Z = 0) ≥ P(Y = 1,Z = 0) from Definition 1, which reduces for
.Y = (X1,X2) and .Z = X3 to .(p7 + p8)(p1 + p3 + p5 + p7) ≥ p7 and yields
.ln p8 − ln(p2 + p4 + p6) − ln p7 + ln(p1 + p3 + p5) ≥ 0. The last inequality is
obtained from Eq. 14.4 using .M8 in Eq. 14.5. The remaining five inequalities can
be obtained similarly. ��

One problem when testing either the properties A or SPOD using Eq. 14.4 is
that the number of constraints grows fast as J increases to a more realistic size. For
example, for .J = 4, Walkup (1968) listed 99 restrictions imposed by property A.
Furthermore, many of the restrictions pertain to outcomes for which observations
may be sparse as these restrictions involve ever higher-order interactions between
the variables in .X. A solution to both these problems is to consider testing the
property A for all triplets of item response variables from .X only. By considering
the trivariate distributions, the hope is to have a test that is more powerful than a
test that involves only the bivariate distribution while at the same time being broad
enough to target a wide range of response models.
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14.3.1 Trivariate Associated Distributions

Considering all the triplets of item variables of a test of length .J ≥ 3. With property
A imposing .J (J − 1)/2 inequality restrictions on the bivariate distributions, and six
restrictions involving three items for each trivariate distribution, the total number of
restrictions .v = J (J − 1)(J − 3/2).

The design matrix .M for assessing the v inequality restrictions is obtained as
follows. First, let

.Bjk = Bjk1 ⊗ · · · ⊗ BjkJ , with Bjkl =
{

I2 if either j = l or k = l

(1, 1) otherwise,
(14.6)

and let the matrix .B be obtained by stacking on top of one another all matrices .Bij ,
which contains all the restrictions imposed on the bivariate distributions. Second,
for the trivariate distributions, let .R be the 8 by 3 matrix with in its rows all binary
vectors of length 3, in lexicographical order. Likewise, let .S be the .2J by J matrix
with in its rows all binary vectors of length J , and let .T denote the matrix in Eq. 14.5,
but without .M1,M2, and .M3. Third, let .Cjkl be a matrix of dimensions 24 by .2J .
Matrix .Cjkl is assigned to its ath column the same values as .T has in its bth column,
whenever .(saj , sak, sal) = (rb1, rb2, rb3), for .1 ≤ a ≤ 2J and .1 ≤ b ≤ 8. Finally,
matrix .C is obtained by stacking all matrices .Cjkl on top of each other.

The goal is to test the hypothesis H of trivariate A, for all triplets of response
variables, with H obtained as the set of vectors .p, which satisfy .p > 0 and .1′p = 1
(multinomial model), and Eq. 14.4, with the matrix .M obtained from stacking matrix
.B on top of .C. A maximum likelihood procedure for testing inequality restrictions
requires the estimation of .p and produces test statistics which asymptotic sampling
distributions are difficult to obtain (e.g., Bartolucci & Forcina, 2000, 2005; Vermunt,
1999). Here, a Bayesian approach is considered instead, which requires a prior
density to be assigned to .p, but has the advantage that it allows for hypothesis H

to be tested against its complement of at least one violation of Eq. 14.4. As a prior
for .p, a flat (uniform) Dirichlet distribution is chosen, where the influence of this
particular choice is expected to be small as long as all observations of .X = x have
enough support.

14.3.2 Bayes Factor for Trivariate Associated Distribution

The Bayes factor in support of hypothesis H is expressed in terms of the prior
and posterior probabilities that the restrictions imposed by H are satisfied (Klugkist
& Hoijtink 2007; Tijmstra et al. 2015). The prior probability of H is estimated
by sampling a large number of vectors .p from the flat Dirichlet distribution and
calculating the proportion c that satisfies Eq. 14.4. Let .n denote the vector containing
the observed frequencies of .X = x, arranged as .p. Also, let d denote the proportion
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of samples that satisfy Eq. 14.4, with the samples obtained from a Dirichlet
distribution, with the hyper-parameters equal to .n + 1. The ratio .d/c provides an
estimate of the Bayes factor in favor of H over the multinomial model. The Bayes
factor for the evidence in favor of H over its complement (at least one violation)
then becomes

.L = (1/c − 1)/(1/d − 1), (14.7)

where a value .L > 1 expresses support in favor of H , whereas a value .L < 1
expresses support for the hypothesis that there is at least one violation of H (Lavine
& Schervish 1999; Kass & Raftery 1995).

The sampling procedure for obtaining the proportions c and d can be made more
efficient by “activating” the restrictions one by one. Let .ck denote the conditional
proportion of samples that satisfy the kth restrictions, given that all previous .k − 1
restrictions are satisfied. Then, .c = c1 · · · cv and similarly for d (Mulder et al. 2009;
Tijmstra & Bolsinova 2019), where a sample of vectors .p under the first .k − 1
restrictions can be obtained using a Gibbs sampler similar to Hoijtink and Molenaar
(1997; Ligtvoet & Vermunt, 2012).

For illustration of the Gibbs sampler, let .J = 3, and consider sampling .p3 from
the prior distribution constrained by Eq. 14.4 using for .M in Eq. 14.5 only .M1, .M2,
and .M3. Let

.a = min((p̃1 + p̃5)(p̃4 + p̃8)/(p̃2 + p̃6) − p̃7, (p̃1 + p̃2)(p̃7 + p̃8)/(p̃5 + p̃6) − p̃4)

and b = (p̃2 + p̃4)(p̃5 + p̃7)/(p̃6 + p̃8) − p̃1, (14.8)

with .p̃k denoting the values sampled at the previous iteration. The newly sampled
value .p̃3 obtained from the gamma distribution truncated between a and b then
yields .p̃/1′p̃ as a single sample from the prior distribution constrained by the
restrictions imposed by matrices .M1, .M2, and .M3. This sampling procedure is
repeated (for both the prior and posterior) for each .pk many times over, gradually
adding the restrictions by extending .M1,M2, . . . , up to .Mv . An R program for
implementing this algorithm and calculating the Bayes factor is available from the
author’s website.

14.4 Application

As a small application, consider the transitive reasoning data (Verweij et al. 1996,
for details), which are available from the mokken package in R (Van der Ark
2007). These data consist of the binary responses of .N = 425 children to transitive
reasoning tasks, where we limit the analyses to those tasks that relate to the task
property Length (.J = 4) and Weight (.J = 5).
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For the .J = 4 items related to the task property Length, hypothesis H imposes
.v = 30 inequality restrictions. Considering only the restrictions on the bivariate
distributions, we get a Bayes factor of .L = 1.2936, indicating no clear evidence
in favor or against property A. Including the remaining 24 restrictions imposed by
hypothesis H yields .1/L = 4.6555, which indicates substantial evidence against the
variable of the task property Length being A. The result thus discredits any model
that is a special case of the general conditions listed in Theorem 2, including the MH
model. This result, however, was not obvious when only the information contained
in the bivariate distributions was considered.

For the .J = 5 items related to the task property Weight, .L = 13.1766, indicating
strong evidence in favor of hypothesis H .

14.5 Discussion

The Bayes factor for the hypothesis that the observable property A holds for
all trivariate distributions of triplets of item variables (hypothesis H ) provides
a convenient way of summarizing evidence in favor of the many restrictions
the property imposes on the observed binary data distribution. The application
illustrated that the restrictions imposed by the property on the trivariate distributions,
in addition to the restrictions on the bivariate distributions, cannot generally be
ignored. A test of property A for all J item variables becomes practically infeasible
due to the large numbers of restrictions. Hence, the proposed test strikes a balance
between the power of the test and what is practically feasibility. However, the
procedure for computing the Bayes factor is still computationally very intensive
and is no longer feasible for more than seven items. The procedure would thus
benefit from alternative ways of estimating or approximating the prior and posterior
probabilities for the Bayes factor.

One easy way of alleviating the computational burden when assessing trivariate
A is to consider calculating the Bayes factors separately for each of the triplets of
item variables, rather than combining these same restrictions into a single test. Note
that the number of restrictions in both cases is the same, but the Gibbs sampler
runs faster many times on smaller problems than on a single run across the entire
.2J multinomial outcome space. However, the challenge then is to combine the
.J (J − 1)(J − 2)/6 Bayes factors to come to a judgment about the validity of the
assumptions being tested for subsets of response variables. The use of a single global
test has a clear advantage here.

Theorem 2 shows that property A for all trivariate distributions is implied by
any model for binary response data that assumes the conditions CI and M to
hold and additionally assumes that the random vector of (multidimensional) latent
variables satisfies property A. These conditions include those that were proposed
by Holland (1981) for trivariate distributions, Mokken (1971)s MH model, and a
special multilevel version of the DINA model (Proposition 1). Whereas specific
tests can be designed for each of the special instances of the conditions listed in
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Theorem 2, the test proposed here is aimed at assessing whether the pursuit of any
of such models is worth the effort at all.
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