
Chapter 10
Examination of Test Characteristics’
Effect on Coefficient α and Coefficient ω

Terry Ackerman, Ye Ma, and Richard Luecht

Abstract In this study, five factors were simulated to determine their effect on three
measures of reliability: coefficient α, coefficient ω, and the true scale reliability as
defined in a classical test theory context as the ratio of true score variance over
observed score variance. The factors were the number of items, the level of item
discrimination, the number of dimensions, the correlations among dimensions, and
the location of the items in relationship to the latent ability score distribution. In
all higher-order dimensional conditions, simple structure was assumed. The data
were generated using the multidimensional item response theory compensatory two-
parameter logistic model. As expected, when the number of items, the magnitude of
the item discriminations, and the correlations among the dimensions increased, the
reliability correspondingly increased. Noticeable differences were observed across
all higher dimensionality conditions with ω values being significantly lower than α,
a finding which could have been an artifact of the simulated simple structure.

10.1 Background

Reliability is one of the hallmark measures of an assessment’s quality. It is a
necessary condition for validity. Several authors have noted that a test’s reliability
is a function of the scores on a test, not the test itself or multiple forms of a test
(Brennan, 2001; Thompson & Vacha-Haase, 2000). There are a host of measures
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that have been developed to estimate reliability (Feldt & Brennan, 1989; Kane,
1996). The basic definition of reliability is based on the classical test theory
assumption that for individual i, a test score Xi is the sum of two unobservable
and uncorrelated components, Ti, a true score and measurement error, Ei:

Xi = Ti + Ei. (10.1)

Reliability is then defined as the squared correlation between the observed test
scores and the corresponding unobserved true scores which can be shown to be
equal to the ratio of true score variance, .σ 2

T , to total observed score variance, .σ 2
X:

ρ2
T X = σ 2

T

σ 2
X

(10.2)

As noted by Sijtsma (2009a, b), over the years, the one standard reliability index
that researchers and psychologists have adopted is coefficient alpha (Cronbach,
1951), further referred to as α. Although Cronbach’s name is tied to the statistic,
this measure can be traced through the works of Kuder and Richardson (1937),
who published a version of α for dichotomous items—the KR-20 coefficient.
Hoyt (1941) proposed an equivalent statistic using of analysis of variance with
dichotomous responses.

Finally, Guttman (1945) derived a series of reliability coefficients. One coeffi-
cient, denoted as λ3, was equivalent to α.

Assuming a test composed of J-items, where a random variable, Yj, represents a
score on item j, and the total score on the test for an examinee is defined as the sum,

X =
J∑

j=1

Yj , (10.3)

α for a group of examinees can be expressed as

α = J

(J − 1)

⎡

⎣1 −
∑J

j=1 σ 2
Yj

σ 2
X

⎤

⎦ (10.4)

where .σ 2
Yj

represents the item variances and .σ 2
X is the variance of the total scores.

If the item scores are standardized, the formula for α can be expressed in terms
of the mean of the inter-item correlations, .ρ; that is,

α = Jρ

1 + (J − 1) ρ
, (10.5)
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or equivalently as the average of the inter-item covariances, .σYY ,

α =
J

(
σYY

σX

)

1 + (J − 1)
(

σYY

σX

) . (10.6)

It should be noted that α also approximates the mean of all possible Spearman-
Brown split-half coefficients (Spearman, 1910; Brown, 1910) where the split-
half coefficients, r12, are adjusted, pairwise Pearson product-moment correlations
between the two half-test scores:

rsplit−half(SB) = 2r12
1 + r12

. (10.7)

Coefficient α equals the mean of the split-half coefficients when the standard
deviations of all possible halves are equal and smaller when the standard deviations
are heterogeneous (Cortina, 1993). Feldt and Brennan (1989) and Lord and Novick
(1968) further noted that α will be equal to the mean of all split-half correlations
when the split-half correlations are calculated by the Flanagan-Rulon formula:

rsplit−half(FR) = 4r12s1s2
s2T

, (10.8)

where s1 and s2 are the standard deviations of each half and .s2T is the variance of the
total test (Flanagan, 1937; Rulon, 1939).

Many researchers have criticized the pervasive use of α (Green, et al., 1977;
Green and Yang, 2009; Rodriguez & Maeda, 2006; Sijtsma, 2009a, b) or even
wrote about the shortcomings of the statistic and its interpretations (Cronbach &
Shavelson, 2004; Ten Berge & Socan, 2004). One drawback is the ubiquitous
interpretation of α as a measure of internal consistency. Internal consistency is a
characteristic of the test items, not the test, and does not reflect the length of the
test (i.e., the pattern of inter-item covariances). Another caveat is that calculations
of α can yield values that are outside the range of possible values of the score
reliability that should be derivable from a single test administration (Cho & Kim,
2015; Sijtsma, 2009a).

It is often thought that α requires the test to be unidimensional and that it can be
used as a measure signifying the degree of multidimensionality. Cronbach (1951)
did address the test dimensionality issue when he wrote that for a test:

to be interpretable, . . . it is not essential that all the items be factorially similar. What is
required is that a large proportion of the test variance be attributable to the first principal
factor running through the test.

Several authors have noted that multidimensional tests can exhibit high values
of α (Davenport, et al., 2015; Davison & Davenport, 2015). When a test has been
empirically demonstrated to be multidimensional, it is important the test developer
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be able to articulate the meaning of the composite scale which α is characterizing
(e.g., that the total test score is a weighted linear composite of two or more subscores
by design). In any case, it has been well documented that a multidimensional test
does not necessarily have a lower α than a unidimensional test.

Friedman andWeisberg (1981) demonstrated that if all the inter-item correlations
are positive, the first principal component eigenvalue is approximately proportional
to the average correlation of the J items

λ1 ≈ 1 + (J − 1) r. (10.9)

Using this relationship, α can be approximated as

α ≈ J r

λ1
. (10.10)

Another approach that tries to capture the underlying possibly multidimensional
nature is to assess reliability using a factor-analytic approach such as coefficient
ωh (McDonald, 1985, 1999; Zinbarg et al., 2005), further referred to as ωh. The
subscript h denotes that this measure of reliability is derived from the hierarchical
factor analytic model. That is, it is assumed that all items measure a common factor
that accounts for a major proportion of variance in the scaled scores. In addition, it
is assumed that each item measures a unique skill uncorrelated with the common
scale. For the purposes of this study, we used a bifactor model in which all items
load on a general factor and on a unique factor. All unique factors are uncorrelated.
The ωh statistic used is calculated as

ωh =
(∑J

j=1 λgj

)2

σ 2
X

, (10.11)

where λgj are the factor loadings on the general factor.
The goal of this research is to examine and compare the performance of α

and ωh under several different test conditions including the correlations between
dimensions, number of items, discrimination power of the items, and whether the
difficulty of the items is optimal given the ability distribution of the examinees.

The response data were generated using the compensatorymultidimensional two-
parameter IRT model (M2PL) (Reckase, 2009). The M2PL can be expressed as

pj (θ) = P
(
uj = 1|θ) = 1

1 + e−(
∑m

k=1 ajkθik+dj )
, (10.12)

where θ = (θ1, θ2, · · · θ k, · · · θm) is a m-length vector of the latent scores with
elements indexed as θ ik(the score of person i on dimension k), ajk is a discrimination
for item j on dimension k, respectively, and dj is an intercept term denoting the
composite difficulty of each item. The MDISC index is the multidimensional analog
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to unidimensional discrimination parameter, a. It is a composite discrimination
index for each that can be expressed as

MDISCi =
√√√√

m∑

k=1

a2jk (10.13)

where .a2jk is defined above.

10.2 Research Design

This is a simulation study. The response data were generated under prescribed
testing conditions with multiple replications. Three coefficients were computed
for each data set and then the comparative results aggregated across replications:
(i) .ρ2

T X, the true scale reliability when the true score and error variances are
known (through simulation), (ii) α (Eq. 10.4), and (iii) ωh (Eq. 10.11). This design
demonstrates how logically influential test design considerations such as test length,
item discrimination, and the homogeneity of items relative to the populationmean(s)
impact those three reliability coefficients. The study included five completely
crossed design factors:

• Number of items (J = 24, J = 48)
• Levels of MDISC (low MDISC, 0.4–0.8; moderate MDISC, 0.8–1.2; high

MDISC, 1.2–1.6)
• Number of dimensions (m = 1, 2, 3, 4)
• Location of mean item difficulty (d = 0, 1) given the examinee distribution will

always be centered at the origin
• Correlation of abilities (ρ = .0, .5)

The sample size for each simulation was fixed at 1000 randomly generated
examinees sampled from a standard normal univariate or multivariate normal
distribution centered at the origin for each simulation. Each condition was further
replicated 100 times to provide empirical sampling distributions of each reliability
coefficient for comparative purposes.

10.3 Reliability Estimation and Evaluation

Three reliability coefficients were calculated for each of the simulated data sets: the
true scale reliability, .ρ2

T X, coefficient α, and ωh (based on a fitted bi-factor model).
As noted earlier, the true scale reliability was calculated using Eq. 10.1 where the



186 T. Ackerman et al.

true score variance is the variance of the expected scores of the N-examinees over
J-items:

σ 2
T = σ 2

⎛

⎝
N∑

i=1

n∑

j=1

P
(
ui = 1|θi1, θi2 aj1, aj2, dj

)
⎞

⎠ (10.14)

using the generated N × m matrix, θ, and the J × (m + 1) matrix of generated
item parameters. The raw score variance is calculated using the total score for
each person and including all the items in the test. The α and ωh were calculated
using the corresponding functions in the R package psych (Revelle, 2021). That
package calculates the three reliabilities given in Eqs. 10.4 and 10.11. In aggregate,
there were 96 conditions (2 × 3 × 4 × 2 × 2), and each condition was replicated
100 times to provide empirical sampling distributions of the three coefficients. In
particular, the means and standard deviations of those sampling distributions were
computed across the 100 replications per condition, and graphical visualizations
were created using the R package ggplot2 (Wickham, 2016). All the simulations,
data management, and analytical aspects of this study were carried out using R (R
Core Team, 2021).

10.4 Results

The 5 design factors produced 96 simulation test design conditions. These factors
were expected to have direct or indirect impact on the three reliability indices, .ρ2

T X,
α, and ωh. The impact of the number of items (test length) on reliability is well-
known given the extensive body of research on the Spearman-Brown formula (e.g.,
Angoff, 1953; Traub, 1997),

ρ∗
XX′ = qρXX′/ [1 + (q − 1) ρXX′ ] (10.15)

where .ρXX′ is the original reliability index and q is the ratio of new to original (old)
test lengths. In contrast, the average MDISC (composite item discrimination) and
item location were generated to either offset or match to the population centroids’
impact the contribution of each item to the score variance (e.g., Gulliksen, 1950).
These two factors also directly and indirectly reflect on item quality—especially
the item discrimination parameters and MDISC, which act as weights for the latent
scores. Finally, the number of underlying dimensions and the correlation between
those dimensions represent the dispersion of the measurement signal across the
apparent latent structures representing the item covariances. Including these latter
two conditions in the simulation directly speaks to the motivation for ωh, that is, to
have a reliability index that responds to untended or idiosyncratic dimensionality,
or to a test that includes multiple dimensions by design and perhaps reports the
total score as weighted linear composite of subscores. Increasing the dimensionality
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Fig. 10.1 Summary of reliability coefficients for high MDISC and item difficulty matched to the
population proficiency score centroids: μ(d) − μ(θk) = 0 (100 replications per condition)

and covariance(s) among the underlying factors should disperse the “measurement
signal” relative to a reported total score.

For the most part, these factors produced results that met expectations. Figures
10.1, 10.2, 10.3, 10.4, 10.5 and 10.6 include “trellis” or facetted multi-plots that
embed a bivariate plot conditioned on the number of items (columns) and the
magnitude of correlation between the underlying dimensions or factors (none
implies a zero correlation between the factors; moderate implies a correlation of
.5 between all factors). The number of dimensions is shown along the horizontal
axis for each plot, and the vertical axis represents the magnitude of the correlation.
The three plotted outcomes in each cell of the multi-plot denote the three reliability
indices: .ρ2

T X, α, and ωh. These results are summarized as the mean and standard
error of the reliability coefficients across 100 replications per combination of
simulation conditions.

As Fig. 10.1 shows (high MDISC, with the mean item difficulty matched to the
population centroids, μ(d) − μ(θ k) = 0 for all k), there is a noticeable increase in
the .ρ2

T X and α coefficients as the test length increased from 24 to 48 items, and
a decrease in the coefficients as the number of dimensions increased from 1 up to
4 due to the amount of total test score signal dispersion among the dimensions.
The three coefficients are all highly similar in the unidimensional case (m=1) with
α and ωh essentially being identical. The coefficients only start to decline as the
total score signal is dispersed across two or more underlying factors. Note that the
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Fig. 10.2 Summary of reliability coefficients for high MDISC with item difficulty offset from the
population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

Fig. 10.3 Summary of reliability coefficients for moderate MDISC and item difficulty matched to
the population proficiency score centroids: μ(θk) − μ(d) = 0 (100 replications per condition)
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Fig. 10.4 Summary of reliability coefficients for moderate MDISCwith item difficulty offset from
the population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

Fig. 10.5 Summary of reliability coefficients for low MDISC and item difficulty matched to the
population proficiency score centroids: μ(θk) − μ(d) = 0 (100 replications per condition)
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Fig. 10.6 Summary of reliability coefficients for low MDISC with item difficulty offset from the
population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

zero-correlation condition is rather unrealistic in a practical sense1, but provides
a reasonable baseline under “maximum dispersion” conditions. Interestingly, the
mean values of ωh tend to somewhat track with the inter-factor correlations (.0 =
none or .5 = moderate).

Figure 10.2 (high MDISC, with the mean item difficulty offset from the
population centroids, μ(θ k) − μ(d) = 1 for all dimensions) shows a pattern that
is very consistent with Fig. 10.1. Cronbach’s α values tend to be smaller than the
“true reliabilities” with known true scores, .ρ2

T X. This likely reflects some sampling
error when estimating the item error variances (see Eq. 10.3). The ωh coefficients,
again, somewhat track with the magnitude of the inter-factor correlations, although
the mean values are also confounded by the high MDISC present in the items.

Figure 10.3 (moderate average MDISC, with the mean item difficulty matched
to the population centroids, μ(θ k) − μ(d) = 0 for all dimensions) begins to show
an interesting pattern where the mean α and .ρ2

T X values respond to the reduced
composited item discrimination, but the ωh coefficients do not.

Figure 10.4 (moderate average MDISC, with the mean item difficulty offset from
population centroids, μ(θ k) − μ(d) = 1 for all dimensions) confirms the coefficient

1 In practice, it would be very rare to encounter a test designed to measure two or more underlying
traits with NO covariance between the traits. Even tests measuring distinctly different traits like
mathematics and English language arts tend to positively correlate in the moderate range.
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patterns of Fig. 10.3; that is, the ωh coefficients respond more to the amount of
total score signal dispersion than to the reduced composite item discrimination. The
mean α and .ρ2

T X values respond to the reduced composited item discrimination and,
to a lesser degree, to the signal dispersion across dimensions.

Figures 10.5 and 10.6 show an overall decline in mean α and .ρ2
T X values

proportional to both the low average MDISC values and the dimensional dispersion
of the total score signal. Interesting, and similar to Figs. 10.3 and 10.4, the latter
dispersion has less impact across the increasing number of dimensions than under
the high discrimination condition. Increasing the test length helps to somewhat
offset the decline in the reliability coefficients, but the recommendation to write
high-quality items and monitor that the level of composite item discrimination
remains as high as possible seems to be good advice.

10.5 Conclusion

In this study, we varied testing conditions that we felt would influence the perfor-
mance of the three reliability coefficients: (1) true reliability, (2) Cronbach’s α, and
(3) ωh. As the number of items was doubled from 24 to 48, there was the expected
proportional increase in reliability. Likewise, as the discrimination of the items,
MDISC, increased, the magnitude of the reliability coefficients also unilaterally
increased. The simulation response data were generated relative to an underlying
multidimensional simple structure for three of the four simulation conditions. As
the correlations between the multidimensional latent abilities increased from 0 to
.5, thus “collapsing” the latent space—the reliability coefficients also proportionally
increased. The effect of increasing the average difficulty of the items, that is,
increasing the amount of offset between the location of maximum measurement
information relative to the centroid of the examinee ability, joint latent distributions
did not induce any prominent change in reliability.

The simulation condition that appeared to demonstrate the greatest impact on
the reliability coefficients was multidimensionality. As the number of dimensions
increased, coefficient ω dropped considerably in comparison to the true scale
reliability and coefficient α. This was anticipated because ωh was computed using
the sum of the loadings on the general factor in the hierarchical, orthogonal bifactor
model, where all factors are uncorrelated. Because the data were generated using
simple structure, the loadings on the unique factors were higher than the loadings
on the general factor, creating significant dispersion in the measurement “signal”—
specifically, inducing “noise” relative to the general factor. That is, the R-packages
that were used estimated ωh using the bi-factor model versus a common factor or
component model.

In the unidimensional case, α and ω were always equal. In some cases, these
coefficients exceeded the true scale reliability. As dimensionality increased, α like
the .ρ2

T X decreased though not nearly as much ω. It appeared that α was not
affected as much as ωh by the increase in dimensionality. There was one notable
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inconsistency. In the two-dimensional case, ω was consistently lower than in the
three- and four-dimensional cases across all conditions. This may have been a
function of the sampled item discrimination parameters.

It seems clear that testing practitioners must be advised always to conduct
a thorough dimensionality analysis of their test results relative to the intended,
reported score scale(s) and further evaluate the dimensionality analysis outcomes
in terms of the test specification so that they can articulate the meaning of the
observed score scale. Only evaluating a reliability coefficients or standard errors
of measurement is not sufficient.

Future research will extend the current research to incorporate factorially
complex item structures where the multidimensionality may relate to nuisance
dimensions of idiosyncratic characteristics of the items (i.e., items loadings on both
intended and unintended factors underlying the data). We also plan to examine
reliability from a multidimensional IRT perspective and relate more directly to
the concept of a unidimensional composite of intended multidimensional traits
(i.e., Wang’s (1985) reference composite). Lastly, we plan to experiment with the
formulation of ωh and determine if additional information about dimensionality and
its effect on reliability can be delineated for testing practitioners.
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