
Chapter 12
Composition Algorithms for Conditional
Distributions

Maarten Marsman, Timo B. Bechger, and Gunter K. J. Maris

Abstract This chapter is about two recently published algorithms that can be
used to sample from conditional distributions. We show how the efficiency of the
algorithms can be improved when a sample is required from many conditional dis-
tributions. Using real-data examples from educational measurement, we show how
the algorithms can be used to sample from intractable full-conditional distributions
of the person and item parameters in an application of the Gibbs sampler.

12.1 Introduction

Bayesian statistics often requires sampling from conditional, posterior distributions.
For example, to estimate Bayesian models using Gibbs sampling (Geman & Geman
1984), we have to repeatedly sample from the full-conditional distributions of model
parameters, and to produce plausible values (Mislevy 1991; Mislevy et al. 1993)
for secondary analyses of educational surveys, we have to sample from pupils’
conditional, posterior ability distributions. This chapter is about two algorithms
that were designed for this problem: A rejection algorithm that was mentioned by
Rubin (1984) and was applied in the European Survey on Language Competences
(ESLC; Maris 2012) and the Single-Variable Exchange (SVE) algorithm developed
by Murray et al. (2012).

Both algorithms are based on the observation that a sample from a conditional
distribution can be obtained from samples drawn from the joint distribution. The
practical significance of this observation lies in the fact that sampling from the joint
distribution is often easier because it can be done in two ways. Specifically, the joint
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density of X and Y can be factored in two ways:

.f (x | y)f (y) = f (y | x)f (x),

and to obtain a sample from the joint distribution, we can use the method of
composition (Tanner 1993) and sample from .f (y) and then from .f (x | y) or
sample from .f (x) and then from .f (y | x). Thus, if it is difficult to sample from
.f (x | y), we can try to sample from .f (y | x), or vice versa. For instance, if we
encounter a posterior distribution that is highly intractable, we can sample from it
by generating data. Thus, the algorithms are extremely useful when it is difficult to
sample from the posterior but easy to generate data as is the case for Item Response
Theory (IRT) models. As both algorithms use composition to sample from the joint
distribution, we refer to them as composition algorithms. The algorithms differ in
the way they select observations from the joint distribution to obtain a sample from
the conditional distribution of interest.

Marsman et al. (2017) recently showed that the two composition algorithms
could be made more efficient when we need not one but many samples from similar
posterior distributions. This occurs, for instance, in educational surveys, where we
have to sample from the posterior distribution of each of N individuals to produce
plausible values. In this chapter, we use the composition algorithms to sample from
conditional distributions of the following form:

.fr(θ | xr ) ∝ f (xr | θ)fr (θ) (12.1)

where .� is a random effect that varies across replications .r = 1, . . . , N . We follow
Marsman et al. (2017) and demonstrate how the composition algorithms can be
tailored for the situation where N is very large. Over the last decade, large values
of N have become increasingly more common as more and more data are being
produced. This implies that there is a growing need to analyze large data sets and our
algorithms are specifically designed for this purpose, mainly because their efficiency
increases with N . The algorithms are not developed for situations where N is small.

The algorithms are useful in many contexts. Marsman et al. (2017) discussed
their use for models in the exponential family and illustrated them using the Rasch
(1960) model. The main goal of this chapter is to illustrate how the algorithms can
be used in educational measurement applications where .X is a vector of discrete
item responses,1 .� is a latent ability, .P(X | θ) is an IRT model with fixed item
parameters, and we use the composition algorithms to sample from the posterior
distribution of ability for each of N persons, either for its one right or as part of
a Gibbs sampler. Compared to alternative approaches, the main advantage of the
composition algorithms is that they become more efficient when the number of
persons increases, as explained in Sect. 12.3.

1 The responses are allowed to be continuous in the SVE algorithm, and we use this to sample from
posteriors of the form .f (θ | x) ∝ f (x | θ)f (θ) in the examples section.
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The composition algorithms only require that we can generate data which is
trivial for common IRT models. A nice feature is that we only need to know
.f (θ) and .P(X | θ) up to a constant. This opens the door to new applications
which would be difficult to handle with existing algorithms. We will illustrate this
with an example involving a random-effects gamma model for response times. The
normalizing constant (i.e., the gamma function) is not available in closed form and
sometimes difficult to approximate.

To set the stage, we will first introduce the two composition algorithms as they
stand. After having introduced the composition algorithms, we explain how they
can be made more efficient and illustrate their use with simulated and real-data
applications. The chapter ends with a discussion.

12.2 Sampling from a Conditional Distribution

12.2.1 The Rejection Algorithm

The rejection algorithm (see Algorithm 1) works as follows. To sample from a
conditional distribution .f (θ | x), we repeatedly sample .{θ∗, x∗} from the joint
distribution of .θ and .x until we produce a sample for which .x∗ = x. This generates
an i.i.d. sample from the conditional distribution .f (θ | x). The algorithm requires
two things: First, it must be possible to sample from .f (θ) and .P(x | θ); that is,
we should be able to generate data under the model. Second, the random variable .X
must be discrete with a finite range so that there is a non-zero probability to generate
a value .x∗ equal to the observed value .x.

Algorithm 1 A rejection algorithm for .f (θ | x)
1: repeat
2: Generate .θ∗ ∼ f (θ)

3: Generate .x∗ ∼ P (x | θ∗)
4: until .x∗ = x
5: Set .θ = θ∗

It will be clear that the number of trials needed increases with the number of
values .X can assume so that the rejection algorithm is only useful when this number
is small. In the special case when .P(x | θ) belongs to the exponential family, the
posterior depends on the data only via the sufficient statistic .t (x) (Dawid 1979).
Since .X is a discrete random variable, .t (X) is also a discrete random variable, and
this means that we may replace .x∗ = x with .t (x∗) = t (x) in line 4 of Algorithm 1.
This version of the rejection algorithm was developed for the ESLC, and it is the
focus of the present chapter.

Note that the more realizations of .X lead to the same value on the sufficient statis-
tic, the more efficient the algorithm becomes. The ESLC shows that the algorithm
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is efficient enough to be used in large-scale educational surveys using the Partial
Credit Model (PCM; Masters 1982). The same holds for other exponential family
IRT models, such as the Rasch model (Rasch 1960), the One-Parameter Logistic
Model (OPLM; Verhelst & Glas, 1995), and special cases of theGeneralized Partial
Credit Model (GPCM; Muraki 1992) and Nominal Response Model (NRM; Bock
1972) where the category parameters are integer.

12.2.2 The Single-Variable Exchange Algorithm

The rejection algorithm rejects all samples for which .x∗ does not exactly match .x
and thus requires the random variable .X to be discrete, preferably assuming a small
number of values. To allow .X to be continuous, we adapt the rejection step such
that we accept or reject samples with a probability other than 0 or 1. That is, we
consider the generated .θ∗ as a sample from the proposal distribution .f (θ | x∗)
and accept this value as a realization from the target distribution .f (θ | x) with a
probability .f (θ∗ | x)/(M f (θ∗ | x∗)), where .M > 0 is an appropriate bound on
.f (θ∗ | x)/f (θ∗ | x∗) for all possible values of .x and .x∗. In general, however, it is
difficult to find M , and we therefore consider a Metropolis algorithm. That is, we
choose the probability to accept such that the accepted values are a sample from a
Markov chain whose stationary distribution is .f (θ | x). The price to pay is that we
now produce a dependent and identically distributed (d.i.d.) sample.

To ensure that the Markov chain generated by the Metropolis algorithm has the
desired stationary distribution, the following detailed balance condition must hold
(Tierney 1994):

.π(θ ′ → θ∗)
P (x | θ ′)f (θ ′)

P (x)
P (x∗ | θ∗)f (θ∗)

P (x∗)

= π(θ∗ → θ ′)P (x | θ∗)f (θ∗)
P (x)

P (x∗ | θ ′)f (θ ′)
P (x∗)

,

where .θ ′ is the current parameter setting and .π(θ ′ → θ∗) the probability to make a
transition of .θ ′ to .θ∗. It is easily checked that the detailed balance condition holds
when .π(θ ′ → θ∗) = min{1, ω(θ ′ → θ∗)}, with

.ω(θ ′ → θ∗) = P(x | θ∗)f (θ∗)P (x∗ | θ ′)f (θ ′)
P (x | θ ′)f (θ ′)P (x∗ | θ∗)f (θ∗)

= P(x | θ∗)P (x∗ | θ ′)
P (x | θ ′)P (x∗ | θ∗)

,

(12.2)

and the probability to accept .θ∗ depends on the relative likelihood to observe .x∗ and
.x given the parameter settings .θ ′ or .θ∗, respectively. Using this probability in the
Metropolis algorithm, we arrive at the SVE; see Algorithm 2.
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Algorithm 2 The Single-Variable Exchange algorithm
1: Draw .θ∗ ∼ f (θ)

2: Draw .x∗ ∼ P (x | θ∗)
3: Draw .u ∼ U(0, 1)
4: if (.u < π(θ ′ → θ∗)) then
5: .θ ′ = θ∗
6: end if

To use the SVE algorithm, we must be able to compute .ω(θ ′ → θ∗), and the
SVE algorithm was designed to make this task as simple as possible. To see this, we
write

.P(x | θ) = h(x; θ)

Z(θ)
,

where .Z(θ) = ∑
x h(x; θ) is a normalizing constant, or partition function, which is

often difficult or even impossible to compute.2 Since .ω(θ ′ → θ∗) in (12.2) is the
product of likelihood ratios, it follows that

.ω(θ ′ → θ∗) =
h(x; θ∗)
Z(θ∗)

h(x∗; θ ′)
Z(θ ′)

h(x; θ ′)
Z(θ ′)

h(x∗; θ∗)
Z(θ∗)

= h(x; θ∗)h(x∗; θ ′)
h(x; θ ′)h(x∗; θ∗)

.

Thus, there is no need to compute .Z(θ) (or .P(x)).
As an illustration, Table 12.1 gives .ln(ω(θ ′ → θ∗)) for a selection of IRTmodels.

Note that for many of the models in Table 12.1, .ln(ω(θ ′ → θ∗)) is of the form:

.(θ∗ − θ ′)(t (x) − t (x∗)).

That is, the acceptance probability depends on the product of the difference in
parameter settings and the difference between the statistics of the generated and
observed data. It also shows that, as the range of .t (X) increases, .ω(θ ′ → θ∗) tends
to become lower, on average.

12.2.3 Limitations

In educational measurement, we often have to sample from the posterior ability
distribution of each of N persons, where N is large. In the Programme for
International Student Assessment, a large-scale educational survey, plausible values

2 When both .Z(θ) and .P (x) are difficult or even impossible to compute, the posterior distribution
is called doubly intractable. Murray et al. (2012) specifically developed the SVE algorithm for
these doubly intractable distributions.
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Table 12.1 .ln(ω(θ ′ → θ∗)) for a selection of IRT models

IRT model .ln(ω(θ ′ → θ∗)) .t ()

Rasch .(θ∗ − θ ′)(t (x) − t (x∗) .
∑

j xj

2PL .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j αj xj

3PL .
∑

j (xj − x∗
j ) ln

(
cj +exp(αj (θ∗−δj ))

cj +exp(αj (θ ′−δj ))

)

1PNO .
∑

j (xj − x∗
j ) ln

(
�(θ∗−bj )(1−�(θ ′−bj ))

�(θ ′−bj )(1−�(θ∗−bj ))

)

2PNO .
∑

j (xj − x∗
j ) ln

(
�(aj θ∗−bj )(1−�(aj θ ′−bj ))

�(aj θ ′−bj )(1−�(aj θ∗−bj ))

)

3PNO .
∑

j (xj − x∗
j )

[
ln

(
cj +(1−cj )�(aj θ∗−bj )

cj +(1−cj )�(aj θ ′−bj )

)

.+ ln
(

1−�(aj θ ′−bj )

1−�(aj θ∗−bj )

)]

PCM .(θ∗ − θ ′)(t (x) − t (x∗) .
∑

j

∑
j xjk

GPCM .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j αj

∑
j xjk

NRM .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j

∑
j αjkxjk

MD2PL .(θ∗ − θ ′)T (t(x, α) − t(x∗ , α)) .
∑

j xjαj

The abbreviations 2PL and 3PL stand for the Two- and Three-Parameter Logistic models; 1PNO,
2PNO, and 3PNO stand for the One-, Two-, and Three-Parameter Normal Ogive models; and
MD2PL stands for the Multidimensional Two-Parameter Logistic model. We used .�(x) as
shorthand for .

∫ x

−∞
1√
2π

exp(−y2/2)dy

have to be produced for more than half a million pupils. And below, we have to
sample from the posterior distribution of ability when we analyze a hierarchical IRT
model for the responses from over .150, 000 pupils on a Dutch educational test. To
sample from N posterior distributions, the composition algorithms would require
about N times the amount of work needed to sample from a single posterior; see
below. Thus, the algorithms do not become more efficient when N increases and
are inefficient when N is large. The algorithms are also inefficient for applications
with many items. Suppose the number of possible response patterns (or sufficient
statistics) increases. In that case, the rejection algorithmwill need increasingly more
trials, and the SVE algorithmwill tend to have lower acceptance probabilities so that
the correlation between successive draws will tend to be higher.

We illustrate this with a small simulation study, the results of which are shown
in Fig. 12.1. We simulate data with N persons answering to each of J dichotomous
items, with N varying between 100 and .10,000, and .J ∈ {10, 20, 30}. We assume
a standard normal distribution for ability .�. For the rejection algorithm, the IRT
model is the Rasch model. For the SVE algorithm, we use the Two-Parameter
Logistic (2PL) model. The item parameters are fixed, with difficulty parameters
sampled from a standard normal distribution and discrimination parameters sampled
uniformly between 1 and 3. For each combination of N and J , we generated 100
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Fig. 12.1 Simulation results. (a) Number of trials for rejection. (b) Acceptance probability for
SVE

data sets. With the item parameters fixed, our goal is to sample for each of the N

persons an ability from the posterior distribution given his or her observed response
pattern.

Results for the rejection algorithm are in Fig. 12.1a, which shows the average
number of trials that are required to sample from each of the N posteriors as a
function of N and J . It is clear that the average number of trials required quickly
stabilizes around the number of possible realizations of .t (X), which is .J + 1 in
this simulation.3 Thus, we need approximately .(J + 1) × N iterations to produce a
value from each of the N posteriors, and this number grows linear in both N and J .
Results for the SVE algorithm are in Fig. 12.1b which shows the average proportion
of values accepted in the 100th iteration of the algorithm as a function of N and J .
The acceptance probabilities are seen to be low and decreasing with an increase of
the number of items. Thus, for both algorithms, it follows that as N and J grow, we
need more iterations to obtain a certain amount of independent replicates from each
of the N posteriors. We conclude that the algorithms, as they stand, are unsuited for
applications with large N (and J ).

3 The number of trials .W = w required to generate a realization .t (x) follows a geometric
distribution with parameter .P (t (x)), the (marginal) probability to generate .t (x) under the model.
From this, we see that .E(W | t (x)) equals .P (t (x))−1 and

.E(W) =
∑

t (x)

E(W | t (x))P (t (x)),

where the sum is taken over all possible realizations. It follows that .E(W) equals the number of
possible realizations of .t (X).
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12.3 Large-Scale Composition Sampling

The rejection and SVE algorithm sample from one posterior at the time. Conse-
quently, sampling fromN posteriors requiresN times the amount of work needed to
sample from a single posterior. If the algorithms are to be prepared for applications
with an increasing number of posteriors, the amount of work per posterior has to
decrease with N . To see how, observe that both algorithms generate samples that
are not used efficiently, i.e., samples that are either rejected or accepted with a
low probability. Thus, to improve the efficiency of the algorithms for increasing
N , we need to make more efficient use of the generated samples. To this aim, we
consider the SVE algorithm as an instance of what Tierney (1994, 1998) refers to as
a mixture of transition kernels. This way of looking at the SVE algorithm suggests
two approaches to improve its efficiency. One of these will be seen to apply to the
rejection algorithm as well.

12.3.1 A Mixture Representation of the SVE Algorithm

In every realization of the SVE algorithm, we sample one of the possible response
patterns (denoted .x∗), together with a random value for ability (denoted .θ∗). The
sampled ability value is a sample from the posterior distribution .f (θ | x∗) which is
the proposal distribution in the SVE algorithm. The probability that we use .f (θ | x∗)
as proposal distribution in the SVE algorithm is equal to .P(x∗), which follows from
the factorization:

.P(x∗ | θ∗)f (θ∗) = f (θ∗ | x∗)P (x∗).

That is, every simulated response pattern corresponds to a unique proposal distribu-
tion and, hence, to an unique transition kernel .f (θ∗ | θ , x∗). Each of these transition
kernels has the target posterior distribution as its invariant distribution; that is,

.f (θ∗ | x) =
∫

R

f (θ∗ | θ , x∗)f (θ | x) dθ.

As shown by Tierney (1994), the same is true for their mixture, that is,

.f (θ∗ | x) =
∫

R

∑

x∗
f (θ∗ | θ , x∗)P (x∗)f (θ | x) dθ,

where the sum is taken over all possible response patterns, and we now see that the
.P(x∗) are the mixture weights.

To make matters concrete, consider the posterior distribution for a Rasch model
with J items and a standard normal prior for ability .θ . Because the Rasch model
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Fig. 12.2 Empirical
distribution over transition
kernels for the SVE algorithm
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is an exponential family model with the test score .t (x) as sufficient statistic for
ability, we know that posteriors for the different ways to obtain the same test score
are all the same (Dawid 1979). That is, the mixture weights are nothing but the
distribution of test scores. Moreover, the posterior distributions .f (θ | t (x)) are
stochastically ordered by the test score, which makes the acceptance probability
lower, the larger the difference between the value of .t (x) conditioned on in the target
and .t (x∗) conditioned on in the proposal distribution; see Table 12.1. Figure 12.2
shows the mixture probabilities .P(t (x)) for a test of 20 items. We see in Fig. 12.2
that the SVE algorithm will tend to generate many transition kernels for which the
acceptance probability is not very high.

12.3.2 Oversampling

Since the SVE algorithm tends to frequently generate transition kernels for which
the acceptance probability is low, we consider changing the mixture probabilities,
in such a way that more probability mass is concentrated on transition kernels with
high acceptance probability.

Suppose that instead of simulating a single proposal value .θ∗, with a correspond-
ing single response pattern .x∗, we simulate a number of i.i.d. proposal values, each
with its own response pattern. From those, we choose the one for which the test
score is closest to the test score conditioned on in the target distribution, and hence
the acceptance rate tends to be the highest.

In Fig. 12.3, we illustrate the effectiveness of this oversampling approach in
sampling from a posterior .f (θ | t (x) = 9). Clearly, even with 5 samples, we already
improve the probability to generate directly from the target from close to 0.1 to close
to 0.4. With 20 samples, this probability even exceeds 0.8. Moreover, if the proposal
is not identical to the target, it is increasingly more likely to be close to the target as
the number of samples increases.
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Fig. 12.3 Probability distribution over transition kernels after modulating the mixture probabili-
ties. (a) 5 samples. (b) 20 samples

Since oversampling can easily be implemented in a parallel implementation,
this approach need not lead to a large increase in computer time. This makes the
approach computationally attractive.

12.3.3 Matching

Consider the situation where there are many proposal distributions (i.e., N large)
and hencemany target posterior distributions, each one independent from the others.
The SVE algorithm can once again be considered as a mixture of transition kernels
for the whole collection of N posteriors:

.f (θ∗ | x) =
∫

RN

∏

i

f (θ∗
i | θi , x∗

i )P (x∗)f (θ | x) dθ ,

where .x denotes the matrix .x = {x1, . . . , xN }. Observe that the transition kernel for
person i only depends on .x∗ via the i-th response pattern. Suppose that for a matrix
.x∗, we permute the person indices i, in some fixed way (denoted perm(i)). Then, the
transition kernel for person i depends on .x∗ via one of the response patterns in .x∗,
and every response pattern is used exactly once:

.f (θ∗ | x) =
∫

RN

∏

i

f (θ∗
perm(i) | θi , x∗

perm(i))P (x∗)f (θ | x) dθ .
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Clearly, not all proposal distributions lead to the same acceptance probability, and
thus, not all permutations lead to the same overall acceptance rate. Hence, some
permutations work better than others. Notice that all permutations lead to a valid
transition kernel with the posterior distribution as its invariant distribution, as long as
our permutation strategy does not depend on .�′ or .�∗. Finding, for every matrix .x∗
and every observedmatrix .x, the best permutationwill in general be an NP-complete
problem. However, the better the permutation, the more efficient the algorithm.

In Algorithm 3, we consider the general situation where each person may receive
its own prior distribution, and we denote the prior of a person i with .fi(θ). We
generate a proposal using the prior .v = 1, . . . , N (v now indexes the proposals),
and we reorder the index vector .V = [vi ] of the proposals by using a permutation
function perm.(). When we use .θ∗

v ∼ fv(θ | x∗
v) as a proposal for a posterior

.fi(θ | xi ) (i need not equal v), then we accept .θ∗
v with probability .π(θ ′

i → θ∗
v ) =

min{1, ω(θ ′
i → θ∗

v )}, and

.ω(θ ′
i → θ∗

v ) = fi(θ
∗ | xi )fv(θ

′ | x∗)
fi(θ ′ | xi )fv(θ∗ | x∗)

= h(xi ; θ∗)h(x∗; θ ′)
h(xi ; θ ′)h(x∗; θ∗)

× fi(θ
∗)fv(θ

′)
fi(θ ′)fv(θ∗)

,

a product of likelihood ratios times a product of prior ratios, where the normalizing
constants .P(x) and .Z(θ) cancel as before (as do the normalizing constants of the
prior distributions).

Algorithm 3 Single-Variable Exchange algorithm with matching
Require: Index vector .V = [vi ] = i, for .i = 1, 2, . . . , N
Require: A permutation function perm()
1: for .v = 1 to N do
2: Generate .θ∗

v ∼ fv(θ)

3: Generate .x∗
v ∼ P (X | θ∗

v )

4: end for
5: Match proposals to targets by rearranging .V based on perm.().
6: for .i = 1 to N do
7: Set .v = vi

8: Draw .u ∼ U(0, 1)
9: if (.u < π(θ ′

i → θ∗
v )) then

10: Set .θ ′
i = θ∗

v

11: end if
12: end for

Simple permutation functions are often readily available. For instance, the test
score is usually correlated with .� and gives a simple procedure to permute the
indices of proposals and targets.When the IRTmodel is a member of the exponential
family, the sufficient statistic .t (x) contains all information about .� from the data
and gives another simple procedure for permutation. More general solutions would
be the use of maximum likelihood or Bayes’ modal estimates, when they are not
too expensive to compute. We give some examples of permutation strategies in our
applications below.
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12.3.4 Recycling in the Rejection Algorithm

The main idea underlying matching is that a proposal need not be associated to one
particular posterior. We can use the same idea for the rejection algorithm for the
situation with N posteriors using a common prior .f (θ). The idea behind recycling
is that if we sample .{θ∗, x∗}, .θ∗ can be assigned to any observation i where .t (xi ) =
t (x∗) (or .xi = x∗). In general, we need to sample from .N = ∑U

u=1 nu posteriors
.f (θ | t (x) = tu), where .tu is one of the U unique values the statistic .t (X) can
take, .Nu is the number of observations of response patterns .xi for which .t (xi ) = tu,
and it is arbitrary how the values of .t (X) are indexed. As seen in Algorithm 4, we
sample from the joint distribution of .� and .X until we have .nu values for each u. In
Algorithm 4, we store generated values in a vector .R and the index corresponding
to the generated statistic in a vector .S. If necessary, we can use .S to assign the
drawn parameters to observations. Note that this version of the rejection algorithm
has been implemented in the R-package dexter (Maris et al. n.d.).

Algorithm 4 A rejection algorithm with recycling
Require: .nu for .u = 1, 2, . . . , U .
Require: A counter c and vectors .R = [ri ] and .S = [si ], .i = 1, 2, . . . , N .
1: .c = 0.
2: repeat
3: Generate .θ∗ ∼ f (θ)

4: Generate .x∗ ∼ P (X | θ∗)
5: Determine u, such that .t (x∗) = tu
6: if .nu ≥ 1 then
7: .nu = nu − 1
8: .c = c + 1
9: .[rc] = θ∗
10: .[sc] = u

11: end if
12: until .nu = 0 for .u = 1, . . . , U

In the context of IRT, the situation with N posteriors using a common prior
describes the situation of N persons sampled from the same population. In practice,
however, we often encounter situations where the persons are sampled from
different groups, e.g., boys and girls. In this situation, posteriors are of the form

.f (θ | xi ) ∝ P(xi | θ)fm(θ),

i.e., persons are grouped into marginals m, where .fm(θ) denotes the prior distri-
bution in marginal m, and recycling applies to each marginal separately. It will be
clear that in this situation, the algorithm becomes efficient only when there are many
persons in each marginal. When the prior distributions are person specific, and each
person has its own marginal distribution, recycling reduces to the standard rejection
algorithm.
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12.3.5 Has the Efficiency of the Algorithms Improved?

We considered recycling and matching as ways to improve the rejection and SVE
algorithm when samples are required from many posteriors. To illustrate that this
works, we compare the efficiency of the rejection algorithm with and without
recycling and the SVE algorithm with and without matching under the conditions
of our previous simulation.

Results for the rejection algorithm with recycling are in Fig. 12.4a, which shows
the average number of trials required to sample from the N posteriors as a function
of N and J . If we compare the results in Fig. 12.4a with the results in Fig. 12.1a,
we see that recycling requires relatively few iterations per posterior. Note that
the required number of iterations decreases as N increases and increases when J

increases. It is clear from Fig. 12.4a that as both N and J increase, recycling makes
the rejection algorithm more efficient when N increases faster than J . For fixed J ,
Fig. 12.4a confirms that as N becomes large, the number of iterations per posterior
tends to 1.

To illustrate that the matching procedure improves the efficiency of the SVE
algorithm, we consider the following simple strategy. We order target distributions
using the statistic .t (xi , α) = ∑J

j=1 xijαj (see Table 12.1), such that the values of
the statistic are ordered from small to large, and we do the same for the proposal
distributions using the .t (x∗, α). This simple permutation strategy ensures that if
the Markov chain is stationary, the first proposal is likely to be a good proposal
for the first target (since the difference between .t (x, α) and .t (x∗, α) is likely to be
small), and the same holds for the second, the third, and so on. Results for the SVE
algorithm using this procedure are given in Fig. 12.4b, which shows the average
acceptance rate in the 100th iteration of the algorithm as a function of N and J .
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Fig. 12.4 Simulation results. (a) Number of trials with recycling. (b) Proportion accepted with
matching
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If we compare the results in Fig. 12.4b with the results in Fig. 12.1b, we see that
matching results in much higher acceptance rates. Note that, similar to the results
for the recycling, the proportion of accepted values increase as N increases and
decrease as J increases and matching makes the SVE algorithmmore efficient when
N increases faster than J . For fixed J , Fig. 12.4b confirms that as N becomes large,
the average acceptance rate tends to 1.

We conclude that recycling and matching make sampling from a large number
of posteriors entirely feasible. Most appealing is that the efficiency improves as
a function of N . As N tends to infinity, this means that we need to generate the
data only once to obtain a draw from each of N posteriors and both algorithms
generate i.i.d. from each of the N posteriors. For moderate N , we can already see
that the number of trials needed for the rejection algorithm approaches 1 and that
the acceptance rate of the SVE algorithm approaches 1. This shows that, even for
moderateN , both algorithms require little more than one generated data set and that
the SVE algorithm is close to sampling i.i.d.

To illustrate that matching makes the autocorrelation in the SVE algorithm a
decreasing function of N , we perform a small simulation. We run 5000 Markov
chains for 500 iterations each. We use the 5000 Markov chains to estimate the
autocorrelation by correlating the 5000 draws in some iteration i and iteration .i +1,
.i +2, .. . . . Figure 12.5 shows the autocorrelation spectra for the SVE algorithm with
matching. In Fig. 12.5, we see that the autocorrelations are a decreasing function of
N , meaning that as N becomes sufficiently large, we sample approximately i.i.d.

12.3.6 How Do Our Algorithms Compare to Existing
Algorithms?

When it is difficult to sample from .f (θ | x) directly, it is sometimes easier to sample
from a more complex (augmented) posterior distribution .f (θ , y | x) using the
Gibbs sampler. In the context of educational measurement, this approach has been
advocated by Albert (1992) for Normal Ogive models and by Jiang and Templin
(2018, 2019) for logistic IRT models. Due to the use of conditioning in the Gibbs
sampler, the data augmentation procedure of Albert (1992) introduces a constant
amount of autocorrelation to the Markov chain (Liu et al. 1994). As a result, the
number of iterations that are required to obtain a fixed amount of independent
replicates from each of the N posteriors is linear in N . In this sense, our algorithms
scale better, since the amount of autocorrelation reduces as a function of N .

A more general approach to sampling from .f (θ | x) is to sample a proposal
value .θ∗ from a conditional distribution .f (θ∗ | θ ′) and use the Metropolis-Hastings
algorithm to either move to the proposed value .θ∗ or stay at the current state .θ ′.
This approach has been advocated by Patz and Junker (1999), who suggest to use
.f (θ∗ | θ ′) = N (θ ′, σ 2) as proposal distribution (i.e., a random walk). Setting the
value of .σ 2 in the proposal distribution requires some effort from the user (Rosenthal
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Fig. 12.5 Estimated autocorrelation spectra using .J = 30 items. (a) .N = 100 persons, .θ = 0. (b)
.N = 100 persons, .θ = 0.5. (c) .N = 1000 persons, .θ = 0. (d) .N = 1000 persons, .θ = 0.5. (e)
.N = 10,000 persons, .θ = 0. (f) .N = 10,000 persons, .θ = 0.5
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2011): when .σ 2 is too large, most samples are rejected, but when .σ 2 is too small,
only small steps are taken, and the chain does not mix properly. To overcome this
problem altogether, one could use an unconditional proposal distribution .g(θ) (i.e.,
an independence chain). This is the approach we took in this chapter. Whenever the
proposal distribution .g(θ) closely resembles the target distribution, the Metropolis-
Hastings algorithm is very efficient. In general, it can be difficult to find good
proposal distributions, but the matching procedure automatically finds proposal
distributions .g(θ | x∗) that closely resemble the target .f (θ | x), and as N increases,
this procedure becomes more likely to generate good proposal distributions.

12.4 Simulated and Real-Data Examples

In this section, we discuss three examples illustrating the practical use of the SVE
algorithm for Bayesian estimation using the Gibbs sampler. The Gibbs sampler is
an abstract divide-and-conquer algorithm that generates a dependent sample from
a multivariate posterior distribution. In each iteration, the algorithm generates a
sample from the distribution of each variable in turn, conditional on the current
values of the other variables. These are called the full-conditional distributions.
It can be shown that the sequence of samples constitutes a Markov chain and the
stationary distribution of that Markov chain is the joint posterior distribution of
interest.

In each of our examples, there will be one or more full-conditional distributions
that are not easily sampled from, and we use the SVE algorithms developed in this
chapter to sample from these full-conditional distributions. All analyses have been
performed using a Dell OptiPlex 980 PC with an Intel Core 5 CPU and clock speed
3.20Ghz and 4Gb of memory running onWindows 7 Enterprise(32 bit) with a single
core.

12.4.1 Gamma Regression

The random-effects gamma model is a model for responses times proposed by Fox
(2013) as an alternative to the log-normal model that is commonly used (van der
Linden 2007; Klein Entink et al. 2009). The model is difficult to estimate, because
the normalizing constant of the gamma distribution (i.e., the gamma function .
(·))
is not available in closed form and can produce overflow errors in its computation.
We develop a Gibbs sampler for this model to illustrate how the SVE algorithm can
be used to avoid the calculation of the gamma function.

Let .Xij denote the time needed by person i to respond to item j ; .i = 1, . . . , N ,
and .j = 1, . . . , J . The .Xij are assumed to be independent, gamma distributed
random variables with
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.f (x | λ, η) =
N∏

i=1

J∏

j=1

λ
ηij

ij


(ηij )
x

ηij −1
ij exp

{−xij λij

}
. (12.3)

In the model of Fox (2013), a relatively simple regression structure was used,
namely, .λij = ν/(2 θi) and .ηij = ν/2. We will use a slight alteration in this
simulation, with .λij = ν/(θi δj ) and .ηij = ν, such that .E[Xij ] = θi δj , and
.Var(Xij ) = E[Xij ]2/ν. The person parameter .θi > 0 represents the speed of person
j , the item parameter .δj > 0 the time intensity of item j , and .ν a common rate
parameter. We further assume that .θi ∼ lnN (μθ , σ 2

θ ), and .δj ∼ lnN (μδ , σ 2
δ ),

where .lnN (μ, σ 2) denotes the log-normal distribution with mean .μ and variance
.σ 2. The location and scale parameters of the person and item parameters are
unknown and are to be estimated. To complete the specification of the model, we
use the following priors: .ν ∼ 
(a, b), .f (μθ , σ 2

θ ) ∝ σ−2
θ , and .f (μδ , σ 2

δ ) ∝ σ−2
δ .

Given the person and item parameters, the location and scale parameters are
easily sampled from their full-conditional distributions (Gelman et al. 2004):

.f (μθ | θ , σ 2
θ ) ∝ N

(
1

N

N∑

i=1

ln(θi), σ 2
θ /N

)

f (σ 2
θ | θ) ∝ Inv-χ2

⎛

⎝N − 1,
1

N − 1

N∑

i=1

(

ln(θi) − 1

N

N∑

i=1

ln(θi)

)2⎞

⎠

f (μδ | δ, σ 2
δ ) ∝ N

⎛

⎝ 1

J

J∑

j=1

ln(δj ), σ 2
δ /J

⎞

⎠

f (σ 2
δ | δ) ∝ Inv-χ2

⎛

⎜
⎝J − 1,

1

J − 1

J∑

j=1

⎛

⎝ln(δj ) − 1

J

J∑

j=1

ln(δj )

⎞

⎠

2
⎞

⎟
⎠ .

The full-conditional distribution of .ν, the person, and the item parameters, however,
are not easily sampled from, and for these, we will use the SVE algorithms
developed in this chapter.

To sample from the full-conditional distribution of .ν, we generate .ν∗ from the
prior .f (ν | a, b) and generate a data matrix .x∗ from .f (x | θ , δ, ν∗). The probability
.π(ν′ → ν∗) to make a transition from .ν∗ to .ν′ using this set-up is then equal to
.min

{
1, ω(ν′ → ν∗)

}
, with

. lnω(ν′ → ν∗) = (ν∗ − ν′)(t (x, θ , δ) − t (x∗, θ , δ)),
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where

.t (x, θ , δ) =
N∑

i=1

J∑

j=1

(

ln(xij ) − xij

θiδj

)

.

Note that we do not need to evaluate the .
() function at .ν′ or .ν∗, making .lnω a
relatively simple function to compute.

We have seen earlier that in this set-up, the SVE algorithm is likely to generate
transition kernels for which the acceptance probability is low. We therefore use the
oversampling procedure. That is, we generate a number of i.i.d. proposal values .ν∗,
each with its own data matrix .x∗. From these, we choose the one for which the
statistic .t (x∗, θ , δ) is closest to .t (x, θ , δ). We use 100 proposals in this example.
The R-code that we used for this full-conditional is given in Appendix A.

To sample from the full-conditional distributions of the person and the item
parameters, we use the matching procedure. Since we use the same matching
procedure for the person and the item parameters, we only describe the procedure
for the person parameters. We generate .θ∗

v , .v = 1, . . . , N , from .f (θ | μθ , σ 2
θ ) and

use it to generate a vector of response times .x∗
v from .f (x | θ∗

v , δ, ν). Say that we use
.f (θ | x∗

v , ν, μθ , σθ ) as proposal for a target i (i need not equal v), the probability
.π(θ ′

i → θ∗
v ) to make a transition from .θ ′

i to .θ∗
v is then equal to .min

{
1, ω(θ ′

i → θ∗
v )

}
,

with

. lnω(θ ′
i → θ∗

v ) = ν

(
1

θ∗
v

− 1

θ ′
i

)
(
t (x∗

v, δ) − t (xi , δ)
)
, (12.4)

where

.t (xi , δ) =
J∑

j=1

xij

δj

.

Note again that we do not need the evaluate the .
() function in .lnω and the
acceptance probabilities are simple to compute.

From (12.4), we see that it is opportune to use .t (xi , δ) to permute proposals and
targets. To this aim, we compute .t (x, δ) for each person in the sample and for each
proposal. Then, we order the targets using the .t (xi , δ), such that the corresponding
statistics are ordered from small to large, and do the same for the proposals using
the .t (x∗

v , δ). This simple permutation strategy ensures that if the Markov chain is
stationary, the first proposal is likely to be a good proposal for the first target (since
the difference between .t (x, δ) and .t (x∗, δ) is likely to be small) and the same holds
for the second, the third, and so on. The R-code that we used for this full-conditional
is given in Appendix B.

To see how it works, we simulated data for .N = 10,000 persons on a test
consisting of .J = 40 items. We set the mean and variance of the person and the
item parameters equal to 10 and 1, respectively, from which we can solve for the
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location and scale parameters in the log-normal model. Using these location and
scale parameters, we sample the person and item parameters from the log-normal
model. The parameter .ν was set equal to 40.

Note that the gamma model that we use is not identified, since multiplying the
person parameters with a constant and dividing the item parameters with the same
constant give the same model. Since we know the true values of the parameters in
this simulation, we simply set the estimated parameter of the first item equal to its
true value.

We ran the Gibbs sampler for 2000 iterations, which took approximately .2.5 h
(about .4.7 s per iteration). The main computational cost of this Gibbs sampler
resides in sampling the entire .N × J data matrix .m + 2 times in each iteration,
of which .m = 100 times for sampling from the full-conditional of .ν. Since the cost
per iteration is the same in each iteration, we see that we need approximately .0.1 s to
sample the person and the item parameters in each iteration and approximately .4.6 s
to sample .ν. This means that we can reduce the computational time by reducing m.
Note, however, that this would also reduce the acceptance rate in sampling .ν.

The results are in Figs. 12.6 and 12.7. As expected, our use of the SVE
algorithm does not lead to high acceptance rates for the item parameters; the average
acceptance rate was .0.05. The main reason is that we only generate 40 proposals
to assign to 40 targets, with a large variation on the conditioning statistic .t (x, θ)

due to the large number of observations. In the next example, we show that the
oversampling procedure can be used to remedy this. We did obtain high efficiency
for the person parameters, with an average acceptance rate of .0.96. In Fig. 12.6,
we show the trace plot for a person and an item parameter. It is clear that both
converge quickly to the stationary distribution. In Fig. 12.7, we show scatterplots of
the true person and item parameters against the parameter states in iteration 2000,
which illustrates that we are able to recover the parameters of the generating model.
Finally, the proportion of accepted values for the .ν parameter equalled .0.30, which is
certainly reasonable for such a complex full-conditional distribution. In Fig. 12.6c,
we show the trace plot of .ν, from which we see that once the person and item
parameters converge, .ν also quickly converges to its stationary distribution.

12.4.2 The Amsterdam Chess Test Data

The Signed Residual Time (SRT) model is an exponential family IRT model for item
response accuracy and response times and is derived by Maris and van der Maas
(2012) from the following scoring rule:

.(2Xij − 1)(d − Sij ),

for an item response .Xij , which equals 1 if the response is correct and 0 if incorrect,
after .Sij time units when the time limit for responding is d. This scoring rule assigns
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Fig. 12.6 Trace plot of .ν, a person, and an item parameter in the gamma mixture example. (a)
Trace plot of a person parameter. (b) Trace plot of an item parameter. (c) Trace plot of .ν
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Fig. 12.7 Scatterplot of the true person (item) parameters at the states of the person (item)
parameters in iteration 2000 of the Gibbs sampler for the gamma mixture example. (a) Scatterplot
of the person parameters. (b) Scatterplot of the item parameters

the residual time as the score for a correct response and minus the residual time for
an incorrect response. Thus, subjects need to be both fast and accurate to obtain a
high score and, thereby, a high estimated ability. The SRT model is

.f (Xij = xij , Sij = sij | θi , δj , d)=(θi − δj )
exp

[
(2xij − 1)(d − sij )(θi − δj )

]

exp
[
d(θi − δj )

] − exp
[−d(θi − δj )

] ,

for .0 ≤ s ≤ d. The statistics

.t (xi , si ) =
J∑

j=1

(2xij − 1)(d − sij ) (12.5)

t (xj , sj ) = −
N∑

i=1

(2xij − 1)(d − sij )

are sufficient for the ability .θi of a person i and the difficulty .δj of an item
j , respectively. We assume that .θi ∼ N (μθ , σ 2

θ ) and .δj ∼ N (μδ , σ 2
δ ), and to

complete specification of the model used the following priors: .f (μθ , σ 2
θ ) ∝ σ−2

θ

and .f (μδ , σ 2
δ ) ∝ σ−2

δ .
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Given the person and item parameters, the location and scale parameters are
easily sampled from their full-conditional distributions (Gelman et al. 2004):

.f (μθ | θ , σ 2
θ ) ∝ N

(
1

N
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θ /N

)
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The full-conditional distributions of the person and item parameters are not easily
sampled from, and we will use an SVE algorithm to sample from these full-
conditional distributions. To save space, we will only describe the procedure for
the person parameters.

We generate .θ∗
v , .v = 1, . . . , N , from .f (θ | μθ , σ 2

θ ) and use it to generate
a vector of item responses .x∗

v and response times .sv from .f (x, s | θ∗
v , δ) (see

Appendix C). Say that we use .f (θ | x∗
v, s

∗
v , μθ, σθ ) as proposal for a target i (i

need not equal v), the probability .π(θ ′
i → θ∗

v ) to make a transition from .θ ′
i to .θ∗

v is
then equal to .min

{
1, ω(θ ′

i → θ∗
v )

}
, with

. lnω(θ ′
i → θ∗

v ) = (
θ∗
v − θ ′

i

) (
t (x∗

v , s
∗
v) − t (xi , si )

)
,

with .t (xi , si ) defined in (12.5).
Although the sufficient statistics (12.5) can be used to permute the indices of

targets and proposals, we only have a few person and item parameters in this
example. To obtain some efficiency of the SVE algorithm in this application, we
use a variant of the oversampling strategy. In each iteration, we generate a number
of i.i.d. proposals and for each target distribution choose the proposal for which the
statistic .t (x∗, s∗) is closest to the observed statistic .t (x, s) while ensuring that each
proposal is used only once.

Van derMaas andWagenmakers (2005) describe data from the AmsterdamChess
Test (ACT), collected during the 1998 open Dutch championship in Dieren, the
Netherlands. The data we consider consists of the accuracy and response times of
.N = 259 subjects on .J = 80 choose-a-move items administered with a time limit
of 30 s. We started the mean and variance of the person and item parameters at 0
and 1, respectively. Using these values, we sampled the person and item parameters
from the prior. In each iteration, we generated .2 × N = 498 proposals for the
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Fig. 12.8 Scatterplot of EAP
versus Elo rating in the ACT
example
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persons and .5 × J = 400 proposals for the items. We ran the Gibbs sampler for
10,000 iterations, which took approximately 12 min (about 0.07 s per iteration).
The average acceptance rate was 0.98 for the persons and 0.93 for the items.

An important advantage of this illustrative application is that for chess expertise,
an established external criterion is available in the form of the Elo ratings of chess
players, which has high predictive power for game results. For those 225 participants
for whom a reliable Elo rating was available, we correlated the expected a posteriori
(EAP) estimates with their Elo ratings. The results are given in Fig. 12.8. The
correlation between EAP estimates and Elo ratings is equal to 0.822.

12.4.3 The 2012 Eindtoets Data

In educational measurement, population models are commonly used to describe
structure in the distribution of the latent abilities. For example, in equating two
exams, one can characterize the two exam groups by using a normal distribution
with a group-specific mean and variance; in the analyses of tests consisting of
different scales, a multivariate normal distribution can be used to characterize the
latent correlations; and in educational surveys, a normal regression model can
be used to study the effects of covariates on the ability distribution. Whenever
the abilities are observed, inference is relatively straightforward in each of these
situations. Our focus in this section is to show how the SVE algorithm can be used
to sample from the full-conditional distribution of the latent abilities, allowing the
analyses of structural IRT models using the Gibbs sampler, even for large data sets.

We use response data of .N = 158,637 Dutch end of primary school pupils on
the 2012 Cito Eindtoets to illustrate our approach using a multidimensional IRT
model. In specific, we used data from the non-verb spelling (10 items), verb spelling
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(10 items), reading comprehension (30 items), basic arithmetic (14 items), fractions
(20 items), and geometry (15 items) scales. That is, we have six unidimensional
IRT models (a between multidimensional IRT model) and use a multivariate normal
distribution to infer about the latent correlations between the six scales. To keep our
focus on sampling the latent abilities, we assume that an IRT model is given (i.e.,
the parameters characterizing the items in the IRT model are known). For simplicity,
we use the Rasch model for each of the scales in our example and fix the item
parameters at the conditional maximum likelihood (CML) estimates.

We use a multivariate normal distributionwith an unknown .Q×1 vector of means
.μ and .Q × Q covariance matrix .� to describe the latent correlations between the
.Q = 6 dimensions. To complete the model, we use the multivariate Jeffreys prior
for the mean vector and the covariance matrix:

.f (μ, �) ∝| � |− Q+1
2 .

The Gibbs sampler is used to sample from the joint posterior distribution
.f (θ , μ, � | x). For this model, the full-conditional distributions of .μ and .� are
easily sampled from (Gelman et al. 2004):

.f (μ | θ , �) ∝ NQ(θ̄ , �/N)

f (� | θ) ∝ Inverse-WishartN−1(S−1)

where .θ̄ = 1
N

∑N
i=1 θ i is the mean ability vector and .S = ∑N

i=1(θ i − θ̄)(θ i − θ̄)T

the sums of squares matrix around the mean ability vector. The full-conditional
distributions .f (θ i | xi , μ, �) are intractable, however, and for this, we use the SVE
algorithm.

Instead of sampling from .f (θ i | xi , μ, �) directly, we sample pupil abilities
in a dimension q given the .Q − 1 other dimensions, for .q = 1, . . . , Q. The full-
conditional distribution for the ability of a pupil i in a dimension q is proportional
to

.f (θiq | xiq , θ
(q), μ, �) ∝

Jq∏

i=1

exp
{
xijq (θiq − δjq)

}

1 + exp
{
θiq − δjq

} exp

{

− (θiq − λiq )2

2η2q

}

,

where .δjq is the difficulty of the j -th out of .Jq items in dimension q , .θ
(q)
i is the

ability vector of pupil i excluding entry q , and .λiq and .η2q are the conditional mean

and variance of .θiq given .θ
(q)
i in the population model, respectively, given by

.λiq = μq + σ
(q)
q

(
�(q, q)

)−1 (
θ

(q)
i − μ(q)

)

η2q = σqq − σ
(q)
q

(
�(q, q)

)−1
(σ

(q)
q )T ,
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where .σ
(q)
q contains the off-diagonal elements of the q-th row in .�, i.e., .σ

(2)
2 =

[σ21, σ23, . . . , σ26].
We sample from the full-conditionals .f (θiq | xiq , θ (q), μ, �), as follows. First,

we compute .λiq for .i = 1, . . . , N (note that these depend on the abilities from the
remaining .Q− 1 dimensions). Then, we sample .θ∗

vq from .N (λvq , η2q) and use these
to generate an item response vector .x∗

vq from .P(Xq | θ∗
vq , δq), for .v = 1, . . . , N .

Say that we use .f (θvq | x∗
vq , θ

(q)
v , μ, �) as proposal for a target i (i need not equal

v), then the probability .π(θ ′
iq → θ∗

vq) to make a transition of .θ ′
iq to .θ∗

vq is equal to
.min{1, ω(θ ′

iq → θ∗
vq)}, with

. lnω(θ ′
iq → θ∗

vq) = (θ ′
iq − θ∗

vq)(t (x
∗
vq , λvq , ηq) − t (xiq , λiq , ηq)),

where

.t (xiq , λiq , ηq) =
Jq∑

i=1

xijq + λiq/η2q .

Note that .t (xiq , λiq , ηq) combines information from the likelihood with information
from the population model.

To match proposals to targets (full-conditionals), it is opportune to use
.t (xiq , λiq , ηq), since if .t (x∗

vq , λvq , ηq) is close to .t (xiq , λiq , ηq), the acceptance
probability tends to be high. In matching the N proposals to the N targets, we
start with computing .t (xiq , λiq , ηq) for each target and computing .t (x∗

vq , λvq , ηq)

for each proposal. Then, we order the targets using the .t (xiq , λiq , ηq), such that
the corresponding statistics are ordered from small to large and do the same for
the proposals using the .t (x∗

vq , λvq , ηq). If the Markov chain is stationary, the first
proposal is likely to be a good proposal for the first target (since the difference
between .t (x, λ, η) and .t (x∗, λ, η) will be small), and the same holds for the second,
the third, and so on.

We start our analyses by setting .μ equal to .0 and .� equal to the .Q × Q

identity matrix. To get reasonable starting values for the latent ability vectors, we
performed a single run of the SVE algorithm where we accepted all proposals.
We ran the Gibbs sampler for 2000 iterations, which took approximately 80 min
(about .2.5 s per iteration). The acceptance rates of the SVE algorithm were high
in this example, averaging to .0.98, .1.00, .0.97, .0.99, .0.99, and .1.00 for dimensions
1 to 6, respectively. This means that we sample approximately i.i.d. from the full-
conditional distributions of the abilities, and thus, using the SVE algorithm in this
example does not introduce additional autocorrelation to the Markov chain.

Despite the observation that we sample the abilities approximately i.i.d. in this
example, the amount of autocorrelation in the chain is high. To illustrate, we show
the trace plot for three parameters: an ability, a mean, and a variance. Note the wave-
like patterns that emerge, which indicate a strong relation between subsequent states
in the Markov chain (i.e., high amount of autocorrelation). The reason for this high
amount of autocorrelation is due to the high correlations that we obtain between
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Table 12.2 Estimated correlations between scales in the 2012 Cito Eindtoets

Dimension Correlations

Non-verb spelling 1.00

Verb spelling 0.93 1.00

Reading comprehension 0.64 0.71 1.00

Basic arithmetic 0.60 0.61 0.71 1.00

Fractions 0.63 0.63 0.71 0.99 1.00

Geometry 0.61 0.62 0.69 0.97 0.98 1.00

some of the dimensions (see Table 12.2) and the fact that we sampled from each
dimension conditional upon the others. The high correlations between dimensions
then provide a strong relation between draws in subsequent iterations, inducing a
high amount of autocorrelation (Fig. 12.9).

The estimated correlation matrix is shown in Table 12.2. From Table 12.2, it is
seen that the two spelling scales are closely related, as are the three mathematics
scales. The remaining correlations are only moderately large, yet they are all posi-
tively correlated. The correlations in Table 12.2 suggest that there are three distinct
dimensions in this problem: spelling, reading comprehension, and mathematics.

12.5 Discussion

In this chapter, we have described two composition algorithms that can be used
to sample from conditional distributions and discussed how their efficiency can be
improved to handle large data sets where one needs to sample from many similar
distributions.

We have illustrated how the algorithms can be used in a variety of educational
measurement applications. We used the composition algorithms for a simulated
latent regression example using the random-effects gamma model proposed by
Fox (2013), analyzed Amsterdam Chess Test data using the signed residual time
model (Maris & van der Maas 2012; Deonovic et al. 2020), and analyzed one big-
data example—the Cito Eindtoets—using a multidimensional 2PL model (Reckase
2009). These examples allowed us to illustrate the feasibility of using composition
algorithms for simulating from random-effects distributions assessed by complex
measurement models. It also allowed us to illustrate that while their efficiency is
guaranteed if the algorithms are used in high-dimensional settings (i.e., when there
are many instances of a random effect), they are less efficient in low-dimensional
settings (e.g., to simulate from the posteriors of the item parameters).

Finally, we note that we used GNU-R to perform the analyses, which was entirely
feasible, even for the large applications. Computational time can be decreased by
implementing (parts of) the code in a compiled language (e.g., Fortran, C, Delphi).
Furthermore, most computer systems run on multiple cores, and computational time
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Fig. 12.9 Trace plots of an ability, a mean, and a variance in the Eindtoets example. (a) The ability
of person .i=59,137 in dimension 1. (b) The mean of dimension 6. (c) The variance of dimension
3
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could be decreased further by making use of the additional cores in implementa-
tions. For instance, proposals can be generated in batches, with each batch running
on a single core.

Appendix A: The Use of Oversampling in the Gamma
Example

The Gnu-R (R Core Team 2010) code that was used in the gamma example to
sample from the full-conditional distribution of .ν is given below.

#Compute t(x):
tx = rep(0,N)
for(j in 1:J) tx = tx - X[,j]/(theta * delta[j])+ log
(X[,j])
tx = sum(tx)

#Generate M = 100 proposals:
anu = rgamma(n = M, shape = shape.nu, rate = rate.nu)

#Generate statistics t(x*):
atx = rep(0,j)
for(j in 1:J)
{

for(m in 1:M)
{

tmp = rgamma(n = N,
shape = anu[m],
rate = anu[m] / (theta * delta[j]))

atx[m] = atx[m] +
sum(log(tmp) - tmp / (theta * delta[j]))

}
}

#Select proposal:
m = which(abs(tx - atx) == min(abs(tx - atx)))[1]
anu = anu[m]
atx = atx[m]

#Calculate log acceptance probability:
ln.omega = (anu - nu) * (tx - atx)

#Metropolis-Hastings step:
if(log(runif(1)) < ln.omega) nu = anu

Appendix B: The Use of Matching in the Gamma Example

The Gnu-R (R Core Team 2010) code that was used in the gamma example to
sample from the full-conditional distribution of the person parameters is given
below.

#Generate proposals:
atheta = rlnorm(n = N, #proposals from prior
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mean = theta.mu,
sd = theta.sd)

#Compute statistics:
tx = atx = rep(0,n)
for(j in 1:J)
{

#Compute t(x*):
atx = atx + rgamma(n = N,

shape = nu,
rate = nu / (atheta * delta[j])) / delta
[j]

#Compute t(x):
tx = tx + (X[,j] / delta[j])

}
#Permute proposals:

O = order(order(tx))
o = order(atx)
atheta = atheta[o[O]]
atx = atx[o[O]]

#Calculate the log acceptance probability:
ln.omega = nu * (atx - tx) * (1 / atheta - 1 /
theta)

#Metropolis-Hastings step:
u = log(runif(N))
theta[u < ln.omega] = atheta[u < ln.omega]

Appendix C: Sampling Data from the SRT Model

In order to apply the SVE algorithm to sample from the full-conditionals of the
person and item parameters, we need to be able to generate data from the model.
Since we apply the same procedure for the person as for the item parameters, we
only describe the strategy for the person parameters here. We use the factorization
.f (X,S | θ , δ, d) = P(X | θ , δ, d) f (S | X, δ, θ , d) and use composition. Maris and
van der Maas (2012) showed that .P(X = x | θ , δ, d) derived from the SRT model
is a Rasch model with slope equal to the time limit d and .f (Sij = sij | Xij =
xij , θi , δj , d) is

.f (Sij = sij | Xij = xij , δj , θi , d) = (θi − δj ) exp
(
(2xij − 1)(d − sij )(θi − δj )

)

(2xij − 1)
[
exp

(
(2xij − 1)d(θi − δj )

) − 1
] .

An interesting feature of this distribution is that the following set of equalities holds
(let .φ denote .θ − δ in the equalities):

.(S | X = 1, φ) =
st

(d−S | X = 0, φ) =
st

(S | X = 0, −φ) =
st

(d−S | X = 1, −φ).
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This indicates that we can introduce a new variable .Ŝ:

.Ŝ =
{

S if X = 1

d − S if X = 0
∼ (S | X = 1, θ , δ, d),

which Maris and van der Maas (2012) call pseudo time and is independent of
accuracy (.X⊥⊥ Ŝ | �). Thus, to generate data from the SRT model, we generate
X from a Rasch model with slope d, which is a trivial exercise, and to generate S

we generate .Ŝ via inversion and solve for S using

.S =
{

Ŝ if X = 1

d − Ŝ if X = 0
.

That is, draw .u ∼ U(0, 1), and set .Ŝij equal to

.
1

δj − θi

ln
[
1 − u(1 − exp(d(δj − θi)))

]
.
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