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Preface

According to the Psychometric Society (n.d.), psychometrics is the science devoted
to the advancement of quantitative measurement practices in psychology, education,
and the social sciences. The Psychometric Society was established in 1935, but
psychometrics is much older. The word psychometrics as defined by the Psychome-
tric Society was used in Galton’s (1879) essay “Psychometric Experiments” (Jones
& Thissen, 2006; see also Heiser, this volume), yet quantitative measurement in
education dates back at least to the Chinese state exams that started during the
mid-Tang dynasty (618–907). One of the early landmarks in psychometrics was
the publication of the book Statistical Theories of Mental Test Scores by Lord
and Novick (1968). They provided a comprehensive framework of both classical
and modern test theory. Their book led to rapid developments in psychometrics, a
trend that was further accelerated by an increasing societal demand for accountable
and responsible measurement in education. Until the end of the millennium,
psychometrics was directly or indirectly based on Lord and Novick. With the start
of the new millennium, psychometrics became a broader field. Faster computers
allowed for something we may coin new psychometrics: measurement models that
tap on specific attributes allowing fine-grained cognitive (or clinical) diagnosis,
data-driven models for both measurement and prediction, the use of process data
(e.g., response times) for formative assessment, and advanced computer-intensive
estimation methods.

This book is dedicated to Klaas Sijtsma, a Dutch psychometrician and former
president of the Psychometric Society who had a large contribution to both
traditional psychometrics and new psychometrics. He has firm roots in traditional
psychometrics. His initial research interest in the early 1980s was nonparametric
item response theory, a topic he researched throughout his career. At the basis
for these initial research interests was his observation that nonparametric methods
received much less attention than parametric methods such as Rasch models. In
his view, this lack of interest was unfounded. Being based on general assumptions,
nonparametric methods provide a strong general theoretical framework for research
into the properties of measurement model including parametric models. At the
same time, these nonparametricmethods offer practical tools for constructing sound
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measurement instruments. This interplay between deepening theoretical under-
standing of measurement models, on the on hand, and translating the knowledge
to very practical applications, on the other hand, very much characterizes Sijtsma’s
scientific contributions to the field of psychometrics.

Although he has published mostly on traditional psychometrics, especially on
classical test theory and parametric and nonparametric item response theory, he
also published many papers on new psychometrics. Examples include an early
seminal paper on cognitive diagnosis models (Junker & Sijtsma, 2001); reflections
on psychometrics, including the often-cited paper on Cronbach’s alpha (Sijtsma,
2009); and essays on measurement foundations (Sijtsma, 1998; Sijtsma & Emons,
2013). Like his advisor Ivo Molenaar, Sijtsma stressed that psychometrics is an
auxiliary science to the social and behavioral sciences. Because psychometrics
is complicated, psychometricians should educate and assist social and behavioral
scientists. Sijtsma wrote several scholarly textbooks, he published with social and
behavioral scientists on substantive topics, and he made difficult topics accessible
to social and behavioral scientists through publications in professional journals.

One textbook that had arguably a high impact in the Netherlands is Drenth
and Sijtsma’s (1990/2005) introductory book to test theory. This book is still
used in bachelor psychology programs at many Dutch universities. Equally worth
mentioning are the highly accessible and often-cited book on nonparametric item
response theory (Sijtsma & Molenaar, 2003) and his latest book with Van der
Ark (Sijtsma & Van der Ark, 2021), which provides a comprehensive overview of
psychometrics, including both traditional and new psychometrics. Sijtsma was also
one of the driving forces to come up with a thorough revision of the review system
for evaluating test quality of the Dutch Committee on tests and testing (Evers et al.,
2010). This system is now widely accepted as the authoritative standards for tests
and testing in the Netherlands for more than a decade.

This volume, entitled Essays on contemporary psychometrics, provides an
overview of the state of the art in both traditional psychometrics and new psycho-
metrics. The chapters have been written by psychometricianswho have collaborated
closely with Klaas Sijtsma, and hence the book not only discusses traditional
psychometrics but also topics from new psychometrics. In most chapters, the
influence of Sijtsma’s view on science is visible by the practical stance of many
chapters, without ignoring the theoretical underpinnings, and by the large number of
citations to Sijtsma’s psychometric work. The book is divided into four parts, each
with a number of chapters on a specific theme. The parts are not mutually exclusive
nor exhaustive, and each chapter can be read separately. The parts are summarized
as follows.

Part I. General Perspectives on Psychometrics. In the first part, Heiser discusses
the roots of psychometrics before Francis Galton, and De Boeck and Gore reflect
on two sides of psychometric models: psychometric models as psychological
models and as measurement models. Meijer, Niessen, and Neumann discuss the
underrepresentation of existing knowledge on how test scores can be used in
decision-making. Veldkamp discusses how trustworthy artificial intelligence can



Preface vii

be integrated into the domain of psychometrics. Borsboom presents item response
theory as psychometric networks.

Part II. Factor Analysis and Classical Test Theory. Hessen presents new expres-
sions for the communality of the total score, the communality of an arbitrary item
score, and the proportion of total variance explained under the one-factor model.
Closed form distribution-free estimates are presented as well. Molenaar discusses
two factor analysis approaches to reliability of change scores. Van Ginkel discusses
methods for handling missing data in principal component analysis (PCA). Von
Davier and Clauser show that using non-linear functions for equating and score
transformations leads to consequences that are not commensurable with classical
test theory (CTT). Ackerman, Ma, and Luecht examine how test characteristics
such as test length, dimensionality, and item discrimination affect coefficient (Cron-
bach’s) alpha and omega. Finally, Emons discusses theoretical and computational
aspects of conditional standard errors of measurement.

Part III. Item Response Theory. Marsman, Bechger, and Maris discuss how
to improve the efficiency of two recently published algorithms for sampling
simultaneously from many conditional distributions. Hemker reflects on the use of
weighted or unweighted total scores for modeling and transparent score reporting.
Ligtvoet investigates the inequality restrictions imposed by Mokken’s model of
monotone homogeneity (MH) for binary item response variables. In particular, a
Bayesian test for the observable property of variables being associated is proposed
for the trivariate distributions of all triplets of items. Straat, Kuijpers, Lek, and
Emons explore targeted testing from a teacher perspective.

Part IV. New Psychometrics. Tijmstra and Bolsinova discuss advantages, lim-
itations, and risks of the hierarchical model for response times from a practical
measurement perspective. Ellis develops two methods for CAT based on the mono-
tone homogeneity model. Conijn, Van Ewijk, Chen, and Van der Ark study whether
validity indices can be used to detect and explain discrepancies between scores
provided by multiple informants (e.g., self-reports and teacher reports) within the
context of ADHD assessment. Van der Ark and Smits propose FlexCAT as a general
and flexible computerized adaptive testing approach that is useful when the number
of potential items to fill the item bank with is limited, resulting measurements are
typically multidimensional, and both measurement and prediction are pursued. De
La Torre and Santos discuss the relationship between unidimensional item response
theory and higher-order cognitive diagnostic models. Finally, He, Culpepper, and
Douglas propose an extension of the sparse latent class model (SLCM) for ordinal
measurements, with the purpose of fully exploring the relationships between
attributes and response patterns.

We would like to thank Tasos Psychogyiopoulos for assisting the editors and
checking all references and the reviewers for helping us to ensure the quality of this
book.

Amsterdam, The Netherlands L. Andries van der Ark
Tilburg, The Netherlands Wilco H. M. Emons
Groningen, The Netherlands Rob R. Meijer



viii Preface

References

Drenth, P. J. D., & Sijtsma, K. (2005). Testtheorie: Inleiding in de theorie van de
psychologische test en zijn toepassingen [Test theory: Introduction to the theory of
the psychological test and its applications]. Bohn Stafleu Van Loghum. (Original
work published 1990)

Evers, A., Lucassen, W., Meijer, R., & Sijtsma, K. (2010).COTAN review system
for evaluating test quality. Nederlands Instituut voor Psychologen. https://www.
psynip.nl/wp-content/uploads/2019/05/NIP-Brochure-Cotan-2018-correctie-1.pdf

Galton, F. (1879). Psychometric experiments. Brain, 2(2), 149–162. https://
doi.org/10.1093/brain/2.2.149

Jones, L. V., & Thissen, D. (2006). A history and overview of psychometrics. In
C. R. Rao & S. Sinharay (Eds). Handbook of Statistics: Vol. 26. Psychometrics (pp.
1–27). Elsevier. https://doi.org/10.1016/S0169-7161(06)26001-2

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with
few assumptions, and connections with nonparametric item response theory.
Applied Psychological Measurement, 25(3), 258–272. https://doi.org/10.1177/
01466210122032064

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.
Addison-Wesley.

Psychometric Society. (n.d.). What is psychometrics. https://www.psychometric
society.org/what-psychometrics

Sijtsma, K. (1998). De data maken het model: Over het beperkte belang van
meetniveaus en latente schalen [The data make the model: About the limited
importance of measurement levels and latent scales]. [Inaugural address]. Tiburg
University, The Netherlands.

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of
Cronbach’s alpha. Psychometrika, 74(1), 107–120. https://doi.org/10.1007/s11336-
008-9101-0

Sijtsma, K., & Emons, W. H. M. (2013). Separating models, ideas, and data to
avoid a paradox: Rejoinder to Humphry. Theory & Psychology, 23(6), 786–796.
https://doi.org/10.1177/0959354313503724

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item
response theory. Sage. https://doi.org/10.4135/9781412984676

Sijtsma, K., & Van der Ark, L. A. (2021).Measurement models for psychological
attributes. CRC/Chapman & Hall. https://doi.org/10.1201/9780429112447



2187 721 a 2187 721 a
 

 2382 921 a 2382 921 a
 

 391 1321 a 391 1321
a
 

 1830 1621 a 1830 1621 a
 

 1739 2021 a
1739 2021 a
 

 1562 2721 a 1562 2721 a
 

 -151
3121 a -151 3121 a
 

 618 3321 a 618 3321 a
 

 1005 3521 a 1005 3521 a
 


Contents

Part I General Perspectives on Psychometrics

1 Early Roots of Psychometrics Before Francis Galton . . . . . . . . . . . . . . . . . . 3
Willem J. Heiser

2 The Janus Face of Psychometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Paul De Boeck and L. Robert Gore

3 Psychological and Educational Testing
and Decision-Making: The Lack of Knowledge
Dissemination in Textbooks and Test Guidelines . . . . . . . . . . . . . . . . . . . . . . . 47
Rob R. Meijer, A. Susan M. Niessen, and Marvin Neumann

4 Trustworthy Artificial Intelligence in Psychometrics . . . . . . . . . . . . . . . . . . . 69
Bernard P. Veldkamp

5 Psychological Constructs as Organizing Principles . . . . . . . . . . . . . . . . . . . . . 89
Denny Borsboom

Part II Factor Analysis and Classical Test Theory

6 A New Expression and Interpretation of Coefficient Omega
Under the Congeneric One-Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
David J. Hessen

7 A Factor Analysis Approach to Item Level Change Score
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Dylan Molenaar

8 Handling Missing Data in Principal Component Analysis
Using Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Joost R. van Ginkel

ix



x Contents

9 Quantifying the Bias of Non-linear Equating and Score
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Matthias von Davier and Brian Clauser

10 Examination of Test Characteristics’ Effect on Coefficient α

and Coefficient ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Terry Ackerman, Ye Ma, and Richard Luecht

11 Methods for Estimating Conditional Standard Errors
of Measurement and Some Critical Reflections . . . . . . . . . . . . . . . . . . . . . . . . . 195
Wilco H. M. Emons

Part III Item Response Theory

12 Composition Algorithms for Conditional Distributions . . . . . . . . . . . . . . . . 219
Maarten Marsman, Timo B. Bechger, and Gunter K. J. Maris

13 To a or not to a: On the Use of the Total Score . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Bas T. Hemker

14 A Bayesian Test for the Association of Binary Response
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Rudy Ligtvoet

15 Efficiency and Effectiveness of Teacher-Informed Targeting
Testing from Different Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
J. Hendrik Straat, Renske E. Kuijpers, Kimberley Lek, and Wilco H.
M. Emons

Part IV New Psychometrics

16 The Hierarchical Model for Response Times: Advantages,
Limitations, and Risks of Its Use in Measurement Practice . . . . . . . . . . . 307
Jesper Tijmstra and Maria Bolsinova

17 Computer-Adaptive Testing with Fewer Assumptions . . . . . . . . . . . . . . . . . 327
Jules L. Ellis

18 Validity Indices for Interpreting Informant Discrepancies
in ADHD Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Judith M. Conijn, Mengdi Chen, Hanneke van Ewijk,
and L. Andries van der Ark

19 Computerized Adaptive Testing Without IRT for Flexible
Measurement and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
L. Andries van der Ark and Niels Smits



Contents xi

20 On the Relationship Between Unidimensional Item Response
Theory and Higher-Order Cognitive Diagnosis Models . . . . . . . . . . . . . . . . 389
Jimmy de la Torre and Kevin Carl Santos

21 A Sparse Latent Class Model for Polytomous Attributes in
Cognitive Diagnostic Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Siqi He, Steven Andrew Culpepper, and Jeff Douglas

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451



About the Authors

Terry Ackerman is a distinguished visiting professor at the University of Iowa in
the Department of Psychological and Quantitative Foundations. His main research
interests include applications of multidimensional item response theory, differential
item functioning, and assessing multidimensionality. He works as a consultant to
several educational testing and certification companies and has served as president
of the National Council on Measurement in Education and the Psychometric
Society.

Timo B. Bechger was a senior research scientist with Cito, was a lead research sci-
entist at ACTNext, and is currently senior scientist at TCS. His research spe-
cializes in item response theory and test fairness. Timo co-founded the dex-
ter project which aims to develop and disseminate open-source software for
professional educational measurement and share the ideas behind it.

Maria Bolsinova is an assistant professor in the Department of Methodology and
Statistics at Tilburg University. Her research focuses on item response theory, with
a specific interest in response time modeling, Bayesian item response theory, large-
scale educational assessment, and response style modeling.

Mengdi Chen is a PhD candidate at the Research Institute of Child Development
and Education, University of Amsterdam. Her current research interest lies in the
measurement invariance of instruments assessing teacher-student relationships in
cross-cultural contexts.

Brian Clauser is a distinguished research scientist at the National Board of
Medical Examiners (NBME) and served as vice president of research and director of
the Center for Advanced Assessment at NBME. His research focuses on differential
item functioning, standard setting, generalizability theory, and automated scoring of
simulation and performance assessment.

Judith M. Conijn is a researcher at the Kohnstamm Institute, a knowledge and
research center in the field of education, child rearing, and child welfare in the
Netherlands. Most of her publications concern statistical methods for detecting

xiii



xiv About the Authors

aberrant response patterns in questionnaire data, such as IRT-based person-fit
statistics. Her recent research also focuses on various educational topics.

Steven A. Culpepper is Professor of Statistics at the University of Illinois Urbana-
Champaign. He is editor of the Journal of Educational and Behavioral Statistics.
Professor Culpepper works in latent variable modeling for applications in education,
psychology, and other social sciences. He has worked in item response modeling,
latent class modeling, cognitive diagnosis, and factor analysis and has made
contributions to Bayesian approaches for estimation of complex models.

Paul De Boeck is Professor of Quantitative Psychology at The Ohio State Uni-
versity. His work mainly concerns the meaning and issues of measurement in
psychology (e.g., explanatory measurement, local dependencies, differential item
functioning, and IRTrees).

Jimmy de la Torre is head and professor in the Human Communication, Develop-
ment, and Information Sciences Unit in the Faculty of Education at The University
of Hong Kong. He is also currently a chair professor at the National Taichung
University of Education in Taiwan, and an honorary professor at Universidad
Autonoma de Madrid in Spain. His primary research interests are in the field of
educational and psychological testing and measurement, with a particular emphasis
on item response theory, cognitive diagnosis modeling, and the use of assessment to
inform instruction and learning.

Jeffrey A. Douglas is Professor of Statistics at the University of Illinois Urbana-
Champaign. He is currently president-elect of the Psychometric Society. Professor
Douglas works in latent variable modeling with applications in medicine, clinical
trials, education, and psychology.

Jules L. Ellis is an associate professor in the Behavioural Science Institute,
Faculty of Social Sciences, Radboud University Nijmegen. His research focusses
on nonparametric IRT, testing unidimensionality, multiple testing, and standards of
reliability.

Wilco H. M. Emons is an assistant professor in psychometrics at Tilburg Uni-
versity in the Netherlands. His expertise includes psychometrics, longitudinal
assessments, test design and validation, and multimedia-based testing. His current
research interests focus on individual change assessment and innovative assessment
methods in education and psychology.

L. Robert Gore is an assistant member in the Health Outcomes and Behavior
Department and Department of Biostatistics and Bioinformatics at Moffitt Cancer
Center, where he collaborates to provide methodology and measurement consulta-
tion to researchers in healthcare equity, mHealth, and behavioral aspects of cancer
prevention and care. In his own research, he is interested in the application of
mathematical models of cognition in clinical contexts. In addition, he is experienced
in psychometric analyses of personnel selection tests.



About the Authors xv

Siqi He is a PhD student in the Quantitative Psychology Program at the University
of Illinois Urbana-Champaign. She is interested in using latent variable modeling,
machine learning methods to solve practical problems in educational, and psycho-
logical measurement.

Bas T. Hemker started in 1996 as a senior research scientist at the Research and
Innovation Department of Cito (National Institute for Educational Measurement)
in the Netherlands and has been working there ever since. His expertise includes
psychometrics, large-scale assessment, educational measurement, test development,
and evaluation of test quality. As an advisor to ministries of education on four
different continents, he has contributed to the design of national assessment
frameworks in several countries.

Willem J. Heiser is Professor Emeritus of Data Theory, Psychometrics, and
Statistics at Leiden University (the Netherlands) and former editor-in-chief of
Psychometrika (1995–1999) and the journal of classification (2002–2015). His
current research interests are multidimensional scaling of networks, analysis and
prediction of rankings, and the history of psychometrics, statistics, and psychology.

David J. Hessen is an assistant professor in the Methods and Statistics Department
in the Faculty of Social Sciences at Utrecht University in the Netherlands. His
research interests are in psychometrics in general and latent variable modelling in
particular.

Renske E. Kuijpers has been working as a scientific researcher and psychometri-
cian in the Department of Research & Innovation at the Dutch National Institute
of Educational Measurement (Cito) since 2019. She completed her PhD at Tilburg
University on the use of marginal models in a measurement context. At Cito, she is
involved in several operational and research projects, including the norming of the
Dutch central exams for secondary education, the norming of student monitoring
systems for primary education, and several Dutch national surveys of student
achievements.

Kimberley Lek is a scientific researcher in the Department of Research &
Innovation at the Dutch National Institute of Educational Measurement (Cito) since
2019. She completed her PhD at Utrecht University on a study into the transitions
of students from primary to secondary education and the role teachers’ advice and
assessments have in this transition. Currently, she participates in several projects on
innovative assessment methods, with a focus on motivational aspects in assessments
and accessible score reporting. Her research is very much driven by her motivation
to expose inequalities in educationwhere necessary and increase equal opportunities
where possible.

Rudy Ligtvoet is a postdoctoral researcher at the Institute of Empirical School
Research and the Institute of Sociology & Social Psychology at the University
of Cologne, Germany. His research focusses on psychometrics and the Bayesian
analyses of discrete data.



xvi About the Authors

Richard Luecht is Professor of Educational Research Methodology at the
UNC-Greensboro, where he teaches graduate courses in applied statistics and
advanced measurement. His research includes technology integration in assess-
ment, advanced psychometric modeling and estimation, and the application of
assessment engineering (AE). He has designed numerous algorithms and software
programs for automated test assembly and devised a computerized adaptive multi-
stage testing framework used by several large-scale testing programs.

Ye Ma is a psychometrician/research scientist at Amazon Web Services, Training
and Certification Department. Her main research interests include statistical models,
such as item response theory, and multidimension item response theory and its
applications under psychometric settings, such as computerized adaptive testing,
test reliability, and differential item functioning. She also studies the application of
machine learning techniques with licensure/certification exams using various data
types.

Gunter K. J. Maris was a full professor of psychological methods at the Uni-
versity of Amsterdam, a principal research scientist with Cito, senior director of
advanced psychometrics at ACTNext, and is currently senior scientist at TCS. His
research focuses on when and why learning does, or does not, happen, and when
education does, or does not, work. Gunter has contributed to the founding of network
psychometrics as an independent field of research, and to the advancement of online
real-time rating systems for educational measurement.

Maarten Marsman is an assistant professor in the Psychological Methods group
of the University of Amsterdam. His main interests are computational statistics,
Bayesian statistics, and network psychometrics.

Rob R. Meijer is a full professor in the Department of Psychometrics and
Statistics, Faculty of Behavioral and Social Sciences, University of Groningen,
the Netherlands. His research focuses on applied psychometrics, educational and
personnel selection, and decision-making through tests.

Dylan Molenaar is an assistant professor at the University of Amsterdam. His
research interests include psychometrics in general, and psychological measure-
ment, test theory, factor analysis, and item response theory in particular.

Marvin Neumann is a PhD candidate in the Department of Psychometrics and
Statistics, Faculty of Behavioral and Social Sciences, University of Groningen,
the Netherlands. His research focuses on personnel and educational selection,
mechanical prediction, and the scientist-practitioner gap in assessment and selection

A. Susan M. Niessen is an assistant professor in the Department of Psychometrics
and Statistics, Faculty of Behavioral and Social Sciences, University of Groningen,
the Netherlands. She has published in the areas of personnel and educational
selection, test-use and decision-making, predictive validity, applicant perceptions,
and test bias.



About the Authors xvii

Kevin Carl Santos is an associate professor in the Educational Research and
Evaluation Area in the College of Education at the University of the Philippines-
Diliman. He is also a senior research fellow at the Assessment, Curriculum, and
Technology Research Center at the same university and an honorary fellow at
the University of Melbourne Graduate School of Education. His research interests
include cognitive diagnosismodels, item response theory, and analysis of large-scale
assessment data.

Niels Smits is an associate professor at the Research Institute of Child Devel-
opment and Education, University of Amsterdam, the Netherlands. His research
focuses on psychological testing and methods for short assessments, and he is also
interested in applied statistics, machine learning, and learning analytics.

J. Hendrik Straat is a senior psychometrician in the Department of Research &
Innovation at the Dutch National Institute of Educational Measurement (Cito). He
completed his PhD at Tilburg University, for which he studied item-selection meth-
ods for constructing Mokken scales. Throughout his career at Cito, he was involved
as psychometrician in several assessment programs including the national central
exams and the end-of-primary school test. Currently, he is the lead psychometrician
for the national exams and participates in various studies on targeted testing, for
example, within the context of acquiring Dutch language proficiency in vocational
education.

Jesper Tijmstra is an assistant professor in the department of Methodology and
Statistics at Tilburg University. His research focuses on item response theory, with
a specific interest in response time modeling, response style modeling, evaluating
model assumptions, and nonparametric item response theory.

L. Andries van der Ark is Professor of Psychometrics at the University of Ams-
terdam and director of the Graduate School of Child Development and Education
at the University of Amsterdam. His main research interest is the development of
statistical models for test and questionnaire data, especially (nonparametric) IRT
models, latent class models, and marginal models. He has also developed methods
for assessing test-score reliability, assessing interrater reliability, constructing test
norms, and handling missing data.

Hanneke van Ewijk is a senior researcher and behavioral scientist. Her research
focuses on children with developmental difficulties such as ADHD, neuropsycho-
logical functioning, and brain development.

Joost R. van Ginkel is Assistant Professor of Methodology and Statistics in the
Department of Psychology at Leiden University. His major interests include missing
data, multiple imputation, and statistics in general. His research mainly concerns
the development of new statistical procedures within the framework of multiple
imputation.

Matthias von Davier is the J. Donald Monan, S.J. Professor in Education at
the Lynch School of Education at Boston College (BC) and serves as TIMSS &



xviii About the Authors

PIRLS International Study Center’s executive director. His research areas include
item response theory, invariance and linking, diagnostic classification and mixture
models, machine and deep learning, computational statistics, model fit, and method-
ologies used in large scale educational surveys.

Bernard P. Veldkamp is Professor of Research Methodology and Data Analytics
at the University of Twente, The Netherlands. He is head of the Learning, Data
and Technology Department in the Faculty of Behavioral Management and Social
Sciences. His expertise includes psychometrics, educational and psychological
measurement, computer-based assessment, computerized adaptive testing, and the
use of artificial intelligence in the social sciences.



Part I
General Perspectives on Psychometrics



Chapter 1
Early Roots of Psychometrics Before
Francis Galton

Willem J. Heiser

Abstract Although one of the flagships of psychometrics, factor analysis, could not
have been invented without Francis Galton’s (1822–1911) groundbreaking concept
of correlation, some other psychometric concepts had been explored already before
his time. Christian Thomasius (1655−1728) pioneered personality assessment using
numerical rating scales and introduced a first notion of psychometric reliability.
It was Christian Wolff (1679−1754) who coined the term “psychometria” and
who identified the basic difficulty of finding a suitable unit for measurement of
psychological variables. Halfway the nineteenth century, Gustav Fechner (1801–
1887) not only founded psychophysics but also introduced before Galton the
statistical approach to the analysis of psychological data—which is so typical
for psychometrics in general. He also developed some pathbreaking experimental
designs for data collection, as well as the notions of a psychological scale and the
psychometric function.

1.1 Introduction

When the first laboratory worldwide for both research and teaching of experimental
psychology was founded in Leipzig (1879) by Wilhelm Wundt (1832–1920), it
immediately attracted many students, not only from Germany and neighboring
countries in Europe but also from the United States. The first of them, James
McKeen Cattell (1860–1944), while discussing the topic of his dissertation with
Wundt, experienced a bit of a culture shock:
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As a large part of the work of the laboratory was then on reaction-time experiments, it was
not surprising that such a subject fell to my lot, and it was fortunate, for I had already in
America begun experimental work on the time of sensori-motor processes. Wundt, however,
was mainly interested in experiment for the aid it gave to introspection, and the subject
assigned to me was to react as soon as I saw a light and in a second series to react as soon
as I recognized its color, with a view to analyzing the factors of apperception. This I could
not do, and in my second interview with Wundt I presented an outline of the work I wanted
to undertake, which was the objective measurement of the time of reactions with special
reference to individual differences. Wundt said that it was ‘ganz Amerikanisch’; that only
psychologists could be the subjects in psychological experiments. (Cattell, 1921, p. 156)

Despite Wundt’s negative reaction, Cattell was allowed to start his project as he
conceived it, with his own apparatus and in his own room, and Wundt prepared
him graciously for his doctorate examination. His dissertation work in Leipzig was
published as Cattell (1886).

Meanwhile in England, Francis Galton (1822–1911) had founded an anthropo-
metric laboratory, at the occasion of the International Health Exhibition in London
(1884–1885), where he measured and recorded “the chief physical characteristics
of man,” including “keenness of sight, colour sense and hearing” (Galton, 1885).
In total, he was able to measure 9337 ordinary persons on 17 variables. Attracted
by Galton’s interest in empirically studying individual differences between people,
Cattell went to London soon after leaving Leipzig and joined Galton in his research
projects. That joint effort resulted in the paper Mental tests and measurement, of
which Cattell wrote the main part, opening with the programmatic statement:

Psychology cannot attain the certainty and exactness of the physical sciences, unless it rests
on a foundation of experiment and measurement. A step in this direction could be made
by applying a series of mental tests and measurements to a large number of individuals.
The results would be of considerable scientific value in discovering the constancy of mental
processes, their interdependence, and their variation under different circumstances. (Cattell
& Galton, 1890, p. 373)

Cattell continues to describe a long series of 60 tasks concerning sight, hearing,
taste and smell, touch and temperature, sense of effort and movement, mental time,
and memory. These were the type of tasks used by Fechner, Wundt, and Helmholz,
the pioneers of experimental psychology. However, Cattell broke with their habit
of using only a few psychologists as subjects and with the high priority these
German pioneers gave to finding general laws. Wundt’s low regard of individual
differences continued to dominate experimental psychology for a long time. Only
quite recently, we have seen several attempts to bring together classical tasks used
by experimental psychologists with a serious look at individual differences. For
example, Schmiedek et al. (2007) considered individual differences in reaction time
and their relations to working memory capacity (WMC) and intelligence, Wilhelm
et al. (2010) studied individual differences in face recognition, and Wilhelm et al.
(2013) used confirmatory factor analysis to obtain a broader perspective of WMC
as an individual difference construct. After more than a century of delay, these
researchers are effectuating the program Cattell, Galton, and others originally had
in mind.
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Returning to the above quote from Cattell and Galton (1890), key terms are
constancy, interdependence, and variation, which shows the influence of Francis
Galton’s statistical ideas. It is also remarkable that the type of tasks listed was far
removed from what one might suppose mental testing is primarily about: ability,
personality, or character. The paper has an appendix with comments by Galton,
where he pays attention to exactly this aspect:

One of the most important aspects of measurement is hardly if at all alluded to here and
should be emphasized. It is to obtain a general knowledge of the capacities of a man [ . . . ]
In order to ascertain the best points for the purpose, the sets of measures should be compared
with an independent estimate of the men’s powers [ . . . ]. The sort of estimate I have in view
and which I would suggest [ . . . ] is something of this kind,—‘mobile, eager, energetic;
well-shaped; successful at games requiring good eye and hand; sensitive; good at music
and drawing. (Cattell & Galton, 1890, p. 380)

We also see a quest here for establishing the validity of a mental test in being able
to identify important characteristics of a gentleman. However, it must be noted that
these were only plans; Cattell and Galton never actually collected and analyzed these
type of personality data! By contrast, there were certainly earlier attempts of mental
testing of personality, and one of them (in the seventeenth century) that attempted
to assess reliability will be described in Sect. 1.2 of this paper, which discusses
Christian Thomasius.

A much earlier example is ability testing in ancient Greece, which represented the
different facets of the ideal Greek citizen. These tests were primarily of a vocational
nature, but also included athletic abilities (Doyle, 1974). Even still earlier, in ancient
China:

The great Chinese philosopher and educator Confucius (551–479 B.C.) first classified
people into three categories on the basis of intelligence: (1) people of ‘great wisdom’; (2)
people of ‘average intelligence’; (3) people of ‘little intelligence’. Confucius also made
personality assessments of his students. (Zhang, 1988, p. 101)

Moreover, it is well-known that ancient China had a Civil Service Examination
system, even though there is uncertainty about exactly how old it is (Bowman,
1989). In any event, in these earlier examples of mental testing, we do not find
any notion of reliability or some form of advanced statistical analysis of the test
results, which are basic elements of psychometrics. In the Dutch literature, Kouwer
(1963) has taken perhaps the broadest possible historical view on the development
of systems to characterize personality, but again without paying attention to actual
measurement or quantification. However, for educational testing we do know when
serious quantification started. Stigler (1992) and Mellenbergh (2011, p. 18) have
identified that the first psychometric papers on the analysis of examination scores
were published by Edgeworth (1888, 1890), in which he discussed the scaling of
exams by using the normal distribution, correction for examiners bias, reliability of
a single examiner, and more.

It is often stated that the modern form of intelligence testing started with the
psychologist Alfred Binet and psychiatrist Theodore Simon in the period 1895–
1910 (Boake, 2002), which was also the period that modern personality research
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started. As a particularly interesting example of the latter, Heymans and Wiersma
(1906) collected large-scale questionnaire data on personality characteristics—
such as introversion-extraversion and emotionality—in 437 families, including 3
generations of each family, summarized in 90 4-way contingency tables (cf. Heiser,
2008). But it should be noted, as argued by Mülberger (2017), that the emergence of
mental testing in this period was more widespread and gradual than just the Binet-
Simon breakthrough (as is also evident from Spearman’s (1904) extensive summary
of previous correlational studies of mental test data).

There is no doubt that Galton’s major contributions to psychometrics have
been, as pointed out by Drenth and Sijtsma (1990, pp. 4–5), his keen interest in
individual differences, the need to work with standardized research designs, and his
conceptualization of regression and correlation. How Galton developed the concept
of correlation has been nicely described by Stigler (2010), while Walker (1929,
pp. 92–102) explained why earlier writers in the nineteenth century hovered on the
verge of discovery of correlation, but did not actually uncover it.

However, to regard Galton as “the founding father of psychometrics” (e.g., Furr
& Bacharach, 2008, p. 9) is perhaps one step too far, for there are earlier roots of
psychometrics, at least if we take a broader view of the field and do not restrict it
to mental testing. Such a broader view was sketched by Jones and Thissen (2007),
and the present paper tries to add three historical lines to their paper. Apart from the
already mentioned early attempt to assess reliability, we will also discuss how the
name and perspective of a discipline of psychometrics was conceived by Christian
Wolff in the eighteenth century. The third and most important early root is the
groundwork given by Gustav Fechner’s psychophysics1.

1.2 An Early Notion of Reliability: Thomasius’ Numerical
Rating System of Personality

Rating has been a method of assessing the degree of some natural characteristic by a
human observer since ancient times (e.g., temperature, cf. Wright, 2016). However,
according to McReynolds and Ludwig (1984, 1987) and Ramul (1963, p. 657), it
was the German Enlightenment philosopher and jurist Christian Thomasius (1655–
1728) who devised and applied the first quantitative rating scales for personality
attributes of individuals. His purpose was to characterize each individual on 4 scales
with 12 categories ranging from 5 to 60 in steps of 5 so that a personality profile

1 As this chapter is part of a Festschrift in honor of Klaas Sijtsma, someone with a keen interest
in the evolution of psychometrics (e.g., Van der Heijden and Sijtsma, 1996; Sijtsma and Junker,
2006; Sijtsma, 2016), who defends a position of psychological measurement between physics and
statistics (Sijtsma, 2012), it is my hope and expectation that he welcomes these new trace lines in
our history.
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could be formed, and he conceived a concept of interrater reliability by asking
several observers to rate the same person.

Thomasius’ rating scales followed from his overall theory of personality, which
was announced in a first programmatic publication entitled New Discovery of a Solid
Science, Most Necessary for the Community for Discerning the Secrets of the Heart
of Other Men from Daily Conversation, Even Against Their Will [English translation
of Thomasius (1692a) by McReynolds and Ludwig (1984)]. The motivation for
formulating this empirical approach using practical field work, interviews, and
informal discussions with the common citizen was to arrive at the kind of knowledge
a politician needs for effective policy making. Thomasius was convinced that a
science of policy should not be legalistic, let alone philosophical. He started an
autonomous discipline addressing what makes people tick (Barnard, 1971).

Further details about his rating scale system were provided by a second pub-
lication in the same year, entitled Further Elucidation by Different Examples of
the Recent Proposal for a New Science for Discerning the Nature of Other Men’s
Minds. This English translation of the German title of Thomasius (1692b) is again
by McReynolds and Ludwig (1984), and they also provided a translated version of
the five basic postulates of his personality theory:

I. There are four major inclinations from which all other inclinations spring. These are:

1. Rational love [Vernünftige Liebe]
2. Sensuousness [Wollust]
3. Ambition [Ehrgeiz]
4. Acquisitiveness [Geldgeiz]

II. All human beings are characterized by these inclinations and all possess some part
of each of them.

III. At all times one of the four inclinations is dominant in a person.
IV. The difference among persons in human inclinations must be recognized not only from

the dominant inclination but also from the proportion of the other three.
V. One can appropriately assign 60 points to the strongest inclination and 5 points to the

weakest (or at times more) and then judge the remaining two in accordance with the
difference between the 60 points and the value of the lowest inclination. (Thomasius,
1692b, p. 239)

The four inclinations indicated in postulate I are the basis of the four rating scales
that are to be used to rate any individual on the basis of conversations with the rater
(a trained observer). According to McReynolds and Ludwig (1984), “All kinds of
data went into the rating determinations—educational, occupational, and familial
information about the subject; reports of his daily habits; interpersonal styles;
behaviors that the individual found pleasurable; and so on.” They also comment
that Thomasius’ description of Rational love comes close to what we would now
call Altruism, that Sensuousness is concerned with Hedonic tone (seeking pleasure
and avoiding pain), that Ambition must be understood as Social ambition, and that
Acquisitiveness not only relates to a Passion for money but also to Stinginess and
Envy.

Regarding the numerical rating categories on the four attributes, it is noteworthy
that they are seen as proportions (postulate II) and kept within the range 5–60
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(postulate V). It is plausible that this particular choice of values for the rating
categories was inspired by the usual scale markers in time measurement (60 min
in an hour, 12 months in a year). Furthermore, only the dominant attribute gets
the maximal score of 60 (postulate III), and the other attributes need to be seen
in proportion to the dominant one. Due to the aim to compare patterns of attribute
proportions between individuals (postulate IV), the whole approach seems to fit into
what two and a half centuries later has been called Q-methodology (Stephenson,
1936, 1953; Cattell, 1952)—a small, but basic part of psychometrics.

Thomasius included a section in Further Elucidation called “About the Test of
Certainty of This Science,” beginning as follows: “Just as in mathematics, where
there is no better way to check to see if one has calculated correctly than to repeat the
process two or three times in order to find out if the sum is the same, I have thought
that in the discovery of other truths, regardless of what the discipline it may be, this
method might be the best way of checking” (quoted in McReynolds and Ludwig
(1984)). He then gives an example of a single individual who was rated by himself
and by two students who had been trained well in the method of scoring. It turned out
that the three patterns were very close, a sign of considerable interrater reliability.
Even without recourse to a numerical reliability coefficient, the expression of the
patterns in quantitative terms obviously facilitated comparisons enormously. Note
that this form of interrater reliability is different from the more usual form at present,
in which for each attribute separately the ratings of different raters across individuals
would be compared.

What was the impact of Thomasius’ quantitative methodology? The short answer
is: by the end of the eighteenth century, he was not taken seriously anymore. Accord-
ing to Barnard (1971), “To his German contemporaries and near-contemporaries
Thomasius was something of an idol. Nineteenth-century intellectuals—Hegelians
in particular—generally dismissed him as an unsystematic, facile eclectic, and only
the present century has witnessed a moderate revival of interest in him, though
scarcely beyond the confines of Germany.” However, there does seem to be a
renewed interest in the Anglo-Saxon world for his “desacralization of philosophy”
(Hunter, 2000). Moreover, it is the irony of history that after Thomasius was for-
gotten, Q-methodology is thriving presently in political science and communication
science (cf. Brown, 1991, 1993; McKeown & Thomas, 2013).

1.3 Qualities of the Soul Can Be Measured: Wolff’s Proposal
of Psychometria

Christian Wolff (1679–1754) was “arguably the most eminent German philosopher
between Leibniz and Kant, and an important figure in the development of thought
about the state and its tasks as well as about the national economy” (Drechsler,
1997). But he was also vitally important for the Sciences of the Soul (Vidal, 2011)
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and in particular laid the groundwork for their methodology, which he coined
Psychometria (Ramul, 1960; Feuerhahn, 2004)).

In the beginning of his career, he had chosen to specialize in mathematics,
obtaining his doctorate in 1703 at the University of Leipzig, where he was soon
invited to become a staff member of the first scholarly journal in Germany, the Acta
Eruditorium Lipsiensium. Apart from mathematics, he soon expanded into other
areas within the Faculty of Arts, then including all fields of learning except Divinity,
Law, and Medicine (Drechsler, 1997).

Due to the Great Northern War between an alliance of Denmark-Norway, Saxony,
and Russia against the Swedish empire, Wolff decided to leave Leipzig in 1706,
and he accepted an offer of the University of Halle, where he became Professor
of Mathematics, upon recommendation of no less than Gottfried Wilhelm Leibniz
(1646–1716). Drechsler relates:

Wolff greatly enjoyed teaching [ . . . ] and also began lecturing in what we would today
call Philosophy. [ . . . ] He was also by then a prolific and celebrated author, and was thus
unanimously elected as Fellow of the Royal Society in London. [ . . . ] Embarrassed by
the fact that a Prussian subject had thus been honored abroad but not at home, the Berlin
Academy subsequently made him a member as well. [ . . . ]

In 1723, however, Wolff had to flee from Halle in one of the most celebrated dramas
in the academy in the eighteenth century. The incident which caused the drama was his
farewell address as Prorector in 1721. [ . . . ] In it, Wolff described the Chinese philosophy
and ethics, namely Confucianism, as rather admirable and really as largely in agreement
with his own moral principles. Indeed, his lecture submitted proof that one could find moral
truths through the powers of reason of natural Man without the help of divine revelation.
[ . . . ] If one follows Wolff’s argument, there remains little place for Christian mission; to the
contrary, it seems that one could actually learn a few things from the Chinese. (Drechsler,
1997, p. 112)

It became a scandal of immense proportions, where opinion leaders adhering to
a strict form of Protestantism forced the King of Prussia to accuse him of gross
impiety and to order him to leave the city of Halle and all other Prussian lands
immediately. Fortunately, Wolff could use his influential network to escape and
obtained the Papin’s chair of Mathematics and Physics, as well as the chair of
Philosophy at the University of Marburg, just a week later.

It was in Marburg that Wolff published major works about philosophy and
psychology, including psychometria. Concerning philosophy, “He reemphasized
Leibniz’s conviction that mathematics has a role in philosophy. As he wrote
in his Discursus praeliminaris de philosophia in genere (Wolff, 1963, original
work published in 1728), philosophy must use mathematical knowledge. For in
philosophy we wish to have complete certitude [ . . . ] [and] in many cases, complete
certitude depends on mathematical knowledge and demonstrations” (Leary, 1980,
p. 155).

Concerning psychology, Wolff’s point of departure was Leibniz’ doctrine that
Intensity, Continuity, Variation, and Covariation apply equally well in the material
as in the mental realm. What now follows is a summary of Leary (1980, pp. 154–
155). With respect to Intensity, the concept of force in physics corresponds to the
concept of clarity of ideas in psychology. The principle of Continuity states that all
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differences in nature are different in degree rather than in kind, whether we consider
physical motion or mental consciousness. Variation refers to the principle that every
material object and every mental idea undergoes continuous change in the degree of
its intensity. Material objects change in momentum, and mental concepts change in
amount of consciousness. Covariation refers to the principle that change in one part
of the system leads to a (reverse) change in some other part of it. For the material
world, it implies that an increasing force in one body corresponds to a decreasing
force in another, while for the mental world it implies that an increase of clarity in
one idea corresponds to a decrease of clarity in another.

In his important work Psychologia Empirica, methodo scientifica pertractata
Wolff (1962a, original work published in 1732), explained that

The art of discovery (ars inveniendi), which involves deducing unknown truths from already
known ones, can proceed either a priori or a posteriori. In the latter case, which is
the only one of interest to empirical psychology, findings are based on observation or
experimentation (ex experimentis). Both are forms of ‘experience’ (experientia), that is,
of knowledge acquired by paying attention to our perceptions. Observation involves no
voluntary alteration of nature, experimentation (experimentum), by contrast, requires it.
Watching the sky cloud over is an observation, whereas pumping air from a pneumatic
machine is experimentation. The ars observandi used by physicists, doctors, and above
all astronomers, is the proper method of empirical psychology. Ars experimendi, on the
other hand, is used only by physicists—even if, Wolff suggested, it could be applied to the
whole of philosophy and even to natural theology. (Vidal, 2011, pp. 128–129; footnotes and
references to the source omitted here)

In the same work, Wolff also formulated his mathematical law about the magnitudes
of pleasure and displeasure: “Pleasure is proportional to the perfections of which
we are conscious, as well as to the certainty of our judgments concerning these
perfections.” In a footnote he added: “These theorems belong to psychometry, which
conveys a mathematical knowledge of the human mind and continues to remain
a desideratum. It should teach us how to measure the magnitudes of perfection
and imperfection and also the certainty of a judgment, and insofar determine
[both measures]” (Ramul, 1960, p. 256). As recently noted by Mei (2021, p. 91),
Wolff’s psychometria is “a form of methodological mediation that implies the
ability to measure the effects of the soul rather than its substance. In other words,
psychometria allows us to take into scientific consideration the possibility of a first
form of the naturalization or mathematization of the mind.”

More specifically, in his Philosophia prima, sive Ontologia, methodo scientifica
pertractata, qua omnis cognitionis humanae principia continentur, Wolff (1962b,
original work published in 1736) gave a number of examples of how psychometrics
could proceed to measure the qualities of the soul. What now follows is a summary
of Mei (2021, pp. 91–96), who also gives source references. As a preliminary, Wolff
states that each quality is measurable (and calls it a “common prejudice” that not
all qualities are measurable). For instance, density of fluids is a quality and can
be measured with an aerometer, temperature can be measured with a thermometer,
and the gravity of air can be measured with a barometer. Moreover, qualities have
a degree, and therefore we have the possibility to establish the size of the degree,
which he regards as an imaginary notion (recall Leibniz’s principle of the continuity
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of nature). He mentions degree of speed and the notion of substance as other
examples of imaginary notions. Wolff mentions the following three possibilities for
psychometric measurement.

1. Measuring duration and clearness of psychic phenomena.

Thoughts are not immediate and some time is required to allow human thought
to proceed. The term time refers to continuous processes and duration to the
simultaneous existence of several successive things. Time can be represented
through the imaginary notion of a straight line consisting of a continuous series
of points, so that there is an analogy between time and number. Furthermore,
perceptions can be partial or composite. If ideas belonging to a visible object
and its corresponding word become clearer over time, it is because the movement
of the material ideas is faster. A composite perception consists of several partial
perceptions, and if the partial perceptions become clearer, then the corresponding
composite ones are perceived distinctly. The greater the number of the particular,
clear perceptions, the greater the degree of the distinctiveness of the subsequent
composite perception. So it is duration and/or the number of required perceptions
that allows measurement of psychic phenomena.

2. Measuring the intensity of psychic phenomena: Memory and the imagination.

According to Wolff, if something is distinctly perceived, it is also easier to retain
in memory. Therefore, the quality of memory admits different degrees that may
vary from individual to individual. We can identify this degree of quality by looking
at the time spent holding on to an idea in the mind or to the number of acts by
which the reproduced ideas are delivered to memory or with which they are held
in memory. Therefore, people with a “great” memory can reproduce the ideas of
many things, like those who can remember the whole Bible and can quote each part
of it in the right order or those with a “long” memory who can remember a long
series of things or events. Imagination also has different degrees, to the extent that
it reproduces the ideas of many things, while memory recognizes ideas reproduced.
There are individual differences in the quality of the soul, due to a possible diversity
of nerve fibers. Body and soul are closely connected and interdependent, which
implies that psychometria enables measurement of the effects of the soul, instead of
measuring the soul as substance.

3. Measuring degrees of attention and individual differences.

A major pillar of Wolff’s psychometria is that degrees are the “quantities of
qualities.” Also, every time we talk about degrees, we do not refer to objects,
individuals, or activities, but to relations between them. For example, we say that
this line is three or five times as thick as another one. Likewise, for intellectual
qualities we can say that one person’s ability is larger than someone else’s. Degrees
of attention can be greater or smaller depending on (a) how much the sense organs
are involved in perception (which can be measured by their arousal), (b) how long
mental content is preserved or extinguished, (c) how many different things a person
can pay attention to simultaneously, (d) the selectivity with which a person pays
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attention to some objects but not others, and finally (e) whether someone typically
pays attention to actual objects or to imaginary objects. These examples show that
levels of attention and individual qualities can be measured by counting relational
data.

What happened to Wolff’s program of empirical psychology and psychometria?
First and foremost, he did not collect any data himself to see how his methodological
ideas would work, and neither did his contemporaries. But there were several
authors in the eighteenth century who also dealt theoretically with the question
of mental measurement (for an overview, see Ramul, 1960 and Vidal, 2011). One
of them was Gottlieb Friedrich Hagen (1710–1769), a philosophy teacher at the
Bayreuth gymnasium, who was a follower of Wolff and had a position as Adjunct
Professor in the faculty of philosophy at Halle in the period 1731–1737. Like Wolff,
he wanted his work to have the universal applicability of mathematics while also
being socially useful. As Vidal notes:

He imagined psychological experiments [ . . . ] that would alter the soul, for example,
by scaring people and then observing their reactions. Such experiments could contribute
significantly to self-knowledge [ . . . ]. Hagen also conceived a dynametria to measure
the faculties (dunamis) of the soul, again within the framework of a sort of quantitative
casuistry. He argued that, like the mechanical faculties of the body, the representative
faculties of the soul are finite in number; since they vary considerably from individual to
individual, they may be compared quantitatively. (Vidal, 2011, p. 130)

Ramul (1960) concluded his pioneering essay by noting that although measure-
ment of mental phenomena attracted the attention of several eighteenth-century
scholars, much of what the individual authors had to say were their personal “ideas”
with little continuity in their development, except for some of Wolff’s students.
No one carried out any actual measurements. By contrast, he says, “by far the
larger part of the psychological measurements known to us from that time [ . . . ]
have been carried out not by psychologists (or philosophers) but by naturalists
[who studied such elementary phenomena as visual acuity, the size of the blind
spot, and the duration of visual afterimages]. And thus the program of [ . . . ]
psychometry remained wholly on paper in the eighteenth century” (Ramul, 1960,
p. 264). Although Wolff’s psychometria did influence Immanuel Kant (1724–1804)
and Johann Friedrich Herbart (1776–1841) on a conceptual level (Leary, 1980;
Sturm, 2006), the definite start of psychometrics had to wait until the second half of
the nineteenth century.

1.4 Birth of Experimental Design and Psychological Scaling
Methodology: Fechner’s Psychophysical Paradigm

Psychophysics is the brainchild of Gustav Theodor Fechner (1801–1889), physicist
and philosopher with important contributions to psychology, psychometrics, and
statistics. Born in Gross Särchen (a small village in the German region of Saxony)
as the son of a clergyman, he started studying medicine in 1817 at the University of
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Leipzig and earned a baccalaureate in 1822. But he had a lot of other interests: “at
about the same time he began writing a series of sometimes mystical philosophical
pieces on the identity of mind and matter, a practice that was to last throughout the
rest of his life” (Stigler, 1986, p. 242). He did not finish medicine, however, and got
more interested in physics. To earn some money, he began translating the textbook of
Jean-Baptiste Biot (1774–1862) on experimental physics from French into German
and started lecturing in 1824. Then he published a paper on the galvanic battery
(Fechner, 1831) that was inspired by the pathbreaking experimental work of Georg
Simon Ohm (1787–1854) on the laws of electricity published in 1827. It made his
reputation as a physicist, and he was elected as extraordinary professor of physics
at Leipzig in 1831, and in 1834 he was promoted to full professor of physics at the
same university.

Stigler (1986) has emphasized the lasting influence of Ohm’s work on the young
Fechner, because his 1831 paper already:

bore the hallmark of Fechner’s later work. Even though it made no use of probability in
its analysis, it was an extensive, painstakingly-detailed account of a series of multifactor
experiments. Everything that could be varied was varied; everything that could be measured
was measured; everything that could be recorded was recorded. And in all this mass of detail
(the record of the experimental results alone covers about 200 pages) he did not lose sight
of overall objectives. (Stigler, 1986, p. 243)

Several biographies of Fechner have associated his turn to psychophysics to a period
of illness and personal crisis in his early forties after he had ruined his eyesight by
doing experiments in subjective color perception, looking often at the sun through
colored glass. He recovered when he entered his garden not wearing the mask that
covered his eyes for many years. Overwhelmed by how beautiful everything looked,
especially the flowers, it seemed to him “like a glimpse beyond the boundary of
human experience” (the last quote is from Fechner’s autobiographical notes as cited
in Murray, 2021, pp. 76–79). But Stigler is not impressed:

As appealing as such stories are as devices for raising the origin of scientific ideas to the
level of heroic myth, they do not seem to be essential to un understanding of Fechner’s
intellectual development. The urge to experiment, the interest in physics and both mind
and body, and an ambition to influence human thought—all the essential ingredients
were already in place in the 1820s. The Fechner who by 1855 had begun the extensive
experimentation that led to his Elemente der Psychophysik was essentially the same Fechner
who had devoted two full years to the study of electrical current in 1829–1831. (Stigler,
1986, p. 243)

For additional intellectual influences of earlier scientists on Fechner, these go back
“nearly a hundred years to the measurement of sensitivity and of the discriminatory
capacity of the senses as accomplished by physiologists and other natural philoso-
phers” (Boring, 1961). At this point, we cannot elaborate on that story because of
our focus on psychometrics, but we have to give a brief introduction to Fechner’s
Law and how to check it experimentally.

In the next summary, we use Fechner’s notation, as given in the short excerpt
from the 1860 Elemente der Psychophysik reproduced in Miller (1964, ch. 4). It
is well-known that Weber’s law states that the sensation difference between two
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stimuli remains constant when the relative stimulus difference, or the increase in
one stimulus, remains constant. Let the stimulus which is increased be called β

and the small increase dβ, where the letter d is to be considered simply as a sign
that dβ is a small increment of β. The relative stimulus increase therefore is dβ/β.
Choosing d so that two sensations are “just noticeably different” (jnd), Fechner
took the jnd as the unit of sensation, which could be counted to form magnitudes of
sensation. Let the sensation that is dependent upon the stimulus be called γ and
the small increment of sensation be dγ . Now, Weber’s law is usually stated as
dβ/β = constant. By invoking the assumption that the change in sensation dγ is
equal for all jnds, Fechner could transform Weber’s law into

dγ = κ
dβ

β
, (fundamental formula)

where κ is a constant dependent on the units for γ and β. Fechner’s next step was
to consider the fundamental formula as a differential equation and integrate it. The
result is

γ = κ log
β

b
. (measurement formula)

Here b is the threshold value of the stimulus β, a value at which the stimulus is no
longer detectable, called the stimulus limen L or RL (from the German Reiz Limen),
corresponding to γ = 0. The scale of γ is then the number of jnds that a sensation is
above zero. Finally, Fechner made one more step by regarding b as the unit for the
measurement scale of the stimulus β, so that the measurement formula simplifies to
what he called the metric formula:

γ = κ log β, (metric formula)

the form usually found in the textbooks, where the metric formula is usually
called Fechner’s law. Fechner himself preferred to keep using the name Weber’s
law, out of respect for his physiology professor in medical school, Ernst Heinrich
Weber (1795–1878) himself (for more on Weber’s importance as a pioneer of
quantitative psychology, especially his experiments on the sensitivity of the touch
sense, see Murray, 2021, ch. 3). But according to Stigler (1986, p. 243), such
emphasis on Weber might be misleading in the light of the fact that Fechner was so
well acquainted with the early work of Ohm who developed a similar logarithmic
relationship between the loss of force in a current and the length of a wire.

Fechner’s law generated substantial objections and a lot of discussion among the
psychologists of his time and later (for brief overviews, see Boring, 1961; Stevens,
1961; Zudini, 2011, pp. 82–84). Also, it might be noted by the reader, as did George
Miller, that

Fechner’s law relating subjective sensation to objective stimulation is exactly the same as
D. Bernoulli’s law relating subjective utility to objective money. But Fechner’s law was
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immediately strengthened by his proposals for psychometric methods of measurement,
whereas methods for measuring the subjective magnitudes that Bernoulli was talking about
were not developed until the middle of the twentieth century. A theory is good, but a theory
plus measurements is a great deal better. (Miller, 1964, p. 99)

As a matter of fact, Fechner did know that Daniel Bernoulli (1700–1782) came
up with the concept of diminishing marginal utility and suggested a logarithmic
function for it. In particular, in Elemente der Psychophysik, he quoted Bernoulli’s
treatise Specimen theoriae novae de mensura sortis published in 1738, where
Bernouilli writes: “Certainly the value must not be estimated from the price of the
thing, but from the advantage acquired therefrom. The price is estimated by the thing
itself; the advantage, by the state of the persons involved. Thus, without doubt, the
gain of 1000 ducats is far more important for poor persons than for rich persons,
although the amount is the same for both. [ . . . ] Thus, it is indeed exceedingly
probable that any small advantage adds to the ultimate good in reciprocal proportion
to their status of the people involved” (quoted in Fechner, 1860, p. 197). But
immediately after this quote, Fechner remarks: “He bases his differential formula
[ . . . ] and his logarithmic formula [ . . . ] on these considerations. We later base the
same on Weber’s law in a more general way” (Fechner, 1860, pp. 197–198). A
theory is good, but a theory motivated by verified empirical regularities is even
better! He also points out the role of Laplace, who developed Bernoulli’s idea
further in his Théorie analytique des probabilités (1812), and to Poisson, who
mentioned and accepted it in his Recherche sur la probabilité des jugements en
matière criminelle et en matière civile, précédés des règles générales du calcul de
probabilités (1837).

In checking the logarithmic law for sense data, values of the physical stimulus R
(from German Reiz) were taken as its strength β in a measure valid for the chosen
domain (weight, touch, brightness, pitch, and so on) and given in terms of b as the
unit of measurement (cf. the measurement formula). Let us elaborate what Fechner’s
proposals were for finding scale values γ of the psychological response S (from
German Sensation). [Confusingly, the initials of the German terms are the reverse
of the English terms Stimulus and Response!] There are three basic methods and
two additional ones, which are regularly described in the classical texts of Guilford
(1936), Brown and Thomson (1940), and (partly) Bock and Jones (1968). They all
refer to Titchener (1905) as the basic source. Here is a brief description, where
we follow the distinction suggested by Brown and Thomson (1940) to distinguish
between names for methods of experimenting in order to collect data (experimental
design in modern terms) and processes of calculation after the data have been
collected (analysis methods). The basic psychophysical methods are as follows.

1. Method of reproduction or adjustment. This experimental design is one of the
oldest and most fundamental of psychophysical methods. According to Titchener
(1905, p. 160), it is “a free gift to psychophysics from the exact sciences of
physics and astronomy.” Fechner introduced it in Elemente der Psychophysik
with tactual and visual measurements. In his own words, from the 1882 revision
of the Elemente, English translation by Guilford (1936, p. 25):
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A certain distance, e.g., between compass points or parallel threads, is presented. This I call
the normal distance. I am to make another distance, the error distance, as nearly equal to
this as it can be made by eye. First of all, starting from an error distance that is too large or
too small, I adjust it roughly, in an irresponsible sort of way, to apparent equality with the
normal. Then I consider whether or not it really corresponds to sensible equality, and I shift
the boundary of the error distance, thread or compass point, to and fro—until I seem, with a
definitive adjustment, to have touched equality as closely as I may. (Fechner, 1882, p. 105)

In this case, the stimulus was an interval. More generally, the task for the subject
is to adjust or reproduce a variable stimulus V, so that it appears subjectively equal
to a given standard or comparison stimulus C. Anyway, the task is repeated a large
number of times, so that we get a distribution of numerical adjustments. Method of
analysis for this design is called the method of average error, meaning that we take
the arithmetic mean of the observed scale values of the reproduced Vs. This choice
was driven by the time-honored decomposition Observation = Truth + Error, used
by astronomers in the 1820s, who had no doubt in their mind that they were “after
something real, definite, objective, something with an independent reality outside of
their observations, a genuinely Platonic reality inherited from the then-unshakable
edifice of Newtonian theory” (Stigler (1992, pp. 61–62). It is also the basis of
classical test theory, pioneered by Spearman (1910), and of signal detection theory
(Link, 1994).

2. Method of limits or method of minimal changes. Primary use of this experimental
design is the determination of sensory thresholds. For the stimulus limen RL,
the experimenter decreases a variable stimulus V in small steps until it is no
longer detected. For the difference limen DL, we have a pair of stimuli, V (a
variable stimulus) and C (a constant or standard stimulus). V is first made
equal to or slightly smaller than C and then decreased in small steps until the
observer calls it just noticeably smaller than C. If there are N repetitions of the
procedure, the simplest analysis method used is to calculate again the mean of
the midpoints between C and the last V. According to Guilford (1936, p. 115), the
original method of just noticeable differences, which was already used by Weber
in 1829 to measure jnds in passive pressure and lifted weights, presupposed that
a human observer can recognize a jnd when he sees one. Weber would follow
the procedure described above and was ready when the observer reported that
he perceived a jnd. Fechner recommended a change in the method that was an
improvement and has been permanently adopted. The change is to also start from
positions of extreme inequality; now, the sequence results in the new notion of a
just not noticeable difference (a jnnd), which is usually slightly smaller than the
jnd. One then takes the average of the jnd and the jnnd as the true limen. The
occurrence of different limiting values for these two starting positions suggests
the presence of a perceptual hysteresis effect. As a matter of fact, Hock and
Schöner (2010) have recently considered several possible mechanisms for such
effects, detectable by a modified method of limits. There were already more
variations in experimental design earlier, for which Urban (1907) is a good
source.
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3. The constant method (or method of constant stimuli) and the method of right
and wrong cases. These methods can be used for determination of stimulus
limens (RLs), differential limens (DLs), and equal sense distances, as well as
the determination of other psychological scale values outside the strict realm of
psychophysics. It is regarded as the most satisfactory of all Fechnerian scaling
methods. The experimenter selects in a pilot study a limited number of stimuli,
usually four to seven, that are going to be constant during the experiment. Let
us call them Cj, j = 1, . . . , nc. Next, an additional stimulus T is selected as the
target, somewhere on the physical continuum depending on the specific purpose
of the experiment. For example, if the target is a stimulus limen RL, T is typically
defined as the physical stimulus that has a probability equal to 0.5 of producing
a response, which corresponds to a scaled value of γ = 0 on the psychological
scale. Each constant stimulus Cj is then paired with the target T, and these pairs
are presented either simultaneously or successively to the observer in prearranged
or random order. The observer has to tell which of the two is “greater than” or
“above” the other one, or the reverse. The presentation of each pair is repeated a
large number of times, say nj times, and the observations can be summarized in nc
relative frequencies pj. For a differential limen DL, the Cj and Tj are in fact pairs
of stimuli, and this case is called the method of constant stimulus differences, in
which we have pairs of pairs, which are compared in terms of the magnitude of
their sense differences.

The major analysis method developed by Fechner was called the method of right
and wrong cases. This ingenious method finds the scale value of the target as the
point on the physical scale that is the median of the discrete distribution of the
comparison stimuli. It is by definition the location for which half of the judgments
“Cj greater than T ” are right (those to the right of the median), while the other half
of the judgments “Cj greater than T ” are wrong (those to the left of the median).
Now, how do you find the median of a discrete distribution? Several simple methods
were used to determine the median, such as linear interpolation, but Fechner came
up with a new, pathbreaking procedure. Since each Cj has a relative frequency pj of
“greater than” judgments up to that point, these observed relative frequencies will
tend to be monotonically increasing, within the interval 0.0–1.0. Fechner proposed
to fit a cumulative distribution function to the data, in particular the normal ogive.
Given that choice, it is easy to find the median as the inflection point of the curve
(the scale value β corresponding to a probability of 0.5 on the y-axis), where the
curve’s positive acceleration changes into negative acceleration. Note that to use the
inflection point of the normal ogive to find the scale value of a particular stimulus
is essentially the same as the definition of the item difficulty parameter in item
response theory (IRT), as used by Lord (1952).

Fechner used the original parameterization of the cumulative normal curve that
Gauss had used in his first publication on least squares in 1809 (see Stigler, 1986,
pp. 140–143). Gauss expressed the argument of the exponent as .−h2�2, with .�

the usual error term and h a precision parameter, which indicates the steepness of
the normal ogive, or the sensitivity of the observer. Thus, the relation of h with
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the standard deviation that is now commonly used is .h = 1/σ
√

2. Fechner had a
justification for the hypothesis of the normal ogive (which has become known as
the phi-gamma function, and hence the phi-gamma hypothesis). It was suggested to
him by his Leipzig University colleague August Ferdinand Möbius (1790–1868).
Asked to judge whether one stimulus is “greater than” another one, the observer
would form a mental estimate of each stimulus, making a normally distributed error,
and reports the difference between the two mental estimates (Stigler, 1986, p. 247).
In this way, Fechner could measure not only (possibly different) limens for each
individual observer but also individual differences in their sensitivity or precision,
associated with smaller standard deviations in their mental estimates. The normal
ogive or phi-gamma function in the context of psychophysics has been called the
psychometric function by Urban (1910), in analogy with the biometric function,
which models a binary outcome (e.g., dying) as a function of some predictor (e.g.,
age).

Fechner’s method for fitting psychometric functions was simple Gaussian least
squares, which in the early nineteenth century had become a standard analysis
method for astronomers and geometers, but for psychologists it was an important
innovation (Fechner, 1859). Nevertheless, Müller (1878, 1879) argued that propor-
tions near 0.5 should be weighted more than proportions deviating from 0.5 in either
direction, because the standard errors of proportions are a function of the mean. A
further justification for using weighted least squares with weights nj /pj(1 − pj) was
provided by Urban (1908, 1910). Hence they were called Müller-Urban weights—
and still mentioned as a term in the current APA Dictionary of Psychology. This
weighted procedure is known as probit analysis.

There are two more classical experimental designs that aim at finding scale
values for psychophysical or psychological stimuli to which Fechner contributed
only partly. They were proposed with special interest in scaling supraliminal stimuli
(relatively far apart), in which case a psychological S-scale of sensations cannot be
formed by counting jnds.

4. The method of equal appearing intervals (or method of equal sense distances).
In its original form, the method of equal sense distances required the observer
to bisect a given distance on a specific psychological continuum. For example,
“given two sound intensities, R1 and R3, the latter being of greater intensity
than the former, O [the observer] had the problem of finding a stimulus R2 such
that the interval R1 − R2 equaled R2 − R3” (Guilford, 1936, p. 143). This task
is the simplest one for obtaining equal sense distances, but it can already be
used for testing Weber’s law in cases where the stimuli are supraliminal. The
reasoning is that if we define the small but supraliminal increments �R1 = R2
− R1 and �R2 = R3 − R2, then it is easy to show that Weber’s law implies that
R2 must be the geometric mean of R1 and R3. This prediction can be tested on
observations obtained in a bisection experiment (Guilford, 1936, p. 144). For a
classic application to tonal intervals, the reader is referred to Pratt (1928).
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In the more general method of equal appearing intervals, the observer is asked
to sort a relatively large set of n stimuli into a relatively small set of m piles,
or classes, separated by equal sense distances. The stimuli sorted within a pile
should have high psychological similarity (e.g., they should sound about equally
intense). The observations can be collected in a frequency table of n rows (stimuli
in the order of their scale value, if known) by m columns (classes labeled with
consecutive integers), and the pattern that one would expect is that of a discrete
bivariate normal distribution with negative correlation: i.e., high frequencies in the
upper left corner of the table, extending along the diagonal to the lower right corner,
tapering off toward the upper-right and the lower-left corners. We can now define
the sensation scale S by allocating equal intervals between the classes, with the
consecutive integers as scale values. That allows us to use the method of right and
wrong cases to calculate S-values for the stimuli. For each row, we first transform
the frequencies into cumulative frequencies and next fit the psychometric function
to smooth them, with the equally spaced S-values on the x-axis. Then the median
can be found as the inflection point of the curve and defines the scale value of the
row stimulus. Fechner’s law can be checked by plotting these against the physical
R-values. This analysis method was suggested by Thurstone (1929), as a correction
on the approach taken earlier in the notorious Sanford weight experiment on lifted
weights (Sanford, 1898; also see Titchener, 1905, pp. 82–85; Murray, 2021, pp. 86–
89), in which the average physical scale value in each pile was considered as the
adjusted R-value and plotted against the equally spaced class intervals on the S-
scale to check Fechner’s law. Thurstone (1929) illustrated his corrected procedure
with an example of 96 cards filled with irregularly spaced dots, where the stimulus
magnitude was the number of dots on the card, and they were sorted in 10 piles. It
showed convincingly that Fechner’s law could be verified to hold for supraliminal
stimuli.

5. The method of choice and the method of paired comparisons. Only the first
steps in the development of these methods will be briefly described. Fechner was
the first to study systematically the aesthetic properties of the so-called golden
section in his treatise Zur experimentellen Ästhetik (Fechner, 1871). Among other
methods, he proposed the method of choice (die Wahlmethode), in which an
observer must choose one stimulus among k alternatives (see Guilford, 1936,
pp. 222–225, and Green, 1996, for more detailed accounts of this development).
For k = 2, the observer has to choose one stimulus out of a pair, and if this basic
element is repeated for more pairs of m stimuli (not necessarily all of them), we
arrive at the method of paired comparisons. An early application of this method
was in the construction of a handwriting scale by Thorndike (1910), but a good
method to analyze paired comparisons was still to be desired at that time.

With its methodological innovations, experimental designs and analysis methods,
Fechner’s work prepared the ground not only for experimental psychology but
also for psychometrics, statistics (Sheynin, 2004), and even probability theory:
the prominent applied mathematician Von Mises (1912) referred to Fechner’s
posthumously published work Kollektivmasslehre (1897) as one of the inspirations
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that later brought him to introduce randomness as a basic concept in the theory of
probability (Von Plato, 1994, pp. 182–183). Several improvements in the design of
the constant method were introduced in a large-scale weight-lifting experiment by
Peirce & Jastrow (1885). They wanted to measure jnds as precisely as possible,
because of their skepticism about the existence of difference limens. The most
important improvement was to determine the order of presentation of the pairs
of weights by randomization, using two packs of playing cards (Stigler, 1978).
They found that the sensitivity of the subjects was far below Fechner’s threshold
and concluded that there was no evidence for a difference limen (Stigler, 1992).
In connection with this experiment, and similar ones in early experimental and
educational psychology, Dehue (1997) has defended the claim that randomized
designs were introduced by psychologists before Ronald Fisher introduced them in
his classic handbook The Design of Experiments (1935). This claim was challenged
by Hall (2007), who placed Fisher’s rationale for the promotion of randomization in
the tradition of agricultural field experiments starting in the middle of the nineteenth
century. But it would lead us outside the scope of this chapter to pursue this priority
issue further.

The impact of Fechner’s psychophysics on Wundt and his doctoral students has
been very large, as most of their experiments involved his methodology, except for
Wundt’s notion that psychologists should be the observer or subject (and not an
arbitrary person). For only trained psychologists could use introspection to report
their apperception, which is an unconscious process that interprets raw sense data in
relation to past experiences. Prominent among Wundt’s students were psychologists
from the United States (in total 33 of them), including James McKeen Cattell (1860–
1944) and Edward B. Titchener (1867–1927), who already made their appearance
in this paper. Especially Cattell at Columbia University was a strong advocate for
the statistical turn in American psychology in the period 1890–1915, part of a more
general rise of statistical methodology in anthropology, sociology, and economics
(cf. Camic & Xie, 1994). One of Cattell’s students, Edward L. Thorndike (1874–
1949), became the founder of modern educational psychology and educational
testing at Teachers College of Columbia University and was one of the founding
fathers of the Psychometric Society. From England, Charles Spearman (1863–1945)
was also a Wundt PhD student, but he was more influenced by Francis Galton
and the rise of mental testing in the last decade of the nineteenth century. Galton
himself has praised Fechner in a letter from 1875, for having laid “the foundation of
a new science [ . . . ] [in which a] mass of work by Arago, Herschel and various
astronomers fall in as a part of the wide generalizations of Fechner, and much
criticism and recognition of him will be found in Helmholtz” (Sheynin, 2004).

The formulation of the concept of the psychometric function was for sure
Fechner’s greatest contribution to psychometrics. It was recognized in standard
textbooks, not only in the specialized ones already mentioned but also in more
general popular texts about statistics. For instance, Truman Kelley’s textbook
Statistical Method (Kelley, 1924) has a section on psychophysical methods, in
particular the method of right and wrong cases. But the psychometric function was
also a topic for further clarification and research (e.g., Boring, 1917; Thomson,
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1919; Urban, 1933). By far the most clarifications, generalizations, and extensions
came from Louis Leon Thurstone (1887–1955) during the start of his career.

In our discussion of the method of equal appearing intervals, the psychometric
function was used to find S-values of the stimuli as the median of a discrete
distribution defined on equally spaced intervals on the sensation scale. It should
be noted that nowhere in Thurstone’s (1929) procedure he needed to use R-
values (physical magnitudes) to derive the S-values. More generally, Thurstone
(1927a) had already sketched a new framework for psychophysics, in which he
introduced the concept of normally distributed discriminal processes with which an
organism differentiates stimuli by calculating discriminal differences, which leads
to the normal ogive psychometric function. It reminds us of the already mentioned
suggestion made by Möbius to Fechner for justifying the phi-gamma hypothesis.
In this suggestion, Möbius assumed that mental estimates of each stimulus were
made, with a normally distributed error, and supposed that the differences between
two mental estimates are reported by the observer. Indeed, Thurstone (1927a) fully
developed the same idea and showed that Weber’s law and Fechner’s law are
independent of each other and also that equally often noticed differences are not
necessarily equal on the psychological continuum.

Within the same general framework, Thurstone (1927b) formulated his famous
Law of comparative judgment. We already briefly met the experimental design to
which this law applies in our discussion of the 5th Fechnerian method, i.e., the
method of choice and paired comparisons. In a paired comparison design, m pairs
of stimuli out of a set {S1, . . . , Sn} are formed, where m can be the total number of
possible pairs ½ n(n − 1), or some subset of it. The subject is asked to compare the
stimuli in a pair on any psychological attribute of interest and make a choice which
one dominates the other. The dominance judgment may be personal preference, for
example, when the stimuli are odors and the subject has to indicate which one smells
more pleasant. Or the judgment may be an expression of social or moral values, for
example, when the stimuli are crimes or offenses and the subject has to indicate
which one is more serious. Upon replication of these judgments for one subject or
across a number of different subjects, relative frequencies can be determined for
each pair, and the Law of Comparative Judgment forms the basis for a statistical
analysis that finds scale values for the stimuli on a psychological continuum, or
Thurstone scale.

The assumption that each stimulus generates a normally distributed discriminal
process in the mind of the subject(s) leads to a model in which the probability of
making a choice of Si over Sj is equal to the normal ogive of the difference in the
means μi and μj, divided by the discriminal dispersions σ ij, which are related to
the standard deviations and the correlation between the two processes. The most
often encountered case in which one assumes that σ ij = σ is called Case V. It
is in fact equivalent to a simple probit model in terms of the differences in the
means and without interaction terms. An authoritative treatment of Thurstonian
scaling and some of its extensions is Bock and Jones (1968). An overview including
modeling the discriminal dispersions σ ij by multidimensional scaling was given by
Heiser and De Leeuw (1981), while Takane (1989) and Maydeu-Olivares (2001)
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gave formulations of Thurstonian models in terms of the analysis of covariance.
Böckenholt (2004) proposed solutions for the arbitrary location of the origin in a
Thurstone scale.

Out of the general model, a whole series of other psychological scaling methods
emerged, such as the method of successive intervals (Saffir, 1937),method of graded
dichotomies (Attneave, 1949), and the law of categorical judgment (Torgerson.
1958). In these methods, there are pairs of stimuli by judgment categories (or
category boundaries), instead of pairs of stimuli by stimuli. If we consider pairs of
ability test items by persons and collect dominance responses for them, we obtain an
Item Response Theory (IRT) model with a normal ogive item characteristic curve (a
psychometric function that gives the probability of a correct response for a person
with a score somewhere on the S-scale of ability, where the inflection point of the
curve is called the item difficulty parameter). A theoretical development of such an
IRT model formed the basis of the new test theory by Lord (1952). In fact, Thurstone
(1925) had already formulated the basic idea and had illustrated it with a set of data
with Binet-type questions, collected by Cyril Burt on 3000 London school children.
A more detailed treatment and comparison with current IRT methods, including the
reasons for switching from the cumulative normal to the logistic function, can be
found in Bock (1997). For an enthusiastic review of Thurstone’s general scaling
framework, see Lumsden (1980), who concludes his paper by saying: “During the
1920s Thurstone stole fire from the gods. (As a punishment they chained him to
factor analysis.)” (Lumsden, 1980, p. 7). Indeed, Thurstone’s work in the beginning
of his career expanded the scope of psychophysical scaling enormously by allowing
the inclusion of non-physical stimuli, which made it the early root of two main
branches of psychometrics, the scaling branch and the IRT branch.

1.5 Conclusions and Discussion

We have seen that Christian Thomasius had already more or less done in 1692 with
his rating system of personality what James McKeen Cattell and Francis Galton
had in mind in 1890 with their outline of mental testing—except of course that
Thomasius was not in the position to calculate the interrater correlations between
the 12-point rating scales that he and his two students had collected on one particular
individual. Anyway, as pointed out by Jones and Thissen (2007, p. 5), the proposal
to use sensory reactions and motor skills as a way of assessing mental ability was
invalidated by a study of a graduate student at Columbia, who found that, for each
of Cattell’s proposed tasks, the correlations with class grades were essentially zero
(Wissler, 1901)—which effectively ended this approach to mental testing.

Unfortunately, we must also conclude that Thomasius, with his proposal to study
different personality profiles of political leaders, was simply too far ahead of his
time, because political psychology started to have an interest in this topic only
somewhere in the 1970s (Simonton, 2014). Ironically, Galton and Cattell became
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best known for their interest in quantitative studies of another subpopulation of the
human race: men of science.

For Francis Galton, that project started already with the publication in 1869
of his notorious book Hereditary Genius, in which he tried to demonstrate the
genetic transmission of intelligence, drawing on data culled from biographies
and biographical dictionaries of scientists, eminent military leaders, philosophers,
lawyers, and artists (Galton, 1869). The French botanist Alphonse de Candolle,
who had read Hereditary Genius, responded acutely with the publication of De
Candolle (1873), a book in which he offered an elaborate statistical study of the
lives of outstanding scientists (members of the Academies of Science from Paris,
Berlin, and London, including their foreign members). As noted by Ruth Schwartz
Cowan: “He found that a very high proportion had come from countries or cities
that possessed a moderate climate, a democratic government, a tolerant religious
establishment, and an important trade centre. He concluded that Galton was wrong
and that environmental factors did indeed play a crucial role in the production of
outstanding men” (Cowan, 1970, p. ix).

Galton’s immediate response was to produce a similar study called English
Men of Science: Their Nature and Nurture (Galton, 1874), in which he aimed
to show—not surprisingly—the dominance of nature over nurture. This time his
data were autobiographical replies to a long questionnaire, sent out to 180 eminent
scientists (fellows of the Royal Society, and the like), of whom 100 were selected for
statistical treatment. One conclusion was that a strong and innate taste for science
is a prevailing characteristic among scientific men and another that they had fewer
children than their parents (Godin, 2007, p. 696). It served Galton well in pursuing
his political program of eugenics.

Cattell followed Galton with several projects of measuring eminent scientists.
In 1895, he acquired the weekly journal Science, established in 1883, which had
run into financial difficulties. He used it as a vehicle for reporting the results of
his statistical studies on science, based on an extending directory of researchers,
called American Men of Science. He started with 4131 entries in 1906 (Cattell,
1906a, b), which accumulated to 34,000 entries in 1944. The directory included their
background characteristics, fields of study, estimates of scientific merit, measures of
productivity, mobility, and so on. In addition, as documented in Webster (1985), he
also developed a system of academic quality rankings on the level of institutions
instead of individuals (Cattell, 1910).

Because of these projects in the measurement of science, Galton and Cattell are
now regarded as pioneers of scientometrics (Godin, 2007), as is De Candolle (Szabó,
1985). Furthermore, Godin (2006) has described how and why systematic counting
of publications, citations, and acknowledgements (the output side of science, a
branch of scientometrics known as bibliometrics) originated with several other
psychologists, following in Cattell’s footsteps.

What can be said about the lasting influence of Christian Wolff? He was certainly
correct in thinking that the duration and clearness of thoughts could be empirically
studied, as well as intensity, memory, attention, and individual differences. He, too,
was ahead of his time, for these topics had to wait more than a hundred years
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before they became incorporated in the empirical research programs of people
like Wundt, Müller, Helmholz, Ebbinghaus, and their students in the second half
of the nineteenth century. In evaluating Wolff’s impact, Vidal (2011, p. 111)
remarks: “When the Aristotelian frameworks disintegrated, by the 1720s at the
latest, psychology became the science of the human mind. In university circles, it
was Christian Wolff who gave this shift its most systematic form. Hegel mentions in
his Lectures on the History of Philosophy that Wolff gave the discipline a systematic
structure which had served as a standard ‘down to the present day’, that is, until the
1820s.”

Empirical psychology had to wait until Fechner laid out the psychophysi-
cal paradigm for measuring sensation. Wundt and contemporaries incorporated
Fechner’s pioneering work on experimental design and measurement of sensation
and at the same time started to criticize him and to come up with alternatives
(Murray, 2021, Ch. 5–8; Zudini, 2011). A much discussed criticism was that
mental phenomena would in principle not be accessible for quantification, called
the quantity objection. Michell (2006) phrased the denial of this criticism as the
psychometricians’ fallacy. For nuanced discussions of the quantity objection, see
Hornstein (1988) and Sturm (2006). We have already noted the strong influence of
psychophysics in the early twentieth century on experimental psychology, psycho-
metrics, and educational psychology in the USA, including the upcoming testing
movement in both Europe and the USA. However, after World War II its influence
was waning, partly because of the upsurge of Stevens’s “new psychophysics” in
experimental psychology, based on magnitude estimation (Bolanowski & Geschei-
der, 1991), and partly because of the reorientation in item response theory to the
logistic psychometric function.

But the mathematical psychologists have kept the fire burning! For example,
Luce (1959) has critically examined what different forms a functional law like
Fechner’s law can have, dependent upon the scale levels of the independent and
dependent variable. Here, it should be noted that Rozeboom (1962) has shown
that Luce’s conclusions were too strong, because they were based on a principle
that is dubious at best. On the positive side, Dzhafarov and Colonius (2011) have
argued that a lot of criticisms on Fechner’s work are based on misinterpretation
(partly due to Fechner’s own expository and terminological shortcomings) and that
Fechner’s law can be derived without the notion of a jnd. In addition, they indicated
that if we replace the term difference sensation with a more modern-sounding term
subjective dissimilarity, then this change of perspective leads to the conclusion
that Fechner’s theory has the additivity property of a unidimensional distance
(Dzhafarov & Colonius, 2011, p. 129). They also give examples of generalizations
to multidimensional Riemannian geometry.

Finally, Zudini (2011) has shown convincingly that Fechner’s system satisfies the
conditions posed by the principles of classical measurement in Book V of Euclid’s
Elements, which poses a theory of proportions between magnitudes (Euclid, 1956).
It appears that time is coming for someone to write a unifying book entitled
Elements of Psychometrics.
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Chapter 2
The Janus Face of Psychometrics

Paul De Boeck and L. Robert Gore

Abstract Most psychometric data are behavioral data: responses to cognitive
problems and to questionnaire items referring to behavior in a direct or indirect
way. Therefore, measurement models are at the same time psychological models.
The Janus face metaphor refers to these two sides of psychometrics. Measurement
models can fail as psychological models. We discuss three examples, called
vignettes in this chapter. The first refers to reflective measurement models not being
in line with the psychology of what is measured. The second example concerns
measurement invariance and the psychological meaningfulness of measurement
invariance violations. The third example refers to the error variance (unexplained
variance) in measurement models and models in general and how the error may be
explained by individual-specific psychological phenomena.

Psychologicalmeasurement is the quantification of person variables of interest, such
as cognition, skills, achievement levels, affect, and motivation, among many others.
Psychological tests can quantify rather stable traits, variables subject to growth
and change, and states depending on situations and occasions of measurement
(Cronbach et al., 1972). Nearly all measurements quantify behavior of the person
measured, including introspective self-reports (McFall & Townsend, 1998). Outside
of physiology and group sociology, psychologists measure by observing participants
and recording or rating their behaviors, using archival records or ratings of behavior,
but in most cases, they ask participants to provide self-ratings or quantification
of their own behaviors or experiences, and they present cognitive and other
problems to work on in tests. Here we do not consider biological measures, such as
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cortisol, or neuroscience measures, such as fMRI, but focus instead on classically
psychological variables such as attitudes, personality traits, moods, and intentions,
as well as cognitive variables such as problem-solving, judgments, and response
times.

It is noteworthy that often the measurement tool and the measurement object
coincide. The tool consists of a person’s behavior (e.g., test responses), and the
object of measurement is a behavioral proclivity of the same person. This is not the
case for the measurement of a person’s weight or height. How a scale functions is
independent of a person’s weight, how a ruler functions is independent of a person’s
height, and how a thermometer functions is independent of the temperature to be
measured. It is only in case that something is wrong with a measurement tool that
the measurement tells us something about the tool. If all goes well, a thermometer
tells us about the temperature of the room, of the body, etc., and a scale tells us
about the weight of another object than itself. Indeed, psychology was born out
of the difficulty human judges have in providing objective accounts of physical
reality, such as the transit times of stars observed through telescopes (Traub, 1997),
such that the observed times reflect something about the observer and not merely
something about celestial mechanics and optics.

Because the tool and the objective of measurement are intrinsically inseparable,
there always are two sides to psychological measurement, even when the researcher
does not realize there are. The measurement model is at the same time a behavioral
model, a model for how persons act while being measured. Classical test theory,
factor models, and item response models (IRT) are at the same time measurement
models and behavioral models. The researcher can focus on the first side and just
consider the quantification of target behavioral proclivities or can focus on the
implied behavioral model to understand people’s test behavior, which in many
cases is relevant as such, independent of the measurement outcome. Test items can
require reports of knowledge, judgments, or decisions, so that the psychometric
models are cognitive models, or test items can be self-descriptive and reflect a
person’s attitudes, feelings, and behavior, in which case the models are models of
attitudes, feelings, and behaviors and models of how people describe themselves.
A psychometric model is at the same time a measurement model (a model of
the instrument) and a psychological model (a model of the person). The lack of
separation and the two sides have inspired us to use the metaphor of a Janus
face.

For example, in a cognitive test, information is collected to measure cognitive
abilities, but the processes underlying the responses are of interest for substantive
reasons, independent of the resulting measurement, and this has long been of
interest to clinical psychologists (Lezak et al., 2012). The situation is different
for the thermometer. We are not measuring the thermometer, and the tempera-
ture to be measured is not a feature of thermometer but of an object or space
outside the thermometer. We do know how an analog thermometer works (the
mechanism) to change heat into measured distance by causing expansion of the
mercury in a linear tube, but we do not know with much certainty how a set
of cognitive problems works on a person’s mind to result in a response and
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response time. We can learn from the cognitive test not only what the level of a
person’s cognitive ability is but, in principle, also to some extent how cognitive
problem-solving works. Apart from the test responses themselves, measurement
may require assumptions that are driven by domain knowledge, intuition, and
potentially also self-reflection or introspection on the part of the researcher, given
that the researcher is also an object of the same class (humans) as the object being
measured. But some of these assumptions may be unjustified. For example, much
response time research assumes that a set of response times is independently and
identically distributed. However, this assumption was proven false decades ago
(Luce, 1986).

Another aspect of two-sidedness of psychological measurement is that the tool
can influence the measured object. Self-monitoring changes smoking behavior, for
example (McFall, 1970). Taking a test can affect cognitive processes, such as when
a person has a memorable insight that affects their future responses, perhaps years
after taking the test (e.g., the Cognitive Reflection Test; Shane, 2005). Responding to
questions on one’s feelings can affect the feelings, a fact that has been exploited by
political opinion pollsters (Gerstmann & Streb, 2004). Measuring a person’s weight
does not change the weight; measuring a person’s temperature does not change their
temperature appreciably.

A cognitive ability test yields a measure that is necessarily based on cognitive
processes. The two sides to a cognitive test are the measurement and the underlying
processes. A measurement model may not fit well with the resulting data, and that
kind of failure is informative regarding the underlying focal processes. Ideally, the
measurement model is at the same time a process model, which means that the
two faces of psychometrics are consistent (McFall & Townsend, 1998). Outside of
mathematical models in cognitive science (see, e.g., Ratcliff & McKoon, 2008), this
condition is rarely met.

The Janus face of psychometrics implies that psychometric qualities are aspects
of human behavior with relevance for psychology. We tend to isolate the measured
quantity from its object (e.g., ignoring the response process) and to consider the
measurement outcome as the objective output of an impartial instrument. A balance
is a measurement instrument, but there is more to a psychological test than its
role as a measurement instrument, of which the “psychometric” qualities are to be
investigated and reported without psychology itself being at stake. Psychometrics is
as much psychology as it is metrics.

In the following, we will discuss three possible cases, which we will call
“vignettes,” to illustrate the two faces. Vignette 1 concerns the internal consistency
of test items, and vignette 2 concerns measurement invariance. Vignette 3 concerns
error variance as unexplained variance and offers a clinical and idiographic per-
spective on that variance. They all three illustrate how a psychometric model is a
psychological model and how psychometric qualities of an instrument can reflect
important psychological principles.
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2.1 Internal Consistency

Cronbach’s alpha and alternative coefficients are popular quantifications of relia-
bility. Cronbach’s alpha is often interpreted as a measure of internal consistency.
However, as Sijtsma (2009) explains, internal consistency is a vague notion. In
this first vignette, we refer to internal consistency as an “average degree of
‘interrelatedness’” between items (p. 114 in Sijtsma, 2009), which does contribute to
coefficient alpha. Internal consistency arises from a reflective psychometric model
with one dimension or multiple positively correlated dimensions, where each indi-
cator reflects the latent variable in a direct way and with conditional independence.
Not only are there psychologically meaningful other types of reflection than an
independent direct reflection, but reflection is not the only way indicators can be
linked to a latent variable. In formative latent variable modeling, for example, the
link is from indicators to the latent variable and the link is cumulative. For both
types of links (reflective, cumulative), at least three variants can exist: direct link,
competitive link, and intermittent link.

2.1.1 Reflective Models

The three variants of reflective links are investigated by Tuerlinckx et al. (2002) for
the Thematic Apperception Test (TAT). The TAT consists of a set of cards, and the
respondent is requested to give a narrative interpretation of each card, a description
which is believed to reflect underlying situationally specific psychological motiva-
tional tendencies.

The default type of reflection is independent direct reflection which means that
the indicators do not affect one another (i.e., are independent conditional on the
latent trait value) and that the reflection is not just intermittent (i.e., does not depend
on the occasion). The common factor models and IRT models are in line with
independent direct reflection. As a result, the common reliability coefficients for
tau equivalent and congeneric models apply, such as the alpha coefficient and the
omega coefficient, respectively.

A different type of reflection is competitive reflection, which means that reflec-
tion through one form of manifestation competes with reflection through other forms
of manifestation. In psychometric models this would show through negative local
dependencies and a reduction of internal consistency of indicators for the same
trait. In the Tuerlinckx et al. (2002) study, the underlying principle is based on the
Atkinson and Birch (1970) dynamics of action theory. The implication of the theory
is that after an achievement motivation expression, the achievement action tendency
is reduced, which shows as a negative effect of a response on the next response
and thus as negative serial dependence. Competitive reflection is a more general
phenomenon based on the dynamics of action theory. Any time there is restriction
of resources related to the expression of a trait, competition follows. Time and
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finances are examples of resources one needs when one follows interests related to
leisure activities and social activities. One can have only so many interests, so many
leisure activities, so many social activities, independent of the strength of one’s
needs, the breadth of one’s interest, and the intensity of one’s social motivation.
Other principles at the basis of competition are habit formation and specialization.
Habits may exclude other habits, as anxiety finds its expression in specialized fears,
extreme political opinions fixate on certain topics and not on other topics associated
with one’s adversaries, and the set of fixations flowing from a particular ideological
point is in flux. It is in theory possible that internal consistency of a test is very low
and even zero or negative, although the indicators are all indicators of the same trait,
albeit competing indicators.

Related to this but not discussed by Tuerlinckx et al. (2002), we might posit
its opposite: accelerating reflection. This might occur when a behavior, once
emitted, tends to raise the tendencies toward similar behavior. An example from
social psychology is priming (Molden, 2014). A person who cooperates with an
experimental confederate in one task may become more likely to cooperate on the
next. On a measure of personality traits, as a person scans memory for examples of
a particular trait (consider generosity for example), more such memories may come
to mind, such that their proclivity to agree with similar trait descriptors increases
as their progress through the test continues. On a multi-factorial test with shuffled
items, this would suggest that the internal consistency of items grows from the first
to the second half of the test.

The third type of reflection is intermittent reflection, which means that a trait is
reflected only now and then but not on all occasions. Tuerlinckx et al. (2002) use the
term “stochastic drop out” for this phenomenon. For example, a person can have a
high need for achievement, but the need does not show at all possible achievement
occasions. For the TAT, that would mean the need would not be reflected in the
responses to all cards, which is a possibility suggested by Murray (1943, p. 15).
When intermittent reflection is random, it is formally equivalent with an upper-
asymptote model (as in the four-parametermodel, but with a zero lower asymptote).
What this means is that there always is a chance that the need for achievement is
not expressed, which implies that the maximum probability (the upper asymptote)
of an achievement response is smaller than 1.00. Dependent on the card, the upper
asymptote is higher or lower (Tuerlinckx et al., 2002).When a response drops out of
the normal response process, the response does not reflect the respondent’s need for
achievement, but instead some other need-induced phantasy is reflected in response
to a TAT card. The assumption that intermittent reflection is random (conditional on
the level of the upper asymptote) is an approximation for the fact that many different
needs may take over to be expressed, conditionally independent of the achievement-
related content of the card, induced by the varying strength of those other needs.
Without the simplifying approximation with an upper asymptote, it would be too
complex a model to be estimated, although it is possible to simulate the resulting
intermittent reflection phenomena based on the dynamics of action theory (Atkinson
& Birch, 1970). Intermittent reflection is the consequence of changing competitive
strengths as postulated in the dynamics of action theory.
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To give an example from another behavioral domain, suppose that a trait we are
interested in is punctuality. Behaviors such as showing up on time for an appoint-
ment and making deadlines in time can be interpreted as reflections of punctuality.
It is possible though (depending on the occasion) that another trait takes over to
determine the behavior, which may lead to a violation of punctuality. For example,
helpfulness may take over from punctuality if one needs more time than expected
to solve someone else’s problem, with consequences for the next appointment.
Other traits taking over from a trait one wants to measure can explain intermittent
reflection. Whereas competitive reflection refers to competition between indicators,
intermittent reflection may refer to competition between traits for expression in a
single behavior. Like competitive reflection, intermittent reflection also reduces the
internal consistency. In physics, Brownian motion describes the process by which
a dust particle is buffeted by random atomic collisions causing it to drift around in
still air. Psychological tendencies may have a similar character, buffeting behavior
in different directions depending partly on truly random factors. This cannot be
explained by an error term when the whole response itself is captured by another
tendency related to a trait one does not intend to measure, just as for an upper-
asymptote model, the response cannot be captured by the common notion of an error
term. An upper-asymptote IRT model is a mixture model for the pairs of persons
and items, just as the three-parameter IRT model with a lower asymptote also is a
mixture model.

Based on the empirical application in Tuerlinckx et al. (2002), the model with
intermittent reflection was the best-fitting model for the TAT. The dropout probabil-
ity in a constrained (but well- fitting) model with a common upper asymptote for
all cards was 0.34, a close approximation of Murray’s (1943) guess that 30% of
responses are nondiagnostic responses.

2.1.2 Cumulation Models

As mentioned earlier, an alternative to reflection is cumulation, as in formative
models. To explain the concept, let us use the example of happiness and assume that
happiness has different sources (referring to different aspects of life). Let us further
assume that the happiness from these different sources adds up (i.e., accumulates):
relational happiness, happiness in one’s job, and leisure time happiness. These
sources do not need to be correlated, but they can as in the following examples.
When people experience less happiness from one source, they may compensate
by seeking and obtaining more happiness from another source, just as different
sources of income add up and one source can compensate for another. Alternatively,
when people reach a threshold of happiness, they may stop seeking happiness
from untapped sources. In both these cases, the correlation would be negative.
Independent of the relationships, if the sources of happiness add up, happiness is
a cumulative trait, and internal consistency must not be expected. Control theory
more generally describes a variety of phenomena where a person, motivated to
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maintain homeostasis, experiences changes in appetite and behavior due to variation
in goal satisfaction levels (Carver & Scheier, 1982). For accumulation, the same
three types as for reflection can exist: independent direct accumulation, competition
(and acceleration), and intermittence. The above examples of compensation and
satisfaction are formally equivalent with competition as they lead to negative
correlations. Possibly, the different sources of happiness do literally compete with
one another or reinforce each other. For example, if happiness depends on the
time invested in the sources of happiness (i.e., codetermines how much happiness
is derived from the source), then investing in one’s job may come at the cost
of investing in relationships, which may lead to a negative correlation. It also
is possible that happiness in one respect of life carries over to other respects of
life. Intermittent cumulation would imply that the same source does not always
contribute to one’s happiness, depending on one’s focus of the occasion. As a result,
an inventory of pleasant activities a person has enjoyed (MacPhillamy& Lewinsohn,
1982), for example, does not necessarily lead to a high internal consistency.

The different kinds of reflection and accumulation illustrate how internal con-
sistency is not just a measurement quality but a possible indicator of psychological
processes. From a measurement point of view, a high internal consistency may seem
desirable, while from a psychological point of view, a low internal consistency may
be a meaningful result, even when it would lead to a low coefficient alpha value.

2.2 Measurement Invariance

2.2.1 Relevance of Measurement Invariance and Its Violation

Psychologists would like to quantify differences and changes to understand influ-
ences on human behavior. It is a well-known rule that measures cannot be compared
if the condition of measurement invariance is not met (Millsap, 2011). A violation
of the condition implies that using the same instrument results in measures of
different variables, as if a scale does not always measure weight but sometimes
quantifies volume or height instead. As a result, variations in the numeric output
of instruments may be the quantification of dissimilar qualities, while the person
doing the measuring believes they are comparing dissimilar individuals on the same
quality.

Violations of measurement invariance are interpreted as an issue and may lead
to adjustments of the measure. Rarely are the violations interpreted as interest-
ing psychological phenomena, while a result that is undesirable from a metric
perspective can be helpful from a psychological perspective. To illustrate, after
a psychotherapeutic intervention, it can be expected that a trait is expressed in a
different way and that the same behavior (the same response to an item) now has a
differentmeaning. After a treatment for anxiety, perhaps not only the level of anxiety
is reduced, but the threshold of some fearful behaviors has increased (a change
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of the intercept, corresponding to a violation of scalar invariance), or previous
behaviors driven by anxiety are now carried out for other reasons when they occur
(a change of the loadings, corresponding to a violation of metric invariance). The
lowering of a threshold for a fearful behavior, independent of an overall decrease of
anxiety, is reflected in the intercept parameter of the behavior and is a violation of
scalar invariance comparing pre- and post-intervention conditions. The lowering of
a loading means that anxiety has less influence on the behavior and is a violation
of metric invariance. These formal kinds of differences in thresholds and in the
relationship with an underlying latent variable may exist between groups, across
gender categories, between ethnic groups, between cohorts, between cultures, and
between different points in time for the same set of persons, such as before an
intervention and after an intervention. Fokkema et al. (2013) find evidence for such
processes, called response shifts, with respect to depression.

The differences between groups and within groups across time that correspond to
violations of measurement invariance will be called qualitative differences, and they
can be of interest as psychological phenomena as such even though they interfere
with the conditions of measurement invariance. One may have to give up on making
inferences about quantitative differences such as differences between the means of a
latent variable or between sum scores, but instead one may follow up on the specific
violations and make inferences on qualitative differences instead.

For example, developmental psychologists hope to measure the growth in logical
reasoning and vocabulary across childhood, and clinical psychologists hope to
measure the reduction in anxiety, depression, or addictive cravings resulting from
intervention. Social psychologists hope to measure geographical differences and
cohort effects in implicit bias. To measure changes and differences requires that the
measuring instrument preserve the conditional relationship between the behavioral
proclivity as input and the output of the instrument, such as a sum score, across
groups (such as geography) and time (in development or treatment outcome studies).
This is considered a precondition for valid measurement, but its violations are
interesting phenomena themselves, and violations may be a foreseeable result of
the psychologist’s theory of difference or change.

2.2.2 An Example

To give a clinical example, consider a group of spider-phobic undergraduates who
have heretofore avoided spiders at all costs. Imagine that these individuals undergo
a single-session arachnophobia treatment and that they make ratings of anxiety
(0 = “not at all anxious” to 100 = “as anxious as you have ever been or could
imagine being”) before and after the session, in response to different items such as
mentally imagining a spider, viewing a real spider, and touching a spider (which
they may never have done), each time regarding a spider that sits still or crawls.
In the sessions, the individuals approach and eventually touch spiders provided by
the researcher. As a result of the treatment itself, anxiety ratings provoked by really
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touching spiders may arise from different processes, perhaps with a clearly lower
anxiety rating for touching spiders, while ratings of anxiety levels on seeing and
thinking of spiders may have decreased less. It also is possible that the scale is
recalibrated after the experience and not just by an additive constant for all items.
In both cases there would be a violation of scalar measurement invariance, but the
finding may be informative about the specific effects of the session, even though
no inference can be made regarding an increased or decreased fear for spiders as
measured by a latent variable or a sum score. The measurement invariance failure
(viewed conventionally) invalidates the evidence base for the treatment.

In some cases, psychological theory predicts that a group effect or an intervention
effect is different for a subset of items compared with other items. The Saltus model
(Wilson, 1989) is a model for theory-based violations of measurement invariance in
which a subset of items shares a common violation of scalar invariance, for example,
a subset of Piagetian tasks becomes more difficult or easier with age.

2.2.3 Mathematical Models and Clinical Interpretations

Psychologists can formulate models simultaneously of the person being measured
and the process of measuring the person. Such models could incorporate shifts
in the judgments (such as in the arachnophobia example) and more complicated
shifts in the meaning of measures. Although one way to jointly examine the state or
trait being measured along with the response process would be with sophisticated,
tailored mathematical models (McFall & Townsend, 1998), that would not be the
only way. Psychologists who listen to the people who provide the measures, who
give the measured the voice to speak about their experience of providing numbers or
quantifiable behaviors, could gather a great deal of useful information in qualitative
form (e.g., mixed methods research, Tashakkori & Teddie, 2003). Practicing clinical
psychologists do this routinely and may find qualitative evidence that makes
violations of measurement invariance interpretable. Clinical interpretations may
also open the black box of error variance or unexplained variance and try to
understand the particularity of individual human behavior and an individual person’s
life, as discussed in the following.

2.3 Error Variance and Unexplained Variance

Error variance is a common parameter in psychometric models, in classical test
theory, in factor models, and in item response theories (if formulated in terms
of latent responses). From a statistical and measurement point of view, error is
specific yet unexplained variance: specific to the measurement indicator in question,
unrelated to other measurement indicators (and unrelated to the latent variable or
true score in CTT), and therefore unexplained.
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2.3.1 Two Views

An interesting view on error variance is Kahneman’s (2011) distinction between
statistical thinking and causal thinking. Error variance is an example of what he
calls statistical thinking, foregoing the meaningful effects of specific events and
circumstances in a person’s life. What Kahneman understands by causal thinking is
thinking based on individual cases and individual events instead. Individual events
and circumstance may affect a person’s behavior and responses in a test, and such
effects are globally summarized in error variance – (Kahneman et al. (2020) use
the term “noise”) – while they may refer to psychologically meaningful phenomena
that cannot be captured because the events and circumstances are person-specific
and not part of the design (van Bork, 2019). Common sense causal thinking is often
necessary in situations where causal inference is statistically underdetermined, and
this kind of common sense has a place in psychological science.

When psychologists shift from academic to applied roles, in some cases the
importance of peer-reviewed, published analyses of reliability (and validity)
increases, while they may benefit from qualitative information on possible sources
of the error variance that leads to a lower reliability. Whereas the statistical way
of thinking is important, a more individualized approach in the line of “causal
thinking” can be a useful complementary perspective.

2.3.2 An Example

Consider a parent whose fitness has been questioned in a contentious divorce
proceeding. The parents in such a case may be court ordered to undergo an extensive
psychological evaluation, which in some areas of the United States may include psy-
chological testing (such as with the MMPI-2-RF), extensive reviews of background
records including criminal background checks and children’s medical records,
interviews with people who know the parent and their children well, observation
of the children’s behavior with and without each parent present, and diagnostic
interviewing of each parent (see vignette in Emery et al., 2005). Each of the resulting
scores is an evaluation component, but these scores also contain error variance.
However, it would be impractical and too ambitious to quantify fully the amount
of this error in real-world, high-stakes cases, and adding individual information
for a clinical judgment may be problematic. Clinical judgment research suggests
that clinicians should be modest in their claims because complex constellations of
additional individual information have been shown to be rife with judgment error
(Garb, 2003; Dawes et al., 1989).

The interpretation of the joint collection of information components is subjective:
different clinicians confronting the same collection of aggregated data could reach
different conclusions (Garb, 1989), and the attorneys and judges in the case may
select, block, amplify, and downplay different aspects of the record. The kind of
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extensive evaluation performed in child custody cases may run to 100 pages, and
each person who reads the record will no doubt face problems of how to consider the
mass of information provided. Issues of selective attention and recall and individual
bias will enter the process. In principle the content in the child custody record is
individual information that may explain psychometric error. Unfortunately, relying
on human judgment may not be a good way to interpret the information.

2.3.3 Two Issues

This third vignette highlights two issues. The complexity of error variance is not
captured in an estimate of its size, whereas the multiple sources are psychologically
meaningful and can be noticed in individual cases. This could help inoculate non-
psychologists and psychologists alike against any tendencies to ascribe exclusive
meaning to the global psychometric information while being blind to the qualitative
information.

However, as a second point, there may be objective quantitative indicators of
severe problemswith reliability that ought to be highlighted for any users of the data.
If, for example, an observed MMPI-2-RF score profile is to be used to comment on
the future parenting abilities of the parties over the course of several years, and if the
observed fluctuation in MMPI-2-RF scores across measurement occasions separated
by a much shorter interval is such that the use of the test to forecast years into the
future is in doubt, this fact is crucial (Faust, 2012). In a case such as this, the size of
the unexplained variance is vitally important to the fair application of psychology
in forensic settings, and speculations on a qualitative basis and causal thinking (in
Kahneman’s terms) may be largely misleading.

2.3.4 Clinical and Statistical

This vignette also highlights the potential value of training clinical psychologists
to engage in nuanced analyses of their measurement procedures and the ways their
findings are processed by end users. If applied psychologists were systematically
trained to avoid focusing so narrowly on the justification of their measures with
specific coefficients and instead were taught to think of their measures as intrinsi-
cally influenced by the contexts of measurement and the motivations and cognitions
test takers have in relation to their performance, the quantitative indications of error
variance would not be interpreted as the final word. What seems to be error – from
a statistical point of view – may correspond to meaningful events in a person’s life.

The challenge for decision-makingmay be to integrate across multiple sources of
information. It is well-known from the judgment and decision-making literature that
simple methods such as equal weighting of standardized scores (called improper
linear models) could be useful, as illustrated, for example, by Dawes (1979). To
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formulate an improper linear model, a set of judges rates a set of objects on a set
of attributes. Ratings for each attribute are standardized across judges, and sums or
means of standardized scores across attributes form the overall score. It is incumbent
on psychology to educate end users of high stakes tests about the many sources of
unexplained variance and imperfect validity. We also need to help test users find
ways to reconcile a statistical approach for an optimization of prediction across a set
of persons with an awareness that unforeseeable variationmay invalidate predictions
and decisions. Yet the complexity of this task is daunting.

Statistical reasoningmay be the optimal way from a global perspective and across
the set of individuals under consideration, but this does not guarantee it is the
optimal way in individual cases where idiographic information is available about
an individual’s specific circumstances. From the perspective of causal reasoning in
Kahneman’s (2011) terms, which is more idiographic than statistical, the error and
unexplained variance reflect meaningful information with consequences for how a
test result should be interpreted. The problem with such an approach is that human
judgment suffers from various shortcomings as amply described by Kahneman
(2011) and Kahneman and Tversky (1996), which also explains why a statistical
(actuarial) approach frequently works better than clinical judgment for predictive
purposes (Dawes et al., 1989).

2.3.5 An Idiographic Alternative

A possible alternative for purely clinical judgment without giving up on individu-
alized information is quantitative idiographic measurement, with different variables
for each individual person, and within-person relationships of those variables across
situations or stimuli. For example, people may be asked to rate their feelings toward
important others in their life, while they each choose their own feeling terms as
well as the important others. The data can then be analyzed in an objective way,
for example, using cluster analysis or a dimensional analysis. Such approaches
may be a way to counter the subjectivity and biases inherent to human judgment.
Examples of such an approach can be found in Kelly’s (1955) personal construct
theory approaches based on the repertory grid and in Herman’s self-confrontation
method (Hermans, 1991; Lamiell, 1991; Lyddon et al., 2006). A method of Boolean
factor analysis and cluster analysis for within-person data matrices that may help
to understand the particularity of individual persons can be found in De Boeck
and Rosenberg (1988) and Van Mechelen and De Boeck (1989). In addition, the
application of idiographic data collection as for the repertory grid and for the
self-confrontation method (the measurement tool) may have an effect, hopefully
a beneficial effect, on the individuals being measured (the objects of measurement).
Although more useful for understanding than for prediction, these methods may
help to have a meaningful view on individualized factors that may contribute to
unexplained variance in measurement models.
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Most methods and the whole field of psychometrics are focused on an interindi-
vidual variance paradigm. The inherent complexity of psychological phenomena
may require a somewhat different paradigm, with a stronger focus on intraindividual
approaches. This may lead to a better understanding of what shows as measurement
error in methods based on interindividual variance. While a qualitative way makes
sense in the context of discovery, a more quantitative intraindividual approach can
take care of the justification.

2.4 Discussion

It was not within the scope of this article to provide a compendium of statistical
solutions, but rather to exemplify the psychology side of psychometrics. Our goal
here was in the first place to shift perception. Janus faces were posted on gates, so
that travelers coming and going saw different faces. As a result, Janus was thought
to see both the past and the future. While entering a domain, one would see a
particular face, and while leaving one would see a different face. At the start of
an investigation, the researcher sees one of the Janus faces, and when the results
are in, the researcher may see the other, one that could be disappointing from a
measurement quality point of view but informative from a psychological point of
view.

Psychology can continue its traditional attempt to separate the measurement
tool from the human proclivities being measured, or it can turn around and regard
Janus’s other face: the face that might smile on us as we change course, perhaps
even reverse course partly. Just as we have tended to regard test instruments as
objective reflections of behavioral proclivities and to try to develop instruments
that achieve this purpose, we have also tended to regard statistical procedures in
the same way, and we have developed a reflex (and trained it into our students)
according to which certain forms of reliability or measurement invariance have to
be established before a measure can be considered worthy of use, and typically
this demonstration relies on standard statistical methods such as confirmatory factor
analysis, item response theory, or the computation of reliability coefficients such as
alpha and test-retest reliability. But there is another path, which is to learn about
psychology from so-called psychometric shortcomings and to use these indications
and psychological theory to formulate models in line with measurement principles
but also with psychological processes. Such models could incorporate shifts in the
judgments (such as in the arachnophobia example) and more complicated shifts
in the meaning of measures. Although one way to improve the meaningfulness of
clinical methods would be with sophisticated, tailored mathematical models, that
would not be the only way.

If perception shifted, and we began to regard the measurement as double-faced,
we would be less apt to offer sweeping generalizations about human behavior that
ultimately undermine our credibility when they are swept away by the facts in an
individual person’s life or in the next round of generalization in research. What



44 P. De Boeck and L. R. Gore

might result would be an approach to measurement that equally respects the two
sides, that respects and provides a place for insights developed through looking
into possible violations of measurement qualities and qualitative sources of error
variance, to proceed more cautiously to conclusions. We suggest that this might
also reduce some of the tendency psychologists have shown toward acrimonious
debate and would provide legitimacy for researchers seeking to diversify the range
of cultural contexts in which psychological research findings can be applied.

We do not want to replace quantitative approaches with qualitative ones. In
the context of predicting specific outcome variables in an individual-differences
paradigm, a statistical approach is clearly superior to a clinical approach, and adding
qualitative information may not improve predictive accuracy, most likely because
clinical judgment is vulnerable to distortions of various kinds. However, qualitative
information may contain hints about prediction errors rooted in people’s individual
contexts. Hints are not proofs, but they help explain the omnipresence of errors and
how such errors reflect the complex psychology of individual persons.

Reflecting on the Janus face of psychometrics may help us admit that our
understanding of the world is only very partially captured by the current quantitative
models we use and that deviations can refer to (1) meaningful but deviating
models as discussed in the first vignette, (2) meaningful violations of measurement
invariance as discussed in the second vignette, and (3) meaningful content of what
is commonly called measurement error. The result might be a more investigative
attitude, a stronger awareness of the two-sidedness of psychometric models, an
openness to alternatives for the most prominent measurement models (CTT, con-
firmatory factor models, item response theory), and an awareness that replication
and prediction failures do not necessarily stem from measurement shortcomings but
are inherent to the meaningful complexity of the psychological reality (De Boeck &
Jeon, 2018; De Boeck et al., 2019, 2021).

In his article on Cronbach’s alpha, Sijtsma (2009) describes the unfortunate
gap between psychology and psychometrics, which shows in misunderstandings
and lack of interest from both sides. The gap has also led to the perception of
psychometrics as an extraneous technical discipline with its own criteria and to
the perception of psychometricians as gatekeepers and law enforcement agents.
This view is not surprising, because psychometric models are usually not inspired
by psychology (Borsboom, 2006). However, we believe that psychometric models
are psychological models by implication, although primarily inspired by metric
principles, and that psychometrics cannot be just a toolbox kind of discipline. The
two faces of psychometrics cannot be separated.
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Chapter 3
Psychological and Educational Testing
and Decision-Making: The Lack
of Knowledge Dissemination in Textbooks
and Test Guidelines

Rob R. Meijer, A. Susan M. Niessen, and Marvin Neumann

Abstract When it comes to decision-making based on psychological and educa-
tional assessments, there is compelling evidence that statistical judgment is superior
to holistic judgment. Yet, implementing this finding in practice has proven to be
difficult for both academic and professional psychologists. Knowledge transfer from
research findings to practitioners and other stakeholders in psychological assess-
ment is a necessary condition to close this gap. To obtain insight into how academic
specialists in psychological testing disseminate knowledge about research findings
in this area, we investigated how textbooks on testing and guidelines on test use
report on, or do not to report on, decision-making in psychological and educational
assessment. Second, we discuss some commonly encountered misunderstandings,
and third we argue for a broader and more in-depth dissemination of research
findings on this topic in textbooks and test standards; to this end we provide some
suggestions.

3.1 Psychological and Educational Testing
and Decision-Making: The Lack of Knowledge
Dissemination in Textbooks and Test Guidelines

For decades, many Dutch psychology students’ first acquaintance with psychomet-
rics included studying the book by Drenth (1965, 1975) or the more recent editions
by Drenth and Sijtsma (1990, 2006). Although, at someDutch universities, this book
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has since been replaced by more recent books, its influence on psychological testing
in the Netherlands is significant. In our discussion with practitioners and academics,
the book is still often mentioned as an authority textbook on test design and test use.

We still use the 2006 edition for our lectures to Dutch students, and one
of the best features of the book is that it contains a chapter (Chap. 9) about
“The contribution of a test in the decision-making process.” As we discuss and
illustrate in this chapter, there are not many introductory textbooks on test theory
or psychological and educational testing that devote much attention, let alone a
whole chapter, to test use and decision-making. Most textbooks pay close attention
to topics like reliability, validity, and types of tests, but test use, that is, the basic
principles on how professionals should use tests when they make decisions, is
often not discussed. Also, on conferences where psychometric research is presented,
such as those of the National Council on Measurement in Education (NCME), the
International Test Commission, or the Psychometric Society, presentations on test
use and decision-making are almost nonexistent.

This is perhaps not that surprising because, as discussed in van der Linden
(1991), although the practice of testing is firmly rooted in the field of decision-
making (educational selection, selection for the military and companies), test theory
or psychometrics has been mainly developed as a measurement theory. There are a
few exceptions: the well-known work by Taylor and Russel (1939) and the book by
Cronbach and Gleser (1965); this latter work provided a theoretical basis for test-
based decision-making. Thus, in courses on psychometrics, students learn about
measurement theories like the principles of classical test theory, item response
theory, and factor analysis and in more advanced courses about the development
of different psychometric models, parameter estimation procedures, fit statistics,
and the application of these models to empirical data. But, in psychological testing
or related courses, test use is not really instructed. While most textbooks on
psychological testing discuss the decision-making perspective (e.g., Taylor-Russel
tables) and some focus on utility models, there is a lack of focus on usage, that is,
how to combine test scores with other information, as we discuss below.

This underrepresentation of knowledge and skill in test use in academic educa-
tion is problematic. As future professionals, most of our students will mainly use
psychological tests as a decision-making tool. In most applied settings, psycholog-
ical tests are part of an assessment used to make judgments and predictions about
behavior of individuals (Kuncel, 2008). For example, consider the following two
scenarios.

A parole board consisting of different professionals, including two clinical
psychologists, has to decide about temporary or permanent release of a prisoner
before the expiry of the sentence, on the promise of good behavior. This decision has
important consequences for the prisoner and for society, and many factors determine
the prisoner’s future behavior. One of the standardized instruments that can be
used to make this important decision is the Level of Service/Case Management
Inventory (Andrews et al., 2004). This instrument assesses static and dynamic
factors linked to recidivism risk based on 43 items, divided into 8 major categories.
The total score provides information on the risk posed by the offender, and the
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subcategories indicate individual characteristics that increase the risk of recidivism
(i.e., criminogenic needs). The total score is used to determine the offender’s initial
risk level on a five-point ordinal scale ranging from very low risk to very high risk.
Importantly, individual assessors can often override the initial risk level to create a
final risk level when they see reasons to do so (see Guay & Parent, 2018 for more
details). An important question is: Is it wise to override the initial risk level, for
example, on the basis of professional expertise and experiences with a delinquent?

A hospital is searching for a consultant occupational physician. Requirements
are “enthusiastic to continue the success of the team with innovative ideas, a careful
decision maker, always putting the patients first, an excellent communicator, able
to influence others positively and supportively, able to demonstrate leadership in
a multi-professional environment” (these requirements were taken from an actual
ad). A search team under the supervision of an I/O psychologist is advising the
management which of 18 applicants is most suited for the job. They use an
intelligence test, a situational judgment test, and an interview to decide which
candidate is most suited for the job.

How should the information from the tests and the interview be combined to
optimize the predictive validity of the decision? Should management review the
scores on these three assessments and make a global judgment or should they
compute a weighted average of the scores on these assessments and hire on the
basis of this weighted average?

These two examples demonstrate test use by professional psychologists in
(highly) consequential contexts. Other examples are deciding what diagnosis is the
most suitable for a client, whether a client is eligible for a particular treatment,
whether an athlete belongs to the 10% most capable athletes for a sports team, or
whether a child needs extra training in particular subject matters in school.

Such decisions are rarely made using a single assessment tool. For example, in
personnel selection, ability tests and interviews are used because these assessments
are easy to administer and are expected to increase the criterion-related validity
for later job performance, compared to only using one of these assessment tools
(Schmidt & Hunter, 1998). Similarly, diagnoses and treatment recommendations in
clinical psychology are often made based on a combination of tests, observations,
biographical information, and clinical interviews. Therefore, it is not only important
for professionals to know what information to use when making decisions (what
are valid predictors and how can they best be measured) but also to know how to
combine information from different sources to optimize prediction.

Many studies have been conducted to investigate how information can best be
combined to optimize prediction. A major topic of investigation in this respect
has been the distinction between holistic and statistical prediction. In holistic (or
clinical, impressionistic, intuitive, informal) prediction, information is combined “in
the head” of the decision-maker. Conversely, in statistical (or actuarial, mechanical)
prediction, information is combined based on formal weighting procedures. In
a classic review of 20 studies, Meehl (1954, inspired by Sarbin, 1943) showed
that statistical prediction resulted in better predictions than holistic prediction.
Many other studies confirmed these findings ever since (e.g., Grove et al., 2000).
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Using statistical prediction is arguably one of the most effective ways to improve
predictions and decisions in practice (Milkman et al., 2009). However, statistical
prediction is not popular among professionals (e.g., Arkes, 2008; Highhouse, 2008;
Meijer et al., 2020; Kuncel et al., 2013; Ryan & Sackett, 1987; Terpstra & Rozell,
1997; Vrieze & Grove, 2009).

There are several explanations for the underutilization of statistical prediction
in practice, such as lack of perceived autonomy and fear of losing professional
status (Highhouse, 2008; Nolan et al., 2020; Neumann et al., 2021b, 2021c). One
important prerequisite, however, is knowledge. Without having knowledge about
how to best combine information, psychologists will not use statistical decision-
making (Neumann et al., 2021a). Therefore, in the present study, we first discuss a
number of important characteristics of statistical prediction.

Second, we investigated how research findings on holistic and statistical pre-
diction are disseminated. Textbooks are meant as summaries of academic research
that synthesize findings and translate them into accessible information for students
and professionals. Through studying how textbooks discuss holistic and statistical
prediction, we learn about how research in this area is disseminated, which elements
are unclear, and what misconceptions and controversies still exist. This knowledge
is useful for two reasons (1): it may help improve the dissemination of research
findings and (2) it provides input for research that is aimed at closing the science-
practice gap (see Neumann et al., 2021b, for a research agenda).

Besides textbooks, test standards play an important role in disseminating infor-
mation about evidence-based test use. Therefore, third, we describe if and how test
standards disseminate knowledge on this topic. As we discuss below, test standards
do not seem to be aimed at discussing or prescribing how test information can
best be combined to optimize decision-making. We provide arguments for the
importance of including research findings on information combination and decision-
making to optimize test use in psychological practice. We want to emphasize that
our aim is not to point fingers at authors of the textbooks and guidelines we
reviewed, but to improve the dissemination of important research findings with
respect to decision-making and prediction to strengthen psychology as an evidence-
based, applied science.

3.1.1 Theory of Social Representation

To better understand how textbooks and test standards represent scientific theory
of decision-making, we used the theory of social representation as discussed and
used in Roulin and Bangerter (2012). They investigated the science-practice gap
by studying how the use of structured interviews was diffused to practitioners
in practitioner-oriented advice books. As they discussed “the theory of social
representations ( . . . ) seeks to describe the social processes by which scientific
knowledge is transformed into everyday knowledge used by laypersons” (p. 150).
An interesting phenomenon is that laypersons often integrate new theories in
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existing schemes or ideas. This is called anchoring. Second, this theory suggests
focusing on the intermediary actors that translate scientific findings into social
representations.

Authors of textbooks are the intermediary actors that delve into expert knowledge
with the intention of diffusing it to students and professionals. They thus play a key
role in the potential transformation of scientific findings, because (1) they may have
different understandings of concepts than the experts they cite; and (2) they are
designing their message to fit their audience’s knowledge (Clark & Murphy, 1982).
Compared to journalists and mass media, authors of textbooks are intermediary
actors that stand much closer to the original research (Krathwohl, 1998, pp. 54–55)
and are often specialists on the topic of their books.

3.2 Using Tests to Make Decisions

3.2.1 Basic Distinctions: Data Collection and Data
Combination

For professionals that use assessment results for decision-making or prediction,
which are almost all professionals in psychology and related disciplines, it is
important to have knowledge about the way information can best be combined.
Below we first provide descriptions of holistic and statistical prediction given by
Meehl (1954, p. 3) and some later remarks given in Dawes et al. (1989) and
Grove and Meehl (1996) because these articles are often cited in textbooks we
discuss below. Meehl (1954, p. 3) discussed statistical prediction in the context of
diagnosing persons for therapeutic sessions as follows:

“We may order the individual to a class or set of classes on the basis of objective facts
concerning his life history, his scores on psychometric tests, behavior ratings or check
lists, or subjective judgments gained from interviews”. The mechanical combination of
information for classification purposes, and the resultant probability figure which is an
empirically determined relative frequency, are the characteristics that define the actuarial
or statistical type of prediction.

Three important elements of statistical prediction are (1) both “objective” and “sub-
jective” (but quantified) impressions can be considered; (2) there is a mechanical
combination rule; and (3) the rule is based on empirically established relations
between the combined scores and observations and the behavior we want to predict.
So, statistical prediction is not restricted to psychological test use; an assumption
sometimes made in textbooks as we discuss below.

Holistic prediction is described as follows by Meehl (1954, pp. 3–4):

On the basis of interview impressions, other data from the history, and possibly also
psychometric information of the same type as in the first sort of prediction, we formulate,
as in a psychiatric staff conference, some psychological hypothesis regarding the structure
and the dynamics of this particular individual. On the basis of this hypothesis and certain
reasonable expectations as of the course of outer events, we arrive at a prediction of what
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is going to happen. This type of procedure has been loosely called the clinical or case-study
method of prediction.

Importantly, in holistic (clinical) decision-making, a prediction is made by
“thinking about” the available information, not by using a pre-defined rule or on
the basis of explicit empirically established relations. Relatedly, Dawes et al. (1989)
described holistic and statistical predictions as

in the clinical method the decision-maker combines or processes information in his or her
head. In the actuarial or statistical method the human judge is eliminated and conclusions
rests solely on empirically established relations between data and the condition or event of
interest.

Furthermore, Dawes et al. (1989) noted that

Virtually any type of data is amenable to actuarial interpretation. For example, interview
observations can be coded quantitatively (patient appears withdrawn: [1] yes, [2] no). It
is thereby possible to incorporate qualitative observations and quantitative data into the
predictive mix. Actuarial output statements, or conclusions, can address virtually any type
of diagnosis, description, or prediction of human interest.

Thus, in short, statistical prediction is about the way information is combined, not
about what information is used to make decisions.

3.2.2 Statistical Prediction Is Superior to Holistic Prediction

As mentioned above, many empirical studies and meta-analyses convincingly
showed that following structured decision rules results in better prediction than
combining information “in the head” (Meehl, 1954; Kuncel et al., 2013; Grove et
al., 2000; Karelaia & Hogarth, 2008; Ægisdóttir et al., 2006; Morris et al., 2015).
More specifically: Dawes et al. (1989) cited almost 100 comparative studies and
found that the statistical method performed better than the holistic method. Grove et
al. (2000) analyzed 136 studies from medicine, education, and clinical psychology,
where professionals predicted outcomes such as academic performance, job success,
medical or psychiatric treatment success, criminal recidivism, and suicide. They
concluded that “Even though outliers can be found, no systematic exceptions to
the general superiority (or at least material equivalence) of mechanical prediction
were identified.” Grove and Meehl (1996, p. 26) discussed that, from a theoretical
perspective, this conclusion should be expected:

From a theoretical viewpoint the issue may be rather uninteresting, because it is trivial.
Given an encodable set of data – including such first-order inferences as skilled clinicians’
ratings on single traits from a diagnostic interview – there exists an optimal formal
procedure (actuarial table, regression equation, linear, nonlinear, configural, etc.) for
inferring any prespecified predictand. This formula, fallible but best (for a specific clinical
population), is known to Omniscient Jones but not to the statistician or clinician. However,
the statistician is sure to approximate it better, if this is done properly. If the empirical
comparisons had consistently favored informal judgment, we would have considerable
explaining to do.
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The argument that statisticians should do (and do) a better job at approximating the
optimal way to combine information for prediction, and the sections in definitions of
statistical prediction by Meehl (1954) and Dawes et al. (1989) that emphasize using
statistical rules based on empirically established relations between information and
the behavior we want to predict, reveal the most significant practical challenge for
the application of statistical prediction in practice. They require the availability of
data to design empirically based statistical prediction rules.

3.2.3 Robustness of Simple Rules

So, ideally, large datasets based on representative samples of the target population
are collected to estimate optimal weights for each variable (e.g., in regression
analysis), and the results are cross-validated. Clearly, this is often not possible in
practice because such datasets are not available. Effective methods to tackle this
steep hurdle are described by Dawes (1979). He discussed that, instead of using
optimal weights derived from large, primary data, using the same weight for all
variables (i.e., unit weighting) or even using randomly chosen but consistent weights
in mechanical procedures still often results in better predictions than using holistic
prediction.

However, under particular conditions, unit weighting can result in less valid
predictions compared to using the single best predictor alone (Murphy, 2019;
Sackett et al., 2017). A simple rule was discussed in Murphy (2019): avoid using
predictors (i.e., give them a zero weight instead of a unit weight) that correlate
more strongly with the other predictors than with the criterion.Moreover, this advice
holds when decisions are made holistically as well, since adding such information
could “dilute” the most predictive information (Dana et al., 2013).

3.2.4 People Are Bad at Identifying Exceptions to the Rule

When statistical rules are used in practice, they typically serve as decision aids that
can be overruledwhen professionals believe that is appropriate (e.g., Guay& Parent,
2018). Importantly, research shows that overriding a statistical prediction because a
certain specific case is believed to be an exception to the rule is a bad idea: people
are not very good at correctly identifying these exceptions (Guay & Parent, 2018;
Dietvorst et al., 2018; Dawes, 1979). This conclusion can be logically derived from
the findings that statistical prediction outperforms holistic prediction; if people were
good at identifying exceptions, holistic procedures would outperform mechanical
procedures (see Dana et al., 2013 for a similar remark).

A question that arises from the above is whether psychologists can learn to
match the predictive accuracy of statistical rules through experience. Kahneman
and Klein (2009) discussed this question in depth and concluded that professionals
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in psychology have a hard time to match the accuracy of their holistic predictions to
the accuracy of decision rules, because (1) the environment in which psychologists
act is difficult to predict and (2) feedback is absent or incomplete and delayed at
best, which both seriously hinder learning. The biggest problem, however, is that
these findings are in conflict with the perceptions of making accurate predictions
that many professionals have when making decisions. As Kahneman discussed “If
people can construct a simple and coherent story, they will feel confident regardless
of how well grounded it is in reality” (Kahneman & Klein, 2010, p. 4).

3.2.5 Transparency

Another important characteristic of statistical prediction as defined above that we
would like to mention is their transparency. By combining information in a pre-
defined, transparent rule, we can replicate decisions, evaluate our policies, and adapt
decision rules accordingly, because we know exactly what we did. In contrast, that
is not the case when decisions are made holistically, because it cannot be directly
observed how an assessor combines information “in the head.” This makes it harder
to evaluate and improve our decisions.

3.3 What Textbooks Communicate About Test Use and Data
Combination

We investigated the following research questions:

1. Do textbooks on psychological testing discuss statistical/holistic decision-
making?

2. Which references to sources do they use as the basis of their treatment of this
topic?

3. Are their conclusions in line with the literature on this topic? In particular, we
investigated five criteria: (3a) Is the overall conclusion in line with the empirical
literature: statistical prediction should be preferred over holistic prediction? (3b)
Do textbooks make a distinction between data collection methods (e.g., tests,
interviews, observation) and data combination methods (according to a rule or in
the head)? (3c) Is there a discussion about the robustness of using non-optimal
weights? (3d) Do textbooks mention exceptions to the rule, and do they correctly
discuss how to handle them? (3e) Is there a discussion about transparency of
decision making? Although we consider transparency a very important aspect of
decision-making, it is not often discussed in the statistical/holistic literature and
therefore we did not take this aspect into account when evaluating criterion 3a.
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3.4 Method

3.4.1 Sample

We conducted a broad search of textbooks on psychological testing. We started with
an electronic search using the library search engine SmartCat with the search term
“books on psychological testing” with restriction that books should be written in
English and published after 1995. This date was a bit arbitrary; we were interested
in how statistical versus holistic prediction using tests is discussed in the more
recent literature. This resulted in 3031 hits. The first author of this study then
selected books using the following inclusion criterion: the books should be broad
introductory books on psychological testing. Books on specific topics, such as books
exclusively on intelligence testing or test use in minority groupswere excluded. This
strongly reduced the number of hits. The third author independently selected books
using the same search engine and based on the same criteria discussed above as the
first author, and he found one book that was not identified by the first author, which
was added to the list. This resulted in a selection of 13 textbooks (Table 3.1).

3.4.2 Coding

In each book, we analyzed the content of the text to evaluate if and how statistical
and holistic prediction were presented. Because textbooks contain a large amount
of information (often several hundred pages), we first looked at the index and the
references to identify potentially useful sections. Index terms we used were clinical,
holistic, actuarial, mechanical, statistical prediction, and decision making. Authors
we looked for in the references were Meehl and Dawes. When these references
did not provide any results, we also checked Highhouse and Kuncel and Grove.
However, this did not provide additional information as all textbooks referring to
Highhouse, Kuncel, or Grove also referred to Meehl or Dawes.

Two independent raters (first and third author) searched the books and coded the
texts on the basis of the five research questions mentioned above under 3(a)-3(e).
The two raters checked the text passages on the basis of the five criteria discussed
above. Each criterion was rated on a four-point scale: (0) no description at all; (1)
description is wrong; (2) there is some description, but lacks important points; and
(3) fair, accurate description.1 The two raters first coded the textbooks independently
and then discussed any score differences between them until consensus was reached.

1 We agree with an anonymous reviewer of this chapter that, although technically the ratings are
nominal, the coding scheme we used may suggest that they are ordinal. An ordinal interpretation
would imply that a wrong description is “better” than no description, which is not the case. As
this reviewer correctly remarked “One may argue that the reverse is true, which is reflected in
the opening lines of the great must-see movie The Big Short: ‘It ain’t what you don’t know
that gets you into trouble. It’s what you know for sure that just ain’t so.’ – also see https://
quoteinvestigator.com/2018/11/18/know-trouble/”
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3.4.3 Results

In Table 3.1 we provide an overview of the textbook literature. Note that Kline
(2005), Furr (2018), and Cooper (2019) did not discuss mechanical versus holistic
prediction. Below we summarize the most important findings.

1. Most textbooks on psychological testing discuss statistical versus holistic predic-
tion using a limited number of pages (between 1 and 9 pages, mostly 1–3 pages).
There was no textbook that wholeheartedly endorsed the main conclusion from
the empirical literature that statistical prediction should be preferred over holistic
prediction. Some textbooks only mentioned the empirical results found, without
drawing any conclusions or mentioning implications. Almost all textbooks
suggested a middle-of-the-road compromise, where they indicate that a rule can
be used in some cases, but that there are situations in which that is not possible
or desirable. Most reasoning is of the form: Meehl (1954) or some other meta-
analysis found that statistical prediction is superior to clinical prediction. We
generally agree with this conclusion, but there are conditions where clinical
prediction is preferred (because there are exceptions, because you cannot use
tests in all cases, because it is difficult to formulate a rule). For example,
Murphy and Davidshofer (2005) provided an elaborate summary of the research
on statistical versus holistic decision-making, but they also conclude:

However, in the long run, the automation of clinical prediction would limit the accuracy
of clinical predictions, since it would preclude the use of behavioral observation data or
the selection of appropriate tests to optimally assess the status of the individual patient.
(p. 529)

There is, however, no reason why quantified behavioral observations could not be
incorporated in statistical predictions. Furthermore, the “selection of appropriate
tests to optimally assess the status of the individual patient” is still possible under
mechanical decision-making.

In many passages, there was no explicit distinction between “the nature of infor-
mation” and “how to combine information.” Textbooks rarely explicitly described
this distinction. Many passages provide examples of holistic versus statistical
prediction which incorrectly suggest that statistical decision-making is tied to using
tests and holistic decision-making is tied to using other information (sometimes in
addition to tests). For example,Miller et al. (2015, p. 419) discussed that: “For more
than 50 years, researchers have debated the accuracy of making diagnoses using the
unstructured interview (called the clinical method) compared with using structured
psychological tests (called the statistical method). In 1954, Meehl published the
results of his examination of 20 studies that compared clinical and statistical
predictions (Meehl, 1954). His conclusion was that statistical methods were as
accurate as, and often more accurate than clinical methods.”

2. Only optimal regression models are described as superior to holistic decision-
making. The advantages of suboptimal rules such as unit weighting or expert
weighting are not discussed. If authors mention specific examples, they often
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come from the clinical context. An interesting example on the use of the MMPI
is provided by Gregory (2013, pp. 487–493). Gregory (2013) discussed that
“computerized narrative test reports should use existing actuarial formulas to
determine the likelihood of various psychiatric diagnosis” (p. 491). However,
Gregory (2013) also discussed that a drawback of statistical prediction is that
when the rules are applied to a new client population, new rules should be
determined because they will perform less well in a new population. Ideally,
this would indeed be the case, at least when sufficiently large samples would
be available. However, this remark ignores the empirical results that suboptimal
weights generally do a better job than holistic combinations (Murphy et al., 2013;
Yu & Kuncel, 2020).

Also, Hogan (2015, p. 177) noted that:

Can we replace clinicians with formulas? Sometimes yes, sometimes no. Development of
formulas requires an adequate database. When we have an adequate database, we should
rely on it. But we do not always have an adequate database. In that case, we must rely on
clinical judgment to make the best of the situation.

This is an often-encountered misunderstanding that despite articles like those by
Grove and Meehl (1996) and Dawes and Corrigan (1974) seems to be ineradicable.
As we discussed above, research showed that picking a number of valid predictors
and choosing reasonable weights based on empirical research (e.g., meta-analysis)
will often result in more accurate decisions than holistic judgment. If textbooks
keep communicating that adequate databases are a necessary condition to be able
to use statistical prediction, it is no wonder that practitioners almost exclusively use
holistic judgment, because adequate data are rarely available.

3. Some textbooks state that, sometimes, holistic methods should be preferred.
These are perhaps the most interesting passages because most of the time,
no references are provided to support those statements; they seem to rely
on “common sense” or “authority” arguments. Most importantly, there is no
evidence that holistic methods should be preferred over mechanical procedures
in any situation.

Some authors seem to imply that we do not know which decision-making
method is superior. For example, Kaplan and Saccuzzo (p. 554) noted “Further,
the question remains as to whether computer interpretations can ever be as good
as, let alone better than, those of the clinician.” Sometimes references are used,
but then the content of these references is refuted by more recent articles, or the
original articles are misinterpreted. For example, Aiken (p. 337) discussed that
“under certain circumstances trained practitioners employing data from a variety
of sources (case history, interview, test battery, and the like) are better than actuarial
formulas (Goldberg, 1970; Holt, 1970; Wiggins & Kohen, 1971).” This is incorrect,
because Goldberg (1970) showed the opposite, namely, that statistical rules created
based on decisions made by the assessors were better than assessors themselves.
Additionally, Holt (1970) is sometimes used as a reference in favor of holistic
prediction, but Holt (1986, p. 378) himself conceded that statistical judgment is
superior when he wrote:
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Maybe there are still lots of clinicians who believe that they can predict anything better
than a suitably programmed computer; if so, I agree that it is not only foolish but at
times unethical of them to do so . . . If I ever accused him [Paul Meehl] or Ted Sarbin of
“fomenting the controversy”, I am glad to withdraw any implication that either deliberately
stirred up trouble, which I surely did not intend.

3.4.4 Conclusion on Decision-Making as Discussed
in Textbooks

The way textbooks on testing discuss decision-making based on a combination of
information is mostly not in agreement with the empirical literature. It seems as if
authors of textbooks anchor mechanical decision-making to pre-existing schemes,
as the theory of social representation would predict. These pre-existing schemes
consist of ideas of how we make decisions in daily life: holistically. For example,
Anastasi (p. 520):

A major contribution of the clinical method for example is that data are obtained in areas
where satisfactory tests are unavailable through interviewing and observations of behavior.
The clinical method is also better suited than the statistical method to the processing of rare
and idiosyncratic events whose frequency is too low to permit development of statistical
strategies.

This remark seems to be based on “common sense,” but not on results from the
empirical literature which showed the opposite, namely, that people have a hard time
in identifying valid idiosyncrasies. As a result, we speculate that many textbook
authors (unintendedly) mix empirical findings in the literature with their own
experiences. Furthermore, because the topic is more complex than many textbook
authors perhaps realize, not enough space is devoted to carefully and accurately
explaining the literature.

3.5 What Test Standards Communicate on Decision-Making
with Tests

We investigated the following research questions:

1. Do test standards on psychological testing discuss statistical/holistic prediction?
2. Are their conclusions in line with the literature on this topic?2

There are different guidelines on test use. Internationally, the most important ones
are the Standards for Educational and Psychological Testing (American Educational
Research Association et al., 2014; in the remaining of this article referred to as the

2 In contrast to the textbook research questions, we did not research which references were used
because test standards include very few references.
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Standards) and the International Test Commission Guidelines on Test Use (2013; in
short, the ITC guidelines). The latter is available in many languages. Both guidelines
fulfill an important role to transfer scientific assessment research to professional
practice and contain important and very useful information.

3.5.1 Standards for Psychological and Educational Testing

To answer the first research question, it is important to first look at the mission of
the Standards. On p. 1 it says

The purpose of the standards is to provide criteria for the development and evaluation
of tests and testing practices and to provide guidelines for assessing the validity of
interpretations of test scores for the intended test use. Although such evaluations should
depend heavily on professional judgment, the standards provide a frame of reference to
ensure that relevant issues are addressed.

Furthermore, on p. 2 it is noted that

Although the principles and concepts underlying the standards can be fruitfully applied to
day-today decisions – such as when a business owner interviews a job applicant, a manager
evaluates the performance of subordinates, a teacher develops a classroom assessment
to monitor student progress to an educational goal, or a coach evaluates a prospective
athlete – it would be overreaching to expect that the standards of the educational and
psychological testing field would be followed by those making such decisions. In contrast,
a structured interviewing system developed by a psychologist and accompanied by claims
that the system has been found to be predictive of job performance in a variety of settings
falls within the purview of the standards. Adhering to the Standards becomes more critical
as the stakes for the test taker and the need to protect the public increases.

From these quotes it is clear that decisions made by persons not being a
psychologist are considered beyond the scope of the Standards. It may also be
inferred that the Standards are particularly concerned with the quality of individual
assessment tools. However, decisions are seldom made based on one individual test
or instrument. The Standards (p. 198) indeed discuss “In educational settings, a
decision or characterization that will have major influences on a student should take
into consideration not just scores from a single test, but other relevant information.”
How this may be done is discussed on p. 170.

In some instances, test information is used in a mechanical, automated fashion. This is the
case when scores on a test battery are combined by formula and candidates are selected
in strict top-down rank order, or when candidates above specific cut scores are eligible to
continue subsequent stages of a selection system. In other instances, information from a test
is judgmentally integrated with information from other tests and with nontest information
to form an overall assessment of the candidate.

Thus, the Standards discuss the difference between mechanical and judgmental
(what we call holistic) decision-making, indicating that this is considered a topic
of relevance for users of psychological tests. However, the Standards do not
mention that mechanical judgment leads to more reliable and valid judgments
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than holistic combinations of information. Second, the Standards incorrectly imply
that mechanical decision-making can only be used when decisions are based
exclusively on test scores and that taking information derived from other sources
than standardized tests (such as interviews, biodata) into account requires holistic
decision-making.

3.5.2 International Test Guidelines

The aim of the ITC test guidelines is described as follows (p. 7):

The Test Use guidelines relate to the competencies (knowledge, skills, abilities and
other personal characteristics) needed by test users. These competencies are specified in
terms of assessable performance criteria. These criteria provide the basis for developing
specifications of the evidence of competence that would be expected from someone seeking
qualification as a test user. Such competencies cover such issues as professional and ethical
standards in testing, rights of the test taker and other parties involved in the testing process,
choice and evaluation of alternative tests, test administration, scoring and interpretation,
and report writing and feedback.

Furthermore, we encountered several statements that encourage using multiple
sources of information and thus indicate that information will need to be combined
(listed below, with original reference numbers). However, no explicit statement on
how to combine information was found.

2.1.4 Seek other relevant collateral sources of information.
2.1.6 Ensure that full use is made of all available collateral sources of information.
4. Make clear that the test data represent just one source of information and should

always be considered in conjunction with other information.

Thus, although the potential utility of testing in an assessment situation is dis-
cussed in the ITC guidelines, statistical versus holistic combination is not discussed.
Furthermore, the statement in the ITC guidelines that “collateral information” is
useful seems to imply that more information is better. However plausible this may
sound, this is not true in general and can encourage problematic decision-making.
For example, information from unstructured interviews when combined with valid
grades can lower predictive validity compared to using grades alone, but at the same
time increase the feeling of a valid decision (e.g., Dana et al., 2013).

3.5.3 Conclusion on Decision-Making as Discussed in Test
Guidelines

Both guidelines pay little attention to obtaining reliable and valid judgments and
decisions based on a combination of different sources of information (e.g., tests,
interviews, questionnaires). In the vast majority of cases, psychological tests are
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used with the main aim to aid decision-making about an individual, but the research
literature on this issue is not discussed and its influence is minimal.

3.6 Concluding Remarks

The findings on how decisions can best be made based on a combination of
information are exceptionally robust and should be highly consequential for psy-
chological and educational practice, as well as other fields such as medicine and
law (e.g., Arkes et al., 2008; Guay & Parent, 2018; Hanson & Morton-Bourgon,
2009; Schwab, 2008). Professionals and academic psychologists have a hard time
accepting the superiority of statistical over holistic decision-making. Since Meehl
(1954), a number of articles (e.g., Dawes, 1979; Grove & Meehl, 1996; Highhouse,
2008) addressed different types of objections with insightful explanations why
these objections were unwarranted. As our results showed, 67 years after Meehl’s
publication, time has not resulted in a good understanding or appreciation of this
topic in textbooks on psychological testing.

In some textbooks it is remarked that ethical guidelines of psychologists do
not allow to completely rely on statistical decision-making. But as Murphy and
Davidshofer (2005) discussed: “there are few excuses for not at least considering
what a statistical model would say” (p. 530). Furthermore, using a statistical
decision-making procedure does not imply that the psychologist is not responsible
for the appropriateness of the procedure. As a reviewer remarked, The responsibility
lies in selecting the relevant predictors, and setting up the rule to combine the
information, but not so much second guess what the outcome is, every time the
professional gets a ‘hunch.’ In fact, a psychologist should closely monitor the
outcomes of statistical decision-making, use pilot studies, and intervenewhen things
go wrong, for example, by excluding less valid predictors or adjusting the weights
of a statistical rule. In fact, Dawes (2005) argued, and we agree, that it is unethical
to not use a method that optimizes valid prediction.

If we take psychology as an applied science seriously, textbooks and test
guidelines cannot stay behind in promoting an important finding in our field. Test
guidelines form the link between scientific psychometrics and practice. It is thus the
place where scientific findings can be disseminated to a wider audience. If we do
not translate important empirical findings into guidelines for practice, our scientific
findings will have very limited merit. When it comes to decision-making based on
test scores, we think we can and should do a better job than we are doing at the
moment.

When professionals do not adopt evidence-based procedures for test use, there
are at least four possible reasons.

1. They do not have sufficient knowledge about the most appropriate procedures
(Neumann et al., 2021a).

2. They do not believe in the evidence presented in scientific studies.
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3. They know about and believe in the evidence presented in scientific studies, but
do not act upon the evidence because of internal conflict (e.g., need for autonomy,
Nolan & Highhouse, 2014).

4. They know about and believe in the evidence presented in scientific studies, but
do not act upon them because of external pressures (e.g., stakeholder perceptions,
being valued in their work, Nolan et al., 2020).

Including guidelines on test use and decision-making in test standards can
help relieve all of these reasons. They can communicate the existing evidence
to overcome reason 1, they can discuss common misconceptions and invalid
counterarguments to overcome reason 2, and they serve to set a standard to resist
both internal and external pressures that hinder using evidence-based prediction
procedures. Therefore, we ask authors of textbooks and test guidelines to pay more
attention to statistical decision-making.

As a final note, we started this chapter with observing that Drenth and Sijtsma
(2006) devoted a whole chapter to the contribution of a test to the decision-making
process. Statistical versus holistic prediction is part of this decision-making process,
and the question the reader may have now is: How did they reflect on mechanical
versus holistic prediction? Well, they did a good job. In response to the question,
how should we combine the results of different tests? They noted that (p. 414; our
translation):

First, this can be done via a statistical process of weighing test scores and possibly
calculation of probabilities, and secondly via an intuitive, not statistical process of weighing
and prediction. In this intuitive way it often concerns the different weighting across different
cases; the process is less formalized, one does not follow a fixed strategy like in a statistical
procedure.

Furthermore, they discussed that:

An evaluation of the many research findings in this context was in agreement with the
original conclusions by Meehl that the statistical procedure is superior to the holistic
method

And their explanation is (p. 414):

This result can be understood as follows. In a holistic combination of objective data, such
as obtained in assessments with tests to predict an objective criterion, all kinds of biases,
stereotypes, and unfounded assumptions play a role besides knowledge of the professional
literature. One determines often on the basis of intuition the different weights, often in an
inconsistent way. In this way some test scores are weighted too heavily, some are getting
too few weights and per case and across different measurements there are fluctuations and
inconsistencies.

Although they did not tick all the boxes in their chapter as suggested by us in Table
3.1, this phrasing of the main message of the statistical prediction literature was
perhaps the most accurate description we found in the textbooks on psychological
testing on statistical prediction. 3

3 *References marked with an asterisk indicate works included in the review.



64 R. R. Meijer et al.

References

Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S., Anderson, L. A., Cook, R.
S., . . . Rush, J. D. (2006). The meta-analysis of clinical judgment project: Fifty-six years of
accumulated research on clinical versus statistical prediction. The Counseling Psychologist,
34(3), 341–382. https://doi.org/10.1177/0011000005285875

Aiken, L. R. (2003). Psychological testing and assessment. Pearson Education Group.
American Educational Research Association, American Psychological Association, National

Council on Measurement in Education, & Joint Committee on Standards for Educational and
Psychological Testing. (2014). Standards for educational and psychological testing. American
Educational Research Association.

*Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.). Prentice Hall.
Andrews, D. A., Bonta, J., & Wormith, J. S. (2004). The level of service/case management

inventory. Multi-Health Systems.
Arkes, H. R. (2008). Being and advocate for linear models of judgment is not an easy life. In J.

I. Krueger (Ed.), Modern pioneers in psychological science: An APS-Psychology press series.
Rationality and social responsibility: Essays in honor of Robyn Mason Dawes (pp. 47–70).
Psychology Press.

Arkes, H. R., Shaffer, V. A., & Medow, M. A. (2008). The influence of a physician’s use of a
diagnostic decision aid on the malpractice verdicts of mock jurors. Medical Decision Making,
28(2), 201–208. https://doi.org/10.1177/0272989X07313280

Clark, H. H., & Murphy, G. L. (1982). Audience design in meaning and reference. In J.-F. Le Ny
& W. Kintsch (Eds.), Language and comprehension (pp. 287–299). North-Holland Publishing
Company.

*Cohen, R. J., & Swerdijk, M. E. (2015). Psychological testing and assessment: An introduction
to tests and measurement. McGraw-Hill Education.

*Cooper, C. (2019). Psychological testing, theory and practice. Routledge.
Cronbach, L. J., & Gleser, G. C. (1965). Psychological tests and personnel decisions. University

of Illinois Press.
Dana, J., Dawes, R., & Peterson, N. (2013). Belief in the unstructured interview: The persistence

of an illusion. Judgment and Decision Making, 8(5), 512–520.
Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American

Psychologist, 34(7), 571–582. https://doi.org/10.1037/0003-066X.34.7.571
Dawes, R. M. (2005). The ethical implications of Paul Meehl’s work on comparing clinical

versus actuarial prediction methods. Journal of Clinical Psychology, 61(10), 1245–1255. https:/
/doi.org/10.1002/jclp.2-180

Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological Bulletin,
81(2), 95–106. https://doi.org/10.1037/h0037613

Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science,
243(4899), 1668–1674. https://doi.org/10.1126/science.2648573

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will
use imperfect algorithms if they can (even slightly) modify them. Management Science, 64(3),
1155–1170. https://doi.org/10.1287/mnsc.2016.2643

*Domino, G., & Domino, M. L. (2006). Psychological testing an introduction. Cambridge
University Press.

Drenth, P. J. D. (1965). De psychologische test [The psychological test]. Van Loghum Slaterus.
Drenth, P. J. D. (1975). De psychologische test [The psychological test] (2nd ed.). Van Loghum

Slaterus.
Drenth, P. J. D., & Sijtsma, K. (1990). Testtheorie. Inleiding in de theorie van de psychologische

test en zijn toepassingen [Test theory. Introduction to the theory of the psychological test and
its applications]. Bohn Stafleu van Loghum.


 419 453 a 419 453 a
 

 419 1698 a 419 1698
a
 

 813 2694 a 813 2694 a
 

 2436 2860 a 2436 2860 a
 

 384 3109 a 384 3109 a
 

 631 3275 a 631 3275 a
 

 301 3525 a 301 3525 a
 


3 Psychological and Educational Testing and Decision-Making: The Lack. . . 65

Drenth, P. J. D., & Sijtsma, K. (2006). Testtheorie. Inleiding in de theorie van de psychologische
test en zijn toepassingen [Test theory. Introduction to the theory of the psychological test and
its applications]. Bohn Stafleu van Loghum.

*Furr, R. M. (2018). Psychometrics, an introduction. SAGE.
Goldberg, L. R. (1970). Man versus model of man: A rationale, plus some evidence for a method

of improving on clinical inferences. Psychological Bulletin, 73(6), 422–432. https://doi.org/
10.1037/h0029230

*Gregory, R. J. (2013). Psychological testing, history, principles, and applications (7th ed.).
Pearson Education.

Grove, W. M., & Meehl, P. E. (1996). Comparative efficiency of informal (subjective, impres-
sionistic) and formal (mechanical, algorithmic) prediction procedures: The clinical-statistical
controversy. Psychology, Public Policy, and Law, 2(2), 293–323. https://doi.org/10.1037/1076-
8971.2.2.293

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus
mechanical prediction: A meta-analysis. Psychological Assessment, 12(1), 19–30. https://
doi.org/10.1037/1040-3590.12.1.19

Guay, J. P., & Parent, G. (2018). Broken legs, clinical overrides, and recidivism risk: An analysis of
decisions to adjust risk levels with the LS/CMI. Criminal Justice and Behavior, 45(1), 82–100.
https://doi.org/10.1177/0093854817719482

Hanson, R. K. K., & Morton-Bourgon, K. E. (2009). The accuracy of recidivism risk assessments
for sexual offenders: A meta-analysis of 118 prediction studies. Psychological Assessment,
21(1), 1–21. https://doi.org/10.1037/a0014421

Highhouse, S. (2008). Stubborn reliance on intuition and subjectivity in employee selection.
Industrial and Organizational Psychology: Perspectives on Science and Practice, 1(3), 333–
342. https://doi.org/10.1111/j.1754-943

*Hogan, T. P. (2015). Statistical testing, a practical introduction. Wiley.
Holt, R. R. (1970). Yet another look at clinical and statistical prediction. American Psychologist,

25(4), 337–339. https://doi.org/10.1037/h0029481
Holt. (1986). Clinical and statistical prediction. A retroperspective and would be integrative

perspective. Journal of Personality Assessment, 50(3), 376–386. https://doi.org/10.1207/
s15327752jpa5003_7

International Test Commission. (2013). ITC guidelines on test use version 1.2. Retrieved from:
https://www.intestcom.org/files/guideline_test_use.pdf

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to disagree.
American Psychologist, 64(6), 515–526. https://doi.org/10.1037/a0016755

Kahneman, D., & Klein, G. (2010). Strategic decisions: When can you trust your gut? McKinsey
Quarterly, from https://www.mckinsey.com/business-functions/strategy-and-corporate-
finance/our-insights/strategic-decisions-when-can-you-trust-your-gut?cid=other-soc-lkn-mip-
mck-oth-1912%2D%2D&sid=2972122698&linkId=79428658#

*Kaplan, R. M., & Saccuzzo, D. P. (2013). Psychological assessment and theory. Creating and
using psychological tests. International Edition. Central Learning.

Karelaia, N., & Hogarth, R. M. (2008). Determinants of linear judgment: A meta-analysis of
lens model studies. Psychological Bulletin, 134(3), 404–426. https://doi.org/10.1037/0033-
2909.134.3.404

*Kline, T. J. (2005). Psychological testing: A practical approach to design and evaluation. SAGE.
https://doi.org/10.4135/9781483385693

Krathwohl, D. R. (1998). Methods of educational and social science research: An integrated
approach. Longman.

Kuncel, N. R. (2008). Some new (and old) suggestions for improving personnel selection.
Industrial and Organizational Psychology, 1(3), 343–346. https://doi.org/10.1111/j.1754-
9434.2008.00059.x

Kuncel, N. R., Klieger, D. M., Connelly, B. S., & Ones, D. S. (2013). Mechanical versus clinical
data combination in selection and admissions decisions: A meta-analysis. Journal of Applied
Psychology, 98(6), 1060–1072. https://doi.org/10.1037/a0034156


 2196 392 a 2196 392 a
 

 1783 890 a 1783 890 a
 

 2416 1139 a 2416 1139
a
 

 -52 1471 a -52 1471 a
 

 313 1720 a 313 1720 a
 

 90 1970 a 90
1970 a
 

 419 2219 a 419 2219 a
 

 1947 2385 a 1947 2385 a
 

 -52 2634
a -52 2634 a
 

 1105 2800 a 1105 2800
a
 

 622 2966 a 622 2966 a
 

 1783 3464 a 1783 3464
a
 

 -52 3713 a -52 3713 a
 

 1745 4045 a 1745 4045 a
 

 844 4377 a 844 4377 a
 


66 R. R. Meijer et al.

Meehl, P. E. (1954). Empirical comparisons of clinical and actuarial prediction. In Clinical
versus statistical prediction: A theoretical analysis and a review of the evidence. University
of Minnesota Press.

Meijer, R. R., Neumann, M., Hemker, B. T., & Niessen, A. S. M. (2020). A tutorial on mechanical
decision-making for personnel and educational selection. Frontiers in Psychology, 10, 3002.
https://doi.org/10.3389/fpsyg.2019.03002

Milkman, K. L., Chugh, D., & Bazerman, M. H. (2009). How can decision making be
improved? Perspectives on Psychological Science, 4(4), 379–383. https://doi.org/10.1111/
j.1745-6924.2009.01142.x

*Miller, L. A., McIntire, S. A., & Lovler, R. L. (2015). Foundation of psychological testing. A
practical approach (5th ed.). SAGE.

Morris, S. B., Daisley, R. L., Wheeler, M., & Boyer, P. (2015). A meta-analysis of the relationship
between individual assessments and job performance. Journal of Applied Psychology, 100(1),
5–20. https://doi.org/10.1037/a0036938

Murphy, K. R. (2019). Understanding how and why adding valid predictors can decrease the
validity of selection composites: A generalization of Sackett, Dahlke, Shewach, and Kuncel
(2017). International Journal of Selection and Assessment, 27(3), 249–255. https://doi.org/
10.1111/ijsa.12253

*Murphy, K. R., & Davidshofer, C. O. (2005). Psychological testing, principles and applications
(6th ed.). Pearson Prentice Hall.

Murphy, K. R., Deckert, P. J., Kinney, T. B., & Kung, M. C. (2013). Subject matter expert
judgments regarding the relative importance of competencies are not useful for choosing the
test batteries that best predict performance. International Journal of Selection and Assessment,
21(4), 419–429. https://doi.org/10.1111/ijsa.12051

Neumann, M., Hengeveld, M., Niessen, A. S. M., Tendeiro, J. N., & Meijer, R. R. (2021a).
Education increases decision-rule use: An investigation of education and incentives to improve
decision making. Journal of Experimental Psychology: Applied. Advance online publication.
https://doi.org/10.1037/xap0000372

Neumann, M., Niessen, A. S. M., & Meijer, R. R. (2021b). Implementing evidence-based assess-
ment and selection in organizations: A review and an agenda for future research. Organizational
Psychology Review, 11(3), 205–239. https://doi.org/10.1177/2041386620983419

Neumann, M., Niessen, A. S. M., Tendeiro, J. N., & Meijer, R. R. (2021c). The autonomy-
validity dilemma in mechanical prediction procedures: The quest for a compromise. Journal of
Behavioral Decision Making. Advance online publication. https://doi.org/10.1002/bdm.2270

Nolan, K. P., & Highhouse, S. (2014). Need for autonomy and resistance to standardized
employee selection practices. Human Performance, 27(4), 328–346. https://doi.org/10.1080/
08959285.2014.929691

Nolan, K. P., Dalal, D. K., & Carter, N. (2020). Threat of technological unemployment, use
intentions, and the promotion of structured interviews in personnel selection. Personnel
Assessment and Decisions, 6(2), 38–53. https://doi.org/10.25035/pad.2020.02.006

*Reynolds, C. R., & Livingston, R. B. (2012). Mastering modern psychological testing. Pearson.
Roulin, N., & Bangerter, A. (2012). Understanding the academic-practitioner gap for struc-

tured interviews: “Behavioral” interviews diffuse, “structured” interviews do not. Interna-
tional Journal of Selection and Assessment, 20(2), 149–158. https://doi.org/10.1111/j.1468-
2389.2012.00588.x

Ryan, A. M., & Sackett, P. R. (1987). A survey of individual assessment practices by
I/O psychologists. Personnel Psychology, 40(3), 455–488. https://doi.org/10.1111/j.1744-
6570.1987.tb00610.x

Sackett, P. R., Dahlke, J. A., Shewach, O. R., & Kuncel, N. R. (2017). Effects of predictor
weighting methods on incremental validity. Journal of Applied Psychology, 102(10), 1421–
1434. https://doi.org/10.1037/apl0000235

Sarbin, T. R. (1943). A contribution to the study of actuarial and individual methods of prediction.
American Journal of Sociology, 48(5), 593–602. https://doi.org/10.1086/219248


 -52 392 a -52 392 a
 

 1947 558 a 1947 558 a
 

 125 1056 a 125 1056 a
 

 2196 1305 a 2196
1305 a
 

 419 1887 a 419 1887 a
 

 -52 2219 a -52 2219 a
 

 992 2468 a 992 2468 a
 

 1612 2717 a 1612 2717 a
 

 1947 2883 a 1947 2883 a
 

 1091 3215
a 1091 3215 a
 

 1745 3547 a 1745 3547 a
 

 1745 3796 a 1745
3796 a
 

 125
4128 a 125 4128 a
 

 1328 4294 a 1328 4294
a
 


3 Psychological and Educational Testing and Decision-Making: The Lack. . . 67

Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel
psychology: Practical and theoretical implications of 85 years of research findings. Psycholog-
ical Bulletin, 124(2), 262–274. https://doi.org/10.1037/0033-2909.124.2.262

Schwab, A. P. (2008). Putting cognitive psychology to work: Improving decision-making in the
medical encounter. Social Science & Medicine, 67(11), 1861–1869. https://doi.org/10.1016/
j.socscimed.2008.09.005

Taylor, H. C., & Russel, J. T. (1939). The relationship of validity coefficients to the practical
effectiveness of tests in selection: Discussion and tables. Journal of Applied Psychology, 23(5),
565–578. https://doi.org/10.1037/h0057079

Terpstra, D. E., & Rozell, E. J. (1997). Why some potentially effective staffing practices
are seldom used. Public Personnel Management, 26(4), 483–495. https://doi.org/10.1177/
009102609702600405

Van der Linden, W. J. (1991). Applications of decision theory to test-based decision making. In
R. K. Hambleton et al. (Eds.), Advances of educational and psychological testing: Theory and
applications. Springer Science + Business Media.

Vrieze, S. I., & Grove, W. M. (2009). Survey on the use of clinical and mechanical prediction
methods in clinical psychology. Professional Psychology: Research and Practice, 40(5), 525–
531. https://doi.org/10.1037/a0014693

Wiggins, N., & Kohen, E. S. (1971). Man versus model of man revisited: The forecasting of
graduate school success. Journal of Personality and Social Psychology, 19(1), 100–106. https:/
/doi.org/10.1037/h0031147

Yu, M. C., & Kuncel, N. R. (2020). Pushing the limits for judgmental consistency: Comparing
random weighting schemes with expert judgments. Personnel Assessment and Decisions, 6(2),
1–10. https://doi.org/https://scholarworks.bgsu.edu/pad/vol6/iss2/2

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



836 143 a 836 143 a
 

 1947 309 a 1947 309 a
 

 231 641 a 231 641 a
 

 1947 807 a 1947 807 a
 

 90 1388 a 90 1388 a
 

 2436 1554 a 2436 1554 a
 

 125 1887 a 125 1887 a
 
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 4
Trustworthy Artificial Intelligence
in Psychometrics

Bernard P. Veldkamp

Abstract The availability of sensors, eye-trackers, smartwatches, Wi-Fi trackers,
or other digital devices facilitates the collection of new types of data that can be
used for measurement. The question is how to analyze them. Several psychometric
models are available, but even though they have been applied successfully in many
testing programs, they do have their limits with respect to the kind of data they
can be applied to. Artificial intelligence (AI) offers many methods for dealing with
these new and more complex datasets. They do have some limitations when it comes
to reliable and valid measurement thought. The question arises how to apply them
in the field of psychometrics. To answer this question, the field of psychometrics
is introduced first. Besides, the benefits and disadvantages of artificial intelligence
are illustrated in three examples. A promising development, when it comes to the
application of AI in the field of psychometrics, is referred to as trustworthy AI
(TAI), with principles related to fairness, explainability, and accountability. Based
on the examples of the use of AI in social and health science and the lessons
learned from the approaches to integrate new data types in existing psychometric
models, a framework is defined with nine steps for the use of AI in psychometrics.
For each of these steps, it is evaluated how TAI can be applied for reliable and
valid measurement. The chapter concludes with the observation that straightforward
application of AI in the field of Psychometrics might still be a step too far, but that
the developments related to TAI go fast and offer new and exciting opportunities for
the application of AI to psychometrics.

Accurately measuring and confirming conclusions about human behavior, skills,
knowledge, abilities, interests, values, and attitudes or the impact of interventions
is considered to be of great importance in the social and health sciences. For this
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purpose, standardized tests have been used in the past decades. Psychometricmodels
are available for analyzing the response data, and reliable and valid inferences can
be made. Recently though, different types of data became available. Text, video,
audio, logfile, or sensor data related to human behavior have been generated in large
volumes. Social media could be a source, or data could be found online in data
repositories. Besides, the availability of sensors, eye-trackers, smartwatches, Wi-Fi
trackers, or other digital devices even facilitated the collection of different types of
data. The vast pool of available data could be a potential source of information to
reveal new insights about human behavior, but the question is how to unlock and
analyze it.

Artificial intelligence (AI) offers many methods for dealing with large datasets
(Veldkamp, 2018). Natural language processing, image and speech recognition, or
computer vision could be applied to derive meaningful information from the data.
Machine learning, deep learning, supervised learning, unsupervised learning, or
reinforcement learning (Panch et al., 2018) can be applied to derive inferences. This
can be done with the help of specialized software like CRAN (2021), Python (Van
Rossum & Drake, 2009), or MATLAB (Mathworks, 2021). AI can be seen as a
methodology that combines data, algorithms, and computing power. Great successes
have been achieved with these methods in areas like geography (Zhu et al., 2017),
computer vision (Voulodimos et al., 2018), health care (Miotto et al., 2018), or
text mining (Liang et al., 2017). Unfortunately, these AI methods are often very
complex and hard to interpret for humans. For example, deep learning algorithms
mainly function as black boxes where it is impossible to understand the functional
relationship between the data (input) and the inferences (output). Besides, many
examples can be found where the application of AI resulted in biased inferences
(e.g., O’Neil, 2016). For the application of AI in social and health science, this
poses some challenges.

A promising direction, therefore, is referred to as trustworthy AI (TAI; Floridi,
2019). Thiebes et al. (2021) mention the following foundational principles of TAI:
(1) beneficence, (2) non-maleficence, (3) autonomy, (4) justice, and (5) explicability.
Where beneficence, non-maleficence, and justice have many implications for the use
and effect of the use of AI in society, the principles of autonomy and explicability
have many implications for doing research with AI. Autonomy refers to the ability
of humans to be in the lead. In a research context, this implies that researchers need
to implement an oversight mechanism that enables them to control the algorithms
during the entire process. This is also referred to as keeping the human in the
loop when implementing AI methods. Explicability, on the other hand, is about
both explainability and accountability. Explainable AI creates models that are
interpretable while maintaining high levels of performance and accuracy (Floridi
et al., 2018). Accountable AI creates models that are transparent and controllable.
Thiebes et al. (2021) therefore conclude that AI can be trusted if its algorithms are
fair, can be understood, and are capable to do what needs to be done.

This chapter focuses on the use of TAI for inferring conclusions about the
abilities, aptitudes, or attitudes of individuals based on data. The research question
that guided this study is:
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How can trustworthy artificial intelligence be integrated into the field of psychomet-
rics?

First, the field of psychometrics is introduced, and several models to analyze various
data types within the existing framework of psychometrics are described. After that,
three examples are presented that illustrate the issues involved with analyzing data
with AI in the social and health sciences. Subsequently, a general framework for the
use of AI in the field of psychometrics is presented. The chapter concludes with an
outlook on the trustworthy application of AI in psychometrics.

4.1 Psychometrics

The science of inferring conclusions about abilities, aptitudes, or attitudes of
individuals based on data is generally referred to as psychometrics. More specif-
ically, psychometrics comprises the development, appraisal, and interpretation of
psychological tests and other measures used to assess variation in behavior and
to link such variation to psychological conditions (Committee on psychological
testing, 2015). Psychometrics is about relating variability in data to variability in
latent constructs. The concept of latent in latent construct refers to the fact that these
constructs cannot be observed directly. We have to rely on data and make inferences
about the underlying constructs that account for them. By carefully collecting data
using tests of questionnaires, an attempt is made to minimize the measurement error
and to come to reliable inferences. Psychometric models have been developed to
guide this process. Based on dichotomously or polytomously scored items, they can
be applied to make inferences about the underlying constructs.

The classical test theory (CTT) model is among the earliest models available. It
is built on the assumption that the observed score (X) of a respondent consists of a
true score (T) and an error component (E):

X = T + E

By adding the assumption that the errors are normally distributed around zero and
that the errors are uncorrelated with the true score, it can be shown that the expected
observed score equals the true score of the respondent. See also Lord and Novick
(1968) for an in-depth introduction to classical test theory. With the help of CTT,
it was not only possible to draw inferences about the true underlying constructs or
abilities of the respondents; with the help of reliability and validity indices (Lord
& Novick, 1968; Sijtsma, 2009; Sijtsma & van der Ark, 2015), statements could be
made about the quality of these inferences as well.

There was some criticism about CTT though. The score of the respondent can
only be interpreted in the context of the specific measurement instrument, the
standard error of measurement is assumed to be the same for all respondents, most
generally applied reliability indices only provide lower bounds for the reliability,
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and inferences can only be made at the test level and not at the individual
item level. As an alternative, item response theory (IRT) models were proposed
(Hambleton & Swaminathan, 1985; Lord, 1980). Based on the assumptions of
unidimensionality and local independence, a series of models have been developed
for both dichotomous and polytomous data. The Rasch model for dichotomous items
states that the probability of a correct response (X = 1) to an item given the ability
of the respondent (θ ) can be modeled using a logistic function:

P (X = 1|θ) = e(θ−b)

1 + e(θ−b)
,

where b denotes the difficulty of the item. More complex IRT models were
developed with multiple item and person parameters, both for dichotomous and
polytomous responses (see Embretson & Reise, 2013). Besides models that assume
a parametric relationship between the ability, the item, and the probability of
a correct response, non-parametric IRT (NIRT) models were developed (Sijtsma
& Molenaar, 2002) that do not make assumptions about the specific functional
relationship, but they typically specify order restrictions like the monotonicity
assumption:

P (θa) ≤ P (θb) ,

whenever θa < θb. Typical for these NIRT models is that they were developed
to relax the IRT assumptions as much as possible while maintaining essential
measurement properties (Sijtsma & Meijer, 2006).

Just to mention a few advantages of IRT, the possibility to compare test scores
over different tests and different test administrations added to the popularity
of these models. Besides, because item parameters are claimed to be sample
independent, i.e., independent of the particular sample of items and/or examinees
chosen (Hambleton & Swaminathan, 1985), IRT facilitated item banking and
computerized adaptive testing. Nowadays, most large-scale operational testing
programs, therefore, rely on IRT to relate response behavior to the underlying
constructs.

Both CTT and IRT models have been developed to handle response data.
Different models are available to work with other data types like response times
and self-narratives as well.

4.1.1 Response Times

Both CTT and IRT models only rely on response data to make inferences about the
underlying latent constructs. In addition, other sources of information are available
that could be of use. These sources of information are often referred to as process
data. Process data is about the series of actions a respondent performed but also
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about the time they spent on these actions. Response times might reveal useful
information about how well respondents master a given task. This notion was,
for example, used to develop speed tests in which respondents are challenged to
complete as many tasks as possible within a given time frame. All tasks are relatively
easy, and the objective is to demonstrate processing speed while minimizing errors.

Also in educational measurement, test speededness plays a role. Unlike tradi-
tional speed tests, the tasks are not easy and there is a spread in the difficulty of the
items. However, the time to finish a test is often still limited. Response times might
therefore reveal information about the respondents and the items. Van der Linden
(2007) proposed a general hierarchical framework for the concurrent modeling of
response data and response times. In this framework, several assumptions were
made: (1) a respondent is working at a constant speed; (2) for a fixed respondent,
both response and response times are assumed to be random variables; (3) separate
item and person parameters for both the distributions of responses and response
times; (4) conditional independence between responses and response times given the
levels of ability and speed; and (5) separate models for responses and response times
can be combined and estimated within a hierarchical framework using a Bayesian
approach.

The link between response and response time parameters within this framework
allows the combination of information from both sources. Because of this, it is
possible to improve inferences that are made on response data only, when an IRT
model is applied. For example, response time information can be used to improve
the estimation of ability and item parameters. Besides, response times can be used to
deal with issues of speededness in testing or detection of aberrant response behavior.

By extending existing IRT models with log-normal response models, process
data could be incorporated, and the performance of candidates could be modeled
more accurately compared to models that model the performance based on the final
responses only.

4.1.2 Self-Narratives

Questionnaires or other item-based measurement instruments are generally applied
to measure different kinds of psychological constructs because they are easy to
administer, don’t take much time, and don’t need the presence of a psychologist.
These instruments have been carefully developed to provide the necessary informa-
tion with a minimum number of items. However, respondents might feel limited
in expressing themselves. An alternative would be to ask respondents to share
their stories in a self-narrative. It is challenging to analyze the large body of open
text, but such a story could provide useful information as well (He et al., 2012),
even though the information might not be perfect and self-narratives might contain
noninformation as well.

To combine textual data and information from questionnaires, He et al. (2019)
applied a Bayesian approach. Within Bayesian statistics, inferences are made based
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on a posterior, which combines prior beliefs about the construct of interest with
a likelihood of the observed responses. He et al. (2019) used self-narratives for
defining the prior beliefs and combined themwith the likelihood of the questionnaire
data. In this way, both data sources could be combined in one posterior distribution.

4.1.3 Lessons Learned

The use of response times and self-narratives demonstrates that response data can be
combined with different data sources by extending existing psychometrics models.
The general hierarchical framework of van der Linden (2007) combines the power
of response time modeling and multilevel Bayesian statistics. He et al. (2019) also
built upon the strengths of Bayesian statistics by eliciting informative priors using
new data sources. By carefully modeling these new data types, they could be added
to existing psychometrics, and the measurement process could be enriched.

To benefit from the opportunity to build and compute the complex Bayesian
models that were needed, a high level of specialized knowledge in computational
Bayesian psychometrics is required. Besides, given the variety of the new data, such
an approach might not be applicable. In the next section, three examples will be
presented that apply AI to come to inferences about underlying constructs based on
a variety of data sources.

4.2 Examples of the Use of AI

Three examples are discussed that show various applications of AI in the social,
behavioral, and health sciences. They illustrate the issues involved in analyzing data
with AI. First, a deep learning algorithm will be presented that can be applied
to analyze continuous physiological data streams to predict workload. Second,
a face-scanning algorithm is described that was applied to predict personality.
Finally, patient reports will be analyzed to predict post-intensive care syndrome,
that is, cognitive, psychiatric, and/or physical disability of survivors or relatives after
treatment in the intensive care unit (ICU).

4.2.1 Perceived Mental Workload

In the process of optimizing team or individual performance, attention is often paid
to perceived mental workload. How does the task load related to the capacity of the
persons involved? To perform optimally, the ratio between available and required
cognitive resources is assumed to be more or less equal to 1 (Csikszentmihalyi,
1997).
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Different physiological signals have been related to workload. Heart rate, stress,
and brain activity increase when workload increases. Attention to the task relates to
workload as well. To measure these variables, photoplethysmography (PPG; heart
rate), galvanic skin response (GSR; stress), functional near-infrared spectroscopy
(fNIRS; brain activity), and eye-tracking (ET; attention to the task) can be applied.
To find out which signals would provide the most useful information, Dolmans et
al. (2020) collected PPG, GSR, fNIRS, and ET data of participants who carried out
tasks of different difficulty levels.

To handle such multimodal data, different approaches can be used. Continuous
data streams can be merged using early, intermediate, or late fusion. When data
fusion is applied, various data streams are merged or integrated to produce more
consistent, reliable, and useful information. Each fusion strategy comes with its
own (dis)advantages. Early fusion asks for data harmonization before the data is
fed into the network. When sampling rates vary for the different data collection
devices, this might be a problem. Intermediate fusion does not suffer from these
problems, but it asks for a complicated multilevel architecture of the deep neural
net. Late fusion analyzes the data streams separately and generates an output based
on a kind of majority vote. Dolmans et al. (2020) opted for intermediate fusion.
For each modality a separate neural net consisting of several layers was designed;
the outcomes of these individual nets were the combined input of a second neural
net consisting of another series of layers. Figure 4.1 illustrates the architecture of
the network. First the four data streams are analyzed separately, then the outputs
of the separate nets are combined in a concat layer, and finally they are analyzed
concurrently in the second part of the network.

Even though the workload, as measured with the NASA Task Load Index (Hart &
Staveland, 1988), was predicted rather successfully with the combined data streams
coming from various devices, issues related to synchronizing the devices turned
out to be quite difficult. Besides, training the deep neural nets and optimizing the
settings were rather time-consuming and sensitive to small changes in settings of
the different layers. This application is just one example of the capability of AI to
analyze multimodal datasets.

4.2.2 Face Recognition

Personality testing with the help of AI recently received considerable attention
(Liem et al., 2018) in job selection, because of its efficiency and scalability. Machine
learning algorithms have been developed to predict personality based on facial
features. Deep learning algorithms were trained to analyze video material. Röber
(2021) implemented a deep neural net in OpenCV (2020) that was capable of
detecting facial landmarks in faces at different orientations and scales and under
substantial occlusion.
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Fig. 4.1 The architecture of the deep neural net for analyzing multimodal data

Facial landmarks (Fig. 4.2) are salient features of faces such as eyes and
eyebrows, nose, mouth, or jawline. Besides, pupil locations were detected. Based
on these data, features or variables could be generated like distances between
landmarks and variation in pupil location. When respondents were classified as
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Fig. 4.2 68 Facial landmarks that were detected

either scoring high or low for the different personality traits, the accuracy, that is, the
percentage of correct classifications of the algorithm ranged from 0.84 for openness
to 0.94 for conscientiousness (Röber, 2021). Even though the outcome (high or low)
is a rather rough dichotomous measure, these results seem to verify the use of face
recognition as the first screening for candidates in a job selection context from a
technical point of view.

Ethical and legal issues have to be considered though. How about privacy of
participants? Do they provide consent for the use of their image or video? How
long will the data be stored? The use of face recognition also received considerable
criticism, both in the public and in the scientific domain. The Netflix documentary
Coded Bias illustrated flaws in facial recognition technology, and it has been shown
that results can be contradictory. More specifically, Kachur et al. (2020) reported
that personality traits can be better predicted for female faces, whereas Hu et al.
(2017) reported that personality could be better predicted frommale faces. Escalante
et al. (2018) described that ethnicity affects the performance of face recognition
technology. Finally, Abdurrahim et al. (2018) mentioned that besides gender and
ethnicity, age-related bias might occur when face recognition is applied.

Even though Keszler (2021) did not find any significant effects of gender,
ethnicity, or age when the models of Röber (2021) were applied, it can be concluded
from various studies in this field that the sample for which the face recognition
models are trained is very important and that various sources of bias might disturb
its performance and when they are applied. So, even though AI could be applied for
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face recognition, this example also illustrates that ethical considerations might have
to be taken into account when AI is applied.

4.2.3 Post-Intensive Care Syndrome (PICS)

PICS refers to cognitive, psychiatric, and physical problems after treatment at an
intensive care unit (ICU). Cognitive impairment was reported to occur on average
in 25% of ICU survivors, psychiatric illnesses were reported by up to 62%, and ICU-
acquired neuromuscular weakness was reported by 25% of the survivors (Rawal et
al., 2017). To detect survivors that are at risk of developing PICS in an early stage,
the University of Twente and Medisch Spectrum Twente hospital started a study
where patient open format self-reports, in which they describe how they are doing,
were screened for risk of PICS. An initial data collection resulted in responses of
261 ICU survivors and relatives. Both survivors and relatives provided a (short)
description of what they experienced and how they felt. Out of this sample of
survivors and relatives, 33 were identified as having PICS-related symptoms. Data
were pre-processed by stemming algorithms that among others remove conjugations
and by removing stop words.

Analysis of the self-reports using sentiment analysis revealed that both the PICS
and non-PICS groups hardly differed in the kind of words they used (see Fig. 4.3),
when it comes to different sentiments or emotions. Tot summarize the different
emotions expressed in the texts, Plutchik’s wheel of emotions (Abbasi & Beltiukov,
2019) was applied. Survivors and relatives in the PICS group only showed higher
word counts for sentiments “anger” and “surprise” and lower word counts for “joy.”

Fig. 4.3 Scores for Plutchik’s wheel of emotions for the PICS group (left) and the non-PICS group
(right)
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Fig. 4.4 Unigrams for relatives with (a) and without PICS (b) and survivors with (c) and without
PICS (d)

Analysis of the unigrams (frequencies of individual words) revealed that the most
commonwords in both groups were “Het gaat best wel goed” (“It goes rather well”).
Only when these words were removed from the text corpus, differences in unigrams
occurred for both the survivors and relatives with and without PICS (Fig. 4.4).

Unfortunately, the remaining word frequencies (after removing the frequently
used words “it goes rather well”) were very low, and linguistic features were not
suitable yet for building reliable prediction models. One of the explanations was
that it is in the character of the people living in the Twente region not to complain.
Taking this information into account, it makes sense that the words “it,” “goes,”
“rather,” and “well” are among the most frequently used words. A self-report on
how people from the Twente region are doing therefore does not provide useful
information for predicting PICS. On top of this regional effect, it is quite common
in the Netherlands to respond to the question how they are doing in quite general
wordings. This might have had an effect as well.

Even though AI was applied successfully to unlock large bodies of open text, the
resulting models did not have any predictive power for the construct of interest.
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4.3 Framework for the Use of AI in Psychometrics

The field of psychometrics has been confronted with new voluminous, veracious,
and variable data sources. AI methods have been developed to deal with these data
types, but before they can be used in the field of psychometrics, it has to be guaran-
teed that they meet quality standards comparable to those of existing psychometric
models. Research on response times modeling and the use of informative priors are
successful examples of extensions of psychometrics with other data types. A more
general approach is needed to fully integrate new data types and AI.

A promising development is the focus on trustworthy AI with principles related
to fairness, explainability, and accountability. Based on the three examples of the
use of AI in social and health science and the lessons learned from the approaches
to integrate new data types in psychometric models, an attempt was made to define
a framework with useful steps for the use of AI in psychometrics. It is important
to notice that many AI applications have been developed with an emphasis on
predictive validity, whereas in the area of psychometrics, construct validity is of
great importance as well. The framework is broken down into nine steps that each
emphasize a different aspect of the use of AI in psychometrics.

1. Defining the Clear Measurement Goal

AI can be used to handle large datasets. Both the PICS and the workload
examples illustrate that a large number of variables, where some of the variables
only carry a limited amount of information by themselves (individual words are not
very informative) and are very different (e.g., heart rate and eye movement), can be
combined into one model. One of the challenges involved in handling such large
and diverse datasets is to prevent that the application of AI turns into a phishing
expedition, where a model is being built by repeatedly adding variables until a
relation is found.

One way to prevent this is by formulating the goal of research or the goal of
measurement in advance. This is also very much in line with the empirical cycle
of research as formulated by De Groot (2019). Based on observations or previous
research, hypotheses are being formulated that can be tested using empirical
information. So before a start is made to explore the data, a hypothesis should be
formulated that specifies the constructs of interest and guides the process of AI.
For research purposes, one could consider to preregister the study, which is quite
common in, for example, random clinical trials.

2. Making an Inventory of Available Data

The next step is to take inventory of available data and to collect the information
that is available about these datasets. Such an inventory can result in a large and
diverse set of data sources. Veldkamp et al. (2021), for example, identified ten
different types of data sources when they searched within schools for information
that could be informative about the performance of individual pupils. The sources
vary from large-scale international surveys like PISA (Schleicher, 2019) to notes
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taken during teacher meetings. An important notion is that the General Data
Protection Regulation (GDPR; Voigt & von dem Bussche, 2017) requires that
appropriate consent needs to be given before the data can be used.

When the data has been identified, accessibility and usefulness have to be
explored. The granularity of the data might vary, ownership of the data might vary,
and permission to work with the data is not always granted. The data might be
incomplete, and it might be unknown how it was collected, so there might be a lot
of uncertainty involved. Given the goal of measurement, it has to be considered
which data will be included in the analyses. It might even be necessary to collect
new data if the available data does not suffice. One of the most important outcomes
of this step is that the choices that have been made are described and accounted
for.

3. Preprocessing the Data

Different data types come in different formats. For example, audio files, heart rate
signals, or text documents have to be processed to make this raw data accessible for
analysis. For many data formats, specialized software is available, but for others, this
software is still under development. New data sources come with new challenges.
In the workload example, we struggled with the problem of handling data from
various sources. Physiological data were recorded by devices and the suppliers
did their best to support us, but a lot of time had to be invested in harmonizing
the various signals. Specialized knowledge is often needed, not only to handle the
data but also to distinguish data from noise. Blázquez-García et al. (2021) wrote a
review on methods that are available for outlier detection, and they distinguish three
different kinds of outliers, individual observations, several consecutive observations
that are unusual, or entire signals that are not useful for analysis. Notably, however,
removing data is not without consequences. Bakker and Wicherts (2014) illustrate
the dangers of outlier removal and the consequences of different analysis techniques.
Several strategies have been developed to define, to detect, and to handle different
kinds of outliers (e.g., Aguinis et al., 2013). It remains a topic of research how to
apply these strategies to the development of AI models.

4. Identification and Selection of Variables

Once raw data is accessible, variables can be derived. The face recognition
example illustrates this process. First, facial landmarks have to be detected in
video data. Based on these landmarks, variables can be defined related to, for
example, variation in pupil location. The number of variables that can be defined
is often very large. With textual data, variables can be defined related to the
frequency of individual words, frequency of combination of words, total word
count, sentence length, but also linguistic to linguistic features like the number of
verbs and complexity, or even interpretations of sentences or entire texts. Given
the goals of measurement, a selection has to be made about which variables to
generate. Suggestions for variable selection can often be found in the literature,
or the variables might be suggested by the preprocessing software.
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Once the variables have been defined, they can be applied in the modeling
process. Here too it holds that selection of variables is both theory-based and data-
driven. A theory might provide guidance about which variables are assumed to be
relevant. On the other hand, one of the strengths of AI is that new variables of
interest can be found by exploring the data realm. An initial selection of promising
variables could be made based on theory and by using straightforward measures like
the correlation between input and output variable in case of a continuous output or
by applying chi square-based measures in case of a categorical output (e.g., He et
al., 2012). Which and how many of the variables are selected for the final model
depends on the performance of the models.

It should be mentioned though that the variable selection also depends on the
purpose of the model. There is a difference between models that focus on prediction
and models that focus on measurement. If the model is designed to measure a
specific construct, a theoretical underpinning of the variable selection process is
very relevant because of validity issues. On the other hand, when the purpose
is prediction, the focus is on the quality of the outcomes, and it is considered
less important which variables are identified and selected to come to an optimal
prediction.

5. Separating Training from Test Data

In psychometrics, model fit indices are available that provide information about
how well the model represents the data. These indices can be used to interpret the
parameters. Person fit indices (e.g., Meijer & Sijtsma, 2001) provide information
about how well the model can analyze an individual’s response pattern and can
provide information about possible aberrant behavior like cheating. These model
fit indices provide information about how well the inferences of the model can be
trusted.

Such model fit indices are not available in AI, unfortunately. Therefore a different
approach is needed. Various performancemeasures have been proposed (e.g., Dinga
et al., 2019). An important notion is that these performance measures should not be
calculated over the same data set as the one that was used to develop the model,
because of the risk of over-fitting. The set of available data is therefore split into
a training set and a test set. The test set is set aside and the training set is used to
develop the model. This could be a 50/50 percent split, a 70/30 percent split, or
even an 80/20 percent split. The choice of split proportion should be made keeping
in mind that the training set has to be large enough to train a stable model for the set
of variables at hand, preferably using resampling methods to reduce the error rate
and to increase model robustness (James et al., 2021). After training the model, the
performance can be tested by applying the model to the hold-out test set. In such a
way, reliable information about the performance is obtained.

It should be mentioned that both the training and the test set come from the
same original data set. To prevent the resulting common method bias, it would
even be stronger if a second independently collected dataset would exist, to test
the performance of the model.
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6. Choice of Data Mining Method and Hyperparameter Optimization

Many different methods for unsupervised and supervised learning, either for
classification or prediction, have been proposed (Hastie et al., 2008; James et al.,
2021). It is beyond the scope of this framework to mention all of them. One thing
these methods have in common is the use of hyperparameters, parameters that are
used to control the learning process. They could refer to, for example, the number of
subsets in cross-validation or the way the data was split in a training and a test set. To
optimize the learning process, optimal hyperparameters have to be chosen. A grid
search, where all combinations of hyperparameters are systematically evaluated,
could be used for this purpose but is very time-consuming. Other approaches for
hyperparameter optimization of hyperparameter tuning are available (e.g., Feurer &
Hutter, 2019).

It was already mentioned that the explainability of AI models is an important
issue when it comes to gaining trust in the outcomes and applications in practice.
To measure human behavior, either in the context of psychological, educational, or
health measurement, the choice of data mining methods is therefore limited to those
methods that are transparent and interpretable. This is different from an AI model
that was developed to optimize prediction. Also in Step 6, it holds that the choices
being made have to be registered and accounted for to gain trust in the use of the
model.

7. Interpreting the Results

Fairness, explainability, and accountability are seen as core values in the use of
trustworthy AI. Because of the interpretability of TAI algorithms, we can connect
the outcomes of the model to the goal formulated in Step 1. Visual aids can be
applied to facilitate the interpretation for a more general audience. Besides, the
choices that were made during the process are documented, which guarantees that
the whole process can be accounted for.

Within the context of psychometrics, error of measurement and reliability are
typically reported to provide information about the quality of the model. For AI,
such indices are missing. As an alternative, resampling methods like bootstrapping
or cross-validation can be applied when training the model to provide information
about the uncertainties in the parameters and about to what extent the resulting
scores can be relied upon.

8. Validating the Results

Besides the reliability of the results, validity is a core concept in psychometrics.
Validity refers to whether the resulting score provides trustworthy information about
the constructs of interest that were mentioned when the goal of measurement was
specified. In the case of AI, it implies that the outcomes or predictions can be applied
with enough fidelity for measurement purposes. AI typically relies on hold-out
samples to demonstrate whether the results hold for different populations. However,
within a measurement context, validity comprises more than the performance of the
model on a hold-out subset of the initial sample.
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The argument-based approach of Kane (2006, 2013) is widely applied in
validation theory and can be of help. Kane mentions that validity is related to the
intended use of the outcomes. To substantiate whether the outcomes of a model are
used appropriately, all steps to come from observations to the use of the outcomes
in practice have to be substantiated. Therefore, the whole train of thought, to come
from raw data to inferences about the scores, has to be analyzed and accounted for.
Finally, the validity is based on a combination of these arguments. An independent
check of both the results and the validation process will increase trust.

9. Implementation in Practice

Once the reliability and validity of the AI model have been substantiated,
the outcomes can be implemented in practice. Developing a user-friendly robust
implementation that can be applied by practitioners is a challenge on its own, which
goes beyond this chapter. It is important nonetheless to keep in mind that the original
goal of measurement should still be leading here. A final step is to provide the
intended user with proper documentation of how the AI-based measurement process
was conducted. To facilitate the communication of this process, data visualization
tools should be applied that translate the data mining process into charts, graphs,
or other visuals. This kind of tools can also be of much help in communicating the
measurement results with the persons who have been measured.

4.4 Conclusion

Psychometrics is a field that is specialized in measuring human behavior, skills,
knowledge, abilities, interests, values, and attitudes, or the impact of interventions.
Classical test theory and (non-)parametric item response theory have proven their
value in this field. Recently, an abundance of new data sources has become available
that might be useful for deriving inferences about these constructs as well. Most
of them cannot be analyzed using existing models. Besides, the volume, velocity,
and variety of these data sources ask for a different approach. To handle these data
sources, a set of tools and algorithms referred to as AI can be applied.

Unfortunately, black-box models, like deep neural nets, are so complicated
that they cannot be interpreted by humans, which causes all kinds of validity
issues. Recently, however, the topic of trustworthy AI has received considerable
attention. These AI models meet the principles of interpretability and accountability.
Neumann et al. (2021) recently demonstrated that people prefer algorithms in which
they retain some influence or know how they can affect the predictions or outcomes.
Emphasizing interpretability and accountability of AI will strengthen the acceptance
of AI in the area of psychometrics. In this chapter, an attempt was made to formulate
a pipeline for the trustworthy application of AI in psychometrics. The next step
would be to operationalize reliability for various AI algorithms and to provide a
framework for building validity arguments for AI models applied for measuring
human behavior, skills, or abilities.
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One of the questions that remain is whether AI can be used to its full potential
when resulting models have to be explainable and accountable. Deep neural nets that
do not meet these requirements have been applied successfully for many problems.
It seems to be a pity that these powerful methods are deemed inapplicable. One
should bear in mind however that these powerful methods focus on prediction and
that there is a difference between prediction and measurement. With prediction,
the quality of the outcome is decisive. With measurement, the process has to
be accountable as well. So, for prediction, these models might still be a valid
option. For application in psychometrics, it might still be a step too far. In the
meantime, many attempts are being made to expand trustworthy AI with, for
example, explainable deep neural nets (xDNN; e.g., Angelov & Soares, 2020).
These developments go fast and might offer new opportunities for the application of
AI to psychometrics as well.
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Chapter 5
Psychological Constructs as Organizing
Principles

Denny Borsboom

Abstract Klaas Sijtsma has suggested that psychological constructs, such as those
invoked in the study of intelligence, personality, and psychopathology, should be
understood as organizing principles with respect to elements of behavior, including
item response behavior. In a discussion in the journal Psychometrika, Sijtsma
(Psychometrika, 71(3), 451–455 (2006)) contrasted this position with the common
cause interpretation of Item Response Theory (IRT) models and the associated
theory of validity that I had articulated some years earlier (Borsboom,Psychological
Review, 111(4), 1061–1071 (2004)), arguing that this theory of validity was far too
strong given the immature status of psychological constructs. In the present chapter,
I present an alternative understanding of IRT models in terms of psychometric
networks, which is inspired by Sijtsma’s idea of constructs as organizing principles.
From the weak premise that psychological constructs organize behaviors, in the
sense of identifying behavioral elements that structurally hang together, in the
present chapter, I show how one can build up a psychometric approach that can
motivate and guide the use of tests in psychology in the absence of strong common
cause interpretations.

5.1 Introduction

Psychometrics is an intrinsically multidisciplinary project, and like all multi-
disciplinary projects, it tends to disintegrate into unconnected monodisciplinary
components if left to its own devices. Klaas Sijtsma is one among a small group
of psychometricians who have spent their careers trying to protect the brittle but
essential connections between substance, mathematics, and philosophy. In this
respect, Klaas and I are kindred spirits, because both of us have tried to find a
balance between the messy reality of psychometric practice, the idealized structures
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of psychometric modeling, and the conceptual questions of what psychological
measurement is and how it should be optimized.

Despite these shared commitments, in the past, Sijtsma and I also have defended
different positions on the core question of how psychometrics should relate to its
neighbors. Sijtsma has argued that psychometrics should operate as an auxiliary
discipline to psychology, i.e., it should seek a partnership in which it plays the role
of helper (Sijtsma 2006). I have tended to take a more directive position, primarily
because I doubt that psychologists are sufficiently interested in measurement to
tackle the problems involved (Borsboom 2006; Borsboom et al. 2004).

Unfortunately, the theoretical basis required for the research program I cham-
pioned (Borsboom et al. 2004) is often unattainable in psychology, as Sijtsma
(2006) astutely observed, because standard measurement models in psychometrics
are unrealistic given the substance matter of psychology. In recent work, however,
alternatives to standard measurement models have been developed that seem to align
much more naturally to the way that psychologists think; in these models, constructs
are not seen as common causes of manifest variable, but as network structures that
connect such variables (Borsboom et al. 2021). It turns out that these models are
actually finely tuned to a comment that Sijtsma (2006) made in discussion we had in
Psychometrika, in which he presented the viewpoint that psychological constructs
should operate as “organizing principles” that specify which psychometric items
“hang together.”

In this chapter, I aim to bring this idea of Sijtsma (2006) in contact with the
field of network psychometrics, which has been recently developed on the basis
of the network perspective on psychometric constructs (Marsman et al. 2018;
Borsboom et al. 2021; Van Borkulo et al. 2014; Cramer et al. 2010) to arrive
at an alternative conceptualization of psychometrics in the context of network
models. I first review the standard interpretation of latent variables as common
causes, after which I discuss an alternative interpretation in terms of structurally
connected variables. Finally, I examine the important psychological concepts of
unidimensionality, reliability, and validity from this viewpoint.

5.2 Item Response Theory and Common Cause Structures

Item Response Theory (IRT) models the response of a person i to an item j as a
function of a set of item and person parameters through an Item Response Function
(IRF) that maps each combination of the parameters to a probability distribution
over the item responses. In the case that there is only one person parameter θi , we
have a unidimensional model. A commonly used example of such a model is the
well-known Rasch (1960) model, in which the IRF is logistic and each item has one
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parameter, βj , which controls the location of the IRF:

.P(Xij = 1|θi, βj ) = eθi−βj

1 + eθi−βj
(5.1)

Because of its ease of application, mathematical tractability, and favorable measure-
ment properties, the Rasch model is popular among psychometricians. It is heavily
used in fields like educational testing, intelligence and personality research, and the
study of psychopathology. The model will therefore serve well as a leading example
in the current chapter.

Looking at the Rasch model, it is evident that the item response probabilities are
the result of a trade-off function between the item and person parameters, which
are often called “difficulty” and “ability,” reflecting the origin of the model in
educational measurement. This trade-off is possible because θ and β are on the
same scale, which means that “difficulty” and “ability” are, in an important sense,
exchangeable: “having a higher level of ability” is equivalent to “making an easier
set of items,” not just in a figurative mode of speech, but exactly. The fact that all of
the IRFs that describe a set of items are controlled by a single person parameter
then means that each of the item difficulties trades off against the same ability.
This, in turn, suggests that θ functions as a common cause of the item responses
(Reichenbach 1956; Pearl 2009; Haig 2005a,b).

It is useful to briefly consider the notion of a common cause, as introduced by
Reichenbach (1956), to establish this parallel. Reichenbach (1956) dealt with the
situation in which a binary common cause, C, has two binary events A and B as
its effects. In this case, a common cause is required to satisfy three conditions: (1)
P(A|C) > P(A|¬C) and P(B|C) > P(B|¬C), (2) P(A ∩ B) > P(A)P(B),
and (3) P(A ∩ B|C) = P(A|C)P(B|C). A classic example considers the relation
between yellow-stained fingers (A) and lung cancer (B) as a function of smoking
(C): the probability of both yellow-stained fingers and lung cancer is increased,
given smoking (condition 1) yellow-stained fingers and lung cancer are positively
associated (condition 2), and smoking “screens off” the association between
yellow-stained fingers and lung cancer, rendering them conditionally independent
(condition 3).

Translating this to a situation with m dichotomous effect variables Xj , j =
1, . . . ,m and a continuous common cause θ , as would match most IRT models,
Reichenbach’s conditions become:

1. P(Xj = 1|θ) is increasing in θ .
2. P(Xj = 1,Xk = 1) > P(Xj = 1)P (Xk = 1) for all j, k.
3. .P(x1, . . . , xj , . . . , xm|θ) = ∏m

j=1 P(xj |θ) = ∏m
j=1 P(Xj = 1|θ)xj

P (Xj = 0|θ)1−xj .

Condition 1 is satisfied in the Rasch model, as the logistic function (1) is strictly
increasing in θ . Condition 2, positive association, is a well-known consequence
of every unidimensional monotone latent variable model (Holland & Rosenbaum
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1986) including that of Rasch. Condition 3 is local independence, a common
property of IRT models, including that of Rasch. Thus, the Rasch model conforms
to a common cause structure.

In fact, conditions 1–3 are satisfied in all unidimensional models for dichotomous
item responses that have increasing IRFs, like the popular model of Birnbaum
(1968). In less restrictive models, like the Mokken (1971) nonparametric model and
its generalization, the monotone latent variable model (Holland & Rosenbaum 1986;
Junker & Sijtsma 2001), a weaker form of monotonicity (i.e., that P(Xj = 1|θ)

is non-decreasing in θ ) exists that does not strictly conform to these conditions;
however, in such models, the latent variable can be conceived of as the common
cause of subsets of item responses, in those regions of θ where the corresponding
items’ IRFs are all increasing. Thus, Reichenbach’s (1956) common cause structure
applies to the relation between θ and the item responses in a broad class of IRT
models.

This appears to be more than a statistical coincidence, because several other
psychometric concepts have strong parallels with the causal modeling literature as
well. For instance, in a measurement context, it is sensible to require that θ mediates
the effects of a set of external factors {V } on the set of items {X}. That is, if {X}
measures θ , then changes in the item response probabilities induced by conditioning
on group variables (e.g., sex) or interventions (e.g., therapy) should affect the item
responses only indirectly, that is, through θ . In causal terms, this means that θ should
“block” all causal paths from variables in {V } to variables in {X}. Via the criterion
of d-separation (Pearl 2009), this implies the following conditional independence
relation for all variables in {X,V }:

.F(x|θ) = F(x|θ, v), (5.2)

for all (θ , v), where F(x|θ, v) denotes the value of the conditional distribution
function of X evaluated at the point (θ , v). In the psychometric literature, (2) is well
known as the requirement of measurement invariance (Mellenbergh 1989; Meredith
1993; Millsap 2007). Interpreted causally, measurement invariance thus requires
that no variables except for θ exert a direct causal effect on the item responses.

The idea that θ acts as a common cause of the item responses also matches the
way many substantive researchers think about latent variables. Spearman (1904)
set up the common factor model to analyze cognitive tests in accordance with
this notion, as he interpreted general intelligence, or g, as a source of individual
differences present in a wide range of cognitive tests (see also Jensen (1999), for
a similar view); the condition of vanishing tetrads that Spearman introduced as
a model test is currently seen as one of the hallmark conditions of the common
cause model (Bollen & Ting 1993). In personality research, putative latent variables
such as those in the Five-Factor Model are likewise seen as causes of behaviors; for
instance, McCrae and Costa Jr. (2008) argue such things as “E[xtraversion] causes
party-going” (p. 288). Finally, in clinical psychology, Reise and Waller (2009) note
that “to model item responses to a clinical instrument [with IRT], a researcher must
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first assume that the item covariation is caused by a continuous latent variable”
(p. 26).

Thus, not just the “letter” (i.e., the formal correspondence given above) but also
the “spirit” of latent variable modeling is driven by the idea that our item responses
are the effects of a common attribute that underlies the observations, represented in
the model structure by the symbol θ . As Reise and Waller (2009) note, this “sets
limits on the type of constructs that can be appropriately modeled by IRT” (p. 26);
namely, the type of constructs for which this is sensible is the type for which,
minimally, it can be expected that the items will behave as if they are a function
of a common cause.

5.3 The Causal Account of Test Validity

The common cause understanding of latent variable models is strong but clear.
In 2004, I developed a straightforward consequence of the causal interpretation
of measurement models for the concept of validity (Borsboom et al. 2004). My
reasoning was that, if psychological constructs like depression or intelligence
signify common cause of test scores, and validity refers to the question of whether
these test scores measure what they should measure, then the core of any validity
argument must lie in specifying the psychological processes by which the relevant
psychological attributes play their causal role. This idea applies naturally for certain
test types; an example may involve items as used in working memory capacity tests.
In these tests, participants are instructed to recall different sequences of letters or
numbers, while they are simultaneously executing another task (e.g., counting back
from 100 to 0). Plausibly, one’s success in recalling the sequence 2, 6, 4, 7, 2 and
the sequence 4, 6, 3, 8, 9, 4, 3, 4, 5 depend on the same resource, namely, working
memory capacity. Clearly, then, working memory capacity acts as a common cause
with respect to the individual differences in item responses.

This type of causal argument says how individual differences in a psychological
attribute, which affects all of the item responses, are translated into individual
differences in test scores. In my view, this forms the core of the validity concept.
If one thinks about it, such specifications are not hard to come by in cases where
questions of validity actually have a definite answer. Such examples, in my view,
are too scarcely considered in validity theory. In fact, the idea that validity questions
are unanswerable is taken for granted in certain lines of thinking about validity
(one received view is that “validity is a never-ending process”). However, there
are actually measurement problems that have been solved and validity questions
that have been answered. And typically, the answer to a question like “why does
instrument X measure attribute Y ?” hinges on a specification of how the instrument
works (i.e., specifies a causal process where the measured attribute is the starting
point and the meter readings are the endpoint). Why do mercury thermometers
measure temperature? Because higher temperatures cause the mercury to expand
and hence the meter rises. Why does the composition of air trapped in the Arctic
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ice measure historical global carbon dioxide emissions? Because higher emissions
cause more carbon dioxide in the relevant air pockets and higher concentrations
of carbon dioxide cause higher readings in spectral analysis of the air contained in
these pockets. Why does the item “what is your age?” measure age? Because people
know how old they are and, if willing, will be able to supply that information.

If available, the causal answer to validity questions is the most forceful answer
there is. It is explicit, testable, and suggestive of changes that might improve
the measurement device. However, it is also a very taxing answer. It requires a
convincing account of how the measured attributes exert their causal effects, and
theories that can motivate such accounts are scarce in psychology (although they do
exist, as some of the above examples show).

In 2004, I believed that this type of analyses could be made to work in psychology
at large and should be investigated vigorously. Our task as psychometricians, in
my view, was to come up with good analyses of response behavior in which the
measured attribute played a causal role. It looked like that kind of analysis was there
for the taking with the combination of advanced modeling techniques, cognitive
diagnostic models, and good psychological theory. However, some colleagues were
skeptical. Klaas Sijtsma was one of them (Sijtsma 2006). In response to a paper in
which I pushed the causal psychometric account to its extreme (Borsboom 2006),
he articulated doubts with respect to the research program I was advocating:

Borsboom’s assumption about the ontology and causality of psychological attributes seems
to lead to a very restrictive conception of the process of construct validation: Elegant in its
rigor but impractical for psychology (and many others areas). It seems to me that we still
know so little about the functioning of the human brain in general and cognitive processes
including those underlying personality traits and attitudes in particular, that it is difficult
even to say what an ‘attribute’ is. In the absence of such knowledge, I prefer to consider
psychological attributes as organizational principles with respect to behavior. Thus, my
point of view is that psychological attributes define which behaviors hang together well and
are useful to the degree in which tests sampling these behaviors play a role in predicting
interesting psychological phenomena.

With some reluctance, I have to admit defeat to this charge when it comes to the
more abstract entities in the psychometric pantheon—that is, the big psychometric
players like general intelligence, neuroticism, attitudes, and psychopathological
conditions. In the years that followed the conceptual articulation of the causal
validity program, I attempted to come up with good measurement theories for such
constructs but ultimately failed to provide a believable analysis in causal terms.
Although this research line of mine is undocumented and impossible to replicate—a
failure to construct conceptual analyses leads to the theoretical equivalent of a file-
drawer problem; one can hardly publish failures to come up with a new theory—I
did try hard. Apart from a few isolated successes (most notably the analysis of IRT
model results in terms of drift diffusion parameters as developed by my colleague
Han van der Maas (Van der Maas et al. 2011)), it just didn’t work.1

1 Naturally, that I could not come up with good theories of test validity does not mean that nobody
else could. Perhaps I didn’t use the right framework; perhaps I just approached the problem from



5 Psychological Constructs as Organizing Principles 95

In fact, that is an understatement. If one attempts to specify how general
intelligence causes responses to the item “Who wrote the Iliad?”, how depression
leads to sad mood, and how attitudes influence the answer to questions like “do you
think Trump is a good leader?”, one arrives at theories that are far too strong and
far too simplistic. In fact, the very idea that traits like intelligence, extraversion,
and psychopathological syndromes are causes of human behavior, including the
behavior that involves ticking boxes on questionnaires, appears to be rather far-
fetched, more akin to Moliere’s virtus dormitiva than to any serious appreciation
of the psychological complexity of the constructs in question.2 B.F. Skinner (1987)
once stated that “as soon as you have formed the noun ability from the adjective
able, you are in trouble,” and indeed that seems to be accurate for many of the
abilities and traits invoked in psychometric theory.

5.4 Structural Connections

The general failure to come up with adequate measurement theories forms an
interesting contrast with the relative ease with which one can concoct psychometric
models. Taking desirable measurement properties as axiomatic for measurement
models, it is possible to deduce the general form and structure that psychometric
models should have and work out the distributions of data they imply. This is what,
in my view, psychometricians have been most successful at over the course of the
past century. One can easily imagine the tests and theories employed in psychology
today to become a laughing stock for future generations, but the intricate building of
interrelated statistical measurement models of IRT, which Klaas Sijtsma and others
erected in the past decades, will remain an important entry in the scientific record.

Because such models have more to do with philosophical ideas on what good
measurements should look like, than with psychological ideas about whatever it
is we are measuring, psychometric models are in my view best seen as applied
philosophy of science. The models one can deduce from general philosophical
measurement desiderata range from very strong to extremely weak. The Rasch
model in Eq. 5.1 is an example of a strong model. Rasch (1960) started from
some desirable measurement axioms (e.g., things that would be nice to have, like
separate identifiability of person and item characteristics) and then deduced the

the wrong angle; may others come and do it better. However, as they say, insanity is trying the
same thing over and over again and expecting different results, so it seemed more sensible to
reconceptualize my problems than to keep trying.
2 As an aside, if test score use and interpretation would actually require theories of this kind, then
the whole scientific project of psychometrics would be in serious trouble, perhaps even trouble
of the end-of-story kind. Realizing this, in hindsight, it is unsurprising that the reception of my
validity theory was mixed. One influential validity theorist stated informally that what I said might
all be good and true, but that my definition of validity would never be accepted because theories
that specify how psychological constructs cause item scores “would not hold up in court.”
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model formula in Eq. 5.1 as a consequence. One can also proceed from much
weaker requirements and deduce weaker models as a result (Holland & Rosenbaum
1986; Ellis & Junker 1997); this more realistic approach is the cornerstone of
nonparametric IRT, to which Junker and Sijtsma (2001) and Sijtsma and Molenaar
(2002) provide excellent introductions.

The focus on desirable measurement properties leads to simple models. The
Rasch model in Eq. 5.1 is one example, but basically all models in the IRT family
(Mellenbergh 1994) are variants of the general structure. Usually, that structure
specifies how people’s position on a relatively simple latent variable (e.g., a point
on a continuous line, membership of a latent category) is coordinated with a
specific probability distribution over the item responses. Because nearly all models
specify a form of conditional independence, in which the observed variables are
independent given the latent variable, they can typically be understood along the
lines of Reichenbach (1956) as explained in the previous paragraph. Thus, nearly all
models can be understood as specifying a (possibly somewhat convoluted) common
cause model.

However, if we think for a moment about, say, relations between symptoms
of depression, attitude items, or cognitive processes, it is hard to see how causal
interpretations of such simple models could possibly be on target. After all, it would
be a small miracle if human behavior, embedded in a nexus of complex interactions
between factors at genetic, physiological, psychological, and social levels, were
literally governed by a model structure as simple as Eq. (5.1) and its relatives.

This realization, however, presents us with a paradox. This is because the
latent variable modeling approach in topics, like intelligence, personality, and
psychopathology, has not fared as badly as one should expect, given the complexity
of human behavior. Although measurement models rarely fit adequately, they do
generally provide a reasonable description of the data; for instance, the fact that the
general factor of intelligence is now in the company of general factors of personality
and psychopathology is not accidental. In recent years, I have investigated the
hypothesis that the reason for this is that the tests used in such domains depend
on distinct attributes and processes that do not depend on a common cause, but
are structurally connected through relations that can reasonably be approximated
by pairwise interactions; these pairwise interactions, in turn, generate probability
distributions that tend to fit latent variable models reasonably well.

What does it mean for variables to be structurally connected? To preempt some
obvious misinterpretations, let me first say what I do not mean. First, I do not mean
to say that structurally connected variables merely correlate. Ice cream consumption
and murder rates are famously correlated across the months of the year, but not
structurally connected. Second, to be structurally connected does not necessarily
mean that variables stand in directed causal relations. Sad mood and suicidal
ideation, for instance, are probably to some extent involved in some reciprocal
reinforcement process, but it is unlikely that this relation is of the smoking-causes-
lung-cancer kind that modern theories of causality (e.g., Pearl (2009)) present as
axiomatic. In addition, I intentionally cover cases where different items are in
part related through semantic or logical pathways. For example, some items in
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personality questionnaires contain very similar wordings, which leads responses to
be structurally connected, but the queried attributes are unlikely to stand in directed
causal relations.

As a working definition, I propose variables to be structurally connected if
they (or their probability distributions) cannot vary independently. This definition
is extremely broad and covers a wide variety of cases where relations between
variables are systematic (i.e., they are not merely correlated) but not necessarily
causally directed. For variables to be structurally connected thus means that these
variables represent elements of behavior that, in the words of Sijtsma (2006), “hang
together.”

Here are some examples. Responses to the item “do you think Trump is a good
leader?” are structurally connected with responses to the item “do you like Trump?”
because people strive to keep their attitude elements consistent. Responses to the
item “do you like parties?” are structurally connected with responses to the item
“did you like the last party you went to?” because the latter assesses a memory trace
that a respondent will also use in answering the former. Responses to the item “have
you felt fatigued over the past 2 weeks?” are structurally connected with responses
to the item “have you slept more than usual over the past 2 weeks?” because
people who are tired will tend to sleep more. Responses to the item “have you felt
fatigued over the past 2 weeks?” are also structurally connected with responses to
the item “have you slept less than usual over the past 2 weeks?” because people
who don’t sleep well tend to get tired. In each of these cases, the relevant variables
cannot vary independently, because they share meaning, are causally related, share
resources, or are intertwined in development.3 In contrast, responses to the item “do
you like parties?” are not structurally connected with responses to the item “who
wrote the Iliad?”, because these variables can vary independently. For the same
reason, responses to the item “have you felt fatigued over the past 2 weeks?” are
not structurally connected with responses to the item “do you think Trump is a good
leader?”.

5.5 Network Representations of Psychological Constructs

Shifting attention from a common cause principle to the idea of structural connec-
tions between variables invites a different way of setting up our basic psychometric
apparatus. I propose to denote the structural connection between two variables Xj

and Xk with a tilde:

.Structural connection ≡ Xj ∼ Xk (5.3)

3 In a very weak interpretation of causality, one could say structural connections are a type of causal
relations, but I think this stretches the meaning of the term beyond the limits of usefulness.
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.Xj ∼ Xk means that the variables in question cannot vary independently. One
way of making this idea more precise might be taken by saying that intervening
on Xj will affect Xk and vice versa, i.e., implying a bidirectional causal relation
between the variables in question that can be expressed using the concept of a Do-
operator (Pearl 2009). The Do-operator is used in the causality literature to represent
interventions on a system in order to provide a semantics for causal relations. In
particular, a causal effect of Xj on Xk would be expressed as P(Xk |Do(Xj =
xj )) �= P(Xk), i.e., a causal effect means that the probability distribution of Xk

is not the same under manipulations that force Xj to take different values xj . In the
present case, one could imagine that a structural connection may be taken to imply
bidirectional causal dependence:

.Xj ∼ Xk ⇒ P(Xj |Do(Xk = xk)) �= P(Xj ) ∧ P(Xk |Do(Xj = xj )) �= P(Xk)

(5.4)

This type of characterization in causal terms may be useful to flesh out specific
formalizations of structural dependence.4 For instance, given the causality calculus,
the causal formulation implies the statistical consequence that two variables cannot
be rendered statistically independent, given any other variable at our disposal. Thus,
given a set of variables {X} that characterize a system under study, if a structural
connection exists between Xj and Xk , this implies that when conditioning on the
complement set {Xc} (all variables in {X} excluding Xj and Xk):

.Xj �⊥⊥ Xk|Xc (5.5)

In other words, the variables are not statistically independent given everything
else we can measure on the system. Ordinarily, the set {X} will be a pragmatically
chosen collection of variables, and the question of whether any two variables are
structurally connected is studied relative to this collection. It would be interesting
to investigate what other choices would be sensible to define the set {X} or what it
means for {X} to characterize the system under study, but I will not pursue these
questions here and will simply assume {X} to be composed of whatever a researcher
chooses to include in the data. Also, for convenience, I will assume the bidirectional
causal relation to be symmetric (i.e., equally strong in both directions) although I
don’t think much hinges on that.

For a given set of variables, the above definitions imply a network structure
to which standard representations of network psychometrics apply. In particular,

4 I hasten to add that the above characterization should be seen as one of the various ways to make
the idea of a structural connection concrete and not as definitional. Also I do not intend the notion
of structural connection to require such things as decomposability (de Boer et al. 2021) and similar
kinds of atomistic conception of the world of variables, which seems to have become common in
the language of causality. Thus, the implication is not biconditional as the causal analysis does
not exhaust the possibilities and may depend on auxiliary assumptions that are not satisfied in
psychometrics.
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Fig. 5.1 A network of five
variables. Edges between
variables indicate that the
relevant variables are
structurally connected
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Eq. 5.5 defines a Pairwise Markov Random Field (PMRF), which has the attractive
graphical representation as a network in which variables that are not directly
connected are conditionally independent given the other variables. For binary
variables, the PMRF can be estimated in various ways, for instance, through the
R-package IsingFit (Van Borkulo et al. 2014).

Figure 5.1 provides an example network. Variables are represented as nodes, and
structural connections as edges. The set of nodes that is connected to node j is
known as the neighborhood of j and denoted Nj . We assume that the probability
distribution of the variables has the Markov property, i.e., that it factorizes according
to the graph structure. This implies that the joint probability distribution can be
represented as log-linear model that includes main effects for all variables and
pairwise interactions for any two variables that are connected in the graph. However,
for my current purposes, it is more convenient to think of the model in terms of a
set of logistic regressions, where each node is regressed only on the variables in its
neighborhood:

.logit(Xj ) = αj +
∑

k∈Nj

βjkXk (5.6)

This formulation is the model used in the IsingFit representation (Van Borkulo
et al. 2014). Now let us consider the relation between Eq. 5.6 and the typical IRT
representation as in Eq. 5.1. Willem Heiser (personal communication) has observed
that this representation connects the network approach to an older tradition in
psychometrics, namely, that of image factor analysis (Guttman 1953). Image factor
analysis is an approach to factor analysis that explicitly aims to avoid the use of
latent variables. In image factor analysis, the regression of a variable on all other
variables in the data creates the variable’s image (the weighted sumscore formed
by the regression), while the residual of that regression defines its anti-image. The
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IsingFit representation of the network model could be seen as an extension of the
image factor analysis model to the dichotomous case; in this interpretation, the
regression model defines the image of Xj (Guttman 1953).

5.6 Reinterpreting Psychometric Concepts

In the IRT model, the items are related to a single person parameter, and the
regression parameter for that function depends only on the item considered. In the
logistic regression formulation of the network model, the items are related to a set of
independent variables, and the regression parameters are different for each of them.
In the IRT formulation, the predictor is latent. In the logistic regression formulation,
it is observed.

However, there are also similarities. In both cases, we see a generalized
regression with a parameter that depends on the item (the intercept in the logistic
regression, the difficulty parameter in the IRT model) and a regression parameter
that controls the slope of the regression of the item on the predictor term. That
predictor, in the IRT model, is the latent variable. In the logistic regression, it is a
set of scores on the neighboring items. These scores are weighted by regression
weights. We can imagine collecting the combined effects of all predictors in a
weighted sumscore of the variables in the item j ’s neighborhood, which for person
i we may denote as

.N+
ij =

∑

k∈Nj

βjkXik (5.7)

Now things start to look quite analogous if we express person i’s expected score
as a function of the latent variable model,

.P(Xij = 1|θi, βj ) = eθi−βj

1 + eθi−βj
, (5.8)

and as a function of the regression model. We can make this similarity most
apparent by putting the regression in the same form as the IRT model through
suitable transformations of parameters, representing the model in terms of a trade-
off between the internal field (the effects of the other nodes in the network) and the
external field (e.g., in case the regression coefficients equal unity, this would directly
correspond to the intercept parameter in Eq. 5.6 transformed to .α∗

j = −αj ):

.P(Xij = 1|N+
ij , α∗

j ) = e
N+

ij −α∗
j

1 + e
N+

ij −α∗
j

(5.9)
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Using this representation, we see that the neighborhood score .N+
ij plays a role

that is analogous to that of the latent variable θ in the IRT model, while the intercept
of the regression .α∗

j is the analogue of item difficulty in IRT. Via the concept of
structural connection, one can think of any specific item as standing under the
influence of the variables in its neighborhood, not in the sense that its value is
directly caused by these, as in a billiard ball causation picture, but in the sense
that the item’s probability distribution cannot change independent of that of its
neighbors. In a nontrivial sense, therefore, the item measures the influence of its
neighbors: ceteris paribus, the more neighbors of item j are positive (take value
X = 1), the more j will tend to be positive as well.5

The relation between the latent variable in IRT and the neighborhood score
in network analysis in the dichotomous case mirrors the relation between latent
variables in factor analysis and components in image factor analysis for the
continuous case (Guttman 1953); also, the centrality measure of predictability
that has been proposed in the network literature (Haslbeck & Waldorp 2018) is
highly similar to the index of determination discussed in Guttman (1953). Finally,
note that the dimensionality of the neighborhood scores is the same as that of
the data (i.e., there are as many neighborhood scores as variables); a reduction
of these neighborhood scores could be achieved through, for instance, a principal
component analysis, which would compress the neighborhood scores into a smaller
dimensionality. In the case where the network is fully connected, one would then
expect the neighborhood scores to approximate unidimensionality, while a sparsely
connected network would not.

Although the alignment between IRT and network models that I have constructed
here is not as mathematically elegant as those used in the direct equivalence proofs
between multidimensional IRT and Ising models that are now in the literature
(Marsman et al. 2018; Epskamp et al. 2018), the logistic regression of an item
on a neighborhood score has intuitive appeal and facilitates reinterpretation of
psychometric concepts. This is because we can keep in mind the analogy between
the latent variable and the neighborhood score. Substituting the concept of a
neighborhood score in a network of structural connections for the concept of a
common cause of item responses leads to several straightforward consequences
for psychometric practice. In the following, I review some of the most important
psychometric concepts from this point of view.

5 The relation between the item and the targeted latent variable is typically represented in an Item
Characteristic Curve (ICC). Of course, we can do the same in the network model, if we put .N+

ij

on the x-axis and the probability of a positive item response on the y-axis; we may call this curve
a Network Response Function (NRF). The items will have different neighborhoods, which means
the NRFs have different domains, but the general concept clearly is similar.
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5.6.1 Unidimensionality

The notion of unidimensionality plays a very important role in psychometrics. It
encodes the idea that the correlations between item responses can be represented as
a function of a single dimension. In the parlance of IRT, unidimensionality means
that the logits of the expected scores of the items (the true item scores) are perfectly
correlated, which means that if one knows a person’s true score on one item, one
cannot learn anything new about the ordering of the persons on the latent variable
by consulting the other items. In terms of the causal interpretation of measurement
models, this represents the hypothesis that the different items trade off against
precisely the same ability.

Networks in general are unlikely to satisfy such requirements, but they can
approximate them (and often do). This works as follows. If one looks at Fig. 5.1,
it is clear that the variables have very different neighborhoods. Node 1 only has
one neighbor (node 4), while node 4 has four (nodes 1, 2, 3, and 5). Clearly, in
this case, the covariance matrix will depart from unidimensionality significantly.
However, if one imagines an ever more densely connected network, one can see
that the neighborhoods of different nodes will overlap more and more. Thus, the
neighborhood scores of different items will get more and more correlated. In a
perfectly connected network, the neighborhoods of any two nodes will differ by only
one term (the scores on the evaluated nodes themselves, which are not part of their
own neighborhood). Thus, the closer the network approaches perfect connectivity,
the closer it will get to unidimensionality. In the network literature, this means
that the network can be approximated by the so-called mean field approximation,
which essentially substitutes a single number for all of the node neighborhoods
(Finnemann et al. 2021). In a nontrivial sense, the latent variable in a unidimensional
psychometric model corresponds to the mean field in a network model, which in turn
is strongly related to the first factor of an image factor analysis (Guttman 1953).

One can also see that, as the network gets larger, the neighborhoods get ever
more close. I conjecture that this, in effect, realizes the same process that Ellis and
Junker (1997) describe through the concept of a tail measure. A tail measure is
the equivalent of a sumscore on an infinite item domain, which Ellis and Junker
(1997) showed is an adequate interpretation of a latent trait. Similarly, I suggest
that an infinitely large network will produce equivalent tail measures on items’
neighborhood scores, as in the limit all neighborhoods will coincide in terms of
their ordering of persons. Thus, from a network perspective, unidimensionality
can be interpreted as a measure of network homogeneity. Interestingly, a perfectly
connected network with invariant edge weights (a so-called Curie-Weiss model)
turns out to be statistically equivalent to the Rasch model (Marsman et al. 2018).
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5.6.2 Reliability

It would not be much of an overstatement to say that Classical Test Theory (CTT)
was invented to furnish a basis for the notion of reliability: the degree to which true
scores are linearly predictable from observed scores. The most important estimator
of reliability, Cronbach’s α, is controversial in psychometrics, both because of
misinterpretations of the concept and because it is statistically inferior to other
estimators (Sijtsma 2009). However, it is probably also the most important quantity
psychometrics has delivered, as it regulates the composition and size of item sets
used in practical test applications.

Reliability is commonly seen as a property of a test.6 That is, it is a measurement
concept, which indicates to what extent the total test score contains “measurement
error.” However, it is a well-kept secret among psychometricians that the noise
in our test scores is rarely identifiable as measurement error independent of the
psychometric model. Typically, what we call measurement error is simply variance
that simply cannot be explained from the latent variable model (for whatever
reason). Why this unexplained variance should be interpreted as measurement error
is rarely explicated.

Interestingly, in the network representation, the psychometric representation of
sumscore reliability is not (only) a measurement concept. Even if all items are
measured without error, the network may still leave variance unexplained, for
instance, because the items do not hang together perfectly (i.e., there is wiggle
room for individual items given the other items) or because the network is not
fully connected. This may very well be a property of a construct rather than of
the measurement instrument. Indeed, Dalege and van der Mass (2020) hold that
implicit measures of attitudes are necessarily unreliable because in the situation
where people do not attend to the attitude, the attitude network operates in a high
entropy regime (i.e., the network is weakly connected).

What does reliability imply, from a network perspective? In my view, high
reliability means that the state of the individual items is highly predictable from
the neighborhood scores. That is, the network has a low entropy (Dalege & van der
Maas 2020), because the structural connections between items are strong so that
items tend to align. Interestingly, low entropy implies that more extreme sumscores
will become more prevalent, which will lead to higher variance of the sumscore.
Thus, from a network perspective, the ratio of the sum of the item variances to the
total test score variance—a standard operationalization of reliability—is actually a
measure of how strongly connected the network is.

6 This is fundamentally mistaken because, even on its own terms, CTT represents reliability as
a test×population interaction (Mellenbergh 1996), but I will ignore this here and assume the
population given.
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5.6.3 Validity

As I noted earlier, in the past, I have articulated and defended the idea that validity
is a causal concept, which hinges on the degree to which the measured attribute
(represented as a latent variable) influences the item scores. Clearly, in the network
representation, there is no latent variable (except as a mathematical representation of
the joint probability distribution of the network; Epskamp et al. (2018)). Hence, the
causal interpretation of validity is not on offer for the network as a whole. However,
that conception can still be operational for the individual items in a network, for
instance, if one asks whether the depression item “have you slept less than usual over
the past 2 weeks?” actually measures insomnia (Cramer et al. 2010). In addition, if
different items depend on a variable that is not represented in the network (i.e., a
latent variable), then a latent variable model can be used to analyze that part of the
network (e.g., in a latent network model; see Epskamp et al. (2017)), and in this
case, the latent variable can be conceptualized as a common cause, which renders
the causal account of validity applicable.

But what can one say about the validity of a test if the items in that test in
fact measure properties that are structurally connected, rather than a single latent
attribute? If the network model is true, then the construct label (e.g., “depression,”
“intelligence,” “neuroticism”) does not refer to such a latent attribute but to the
network as a whole. Thus, when we ask “does this depression questionnaire actually
measure depression?”, the question should be understood as “do the variables
assessed through the items included in this questionnaire actually correspond
to the nodes in the depression network?”. This, in turn, leads to the question
“which nodes are part of the depression network?”. And it is here, I submit,
that the psychometric construct fulfills its function as an organizing principle. A
construct label such as “depression” does not designate a latent attribute targeted
in the measurement procedure, but instead indicates a family of variables that are
structurally connected to produce the coordinated behavior of the network as a
whole that we phenomenologically recognize as the overall state of individuals we
are interested in.

Thus, the organizing principle of psychological constructs involves a simple but
important task: to identify which nodes should be part of the network. In the special
case that items are questions (rather than observations of behavior or other modes of
investigating the human system, such as brain states or genetic profiles), this means
that psychological constructs fulfill their main function in the area traditionally
referred to as content validity. This is ironic, because in the literature on validity
theory, content validity is typically seen as an outdated concept, if not an inferior
one (Guion 1980). If the combination of Sijtsma’s “hanging together” and network
psychometrics is in the right ball park, content validity may thus well see a revival.
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5.7 Discussion

In the present chapter, I have offered a reinterpretation of standard psychometric
concepts in terms of a network perspective, in which item responses are viewed as
structurally connected components in a network. This perspective aligns remarkably
well with the idea that item responses merely “hang together” (Sijtsma 2006). In the
presented scheme, the role of the psychological construct is radically shifted: the
construct label does not designate a latent variable that acts as a common cause with
respect to the item responses, but a set of relevant properties that are structurally
connected. The primary task of the construct theory, so understood, is to indicate
which of the many potentially relevant properties actually is part of the psychometric
network, i.e., is part of the set of structurally connected variables.

This is quite a different way of thinking about the function of construct theories,
but it seems to fit psychological practice quite well. Whenever I proposed to
substantive psychologists that their theories should provide information with respect
to the question of how a latent attribute determined the responses to questionnaire
items, they looked at me as if they witnessed water burning. However, most of
these same psychologists will have little problems in identifying why certain items
should be included in a test. Usually, their answers either implicitly or explicitly
explain how the items tap attributes that hang together systematically. The reasons
behind these connections can vary wildly from area to area, so they cannot be
uniformly fleshed out. However, in many cases, the connections in question suggest
that variables bear a connection that is stronger than mere association and weaker
than directional causation. I have tried to capture this notion in the term “structural
connection.”

My exploration of the mathematical conceptualization and the theoretical con-
sequences of this idea has been preliminary. Especially the connection to the work
by Ellis and Junker (1997) seems to harbor some interesting secrets that I have not
developed here. In particular, because in a positive manifold that is consistent with
a unidimensional factor model, pairwise conditional associations are always weaker
than unconditional ones (Van Bork et al. 2018), it seems that in such cases the size
of networks is limited by the strength of the structural connections that they consist
of. That is, mathematically, a set of items that realizes an item domain can grow
without bound (in fact, this is required for the proofs in Ellis and Junker (1997)).
But a fully connected network like the Curie-Weiss model discussed in Marsman
et al. (2018) cannot grow without bound, unless the conditional associations in the
network get ever smaller in the process. It seems to me that this will not always be
attainable. In other words, sets of items that cover a fully connected network may
have a limited size. This would induce the notion of a construct that features a finite
item domain which, to my knowledge, has not yet been developed in psychometrics.

As noted in the introduction to this chapter, psychometricians have many
alliances. Their models, while cast in the language of mathematics, have an impor-
tant connection to substantive realms (e.g., psychology, education, etc.) as well as to
conceptual ideas about the nature of measurement. These alliances often clash. What
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is desirable from the point of view of measurement theory (e.g., additivity of the
model, separability of parameters, simplicity, and parsimony) is often substantively
speaking unrealistic. On the other hand, processes that are relevant from a substan-
tive point of view (e.g., in terms of cognitive processes involved in psychometric
tests) often lead to theoretical models that are mathematically intractable and
that do not respect the strictures that the occupants of measurement theory’s
ivory tower proscribe as normative. The challenge is therefore to find conceptions
of psychometric constructs that have a natural representation as mathematical
structures, so that they can play the essential role of connecting psychological theory
to empirical observation—the cardinal purpose of measurement. Latent variables
are one such conception and network structures another. However, it would be idle
to think that the possibilities are exhausted by these representations, and I hope that
future psychometricians will come up with many others, so that our discipline will
remain a vibrant and developing one that honors the psycho in psychometrics.
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Chapter 6
A New Expression and Interpretation of
Coefficient Omega Under the Congeneric
One-Factor Model

David J. Hessen

Abstract A new expression for the communality of the total score under the one-
factor model is presented. In general, the communality of the total score is a lower
bound to the reliability of the total score. Under the one-factor model, the commu-
nality of the total score also assesses the validity of the total score as a measure of
the common factor. Conditions are given under which the new expression equals
coefficient alpha. Furthermore, new expressions for the communality of an arbitrary
item score and the proportion of total variance explained are derived under the one-
factor model. For all new communality expressions, closed-form distribution-free
estimates are provided. In an example, the closed-form estimates are calculated for
a classic data set.

6.1 Introduction

Coefficient alpha (Guttman 1945; Cronbach 1951) is a very popular lower bound
to the reliability of the total score (the unweighted sum of the item scores). Sijtsma
(2009) criticized the use of coefficient alpha for assessing the reliability of the total
score and recommended the use of greater lower bounds, such as the greatest lower
bound (Woodhouse and Jackson 1977; ten Berge et al. 1981) and coefficient lambda-
2 (Guttman 1945). Despite the existence of greater lower bounds to the reliability of
the total score, coefficient alpha continues to be used in practice. For an overview of
many other lower bounds to the reliability of the total score, see Revelle and Zinbarg
(2009).

It has been shown that coefficient alpha equals the communality of the total
score if the item scores follow the essentially tau-equivalent model (Bentler 2009).
The essentially tau-equivalent model is the unrealistic special case of the one-
factor model in which all item scores have the same factor loading (Lord and
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Novick 1968). Under the essentially tau-equivalent model, coefficient alpha is
only equal to the reliability of the total score if all unique factors only contain
random measurement error. However, under the essentially tau-equivalent model,
the communality of the total score equals the proportion of variance of the total
score explained by the common factor. This means that under the essentially tau-
equivalent model, coefficient alpha assesses the validity of the total score as a
measure of the common factor.

A more realistic model for the measurement of a single factor by a set of items
than the essentially tau-equivalent model is the one-factor model (Spearman 1950).
Under the one-factor model, factor loadings are not restricted to be equal. Since, in
practice, the items of a subtest are usually constructed to measure one and the same
latent factor, the item scores of a subtest are often assumed to follow the one-factor
model. Under the one-factor model, the communality of the total score is given
by coefficient omega (Heise and Bohrnstedt 1970; McDonald 1978) and equals the
proportion of variance of the total score explained by the common factor. So under
the one-factor model, coefficient omega assesses the validity of the total score as a
measure of the common factor.

In this chapter, a new expression for the communality of the total score
under the one-factor model is presented. Whereas coefficient omega expresses
the communality of the total score in terms of factor model parameters, this new
expression is in terms of the variances of the item scores, the covariances between
the item scores, and the number of item scores. It is shown that the new expression
equals coefficient alpha if the item scores follow the essentially tau-equivalent
model. Furthermore, new expressions of the communality of an arbitrary item score
and the proportion of total variance explained are derived under the one-factor
model. Since all new expressions are functions of the population variances of the
item scores and the population covariances between the item scores, distribution-
free closed-form estimates are obtained by replacing the population parameters with
sample analogues.

First, however, the one-factor model is briefly outlined in the next section.
Subsequently, the new communality expressions and their closed-form estimates are
presented. Finally, the closed-form estimates of the new communality expressions
are calculated for a classic example data set.

6.2 The One-Factor Model

Let the random variables X1,X2, . . . , XJ be J item scores for a randomly selected
individual from a population. The means of X1,X2, . . . , XJ are denoted by
b1, b2, . . . , bJ ; the variances are denoted by .σ 2

1 , σ 2
2 , . . . , σ 2

J ; and the covariance
between two arbitrary item scores Xj and Xk is denoted by σjk , for all j and k �= j .
In the one-factor model, it is assumed that

.Xj = bj + aj ξ + Uj , for all j, (6.1)
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where aj is a constant factor loading, for all j , ξ is the common factor, and Uj

is a unique factor, for all j . Note that Uj = Sj + Ej , where Sj is an item-specific
factor (only varying between persons) andEj is randommeasurement error (varying
between persons and within persons), so that Tj = bj + aj ξ + Sj is the item true
score. The common factor ξ is assumed to be independent of all unique factors
U1, U2, . . . , UJ . The unique factors are assumed to be mutually independent. To
identify the model, the variance of ξ is set to one. Let var(Uj ) = δj , for all j .
Then, it follows that .σ 2

j = a2j + δj , for all j , and σjk = ajak , for all j and k �= j .
Usually, the items are constructed such that it can be assumed that aj > 0, for all
j . If the items are not constructed this way, a transformation can be applied to some
of the item scores such that it can be assumed that aj > 0, for all j . Note that if
aj > 0, for all j , then σjk > 0, for all j and k �= j .

6.3 Communality/Validity

LetCj = bj +ajξ , for all i. Then, the total score is given by .X = ∑
j Xj = C+U ,

where .C = ∑
j Cj = ∑

j bj + ∑
j aj ξ and .U = ∑

j Uj . The communality of X

is given by coefficient omega (Heise and Bohrnstedt 1970; McDonald, 1978) and is
the squared correlation between X and C, that is,

.ω = ρ2XC = var(C)

σ 2
X

=
(∑

j aj

)2

∑
j σ 2

j
+ ∑

j

∑
k �=j σjk

=
∑

j a2j + ∑
j

∑
k �=j aj ak

∑
j a2

j
+ ∑

j δj + ∑
j

∑
k �=j aj ak

,

(6.2)

where .σ 2
X = var(X). Note that under the one-factor model, .ρ2XC is equal to the

squared correlation between X and ξ given by

.ρ2Xξ = {cov(X, ξ)}2
σ 2
X

= [E{(∑j aj ξ + ∑
j Uj )ξ}]2

σ 2
X

= (
∑

j aj )2

σ 2
X

. (6.3)

From this, it can be concluded that under the one-factor model, the communality
coefficient .ρ2XC also assesses the validity of X as a measure of ξ . Now, since σjk =
aj ak , for all j �= k, it follows that

.
σjkσjl

σkl
= aj akaj al

akal
= a2j , for all j, k �= j , and l �= j, k.

Taking the average over all k �= j and l �= j, k gives

.
1

(J − 1)(J − 2)

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
= a2j , for all j. (6.4)
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Substitution from Eq. 6.4 and σjk = aj ak into

.ρ2XC =
∑

j a2j + ∑
j

∑
k �=j aj ak

σ 2
X

(6.5)

yields the new expression of the communality of the total score X given by

.ρ2XC =
⎧
⎨

⎩

1

(J − 1)(J − 2)

∑

j

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
+

∑

j

∑

k �=j

σjk

⎫
⎬

⎭
/σ 2

X. (6.6)

Note that substitution from Eq. 6.4 into .σ 2
j

= a2
j

+ δj and solving for δj yields

.δj = σ 2
j − 1

(J − 1)(J − 2)

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
, for all j. (6.7)

Also note that if aj > 0, for all i, then it follows from Eq. 6.4 that

.aj =
√
√
√
√

1

(J − 1)(J − 2)

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
, for all j. (6.8)

Under the essentially tau-equivalent model, σjk = a2, for all j and k �= j , so that

.
∑

l �=j,k

σjkσjl

σkl
= (J − 2)σjk, for all j and k �= j. (6.9)

Substitution from Eq. 6.9 into Eq. 6.6 and factoring .
∑

j

∑
k �=j σjk yields coefficient

alpha given by

.α = J

J − 1

∑

j

∑

k �=j

σjk/σ
2
X. (6.10)

In addition to the communality of the total score, the communalities of the
individual item scores might be of interest in practice. The communality of item
score Xj is defined as the squared correlation between Xj and Cj . Under the one-
factor model, the communality of item score Xj is given by

.h2j = ρ2Xj Cj
= cov(Xj , Cj )2

σ 2
j var(Cj )

= var(Cj )

σ 2
j

=
a2j

a2j + δj
, for all j. (6.11)

Note that under the one-factor model, .ρ2
Xj Cj

is equal to .ρ2
Xj ξ

. So under the one-
factor model, the communality of item score Xj also assesses the validity of Xj as
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a measure of ξ . Now, dividing the left-hand side of Eq. 6.4 by .σ 2
j
yields

.h2j = 1

(J − 1)(J − 2)σ 2
j

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
, for all j. (6.12)

The total variance is defined as .
∑

j σ 2
j . Under the one-factor model, the proportion

of total variance explained by the common factor is given by

.π =
∑

j a2j
∑

j a2
j

+ ∑
j δj

=
∑

j a2j
∑

j σ 2
j

(6.13)

and assesses the extent to which the items measure the common factor relative to
the unique factors. Substitution from Eq. 6.4 into Eq. 6.13 yields

.π = 1

(J − 1)(J − 2)

∑

j

∑

k �=j

∑

l �=j,k

σjkσjl

σkl
/
∑

j

σ 2
j . (6.14)

6.3.1 Estimates

Let xij be the observed score of individual i = 1, 2, . . . , N on item j = 1, 2, . . . , J .
The sample mean score on item j is given by .x̄j = ∑N

i=1 xij /N , for all j . The
observed total score of individual i is then given by .xi = ∑J

j=1 xij , for all i, and the

sample mean total score is then given by .x̄ = ∑N
i=1 xi/N . A closed-form estimate of

.ρ2
XC

is now given by

.ρ̂2XC =
⎧
⎨

⎩

1

(J − 1)(J − 2)

∑

j

∑

k �=j

∑

l �=j,k

sjksj l

skl
+

∑

j

∑

k �=j

sjk

⎫
⎬

⎭
/s2, (6.15)

where .sjk = ∑N
i=1(xij − x̄j )(xik − x̄k)/(N − 1) is the estimate of σjk, for all j and

k �= j , and .s2 = ∑N
i=1(xi − x̄)2/(N − 1) is the estimate of .σ 2

X
. Note that .s2 =

∑
j s2j +∑

j

∑
k �=j sjk , where .s2j = ∑N

i=1(xij − x̄j )2/(N −1) is the estimate of .σ 2
j , for

all j . A closed-form estimate of δj is given by

.δ̂j = s2j − 1

(J − 1)(J − 2)

∑

k �=j

∑

l �=j,k

sjksj l

skl
, for all j. (6.16)

If sjk > 0, for all j �= k, then a closed-form estimate of factor loading aj is given by

.âj =
√
√
√
√

1

(J − 1)(J − 2)

∑

k �=j

∑

l �=j,k

sjksj l

skl
, for all j. (6.17)
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A closed-form estimate of the item communality .ρ2
Xj Cj

= h2
j
is given by

.ĥ2j = 1

(J − 1)(J − 2)s2j

∑

k �=j

∑

l �=j,k

sjksj l

skl
, for all j. (6.18)

Finally, a closed-form estimate of the proportion of total variance explained by the
common factor is given by

.π̂ = 1

(J − 1)(J − 2)

∑

j

∑

k �=j

∑

l �=j,k

sjksj l

skl
/
∑

j

s2j . (6.19)

6.4 An Example

The data in this example are taken from Lord and Novick (1968, p. 91) and are the
entries of the sample covariance matrix of four measures of English as a foreign
language. The sample covariance matrix is based upon a sample size of 1416 and is
given by

.

⎡

⎢
⎢
⎢
⎣

s21
s21 s22
s31 s32 s23
s41 s42 s43 s24

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

94.7

87.3 212.0

63.9 138.7 160.5

58.4 128.2 109.8 115.4

⎤

⎥
⎥
⎥
⎦

.

Estimates of the parameters of the one-factor model are often obtained by maximum
likelihood estimation under the assumption of multivariate normality of the item
scores in the population. For comparison, both the maximum likelihood estimates
and the closed-form estimates of aj , δj , and .h2j , for all j , and ω and π are calculated.

The maximum likelihood estimates are denoted by .ãj and .δ̃j h̃2j , for all j , and .ω̃ and
.π̃ . The estimates for all item parameters and coefficients are given in Table 6.1. Note
that the item order given by the closed-form estimates .ĥ21 < ĥ23 < ĥ24 < ĥ22 is different
from the item order given by the maximum likelihood estimates .h̃21 < h̃23 < h̃22 < h̃24.
The estimate of coefficient α is .α̂ = .891. The maximum likelihood estimate of
coefficient ω is .ω̃ = .909, and its closed-form estimate is .ω̂ = .912. So, about 91%
of the sample variance of the total score is explained by the common factor. The
maximum likelihood estimate of the total variance π is .π̃ = .725, and its closed-
form estimate is .π̃ = .735. So, about 73% of the total sample variance is explained
by the common factor.
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Table 6.1 Estimates of all
item parameters and
coefficients under the
one-factor model, for the
Lord and Novick (1968)
example data

Estimate

j .âj .ãj .δ̂j .δ̃j .ĥ2j .h̃2j

1 6.164 6.133 56.708 57.020 .401 .397

2 13.455 12.939 30.975 44.432 .854 .790

3 10.653 10.882 47.015 41.963 .707 .738

4 9.791 9.937 19.534 16.581 .831 .856

6.5 Conclusion

Coefficient alpha has traditionally been used to assess the reliability of the total
score. Since coefficient alpha equals the communality of the total score under the
essentially tau-equivalent model, coefficient alpha is a lower bound to the reliability
of the total score. The communality of the total score under the more realistic one-
factor model is also a lower bound to the reliability of the total score. Under the
one-factor model, however, the communality of the total score equals the proportion
of variance of the total score explained by the common factor and therefore assesses
the extent to which the common factor is measured by the total score. If items are
constructed to measure one and the same latent factor, then the one-factormodel can
be used to study whether the items actually measure a single common factor. Once
it has been concluded that the items measure a single common factor, it is of interest
to assess how well the single common factor is measured by the item scores or the
total score. To assess how well the single common factor is measured by the total
score, coefficient omega and its new expression can be used. Under the one-factor
model, coefficient omega and its new expression give the proportion of variance of
the total score explained by the common factor. In practice, the maximum likelihood
estimate of coefficient omega is often used as the estimate of the communality of
the total score under the one-factor model. The closed-form estimate of omega now
provides a distribution-free alternative.
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Chapter 7
A Factor Analysis Approach to Item
Level Change Score Reliability

Dylan Molenaar

Abstract Reliability of change scores from a pretest-posttest design is important
to establish the usefulness of change scores in drawing inferences about pretest-
posttest differences. Besides the traditional sum score-based classical test theory
approach, an item level classical test theory approach has been proposed to assess
change score reliability. This approach was demonstrated to be superior to the
traditional sum score-based approach. However, both the item level and the sum
score-based approaches are biased in the case of multidimensionality and correlated
errors. Therefore, in this chapter two factor analysis approaches to the item level
classical test theory approach are presented. These approaches treat the item level
data explicitly as ordinal and allow various psychometric aspects of the data to be
investigated including multidimensionality, carry-over effects, and response shifts.
As a result, using the factor analysis approaches, it can be assessed whether the
results from the classical test theory approaches can be trusted. The classical test
theory approaches and factor analysis approaches are studied in a simulation and
applied to a real dataset pertaining to life satisfaction.

The pretest-posttest design is an important scientific research tool to study change.
For instance, the effectiveness of an intervention (a newly developed psychotherapy,
social skills training, teaching method, etc.) can be studied by comparing the
differences in pre-intervention measurements and post-intervention measurements
to those obtained from a placebo sample in which no intervention, a bogus inter-
vention, and/or an existing intervention is applied. Besides scientific applications,
the pretest-posttest design has its uses in, for instance, education where children
complete an achievement test at the start and at the end of the school year to see
how they progress. In addition, in large-scale online environments (e.g., websites,
monitoring systems), a pretest-posttest design is used to test for the effectiveness of
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small differences in the online environment (e.g., the font of the text, or the ordering
of the items) on some measure of interest (e.g., “time spent in the application”).

Of key importance in making inferences about the (size of the) effect of the
intervention is the reliability of the difference between the pretest and posttest
scores. That is, in unreliable difference scores, it is unlikely to find any statistically
significant effects, and, more importantly, unreliable difference scores are unlikely
to be of practical significance as they hardly tell something about the underlying
change. The use of difference scores in general has been criticized by a number of
authors (e.g., Cronbach & Furby, 1970; Linn & Slinde, 1977; Lord, 1963; Williams
& Kaufmann, 2012). One of the arguments is that change score reliability cannot be
large if the intervention is effective. That is, if the intervention is effective, a large
pretest-posttest correlation arises due to most subjects improving on the posttest
measurement which in turn results in a small reliability of the difference scores
(Linn & Slinde, 1977). Gu et al. (2018) pointed out, however, that this critique,
and four other common critiques on change scores, can be refuted. Among others,
they argue that criticism on change score reliability is often based on problematic
assumptions (e.g., that the test score variance is equal for the pretest and posttest)
and on a confusion of measurement precision with test score reliability (see also
Mellenbergh, 1996). One of the main conclusions by Gu et al. is that change score
reliability depends on the data characteristics of a given application and is therefore
an empirical question.

Addressing the empirical question of change score reliability has commonly
been done using approaches from classical test theory (Lord & Novick, 1968).
That is, by decomposing both the pretest scores and the posttest scores into a true
score component and an error score component, an expression for the reliability
of the difference between these scores can be derived (e.g., Cronbach & Furby,
1970). Such an approach, however, focusses on the summed item scores of the
pretest and posttest, thereby aggregating over individual items. To this end, Gu
et al. (2021) presented a related classical test theory approach based on the item
level pretest and posttest data. From a simulation study, it appeared that the item
level approach outperforms the traditional sum score approach in terms of the bias
of the change score reliability estimates. That is, in the case of correlated errors
and/or multidimensionality in the data, the item level approach was less biased
than the sum score approach. For the item level approach itself, reliability estimates
were unbiased in the case of unidimensional data and in the absence of correlated
errors. For datasets with stronger multidimensional structures and data with stronger
correlations among the errors, bias increased, but not as much as for the sum score
approach.

In the present chapter, a factor analysis approach to the item level classical test
theory approach by Gu et al. (2021) is proposed. Advantage of such an approach
is that it naturally adds model fit assessment tools to the methodology of Gu et
al. These tools can be used to verify unidimensionality of the difference scores. In
addition, an extension is proposed in which correlated errors can be identified and in
which the presence of a so-called response shift can be assessed (Howard & Dailey,
1979). If a response shift occurs, the pretest-posttest difference is (partly) due to
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a change in the interpretation of the construct by the subjects and can thus not be
interpreted in terms of change on the underlying construct (Sprangers & Schwartz,
1999; see also Oort et al., 2009). In practice, if a response shift occurs, this results
in violations of measurement invariance (Meredith, 1993) across the pretest and
posttest which can be detected in a factor analysis framework.

The outline is as follows: first the sum score and item level classical test theory
approaches are discussed. Then, two factor analysis approaches are derived, one
closely resembling the approach by Gu et al. (2021) and the other being the extended
model. Next, the new approaches are studied in a small simulation study and applied
to a real dataset pertaining to life satisfaction to illustrate their use in practice. This
chapter is concluded with a general discussion.

7.1 Classical Test Theory Approaches to Difference Score
Reliability

7.1.1 The Sum Score Approach

To introduce the sum score approach, let .X(pre) = ∑J
j=1 X

(pre)
j and .X(post) =

∑J
j=1 X

(post)
j denote the summed item scores over, respectively, the J pretest

items, .X
(pre)
j , and the J posttest items, .X

(post)
j . Then, the difference scores,

D = X(post) − X(pre), can be submitted to a classical test theory decomposition,
that is,

D = TD + ED (7.1)

where TD is the true difference score and ED is the measurement error. Note that all
classical test theory definitions apply, that is, for a given subject v,

TD,v = E (Dv) (7.2)

and

ED,v = Dv − TD,v. (7.3)

Therefore, reliability of the difference score can be expressed as

ρDD′ = σ 2
TD

σ 2
D

(7.4)

where .σ 2
TD

is the true difference score variance and .σ 2
D is the observed difference

score variance. In practice, the true difference score is not observed, precluding
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calculation of the difference score reliability using the above. However, under the
assumption that the measurement errors of the pretest and posttest are independent,
it can be derived that (see, e.g., Cronbach & Furby, 1970)

ρDD′ = ρpre,pre′σ 2
pre + ρpost,pre′σ 2

post − 2σpre,post

σ 2
pre + σ 2

post − 2σpre,post
, (7.5)

where ρpre, pre′ and ρpost, pre′ are the reliability of the pretest scores X(pre) and
the posttest scores X(post) and .σ 2

pre and .σ 2
post are the corresponding variances with

covariance σ pre, post. Although, again, this equation contains ρpre, pre′ and ρpost, pre′
which cannot be directly estimated, in practice ρpre, pre′ and ρpost, pre′ can be replaced
by lower bound estimates of the reliability like Cronbach’s alpha (Cronbach, 1951).
Therefore, Eq. 7.5 above, with a lower bound estimate plugged in for the reliabilities
of the pretest and posttest, provides a lower bound to the difference score reliability.

7.1.2 The Item Level Approach

In the above, the basis for estimating the difference score reliability is the summed
item scores. As discussed by Gu et al. (2021), using the summed pretest and posttest
scores will make the difference score reliability estimate sensitive to the presence of
correlated errors and to multidimensionality of the pretest and posttest scores. That
is, the items from the pretest and the posttest may be subject to correlated errors,
for instance, due to carry-over effects which are common in the pretest-posttest
design (McConnel et al., 1998). In the traditional sum score-based approach above,
these correlations will be absorbed in the covariance between the pretest scores and
the posttest scores, σ pre, post, which biases the difference score reliability .ρDD′ . In
addition, if the pretest item scores and the posttest item scores are multidimensional,
in practice – where lower bound estimates are used – this will also bias .ρDD′ via
the effect that multidimensionality has on classical test theory reliability estimates
ρpre, pre′ and ρpost, post′ (Dunn et al., 2014; Sijtsma & Pfadt, 2021).

To address the above two issues, Gu et al. (2021) advocated the use of item differ-
ence scores as these are less sensitive to correlated errors and multidimensionality
as compared to the summed pretest and posttest scores. Thus, Gu et al. proposed to
directly estimate reliability ρDD′ from the item level difference scores, that is,

X
(pre)
j = T

(pre)
j + E

(pre)
j (7.6)

and

X
(post)
j = T

(post)
j + E

(post)
j , (7.7)
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so that

Dj = X
(post)
j − X

(pre)
j =

(
T

(post)
j − T

(pre)
j

)
+

(
E

(post)
j − E

(pre)
j

)
= TDj + EDj .

(7.8)

Thus, the item level difference scores, Dj, are treated as a single test of which the
reliability needs to be determined. By doing so, possible correlations between the
errors .E

(pre)
j and .E

(post)
j are absorbed in .σED

2
jmaking the procedure less vulnerable

to these correlations as compared to the traditional sum score-based classical test
theory approach (at least in the situations considered by Gu et al.).1 In addition,
the item level approach above does not depend on the dimensionality of .T

(pre)
j and

.T
(post)
j but only on the dimensionality of .TDj which Gu et al. argue to be closer to

unidimensionality in practice.
To apply the item level method above, a lower bound reliability estimate is

needed to be applied to Dj. Gu et al. considered Cronbach’s alpha and λ2 and λ4
(Guttman, 1945). The obtained estimates are directly interpretable in terms of lower
bounds to the difference score reliability, e.g., for λ2,

λ2 =
∑ ∑

j �=k σDj Dk +
√

J
J−1

∑ ∑
j �=k σ 2

Dj Dk

σ 2
D

≤ ρDD′ (7.9)

where .σDj Dk is the covariance between the difference score of item j and k and .σ 2
D

is the variance of the summed item difference scores which are identical to D in the
sum score approach above. This approach is taken as the point of departure for a
factor analysis account of difference score reliability.

7.2 A Factor Analysis Approach to Difference Score
Reliability

In this section, two approaches are presented. The first is a direct translation of the
classical test theory item level approach by Gu et al. (2021) to a factor model for
item differences which can be used to test for the presence of multidimensionality
of the difference scores. The second approach is an extended model which accounts
for all observed data (i.e., not only the difference scores) and which can be used to

1 In the traditional classical test theory approach, positive residual correlations will increase
σ pre, post which will bias reliability downwards. In the item level classical test theory approach,

positive residual correlations will decrease .σ 2
EDj

(

as σED
2
j = σ 2

E
(pre)
j

+ σ 2
E

(post)
j

− 2σ
E

(pre)
j

,E
(post)
j

)

which will bias reliability upwards. This is also what was found in the simulations by Gu et al. The
bias was however much larger for the traditional approach.
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test for the presence of multidimensionality in the pretest and posttest item scores
and for correlated errors and response shifts.

7.2.1 A Factor Model for Item Differences

A direct translation of the classical test theory item level approach into a factor
model framework can be obtained by replacing the true score variables, T(pre) and
T(post) in Eqs. 7.6 and 7.7 by the conditional mean in a common factor model, that
is,

T
(pre)
j = E

(
X

(pre)
j

)
= bj + aj ξ

(pre) (7.10)

and

T
(post)
j = E

(
X

(post)
j

)
= bj + aj ξ

(post). (7.11)

where aj is a factor loading, bj is an intercept, and ξ (pre) and ξ (post) are the
unidimensional latent factors assumed to underlie the pretest and posttest scores,
respectively. In addition, the measurement error variables .E

(pre)
j and .E

(post)
j from

the classical test theory approach are replaced by the factor model residuals, .δ(pre)
j

and .δ
(post)
j (e.g., Bollen, 1989, p. 218; Sijtsma & Pfadt, 2021). In the resulting model,

the item difference variables are then subject to

Dj = X
(post)
j − X

(pre)
j = aj

(
ξ(pre) − ξ(post)

)
+

(
δ
(pre)
j − δ

(post)
j

)
= ajξD + δDj

(7.12)

that is, the model is a one-factor model on the difference scores with factor ξD
modeling the latent differences between the pretest and posttest and .δDj with
variance .σ 2

δ Dj
containing the differences in residuals across the pretest and posttest.

Within this one-factor model, reliability can be calculated using coefficient ω

(McDonald, 1978, 1999) which is here denoted ωdifference to explicitly indicate that
the reliability is based on the item level pretest and posttest difference scores Dj

from Eq. 7.12 (and not on the raw pretest and posttest scores), that is,

ωdifference =
(∑J

j=1 aj

)2
σ 2

ξD

(∑J
j=1 aj

)2
σ 2

ξD
+ ∑J

j=1 σ 2
δ Dj

. (7.13)

Note that in the factor analysis approach above, it is assumed that the pretest
and posttest scores are unidimensional, while this assumption is not imposed in the
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item level approach by Gu et al. (2021). However, as the models for the pretest
and posttest scores from Eqs. 7.10 and 7.11 are not fit, this assumption does not
necessarily need to hold. The assumption that does need to hold in the actual model
in Eq. 7.12 is that the latent difference factor ξD is unidimensional, which is a
comparable assumption to that of the Gu et al. approach (but not equivalent, see
below).

7.2.1.1 Relation to Classical Test Theory

The factor model approach presented here is not equivalent to the classical test
theory approach presented earlier. That is, the latent factor in the factor model
from Eq. 7.12, ξD, and the true score from classical test theory in Eq. 7.8, TD, are
inherently different. That is, ξD is a unidimensional latent factor that accounts for the
variance common to all item difference scores, Dj, while the true difference score
TD accounts for all systematic sources of variance without modeling its structure
(Sijtsma & Pfadt, 2021; Sijtsma & Van der Ark, 2021; chapter 2). As TD and
ξD do not necessarily capture the same sources of variation in the data, .EDj and
.δDj are also not equivalent. That is, .EDj represents random measurement error,
while .δDj contains random measurement error and misfit. Therefore, due to these
differences, the present approach is only one possible translation of the item level
classical test theory approach to a factor model approach. Other possibilities may
arise by replacing the true difference scores with different latent structures.

7.2.1.2 Categorical Item Scores

The model above is a linear factor model which can be estimated using maxi-
mum likelihood by assuming a multivariate normal distribution for Dj. However,
especially at the item level, a normal distribution may not be appropriate for the
difference scores as the pretest and posttest item scores are categorical in practice
(dichotomous or ordinal). Commonly, variables with five or more ordered categories
that are normally distributed can safely be analyzed using a normal linear factor
model (Dolan, 1994; Rhemtulla et al., 2012). However, in the case of dichotomous
items, the item difference scores will have a three-point scale at most (−1, 0, and 1),
and the item difference scores of polytomous items may not be normally distributed.

To account for the ordinal (and possibly non-normal) nature of the difference
scores, a distinction is made between .D∗

j , which is the theoretical, normally
distributed, item difference variable, and Dj which is the actually observed ordinal
item difference score variable. To apply the factor model to Dj, it is assumed that
the normally distributed .D∗

j variable is subject to Eq. 7.12, that is,

D∗
j = aj ξD + δDj . (7.14)
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The observed item difference scoresDj then arise by categorizing the continuous
normal difference scores .D∗

j at thresholds β jc where c = 0, . . . ,Mj whereMj is the
number of item difference scores for item j (i.e., the number of levels in Dj). Thus:

Dj = c if βjc < D∗
j < βjc+1 for c = 0, . . . ,Mj (7.15)

with β j0 = − ∞ and .βjMj = ∞. Then, the full model for ordinal difference scores
is given by Eqs. 7.14 and 7.15, with parameters: aj and .σ 2

δ Dj
for all j, .σ 2

ξD
and .μξD ,

and the thresholds, β jc, for all j and all c except c= 0 and c= Mj. Not all parameters
are uniquely identified, however. This is discussed below.

Note that coefficient ω in Eq. 7.13 is an estimate of the reliability of the
observed item difference scores Dj by using variance and covariance estimates of
the underlying normal variables .D∗

j (i.e., polychoric variances and covariances). In
factor analysis of ordinal variables, using polychoric (co)variances is preferred over
assumingDj to be normally distributed and using its observed (co)variances (Dolan,
1994). As mentioned above, if, in practice, the difference scores appear to be normal
with five or more levels, one can assume that .D∗

j = Dj and fit the model in Eq. 7.12
directly to the observed difference scores (Dolan, 1994; Rhemtulla et al., 2012).
Both options are explored in the simulation study and real data illustration later.

7.2.1.3 Correlated Errors and Response Shifts

Until now, the factor analysis approach addresses one aspect of the item level
classical test theory approach by Gu et al. (2021). That is, in the present factor model
for difference scores, departures from unidimensionality in the difference scores
are straightforwardly detected by consulting model fit statistics. If these statistics
indicate poor model fit, this is likely due to multidimensional difference scores, and
the results of the model should be interpreted with care. The issue of correlated
errors and response shifts is however not addressed in this approach.

Correlated Errors As discussed above, in practice, the errors from the item level
classical tests theory may be correlated errors due to, for instance, a carry-over
effect. Similarly as in the item level classical test theory approach, correlated errors
will go unnoticed in the present model. That is, if the errors in the classical test
theory approach are correlated, this will show up as a covariances between the item
residuals .δ

(pre)

j and .δ
(post)
j in the factor model approach. Similarly as in the item

level approach by Gu et al. (2021), these covariances will be absorbed in .σ 2
δD
. This

cannot be detected in the model fit, but it will bias the reliability estimates, similarly
as discussed for the Gu et al. approach in footnote 1.

Response Shifts In the model in Eqs. 7.12 and 7.15, it is assumed that the
measurement characteristics of the factor model are invariant for the pretest and
posttest. That is, aj and bj are assumed to be the same for the pretest and the
posttest. This corresponds to the assumption of measurement invariance (Meredith,
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1993). This assumption is a prerequisite for a meaningful comparison of the latent
difference factor, ξD in terms of the difference between ξ (pre) and ξ (post). In a
pretest-posttest design, violations of measurement invariance can occur due to many
reasons. For self-report questionnaires, one reason may be the occurrence of a so-
called response shift (Oort et al., 2009). A response shift occurs if the posttest
measures something psychometrically different from the posttest. That is, subjects
may have recalibrated the scale on which they judge themselves (e.g., after the
intervention they realize that they were much lower on the construct than they
indicated before), they have reprioritized some aspects of the construct (e.g., after
the intervention the subjects are appreciating some aspects of the construct more as
before), or they have redefined the construct (e.g., after the intervention they have a
different internal definition of what the construct is as before).

Thus, in the present factor model, it is assumed that there are no residual
correlations and that there are no response shifts. In practice, it is important to
test these assumptions and account for violations to ensure that the difference score
reliability can bemeaningfully interpreted.However, in the current one-factormodel
approach, these assumptions cannot be tested as the individual data of the pretest and
posttest are not considered. Therefore, below, an extended factor analysis approach
is considered in which both the assumption of measurement invariance and the
presence of correlated residuals can be tested.

7.2.2 A Factor Model for Pretest-Posttest Scores

In this second approach to estimate difference score reliability, separate measure-
ment models are considered for the pretest item scores and the posttest item scores:

X
(pre)
j = b

(pre)
j + a

(pre)
j ξ (pre) + δ

(pre)
j (7.16)

and

X
(post)
j = b

(post)
j + a

(post)
j ξ (post) + δ

(post)
j . (7.17)

where besides the residual variances .σ 2
δ
(pre)
j

and .σ 2
δ
(post)
j

, the variances of the pretest

and posttest latent factors, .σ 2
ξ (pre) and .σ 2

ξ (post) , and the covariance between the pretest
and posttest latent factors, .σξ(pre),ξ (post) , are free parameters. Here we assume the
pretest and posttest score to be unidimensional, but the model can straightforwardly
be extended to include more factors. Note that in the presentation of the model,
the measurement parameters are explicitly different from pretest to posttest, so that
it can be tested whether they are equal (so that the assumption of measurement
invariance is met). However, to establish the reliability of the difference scores Dj,
which is denoted ωpre − post for this model, measurement invariance needs to be
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assumed to make the estimate of ωpre − post meaningful, that is,

ωpre−post =
(∑J

j=1 aj

)2 (
σ 2

ξ (pre) + σ 2
ξ (post) − 2σξ(pre),ξ (post)

)

(∑J
j=1 aj

)2 (
σ 2

ξ (pre) + σ 2
ξ (post) − 2σξ(pre),ξ (post)

)
+ 2

∑J
j=1 σ 2

δj

(7.18)

where aj is the factor loading of item j for the pretest and posttest and .σ 2
δj

is the
residual variance of item j for the pretest and posttest.

7.2.2.1 Categorical Item Scores

Comparable to the above, it again holds that the dependent variables in the
factor model, .X(pre)

j and .X
(post)
j , are commonly assumed to be multivariate normal

variables. In the present case, where both the pretest and posttest are modeled, this
assumption is even more problematic, as the pretest and posttest scores commonly
do not have more than five levels in practice (i.e., in the case of a Likert scale
questionnaire). In addition, in questionnaire data, scores are commonly skewed
due to floor or ceiling effects. Therefore, the ordinal nature of the data is taken
into account using the same approach as above, that is, it is assumed that the
actual observed item scores, denoted .X

(pre)
j and .X

(post)
j , are categorizations of the

underlying normally distributed variables .X
∗(pre)
j and .X

∗(post)
j that follow Eqs. 7.16

and 7.17, respectively. Thus,

X
(pre)
j = c if β

(pre)
jc < X

∗(pre)
j < β

(pre)
j(c+1) for c = 0, . . . ,Mj (7.19)

and

X
(post)
j = c if β

(post)
jc < X

∗(post)
j < β

(post)
j(c+1) for c = 0, . . . ,Mj (7.20)

Note that in estimating ωpre − post from Eq. 7.18, the thresholds need to be
invariant across pretest and posttest to ensure a meaningful estimate of the factor
model reliability.

7.2.2.2 Estimation and Identification

Here the estimation and identification of the two factor model approaches to
difference score reliability are presented. Identification of the difference score factor
model from Eqs. 7.12 and 7.15 can be done by fixing the variance and mean of the
latent difference factor, .μξD = 0 and .σ 2

ξD
= 1. Next, the model can be fit to the

observed item difference scores by maximum likelihood. However, if the observed
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item difference scores are treated explicitly as ordinal using the underlying normal
variable Dj in Eq. 7.15, the scale of Dj needs to be identified as well. To this end,
the variance of Dj is fixed to 1, implying that the residual variances are equal to
.σ 2

δDj
= 1 − a2j and that they need not to be estimated.

Identification of the pretest-posttest factor model from Eqs. 7.16, 7.17, 7.19, and
7.20 requires fixing themean and variance of the pretest latent factor to, respectively,
0 and 1, that is, .μξ(pre) = 0 and .σ 2

ξ (pre) = 1. The posttest latent factor mean and
variance can be estimated and reflect the difference in, respectively, the mean and
variance with respect to the pretest latent factor. Similarly as above, as the item
scores are treated explicitly as ordinal using the underlying normal variables .X

∗(pre)
j

and .X
∗(post)
j in Eqs. 7.19 and 7.20, the scales of .X∗(pre)

j and .X
∗(post)
j are identified by

fixing their variances to 1, implying that the residual variances are equal to .σ 2
δj

=
1 − a2j and that they need not to be estimated.

7.2.2.3 Correlated Residuals

As discussed above, the presence of carry-over effects in the data results in
correlated residuals between the pretest items and the posttest items. Therefore, in
the model above, the residuals are allowed to be correlated. That is, .σδj δj denotes the
residual covariance between the pretest scores and the posttest scores of item j. Note
that even though the residual variances are fixed due to the ordinal nature of the data
(see above), these residual covariances can be estimated for all items j = 1, . . . , J.
The significance of the residual covariances can be tested by comparing the model
fit of a model including residual covariances to the model fit of a model without
residual covariances. In addition, individual residual covariances can be tested on
significance by a Wald test.

7.2.2.4 Testing Measurement Invariance

A key assumption in calculating difference score reliability in factor models is that
there is no response shift, meaning that the measurement parameters aj, bj, and β jc

are equal across the pretest and the posttest. This assumption cannot be tested in
the factor model for difference score in Eqs. 7.12 and 7.15, but it can be tested
in the pretest-posttest factor model from Eqs. 7.16, 7.17, 7.19, and 7.20. To this
end, a series of increasingly restrictive models is fit to the pretest and posttest
data.

The first model considered is referred to as “configural invariance.” In this model,
all measurement parameters are free across the pretest and posttest, and the factor
means and variances are fixed to 0 and 1, respectively, for identification. In the
next model, “metric invariance,” the factor loadings are equated over the pretest
and the posttest and the variance of the posttest latent factor is estimated (the
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variance of the pretest latent factor should still be fixed to 1 for identification of
the model; see above). Finally, the “factorial invariance” model is considered which
is equivalent to the model presented above in Eqs. 7.16, 7.17, 7.19, and 7.20. That
is, besides the factor loadings, the thresholds are also equated to be equal across
the pretest and the posttest, and the mean of the posttest latent factor is estimated
freely (the mean of the pretest factor should still be fixed to 0 for identification of
the model).

If the “factorial invariance” model fits the best among the other competing
models, measurement invariance is tenable. However, if one of the less restrictive
models fit better, this indicates that there are differences in the measurement
parameters across the pretest and posttest. In that case, this source of misfit should
be inferred. If the misfit is due to a minor number of items, these can be removed
and the reliability can be based on the remaining item.

7.3 Simulation Study

7.3.1 Design

To study the two factor model approaches above, a simulation study is considered.
Data are simulated for five-point Likert items following the approach by Gu et al.
(2021). That is, a graded response model (Samejima, 1969) is used to generate the
item scores for the pretest and posttest. A sample size of N = 500 is used with
either J = 10 or J = 25 items. The discrimination parameters for the items are
set to increasing and equally spaced values between 1 and 2. The category threshold
parameters are set as follows: For the items, a mean threshold is specified by equally
spaced increasing values between −2 and 2. For each item, the thresholds are then
obtained by adding the mean threshold value to −2, −0.75, 0.75, and 2. As a result,
the items are increasing in “item easiness” (or “item attractiveness” for personality
items). The latent factor at the pretest is drawn from a normal distribution with
mean 0 and variance 1. The latent factor at the posttest is calculated by adding
a normally distributed variable with mean 0 and variance .σ 2

diff to the latent factor
from the pretest. As a result the covariance between the latent factors equals 1 and
the variance of the posttest latent factor equals .1+ σ 2

diff. Following Gu et al., .σ
2
diff is

equal to either 0.15 or 0.5.
The design also includes a manipulation of the residual correlations, which were

either absent or present. To impose residual correlations, a carry-over effect was
introduced in the data following the procedure by Gu et al. (2021). That is, for a
random selection of 50% of the subjects in the data, the following transformation of
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the posttest scores is conducted:

X
(post)
j =

⎧
⎪⎪⎨

⎪⎪⎩

X
pre
j if

∣
∣
∣X

(post)
j − X

pre
j

∣
∣
∣ = 1

X
pre
j + 1 if X

(post)
j − X

pre
j =≥ 2

X
pre
j − 1 if X

(post)
j − X

pre
j ≤ −2

(7.21)

This corresponds to the strong carry-over effect condition in the simulation of
Gu et al. Contrary to Gu et al., here, dimensionality of the pretest and posttest
scores is not manipulated, as in a factor analysis framework this is less of interest
(unidimensionality can easily be established using model fit diagnostics as is
illustrated in the real data application below). Each cell in the design is replicated
100 times.

7.3.2 Dependent Variables

To the simulated data, the following approaches discussed in this chapter are
applied:

A. CTT: The sum score-based classical test theory approach (Eq. 7.5)
B. CTTT-D: The item difference score-based classical test theory approach (Eq.

7.8)
C. FA-D-cat: The categorical item difference score-based factor analysis approach

(Eqs. 7.12, 7.15, and 7.13)
D. FA-D-con: The continuous item difference score-based factor analysis approach

(Eqs. 7.12 and 7.13)
E. FA-I-cov: The item score-based factor analysis approach (Eqs. 7.16, 7.17, 7.19,

7.20, and 7.18) with residual covariances
F. FA-I: The item score-based factor analysis approach (Eqs. 7.16, 7.17, 7.19, 7.20,

and 7.18) without residual covariances

For the classical test theory approaches, λ2 from Eq. 7.9 is used as the lower
bound estimate of the reliability. In addition, note that for FA-D-cat and FA-
D-con above, the item difference score factor analysis approach is applied by
either assuming the difference scores to be normal (i.e., fitting Eq. 7.12 to the
item difference scores) or by assuming the difference scores to be ordinal (i.e.,
by fitting the model subject to Eq. 7.15). In addition, the item score-based factor
analysis approach is applied both with (FA-I-cov) and without residual covariances
(FA-I). The factor models are estimated using the R-package “lavaan” (Rosseel,
2012) using maximum likelihood (for normal difference scores) or weighted least
squares (for ordinal difference scores or for the ordinal pretest-posttest item scores).
The classical test theory reliability coefficient λ2 is estimated using R package
“Lambda2” (Hunt, 2013).
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7.3.3 Results

Tables 7.1, 7.2, and 7.3 contain, respectively, the bias, the root mean squared error,
and the standard deviation of the reliability estimates across the replications in the
study design. In addition, the results from the tables are graphically represented
in the boxplots in Fig. 7.1. If there is no bias, the root mean squared error and
the standard deviation are the same. As can be seen, bias is generally low and
negative for all methods, meaning that the reliability is slightly underestimated
for all methods. Only in the case of a carry-over effect, FA-I produces large bias.
This can be attributed to the residual covariances in the data due to the carry-over
effects which are unmodelled in FA-I. These covariances are absorbed in the factor
covariance causing the factor covariance to be overestimated and the reliability to
be underestimated (see Eq. 7.18). Indeed, for FA-I-cov such a severe bias does not
occur.

The factor analysis approaches are generally somewhat less biased as compared
to the classical test theory approach. With the CTT-D outperforming the CTT

Table 7.1 Bias of the reliability estimates with respect to the true reliability (true) for the different
approaches

CF J Var. True Bias
CTT CTT-D FA-D-cat FA-D-con FA-I-cov FA-I

No CF 10 Small 0.628 −0.159 −0.087 −0.060 −0.088 −0.045 −0.044
No CF 10 Large 0.849 −0.095 −0.066 −0.047 −0.064 −0.049 −0.048
No CF 25 Small 0.808 −0.078 −0.056 −0.038 −0.058 −0.029 −0.027
No CF 25 Large 0.934 −0.038 −0.031 −0.022 −0.031 −0.024 −0.023
CF 10 Small 0.628 −0.146 −0.090 −0.062 −0.092 −0.039 −1.238
CF 10 Large 0.849 −0.093 −0.066 −0.046 −0.063 −0.037 −0.239
CF 25 Small 0.808 −0.066 −0.055 −0.037 −0.058 −0.021 −0.37
CF 25 Large 0.934 −0.038 −0.031 −0.022 −0.031 −0.017 −0.094

Note. CF carry-over effect, Var the variance in the posttest scores (small or large)

Table 7.2 Root mean squared error of the reliability estimates for the different approaches

CF J Var. Root mean squared error
CTT CTT-D FA-D-cat FA-D-con FA-I-cov FA-I

No CF 10 Small 0.163 0.092 0.067 0.093 0.055 0.053
No CF 10 Large 0.097 0.068 0.049 0.066 0.052 0.050
No CF 25 Small 0.079 0.058 0.040 0.060 0.032 0.030
No CF 25 Large 0.039 0.031 0.023 0.032 0.024 0.024
CF 10 Small 0.150 0.094 0.067 0.096 0.055 1.320
CF 10 Large 0.094 0.067 0.048 0.065 0.041 0.242
CF 25 Small 0.068 0.057 0.040 0.060 0.027 0.376
CF 25 Large 0.038 0.031 0.023 0.032 0.019 0.095

Note. CF carry-over effect, Var the variance in the posttest scores (small or large)
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Table 7.3 Standard deviation of the reliability estimates for the different approaches

CF J Var. Standard deviation
CTT CTT-D FA-D-cat FA-D-con FA-I-cov FA-I

No CF 10 Small 0.033 0.030 0.031 0.030 0.032 0.030
No CF 10 Large 0.017 0.015 0.014 0.016 0.016 0.014
No CF 25 Small 0.014 0.013 0.013 0.014 0.015 0.014
No CF 25 Large 0.007 0.006 0.006 0.007 0.006 0.006
CF 10 Small 0.031 0.027 0.027 0.028 0.038 0.465
CF 10 Large 0.015 0.013 0.012 0.014 0.017 0.039
CF 25 Small 0.015 0.015 0.014 0.015 0.017 0.069
CF 25 Large 0.007 0.006 0.006 0.006 0.008 0.018

Note. CF carry-over effect, Var the variance in the posttest scores (small or large)

approach in almost all conditions. The FA-D-con, in which the difference scores are
considered continuous, performs comparable to the classical test theory difference
score approach,CTT-D. In addition, FA-D-cat performs slightly better thanCTT-D
which is understandable as the data is generate according to the factor model.

Overall, FA-I-cov is associated with the smallest bias and smallest root mean
squared error in the case of a carry-over effect, and FA-I-cov and FA-I have
the smallest bias in the case of no carry-over effect and a small posttest score
variance. In the case of no carry-over effect and a large posttest score variance,
the factor analysis approaches produce comparable results. The standard deviation
of the estimates is generally comparable across the methods, with the FA-I-cov
having a slightly higher standard deviation. This is due to parameter estimation
imprecision, as these approaches are statistically the most complex approaches with
more parameters to be estimated as compared to the item difference score factor
analysis approaches (FA-D-cat and FA-D-con). The standard deviations for FA-I
are large in the case of a carry-over effect as compared to the other approaches due
to the severe misfit in this model in this condition.

With respect to the manipulations in the design, the results are straightforward:
more items result in less bias, and larger variance in the posttest scores results in less
bias (except for the FA-I and FA-I-cov, it results in a slightly increased bias in the
case of ten items). The effect of the carry-over effect is most notable for FA-I-cov,
which is less biased in the case of a carry-over effect, and for FA-I which is more
biased in the case of a carry-over effect, as discussed above. For CTT, bias seems to
slightly decrease in the case of a carry-over effect, while forCTT-D, FA-D-cat, and
FA-D-con, bias is comparable between the conditions with and without carry-over
effect
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Fig. 7.1 Boxplots of the bias in the reliability estimates over the 100 replications from the
simulation study. CF carry-over effect, var the variance in the posttest scores (small or large).
In addition note that approach FA-I is not depicted as in the CF conditions, bias is large (see Table
7.1); these results fall mostly outside the graph. For the no CF condition, results are similar to
FA-I-cov
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7.4 Real Data Illustration

7.4.1 Data

In this section, data is analyzed from a study by Mackinnon et al. (2019) in which
263 subjects daily completed various items for 21 days. Aim of the study was to
study the link between perfectionism and alcohol drinking. The data is available
fromMackinnon et al. (2021). Here, five life satisfaction items from the Satisfaction
with Life scale (Diener et al., 1985) are analyzed from the first day (pretest) and the
last day (posttest). The items have seven-point Likert scale and comprise:

Q1: In most ways my life is close to my ideal.
Q2: The conditions of my life are excellent.
Q3: I was satisfied with my life.
Q4: I thought that, so far, I have gotten the important things I want in life.
Q5: I thought that, if I could live my life over, I would change almost nothing.

There was no intervention between these two measurement occasions selected
for the present analysis. However, it is interesting to see whether life satisfaction
increased or decreased in the 21-day period and, most importantly, what the
reliability of the difference scores is. The present analysis is not a reanalysis of
the Mackinnon et al. (2019) study. In that study, the authors did not use difference
scores so the results from the present analysis have no implications for the original
study. The present analyses are solely intended to illustrate the methodology from
the present chapter.

7.4.2 Analysis

First, the approaches as studied in the simulation study above are applied to the
pretest (day 1) and posttest (day 21) data from the Satisfaction with Life scale.
Next, the presence of residual covariances is tested, and it is determined whether
the assumption of measurement invariance is met. The modeling choices and
details are the same as in the simulation study. If necessary, parameter estimates
are tested using a 0.01 level of significance. In addition, the following fit indices
are considered: The Comparative Fit Index (CFI; Bentler & Bonett, 1980) and
Tucker-Lewis Index (TLI; Bentler & Bonett, 1980) for which values above 0.95
indicate acceptable model fit and values larger than 0.97 indicate good model fit
(Schermelleh-Engel et al., 2003) and the Root Mean Square Error of Approximation
(RMSEA; Browne & Cudeck, 1993) for which values smaller than 0.08 indicate
acceptable model fit and values below 0.05 indicate good model fit (Schermelleh-
Engel et al., 2003). In the tests for measurement invariance, if a given model
does not fit well as compared to other competing models, the modification indices
are consulted to locate the source(s) of misfit. Modification indices are Lagrange
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multiplier tests that indicate for each fixed parameter in the model how much the
model fit will improve if that parameter is freed (in χ2 (1) units). If a fixed parameter
causes a substantial source of misfit, this will be evident from a large modification
index for that parameter as compared to the other modification indices.

7.4.3 Results

The results of the different reliability approaches are in Table 7.4 for the full scale.
For the factor analysis approaches, the table includes the CFI, TLI, and RMSEA
model fit indices. As can be seen, the categorical difference score factor model FA-
D-cat produces the largest reliability estimate. However, the RMSEA indicates that
there is some source of misfit with a value above 0.08. In the continuous difference
score factor modelFA-D-con, the model fit is evenworse. The pretest-posttest factor
model with residual covariance FA-I-cov is the only model with an acceptable fit
according to all indices. Reliability of the difference score in this model is estimated
to be equal to 0.862. Reliability estimates for the other approaches are close, with the
sum score-based classical test theory approachCTT producing the lowest reliability
estimate. From the results of the FA-I-covmodel, it appears that items 4 and 5 have a
residual covariance between the pretest and posttest which are significant and equal
to 0.158 (SE: 0.019) for item 4 and 0.227 (SE: 0.028) for item 5. In addition, in this
model, the latent difference between posttest and pretest indicated no significant
change: 0.088 (SD: 0.059).

In the factor model applied to the data, the assumption is made that the
measurement model parameters are the same for the pretest and posttest. As
discussed above, this measurement invariance assumption can be tested in the item
scores-based factor model (FA-I and FA-I-cov). As there are significant residual
covariances, the assumption of measurement invariance is tested in FA-I-cov. See
Table 7.5 for the results. As can be seen, the configural model fits acceptable to good
according to the fit indices; however, if the loadings are equated in the metric model,
fit deteriorates which is mostly evident in the RMSEA. Judged by the modification
indices (not tabulated), the loading of item 3 is freed across the pretest and posttest
which improves model fit. However, still the model fits worse as compared to the

Table 7.4 Reliability estimates of the difference scores for the Satisfaction with Life scale

Approach #par χ2 df CFI TLI RMSEA Full scale Items 3 and 4 omitted

CTT 0.774 0.556
CTT-D 0.864 0.753
FA-D-cat 58 16.712 5 0.997 0.994 0.095 0.891 0.813
FA-D-con 11 78.249 9 0.970 0.939 0.127 0.878 0.802
FA-I-cov 43 147.731 62 0.999 0.999 0.073 0.862 0.765
FA-I 38 208.588 67 0.998 0.999 0.091 0.816 0.705
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Table 7.5 Model fit measures of the different models to establish measurement invariance

Model #par χ2 df CFI TLI RMSEA

Configural invariance 76 61.780 29 1.000 0.999 0.066
Metric invariance 72 88.860 33 0.999 0.999 0.081
Metric invariance revised 1 73 75.476 32 0.999 0.999 0.073
Metric invariance revised 2 74 63.101 31 1.000 0.999 0.063
Factorial invariance 45 121.808 60 0.999 0.999 0.063

Note. #par: number of parameters in the model

configural model. Therefore, on the basis of the modification indices, the loading
of item 4 is also freed across pretest and posttest. The resulting model has a similar
fit as compared to the configural model and is therefore accepted. This implies that
the loadings of item 3 and 4 are not invariant across the pretest and posttest. This
may have caused the poor fit of the FA-D-cat model as a loading difference across
pretest and posttest introduces multidimensionality in the difference scores. Next,
equal thresholds are introduced, and the model fit improves slightly indicating that
the assumption of equal thresholds is tenable.

As items 3 and 4 showed violations of measurement invariance, reliability is
recomputed within each approach, but by not taking items 3 and 4 into account (i.e.,
for the classical test theory approaches, they are removed, and for the factor analysis
approaches, their parameters are not taken into account in calculating reliability).
Table 7.4 shows the resulting reliability coefficients which are smaller, but, at least
for the FA-I-cov (which is the best fitting model), still acceptable (0.765). However,
reliability is not as good as in the initial analysis including all items. In practice, if
items violate measurement invariance (like items 3 and 4 in the present illustration),
these items should not be used to assess change as the change on these items does
not reflect change on the underlying factor for interest.

7.5 Discussion

In this chapter, two factor analysis approaches have been presented to estimate
change score reliability. The first approach is a direct translation of the item
level classical test theory approach by Gu et al. (2021). The other is an extended
approach that enabled tests on measurement invariance and residual covariances.
As appeared from the simulation study, the reliability estimates from the classical
test theory approaches and the factor analysis approaches were close to each other,
with the factor model estimates being slightly less biased overall. However, a
direct comparison of the classical test theory approaches and the factor analysis
approaches was not the aim of this chapter as both approaches differ intrinsically
(as discussed in this chapter). In addition, in the simulation study, the data were
generated using a factor model, putting the factor analysis approaches in an
advantage. The main aim of this chapter was to present a factor model approach to
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change score reliability to enable tests on dimensionality, measurement invariance,
and residual covariances as these aspects have been shown to bias classical test
theory approaches.

The first factor analysis approach presented makes use of the item difference
scores, similarly as Gu et al. (2021). By doing so, strict tests on measurement
invariance are not possible; however, dimensionality can be assessed. That is,
as shown in the real data application, violations of measurement invariance can
result in multidimensionality as the item difference scores contain variance due to
the latent difference factor and due to the latent posttest factor (which measures
something psychometrically different). In the item difference score factor analysis
approach, this can be detected using goodness of fit measures like the CFI and
RMSEA. The presence of residual correlations in the approach will however go
unnoticed.

In the second factor analysis approach which uses both the pretest and posttest
scores, measurement invariance and residual correlations can explicitly be tested.
As discussed above, violations of measurement invariance may be due to a response
shift. Response shifts, in turn, are due to the subjects recalibrating, reprioritizing, or
redefining their internal representation of the construct being measured. Oort (2005)
noted that if subjects rely on redefining, this will violate the configural invariance
model in which items will have a different factor configuration on the posttest as
compared to the pretest. If subjects rely on reprioritization, the metric invariance
model will be violated as the size of the factor loadings will differ between pretest
and posttest. Recalibration will result in violations of intercept invariance (in the
case of uniform effects) and in violations of the invariance of the residual variances
(in the case of nonuniform effects); see also Fokkema et al. (2013). However, as
in this chapter, the focus was on ordinal data, the model does not contain free
residual variances or intercepts, but thresholds instead. These thresholds pick up
both the uniform and nonuniform effects (as the thresholds and residual variances
are not uniquely defined; see Takane & De Leeuw, 1987). As in the present real data
analysis two factor loadings were found to differ across the pretest and posttest of
the life satisfaction scale, it can be concluded that—for these items—, subjects have
reprioritized the life satisfaction construct. Without these items, the difference score
reliability turned out to be smaller. Using a classical test theory approach, it would
have been challenging to detect this.
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Chapter 8
Handling Missing Data in Principal
Component Analysis Using Multiple
Imputation

Joost R. van Ginkel

Abstract Principal component analysis (PCA) is a widely used tool for establishing
the dimensional structure in questionnaire data. Whenever questionnaire data are
incomplete, the missing data need to be treated prior to carrying out a PCA. Several
methods exist for handling missing data prior to carrying out a PCA. The current
chapter first discusses the most recent developments regarding the treatment of
missing data in PCA. Next, of these methods, the method that is most promising
both from a theoretical and practical point of view will be discussed in more
detail, namely, multiple imputation. Finally, some extensions of multiple imputation
to other PCA-related techniques or to statistics within PCA beyond the basics
are discussed, and some general recommendations regarding the use of PCA on
multiply imputed datasets in different statistical software packages will be given.

8.1 Introduction

One important part of establishing the psychometric properties of a test or question-
naire is determining its dimensional structure. Oftentimes measurement instruments
measure different aspects of the same psychological construct. For example, a
questionnaire may measure different ways in which one can be religious (Hills et
al., 2005) or different aspects of schizotypal personality disorder (Mata et al., 2005).

Although establishing the dimensional structure of a measurement instrument
is mostly done in personality assessment, there are also situations in educational
settings where dimensionality of a measurement instrument may be relevant. For
example, in a school setting, one may be interested in students’ attitudes towards
different types of bullying (Boulton et al., 1999) or different aspects of students’
well-being (Borgonovi & Pál, 2016). As the developer of such measurement instru-
ments, you may want to know whether its items indeed measure the specific aspect
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of the trait that they are intended to measure. In such cases a statistical technique is
used that establishes which items measure which aspect of the underlying construct.
One widely used technique for this purpose is principal component analysis (PCA).

In practice, many datasets that are used for determining the dimensional structure
of questionnaires suffer from missing data. When data are incomplete, this com-
plicates the use of PCA or any analyses that are aimed towards determining the
dimensional structure. When missing data are not properly handled, erroneous con-
clusions may be drawn about dimensional structure of the measurement instrument.
It is therefore important that missing data are properly treated prior to determining
the dimensional structure.

The current chapter is going to focus on a situation where one is interested in
determining the dimensional structure of a test or questionnaire using PCA in an
incomplete dataset. In the first part of this chapter, an overview of the most recent
developments of missing data handling in PCA will be given. In this overview,
several methods for handling missing data in PCA are going to be discussed. The
second part will focus on the method that is the most promising one both from
a theoretical and practical point of view in more detail: multiple imputation. The
chapter will end with some extensions of missing data handling in PCA to statistics
within PCA beyond the basics and to PCA-related techniques, and some general
recommendations regarding the use of PCA on multiply imputed datasets in several
statistical software packages are given.

8.2 Principal Component Analysis

Within a questionnaire, different subsets of items may exist that each are supposed
to measure a different aspect of the same construct. Such a subset is also called a
subscale. In PCA, the goal is to reduce a large number of continuous variables J to
a smaller number of components, K. Although theoretically the variables need to
be continuous, in practice PCA is regularly applied to items measured on a Likert
scale.

SupposeZ is the standardized dataset consisting of the responses of I respondents
to J items. In PCA, by means of a singular value decomposition, Z is decomposed
as:

Z = U�V′ (8.1)

Here, U is a column wise orthonormal N × J matrix, V is a column wise
orthonormal J × J matrix, and � is a J × J diagonal matrix with the singular values
on the main diagonal. The singular values are the square roots of the eigenvalues.
An important part of the output in PCA that gives insight in how the items in the data
are related to the different underlying components is the J × J component matrix.
This matrix is computed as A = N −1/2V� and contains the correlations between
the variables and the components. These correlations coincide with the regression
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coefficients (loadings) from multivariate multiple regression of the item scores on
the principal components.

In the original singular value decomposition, there are as many components
as there are variables. However, usually only the first few components explain a
substantial portion of the variance of the variables in Z. Additionally, given that
a goal in PCA is to reduce the original number of variables J to a smaller set
of dimensions K (K < J) and given that in PCA the dimensions are represented
by the components, usually only a smaller number of components K are used for
interpretation (there are several ways for determining K. See, for example, Furr,
2018, pp. 85–92). The resulting reduced component matrix is denoted by AK (J ×
K).

For interpretational purposes the resulting AK matrix may be rotated using
either Varimax rotation or Oblique rotation (Harman, 1976). The rotated component
matrix is denoted .A∗

K .

8.3 Missing Data

As already mentioned in the introductory section, in the data collection process,
it may happen that not all respondents provide answers to all the questions in
the questionnaire. Reasons for this may be that a respondent finds a question too
personal, that (s)he accidentally skipped a question, (s)he did not understand the
question, and so on. When respondents have not answered all the questions, this
results in a dataset with missing data.

When data are incomplete, this might have consequences for the PCA that is
carried out next. Before the PCA can be carried out, the missing data need to be
handled. Several ways to deal with missing data in PCA exist (to be discussed
later on), ranging from very simple to highly advanced. However, each of these
methods makes either explicit or implicit assumptions about the underlying process
that caused the missing data, also called the missingness mechanism. Rubin (1976)
and Little and Rubin (2002) defined three main missingness mechanisms, namely,
missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). As these missingness mechanisms are extensively described by
Rubin (1987), Little and Rubin (2002), and various other literature on missing data,
they will only briefly be discussed here.

8.3.1 Missingness Mechanisms

When the data are MCAR, there is no relation between the missing values and any
observed or unobserved information. Consequently, the missing data are randomly
scattered across the dataset. Under MAR, missing data may depend on observed
data but not on unobserved data. It could be, for example, that within different age
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groups, respondents have different amounts of missing data on the questions in the
questionnaire. If, however, age is observed for all respondents and within each age
group the missing data are randomly scattered across the data, then the missingness
is MAR. Finally, MNAR is any missingness mechanism that does not qualify as
either MCAR or MAR. Thus, under MNAR the missingness depends either on a
variable that was not included in the data collection process (e.g., the older people
get, the more missing data they have, and age not being observed) or on the value of
the missing score itself (people with higher scores on an item in the questionnaire
being more likely not to answer the item than people with low scores), or both.

8.3.2 Methods for Handling Missing Data

Methods for dealing with missing data in PCA range from ad hoc to highly
advanced. Among the ad hoc procedures are listwise deletion and pairwise deletion;
a few examples of advanced methods are missing data passive (Meulman, 1982;
Takane & Oshima-Takane, 2003), regularized PCA (Josse et al., 2009), EM-
covariances (Bernaards & Sijtsma, 2000), and multiple imputation (Rubin, 1987;
Van Ginkel & Kroonenberg, 2014). Although the methods mentioned here are not
exhaustive, with the exception of listwise deletion and pairwise deletion, they all
have in common that they are advanced in the sense that they all carry out the PCA
in a statistically sound way, without throwing away any data.

In the abovementioned references, usually the performance of only one of these
methods was compared with the performance of other less advanced methods (such
as substituting the variable mean for each missing value) or with different variants
of the same method. However, none of these studies compared all of these advanced
methods with each other. Van Ginkel et al. (2014) did a simulation study in which
they compared all of the abovementioned methods. Before discussing the results
of their study, each of these methods will be discussed in more detail first. In so
doing they will be categorized into three categories, namely, traditional methods,
simultaneous methods, and sequential methods.

8.3.2.1 Traditional Methods

The traditional methods described by Van Ginkel et al. (2014) are listwise deletion
and pairwise deletion. Listwise deletion deletes every case with at least one missing
value on any of the variables in the PCA from the analysis. Since usually more
data points are thrown away than there are missing data points, listwise deletion
is very wasteful. An additional problem of listwise deletion is that in general,
unbiased results of statistical analyses are only guaranteed when the data are
MCAR. However, in PCA, component loadings are intrinsically biased. This has to
do with the fact that they are bound to −1 and +1, as in normal correlations (Fisher,
1915). Consequently, in PCA the question is not whether loadings are biased as a
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result of listwise deletion, but how much more biased they are than without missing
data.

Like listwise deletion, pairwise deletion deletes cases with missing data for
the calculation of the component loadings, but in doing so it uses more observed
information than listwise deletion does. Pairwise deletion calculates the component
loadings from a PCA in a slightly different way than is described in Sect. 8.2.
Rather than carrying out a singular value decomposition on the standardized
dataset, pairwise deletion computes the component loadings by performing an
eigenvalue decomposition on the correlation matrix (technical details are discussed
in Tabachnick & Fidell, 2001, pp. 591–595). In doing so it also deletes cases
with missing values, but does this for each variable pair for which a correlation is
computed, separately. Consequently, in pairwise deletion more information is used
than in listwise deletion.

Although pairwise deletion uses more information from the data than listwise
deletion does, an implicit assumption is still that the data are MCAR. An additional
disadvantage of pairwise deletion is that since each correlation is based on different
cases, combinations of correlations may occur that together form a correlation
matrix that is not positive semi-definite. Consequently, computational problemsmay
occur when computing the component loadings.

8.3.2.2 Simultaneous Methods

Van Ginkel et al. (2014) discussed two methods that estimate the loadings of the
PCA and handle the missing data in the process, namely, missing data passive
(Meulman, 1982; Takane & Oshima-Takane, 2003) and regularized PCA (Josse et
al., 2009). Since both methods estimate the PCA and in the process also handle the
missing data while not throwing away any information, these methods were referred
to as simultaneous methods.

The idea of missing data passive is that a weight matrix of 1’s (observed data) and
0’s (unobserved data) is used in a weighted homogeneity analysis, a categorical form
of PCA. Regularized PCA, on the other hand, is based on PCA using weighted least
squares (Kiers, 1997; Grung &Manne, 1998). In weighted least squares, after filling
starting values for the missing data, an iterative algorithm is used that alternates
between a regression analysis predicting the component scores from the current
estimates of the loadings and a regression analysis predicting the loadings from the
current estimates of the component scores. At each iteration, the estimates for the
missing data are updated. Regularized PCA is based on the same principle. The
difference with weighted least squares is that regularized PCA uses a smoothing
procedure for estimating the missing data in the process. This smoothing procedure
is especially useful when many components are extracted as weighted least squares
may break down in case of many components.

The simultaneous methods have two theoretical advantages over pairwise dele-
tion. Firstly, they do not throw away data like pairwise deletion does. Secondly, as
long as the missing data are related to variables that take part in the PCA, using
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these methods will not introduce any additional bias in the component loadings as a
result of deviations from MCAR.

8.3.2.3 Sequential Methods

Lastly, Van Ginkel et al. (2014) discussed two methods that treat the missing
data separately from the calculation of the component loadings: EM-covariances
(Bernaards & Sijtsma, 2000) and multiple imputation (Rubin, 1987). In EM-
covariances, first an expectation-maximization algorithm (EM; Dempster et al.,
1977) is used to obtain full information maximum likelihood estimates of the means
and covariances of the data under the assumption that the data are multivariate
normally distributed. Next, the covariances of the variables that are part of the PCA
are converted to correlations, and an eigenvalue decomposition of this correlation
matrix is carried out to obtain the component loadings.

EM-covariances has the same theoretical advantages over pairwise deletion that
missing data passive and regularized PCA have. However, whereas missing data
passive and regularized PCA can only handle MAR mechanisms where the missing
data depend on variables that are included in the PCA, EM-covariances can also
handle MAR mechanisms where the missingness depends on variables outside the
PCA, as long as they are included in the maximum likelihood estimation of the
covariance matrix.

Multiple imputation is perhaps the most widely recommended method for
dealing with missing data. This procedure works in three steps. In the first step, the
missing data are estimated multiple (M) times according to a statistical model that
accurately describes the structures present in the data. This results in M complete
versions of the incomplete dataset, which only differ in the estimates for the missing
data. In the second step, the statistical analysis of interest is applied to each of the
M completed datasets, resulting M different outcomes of the same analysis (in the
current context, a PCA). Finally, the results of the M analyses are combined into
one overall result, using specific calculations, denoted combination rules (for the
specific PCA context, combination rules will be discussed in Sects. 8.5.1 and 8.5.2).

Like EM-covariances, multiple imputation can handle any MAR mechanism,
regardless of whether the missingness depends on a variable within the PCA or
outside the PCA. However, an additional advantage of multiple imputation is that
the multiply imputed data can be used for almost any type of statistical analysis
other than PCA, whereas the means and covariance matrices of EM-covariances
can only be used as the input for analyses that use means and covariances.
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8.3.2.4 Which Method for Handling Missing Data in PCA Is the Preferred
One?

In this subsection a short summary of the results found by Van Ginkel et al. (2014)
is given. Based on the results and on the theoretical properties of each method, a
recommendation is given on which method is generally the best one to use.

To determine the performance of each method, Van Ginkel et al. (2014) studied
three quality measures in their simulation study, namely, the root mean squared bias
(RMSB) of the component loadings, the mean bias (MB) of the component loadings,
and the average number of items assigned to the incorrect component, denoted
the classification error (CE). The RMSB, MB, and CE were defined as follows:
Suppose that .a∗

jk is the population component loading of item j on Varimax rotated
component k and .â∗

jk,d is the corresponding loading for the incomplete simulated
dataset d (d = 1, . . . , D) in a specific condition of the simulation study (specific
missing data handling method, specific percentage of missingness, etc.). For the
specific condition, the RMSB is:

RMSB = 1

D
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and the MB is:
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As for the CE, define f as the component number of the component for which it
holds that
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Next, based on guidelines by Comrey and Lee (1992) that state that loadings below
0.32 should not be interpreted, define:
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and f = g
wj, d = 1 otherwise.
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For the specific condition, the CE is:

CE = 1

D

∑D

d=1

∑J

j=1
wj,d . (8.4)

The results of the traditional methods will be discussed first. Van Ginkel et
al. (2014) studied the performance of all methods under both MCAR, MAR, and
MNAR. The bias of the individual component loadings was not studied so it remains
unclear how much bias in component loading deviations from MAR introduced for
the advanced methods and how much bias deviations from MCAR introduced for
listwise deletion and pairwise deletion. However, it became clear from the study
that listwise deletion did not perform well on either the RMSB, the MB, or the
CE, regardless of the missingness mechanism. Additionally, for high percentages
of missing data, listwise deletion was not even feasible because after removing the
incomplete cases, no or too few complete cases were left to analyze. In short, based
on the results of Van Ginkel et al. (2014), listwise deletion is not recommended for
PCA.

As for pairwise deletion, Van Ginkel et al. (2014) found that this method actually
gave satisfactory results on all three quality measures, regardless of the missingness
mechanism. Additionally, computational problems did not occur in the situations
studied by Van Ginkel et al. (2014). However, the latter does not mean that these
problems cannot occur in practice, so using pairwise deletion in practice may not
always be feasible.

Regarding the simultaneous methods, Van Ginkel et al. (2014) found that, firstly,
missing data passive generally gave results that were similar to pairwise deletion
with respect to the outcome measures and that missingness mechanism did not have
a substantial effect on the performance of missing data passive. Regularized PCA,
on the other hand, produced results that were slightly worse than those of pairwise
deletion and missing data passive. Thus, despite their theoretical advantages over
pairwise deletion, they do not seem to show in the quality measures in the study by
Van Ginkel et al. (2014).

Finally, regarding the sequential methods, Van Ginkel et al. (2014) found
that regarding the outcome measures multiple imputation and EM-covariances
performed similar to pairwise deletion. Thus, despite the theoretical advantages of
multiple imputation and EM-covariances over the other methods, this does not really
seem to show in the quality measures either. This leaves us with the question which
method is the preferred one.

Of all the methods discussed in the previous subsections, multiple imputation is
the method that is most preferred from a theoretical point of view because it will
not introduce additional bias in component loadings under any MAR mechanism.
Not considering lower benchmark listwise deletion, pairwise deletion is the least
preferred method from a theoretical point of view because it assumes MCAR, and
it may run into computational problems. However, Van Ginkel et al. (2014) showed
that although multiple imputation was one of the better performing methods, it
did not perform any better than pairwise deletion. Furthermore, pairwise deletion
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(together with listwise deletion) is the simplest method for handling missing data
in PCA (it is included in most statistical software packages and does not require
any additional preprocessing of the data). This raises the question whether pairwise
deletion should not be preferred over any missing data handling method for PCA at
all times, including multiple imputation. Not quite, as being simple and performing
well on a number of outcome measures may not necessarily be the only criteria for
preferring a missing data method in PCA over others. There are other things that
may have to be taken into consideration as well.

Firstly, even though it did not occur in the simulation study by Van Ginkel et al.
(2014), in practice computational problems may still occur using pairwise deletion.
Secondly, even when computational problems do not occur, then still the question is
what the sample size is that the PCA solution is based on as some correlations are
computed for different cases and different number of cases than others.

Thirdly, sometimes researchers may be interested in confidence intervals of
principal component loadings. Van Ginkel and Kiers (2011) developed ways
to construct bootstrap confidence intervals for component loadings in multiply
imputed datasets (more on this in Sect. 8.4) and showed that these ways performed
well regarding coverage of the population loadings. For pairwise deletion there is
no way to construct bootstrap confidence intervals of the component loadings.

Finally, and most importantly, a practical advantage of multiple imputation over
all other methods for handling missing data including pairwise deletion is that
multiple imputation provides the researcher a complete dataset which can be used
for other statistical analyses as well. In practice, a dataset is almost never subjected
to one single statistical analysis, so it is desirable to have a general solution for all
analyses that are carried out on the dataset, such that all analyses on these datasets
are comparable regarding sample size, regarding the cases used, and regarding the
data points (both observed and imputed). When not imputing the data and analyzing
only the usable data however, for some analyses listwise deletion will be applied
(and for each of these analyses, different cases may be used, depending on which
variables are included in the specific analysis), for other analyses full information
maximum likelihood will be applied, and yet for other analyses, pairwise deletion
(as in PCA) will be applied. This will make the statistical analyses mutually
incomparable.

Additionally, while pairwise deletion may give good results for PCA, this is not
necessarily the case for other analyses that are applied to the dataset. It has been well
established that multiple imputation performs better regarding bias and coverage
of parameters than methods based on deleting data (listwise/pairwise deletion).
Consequently, when a researcher decides not to impute the data, conclusions
regarding PCA may be valid, but conclusions based on other statistical analyses
on the same dataset may not.

In short, although from the study of Van Ginkel et al. (2014) we cannot conclude
that multiple imputation necessarily recovers the PCA solution better than pairwise
deletion does, there are numerous other advantages of multiple imputation over
pairwise deletion in PCA. For the remainder of this chapter we are hence going to
take the standpoint that multiple imputation is to be recommendedmost for handling
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missing data in PCA. Hence, we are going to get into more detail about multiple
imputation in the context of PCA in the next section.

8.4 Multiple Imputation in Principal Component Analysis

As already said in Sect. 8.3.2.3, multiple imputation works in three steps: (1) the
imputation step, where multiple estimates for the missing data are generated; (2)
the analysis step, where each of the resulting M imputed datasets is analyzed using
the statistical analysis of interest; and (3) the combination of the M results into
one overall result. Various methods for generating multiple estimates of the missing
data in step 1 have been developed, and various texts have been written on them
(e.g., Schafer, 1997; Van Buuren, 2018). The general process of generating multiple
imputed values for the missing data is not tied to PCA as an analysis for the data,
but is generally the same for all statistical analyses that follow after the data have
been multiply imputed. Consequently, technical details regarding the process of
generating multiple imputed values are not further discussed here. The interested
reader is referred to Van Buuren (2018).

In the context of PCA, the second step in the multiple imputation process is
carrying out a PCA on each of the M complete versions of the incomplete dataset.
This step has already been explained in Sect. 8.2 so this step will not be discussed
here either. This leaves us with the third and final step of the multiple imputation
process: the combination ofM PCA results into one overall PCA result. Van Ginkel
and Kroonenberg (2014) discussed combination techniques for the results of PCA
in multiply imputed data, which will be discussed next.

8.4.1 Combining the Component Loadings

8.4.1.1 The Problem of Traditional Combination Rules When Applied
to PCA

Once a PCA has been obtained from each of the M imputed datasets, this leaves us
withM sets of component loadings. The question is how these component loadings
are combined into one overall set of component loadings. Rubin (1987) defined
combination rules for a parameter estimate with its statistical test and confidence
interval. An overall parameter estimate is obtained by averaging the M estimates of
the parameter. Considering a component loading ajk,m on variable j on component
k to be a parameter estimate of imputed dataset m, a direct application of Rubin’s
combination rules for parameter estimates would come down to averaging the M
component loadings ajk,m.

Van Ginkel and Kroonenberg (2014) argued that averaging component loadings
across M imputed datasets has three potential problems. Firstly, the order of the
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components may not be the same for all M imputed datasets. For example, in
one imputed dataset, a set of items may load highest on the first component,
while in another imputed dataset, this same set may load highest on the second
component. This may especially happen when two adjacent components have near
equal variance.

Secondly, many questionnaires contain both indicative items (a higher score
means a higher amount of the underlying construct) and contraindicative items
(a higher score means a lower amount of the underlying construct). When a
specific subscale of a questionnaire contains about as many indicative items as
contraindicative items, it could happen that in one or more imputed datasets, the
signs of the loadings are reversed compared to those of the other imputed datasets.
When averaging these loadings, their signs may cancel each other out, resulting in
an average loading lower than the average of the absolute values.

A third disadvantage is that even when sign changes of loadings switching of
the order of components do not occur among the M AK, m matrices, then still the
M matrices are not optimally aligned as a result of rotational freedom. Because of
this rotational freedom, the average solution is computed across solutions that have
more variation among each other than necessary (e.g., Chatterjee, 1984; Markus,
1994; Milan & Whittaker 1995; Linting et al. 2007).

8.4.1.2 Using Generalized Procrustes Analysis for Combining
the Component Loadings

A procedure that can resolve all of the three abovementioned problems is Gener-
alized Procrustes analysis (Ten Berge, 1977; Gower, 1975). Generalized Procrustes
analysis was originally proposed to derive one overall component solution from
several ones, not necessarily obtained frommultiply imputed data (e.g., from several
different studies). However, Van Ginkel and Kroonenberg (2014) proposed this
procedure to explicitly combine the results of several PCA solutions obtained from
M imputed datasets. In a simulation study, they showed that this method gave better
results regarding RMSB (see Eq. (8.2)) than averaging of component loadings did.

In the context of M PCA solutions obtained from M imputed datasets, gen-
eralized Procrustes analysis works as follows. Suppose that we have unrotated
component matrix AK, m of imputed dataset m (m = 1, . . . , M). We need an
orthogonal K × K rotation matrix Tm for each of the M imputed datasets that
minimizes the sum of squared distances between the transformed loading matrices,
given by:

f (T1, . . . ,TM) =
∑

i<j

tr
(
AK,iTi − AK,iTi

)′ (AK,jTj − AK,jTj

)
. (8.5)

The rotation matrices T1, . . . , TM are obtained using a procedure that is a
generalization of the classical orthogonal Procrustes problem (Green, 1952; Gower,
1971). In the classical Procrustes problem, we have two matrices A and B where A
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needs to be optimally rotated to B. The required rotation matrix for this problem is
found as follows: supposeQLV

′
is the singular value decomposition of matrix A

′
B.

The rotation matrix T is obtained by:

T = QV′. (8.6)

Finally, A can be optimally rotated to B by post-multiplyingA by T.
When optimally rotating M component matrices towards each other, we can use

an algorithm by Ten Berge (1977, p. 272). Suppose t is the iteration number, and
starting at t = 1, the algorithm has the following steps:

Step 0: Set Tm = I for m = 2, . . . ,M.
Step 1: Rotate AK, 1 optimally to .B = ∑M

m=2 AK,mTm using rotation matrix T1 as

computed in the right-hand side of Eq. (8.6), yielding .AK,1T
(t)
1 .

Step 2: Rotate AK, 2 optimally to .B = AK,1T
(t)
1 + ∑M

m=3 AK,mTm, yielding

.AK,2T
(t)
2 .

StepM: Rotate AK, M optimally to .
∑M−1

m=1 AK,mT
(t)
m , yielding .AK,MT(t)

M .

Step M + 1: Rotate .AK,1T
(t)
1 optimally to .B = ∑M

m=2 AK,mT
(t)
m , yielding

.AK,1T
(t+1)
1 .

Next, the steps 2–M are repeated, where t increases with 1 at each iteration, until
convergence. Once convergence has been achieved, the mean of all transformed
solutions, also denoted the centroid solution AK, C, is used as the pooled PCA
solution for the M imputed datasets. Like a PCA solution in complete data, AK, C
can be rotated either with an orthogonal or an oblique transformation.

8.4.2 Uncertainty About the Component Loadings

In the traditional way in which PCA is used, usually no statistical tests or confidence
intervals are computed. There are procedures for confidence intervals of population
component loadings (more on this in Sect. 8.5), but normally PCA is mainly used
without any statistical testing.

However, in multiple imputation uncertainty is created about parameter estimates
by the fact that for each imputed dataset the imputed values differ and that this
results in slightly different sets of PCA loadings for each imputed dataset. Although
AK, C gives an impression of what the actual sample loadings without missing data
would have been, there is still uncertainty about this centroid solution as a result of
the variation of the imputed values.

Van Ginkel and Kroonenberg (2014) discussed a procedure to show variation in
the component loadings as a result of imputation uncertainty. Using this procedure
a loading plot of one component against the other is created, which shows both the
centroid solution represented by dots and the uncertainty of the centroid solution
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Fig. 8.1 Loading plot of a Varimax rotated four-component solution of components 2 and 3,
applied to a multiply imputed dataset with M = 100 imputations. The loading plot shows both
the centroids and their convex hulls

represented by areas surrounding the dots. These areas are called convex hulls.
Figure 8.1 displays a loading plot that includes both the centroid solution of the
M PCAs and the convex hulls.

The surface of the convex hulls may serve as a measure of uncertainty about the
PCA loadings. These surfaces may be computed in the following way. Each convex
hull may be decomposed as several triangles. Suppose a triangle has three sides,
namely, a, b, and c, and we define s = (a + b + c)/2. See Fig. 8.2. By using Heron’s
rule dating back to before 200 BC, the surface of one triangle can be determined as√
[s(s−a)(s−b)(s−c)]. Doing this for all triangles that the convex hull is composed

of, and adding up the surfaces, the total surface of the convex hull is obtained.
It should be noted that the convex hulls do not in any way intend to represent

some kind of confidence intervals of the population loadings with a specific
coverage percentage. All the convex hulls do is give the reader some visual
impression of where the uncertainty in the PCA solution lies as a result of the
missing data. A loading with a large convex hull is estimated with more uncertainty
than a loading with a small convex hull, and the larger a convex hull is, the
more cautious we must be regarding the interpretation of its loading. However, in
order to assign some more absolute meaning to the convex hulls, Van Ginkel and
Kroonenberg (2014) also studied what percentage of the J × K sample loadings
that would be obtained if no data were missing is covered by the convex hulls under
various circumstances. What they found was that under M = 100 imputations, the
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Fig. 8.2 Surface of one triangle in one of the convex hulls

convex hulls usually capture about 80% of the loadings that would be obtained if
no data were missing, with percentages of missing data up to 15%. Based on these
results, they gave a rough guideline to use M = 100 imputations if the researcher
wants about 80% of the true sample loadings to fall within the corresponding convex
hulls.

Finally, it should be noted that it is possible to use the convex hulls in the form of
confidence intervals, using convex hull peeling (Green, 1981) or confidence ellipses
(e.g., Josse et al., 2011). However, these confidence intervals do not make any
statistical inference about a population loading, only about the true sample loading
if no data were missing. A procedure for constructing confidence intervals of the
population loadings will be discussed next.

8.5 Extensions

8.5.1 Confidence Intervals of the Component Loadings

As already mentioned in Sect. 8.4.2, in complete data there is the possibility of
constructing confidence intervals of population component loadings. Analytical
lower and upper bounds of confidence intervals have been derived by various
authors (Girshick, 1939; Anderson, 1963; Archer & Jennrich, 1973; Ogasawara,
2000, 2002). However, these analytical confidence intervals have either been derived
under the assumption that the data are multivariate normally distributed (Girshick,
1939; Anderson, 1963; Archer & Jennrich, 1973; Ogasawara, 2000), or they require
a large sample size (Ogasawara, 2002).

Alternatively, bootstrap confidence intervals may be used for component load-
ings (Chatterjee, 1984; Efron & Tibshirani, 1994; Kiers, 2004; Lambert et al., 1990,
1991; Linting et al., 2007; Lorenza-Seva& Ferrando, 2003; Markus, 1994; Milan &
Whittaker, 1995; Raykov & Little, 1999). Timmermans et al. (2007) studied two
bootstrap procedures for component loadings in a simulation study, namely, the
percentile method and the bias-corrected and accelerated (BCa) method (Efron,
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1987). They found that both bootstrap procedures give better results regarding
coverage of the component loadings than analytic methods.

Van Ginkel and Kiers (2011) proposed procedures to combine the bootstrap
confidence intervals of both the percentile method and the BCa method. Suppose
that in the complete data case B, bootstrap samples are drawn for constructing
confidence intervals of the loadings in AK , and the central (1 − 2α) part of the
cumulative bootstrap distribution is the confidence interval. Van Ginkel and Kiers
(2011) used the centroid solution AK, C as the component matrix (see Sect. 8.4.1.2).
Next, they drew B bootstrap samples from each of the M imputed datasets and
used the central (1 − 2α) part of the total of B × M bootstrap samples as the
confidence interval. They did this for both the percentile method and the BCa
method. In a simulation study, they investigated the statistical properties of their
proposed procedures, and they turned out to produce coverage percentages close
to the theoretical percentages, for various confidence widths (90%, 95%, and 99%
coverage). The interested reader is referred to their paper.

8.5.2 Three-Mode Analysis

Three-mode analysis (e.g., Kroonenberg, 2008) is an extension of principal compo-
nent analysis. It is used in datasets that consist of three different modes, for example,
respondents (first mode) and questions on a questionnaire (second mode) at several
different time points (third mode). The PCA model can be extended to a situation
with three modes in several ways. The three most well-known extensions for three-
mode data are the Tucker2 model (Tucker, 1972), the Tucker3model (Tucker, 1966),
and the Parafac model (Harshman, 1970; Carroll & Chang, 1970).

What all three models have in common is that they replace the singular value
matrix � in Eq. (8.1) with a three-dimensional core array that also models the
properties of the third mode, represented by different slices. Additionally, while
in PCA � is always a square diagonal matrix, in the Tucker2 and Tucker3 model,
the number of rows, columns, and slices of the core array are not necessarily the
same. This implies that each mode (respondents, variables, time points) may be
summarized by a different number of components. Furthermore, while the PCA
model in Eq. (8.1) only has a matrix containing the scores of each respondent on the
components (U) and a matrix with scores of each variable on the components (V),
the Parafac and Tucker3 model also contain a matrix with scores of the third mode
on the components.

Kroonenberg and Van Ginkel (2012) proposed rules for combining the results of
the Tucker2model in multiply imputed datasets. These combination rules are similar
to the proposed combination rules discussed in Sect. 8.4.1.2. They involve applying
generalized Procrustes analysis to both the three-mode equivalent of matrix U and
of matrix V and by calculating the core matrix from both these two matrices and the
M imputed datasets using matrix algebra. For the exact procedure, see Kroonenberg
and Van Ginkel (2012).
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Van Ginkel and Kroonenberg (2017) found that multiple imputation in combi-
nation with generalized Procrustes analysis produced good results of three-mode
analysis in terms of RMSB (Eq. (8.2)) as compared to generalized least squares (see
Sect. 8.3.2.2), the default method for handling missing data in three-mode analysis.
It is, however, hard to tell what the specific influence of the combination techniques
is on the RMSB, as for three-mode analysis there are no other combination
techniques available than the one proposed by Kroonenberg and Van Ginkel (2012),
to compare the procedure with.

8.6 Implementation in Software

Nowadays, most standard statistical software packages have included at least some
procedure for creating multiply imputing incomplete datasets. Thus, when applying
a PCA to an incomplete dataset, the question is not so much how to find a software
package that can multiply impute the data as there are various options for that. The
question is more which software package to use for combining the results of PCA
on an incomplete dataset once it has been multiply imputed.

The software program 3WayPack (The Three-Mode Company, 2021) is a
freeware program that can be used for several three-mode models. The package also
includes an option of using generalized Procrustes analysis. The program requires
plain text as input, which is not really convenient when PCA results of multiply
imputed datasets are printed in software specific output as they need to be converted
to plain text first.

Alternatively, one can use the shapes package in R (Dryden & Mardia, 2016).
This package can perform generalized Procrustes analysis. However, this package
is more generally meant for the statistical analysis of landmark shapes and just
happens to be also usable for combining results of PCA applied to multiply imputed
dataset.

If one wants to stay completely within the framework of PCA on multiply
imputed datasets, then the SPSS macro GPA.sps (Van Wingerde & Van Ginkel,
2021) may be used. This macro has been developed for applied researchers who
use SPSS for their basic analyses and who want to combine the results of PCA
within SPSS. The macro reads PCA output that has been saved to an SPSS data file,
performs the calculations, and provides the (possibly Varimax rotated) matrix AK, C
in a new output. Plots with convex hulls as shown in Fig. 8.1 can also be printed.

8.7 Limitations and Final Considerations

Finally, a few limitations within the framework of PCA of multiply imputed
datasets, and some points to take into consideration, will be discussed. As pointed
out in this chapter, combination rules for component loadings in multiply imputed
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datasets have been developed and investigated (e.g., Van Ginkel & Kiers, 2011; Van
Ginkel & Kroonenberg, 2014; Van Ginkel et al., 2014). However, in PCA usually
more outcomes are used and/or interpreted than only the component loadings.

For example, the component scores of the persons may need to be used for
further analysis. At the moment not much has been written on how to compute
component scores for multiply imputed datasets. Although not explicitly stated in
their paper, Buisman et al. (2020) computed component scores for each imputed
dataset m by standardizing the data to Zm and using .Vm = Zm

√
NAK,C . It has not

been investigated, however, how this ad hoc solution performs in terms of bias in
subsequent statistical analyses with these component scores.

As a second example, no combination rules have been defined for the proportion
of variance accounted for by the extracted components. One could construct a
pooled � matrix using a similar procedure for constructing the core three-way
array in three-mode analysis discussed in Sect. 8.5.2 (also, see Kroonenberg &
Van Ginkel, 2012). Next, the first K singular values of the pooled � could
be used for getting a measure for the total amount of explained variance. At
present the theoretical properties of such a solution have not been derived nor
investigated. Consequently, it is currently unknown how closely such an estimate of
the proportion of explained variance resembles the proportion of explained variance
that would have been obtained if the data had been complete.

In short, there are still things that remain to be developed and investigated
regarding the pooling of estimates and statistics within PCA applied to multiply
imputed data. This is more generally a problem of multiple imputation. Rubin
(1987) provided only very general combination rules for statistical analyses that
can be applied when a parameter estimate or a set of parameter estimates is tested
for significance. For some statistics and analyses that do not directly fit into that
framework, additional combination rules have been developed since Rubin (1987),
but for other statistics and analyses, there is still work to be done regarding
combination rules. Whenever applied researchers are interested in statistics or
analyses for which no combination rules are available yet, they are often inclined to
set aside multiple imputation as a method for handling their missing data altogether.

However, Van Ginkel et al. (2020) argue that even when combination rules for
specific analyses and statistics are lacking, it may not always be harmful to use
something ad hoc. Even without a theoretical justification, ad hoc solutions can
still give a rough but reasonable indication of what the actual statistic would have
been without missing data. Additionally, since PCA is usually (but not always) used
without any statistical testing, one cannot draw erroneous conclusions as a result
of type I or type II errors. Even when something as simple as averaging �’s across
imputed datasets is done, this will probably still give a good indication of howmany
of the components contribute substantially to the explained total variance and which
do not.

In summary, when a PCA needs to be carried out on an incomplete dataset,
multiple imputation may be a good tool to handle the missing data. Although
pairwise deletion does not necessarily give worse results than multiple imputation,
multiple imputation comes with many other advantages, such as all analyses being
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applied to the dataset being comparable regarding sample size and cases being
included in the analyses. Besides, pairwise deletion has the disadvantage that
computational problems may occur. Estimates of component loadings in multiply
imputed datasets can readily be computed using generalized Procrustes analysis.
Other statistics in PCA may not have combination rules as of yet, but using some
quick-and-dirty procedures may not be harmful for the given purposes of PCA.
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Chapter 9
Quantifying the Bias of Non-linear
Equating and Score Transformations

Matthias von Davier and Brian Clauser

Abstract This paper shows that using non-linear functions for equating and score
transformations leads to consequences that are not commensurable with classical
test theory (CTT). More specifically, a well-known theorem from calculus shows
that the expected value of a non-linearly transformed variable does not equal the
transformed expected value of this variable. Translated to CTT this implies that
the transformed observed test score does not have an unbiased expectation, i.e., is
different from the transformed true score. In order to quantify the bias, second-
order Taylor expansions are used in this work to show that non-linear equating and
scale transformations do not only lead to variability of SEMs but also to predictable
bias in the expected values of the transformed observed scores. In line with Lord’s
finding that is often described as “Equating is either unnecessary or impossible,”
this bias due to non-linear equating vanishes either for perfectly reliable tests, or if
the equating function is indeed linear, i.e., the tests are congeneric.

9.1 Introduction

When test scores of a new test are transformed so that they can be compared with
scores on an old test form or some reference score scale, both linear and non-linear
functions may be applied. Linear functions have the advantage that transformations
of sums of scores can be carried out either on the sum or on the components of the
sum, and results are identical. Non-linear transformations may be considered if the
distributions of the two forms to be compared differ substantially.
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The research presented in this paper explores the effects of using non-linear
functions for transforming fallible, that is, not perfectly reliable, test scores. In par-
ticular, it is a well-known effect of non-linear functions used in scale transformation
that the conditional standard error of measurement will be affected differentially.
One of the simplifying (but not necessary) assumptions of CTT is a common error
variance, which is also a customary assumption in more general linear models.
Once a non-linear transformation is applied, this equal error variance assumption
no longer holds (e.g., Feldt and Qualls, 1998; Kolen et al., 1992; Woodruff et
al., 2013), and conditional standard errors of measurement (CSEM) need to be
estimated. The results presented here are in line with the research around CSEM in
that they are based on the same assumptions, in particular when looking at CSEM
estimates based on first-order Taylor expansions (sometimes referred to as delta
method). However, we take these results to the next level by looking at higher-order
terms and show that non-linear equating and scale transformations do not only lead
to variability of SEMs but also to bias in the expected values of the transformed
observed scores. This bias only vanished for perfectly reliable tests, as well as for
linear transformation and equating functions.

A basic assumption of any valid scale transformations would be that they (if
correctly specified) are functions that map the true scores on the source scale (e.g.,
the new test form) onto the true score of the target scale (the old test form). If a
perfectly reliable test score of a person u is transformed, it should be mapped on the
true score of the target scale. This corresponds to the true equating function. If there
would be the ability of observing a test taker u’s scores independently over and over
on both test forms, the true score on the new scale Tn should map to the true score
on the old test form To for any test taker, if the two tests are indeed exchangeable.

However, this is no longer true if tests are not perfectly reliable and non-linear
equating or transformations are used. This potentially more consequential effect will
be derived mathematically and exemplified empirically in the subsequent sections:
The expected value of an observed score, given a true score on the new form, does
not equal the transformed true score under non-linear transformations.

The present paper shows how this conditional bias due to unreliability of the test
scores can be estimated using standard results from calculus. An example that uses
an approximate continuous non-linear function based on a concordance between
ACT and SAT shows the order of magnitude for different score levels as they are
affected by non-linearity and different levels of reliability.

9.2 Notation

Let Ω denote a population of test takers, and let u ∈ Ω denote a randomly drawn
test taker from this population. Let Xn and Xo denote random variables (test scores)
defined on Ω . We will use Xf with f ∈ {o, n} to denote both new and old test forms at
once when introducing notation and derived variables from now on. We will assume
these test scores are real-valued and defined on a compact interval Xn, Xo ∈ R and
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will consider functions g:=R �→ R that map the scores on the new form onto the
interval on which the old form scores are defined. For each test taker u, assume
there is a distribution .φu

n(X) and .φu
o (X) with means E(Xn � u) and E(Xo � u) and

conditional variances V(Xn � u), V(Xo � u). This assumption allows for a potentially
different distribution of test scores for each test taker. Across test takers u ∈ Ω , one
can define

E
(
Xf

) =
∫

�

π(u)E
(
Xf | u

)
du (9.1)

as the marginal mean of test form f ∈ {o, n} and

E
[
V

(
Xf | u

)] =
∫

�

π(u)V
(
Xf | u

)
du (9.2)

as the average conditional variance (or marginal measurement error), and

V
[
E

(
Xf | u

)] =
∫

�

π(u)
[
E

(
Xf | u

) − E
(
Xf

)]2
du (9.3)

the variance of conditional means. Together, these variance components establish
the total variance

V
(
Xf

) = E
[
V

(
Xf | u

)] + V
[
E

(
Xf | u

)]
(9.4)

for test scores Xn and Xo of test forms f ∈ {o, n}.

9.3 Classical Test Theory: Which Tests Can Be Equated?

The assumptions of CTT can be expressed in terms of conditional expectations of
observed scores and deviations (errors) from these expectations. Note that CTT
can be viewed as first-order IRT (Holland and Hoskens 2003). Also note that
a slightly stronger set of assumptions commensurate with CTT related no-DIF
and monotonicity assumptions leads to models that are equivalent to IRT models
(von Davier, 2017). Many of the basic desiderata for test quality are the same
between IRT and CTT: Item scores are expected to be monotonically increasing
with increasing trait level and are expected to be unaffected by variables other than
the trait level. In CTT the trait level of person u is called the true score, T(u) or Tu,
while in IRT, the trait level is referred to as ability or latent variable θu. The true
score is the expectation of the sum of item scores given u , that is, Tf (u) = E(Xf � u),
where old and new test forms f ∈ {o, n} are considered. Lord (1980) argues that tests
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can be equated if for any two test-takers u, w ∈ Ω , the following equivalency holds:

To(u) = To(w) ↔ Tn(u) = Tn(w). (9.5)

In words, two tests can be equated if any two respondents u, w ∈ � who have
the same true score (conditional expectation) on the new test form also have the
same true score (conditional expectation) on the old test form and vice versa. This
is one of Lord’s (1980) conditions that are prerequisite for two tests to be equatable;
in addition, the conditional distributions of the error around the true score should
be the same for equated (i.e., transformed from source test) observed scores and
observed (on target test) scores, and this should be population independent.

9.4 Effects of Linear and Non-linear Transformations

When aiming at providing a transformation that produces equivalent values for the
old (Xo-based) observed and true score variables using the new (Xn-based) score, the
goal is to come as close as possible to the above equivalency of true scores. One way
to achieve this is to require that a transformation g of sum score Xn to an equivalent

score .g (Xn) = ∼
Xo should have the property

E [g (Xn | u)] = E [g (Tn + en | u)] = To(u) = E (Xo | u) . (9.6)

Or, at the level of true scores, one could postulate g[Tn(u)] = To(u) for all u ∈ Ω .
It appears that both properties are desirable. The transformed true score g[Tn(u)]
should equal the corresponding true score on the target scale To(u) for all test takers
u. If there was no error variable, the tests are perfectly reliable, and this property
would be the only one to consider. However, we only have observed scores Xf at
our disposal, so we would also want to aim at the criterion that the expected value
of the transformed observed scores E[g(Xn � u)] should equal the true score on the
target scale as well. It turns out both conditions are equivalent properties as long as
function g() is linear as will be shown below.

9.4.1 The Linear Case

If the transformation g() is linear, there are constants A, B with

∼
Xo = g (Xn) = AXn + B (9.7)
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and by plugging in the true score plus error decomposition, we find

f (Tn + en) = ATn + Aen + B (9.8)

and finally, for all u ∈ Ω we have

E [f (Xn|u)] = AE (Tn | u) + AE (en | u) + B = AE (Tn | u) + B (9.9)

and hence

E [g (Xn | u)] = g [E (Xn | u)] = g [Tn(u)] = To(u). (9.10)

In the linear case, either one of the above conditions implies the other. In addition,
the transformed true score and error variable are uncorrelated. This can be easily
verified since

V� (g (Xn)) = A2 [V� (Tn) + V� (en) + 2cov� (Tn, en)] (9.11)

and covΩ (Tn, en) = 0 (see Appendix A) yields the result

V�

(∼
Xo

)
= A2 [V� (Tn) + V� (en)] . (9.12)

9.4.2 Non-linear Transformations and CTT

For non-linear functions g(), assume that the expected (true) score on the new form
is mapped to the expected (true) score on the old form (Lord, 1980). Then we
have g(Tn(u)) = To(u) for all u ∈ Ω . Under mild conditions, the transformation
or equating function g() can be split into a linear and a non-linear part (von Davier,
2008), a result implied directly by the definition of the first derivative g

′
(x) as a limit

of differences, as a “linear-part” function of a differentiable function can be defined
by g(x) is .hx0(x) = g′(x) (x − x0)+g (x0) for some constant x0 (e.g., Forster, 1984).
Then, .g(x) − hx0(x) is the “non-linear” part. Taking this argument further, standard
calculus results imply that if g() is k-times differentiable, with g(l) denoting the lth

derivative with respect to x, we can write .g(x) = g
[k]
u (x) + O(k) with a function

g[k]
u (x) =

k∑

l=0

g(l)(T )

l! (x − T )l (9.13)

that approximates g() around some point T ∈ R. This function is the well-known
Taylor series (Taylor, 1715) approximation of g() of order k. The remainder O(k)
denotes a quantity that is negligible in a neighborhood of T. Setting T = Tn(u) and
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inserting Xn(u) = Tn(u) + en(u) into the equation yields

g[k]
u (Xn(u)) = To(u) +

k∑

l=1

g(l) (Tn(u))

l! (en(u))l (9.14)

Looking at the non-linear part using this Taylor expansion around Tn(u) shows
that the transformed score cannot be split in the true score on the transformed scale
and an error that does not depend on Tn(u). Examining

e∗
o(u) ≈

k∑

l=1

g(l)
(
g−1 (To(u))

)

l! (en(u))l (9.15)

and changing variables using the invertible true equating functions g and g−1 for
mapping To(u) onto Tn(u), and vice versa, illustrate the issue.

Very often, the first-order Taylor series is quite informative and can be used to
approximate the variance of the transformed quantity based on the first derivative
(e.g., Wolter, 2007). In the case of a transformed test score, an approximate
expression of the conditional error variance is derived by using the first-order Taylor
series which is the linear function

g
[1]
T (x) = g(T ) + g(1)(T ) ∗ (x − T ) . (9.16)

Then, the approximate conditional variance of .e∗
o(u) can be calculated as

V
(
e∗
o | u

) ≈ g(1) (Xn(u)) V (en | u) (9.17)

using the observed score Xn(u) as a plug-in estimator of the true score Tn(u) and
assuming the higher-order Taylor terms to be negligible. However, unless g is linear
(which it is not by the non-linearity assumption made in this section), there are
derivatives of order l > 1 in the expression that are non-vanishing.

9.4.2.1 Effects on the Expectation of the Transformed Error Term

As shown above, the first-order term of the Taylor series approximation can be used
to derive an approximate expression for the variance of the transformed variable,
i.e.,

V
(
e∗
o | u

) ≈ g(1) (Xn(u)) V (en | u) . (9.18)

This is an exact expression if g() is linear and then .g(1) (Xn(u)) = A2
Tn(u).

However, if g() non-linear, higher-order Taylor terms are non-vanishing. Using the
second-order (quadratic) term of the Taylor series, . 12g

(2) (Tn(u)) [en(u)]2, we find
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that the expectation of the transformed error term may not be equal to zero. More
specifically, we have

E

(
1

2
g(2) (Tn(u)) [en(u)]2

)
= 1

2
g(2) (Tn(u)) V (en(u)) 
= 0 (9.19)

whenever .
1
2g

(2) (To(u)) 
= 0 and V(en(u)) > 0. Again, this expression is exact
if g() contains only polynomial terms of first and second order; the expectation
of the transformed error may be affected by additional terms if the non-linear
transformation g() contains higher-order terms.

9.4.2.2 Jensen’s Inequality

After going through all this work, a colleague1 who still remembers his advanced
math education (in contrast to us) mentioned another well-known theorem as an
alternative, and potentially simpler, explanation for this bias of non-linear equating
functions. However this theorem is more general and cannot be directly applied
to estimate the magnitude of the bias, for which we still need the Taylor series
approximation.

Jensen’s (1906) inequality states that for [non-linear, locally] convex functions,
the expected value of the transformed observed score can be shown to be larger than
the transformed expectation. More specifically, for convex g(), we have

E [g (Xn | u)] > g [E (Xn | u)] = g [Tn(u)] = To(u). (9.20)

and if g() is concave, we have

E [g (Xn | u)] < g [E (Xn | u)] = g [Tn(u)] = To(u). (9.21)

This means that the expectation of the transformed score is larger (smaller)
than the transformed true score. For a concave equating function, the Jensen gap
is positive (larger than zero), and for concave equating functions, the expected
transformed score has a negative Jensen gap.

9.5 Examples

The linear case discussed above is one example where the transformed observed
score can be decomposed in transformed true score and an error term with vanishing
expectation and variance that is given by the customary equations for transformed

1 Braun (2021), personal communication.
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linear variables. Another example is polynomials; we will use and study the
consequences of the case where the second-order term is non-vanishing.

9.5.1 Quadratic Forms

If g(X) = aX2 + b, i.e., the transformation is a quadratic function. Assume a 
= 0,
and .V

(
e2n | u

)
for all u ∈ Ω . Then, the conditional expectation of the transformed

observed score is given by

E (g (Xn) | u) =
[
aT 2

n (u) + b
]

+ a2TnE (en | u) + aE
(
e2n | u

)
(9.22)

and further

E (g (Xn) | u) = g (Tn(u)) + aV
(
e2n | u

)
(9.23)

since

E
(
e2n | u

)
= V (en | u) + [E (en | 0)]2 (9.24)

while E(eo � u) = 0. Note that this implies

E (g (Xn) | u) 
= g (Tn(u)) = To(u) (9.25)

since .aV
(
e2n | u

) 
= 0. However, we have

g (E (Xn | u)) = g (Tn(u)) = To(u). (9.26)

In consequence, we have a result that shows the error term of the transformed to
have an expectation that differs from zero and hence that the expected value of the
transformed observed score is unequal to the transformed true score. In summary,
by setting

e∗
o(u) = a2Tn(u)en(u) + ae2n(u) (9.27)

and noting that To(u) = g(Tn(u)), we obtain

g (Xn(u)) = g (Tn(u) + en(u)) = To(u) + e∗
o(u) (9.28)

where

E
(
e∗
o(u)

) = aV
(
e2n | u

)

= 0. (9.29)
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Table 9.1 Score
concordance between ACT
and SAT as provided in ACT
(2009)

ACT SAT diff ACT SAT diff

36 1600 40 23 1070 40
35 1560 50 22 1030 40
34 1510 50 21 990 40
33 1460 40 20 950 40
32 1420 40 19 910 40
31 1380 40 18 870 40
30 1340 40 17 830 40
29 1300 40 16 790 50
28 1260 40 15 740 50
27 1220 40 14 690 50
26 1190 30 13 640 50
25 1150 40 12 590 60
24 1110 40 11 530

9.5.2 ACT-SAT Concordance

The College Board provides score transformation tables referred to as concordances
for the two US college entrance exams ACT2 and SAT (e.g., ACT, 2009; Dorans,
1999). These tables translate a discrete score variable obtained on one of the tests
and provide an equivalent score on the other test. While it needs to be pointed out
that both tests are not exchangeable in the sense that they do not exactly measure
the same skills, the composite score on the ACT and the combined verbal and math
score on the SAT do correlate at rACT, SAT = 0.92 (Dorans, 1999). The following
table provides the concordance between ACT and SAT as reported in ACT (2009).

It can be seen in Table 9.1 the differences between ACT scores are one point,
whereas the differences between transformed SAT scores are 40 points for most
adjacent scores, while some differences are 50 points, in particular for the upper
and lower score regions. Hence the conversion is slightly non-linear. The graphical
representation of the concordance shows that the deviations from linearity are small.

In this example, we use the ACT score as the Xn variable and the SAT as the
Xo so that the task is to transform ACT scores onto the SAT score scale. Just
for the purpose of this exercise, we use the s.d. of the ACT provided by Dorans
(1999), S(ACT) = 4.86, and calculate using as the lower bound of the reliability the

2 The acronyms ACT and SAT are household names in the USA as well as for many international
students. ACT stands for “American College Test,” and SAT has no meaning as an acronym. The
SAT acronym originally stood for “Scholastic Aptitude Test,” but as the test evolved, the acronym’s
meaning was dropped (https://blog.collegeboard.org/difference-between-sat-and-psat).

https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
https://blog.collegeboard.org/difference-between-sat-and-psat
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Fig. 9.1 Continuization of the concordance table on the interval ΩACT = [11, 36] using natural
cubic splines

correlation between ACT and SAT given as rACT, SAT = 0.92 an upper boundary of
the marginal error variance for the ACT as

S2 (eACT) = (1 − 0.92) 4.862 ≈ 1.89.

For higher levels of reliability, a lower error variance is obtained, and the bias
of the non-linear transformation is reduced, as will be demonstrated below. For the
example at hand, we base explorations on the publicly available concordance Table
9.1 and use a reverse-engineered approximate continuous function in this exercise.

We use a commonly applied smoothing method to continuize the concordance
Table 9.1. This continuation using natural cubic splines results in a smooth function
defined on the interval ΩACT = [11, 36] and depicted in Fig. 9.1. It is not important
at this point whether we have found the “correct” continuization, as the point to be
made is based only on the observation that the concordance table is not perfectly fit
by a linear model as is easily verified by the variability of the differences between the
transformed values on the SAT scale in Table 9.1. The differences of the transformed
SAT scale scores vary between 30 and 60 points, with most being 40 points, and
hence force variability in the slope of any continuous transformation function that
goes through the discrete points provided in the concordance table.

The function depicted in Fig. 9.1 is twice continuously differentiable; in fact it is
infinite times piecewise differentiable so that a second-order Taylor approximation
can be used to derive expressions for approximate variance of the error of the
transformed SAT score scale. As indicated above, ACT (2009) reports a standard
deviation of sACT = 4.86, and for subsequent calculations, it will be assumed that
the error variance is the same across the ACT score range. Consider three different
levels of ACT score reliability, so that the implied error variances are 1.89, 1.18, and
0.47, respectively (Table 9.2).
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Table 9.2 Different levels of
marginal error variance for
three different levels of
reliability assumed for the
ACT

relACT VACT(e)

0.92 1.89
0.95 1.18
0.98 0.47

The three plots in Fig. 9.1 show the bias of the non-linear scale transformation
based on a local Taylor series approximation that uses the function values across a
score range of 3, which includes three ACT score points of the concordance table
centered around the transformed score, plus the interpolated values from the second
closest score points for half the interval.3 This choice ensures that the changes in
slope are traced locally in the approximate Taylor series approach used here. The
continuization and the local Taylor approximation were conducted using readily
available tools from Python’s scipy package (Jones et al., 2001).

The simulation of observed scores is using the CTT score decomposition
X = T + e and generates observed scores based on the error variance levels
given above and the 26 ACT scores ranging from 11 to 36. The simulations were
conducted 20 times per level of reliability with a sample size of 5200 (200 error
terms per each of the 26 observed ACT score levels) per simulated database; the
simulations were conducted using a Python script that can be made available by the
authors upon request.

In the figures, the bias based on a simulated observed score variable (50 data
sets with 26 × 200 = 5200 observed scores) with one of the three different levels of
reliability is given as well as the approximate Taylor-based estimate of the bias of the
transformed observed score, calculated as the difference of the expected transformed
observed score from the transformed expected (true) score.

Why this effect can indeed be regarded as a bias of the non-linear transformed
score becomes evident by comparing different levels of reliability. With increasing
reliability, the difference vanishes; in other words the bias becomes larger with
decreasing reliability of the scale score that is to be transformed.

It is evident from Fig. 9.2 that the bias of the transformed observed score is
reduced as the reliability of the new test form score increases. Also, the bias is
smaller in the middle of the score range where the function, as verified by the
concordance Table 9.1 and Fig. 9.1, deviates less from linearity than in the extremes
of the score range.

3 Three score points are located within a closed interval of length 2 on the ACT scale, and 5 points
are contained in a closed interval of 4.
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Fig. 9.2 Graphs of estimated bias, based on second-order Taylor approximation and simulation
based using a marginal error variance of VACT(e) = 1.89, 1.18, 0.47 that corresponds to a reliability
of 0.92, 0.95, 0.98 (figures in that order)

9.6 ITED-ACT Concordance

The example presented in this section uses an approximate transformation that was
derived from graphs displayed in an article by Yin et al. (2004) that compares
linear and equi-percentile concordances between the Iowa Test of Educational
Development (ITED) and the ACT.
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We are examining the concordance between ACT (M), a 60-item test, and ITED
(QT), a 40-item test as given on page 283 of Yin et al. (2004). It appears that
psychometric quality indicators are not readily available for the ITED; therefore,
we rely on numbers taken from a somewhat seasoned publication: We assume a
reliability of 0.88 for ITED (QT) and a standard deviation of 31 (e.g., Hendricks,
1967). The main point here is not critiquing any particular testing program but
to show a general effect of non-linear equating and scale transformations using
reasonable numbers for quantities such as the standard error of measurement. We
used an interval of 8 ITED points which again corresponds to including 3 value
pairs at a minimum, plus adjacent points through the spline interpolation. Since
there is no tabular or functional form available, the Google Chrome web application
WebPlotDigitizer (Rohatgi, 2015) was used to transform the concordance plots into
numerical form that can be processed with spreadsheets and statistical software. For
the linear and the equi-percentile concordance, about 90 value pairs were digitized
from the graphs on page 283 in Yin et al. (2004) and subsequently smoothed using
a 5-point moving average with weights (1,2,3,2,1) to reduce jitter caused by the step
function character of the equi-percentile transformation as well as by inaccurate
digitizing. This smoothing will overall reduce the reported bias, but will also avoid
reporting bias that is caused by errors in digitizing. The linear concordance was
shown not to produce bias and is hence expected to only show the level of error
introduced by digitizing a linear function by manually collecting value pairs with
WebPlotDigitizer.

In addition to the linear and the equi-percentile tables, a third approximate
concordance was generated using a piecewise linear function with one change in
slope. The value pairs for this function were also smoothed with the weighted
moving average as described above. Figs. 9.3, 9.4, and 9.5 show the results first
for the linear (but manually digitized) concordance, second for the equi-percentile
concordance, and third for the piecewise linear (smoothed) concordance.

The smoothed digitized linear concordance does not appear to deviate from a
straight line. However, the approximate Taylor series-based bias as well as the bias
estimate using transformed observed scored do show some small variability around
zero. This is likely to be due to the manual digitalization process that introduced
slight variations in the slope of the digitized function.

Figure 9.4 shows the same exhibits for the digitized equi-percentile concordance.
The linear case may serve as a baseline here for comparison so that the magnitude
of the bias terms of this non-linear concordance can be put in perspective.

A visual inspection of the equi-percentile concordance, even in its smoothed
version, shows regions of rapid changes in slope in the extremes of the score
distribution. As seen in the corresponding regions in the bias plot, these changes in
the slope are also associated with larger biases of transformed observed scores. An
increase in slope is associated with a positive bias, whereas a decrease is associated
with a negative bias of the transformed score.

Figure 9.5 shows this effect in an exemplary constructed concordance that only
involves one region of increase in slope and otherwise uses a constant slope before
and after the (non-linear) region of change. Using this simple setup, we can focus
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Fig. 9.3 Smoothed linear concordance using digitized values from Yin et al. (2004), p. 283, and
Taylor approximate bias as well as empirical bias using simulated observed scores. The simulated
ITED observed scores were generated for every third ITED score level and correspond to a
reliability of 0.88

on how the non-linearity introduces bias in the transformed scores unless these are
perfectly reliable.

In Fig. 9.6, we zoom in to a score range where the piecewise linear transformation
depicted in Fig. 9.5 shows large bias values in positive and negative directions due
to two changes of the slope in different directions and within a short score interval.
It can be seen from the rectangular magnification of this crucial section that the
approximate bias calculated based on the second order Taylor term closely matches
the estimated bias based on simulated observed scores.

This last example shown in Figs. 9.5 and 9.6 demonstrates that the bias indeed
vanishes in the linear regions but is obvious and positive in the score region where
the slope changes, i.e., where the transformation is non-linear. Note that in Figs. 9.4
and 9.5, there are regions where the bias exceeds one point on the ACT scale. This
indicates that the use of transformations with regions of non-linearity may indeed
have unintended consequences in score concordance and equating applications.
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Fig. 9.4 Smoothed equi-percentile concordance using digitized values from Yin et al. (2004), p.
283, and Taylor approximate bias as well as empirical bias using simulated observed scores. The
simulated ITED observed scores correspond to a reliability of 0.88

9.7 Discussion

This paper shows that linear transformations of observed scores retain the central
building blocks of classical test theory, if these held with respect to the original test
scores.

First, as it was shown in past research that if there is variance homogeneity in the
error variable, non-linear transformations produce a dependency of the conditional
error variance on the true score, this is a well-known result that is used together
with the Taylor approximation to derive conditional standard errors of measurement
(e.g., Feldt and Qualls (1998); Kolen et al., 1992; Woodruff et al., 2013).

Second, when using non-linear transformations in order to perform a scale
transformation or an equating from a new test form Xn to an old test form Xo, the
transformed sum of true score and error may no longer exhibit a feature central to
CTT, namely, that error terms on the transformed scale are vanishing in expectation.
If an additive decomposition as used in CTT is performed, the resulting error
variable has no longer a zero expectation on the transformed scale. This introduces
a bias into the transformed observed scores that is mainly driven by lack of
reliability. For perfectly reliable measures, the bias vanishes, but for tests that have
non-vanishing error variances, there is bias that can be well approximated by the
second-order term of a local Taylor approximation of the non-linear transformation
function.
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Fig. 9.5 Smoothed piecewise linear concordance using digitized values from Yin et al. (2004), p.
283, and Taylor approximate bias as well as empirical bias using simulated observed scores. The
simulated ITED observed scores were generated for every third ITED raw score and correspond to
a reliability of 0.88

Fig. 9.6 Detail of the Taylor approximate bias function as well as empirical bias using simulated
observed scores for the piecewise linear transformation depicted in Fig. 9.5

How to deal with this bias is an obvious question. Can it be ignored, or are
there ways around it? Here is a list of suggestions that are ordered in the order
of preference of the authors, but not necessarily by practicality:
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1. Produce and use only tests with (close to) perfect reliability for equating and
scale transformations.

2. Use only linear transformations for equating, concordance tables, and scaling.
3. Reduce non-linear transformation bias by developing an approximate bias

correction.

Note that bias corrections are a well-researched topic inML estimation, including
IRT modeling (Warm, 1989; Firth, 1993; von Davier, 1995), and can be readily
applied. However, it appears that the awareness that non-linear transformation of
scale scores produce biased is not widespread. When researching results on non-
linear functions of test scores, the only reference we came across was Lockwood
and McCaffrey (2015) who do discuss bias when using test scores that relate to
outcome variables in non-linear ways. In their application, they look at polynomial
terms in regression models, for example, of the value-added model type, but do not
utilize the expressions developed in this article for quantifying the bias associated
with non-linear transformations.

In summary, if transformed scale scores are expected to follow central results
of classical test theory, only certain types of variable transformations appear to be
permissible. In particular, if the error variance was assumed to be homogeneous,
a non-linear transform introduces conditional error variances that vary across the
score range. Maybe even more concerning is that non-linear scale transformations
introduce bias in the expected value of the transformed scores, as shown in
this paper. The magnitude of this bias depends on the reliability of the scale
that undergoes transformation as well as on the local changes in slope of the
transformation function. This bias can be approximated by standard methods and
could be approximately corrected for (using second derivatives around the observed
score rather than the unobserved true scores). However, given that the foundation
of CTT is linear in true score and error, one could consider linear transformations
the natural domain of permissible transformations. Given that the bias vanishes for
linear transformations as well as for perfectly reliable scales, it appears that linear
scale transformations should be the preferred ones for equating, concordances, and
scale transformations.
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Chapter 10
Examination of Test Characteristics’
Effect on Coefficient α and Coefficient ω

Terry Ackerman, Ye Ma, and Richard Luecht

Abstract In this study, five factors were simulated to determine their effect on three
measures of reliability: coefficient α, coefficient ω, and the true scale reliability as
defined in a classical test theory context as the ratio of true score variance over
observed score variance. The factors were the number of items, the level of item
discrimination, the number of dimensions, the correlations among dimensions, and
the location of the items in relationship to the latent ability score distribution. In
all higher-order dimensional conditions, simple structure was assumed. The data
were generated using the multidimensional item response theory compensatory two-
parameter logistic model. As expected, when the number of items, the magnitude of
the item discriminations, and the correlations among the dimensions increased, the
reliability correspondingly increased. Noticeable differences were observed across
all higher dimensionality conditions with ω values being significantly lower than α,
a finding which could have been an artifact of the simulated simple structure.

10.1 Background

Reliability is one of the hallmark measures of an assessment’s quality. It is a
necessary condition for validity. Several authors have noted that a test’s reliability
is a function of the scores on a test, not the test itself or multiple forms of a test
(Brennan, 2001; Thompson & Vacha-Haase, 2000). There are a host of measures
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that have been developed to estimate reliability (Feldt & Brennan, 1989; Kane,
1996). The basic definition of reliability is based on the classical test theory
assumption that for individual i, a test score Xi is the sum of two unobservable
and uncorrelated components, Ti, a true score and measurement error, Ei:

Xi = Ti + Ei. (10.1)

Reliability is then defined as the squared correlation between the observed test
scores and the corresponding unobserved true scores which can be shown to be
equal to the ratio of true score variance, .σ 2

T , to total observed score variance, .σ 2
X:

ρ2
T X = σ 2

T

σ 2
X

(10.2)

As noted by Sijtsma (2009a, b), over the years, the one standard reliability index
that researchers and psychologists have adopted is coefficient alpha (Cronbach,
1951), further referred to as α. Although Cronbach’s name is tied to the statistic,
this measure can be traced through the works of Kuder and Richardson (1937),
who published a version of α for dichotomous items—the KR-20 coefficient.
Hoyt (1941) proposed an equivalent statistic using of analysis of variance with
dichotomous responses.

Finally, Guttman (1945) derived a series of reliability coefficients. One coeffi-
cient, denoted as λ3, was equivalent to α.

Assuming a test composed of J-items, where a random variable, Yj, represents a
score on item j, and the total score on the test for an examinee is defined as the sum,

X =
J∑

j=1

Yj , (10.3)

α for a group of examinees can be expressed as

α = J

(J − 1)

⎡

⎣1 −
∑J

j=1 σ 2
Yj

σ 2
X

⎤

⎦ (10.4)

where .σ 2
Yj

represents the item variances and .σ 2
X is the variance of the total scores.

If the item scores are standardized, the formula for α can be expressed in terms
of the mean of the inter-item correlations, .ρ; that is,

α = Jρ

1 + (J − 1) ρ
, (10.5)
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or equivalently as the average of the inter-item covariances, .σYY ,

α =
J

(
σYY

σX

)

1 + (J − 1)
(

σYY

σX

) . (10.6)

It should be noted that α also approximates the mean of all possible Spearman-
Brown split-half coefficients (Spearman, 1910; Brown, 1910) where the split-
half coefficients, r12, are adjusted, pairwise Pearson product-moment correlations
between the two half-test scores:

rsplit−half(SB) = 2r12
1 + r12

. (10.7)

Coefficient α equals the mean of the split-half coefficients when the standard
deviations of all possible halves are equal and smaller when the standard deviations
are heterogeneous (Cortina, 1993). Feldt and Brennan (1989) and Lord and Novick
(1968) further noted that α will be equal to the mean of all split-half correlations
when the split-half correlations are calculated by the Flanagan-Rulon formula:

rsplit−half(FR) = 4r12s1s2
s2T

, (10.8)

where s1 and s2 are the standard deviations of each half and .s2T is the variance of the
total test (Flanagan, 1937; Rulon, 1939).

Many researchers have criticized the pervasive use of α (Green, et al., 1977;
Green and Yang, 2009; Rodriguez & Maeda, 2006; Sijtsma, 2009a, b) or even
wrote about the shortcomings of the statistic and its interpretations (Cronbach &
Shavelson, 2004; Ten Berge & Socan, 2004). One drawback is the ubiquitous
interpretation of α as a measure of internal consistency. Internal consistency is a
characteristic of the test items, not the test, and does not reflect the length of the
test (i.e., the pattern of inter-item covariances). Another caveat is that calculations
of α can yield values that are outside the range of possible values of the score
reliability that should be derivable from a single test administration (Cho & Kim,
2015; Sijtsma, 2009a).

It is often thought that α requires the test to be unidimensional and that it can be
used as a measure signifying the degree of multidimensionality. Cronbach (1951)
did address the test dimensionality issue when he wrote that for a test:

to be interpretable, . . . it is not essential that all the items be factorially similar. What is
required is that a large proportion of the test variance be attributable to the first principal
factor running through the test.

Several authors have noted that multidimensional tests can exhibit high values
of α (Davenport, et al., 2015; Davison & Davenport, 2015). When a test has been
empirically demonstrated to be multidimensional, it is important the test developer
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be able to articulate the meaning of the composite scale which α is characterizing
(e.g., that the total test score is a weighted linear composite of two or more subscores
by design). In any case, it has been well documented that a multidimensional test
does not necessarily have a lower α than a unidimensional test.

Friedman andWeisberg (1981) demonstrated that if all the inter-item correlations
are positive, the first principal component eigenvalue is approximately proportional
to the average correlation of the J items

λ1 ≈ 1 + (J − 1) r. (10.9)

Using this relationship, α can be approximated as

α ≈ J r

λ1
. (10.10)

Another approach that tries to capture the underlying possibly multidimensional
nature is to assess reliability using a factor-analytic approach such as coefficient
ωh (McDonald, 1985, 1999; Zinbarg et al., 2005), further referred to as ωh. The
subscript h denotes that this measure of reliability is derived from the hierarchical
factor analytic model. That is, it is assumed that all items measure a common factor
that accounts for a major proportion of variance in the scaled scores. In addition, it
is assumed that each item measures a unique skill uncorrelated with the common
scale. For the purposes of this study, we used a bifactor model in which all items
load on a general factor and on a unique factor. All unique factors are uncorrelated.
The ωh statistic used is calculated as

ωh =
(∑J

j=1 λgj

)2

σ 2
X

, (10.11)

where λgj are the factor loadings on the general factor.
The goal of this research is to examine and compare the performance of α

and ωh under several different test conditions including the correlations between
dimensions, number of items, discrimination power of the items, and whether the
difficulty of the items is optimal given the ability distribution of the examinees.

The response data were generated using the compensatorymultidimensional two-
parameter IRT model (M2PL) (Reckase, 2009). The M2PL can be expressed as

pj (θ) = P
(
uj = 1|θ) = 1

1 + e−(
∑m

k=1 ajkθik+dj )
, (10.12)

where θ = (θ1, θ2, · · · θ k, · · · θm) is a m-length vector of the latent scores with
elements indexed as θ ik(the score of person i on dimension k), ajk is a discrimination
for item j on dimension k, respectively, and dj is an intercept term denoting the
composite difficulty of each item. The MDISC index is the multidimensional analog
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to unidimensional discrimination parameter, a. It is a composite discrimination
index for each that can be expressed as

MDISCi =
√√√√

m∑

k=1

a2jk (10.13)

where .a2jk is defined above.

10.2 Research Design

This is a simulation study. The response data were generated under prescribed
testing conditions with multiple replications. Three coefficients were computed
for each data set and then the comparative results aggregated across replications:
(i) .ρ2

T X, the true scale reliability when the true score and error variances are
known (through simulation), (ii) α (Eq. 10.4), and (iii) ωh (Eq. 10.11). This design
demonstrates how logically influential test design considerations such as test length,
item discrimination, and the homogeneity of items relative to the populationmean(s)
impact those three reliability coefficients. The study included five completely
crossed design factors:

• Number of items (J = 24, J = 48)
• Levels of MDISC (low MDISC, 0.4–0.8; moderate MDISC, 0.8–1.2; high

MDISC, 1.2–1.6)
• Number of dimensions (m = 1, 2, 3, 4)
• Location of mean item difficulty (d = 0, 1) given the examinee distribution will

always be centered at the origin
• Correlation of abilities (ρ = .0, .5)

The sample size for each simulation was fixed at 1000 randomly generated
examinees sampled from a standard normal univariate or multivariate normal
distribution centered at the origin for each simulation. Each condition was further
replicated 100 times to provide empirical sampling distributions of each reliability
coefficient for comparative purposes.

10.3 Reliability Estimation and Evaluation

Three reliability coefficients were calculated for each of the simulated data sets: the
true scale reliability, .ρ2

T X, coefficient α, and ωh (based on a fitted bi-factor model).
As noted earlier, the true scale reliability was calculated using Eq. 10.1 where the
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true score variance is the variance of the expected scores of the N-examinees over
J-items:

σ 2
T = σ 2

⎛

⎝
N∑

i=1

n∑

j=1

P
(
ui = 1|θi1, θi2 aj1, aj2, dj

)
⎞

⎠ (10.14)

using the generated N × m matrix, θ, and the J × (m + 1) matrix of generated
item parameters. The raw score variance is calculated using the total score for
each person and including all the items in the test. The α and ωh were calculated
using the corresponding functions in the R package psych (Revelle, 2021). That
package calculates the three reliabilities given in Eqs. 10.4 and 10.11. In aggregate,
there were 96 conditions (2 × 3 × 4 × 2 × 2), and each condition was replicated
100 times to provide empirical sampling distributions of the three coefficients. In
particular, the means and standard deviations of those sampling distributions were
computed across the 100 replications per condition, and graphical visualizations
were created using the R package ggplot2 (Wickham, 2016). All the simulations,
data management, and analytical aspects of this study were carried out using R (R
Core Team, 2021).

10.4 Results

The 5 design factors produced 96 simulation test design conditions. These factors
were expected to have direct or indirect impact on the three reliability indices, .ρ2

T X,
α, and ωh. The impact of the number of items (test length) on reliability is well-
known given the extensive body of research on the Spearman-Brown formula (e.g.,
Angoff, 1953; Traub, 1997),

ρ∗
XX′ = qρXX′/ [1 + (q − 1) ρXX′ ] (10.15)

where .ρXX′ is the original reliability index and q is the ratio of new to original (old)
test lengths. In contrast, the average MDISC (composite item discrimination) and
item location were generated to either offset or match to the population centroids’
impact the contribution of each item to the score variance (e.g., Gulliksen, 1950).
These two factors also directly and indirectly reflect on item quality—especially
the item discrimination parameters and MDISC, which act as weights for the latent
scores. Finally, the number of underlying dimensions and the correlation between
those dimensions represent the dispersion of the measurement signal across the
apparent latent structures representing the item covariances. Including these latter
two conditions in the simulation directly speaks to the motivation for ωh, that is, to
have a reliability index that responds to untended or idiosyncratic dimensionality,
or to a test that includes multiple dimensions by design and perhaps reports the
total score as weighted linear composite of subscores. Increasing the dimensionality
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Fig. 10.1 Summary of reliability coefficients for high MDISC and item difficulty matched to the
population proficiency score centroids: μ(d) − μ(θk) = 0 (100 replications per condition)

and covariance(s) among the underlying factors should disperse the “measurement
signal” relative to a reported total score.

For the most part, these factors produced results that met expectations. Figures
10.1, 10.2, 10.3, 10.4, 10.5 and 10.6 include “trellis” or facetted multi-plots that
embed a bivariate plot conditioned on the number of items (columns) and the
magnitude of correlation between the underlying dimensions or factors (none
implies a zero correlation between the factors; moderate implies a correlation of
.5 between all factors). The number of dimensions is shown along the horizontal
axis for each plot, and the vertical axis represents the magnitude of the correlation.
The three plotted outcomes in each cell of the multi-plot denote the three reliability
indices: .ρ2

T X, α, and ωh. These results are summarized as the mean and standard
error of the reliability coefficients across 100 replications per combination of
simulation conditions.

As Fig. 10.1 shows (high MDISC, with the mean item difficulty matched to the
population centroids, μ(d) − μ(θ k) = 0 for all k), there is a noticeable increase in
the .ρ2

T X and α coefficients as the test length increased from 24 to 48 items, and
a decrease in the coefficients as the number of dimensions increased from 1 up to
4 due to the amount of total test score signal dispersion among the dimensions.
The three coefficients are all highly similar in the unidimensional case (m=1) with
α and ωh essentially being identical. The coefficients only start to decline as the
total score signal is dispersed across two or more underlying factors. Note that the
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Fig. 10.2 Summary of reliability coefficients for high MDISC with item difficulty offset from the
population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

Fig. 10.3 Summary of reliability coefficients for moderate MDISC and item difficulty matched to
the population proficiency score centroids: μ(θk) − μ(d) = 0 (100 replications per condition)
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Fig. 10.4 Summary of reliability coefficients for moderate MDISCwith item difficulty offset from
the population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

Fig. 10.5 Summary of reliability coefficients for low MDISC and item difficulty matched to the
population proficiency score centroids: μ(θk) − μ(d) = 0 (100 replications per condition)
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Fig. 10.6 Summary of reliability coefficients for low MDISC with item difficulty offset from the
population proficiency score centroids: μ(θk) − μ(d) = 1 (100 replications per condition)

zero-correlation condition is rather unrealistic in a practical sense1, but provides
a reasonable baseline under “maximum dispersion” conditions. Interestingly, the
mean values of ωh tend to somewhat track with the inter-factor correlations (.0 =
none or .5 = moderate).

Figure 10.2 (high MDISC, with the mean item difficulty offset from the
population centroids, μ(θ k) − μ(d) = 1 for all dimensions) shows a pattern that
is very consistent with Fig. 10.1. Cronbach’s α values tend to be smaller than the
“true reliabilities” with known true scores, .ρ2

T X. This likely reflects some sampling
error when estimating the item error variances (see Eq. 10.3). The ωh coefficients,
again, somewhat track with the magnitude of the inter-factor correlations, although
the mean values are also confounded by the high MDISC present in the items.

Figure 10.3 (moderate average MDISC, with the mean item difficulty matched
to the population centroids, μ(θ k) − μ(d) = 0 for all dimensions) begins to show
an interesting pattern where the mean α and .ρ2

T X values respond to the reduced
composited item discrimination, but the ωh coefficients do not.

Figure 10.4 (moderate average MDISC, with the mean item difficulty offset from
population centroids, μ(θ k) − μ(d) = 1 for all dimensions) confirms the coefficient

1 In practice, it would be very rare to encounter a test designed to measure two or more underlying
traits with NO covariance between the traits. Even tests measuring distinctly different traits like
mathematics and English language arts tend to positively correlate in the moderate range.
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patterns of Fig. 10.3; that is, the ωh coefficients respond more to the amount of
total score signal dispersion than to the reduced composite item discrimination. The
mean α and .ρ2

T X values respond to the reduced composited item discrimination and,
to a lesser degree, to the signal dispersion across dimensions.

Figures 10.5 and 10.6 show an overall decline in mean α and .ρ2
T X values

proportional to both the low average MDISC values and the dimensional dispersion
of the total score signal. Interesting, and similar to Figs. 10.3 and 10.4, the latter
dispersion has less impact across the increasing number of dimensions than under
the high discrimination condition. Increasing the test length helps to somewhat
offset the decline in the reliability coefficients, but the recommendation to write
high-quality items and monitor that the level of composite item discrimination
remains as high as possible seems to be good advice.

10.5 Conclusion

In this study, we varied testing conditions that we felt would influence the perfor-
mance of the three reliability coefficients: (1) true reliability, (2) Cronbach’s α, and
(3) ωh. As the number of items was doubled from 24 to 48, there was the expected
proportional increase in reliability. Likewise, as the discrimination of the items,
MDISC, increased, the magnitude of the reliability coefficients also unilaterally
increased. The simulation response data were generated relative to an underlying
multidimensional simple structure for three of the four simulation conditions. As
the correlations between the multidimensional latent abilities increased from 0 to
.5, thus “collapsing” the latent space—the reliability coefficients also proportionally
increased. The effect of increasing the average difficulty of the items, that is,
increasing the amount of offset between the location of maximum measurement
information relative to the centroid of the examinee ability, joint latent distributions
did not induce any prominent change in reliability.

The simulation condition that appeared to demonstrate the greatest impact on
the reliability coefficients was multidimensionality. As the number of dimensions
increased, coefficient ω dropped considerably in comparison to the true scale
reliability and coefficient α. This was anticipated because ωh was computed using
the sum of the loadings on the general factor in the hierarchical, orthogonal bifactor
model, where all factors are uncorrelated. Because the data were generated using
simple structure, the loadings on the unique factors were higher than the loadings
on the general factor, creating significant dispersion in the measurement “signal”—
specifically, inducing “noise” relative to the general factor. That is, the R-packages
that were used estimated ωh using the bi-factor model versus a common factor or
component model.

In the unidimensional case, α and ω were always equal. In some cases, these
coefficients exceeded the true scale reliability. As dimensionality increased, α like
the .ρ2

T X decreased though not nearly as much ω. It appeared that α was not
affected as much as ωh by the increase in dimensionality. There was one notable
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inconsistency. In the two-dimensional case, ω was consistently lower than in the
three- and four-dimensional cases across all conditions. This may have been a
function of the sampled item discrimination parameters.

It seems clear that testing practitioners must be advised always to conduct
a thorough dimensionality analysis of their test results relative to the intended,
reported score scale(s) and further evaluate the dimensionality analysis outcomes
in terms of the test specification so that they can articulate the meaning of the
observed score scale. Only evaluating a reliability coefficients or standard errors
of measurement is not sufficient.

Future research will extend the current research to incorporate factorially
complex item structures where the multidimensionality may relate to nuisance
dimensions of idiosyncratic characteristics of the items (i.e., items loadings on both
intended and unintended factors underlying the data). We also plan to examine
reliability from a multidimensional IRT perspective and relate more directly to
the concept of a unidimensional composite of intended multidimensional traits
(i.e., Wang’s (1985) reference composite). Lastly, we plan to experiment with the
formulation of ωh and determine if additional information about dimensionality and
its effect on reliability can be delineated for testing practitioners.
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Chapter 11
Methods for Estimating Conditional
Standard Errors of Measurement
and Some Critical Reflections

Wilco H. M. Emons

Abstract Educational assessments can have far-reaching consequences for indi-
viduals. To allow test users to make valid decisions, it is important to provide
evidence about the uncertainties in the observed scores on which the individual
decisions are based. In this chapter we examine standard errors of measurement
defined for specific score groups, which are referred to as conditional standard
errors of measurement. In particular, we study the foundations of the ANOVA
method proposed by Feldt et al. (Appl Psychol Meas 9:351–361, 1985) within the
context of classical test theory. In addition, we suggest some variations and study
their practical usefulness including sample size requirements.

11.1 Methods for Estimating Conditional Standard Errors
of Measurement and Some Critical Reflections

Educational tests are widely used to make decisions about individuals in various
educational settings. Examples include low-stakes classroom situations in which
the teacher has to make instructional decisions, as well as high-stakes placement
decisions and decisions about whether or not to provide additional support such as
remedial teaching. However, test scores have measurement errors and thus come
with uncertainties. To allow test users to make valid decisions, it is important
to provide evidence about the uncertainties in the observed scores on which
the individual decisions are based (Hopster-Den Otter et al., 2019). Withholding
information about the precision may give test users the impression that scores are
more accurate than they are. There are different ways to incorporate precision in test
score reports. For example, instead of only reporting a single value, one can report a
confidence interval around the observed score to express the uncertainties involved
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(Harvill, 1991; Sijtsma & Van der Ark, 2020). Test users can then make informed
decisions whether the precision of the tests they want to use is sufficient for their
application envisaged (Sijtsma & Emons, 2011). Information about score precision
may also be used for, for example, setting cutoffs on selection tests (e.g., personnel
selection) whereby taking into account the expected false positives and negatives
due to measurement errors.

In practice, it is customary to express measurement precision using the standard
error of measurement (SEM) from classical test theory (CTT; Lord & Novick,
1968). The SEM, denoted by σE, is defined as

σE = σX

√
1 − ρXX′ , (11.1)

where σX is the (population) standard deviation of the test scores X and .ρXX′ is
the (population) test-score reliability. In real data applications, σX is replaced by
the observed standard deviation of test scores (SX) obtained in a representative
sample; and .ρXX′ is replaced by an estimate of the test score reliability – most often
coefficient (Cronbach’s) α – obtained in that same sample. The resulting sample
value for the SEM is then used as a measure of precision for all individuals to
whom the test is applied. However, there are good reasons to doubt that the group-
level SEM is appropriate for individual-level decisions at different points on the
sum-score scale. It is generally acknowledged that measurement precision is person
specific (Guttman, 1945; Lek & Van de Schoot, 2018; Lord & Novick, 1968) and
that measurement precision varies along the score scale (e.g., Feldt et al., 1985).
The SEM that results from Eq. (11.1) is actually the average precision by which
the persons in the target population are measured (e.g., Lord, 1980; Mellenbergh,
1996). We use this average as our “best guess” for the individual-level precision.

Instead of using a single group-level SEM for all individuals, it would be
more appropriate to assess the precision for each testee individually and use that
for further decision making. Unfortunately, it is impossible to test individuals
repeatedly under the same conditions, not even twice (Sijtsma, 2009). As a result, we
do not have empirical access to these person-specific measurement errors. However,
it is possible to assess the SEM for individuals within specific homogeneous
subgroups. Previous research has suggested that measurement precision varies
across ability levels, where the precision is typically higher at either endpoint of
the score scale and smaller in the middle (Feldt et al., 1985). Therefore, the most
obvious choice is to create groups of individuals having the same sum score. The
group-specific SEM, which is the average precision for the individuals in the specific
group, may serve as a more accurate predictor of the person-specific precision than
an overall global average.

Standard errors of measurement defined for specific score groups are referred to
as conditional standard errors of measurement (CSEM; Holland & Hoskens, 2003;
Lee et al., 2000; Lek & Van de Schoot, 2018; Nicewander, 2019; Raju et al., 2007).
However, because in subgroups with constant X we have σX = 0 and reliability .ρXX′
undefined (Sijtsma & Van der Ark, 2020), obtaining the CSEMs is unfortunately
more complicated than simply applying Eq. (11.1) in subgroups. Several well-
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established methods for estimating CSEMs from a single administration have been
proposed (see, for example, Brennan, 1998; Feldt et al., 1985; Lek & Van de
Schoot, 2018; Qualls-Payne, 1992; Sijtsma & Van der Ark, 2020; Thorndike, 1951;
Woodruff et al., 2013). These methods can be grouped into three classes: first,
methods that split a single test into two or more parallel parts (Lek & Van de
Schoot, 2018; Thorndike, 1951; Woodruff, 1990). The variances of the scores across
parallel parts, taking into account differences in test length, serve as indicators of
precision. A practical problem with these methods is that defining parallel halves
often turns out to be unsuccessful. Failure to find parallel parts makes these methods
questionable. The second class subsumes methods that use a probabilistic model for
the item scores. Examples include the CSEMs based on a binomial or compound
binomial model and those based on item response theory models (e.g., Lee et al.,
2000). The validity of the CSEMs derived from a fitted IRT model is contingent on
adequate model fit, and this fit must be ascertained everywhere along the trait scale
where important decisions are made.

Third, and perhaps somewhat less well-known, are methods based on a two-
way mixed (repeated measures) ANOVA (Feldt et al., 1985) and generalizability
theory (Brennan, 2001). The ANOVA method in particular is an interesting method.
As shown below, the method is intimately related to internal consistency estimates
for the reliability, which places the method in a unified framework with lower-
bound estimates for reliability. To be specific, Feldt et al.’s (1985) ANOVA method
applied to a random (unconditional) sample would produce the same SEM as when
using Eq. (11.1) with coefficient α substituting .ρXX′ . The ANOVA method in fact
directly estimates the average measurement precision that defines coefficient α.
This also means that there is no need to first compute α and then reconstruct the
SEM. Being a direct expression of the average measurement precision, the ANOVA
approach allows computing non-zero SEMs in groups in which everyone has the
same sum score. Moreover, coefficient α is just one of a series of lower bounds to
the reliability, suggesting that Feldt et al.’s (1985) approach can be generalized by
using estimates of the measurement precision that are induced by other lower-bound
reliability measures from the Guttman’s λ-series.

The ANOVAmethod also has some convenient computational advantages, which
makes it a particularly attractive method from a practical point of view. First,
the method is easy to implement and is suitable for dichotomous, polytomous,
or continuous scores. Second, there is no need to group the items into parallel
parts. Third, the ANOVA method does not require a calibrated and fitting statistical
model for the item responses. Of course there is no such thing as a free lunch.
A possible drawback of the method is the fact that large numbers are required
per score group to get stable estimates. However, to put things into perspective,
given the impact educational assessments may have on people’s lives, we expect
test publishers to pay serious attention to this. Moreover, this is certainly not unique
for the ANOVA method and applies also model-based methods such as IRT-based
methods. However, and perhaps surprisingly, little is known about the minimal
sample-size requirements for the ANOVA method in relation to, for example, item
quality (i.e., difficulties and discrimination) and test length. More insight into
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sampling requirements is needed to be able to weigh this method against other
CSEM methods.

This chapter examines and elaborates on Feldt et al.’s ANOVA-based CSEM by
connecting them to some well-known lower-bound reliability indices. This is done
having three goals in mind: Enhance understanding of the ANOVA method and
variants thereof, advancing the theoretical foundations for preferring one method
over the other, and gain more insight into the practical possibilities and limitations of
the method. To accomplish these goals, this chapter is organized as follows. First, we
explain the key theoretical concepts. Second, we derive some general expressions
for the CSEMs within the framework of lower-bound estimates for the reliability.
Third, we present the results of simulations on the accuracy of the methods under
varying conditions for sample size, test length, and item quality. Fourth, we present
simulation results focusing on the added value of CSEMs within the context of
individual change assessment. Finally, we discuss the results and limitations.

11.2 Theoretical Background

11.2.1 Measurement Precision Versus Reliability

CTT assumes that observed test scores are affected by random influences that
are person and occasion specific (Lord & Novick, 1968). By implication, if
we were able to test the same person repeatedly under identical conditions, we
would observe a distribution of test scores. Lord and Novick (1968) refer to this
hypothetical distribution as the propensity distribution. Every arbitrary person v
in the population can be characterized by his or her own propensity distribution.
The mean of the propensity distribution is the true score, denoted τ , which is
the focal quantity in practical person measurement (see Borsboom, 2005, Chap.
2 for a critical conceptual discussion on true scores). The difference between the
observed score .X and τ is the error of measurement, denoted .E. The variance of the
individual test-score distribution reflects the error variance and thus also the person-
specific measurement precision. Let .σ 2

Ev
denote the person-level measurement error

variance. The smaller the error variance .σ 2
Ev
, the more precise we can measure τ v.

Ideally, we would like to estimate the person-specific precision for each testee
individually, but, as noted above, that is practically impossible. Therefore, it is
customary to use the standard error of measurement (SEM), which is the average
precision in a representative sample from the focal population. Most textbooks
explaining the SEM do so by using Eq. (11.1) as their starting point (e.g., Allen
& Yen, 2002; Sijtsma & Van der Ark, 2020). This practice may unintentionally
suggest that measurement precision is a property that follows from the test score
reliability, but the opposite is actually the case. Reliability follows from the ratio
of two independent properties: measurement precision (within-subject variability)
and population heterogeneity (between-subject variability). In particular, test score
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reliability can be expressed as

ρXX′ = 1 −
E

(
σ 2

Ev

)

σ 2
X

= 1 −
E

(
σ 2

Ev

)

σ 2
T + E

(
σ 2

Ev

) , (11.2)

(e.g., Lord & Novick, 1968; Mellenbergh, 1996). Eq. (11.2) shows that reliability is
high if on average the within-subject variance is much smaller than between-subject
differences in the true scores, .σ 2

T . Random within-subject fluctuations will then have
little influence on the relative position of individuals in a group upon retesting,
and the result is a high test-retest correlation. Equation (11.2) also emphasizes that
reliability is population dependent (Lord & Novick, 1968; Thompson, 2003).

Test-score reliability is in most cases assessed using coefficient (Cronbach’s) α.
However, coefficient α is just one of a series of lower bounds to the reliability,
including the Guttman’s λ s (Guttman, 1945) and the greatest lower bound (glb;
e.g., Woodhouse & Jackson, 1977). The latter is the highest possible lower-bound
to the reliability that can be estimated from empirical data. Closer inspection of
these reliability coefficients (e.g., Sijtsma & Van der Ark, 2020, chap. 2; Oosterwijk,
2016) shows that they all have a structure similar to Eq. (11.2). In particular, let λl
(l = 1, . . . , 6) be one of the Guttman’s reliability indices. Let .�Xj

be the item-
level variance-covariance matrix for a test that consists of J items. The lower-bound
reliability indices can be expressed as

λl = 1 − tr
(
�Xj

) − Cλl

(
�Xj

)

σ 2
X

, (11.3)

where .tr
(
�Xj

)
is the trace (sum of diagonal elements) of .�Xj

and .Cλl

(
�Xj

)
is a

summary of the item variance-covariance matrix.
Three aspects are particularly important here. First, different choices for .Cλl

define the different lower bound reliability indices. Examples follow below. Second,
the numerator in Eq. (11.3) is an estimate of the squared SEM, that is,

σ̂ 2
E = tr

(
�Xj

) − Cλl

(
�Xj

)
, (11.4)

which is directly computed from the .�Xj
. As an aside we may note that Eq.

(11.4) shows how lower-bound methods to the reliability essentially work; they
use the covariances to make inferences about the part that is explainable from
inter-individual differences in true scores and subtract that part from the sum
of the observed item variances. The underlying idea is that in CTT, the inter-
item covariances in a random sample only reflect true-score differences because
errors are uncorrelated by construction and each item constitutes an independent
observation. The practical importance of Eq. (11.4) is that we do not need to
compute the reliability first and then reconstruct the SEM, but we can derive direct
expressions for the SEM as a function of the item-level variance-covariance matrix.
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More importantly, Expression (11.4) does not include .σ̂ 2
X. Hence, Eq. (11.4) is also

applicable in groups having the same sum score x; hence, Eq. (11.4) circumvents
the problem involved when using Eq. 11.1 in conditional sum-score groups (i.e.,
.σ̂ 2

X = 0 and reliability is undefined; see Sijtsma & Van der Ark, 2020, p. 80).
To illustrate the matters at hand, consider, for example, Guttman’s λ3, which is

equivalent with coefficient (Cronbach’s) α. Coefficient λ3 is obtained by defining

Cλ3

(
�Xj

) = 1

J − 1

[
1T �Xj

1 − tr
(
�Xj

)]
, (11.5)

where 1 is a J × 1 (column) vector of ones, such that 1T�X1 equals the sum of all
elements in �X . Notice that .1T �Xj

1 also equals the variance of the sum score X
(i.e., .S2

X). The corresponding squared SEM equals

σ 2
E (λ3) = tr

(
�Xj

) − 1

J − 1

[
1T �Xj

1 − tr
(
�Xj

)]
, (11.6)

which when substituted in Eq. (11.2) together with .σ 2
X gives λ3. Hence, Eq.

(11.6) shows the estimator of the average measurement precision that defines λ3.
Expression (11.6) also can be used to compute the CSEMs.

Before going further into CSEMs based on other λ s, let us first have a brief look
at the relationship with Feldt et al.’s ANOVAmethod. It is well-known that the Type
III intraclass correlation for the mean score, commonly denoted as ICC(3, J) (Shrout
& Fleiss, 1979), from a one-way repeated measures ANOVA equals coefficient α

and thus also equals λ3 (Hoyt, 1941; Maxwell & Delaney, 2004, p. 566; Shrout &
Fleiss, 1979). The ICC is given by

ICC (3, J ) = 1 − MSN×J

MSs

= λ3 = α, (11.7)

whereMSN × J is the mean squares for the interaction term andMSs for the between-
subject differences (Maxwell & Delaney, 2004, chap. 11). It can be shown that

J × MSN×J = σ 2
E (λ3) (11.8)

(see the Appendix for the proof; see also Woodruff, 1990, p. 194, and Jarjoura,
1986 who relates the ICC to the KR-20 index of reliability). Hence, there is a direct
link between Feldt et al.’s ANOVA approach and the CSEMS/SEMS that follows
from using coefficient α (or the equivalent λ3) in Eq. (11.1). Through this link, we
can generalize the ANOVA-based CSEMs by deriving alternative expressions for
.Cλl

(
�Xj

)
based on other lower-bound reliability indices from the Guttman λ series

and use it in Eq. (11.4).
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11.2.2 CSEMs Derived from Internal Consistency Reliability
Estimates

CSEMs based on internal consistency estimates – including the ANOVA approach
by Feldt et al. – evaluate Eq. (11.4) in subgroups defined by the sum score X.
However, if the number of persons in a score group is small, the estimates become
unstable, yielding erratic fluctuations in the estimated CSEMs across the score
scale. Therefore, to ensure that the score groups have enough observations, adjacent
sum-score groups may be merged until the desired minimum number (minsize) is
reached. The minsize acts as a smoothing (binning) parameter, an idea that is used
intensively in nonparametric item response theory (Sijtsma & Molenaar, 2002).
However, its choice is critical to provide an adequate balance between sampling
variance and bias. That is, the minsize should not be set too small to avoid unstable
estimates, but not too large either because then one cannot pick up the local trend
in the CSEMs. More insights into the optimal choices of minsize for grouping the
sample on X were investigated using simulations, which are discussed below.

Let us assume for the moment that the sample is large enough so that each sum-
score group has enough observations. Let .σ 2

E|x (λ3) be the CSEM for score group
x based on the variance-covariance summary C underlying reliability index λ3.
Because within this score group we have .1T �Xj

1 = 0, Eq. (11.6) further simplifies
to

σ 2
E|x (λ3) = tr

(
�Xj |x

) + 1

J − 1
• tr

(
�Xj |x

) = J

J − 1
• tr

(
�Xj |x

)
, (11.9)

which for dichotomous items further simplifies to

σ 2
E|x (λ3) = J

J − 1

∑
πj |x

(
1 − πj |x

)
(11.10)

where π j � x is the proportion of correct answers for item j in group X = x. Taking
into account the degrees of freedom for the variances (i.e., the diagonal elements
.�Xj |x), the asymptotically unbiased estimate .σ̂ 2

E|x (λ3) can be written as a function
of the observed item statistics as

σ̂ 2
E|x (λ3) = J

J − 1

J∑

j=1

σ̂ 2
Xj |x,

which for dichotomous further simplifies to

σ̂ 2
E|x (λ3) = J

(J − 1)
• nx

(nx − 1)

∑
π̂j |x

(
1 − π̂j |x

)
. (11.11)
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The nx in Eq. (11.11) is the number of respondents in the sum-score group and
.π̂j |x the observed proportion correct. A similar expression was also derived in Feldt
et al. (1985; see Eq. 11.16) within the context of repeated measures ANOVA. The
above expression applies to score groups of persons all having the same x-score,
thus .σ̂ 2

X|g = 0. When the score group (denoted g) covers a range of X scores because
some adjacent score groups had to be merged to reach the desired minsize, we have

σ̂ 2
E|g (λ3) = J

J − 1

J∑

j=1

σ̂ 2
Xj

− σ̂ 2
X|g

J − 1
. (11.12)

Hence, when groups are merged, we have this additional term that also takes the
inter-item covariances into account. Equation (11.12) represents the general case
of the ANOVA method for dichotomous items in case adjacent groups have to be
merged.

Next, we consider λ1 and λ2. Although λ1 is lowest in the ranking of the lower-
bound indices, and therefore seemingly the least preferable choice of all Guttman
coefficients, it may be interesting to study the properties of the CSEM that is implied
by .σ̂ 2

E|x (λ1). To get λ1 using Eq. (11.3), we need to set .Cλl

(
�Xj

) = 0. Hence, λ1
takes the sum of the item-variance as the squared SEM; that is .

∑J
j=1 σ̂ 2

Xj
. Using

.Cλl

(
�Xj

) = 0 in score groups, and assuming dichotomous items, we have

σ̂ 2
E|g (λ1) = ng(

ng − 1
)

J∑

j=1

π̂j |g
(
1 − π̂j |g

)
. (11.13)

Hence, conditional on X = x, we see that .σ̂ 2
E|x (λ3) is larger than .σ̂ 2

E|x (λ1) by a

factor (J − 1)/J. As J grows, differences between .σ̂ 2
E|g (λ1) and .σ̂ 2

E|g (λ3) become
negligible.

In this chapter, we also consider .Cλ2

(
�Xj

)
that defines Guttman’s λ2. As pointed

out by Sijtsma (2009), λ2 is preferred over λ3, although numerical and simulation
studies suggest that differences tend to be limited from a practical point of view
(Oosterwijk et al., 2016). The CSEM associated with λ2 equals

σ̂ 2
E|x (λ2) = tr

(
�Xj |x

)
−

√
J

J−1

[
1′ (�Xj |x

⊙
�Xj |x

)
1 − tr

(
�Xj |x

⊙
�Xj |x

)]

(11.14)

(Sijtsma & Van der Ark, 2020). Symbol
⊙

denotes that the products in the
variance-covariance matrices are taken element-by-element (i.e., Hadamard prod-
uct). Interestingly, because the square root in (11.14) always provides positive
number, it follows that .σ̂ 2

E|x (λ2) ≤ σ̂ 2
E|x (λ1) ≤ σ̂ 2

E|x (λ3). That is, the order of the
implied CSEMs is not the same as the order for the lower-bound reliabilities. Finally,
we may note that the other lambdas λ4 through λ6 make use of optimizations,
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making them sensitive to chance capitalization (Oosterwijk, 2016) and less suited
for the purposes we have in mind. Therefore they need not be considered here.

The derivations for obtaining expressions for .σ̂ 2
E|x (λ1), .σ̂ 2

E|x (λ2), and .σ̂ 2
E|x (λ3)

as shown above are straightforward, but there is an important issue that needs further
consideration. When conditioning on the observed X, negative covariances arise
between the item-level errors (Woodruff, 1990). As a result, the covariances in
.�Xj |x are no longer governed by true-score variance alone. However, inspection
of (11.11) and (11.13) shows that .σ̂ 2

E|x (λ1) and .σ̂ 2
E|x (λ3) do not involve the

covariances but only conditional item-score variances. For .σ̂ 2
E|g (λ2) and .σ̂ 2

E|g (λ3)

based on merged groups, negative covariances come into play. It is unclear how
these negative covariances play out for .σ̂ 2

E|g (λ2), but for .σ̂ 2
E|g (λ3) , the overes-

timation becomes even larger because the group-specific variance .σ̂ 2
X|g will be

underestimated. Regarding the item variances, Woodruff (1990) proved that the
conditional error variance given X will on average be smaller than the error variance

conditional on true scores; that is, .E
(
σ 2

E|x
)

< σ 2
E|T . This effect depends on the

number of items and will be most prominent for scores at the boundaries of the
scale. Furthermore, given the aforementioned inequality, even though .σ̂ 2

E|x (λ3)is

overestimating .σ 2
E|x , it might still be considered as a pragmatic but practical

estimator of .σ 2
E|T (Woodruff, 1990). The key question is, of course, how accurate

these estimates are from a practical perspective.

11.3 Using CSEMs in Practice: A Simulation Study

Data sets were generated using IRT modeling (e.g., Hambleton & Swaminathan,
1985). Let θ be the unidimensional latent variable, and let Pjx(θ ) ≡ P(Xj = x| θ )
be the probability of observing response x ∈ {0, . . . ,M}. The item responses are
assumed to be independent conditional on θ (i.e., local independence). Dichotomous
item responses (i.e.,M = 1) were simulated using Birnbaum’s (1968) two-parameter
logistic model (2-PLM) and polytomous item-response data using the graded
response model (GRM; Samejima, 1969). For details on these models and other
IRT models, the reader is referred to Van der Linden (2016).

CTT and IRT are closely connected to each other (e.g., Holland & Hoskens,
2003; Lord, 1980). First, CTT’s true score τ is linked to θ via τ = ε(X| θ ). As
pointed out by Holland and Hoskens (2003), τ and θ are equivalent expressions
of a latent attribute on different scales (see also Lord, 1980, p. 46). Second, using
the Pjx(θ ) s, we can construct for every arbitrary value of θ or τ the associated
conditional frequency distribution for X. For dichotomous items, this conditional
distribution is the compound binomial (Lord, 1980), and for polytomous, we
have the compound multinomial distribution (Thissen et al., 1995). Recursive
formulae can be found in Lord and Wingersky (1984) and in Kolen and Brennan
(1995, pp. 182–182, 219). The variance of the conditional distribution is the
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squared conditional CSEM. For dichotomous scores, the variance of the conditional
frequency distribution of observed score X conditional on τ specializes to

σ 2
X|θ =

J∑

j=1

Pj (θ)
[
1 − Pj (θ)

]
, (11.15)

(Lord, 1980, p. 45). The IRT-based CSEMs constitute our focal quantity of interest
(i.e., the estimand), and we evaluate the accuracy of .σ 2

E|x (λ1), .σ 2
E|x (λ2), and

.σ 2
E|x (λ3) as estimators of the estimand under varying conditions of item type

(dichotomous versus polytomous), test length, and sample sizes.
To illustrate, Fig. 11.1 shows the population values for the true CSEM and the

three proposed estimators of CSEMs, for a hypothetical test of 30 dichotomously
scored items under the 2-PLM. The vertical bars show the boundaries for the
sum score within which 95% of the population falls. The horizontal dashed line
is the SEM. The CSEMs were obtained as follows. For convenience, we assume
θ~N(0, 1). First, we find the θs that satisfy the equality .

∑
j Pj1 (θ) = x (x = 1,

. . . , J − 1). Notice that there is no solution for x = 0 and x = J; therefore we
arbitrarily chose θ = − 3 and θ = 3 for these x-values, respectively. Then, given θ

we computed .σ 2
X using the compound binomial (Eq. 11.15). The result is the sum-

score variance given the true score, and its square root is the population value of
the CSEM, which will be denoted σE � x. The population values for our estimators
.σ 2

E|x (λl) were obtained in a very large sample (i.e., n = 100, 000). In particular, the
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Fig. 11.1 True CEMS (blank dots) and population values for the estimators .σ 2
E|x (λ1) (black dots),

.σ 2
E|x (λ2) (triangles) and .σ 2

E|x (λ3) (diamonds), for a 30-item test (dichotomous items). Vertical
bars indicate the limits within which 95% of the true scores in the population fall. Population
values for the estimators were obtained in a simulated sample of 100,000 observations under the
postulated model
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black dots represent .σ 2
E|x (λ1), the triangles .σ 2

E|x (λ2) , and the diamonds .σ 2
E|x (λ3).

Fig. 11.1 shows that .σ 2
E|x (λ1) is least biased, .σ 2

E|x (λ2) has a small negative bias,

and .σ 2
E|x (λ3) has a small positive bias, but in general the differences were small, and

the estimators are fairly consistent across ranges where most of the observations fall.
Considerable bias was only found for x = 0 and x = J, which was to be expected
because the item variances within subgroups defined by x = 0 or x = J are zero by
definition, and thus .σ 2

E|0 (λl) = σ 2
E|J (λl) = 0. As a practical solution, we may use

the CSEMs from neighboring sum-score levels to come up with a better estimate.
However, perfect scores are rare if the overall difficulty of the test fits well with
the target population of testees. Moreover, the extreme scores are generally not the
cutoff points for important individual decisions. Hence, the bias at the endpoints
most likely has little practical implications.

11.3.1 Study Design

Independent factors in the design were (a) test length, using J= 10, 20, or 30
items for dichotomous items and J = 5, 10, 15 for polytomous items each with
four ordered categories; (b) size of the norming sample (N = 100, 500, or 1000);
(c) group-level reliability (moderate or strong); and (d) minsize for sum score
groups. Regarding the choices of J, we may add that because polytomous items are
informative across a wider range of the trait scale, polytomous item tests usually
have fewer items than dichotomous items tests. The factors were fully crossed
for the dichotomous items (i.e., 36 conditions in total) and for the polytomous
items (i.e., 36 conditions) separately. Data sets were generated using parameters
that were obtained as follows. For both dichotomous and polytomous items, the
a-parameters were either drawn from the uniform distribution on the interval [0.5,
1.5] (“moderate reliability”) or [1, 3] (“high reliability”). Location parameters (b)
for the dichotomous items were randomly drawn from the uniform interval [−1, 1].
For polytomous items, the three threshold parameters for each item were randomly
sampled from [−1.5, −0.75], [−0.50, 0.50], and [0.75, 1.5], respectively. Then for
this set of parameters, we generated 500 data sets under either the 2-PLM or the
GRM. Then for each data set, we computed the CSEMs .σ̂E|x (λl), l = 1, . . , 3, for
two different minsizes for the score groups g. These minsizes were tailored to the
norming sample size (N). In particular, we used as minsizes 5 or 10 for N = 100, 10
and 15 for N = 500, and 15 and 30 for N = 1000.

Accuracy was operationalized using the following two outcome measures. Let
Xmax = J × M be the maximum possible sum score. First, we computed the
(weighted) bias as

bias
[
σ̂E|x (λl)

] =
Xmax∑

x=0

[
σ̂E|x (λl) − σE|x

]
• g(x), (11.16)
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and weighted squared bias as

sq − bias
[
σ̂E|x (λl)

] =
Xmax∑

x=0

[
σ̂E|x (λl) − σE|x

]2 • g(x). (11.17)

The term .σ̂E|x (λl) in the formulae above is the mean CSEM across the 500
data sets, and g(x) is the frequency distribution of total score x in the population.
Distribution g(x) was obtained by taking the weighted average of the conditional
sum-score distributions at 1000 Gaussian quadrature points on the interval −5 to 5.
The values of σE � x (x = {0, . . . ,Xmax}) were also obtained from the conditional
sum-score distributions. In particular, we grouped the true scores (i.e., τ = E(X| θ ) )
into (Xmax + 1) bins; that is, we have one bin for each level of x, such that within the
bin associated with x, we have |E(θ ) − x| < 0.5. The population-level conditional
sum-score variance .σ 2

E|x is the variance of the weighted mean of the conditional
sum-score distributions within the bin.

Second, we defined the (weighted) precision as

precision
[
σ̂E|x (λl)

] =
√√√√

Xmax∑

x=0

S2
[
σ̂E|x (λl)

] • g(x), (11.18)

where .S2
[
σ̂E|x (λl)

]
is the variance of the estimates across the 500 data sets. The

complete design was replicated 100 times, yielding information about bias and
precision for 100 different random tests.

11.3.2 Results

Table 11.1 gives the results for bias for dichotomous items. The reported values
are the means across 100 replications of the design; that is, all values are based
on 50,000 simulated data sets in total. Statistic .σ̂E|x (λ2) showed considerable bias.
Statistic .σ̂E|x (λl) performed best for moderate discrimination, whereas .σ̂E|x (λ3)

for high discrimination, but differences were small. Statistic .σ̂E|x (λ1) has the
tendency to underestimate the CSEMs, whereas .σ̂E|x (λ3) slightly overestimated
the CSEM. This trend was found for all levels of N. Table 11.2 gives the bias
for polytomous items. Trends are similar as those for dichotomous items. Both
.σ̂E|x (λ1) and .σ̂E|x (λ3) seem acceptable candidate estimators with respect to bias.

Tables 11.3 and 11.4 show the results for precision for dichotomous and
polytomous items, respectively. The three methods have comparable precision. For
polytomous items we see a substantial differences in precision between different
levels of reliability. In general, the methods seem to have acceptable results when
the norming samples have 500 or more observations and perform well if the size of
the norming sample is 1000 or higher.
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Table 11.1 Results for bias between true CSEMs and estimated CSEMS, for dichotomous items.
Results averaged across sample sizes for the norming sample

Minsize Item discrimination/reliability
Moderate High

.ρXX′ .σ̂E|x (λ1) .σ̂E|x (λ2) .σ̂E|x (λ3) .ρXX′ .σ̂E|x (λ1) .σ̂E|x (λ2) .σ̂E|x (λ3)

J = 10
5 0.65 −0.028 −0.173 0.041 0.84 −0.087 −0.220 −0.032
10 0.65 −0.016 −0.151 0.051 0.84 −0.069 −0.188 −0.016

J = 20
10 0.79 −0.004 −0.247 0.045 0.91 −0.035 −0.247 0.004
15 0.79 0.002 −0.199 0.048 0.91 −0.016 −0.192 0.020

J = 30
15 0.85 0.001 −0.337 0.040 0.94 −0.016 −0.314 0.016
30 0.85 0.007 −0.260 0.043 0.94 0.001 −0.222 0.029

Table 11.2 Results for bias between true CSEMs and estimated CSEMS, for polytomous items.
Results averaged across sample sizes

Minsize Item discrimination/reliability
Moderate High

.ρXX′ .σ̂E|x (λ3) .σ̂E|x (λ2) .σ̂E|x (λ3) .ρXX′ .σ̂E|x (λ1) .σ̂E|x (λ2) .σ̂E|x (λ3)

J = 5
5 0.55 −0.152 −0.526 0.086 0.81 −0.159 −0.443 0.008

10 0.55 −0.130 −0.469 0.100 0.81 −0.132 −0.389 0.026
J = 10

10 0.72 −0.077 −0.549 0.087 0.89 −0.090 −0.447 0.025
15 0.71 −0.061 −0.451 0.097 0.89 −0.068 −0.357 0.036

J = 15
15 0.79 −0.056 −0.680 0.077 0.93 −0.066 −0.536 0.026
30 0.79 −0.042 −0.511 0.082 0.93 −0.043 −0.388 0.036

11.4 Using CSEMs in Practice: Individual Change
Assessment

Social and emotional well-being of students has gained widespread interest next to
educational achievements in the cognitive domain. Good mental health is important
for educational progress (e.g., Payton et al., 2008; Wang et al., 1997). Schools may
regularly assess their pupil’s well-being using standardized questionnaires, which
can be filled out by the pupil’s parents/caretakers, or by the pupils themselves.
If there are indications that the students are not functioning or feeling well,
targeted interventions can be offered that provide social-emotional support and
empowerment. The effects of interventions at the individual level can be evaluated
using the difference score, which is simply the score after treatment (Xpost) minus the
pre-treatment score (Xpre). However, because the scores have measurement errors,
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Table 11.3 Precision of estimated CSEMs, for dichotomous items. Results averaged across
sample sizes for the norming sample

Minsize Item discrimination/reliability
Moderate High

.ρXX′ .σ̂E|x (λ3) .σ̂E|x (λ2) .σ̂E|x (λ3) .ρXX′ .σ̂E|x (λ1) .σ̂E|x (λ2) .σ̂E|x (λ3)

J = 10, N = 100
5 0.65 0.089 0.088 0.095 0.84 0.127 0.122 0.133
10 0.65 0.084 0.077 0.091 0.84 0.143 0.128 0.149

J = 20, N = 100
10 0.79 0.095 0.111 0.099 0.91 0.143 0.132 0.146
15 0.79 0.089 0.086 0.094 0.91 0.134 0.114 0.138

J = 30, N = 100
15 0.85 0.102 0.126 0.105 0.94 0.143 0.131 0.145
30 0.85 0.098 0.093 0.103 0.94 0.147 0.126 0.150

J = 10, N = 500
5 0.65 0.069 0.065 0.072 0.84 0.029 0.032 0.031
10 0.65 0.048 0.045 0.050 0.84 0.055 0.053 0.057

J = 20, N = 500
10 0.79 0.042 0.042 0.043 0.91 0.065 0.065 0.067
15 0.79 0.051 0.050 0.054 0.91 0.090 0.085 0.092

J = 30, N = 500
15 0.85 0.050 0.056 0.051 0.94 0.083 0.085 0.084
30 0.85 0.058 0.061 0.060 0.94 0.086 0.079 0.087

we first have to ascertain whether the difference is reliable before drawing strong
conclusions. One speaks of reliable change if the difference score is significantly
larger than the differences expected by chance alone (Jacobson & Truax, 1991).

A popular method for testing the significance of change is the reliable change
index (RCI; Jacobson & Truax, 1991). Let d = Xpost − Xpre denote the difference
score. The RCI is defined as

RCI = d
√
2 • σ̂ 2

E

, (11.19)

where .σ̂ 2
E is the error variance. Absolute values of the RCI of 1.96 or higher point

at reliable change. In fact what we have is a two-tailed test at a 5% significance
level (Sijtsma & Emons, 2011). There is no consensus in the literature as to which
error term should be used in the RCI (see, for example, Maassen, 2004), but our
experience is that most researchers use the (unconditional) SEM.

The traditional RCI approach ignores the differences in precision at different
attribute levels, which causes bias in all the RCI tests. This bias works in both
ways. In the middle ranges of the score scale, where the SEMs tend to underestimate
the precision (Fig. 11.1), the traditional RCI becomes liberal. This means that the
chance that ineffective interventions are erroneously conceived as very successful
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Table 11.4 Precision of estimated CSEMs, for polytomous items. Results averaged across
sample sizes for the norming sample

Minsize Item discrimination/reliability
Moderate High

.ρXX′ .σ̂E|x (λ3) .σ̂E|x (λ2) .σ̂E|x (λ3) .ρXX′ .σ̂E|x (λ1) .σ̂E|x (λ2) .σ̂E|x (λ3)

J = 10, N = 100
Small 0.65 0.230 0.219 0.260 0.84 0.216 0.189 0.242
Medium 0.65 0.201 0.177 0.232 0.84 0.174 0.151 0.199

J = 20, N = 100
Small 0.79 0.246 0.242 0.263 0.91

0.185

0.240 0.215 0.256
Medium 0.79 0.196 0.180 0.215 0.91 0.193 0.172 0.210

J = 30, N = 100
Small 0.85 0.255 0.251 0.268 0.94 0.257 0.227 0.269
Medium 0.85 0.203 0.185 0.219 0.94 0.208 0.222

J = 10, N = 500
Small 0.65 0.101 0.093 0.112 0.84 0.097 0.087 0.108
Medium 0.65 0.110 0.097 0.125 0.84 0.108 0.095 0.120

J = 20, N = 500
Small 0.79 0.129 0.126 0.137 0.91 0.134 0.126 0.142
Medium 0.79 0.124 0.119 0.133 0.91 0.125 0.116 0.133

J = 30, N = 500
Small 0.85 0.142 0.147 0.148 0.94 0.151 0.145 0.156
Medium 0.85 0.125 0.123 0.133 0.94 0.133 0.123 0.140

is higher than the chosen nominal level α. In the extremes of the X-score scale,
where the SEMs tend to overestimate precision (Fig. 11.1), the RCI test becomes
conservative. The result is a reduction in the power, thus a higher risk that potentially
effective interventions are overlooked. It is for this reason that IRT methods were
considered superior to the traditional RCI approach because they make use of
the local accuracy (Reise & Haviland, 2005). However, such an approach is also
possible with CSEMs discussed in this chapter. In fact, if there is one application
where the use of CSEMs may have added value, it would be change assessment
using the RCI.

Following Jabrayilov et al. (2016), we can extend the RCI using the CSEMs,
denoted by cRCI, as follows:

cRCI = xpost − xpre√
σ̂ 2

E|xpre (λl) + σ̂ 2
E|xpost (λl)

. (11.20)

The generalization of the RCI as presented in Eq. (11.20) is straightforward.
Based on the simulations above, λ1 or λ3 would be feasible choices.

The question now is how to test the cRCI for significance? A simple approach
would be to assume that the cRCI is also a standard normal deviate (Z-score).
However, one must take into account that the CSEMs in Eq. (11.20) used in cRCI are
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based on the fallible observed pretest and posttest scores. This means that not only
the numerator in Eq. (11.20) but also the denominator would vary if we would
repeatedly pre-posttest the individual under identical conditions. As a consequence,
the standard error of the cRCI (denominator in Eq. 11.19) is likely to be greater than
one (i.e., the error for a normal deviate). If you were to apply the normal distribution
anyway, the test for individual change becomes somewhat liberal; that is, the chance
of a Type I error exceeds the nominal level α. Ideally, we would like to have the exact
sampling distribution, but for the cRCI, its derivation is not self-evident and beyond
the scope of this chapter. Therefore, we take the practical approach at this stage, and
we use the Z-distribution as a practical approximation for testing significance of the
cRCI (see also Jabrayilov et al., 2016). The accuracy of this practical approach, and
how it improves the traditional RCI, is addressed in a simulation study below.

11.4.1 Comparing RCI and cRCI: A Simulation Study

Because it is common to assess non-cognitive attributes using Likert items, we only
simulated data for polytomous items. In particular, we considered tests of 5, 10,
or 15 items. Data were generated as follows. For each level of J, we obtained the
item parameters as follows. First, we drew the mean threshold .b from the uniform
distribution on the interval [−0.25, 0.75]. Then, second, the individual thresholds
were set at .b–0.75, .b − 0.25, .b + 0.25, and .b + 0.75, respectively. The result
are tests that are most informative for above-average individuals. This is a typical
pattern for non-cognitive (clinical) assessments (e.g., Jabrayilov et al., 2016). Based
on the item parameters, we simulated a norming sample of 1000 respondents using
randomly drawn θ -values from the standard normal distribution. This sample was
used to compute the CSEMs. We chose a relatively large norming sample because
for tests that are used on a large scale for important decisions, one may expect
(or even require) that the psychometric properties are based on sufficiently large
representative samples.

Next we simulated 1000 pairs of pretest and posttest scores at three dedicated
ability levels, that is θ = 0.5, 1.0, and 1.5 (i.e., 3000 score pairs in total). For each
pair of pretest and posttest scores, we computed the RCI and cRCIs using either
.σ̂ 2

E|xpre (λ1) or .σ̂ 2
E|xpre (λ3). These CSEMs were chosen because they performed

adequately in the simulations above. The proportion of absolute RCIs or cRCIs that
exceed 1.645 constitutes the empirical Type I error rate at a 10% significance level.
Ideally, the empirical Type I error rates are close to their nominal level of 0.10.

Table 11.5 shows that for θ = 0 and 0.5, the traditional RCI yields empirical Type
I errors rates that are substantially larger than the nominal level of 0.10. This result
is to be expected given that in the middle of the ability scale, the cRCI exceeds
RCI (see Fig. 11.1). This trend was strongest for high reliability. For θ = 1 the
RCI method performed satisfactory, for both moderate and high reliability. Statistic
.σ̂ 2

E|xpre (λ1) shows a similar pattern, but the deviations from the nominal level are
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Table 11.5 Results for change assessment (results across 100 replications)

J Test-score reliability
Moderate High

.ρXX′ RCI cRCI λ1 cRCI λ3 .ρXX′ RCI cRCI λ1 cRCI λ3

θ = 0
5 0.740 0.163 0.148 0.120 0.830 0.187 0.142 0.106
10 0.838 0.131 0.122 0.116 0.895 0.149 0.124 0.096
15 0.896 0.154 0.114 0.104 0.936 0.161 0.114 0.100

θ = 0.5
5 0.740 0.164 0.150 0.122 0.830 0.181 0.145 0.108
10 0.838 0.128 0.124 0.115 0.895 0.149 0.126 0.099
15 0.896 0.154 0.115 0.104 0.936 0.160 0.115 0.102

θ = 1.0
5 0.740 0.125 0.153 0.117 0.830 0.122 0.151 0.106
10 0.838 0.093 0.139 0.112 0.895 0.103 0.131 0.116
15 0.896 0.116 0.119 0.107 0.936 0.111 0.118 0.107

Note: J = test length

smaller. Statistic .σ̂ 2
E|xpre (λ3) performed adequately at all θ -levels and all levels of

test length J.

11.5 Discussion

This chapter was very much inspired by the presidential address that Sijtsma
gave to the Psychometric Society in 2012 (Sijtsma, 2012). In his address, Sijtsma
emphasized the importance of disseminating psychometric knowledge and iden-
tified several research topics on the basis of: “Ask what psychometrics can do
for psychology”. One of those topics was individual measurement and individual
decision-making, highly relevant for education and clinical psychology. High-stakes
assessment decisions can have far-reaching consequences for the individual. It is
therefore essential that test users understand the uncertainties with which they make
individual decisions. Group-level measures such as the test score reliability and the
SEM are helpful to select tests that are used for research purposes, but fall short
when tests are selected for use at the individual level. In this chapter, we focused on
CSEMS based on lower-bound reliabilities that may take this role. These methods
are straightforward to implement, mild in their assumptions, and the simulations
suggest that they work well for realistic sample sizes and test lengths.

Nevertheless, there are some important issues to keep in mind. First, it is
important to emphasize that the CSEMs still are an average of the precision, but now
for a restricted group related to the trait level. However, because we hypothesize that
inter-individual differences in measurement precision are smaller for persons with
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nearby trait levels than across a wide range of the trait levels, we also hypothesize
that the CSEMs provide a better predictor of the local precision than the SEM.
Because we cannot truly retest persons, this view remains a working hypothesis.
Note that this issue also applies to IRT-based CSEMs. IRT models are essentially
cross-sectional models, and the IRT-based CSEMs are the averages in precision
across different cross sections defined by θ . This conception of CSEMs represents
the random sampling view on IRT models (Holland, 1990). When disaggregating
group-level CSEMs to individuals, one is switching to a stochastic subject view,
which involves additional (untestable) assumptions regarding local homogeneity
(Ellis & Van den Wollenberg, 1993; Holland, 1990). The random sampling view,
however, does not exclude deterministic response processes at the individual level.
Such deterministic responses would imply perfect reliability at the individual level
(see Lumsden, 1978). We contend that assuming some degree of stochasticity within
the individual is a defensible position, which then partly explains variability at
the group level. From that point of view, the CSEMs can be conceived as an
upper bound for individual measurement precision. Admittedly, it is a conservative
approach, but it prevents test users from taking the observed scores too literally.

Second, as shown in the second series of simulations, using the CSEMs
may improve the RCI methodology. However, caution must be exercised when
interpreting the RCI. A non-significant RCI does not imply that the person did not
change, but only that the evidence of change is not strong enough to draw strong
conclusions. Furthermore, determining whether the change is reliable is usually just
the first step in a clinical analysis. An equally important question is whether the
change is meaningful and clinically relevant (e.g., Jacobson & Truax, 1991), which
requires normative information (e.g., Gu et al., 2021). Depending on whether or not
the observed change can be regarded as reliable, the clinician can weigh the clinical
significance of the change in different ways.

Third, the reported CSEMs are sample estimates and thus have sampling errors
themselves. Given the importance CSEMs may have for future testees over a longer
period of time, one cannot simply take them at face value. Their use in only justified
if it has been demonstrated that the CEMS have been estimated with sufficient
precision given their applications envisaged. As an aside, we may note that this
requirement applies to all psychometric quantities obtained in samples (Oosterwijk
et al., 2019). To accomplish this goal, we need the sampling distributions of the
quantities at hand. Having access to the exact sampling distribution would be
ideal, but often an asymptotic approximation works well too. Deriving sampling
distributions is a subject for further research. The marginal modeling approach
proposed by Kuijpers et al. (2013) may provide elegant solutions.

One may also use the nonparametric bootstrap to gauge standard errors in the
estimated CSEMs. The procedure is straightforward. One creates K (say 500)
replicates of the data set by drawing observations from the sample with replacement.
For each replicated data set, one computes the CSEMs. The variance of the
CSEMs across the replicated data sets can serve as an indicator of the precision.
In addition, one may derive general guidelines for the sample size requirements
that test constructors must adhere to. See, for example, the review system of test
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quality of the Dutch committee of testing for a similar approach to other important
psychometric quantities (COTAN; Evers et al., 2010). Our simulations suggest that
samples of 500 or larger and minsizes of 10 persons per score group may already
give acceptable results. Future research may focus on more fine-grained guidelines
that test developers can use.

A.1 Appendix

A.1.1 Proof of Eq. 11.8

We start from the well-known definition of the standard error of measurement; that
is,

S2
E (λ3) = (1 − α) • S2

X, (11.A1)

where α is coefficient alpha and .S2
X the variance of the total scores across persons.

Because .α ≡ ICC (3, J ) =
[
1 − MSN×J

MSs

]
(Eq. 11.7), substituting the definition of

ICC(3, J) for α gives

σ 2
E (λ3) = MSN×J

MSs

• S2
X. (11.A2)

Furthermore, we have .MSs = J
∑

vX
2
v−nJX

2

n−1 (e.g., Brennan, 2001, p. 41), where

.X
2
v is the square average test score for an arbitrary person v. It can be shown – after

some tedious algebra – thatMSs is equivalent with .

∑
v X2+−nX

2
+

J (n−1) = S2
X

J
, showing that

MSs can be conceived as the average variance of subjects across items. Substituting

.
S2

X

J
for MSs in Eq. (11.A2) gives .

MSN×J

S2
X
J

• S2
X = JMSN×J , and that completes the

proof.
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Chapter 12
Composition Algorithms for Conditional
Distributions

Maarten Marsman, Timo B. Bechger, and Gunter K. J. Maris

Abstract This chapter is about two recently published algorithms that can be
used to sample from conditional distributions. We show how the efficiency of the
algorithms can be improved when a sample is required from many conditional dis-
tributions. Using real-data examples from educational measurement, we show how
the algorithms can be used to sample from intractable full-conditional distributions
of the person and item parameters in an application of the Gibbs sampler.

12.1 Introduction

Bayesian statistics often requires sampling from conditional, posterior distributions.
For example, to estimate Bayesian models using Gibbs sampling (Geman & Geman
1984), we have to repeatedly sample from the full-conditional distributions of model
parameters, and to produce plausible values (Mislevy 1991; Mislevy et al. 1993)
for secondary analyses of educational surveys, we have to sample from pupils’
conditional, posterior ability distributions. This chapter is about two algorithms
that were designed for this problem: A rejection algorithm that was mentioned by
Rubin (1984) and was applied in the European Survey on Language Competences
(ESLC; Maris 2012) and the Single-Variable Exchange (SVE) algorithm developed
by Murray et al. (2012).

Both algorithms are based on the observation that a sample from a conditional
distribution can be obtained from samples drawn from the joint distribution. The
practical significance of this observation lies in the fact that sampling from the joint
distribution is often easier because it can be done in two ways. Specifically, the joint
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density of X and Y can be factored in two ways:

.f (x | y)f (y) = f (y | x)f (x),

and to obtain a sample from the joint distribution, we can use the method of
composition (Tanner 1993) and sample from .f (y) and then from .f (x | y) or
sample from .f (x) and then from .f (y | x). Thus, if it is difficult to sample from
.f (x | y), we can try to sample from .f (y | x), or vice versa. For instance, if we
encounter a posterior distribution that is highly intractable, we can sample from it
by generating data. Thus, the algorithms are extremely useful when it is difficult to
sample from the posterior but easy to generate data as is the case for Item Response
Theory (IRT) models. As both algorithms use composition to sample from the joint
distribution, we refer to them as composition algorithms. The algorithms differ in
the way they select observations from the joint distribution to obtain a sample from
the conditional distribution of interest.

Marsman et al. (2017) recently showed that the two composition algorithms
could be made more efficient when we need not one but many samples from similar
posterior distributions. This occurs, for instance, in educational surveys, where we
have to sample from the posterior distribution of each of N individuals to produce
plausible values. In this chapter, we use the composition algorithms to sample from
conditional distributions of the following form:

.fr(θ | xr ) ∝ f (xr | θ)fr (θ) (12.1)

where .� is a random effect that varies across replications .r = 1, . . . , N . We follow
Marsman et al. (2017) and demonstrate how the composition algorithms can be
tailored for the situation where N is very large. Over the last decade, large values
of N have become increasingly more common as more and more data are being
produced. This implies that there is a growing need to analyze large data sets and our
algorithms are specifically designed for this purpose, mainly because their efficiency
increases with N . The algorithms are not developed for situations where N is small.

The algorithms are useful in many contexts. Marsman et al. (2017) discussed
their use for models in the exponential family and illustrated them using the Rasch
(1960) model. The main goal of this chapter is to illustrate how the algorithms can
be used in educational measurement applications where .X is a vector of discrete
item responses,1 .� is a latent ability, .P(X | θ) is an IRT model with fixed item
parameters, and we use the composition algorithms to sample from the posterior
distribution of ability for each of N persons, either for its one right or as part of
a Gibbs sampler. Compared to alternative approaches, the main advantage of the
composition algorithms is that they become more efficient when the number of
persons increases, as explained in Sect. 12.3.

1 The responses are allowed to be continuous in the SVE algorithm, and we use this to sample from
posteriors of the form .f (θ | x) ∝ f (x | θ)f (θ) in the examples section.
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The composition algorithms only require that we can generate data which is
trivial for common IRT models. A nice feature is that we only need to know
.f (θ) and .P(X | θ) up to a constant. This opens the door to new applications
which would be difficult to handle with existing algorithms. We will illustrate this
with an example involving a random-effects gamma model for response times. The
normalizing constant (i.e., the gamma function) is not available in closed form and
sometimes difficult to approximate.

To set the stage, we will first introduce the two composition algorithms as they
stand. After having introduced the composition algorithms, we explain how they
can be made more efficient and illustrate their use with simulated and real-data
applications. The chapter ends with a discussion.

12.2 Sampling from a Conditional Distribution

12.2.1 The Rejection Algorithm

The rejection algorithm (see Algorithm 1) works as follows. To sample from a
conditional distribution .f (θ | x), we repeatedly sample .{θ∗, x∗} from the joint
distribution of .θ and .x until we produce a sample for which .x∗ = x. This generates
an i.i.d. sample from the conditional distribution .f (θ | x). The algorithm requires
two things: First, it must be possible to sample from .f (θ) and .P(x | θ); that is,
we should be able to generate data under the model. Second, the random variable .X
must be discrete with a finite range so that there is a non-zero probability to generate
a value .x∗ equal to the observed value .x.

Algorithm 1 A rejection algorithm for .f (θ | x)
1: repeat
2: Generate .θ∗ ∼ f (θ)

3: Generate .x∗ ∼ P (x | θ∗)
4: until .x∗ = x
5: Set .θ = θ∗

It will be clear that the number of trials needed increases with the number of
values .X can assume so that the rejection algorithm is only useful when this number
is small. In the special case when .P(x | θ) belongs to the exponential family, the
posterior depends on the data only via the sufficient statistic .t (x) (Dawid 1979).
Since .X is a discrete random variable, .t (X) is also a discrete random variable, and
this means that we may replace .x∗ = x with .t (x∗) = t (x) in line 4 of Algorithm 1.
This version of the rejection algorithm was developed for the ESLC, and it is the
focus of the present chapter.

Note that the more realizations of .X lead to the same value on the sufficient statis-
tic, the more efficient the algorithm becomes. The ESLC shows that the algorithm
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is efficient enough to be used in large-scale educational surveys using the Partial
Credit Model (PCM; Masters 1982). The same holds for other exponential family
IRT models, such as the Rasch model (Rasch 1960), the One-Parameter Logistic
Model (OPLM; Verhelst & Glas, 1995), and special cases of theGeneralized Partial
Credit Model (GPCM; Muraki 1992) and Nominal Response Model (NRM; Bock
1972) where the category parameters are integer.

12.2.2 The Single-Variable Exchange Algorithm

The rejection algorithm rejects all samples for which .x∗ does not exactly match .x
and thus requires the random variable .X to be discrete, preferably assuming a small
number of values. To allow .X to be continuous, we adapt the rejection step such
that we accept or reject samples with a probability other than 0 or 1. That is, we
consider the generated .θ∗ as a sample from the proposal distribution .f (θ | x∗)
and accept this value as a realization from the target distribution .f (θ | x) with a
probability .f (θ∗ | x)/(M f (θ∗ | x∗)), where .M > 0 is an appropriate bound on
.f (θ∗ | x)/f (θ∗ | x∗) for all possible values of .x and .x∗. In general, however, it is
difficult to find M , and we therefore consider a Metropolis algorithm. That is, we
choose the probability to accept such that the accepted values are a sample from a
Markov chain whose stationary distribution is .f (θ | x). The price to pay is that we
now produce a dependent and identically distributed (d.i.d.) sample.

To ensure that the Markov chain generated by the Metropolis algorithm has the
desired stationary distribution, the following detailed balance condition must hold
(Tierney 1994):

.π(θ ′ → θ∗)
P (x | θ ′)f (θ ′)

P (x)
P (x∗ | θ∗)f (θ∗)

P (x∗)

= π(θ∗ → θ ′)P (x | θ∗)f (θ∗)
P (x)

P (x∗ | θ ′)f (θ ′)
P (x∗)

,

where .θ ′ is the current parameter setting and .π(θ ′ → θ∗) the probability to make a
transition of .θ ′ to .θ∗. It is easily checked that the detailed balance condition holds
when .π(θ ′ → θ∗) = min{1, ω(θ ′ → θ∗)}, with

.ω(θ ′ → θ∗) = P(x | θ∗)f (θ∗)P (x∗ | θ ′)f (θ ′)
P (x | θ ′)f (θ ′)P (x∗ | θ∗)f (θ∗)

= P(x | θ∗)P (x∗ | θ ′)
P (x | θ ′)P (x∗ | θ∗)

,

(12.2)

and the probability to accept .θ∗ depends on the relative likelihood to observe .x∗ and
.x given the parameter settings .θ ′ or .θ∗, respectively. Using this probability in the
Metropolis algorithm, we arrive at the SVE; see Algorithm 2.
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Algorithm 2 The Single-Variable Exchange algorithm
1: Draw .θ∗ ∼ f (θ)

2: Draw .x∗ ∼ P (x | θ∗)
3: Draw .u ∼ U(0, 1)
4: if (.u < π(θ ′ → θ∗)) then
5: .θ ′ = θ∗
6: end if

To use the SVE algorithm, we must be able to compute .ω(θ ′ → θ∗), and the
SVE algorithm was designed to make this task as simple as possible. To see this, we
write

.P(x | θ) = h(x; θ)

Z(θ)
,

where .Z(θ) = ∑
x h(x; θ) is a normalizing constant, or partition function, which is

often difficult or even impossible to compute.2 Since .ω(θ ′ → θ∗) in (12.2) is the
product of likelihood ratios, it follows that

.ω(θ ′ → θ∗) =
h(x; θ∗)
Z(θ∗)

h(x∗; θ ′)
Z(θ ′)

h(x; θ ′)
Z(θ ′)

h(x∗; θ∗)
Z(θ∗)

= h(x; θ∗)h(x∗; θ ′)
h(x; θ ′)h(x∗; θ∗)

.

Thus, there is no need to compute .Z(θ) (or .P(x)).
As an illustration, Table 12.1 gives .ln(ω(θ ′ → θ∗)) for a selection of IRTmodels.

Note that for many of the models in Table 12.1, .ln(ω(θ ′ → θ∗)) is of the form:

.(θ∗ − θ ′)(t (x) − t (x∗)).

That is, the acceptance probability depends on the product of the difference in
parameter settings and the difference between the statistics of the generated and
observed data. It also shows that, as the range of .t (X) increases, .ω(θ ′ → θ∗) tends
to become lower, on average.

12.2.3 Limitations

In educational measurement, we often have to sample from the posterior ability
distribution of each of N persons, where N is large. In the Programme for
International Student Assessment, a large-scale educational survey, plausible values

2 When both .Z(θ) and .P (x) are difficult or even impossible to compute, the posterior distribution
is called doubly intractable. Murray et al. (2012) specifically developed the SVE algorithm for
these doubly intractable distributions.
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Table 12.1 .ln(ω(θ ′ → θ∗)) for a selection of IRT models

IRT model .ln(ω(θ ′ → θ∗)) .t ()

Rasch .(θ∗ − θ ′)(t (x) − t (x∗) .
∑

j xj

2PL .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j αj xj

3PL .
∑

j (xj − x∗
j ) ln

(
cj +exp(αj (θ∗−δj ))

cj +exp(αj (θ ′−δj ))

)

1PNO .
∑

j (xj − x∗
j ) ln

(
�(θ∗−bj )(1−�(θ ′−bj ))

�(θ ′−bj )(1−�(θ∗−bj ))

)

2PNO .
∑

j (xj − x∗
j ) ln

(
�(aj θ∗−bj )(1−�(aj θ ′−bj ))

�(aj θ ′−bj )(1−�(aj θ∗−bj ))

)

3PNO .
∑

j (xj − x∗
j )

[
ln

(
cj +(1−cj )�(aj θ∗−bj )

cj +(1−cj )�(aj θ ′−bj )

)

.+ ln
(

1−�(aj θ ′−bj )

1−�(aj θ∗−bj )

)]

PCM .(θ∗ − θ ′)(t (x) − t (x∗) .
∑

j

∑
j xjk

GPCM .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j αj

∑
j xjk

NRM .(θ∗ − θ ′)(t (x, α) − t (x∗, α)) .
∑

j

∑
j αjkxjk

MD2PL .(θ∗ − θ ′)T (t(x, α) − t(x∗ , α)) .
∑

j xjαj

The abbreviations 2PL and 3PL stand for the Two- and Three-Parameter Logistic models; 1PNO,
2PNO, and 3PNO stand for the One-, Two-, and Three-Parameter Normal Ogive models; and
MD2PL stands for the Multidimensional Two-Parameter Logistic model. We used .�(x) as
shorthand for .

∫ x

−∞
1√
2π

exp(−y2/2)dy

have to be produced for more than half a million pupils. And below, we have to
sample from the posterior distribution of ability when we analyze a hierarchical IRT
model for the responses from over .150, 000 pupils on a Dutch educational test. To
sample from N posterior distributions, the composition algorithms would require
about N times the amount of work needed to sample from a single posterior; see
below. Thus, the algorithms do not become more efficient when N increases and
are inefficient when N is large. The algorithms are also inefficient for applications
with many items. Suppose the number of possible response patterns (or sufficient
statistics) increases. In that case, the rejection algorithmwill need increasingly more
trials, and the SVE algorithmwill tend to have lower acceptance probabilities so that
the correlation between successive draws will tend to be higher.

We illustrate this with a small simulation study, the results of which are shown
in Fig. 12.1. We simulate data with N persons answering to each of J dichotomous
items, with N varying between 100 and .10,000, and .J ∈ {10, 20, 30}. We assume
a standard normal distribution for ability .�. For the rejection algorithm, the IRT
model is the Rasch model. For the SVE algorithm, we use the Two-Parameter
Logistic (2PL) model. The item parameters are fixed, with difficulty parameters
sampled from a standard normal distribution and discrimination parameters sampled
uniformly between 1 and 3. For each combination of N and J , we generated 100
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Fig. 12.1 Simulation results. (a) Number of trials for rejection. (b) Acceptance probability for
SVE

data sets. With the item parameters fixed, our goal is to sample for each of the N

persons an ability from the posterior distribution given his or her observed response
pattern.

Results for the rejection algorithm are in Fig. 12.1a, which shows the average
number of trials that are required to sample from each of the N posteriors as a
function of N and J . It is clear that the average number of trials required quickly
stabilizes around the number of possible realizations of .t (X), which is .J + 1 in
this simulation.3 Thus, we need approximately .(J + 1) × N iterations to produce a
value from each of the N posteriors, and this number grows linear in both N and J .
Results for the SVE algorithm are in Fig. 12.1b which shows the average proportion
of values accepted in the 100th iteration of the algorithm as a function of N and J .
The acceptance probabilities are seen to be low and decreasing with an increase of
the number of items. Thus, for both algorithms, it follows that as N and J grow, we
need more iterations to obtain a certain amount of independent replicates from each
of the N posteriors. We conclude that the algorithms, as they stand, are unsuited for
applications with large N (and J ).

3 The number of trials .W = w required to generate a realization .t (x) follows a geometric
distribution with parameter .P (t (x)), the (marginal) probability to generate .t (x) under the model.
From this, we see that .E(W | t (x)) equals .P (t (x))−1 and

.E(W) =
∑

t (x)

E(W | t (x))P (t (x)),

where the sum is taken over all possible realizations. It follows that .E(W) equals the number of
possible realizations of .t (X).
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12.3 Large-Scale Composition Sampling

The rejection and SVE algorithm sample from one posterior at the time. Conse-
quently, sampling fromN posteriors requiresN times the amount of work needed to
sample from a single posterior. If the algorithms are to be prepared for applications
with an increasing number of posteriors, the amount of work per posterior has to
decrease with N . To see how, observe that both algorithms generate samples that
are not used efficiently, i.e., samples that are either rejected or accepted with a
low probability. Thus, to improve the efficiency of the algorithms for increasing
N , we need to make more efficient use of the generated samples. To this aim, we
consider the SVE algorithm as an instance of what Tierney (1994, 1998) refers to as
a mixture of transition kernels. This way of looking at the SVE algorithm suggests
two approaches to improve its efficiency. One of these will be seen to apply to the
rejection algorithm as well.

12.3.1 A Mixture Representation of the SVE Algorithm

In every realization of the SVE algorithm, we sample one of the possible response
patterns (denoted .x∗), together with a random value for ability (denoted .θ∗). The
sampled ability value is a sample from the posterior distribution .f (θ | x∗) which is
the proposal distribution in the SVE algorithm. The probability that we use .f (θ | x∗)
as proposal distribution in the SVE algorithm is equal to .P(x∗), which follows from
the factorization:

.P(x∗ | θ∗)f (θ∗) = f (θ∗ | x∗)P (x∗).

That is, every simulated response pattern corresponds to a unique proposal distribu-
tion and, hence, to an unique transition kernel .f (θ∗ | θ , x∗). Each of these transition
kernels has the target posterior distribution as its invariant distribution; that is,

.f (θ∗ | x) =
∫

R

f (θ∗ | θ , x∗)f (θ | x) dθ.

As shown by Tierney (1994), the same is true for their mixture, that is,

.f (θ∗ | x) =
∫

R

∑

x∗
f (θ∗ | θ , x∗)P (x∗)f (θ | x) dθ,

where the sum is taken over all possible response patterns, and we now see that the
.P(x∗) are the mixture weights.

To make matters concrete, consider the posterior distribution for a Rasch model
with J items and a standard normal prior for ability .θ . Because the Rasch model
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Fig. 12.2 Empirical
distribution over transition
kernels for the SVE algorithm
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is an exponential family model with the test score .t (x) as sufficient statistic for
ability, we know that posteriors for the different ways to obtain the same test score
are all the same (Dawid 1979). That is, the mixture weights are nothing but the
distribution of test scores. Moreover, the posterior distributions .f (θ | t (x)) are
stochastically ordered by the test score, which makes the acceptance probability
lower, the larger the difference between the value of .t (x) conditioned on in the target
and .t (x∗) conditioned on in the proposal distribution; see Table 12.1. Figure 12.2
shows the mixture probabilities .P(t (x)) for a test of 20 items. We see in Fig. 12.2
that the SVE algorithm will tend to generate many transition kernels for which the
acceptance probability is not very high.

12.3.2 Oversampling

Since the SVE algorithm tends to frequently generate transition kernels for which
the acceptance probability is low, we consider changing the mixture probabilities,
in such a way that more probability mass is concentrated on transition kernels with
high acceptance probability.

Suppose that instead of simulating a single proposal value .θ∗, with a correspond-
ing single response pattern .x∗, we simulate a number of i.i.d. proposal values, each
with its own response pattern. From those, we choose the one for which the test
score is closest to the test score conditioned on in the target distribution, and hence
the acceptance rate tends to be the highest.

In Fig. 12.3, we illustrate the effectiveness of this oversampling approach in
sampling from a posterior .f (θ | t (x) = 9). Clearly, even with 5 samples, we already
improve the probability to generate directly from the target from close to 0.1 to close
to 0.4. With 20 samples, this probability even exceeds 0.8. Moreover, if the proposal
is not identical to the target, it is increasingly more likely to be close to the target as
the number of samples increases.
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Fig. 12.3 Probability distribution over transition kernels after modulating the mixture probabili-
ties. (a) 5 samples. (b) 20 samples

Since oversampling can easily be implemented in a parallel implementation,
this approach need not lead to a large increase in computer time. This makes the
approach computationally attractive.

12.3.3 Matching

Consider the situation where there are many proposal distributions (i.e., N large)
and hencemany target posterior distributions, each one independent from the others.
The SVE algorithm can once again be considered as a mixture of transition kernels
for the whole collection of N posteriors:

.f (θ∗ | x) =
∫

RN

∏

i

f (θ∗
i | θi , x∗

i )P (x∗)f (θ | x) dθ ,

where .x denotes the matrix .x = {x1, . . . , xN }. Observe that the transition kernel for
person i only depends on .x∗ via the i-th response pattern. Suppose that for a matrix
.x∗, we permute the person indices i, in some fixed way (denoted perm(i)). Then, the
transition kernel for person i depends on .x∗ via one of the response patterns in .x∗,
and every response pattern is used exactly once:

.f (θ∗ | x) =
∫

RN

∏

i

f (θ∗
perm(i) | θi , x∗

perm(i))P (x∗)f (θ | x) dθ .
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Clearly, not all proposal distributions lead to the same acceptance probability, and
thus, not all permutations lead to the same overall acceptance rate. Hence, some
permutations work better than others. Notice that all permutations lead to a valid
transition kernel with the posterior distribution as its invariant distribution, as long as
our permutation strategy does not depend on .�′ or .�∗. Finding, for every matrix .x∗
and every observedmatrix .x, the best permutationwill in general be an NP-complete
problem. However, the better the permutation, the more efficient the algorithm.

In Algorithm 3, we consider the general situation where each person may receive
its own prior distribution, and we denote the prior of a person i with .fi(θ). We
generate a proposal using the prior .v = 1, . . . , N (v now indexes the proposals),
and we reorder the index vector .V = [vi ] of the proposals by using a permutation
function perm.(). When we use .θ∗

v ∼ fv(θ | x∗
v) as a proposal for a posterior

.fi(θ | xi ) (i need not equal v), then we accept .θ∗
v with probability .π(θ ′

i → θ∗
v ) =

min{1, ω(θ ′
i → θ∗

v )}, and

.ω(θ ′
i → θ∗

v ) = fi(θ
∗ | xi )fv(θ

′ | x∗)
fi(θ ′ | xi )fv(θ∗ | x∗)

= h(xi ; θ∗)h(x∗; θ ′)
h(xi ; θ ′)h(x∗; θ∗)

× fi(θ
∗)fv(θ

′)
fi(θ ′)fv(θ∗)

,

a product of likelihood ratios times a product of prior ratios, where the normalizing
constants .P(x) and .Z(θ) cancel as before (as do the normalizing constants of the
prior distributions).

Algorithm 3 Single-Variable Exchange algorithm with matching
Require: Index vector .V = [vi ] = i, for .i = 1, 2, . . . , N
Require: A permutation function perm()
1: for .v = 1 to N do
2: Generate .θ∗

v ∼ fv(θ)

3: Generate .x∗
v ∼ P (X | θ∗

v )

4: end for
5: Match proposals to targets by rearranging .V based on perm.().
6: for .i = 1 to N do
7: Set .v = vi

8: Draw .u ∼ U(0, 1)
9: if (.u < π(θ ′

i → θ∗
v )) then

10: Set .θ ′
i = θ∗

v

11: end if
12: end for

Simple permutation functions are often readily available. For instance, the test
score is usually correlated with .� and gives a simple procedure to permute the
indices of proposals and targets.When the IRTmodel is a member of the exponential
family, the sufficient statistic .t (x) contains all information about .� from the data
and gives another simple procedure for permutation. More general solutions would
be the use of maximum likelihood or Bayes’ modal estimates, when they are not
too expensive to compute. We give some examples of permutation strategies in our
applications below.
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12.3.4 Recycling in the Rejection Algorithm

The main idea underlying matching is that a proposal need not be associated to one
particular posterior. We can use the same idea for the rejection algorithm for the
situation with N posteriors using a common prior .f (θ). The idea behind recycling
is that if we sample .{θ∗, x∗}, .θ∗ can be assigned to any observation i where .t (xi ) =
t (x∗) (or .xi = x∗). In general, we need to sample from .N = ∑U

u=1 nu posteriors
.f (θ | t (x) = tu), where .tu is one of the U unique values the statistic .t (X) can
take, .Nu is the number of observations of response patterns .xi for which .t (xi ) = tu,
and it is arbitrary how the values of .t (X) are indexed. As seen in Algorithm 4, we
sample from the joint distribution of .� and .X until we have .nu values for each u. In
Algorithm 4, we store generated values in a vector .R and the index corresponding
to the generated statistic in a vector .S. If necessary, we can use .S to assign the
drawn parameters to observations. Note that this version of the rejection algorithm
has been implemented in the R-package dexter (Maris et al. n.d.).

Algorithm 4 A rejection algorithm with recycling
Require: .nu for .u = 1, 2, . . . , U .
Require: A counter c and vectors .R = [ri ] and .S = [si ], .i = 1, 2, . . . , N .
1: .c = 0.
2: repeat
3: Generate .θ∗ ∼ f (θ)

4: Generate .x∗ ∼ P (X | θ∗)
5: Determine u, such that .t (x∗) = tu
6: if .nu ≥ 1 then
7: .nu = nu − 1
8: .c = c + 1
9: .[rc] = θ∗
10: .[sc] = u

11: end if
12: until .nu = 0 for .u = 1, . . . , U

In the context of IRT, the situation with N posteriors using a common prior
describes the situation of N persons sampled from the same population. In practice,
however, we often encounter situations where the persons are sampled from
different groups, e.g., boys and girls. In this situation, posteriors are of the form

.f (θ | xi ) ∝ P(xi | θ)fm(θ),

i.e., persons are grouped into marginals m, where .fm(θ) denotes the prior distri-
bution in marginal m, and recycling applies to each marginal separately. It will be
clear that in this situation, the algorithm becomes efficient only when there are many
persons in each marginal. When the prior distributions are person specific, and each
person has its own marginal distribution, recycling reduces to the standard rejection
algorithm.
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12.3.5 Has the Efficiency of the Algorithms Improved?

We considered recycling and matching as ways to improve the rejection and SVE
algorithm when samples are required from many posteriors. To illustrate that this
works, we compare the efficiency of the rejection algorithm with and without
recycling and the SVE algorithm with and without matching under the conditions
of our previous simulation.

Results for the rejection algorithm with recycling are in Fig. 12.4a, which shows
the average number of trials required to sample from the N posteriors as a function
of N and J . If we compare the results in Fig. 12.4a with the results in Fig. 12.1a,
we see that recycling requires relatively few iterations per posterior. Note that
the required number of iterations decreases as N increases and increases when J

increases. It is clear from Fig. 12.4a that as both N and J increase, recycling makes
the rejection algorithm more efficient when N increases faster than J . For fixed J ,
Fig. 12.4a confirms that as N becomes large, the number of iterations per posterior
tends to 1.

To illustrate that the matching procedure improves the efficiency of the SVE
algorithm, we consider the following simple strategy. We order target distributions
using the statistic .t (xi , α) = ∑J

j=1 xijαj (see Table 12.1), such that the values of
the statistic are ordered from small to large, and we do the same for the proposal
distributions using the .t (x∗, α). This simple permutation strategy ensures that if
the Markov chain is stationary, the first proposal is likely to be a good proposal
for the first target (since the difference between .t (x, α) and .t (x∗, α) is likely to be
small), and the same holds for the second, the third, and so on. Results for the SVE
algorithm using this procedure are given in Fig. 12.4b, which shows the average
acceptance rate in the 100th iteration of the algorithm as a function of N and J .
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Fig. 12.4 Simulation results. (a) Number of trials with recycling. (b) Proportion accepted with
matching
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If we compare the results in Fig. 12.4b with the results in Fig. 12.1b, we see that
matching results in much higher acceptance rates. Note that, similar to the results
for the recycling, the proportion of accepted values increase as N increases and
decrease as J increases and matching makes the SVE algorithmmore efficient when
N increases faster than J . For fixed J , Fig. 12.4b confirms that as N becomes large,
the average acceptance rate tends to 1.

We conclude that recycling and matching make sampling from a large number
of posteriors entirely feasible. Most appealing is that the efficiency improves as
a function of N . As N tends to infinity, this means that we need to generate the
data only once to obtain a draw from each of N posteriors and both algorithms
generate i.i.d. from each of the N posteriors. For moderate N , we can already see
that the number of trials needed for the rejection algorithm approaches 1 and that
the acceptance rate of the SVE algorithm approaches 1. This shows that, even for
moderateN , both algorithms require little more than one generated data set and that
the SVE algorithm is close to sampling i.i.d.

To illustrate that matching makes the autocorrelation in the SVE algorithm a
decreasing function of N , we perform a small simulation. We run 5000 Markov
chains for 500 iterations each. We use the 5000 Markov chains to estimate the
autocorrelation by correlating the 5000 draws in some iteration i and iteration .i +1,
.i +2, .. . . . Figure 12.5 shows the autocorrelation spectra for the SVE algorithm with
matching. In Fig. 12.5, we see that the autocorrelations are a decreasing function of
N , meaning that as N becomes sufficiently large, we sample approximately i.i.d.

12.3.6 How Do Our Algorithms Compare to Existing
Algorithms?

When it is difficult to sample from .f (θ | x) directly, it is sometimes easier to sample
from a more complex (augmented) posterior distribution .f (θ , y | x) using the
Gibbs sampler. In the context of educational measurement, this approach has been
advocated by Albert (1992) for Normal Ogive models and by Jiang and Templin
(2018, 2019) for logistic IRT models. Due to the use of conditioning in the Gibbs
sampler, the data augmentation procedure of Albert (1992) introduces a constant
amount of autocorrelation to the Markov chain (Liu et al. 1994). As a result, the
number of iterations that are required to obtain a fixed amount of independent
replicates from each of the N posteriors is linear in N . In this sense, our algorithms
scale better, since the amount of autocorrelation reduces as a function of N .

A more general approach to sampling from .f (θ | x) is to sample a proposal
value .θ∗ from a conditional distribution .f (θ∗ | θ ′) and use the Metropolis-Hastings
algorithm to either move to the proposed value .θ∗ or stay at the current state .θ ′.
This approach has been advocated by Patz and Junker (1999), who suggest to use
.f (θ∗ | θ ′) = N (θ ′, σ 2) as proposal distribution (i.e., a random walk). Setting the
value of .σ 2 in the proposal distribution requires some effort from the user (Rosenthal
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Fig. 12.5 Estimated autocorrelation spectra using .J = 30 items. (a) .N = 100 persons, .θ = 0. (b)
.N = 100 persons, .θ = 0.5. (c) .N = 1000 persons, .θ = 0. (d) .N = 1000 persons, .θ = 0.5. (e)
.N = 10,000 persons, .θ = 0. (f) .N = 10,000 persons, .θ = 0.5
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2011): when .σ 2 is too large, most samples are rejected, but when .σ 2 is too small,
only small steps are taken, and the chain does not mix properly. To overcome this
problem altogether, one could use an unconditional proposal distribution .g(θ) (i.e.,
an independence chain). This is the approach we took in this chapter. Whenever the
proposal distribution .g(θ) closely resembles the target distribution, the Metropolis-
Hastings algorithm is very efficient. In general, it can be difficult to find good
proposal distributions, but the matching procedure automatically finds proposal
distributions .g(θ | x∗) that closely resemble the target .f (θ | x), and as N increases,
this procedure becomes more likely to generate good proposal distributions.

12.4 Simulated and Real-Data Examples

In this section, we discuss three examples illustrating the practical use of the SVE
algorithm for Bayesian estimation using the Gibbs sampler. The Gibbs sampler is
an abstract divide-and-conquer algorithm that generates a dependent sample from
a multivariate posterior distribution. In each iteration, the algorithm generates a
sample from the distribution of each variable in turn, conditional on the current
values of the other variables. These are called the full-conditional distributions.
It can be shown that the sequence of samples constitutes a Markov chain and the
stationary distribution of that Markov chain is the joint posterior distribution of
interest.

In each of our examples, there will be one or more full-conditional distributions
that are not easily sampled from, and we use the SVE algorithms developed in this
chapter to sample from these full-conditional distributions. All analyses have been
performed using a Dell OptiPlex 980 PC with an Intel Core 5 CPU and clock speed
3.20Ghz and 4Gb of memory running onWindows 7 Enterprise(32 bit) with a single
core.

12.4.1 Gamma Regression

The random-effects gamma model is a model for responses times proposed by Fox
(2013) as an alternative to the log-normal model that is commonly used (van der
Linden 2007; Klein Entink et al. 2009). The model is difficult to estimate, because
the normalizing constant of the gamma distribution (i.e., the gamma function .
(·))
is not available in closed form and can produce overflow errors in its computation.
We develop a Gibbs sampler for this model to illustrate how the SVE algorithm can
be used to avoid the calculation of the gamma function.

Let .Xij denote the time needed by person i to respond to item j ; .i = 1, . . . , N ,
and .j = 1, . . . , J . The .Xij are assumed to be independent, gamma distributed
random variables with
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.f (x | λ, η) =
N∏

i=1

J∏

j=1

λ
ηij

ij


(ηij )
x

ηij −1
ij exp

{−xij λij

}
. (12.3)

In the model of Fox (2013), a relatively simple regression structure was used,
namely, .λij = ν/(2 θi) and .ηij = ν/2. We will use a slight alteration in this
simulation, with .λij = ν/(θi δj ) and .ηij = ν, such that .E[Xij ] = θi δj , and
.Var(Xij ) = E[Xij ]2/ν. The person parameter .θi > 0 represents the speed of person
j , the item parameter .δj > 0 the time intensity of item j , and .ν a common rate
parameter. We further assume that .θi ∼ lnN (μθ , σ 2

θ ), and .δj ∼ lnN (μδ , σ 2
δ ),

where .lnN (μ, σ 2) denotes the log-normal distribution with mean .μ and variance
.σ 2. The location and scale parameters of the person and item parameters are
unknown and are to be estimated. To complete the specification of the model, we
use the following priors: .ν ∼ 
(a, b), .f (μθ , σ 2

θ ) ∝ σ−2
θ , and .f (μδ , σ 2

δ ) ∝ σ−2
δ .

Given the person and item parameters, the location and scale parameters are
easily sampled from their full-conditional distributions (Gelman et al. 2004):

.f (μθ | θ , σ 2
θ ) ∝ N

(
1

N

N∑

i=1

ln(θi), σ 2
θ /N

)

f (σ 2
θ | θ) ∝ Inv-χ2

⎛

⎝N − 1,
1

N − 1

N∑

i=1

(

ln(θi) − 1

N

N∑

i=1

ln(θi)

)2⎞

⎠

f (μδ | δ, σ 2
δ ) ∝ N

⎛

⎝ 1

J

J∑

j=1

ln(δj ), σ 2
δ /J

⎞

⎠

f (σ 2
δ | δ) ∝ Inv-χ2

⎛

⎜
⎝J − 1,

1

J − 1

J∑

j=1

⎛

⎝ln(δj ) − 1

J

J∑

j=1

ln(δj )

⎞

⎠

2
⎞

⎟
⎠ .

The full-conditional distribution of .ν, the person, and the item parameters, however,
are not easily sampled from, and for these, we will use the SVE algorithms
developed in this chapter.

To sample from the full-conditional distribution of .ν, we generate .ν∗ from the
prior .f (ν | a, b) and generate a data matrix .x∗ from .f (x | θ , δ, ν∗). The probability
.π(ν′ → ν∗) to make a transition from .ν∗ to .ν′ using this set-up is then equal to
.min

{
1, ω(ν′ → ν∗)

}
, with

. lnω(ν′ → ν∗) = (ν∗ − ν′)(t (x, θ , δ) − t (x∗, θ , δ)),
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where

.t (x, θ , δ) =
N∑

i=1

J∑

j=1

(

ln(xij ) − xij

θiδj

)

.

Note that we do not need to evaluate the .
() function at .ν′ or .ν∗, making .lnω a
relatively simple function to compute.

We have seen earlier that in this set-up, the SVE algorithm is likely to generate
transition kernels for which the acceptance probability is low. We therefore use the
oversampling procedure. That is, we generate a number of i.i.d. proposal values .ν∗,
each with its own data matrix .x∗. From these, we choose the one for which the
statistic .t (x∗, θ , δ) is closest to .t (x, θ , δ). We use 100 proposals in this example.
The R-code that we used for this full-conditional is given in Appendix A.

To sample from the full-conditional distributions of the person and the item
parameters, we use the matching procedure. Since we use the same matching
procedure for the person and the item parameters, we only describe the procedure
for the person parameters. We generate .θ∗

v , .v = 1, . . . , N , from .f (θ | μθ , σ 2
θ ) and

use it to generate a vector of response times .x∗
v from .f (x | θ∗

v , δ, ν). Say that we use
.f (θ | x∗

v , ν, μθ , σθ ) as proposal for a target i (i need not equal v), the probability
.π(θ ′

i → θ∗
v ) to make a transition from .θ ′

i to .θ∗
v is then equal to .min

{
1, ω(θ ′

i → θ∗
v )

}
,

with

. lnω(θ ′
i → θ∗

v ) = ν

(
1

θ∗
v

− 1

θ ′
i

)
(
t (x∗

v, δ) − t (xi , δ)
)
, (12.4)

where

.t (xi , δ) =
J∑

j=1

xij

δj

.

Note again that we do not need the evaluate the .
() function in .lnω and the
acceptance probabilities are simple to compute.

From (12.4), we see that it is opportune to use .t (xi , δ) to permute proposals and
targets. To this aim, we compute .t (x, δ) for each person in the sample and for each
proposal. Then, we order the targets using the .t (xi , δ), such that the corresponding
statistics are ordered from small to large, and do the same for the proposals using
the .t (x∗

v , δ). This simple permutation strategy ensures that if the Markov chain is
stationary, the first proposal is likely to be a good proposal for the first target (since
the difference between .t (x, δ) and .t (x∗, δ) is likely to be small) and the same holds
for the second, the third, and so on. The R-code that we used for this full-conditional
is given in Appendix B.

To see how it works, we simulated data for .N = 10,000 persons on a test
consisting of .J = 40 items. We set the mean and variance of the person and the
item parameters equal to 10 and 1, respectively, from which we can solve for the
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location and scale parameters in the log-normal model. Using these location and
scale parameters, we sample the person and item parameters from the log-normal
model. The parameter .ν was set equal to 40.

Note that the gamma model that we use is not identified, since multiplying the
person parameters with a constant and dividing the item parameters with the same
constant give the same model. Since we know the true values of the parameters in
this simulation, we simply set the estimated parameter of the first item equal to its
true value.

We ran the Gibbs sampler for 2000 iterations, which took approximately .2.5 h
(about .4.7 s per iteration). The main computational cost of this Gibbs sampler
resides in sampling the entire .N × J data matrix .m + 2 times in each iteration,
of which .m = 100 times for sampling from the full-conditional of .ν. Since the cost
per iteration is the same in each iteration, we see that we need approximately .0.1 s to
sample the person and the item parameters in each iteration and approximately .4.6 s
to sample .ν. This means that we can reduce the computational time by reducing m.
Note, however, that this would also reduce the acceptance rate in sampling .ν.

The results are in Figs. 12.6 and 12.7. As expected, our use of the SVE
algorithm does not lead to high acceptance rates for the item parameters; the average
acceptance rate was .0.05. The main reason is that we only generate 40 proposals
to assign to 40 targets, with a large variation on the conditioning statistic .t (x, θ)

due to the large number of observations. In the next example, we show that the
oversampling procedure can be used to remedy this. We did obtain high efficiency
for the person parameters, with an average acceptance rate of .0.96. In Fig. 12.6,
we show the trace plot for a person and an item parameter. It is clear that both
converge quickly to the stationary distribution. In Fig. 12.7, we show scatterplots of
the true person and item parameters against the parameter states in iteration 2000,
which illustrates that we are able to recover the parameters of the generating model.
Finally, the proportion of accepted values for the .ν parameter equalled .0.30, which is
certainly reasonable for such a complex full-conditional distribution. In Fig. 12.6c,
we show the trace plot of .ν, from which we see that once the person and item
parameters converge, .ν also quickly converges to its stationary distribution.

12.4.2 The Amsterdam Chess Test Data

The Signed Residual Time (SRT) model is an exponential family IRT model for item
response accuracy and response times and is derived by Maris and van der Maas
(2012) from the following scoring rule:

.(2Xij − 1)(d − Sij ),

for an item response .Xij , which equals 1 if the response is correct and 0 if incorrect,
after .Sij time units when the time limit for responding is d. This scoring rule assigns
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Fig. 12.6 Trace plot of .ν, a person, and an item parameter in the gamma mixture example. (a)
Trace plot of a person parameter. (b) Trace plot of an item parameter. (c) Trace plot of .ν
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Fig. 12.7 Scatterplot of the true person (item) parameters at the states of the person (item)
parameters in iteration 2000 of the Gibbs sampler for the gamma mixture example. (a) Scatterplot
of the person parameters. (b) Scatterplot of the item parameters

the residual time as the score for a correct response and minus the residual time for
an incorrect response. Thus, subjects need to be both fast and accurate to obtain a
high score and, thereby, a high estimated ability. The SRT model is

.f (Xij = xij , Sij = sij | θi , δj , d)=(θi − δj )
exp

[
(2xij − 1)(d − sij )(θi − δj )

]

exp
[
d(θi − δj )

] − exp
[−d(θi − δj )

] ,

for .0 ≤ s ≤ d. The statistics

.t (xi , si ) =
J∑

j=1

(2xij − 1)(d − sij ) (12.5)

t (xj , sj ) = −
N∑

i=1

(2xij − 1)(d − sij )

are sufficient for the ability .θi of a person i and the difficulty .δj of an item
j , respectively. We assume that .θi ∼ N (μθ , σ 2

θ ) and .δj ∼ N (μδ , σ 2
δ ), and to

complete specification of the model used the following priors: .f (μθ , σ 2
θ ) ∝ σ−2

θ

and .f (μδ , σ 2
δ ) ∝ σ−2

δ .
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Given the person and item parameters, the location and scale parameters are
easily sampled from their full-conditional distributions (Gelman et al. 2004):

.f (μθ | θ , σ 2
θ ) ∝ N

(
1

N

N∑

i=1

θi , σ 2
θ /N

)

f (σ 2
θ | θ) ∝ Inv-χ2
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)2⎞
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The full-conditional distributions of the person and item parameters are not easily
sampled from, and we will use an SVE algorithm to sample from these full-
conditional distributions. To save space, we will only describe the procedure for
the person parameters.

We generate .θ∗
v , .v = 1, . . . , N , from .f (θ | μθ , σ 2

θ ) and use it to generate
a vector of item responses .x∗

v and response times .sv from .f (x, s | θ∗
v , δ) (see

Appendix C). Say that we use .f (θ | x∗
v, s

∗
v , μθ, σθ ) as proposal for a target i (i

need not equal v), the probability .π(θ ′
i → θ∗

v ) to make a transition from .θ ′
i to .θ∗

v is
then equal to .min

{
1, ω(θ ′

i → θ∗
v )

}
, with

. lnω(θ ′
i → θ∗

v ) = (
θ∗
v − θ ′

i

) (
t (x∗

v , s
∗
v) − t (xi , si )

)
,

with .t (xi , si ) defined in (12.5).
Although the sufficient statistics (12.5) can be used to permute the indices of

targets and proposals, we only have a few person and item parameters in this
example. To obtain some efficiency of the SVE algorithm in this application, we
use a variant of the oversampling strategy. In each iteration, we generate a number
of i.i.d. proposals and for each target distribution choose the proposal for which the
statistic .t (x∗, s∗) is closest to the observed statistic .t (x, s) while ensuring that each
proposal is used only once.

Van derMaas andWagenmakers (2005) describe data from the AmsterdamChess
Test (ACT), collected during the 1998 open Dutch championship in Dieren, the
Netherlands. The data we consider consists of the accuracy and response times of
.N = 259 subjects on .J = 80 choose-a-move items administered with a time limit
of 30 s. We started the mean and variance of the person and item parameters at 0
and 1, respectively. Using these values, we sampled the person and item parameters
from the prior. In each iteration, we generated .2 × N = 498 proposals for the
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Fig. 12.8 Scatterplot of EAP
versus Elo rating in the ACT
example
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persons and .5 × J = 400 proposals for the items. We ran the Gibbs sampler for
10,000 iterations, which took approximately 12 min (about 0.07 s per iteration).
The average acceptance rate was 0.98 for the persons and 0.93 for the items.

An important advantage of this illustrative application is that for chess expertise,
an established external criterion is available in the form of the Elo ratings of chess
players, which has high predictive power for game results. For those 225 participants
for whom a reliable Elo rating was available, we correlated the expected a posteriori
(EAP) estimates with their Elo ratings. The results are given in Fig. 12.8. The
correlation between EAP estimates and Elo ratings is equal to 0.822.

12.4.3 The 2012 Eindtoets Data

In educational measurement, population models are commonly used to describe
structure in the distribution of the latent abilities. For example, in equating two
exams, one can characterize the two exam groups by using a normal distribution
with a group-specific mean and variance; in the analyses of tests consisting of
different scales, a multivariate normal distribution can be used to characterize the
latent correlations; and in educational surveys, a normal regression model can
be used to study the effects of covariates on the ability distribution. Whenever
the abilities are observed, inference is relatively straightforward in each of these
situations. Our focus in this section is to show how the SVE algorithm can be used
to sample from the full-conditional distribution of the latent abilities, allowing the
analyses of structural IRT models using the Gibbs sampler, even for large data sets.

We use response data of .N = 158,637 Dutch end of primary school pupils on
the 2012 Cito Eindtoets to illustrate our approach using a multidimensional IRT
model. In specific, we used data from the non-verb spelling (10 items), verb spelling
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(10 items), reading comprehension (30 items), basic arithmetic (14 items), fractions
(20 items), and geometry (15 items) scales. That is, we have six unidimensional
IRT models (a between multidimensional IRT model) and use a multivariate normal
distribution to infer about the latent correlations between the six scales. To keep our
focus on sampling the latent abilities, we assume that an IRT model is given (i.e.,
the parameters characterizing the items in the IRT model are known). For simplicity,
we use the Rasch model for each of the scales in our example and fix the item
parameters at the conditional maximum likelihood (CML) estimates.

We use a multivariate normal distributionwith an unknown .Q×1 vector of means
.μ and .Q × Q covariance matrix .� to describe the latent correlations between the
.Q = 6 dimensions. To complete the model, we use the multivariate Jeffreys prior
for the mean vector and the covariance matrix:

.f (μ, �) ∝| � |− Q+1
2 .

The Gibbs sampler is used to sample from the joint posterior distribution
.f (θ , μ, � | x). For this model, the full-conditional distributions of .μ and .� are
easily sampled from (Gelman et al. 2004):

.f (μ | θ , �) ∝ NQ(θ̄ , �/N)

f (� | θ) ∝ Inverse-WishartN−1(S−1)

where .θ̄ = 1
N

∑N
i=1 θ i is the mean ability vector and .S = ∑N

i=1(θ i − θ̄)(θ i − θ̄)T

the sums of squares matrix around the mean ability vector. The full-conditional
distributions .f (θ i | xi , μ, �) are intractable, however, and for this, we use the SVE
algorithm.

Instead of sampling from .f (θ i | xi , μ, �) directly, we sample pupil abilities
in a dimension q given the .Q − 1 other dimensions, for .q = 1, . . . , Q. The full-
conditional distribution for the ability of a pupil i in a dimension q is proportional
to

.f (θiq | xiq , θ
(q), μ, �) ∝

Jq∏

i=1

exp
{
xijq (θiq − δjq)

}

1 + exp
{
θiq − δjq

} exp

{

− (θiq − λiq )2

2η2q

}

,

where .δjq is the difficulty of the j -th out of .Jq items in dimension q , .θ
(q)
i is the

ability vector of pupil i excluding entry q , and .λiq and .η2q are the conditional mean

and variance of .θiq given .θ
(q)
i in the population model, respectively, given by

.λiq = μq + σ
(q)
q

(
�(q, q)

)−1 (
θ

(q)
i − μ(q)

)

η2q = σqq − σ
(q)
q

(
�(q, q)

)−1
(σ

(q)
q )T ,
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where .σ
(q)
q contains the off-diagonal elements of the q-th row in .�, i.e., .σ

(2)
2 =

[σ21, σ23, . . . , σ26].
We sample from the full-conditionals .f (θiq | xiq , θ (q), μ, �), as follows. First,

we compute .λiq for .i = 1, . . . , N (note that these depend on the abilities from the
remaining .Q− 1 dimensions). Then, we sample .θ∗

vq from .N (λvq , η2q) and use these
to generate an item response vector .x∗

vq from .P(Xq | θ∗
vq , δq), for .v = 1, . . . , N .

Say that we use .f (θvq | x∗
vq , θ

(q)
v , μ, �) as proposal for a target i (i need not equal

v), then the probability .π(θ ′
iq → θ∗

vq) to make a transition of .θ ′
iq to .θ∗

vq is equal to
.min{1, ω(θ ′

iq → θ∗
vq)}, with

. lnω(θ ′
iq → θ∗

vq) = (θ ′
iq − θ∗

vq)(t (x
∗
vq , λvq , ηq) − t (xiq , λiq , ηq)),

where

.t (xiq , λiq , ηq) =
Jq∑

i=1

xijq + λiq/η2q .

Note that .t (xiq , λiq , ηq) combines information from the likelihood with information
from the population model.

To match proposals to targets (full-conditionals), it is opportune to use
.t (xiq , λiq , ηq), since if .t (x∗

vq , λvq , ηq) is close to .t (xiq , λiq , ηq), the acceptance
probability tends to be high. In matching the N proposals to the N targets, we
start with computing .t (xiq , λiq , ηq) for each target and computing .t (x∗

vq , λvq , ηq)

for each proposal. Then, we order the targets using the .t (xiq , λiq , ηq), such that
the corresponding statistics are ordered from small to large and do the same for
the proposals using the .t (x∗

vq , λvq , ηq). If the Markov chain is stationary, the first
proposal is likely to be a good proposal for the first target (since the difference
between .t (x, λ, η) and .t (x∗, λ, η) will be small), and the same holds for the second,
the third, and so on.

We start our analyses by setting .μ equal to .0 and .� equal to the .Q × Q

identity matrix. To get reasonable starting values for the latent ability vectors, we
performed a single run of the SVE algorithm where we accepted all proposals.
We ran the Gibbs sampler for 2000 iterations, which took approximately 80 min
(about .2.5 s per iteration). The acceptance rates of the SVE algorithm were high
in this example, averaging to .0.98, .1.00, .0.97, .0.99, .0.99, and .1.00 for dimensions
1 to 6, respectively. This means that we sample approximately i.i.d. from the full-
conditional distributions of the abilities, and thus, using the SVE algorithm in this
example does not introduce additional autocorrelation to the Markov chain.

Despite the observation that we sample the abilities approximately i.i.d. in this
example, the amount of autocorrelation in the chain is high. To illustrate, we show
the trace plot for three parameters: an ability, a mean, and a variance. Note the wave-
like patterns that emerge, which indicate a strong relation between subsequent states
in the Markov chain (i.e., high amount of autocorrelation). The reason for this high
amount of autocorrelation is due to the high correlations that we obtain between
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Table 12.2 Estimated correlations between scales in the 2012 Cito Eindtoets

Dimension Correlations

Non-verb spelling 1.00

Verb spelling 0.93 1.00

Reading comprehension 0.64 0.71 1.00

Basic arithmetic 0.60 0.61 0.71 1.00

Fractions 0.63 0.63 0.71 0.99 1.00

Geometry 0.61 0.62 0.69 0.97 0.98 1.00

some of the dimensions (see Table 12.2) and the fact that we sampled from each
dimension conditional upon the others. The high correlations between dimensions
then provide a strong relation between draws in subsequent iterations, inducing a
high amount of autocorrelation (Fig. 12.9).

The estimated correlation matrix is shown in Table 12.2. From Table 12.2, it is
seen that the two spelling scales are closely related, as are the three mathematics
scales. The remaining correlations are only moderately large, yet they are all posi-
tively correlated. The correlations in Table 12.2 suggest that there are three distinct
dimensions in this problem: spelling, reading comprehension, and mathematics.

12.5 Discussion

In this chapter, we have described two composition algorithms that can be used
to sample from conditional distributions and discussed how their efficiency can be
improved to handle large data sets where one needs to sample from many similar
distributions.

We have illustrated how the algorithms can be used in a variety of educational
measurement applications. We used the composition algorithms for a simulated
latent regression example using the random-effects gamma model proposed by
Fox (2013), analyzed Amsterdam Chess Test data using the signed residual time
model (Maris & van der Maas 2012; Deonovic et al. 2020), and analyzed one big-
data example—the Cito Eindtoets—using a multidimensional 2PL model (Reckase
2009). These examples allowed us to illustrate the feasibility of using composition
algorithms for simulating from random-effects distributions assessed by complex
measurement models. It also allowed us to illustrate that while their efficiency is
guaranteed if the algorithms are used in high-dimensional settings (i.e., when there
are many instances of a random effect), they are less efficient in low-dimensional
settings (e.g., to simulate from the posteriors of the item parameters).

Finally, we note that we used GNU-R to perform the analyses, which was entirely
feasible, even for the large applications. Computational time can be decreased by
implementing (parts of) the code in a compiled language (e.g., Fortran, C, Delphi).
Furthermore, most computer systems run on multiple cores, and computational time
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Fig. 12.9 Trace plots of an ability, a mean, and a variance in the Eindtoets example. (a) The ability
of person .i=59,137 in dimension 1. (b) The mean of dimension 6. (c) The variance of dimension
3
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could be decreased further by making use of the additional cores in implementa-
tions. For instance, proposals can be generated in batches, with each batch running
on a single core.

Appendix A: The Use of Oversampling in the Gamma
Example

The Gnu-R (R Core Team 2010) code that was used in the gamma example to
sample from the full-conditional distribution of .ν is given below.

#Compute t(x):
tx = rep(0,N)
for(j in 1:J) tx = tx - X[,j]/(theta * delta[j])+ log
(X[,j])
tx = sum(tx)

#Generate M = 100 proposals:
anu = rgamma(n = M, shape = shape.nu, rate = rate.nu)

#Generate statistics t(x*):
atx = rep(0,j)
for(j in 1:J)
{

for(m in 1:M)
{

tmp = rgamma(n = N,
shape = anu[m],
rate = anu[m] / (theta * delta[j]))

atx[m] = atx[m] +
sum(log(tmp) - tmp / (theta * delta[j]))

}
}

#Select proposal:
m = which(abs(tx - atx) == min(abs(tx - atx)))[1]
anu = anu[m]
atx = atx[m]

#Calculate log acceptance probability:
ln.omega = (anu - nu) * (tx - atx)

#Metropolis-Hastings step:
if(log(runif(1)) < ln.omega) nu = anu

Appendix B: The Use of Matching in the Gamma Example

The Gnu-R (R Core Team 2010) code that was used in the gamma example to
sample from the full-conditional distribution of the person parameters is given
below.

#Generate proposals:
atheta = rlnorm(n = N, #proposals from prior
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mean = theta.mu,
sd = theta.sd)

#Compute statistics:
tx = atx = rep(0,n)
for(j in 1:J)
{

#Compute t(x*):
atx = atx + rgamma(n = N,

shape = nu,
rate = nu / (atheta * delta[j])) / delta
[j]

#Compute t(x):
tx = tx + (X[,j] / delta[j])

}
#Permute proposals:

O = order(order(tx))
o = order(atx)
atheta = atheta[o[O]]
atx = atx[o[O]]

#Calculate the log acceptance probability:
ln.omega = nu * (atx - tx) * (1 / atheta - 1 /
theta)

#Metropolis-Hastings step:
u = log(runif(N))
theta[u < ln.omega] = atheta[u < ln.omega]

Appendix C: Sampling Data from the SRT Model

In order to apply the SVE algorithm to sample from the full-conditionals of the
person and item parameters, we need to be able to generate data from the model.
Since we apply the same procedure for the person as for the item parameters, we
only describe the strategy for the person parameters here. We use the factorization
.f (X,S | θ , δ, d) = P(X | θ , δ, d) f (S | X, δ, θ , d) and use composition. Maris and
van der Maas (2012) showed that .P(X = x | θ , δ, d) derived from the SRT model
is a Rasch model with slope equal to the time limit d and .f (Sij = sij | Xij =
xij , θi , δj , d) is

.f (Sij = sij | Xij = xij , δj , θi , d) = (θi − δj ) exp
(
(2xij − 1)(d − sij )(θi − δj )

)

(2xij − 1)
[
exp

(
(2xij − 1)d(θi − δj )

) − 1
] .

An interesting feature of this distribution is that the following set of equalities holds
(let .φ denote .θ − δ in the equalities):

.(S | X = 1, φ) =
st

(d−S | X = 0, φ) =
st

(S | X = 0, −φ) =
st

(d−S | X = 1, −φ).
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This indicates that we can introduce a new variable .Ŝ:

.Ŝ =
{

S if X = 1

d − S if X = 0
∼ (S | X = 1, θ , δ, d),

which Maris and van der Maas (2012) call pseudo time and is independent of
accuracy (.X⊥⊥ Ŝ | �). Thus, to generate data from the SRT model, we generate
X from a Rasch model with slope d, which is a trivial exercise, and to generate S

we generate .Ŝ via inversion and solve for S using

.S =
{

Ŝ if X = 1

d − Ŝ if X = 0
.

That is, draw .u ∼ U(0, 1), and set .Ŝij equal to

.
1

δj − θi

ln
[
1 − u(1 − exp(d(δj − θi)))

]
.
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Chapter 13
To a or not to a: On the Use of the Total
Score

Bas T. Hemker

Abstract For the sake of transparency, the use of the unweighted total score is
demanded by society in many cases, especially in high-stakes situations such as
exams. In the Rasch model, the total score is the sufficient statistic: all relevant
information of the measurement is captured by the unweighted sum of the item
scores. For this reason, many practitioners want to use the Rasch model. However,
in many practical applications, the Rasch model does not fit, and the data is better
described by a model that also uses a slope parameter. Although in these types
of models, the total score is not the sufficient statistic; the unweighted item sum
score can be used to compare candidates’ results on different equated tests. In a
revaluation of the true-score equating procedure, we show how the benefits of using
the better fitting model can be combined with the application of the total score in the
context of equating cut-off scores. The advantages of the total scores are presented,
and how the total score can be used also in case the Rasch model does not hold.
An example is given to describe how the procedure works in practice. Finally, some
reflections are given on the practical implications, meaning, and usefulness of the
slope parameter, also known as the a-parameter.

13.1 The Use of the Total Score in Practice

In the behavioral and social sciences, test and questionnaires are often used to
measure the position of respondents on a latent trait θ (Hemker et al., 1996, 1997).
In this paper we focus on dichotomous items; however some results are extended
to polytomous items as well. Let a test consist of J dichotomously scored items.
The score on item j is denoted Xj: Xj = 1 for responses indicative of the trait, like a
correct response to an item measuring ability, and Xj = 0 otherwise. In both classical
test theory (CTT) and item response theory (IRT), the unweighted sum of J item
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scores, also called the unweighted total score or the raw score and denoted by X,
is often used for the measurement. In IRT the ordering is used as the most likely
order by increasing ability of candidates on a single test. In the case candidates take
different but equated tests, the total score can be converted to an equated scale score
via an IRT model to position candidates on the latent trait scale.

The reason for the focus on the total score is the ubiquitous use of the total
score in real-life situations, often due to societal demands that require transparency.
This holds true, especially in the case of summative assessment, where important
decisions for an individual candidate are based on the results of a test. These can be
entrance tests that in part, or sometimes completely, determine whether a prospect
student is allowed to get into a specific course, education, or university. Exams are
another example where the decision to pass the course is at least in part dependent
on the test result. In those cases the unweighted total score X is a measure for ability
that is considered fair and is accepted by the general public.

It is considered to be fair because if there is no additional information given
on weights and scoring during the exam, a candidate probably experiences each
and every item as equally important and of equal worth. If after the collection of
the data it is decided that one item is (much) more important than another item, the
candidate cannot decide to put more effort in the items with the higher weights. Also
it is expected, and therefore accepted, by the general public that if two candidates
that take the same test have the same number of items correct, the pass-fail decision
is also the same. It is generally not accepted that, when two candidates make the
same test and there is no additional information on item weights, the candidate with
the lower number items correct passes the test while the candidate with more items
correct fails it. In case weighted scores are used, this very well may happen. Say the
pass-fail decision based on the test score is described by f (X), with f (X) = 1 if a
candidate passes, and f (X) = 0 is a candidate fails, the general public expects that,
for 0 ≤ C < K ≤ J,

f (X = C) ≤ f (X = K) . (13.1)

If the number of correct is communicated to the candidate, which is often
required, and no information on weights are given beforehand, in practical situations
(13.1) needs to hold.

13.1.1 The Unweighted Total Score in Test Theory

In test theory much emphasis is placed on the total scores. In CTT the total score
would be the true-score T, on which ideally the actual decision should take place, if
it wasn’t for that pesky measurement error E, through the relation:

X = T + E. (13.2)
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Because it assumed that μE = 0 and ρTE = 0, all deviations of X with respect to
T are random, and so generally the decisions on the total score are considered to be
as correct as possible.

In CTT (13.2) can be considered a definition, but in IRT, the relation between
X and θ follows from assumptions that can be tested. Most IRT models assume
unidimensionality and local independence. If in addition for all J items in the test the
item response function (IRF) P(Xj = 1|θ ), or Pj(θ ), is nondecreasing in θ , Grayson
(1988) and Huynh (1994) have shown that X has monotone likelihood ratio (MLR)
in θ . Note that in these proofs, it is also assumed that 0 < Pj (θ ) < 1. As MLR implies
stochastic ordering of θ by X, it means that for 0 ≤ C < K ≤ J, and any value s

P (θ > s |X = C) ≤ P (θ > s |X = K) . (13.3)

This property denotes by (13.3) implies that persons with a higher sum score
have on average a higher value of the person parameter than persons with a lower
sum score; this property is particularly useful for comparisons between groups of
persons. It may not be satisfactory to make ordinal conclusions about individuals
without the additional condition of ordinal sufficiency (OS; Zwitser &Maris, 2016).
Thus, under these mild assumptions that can be tested, we know that we can use the
total score to have a reasonable ordering of (groups of) candidates on the latent trait.
The IRT model that is defined by these assumptions that are sufficient for MLR
is the Mokken (1971) model of monotone homogeneity (MH model; Mokken &
Lewis, 1982; Mokken, 1997).

The CTT and the MH model are useful if we want to compare results on only
one test; however in case of educational measurement, often more than one version
of the test is required. This can be for multiple reasons. Different versions can
be necessary to make cheating more difficult, especially if there is more than one
occasion when test takers are allowed to take the test. More than one version can be
offered if not all candidates can take the test at the same time, but are also used as a
resit. In some cases, different versions with varying degrees of difficulty are offered
to cater to specific groups that differ in ability, but still need to be compared on the
same scale. The results on these tests need to be comparable over tests, and also the
decisions made on the different test need to be fair. To make these tests comparable,
in other words to equate the tests, or at least to equate one (pass-fail) or more cut-off
scores, parametric IRT models are very helpful.

Here we focus on two types of parametric, logistic IRT models that differ in the
number of parameters used to describe each dichotomous item, which is either one
parameter or two parameters per item. The first of these two is the one-parameter
model (1pl model), or the Rasch (1960, 1968) model. In the 1pl model the IRF is
given by

Pj (θ) = exp
(
θ − δj

)

1 + exp
(
θ − δj

) . (13.4)
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In this equation the item parameter δj describes the location of the item on the
latent trait scale where the candidate has a probability of 0.50 to obtain a score of Xj

= 1. In models where for each item this δj is the only parameter, it can be interpreted
as the difficulty of the item: independent of the ability of the candidate, for two items
j and k with δj > δk, the probability to give a correct response is smaller for item j
than k.

Note that Eq. (13.4) can also be written as

Pj (θ) = exp
[
α

(
θ − δj

)]

1 + exp
[
α

(
θ − δj

)] , (13.5)

with α being a constant that is the same for all items. The value of α does not need
to be equal to 1, but the scale can always be transformed in such a way that α = 1,
which again yields (13.4).

The models with two parameters per item allow the slopes of the IRFs to vary
over items, and thus a subscript j is added to α to denote this possible variation
over items, which yields αj. In this study we look at two different models with two
item parameters. The most commonly known is the 2pl-model (Birnbaum, 1968;
pp. 399–402), in which the IRF is defined by

Pj (θ) = exp
[
αj

(
θ − δj

)]

1 + exp
[
αj

(
θ − δj

)] , (13.6)

with αj being the slope parameter. Here the parameter estimates are allowed to take
any number. In an alternative model with a slope parameter, the parameters are
limited to integers ranging from 1 to 15. In this model, the slope parameters are
imputed, which means that these are determined independently of the estimations of
the δi-parameters. Confusingly this model was dubbed, the One Parameter Logistic
Model (OPLM; Glas & Verhelst, 1989; Verhelst & Glas, 1993), but usually only
the abbreviation is used to avoid the mix-up with the 1pl model. To distinguish the
OPLM from the 2plm, αj in (13.6) is given as aj in this model:

Pj (θ) = exp
[
aj

(
θ − δj

)]

1 + exp
[
aj

(
θ − δj

)] . (13.7)

The OPLM can be considered a hybrid between the 1pl and 2pl model, because
the model allows the slopes to vary, but only δj is estimated directly. The variation
of a is limited with only 15 possible values in theory. In practice there is even
less variation: in most cases only four to seven different values are being used.
The advantage of this model compared to the 2pl model is that some fundamental
statistical issue with regard to the estimation of parameter estimations are solved
in the OPLM (Van den Brink & Mellenbergh, 1998; pp. 215–218). This model
has been dominant in the Netherlands for educational measurement in primary
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and secondary education for over 25 years. It is also contained in the rules and
regulations set by the government (e.g., College voor Toetsing en Examens, 2015).

The value of item parameter δj in (13.7) still equals the required ability for
a candidate to have a probability of exactly 0.50 to obtain a score of Xj = 1.
Many psychometricians still refer to this as the “difficulty,” but this often leads
to miscommunications with test practitioners. In their review of a test for one
population, and comparing the difficulty of two items, they find the item with the
lower p-value the more difficult one. It is surprisingly common that this is not the
item with the “difficulty parameter” with the highest value. To avoid this confusion,
in practice while working with 2pl type of models, it might preferred to refer to δj
as the “location” of the item.

Both the 1pl model and the 2pl type of models can be considered special cases
of the MH model, both for dichotomous and for polytomous item scores (Hemker
et al., 1997). Note however that only for the dichotomous models MLR also holds
and that for dichotomous models, the stochastic ordering of the candidates can be
obtained through X.

13.1.2 Choosing Between the Models with One or Two
Parameters

The Rasch model has a specific advantage over all other IRT models, with regard
to the relation between the total score and θ , because in the Rasch model, X is the
sufficient statistic (Fisher & Russell, 1922) to estimate a persons’ θ (e.g. Eggen &
Verhelst, 2011). This means that the individual response pattern holds no additional
information on the persons’ ability θ rather than is given by the unweighted total
score: it doesn’t matter on what items what scores are obtained. As a result the
total scores are easily translated to θ and vice versa. This is a reason why in many
applications where tests need to be equated, practitioners prefer the Rasch model.
This can be the case of large-scale national or international assessment such as PISA
(e.g., OECD, 2000) who used the model until the 2012 cycle, but also in the practice
of test publishers who equate test versions.

The property of X as the sufficient statistic is true under the Rasch model.
However, if the Rasch model does not hold, X is not the sufficient statistic anymore.
Only just estimating the δj-parameters, or only deciding beforehand that the total
score suffices, it does not mean that the Rasch model holds. The assumptions of the
model need to be checked before the nice properties resulting from the model can be
applied. Because if you apply the incorrect model, the conclusions you draw from
it may be off-target. The model fit needs to be checked (e.g., Molenaar, 1983). This
importance of model fit – or at least an investigation of the robustness of the model –
was also one of the important issues Kreiner and Christensen (2014) raised in their
paper on the use of the Rasch model in PISA. For the 2015 cycle, PISA switched
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the 2pl model for dichotomously scored responses and the generalized partial credit
model (g-PCM; Muraki, 1992) for polytomous items (OECD, 2017; p. 142).

So instead of applying a non-fitting model, it makes sense to reduce the
restrictions and allow variation in the slope of the items, by adding a second
parameter, aj or αj, for each item. This yields the 2pl model or the OPLM. In
most cases the model fit of these models is much better than that of the Rasch
model, because of fewer restrictions. If this model holds, we know that the weighted
sum score (

∑
aiXi) is the sufficient statistic. However, we can only estimate δj-

parameters apply the Rasch model and use X as the sufficient statistics. So now, we
have two sufficient statistics: one obtained by the model that fits the data and one
that doesn’t. It is obviouswhich one should be used to get the maximum information
on θ from the data.

If only psychometric criteria would apply, the choice between the models would
be easy. However, as was also put forward previously, there are also relevant societal
criteria that impose that scale scores have to be explainable to the testees and
the public, its computation has to be transparent, and it must be a fair score not
interfering with the assessment itself.

If we want to apply scores based on the data, but an important practical question
here is: do we inform the candidates in advance about the weight for each item? In
case of an exam, or another high-stakes decision, it would be unfair not to inform
them because then the candidates cannot anticipate. Without additional information
on scoring, for a candidate each item has an equal weight, but in the decision,
through scoring, it does not. So applying the statistical weights afterward might
be an issue. However, obtaining these statistical weights beforehand in a pretest
may not always be the solution. If the weights that are obtained in a pretest are
communicated to the candidates as the weights of the items, it may change the test
behavior of the candidates compared to that of the pretest candidates who did not
have this information. They may spend more time on high weight items and skip the
low weight items more often than the pretest candidates and thus altering the type
of response patterns. As a result also the a-parameters may change and the weights
that were given no longer reflect the model, and the weighted scores with the old
weights is no longer the sufficient statistic.

In the end, the unweighted sum score seem to be a good compromise as it fulfills
basic measurement desiderata for measuring. It may not always be as efficient
(reliable) as weighted sum scores (in case slopes vary), but the loss in efficiency
seems negligible from a practical point of view. In most cases the weighted and
unweighted scores have a high correlation: the ordering of candidates using raw
scores or weighted scores may not be identical – it usually is pretty similar. In
practice, it is very rare to find correlations between the weighted and unweighted
scores below .95. Usually they are over 0.975. For 2pl type of models with a
homogeneous set of slope, it was shown that even ordinal sufficiency may hold
(Zwitser & Maris, 2016).

So, we know the a-parameters vary, but we don’t want to use weights. We may
accept that the stochastic ordering is obtained, but when we have an incomplete
design with different test versions, we also want to compare results from different
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test versions. In the next section, we advocate a procedure that applies the best fitting
model, but still allows to compare the results on the unweighted total score scale.

13.1.3 Using the Total Score to Scale Candidates Without
the Rasch Model

The starting point for the approach is the IRF for dichotomous items and its relation
to the expected unweighted total score, E(X|θ ). For each value of theta, the expected
value X can be determined when you know the IRF for each item, through the
following equation:

E (X|θ) =
∑J

j=1
Pj (θ) . (13.8)

In case we apply the models with a- and b-parameters, like the 2pl model or
OPLM, it means that

E (X|θ) =
∑J

j=1

exp
[
aj

(
θ − δj

)]

1 + exp
[
aj

(
θ − δj

)] . (13.9)

Thus, as a result, once the slope and location-parameters are known, for each
value of θ , the expected value for X is known. Because each of these IRFs are
increasing functions, as long as all slope parameters have a value larger than 0, the
function E(X|θ ) is increasing in θ . As a result, for each value of E(X|θ ), there is also
only one value of θ that can yield that value. Thus, for each discrete value of (the
expected) X, the corresponding θ is known.

Equations (13.8) and (13.9) can easily be extended to polytomous items as well.
First, it can be recognized that for dichotomous items P(Xj=1|θ ) = E(Xj|θ ) and (8)
can be written as

E (X|θ) =
∑I

j=1
E

(
Xj |θ

)
. (13.10)

For polytomous items a model can be selected, which can be a type of graded
response model, a sequential model, or a divide-by-total model (e.g., Hemker et
al., 1997). After a type of model is selected, within each type of model, the
parametrization can be selected that fits the data the best. For example, within the
divide-by-total models, a model with both slope and item-step-parameters (δjs) can
be selected, resulting in the g-PCM(with αj) or the polytomous-OPLM(with aj).
Each items would have only one slope parameter ai and with item scores ranging
from 0 to m on the (x = 0, . . . ,m) would have m item step parameters δjs, with
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s = 1, . . . ,m. That would yield the following equation:

E
(
Xj |θ

) =
∑m

x=1
xP

(
Xj = x|θ) =

∑m
x=1 x

∑x
k=1 exp aj

(
kθ − ∑k

s=1 δjs

)

1 + ∑m
x=1 .

∑x
k=1 exp aj

(
kθ − ∑k

s=1 δjs

) .

(13.11)

Applying both Eqs. (13.10) and (13.11) yields

E (X|θ) =
∑J

j=1

∑m
x=1 x

∑x
k=1 exp aj

(
kθ − ∑k

j=1 δjs

)

1 + ∑m
x=1 .

∑x
k=1 exp aj

(
kθ − ∑k

j=1 δjs

) , (13.12)

which is the polytomous equivalent of Eq. (13.9).
This procedure is an equating method known as true-score equating (e.g., see

Kolen & Brennan, 2014, Chap. 6, pp. 176–181; Lord, 1980; pp. 199–202). It has
also been generally acknowledged that the true-score equating procedure does not
impose any restrictions on the IRT model to be used; that is, it is perfectly fine to use
a 2PLM for equating simple sum scores. Although the true-score is a well-known
and regularly used procedure, in many applications practitioners seem to think that
because they want to use the total score, the equating procedure also needs to be
with a Rasch model. In the next section it is discussed how the application of the
Rasch model and a OPLM result in different outcomes that may impact the persons
who take the test.

13.2 An Example on How to Use the Total Score in Equating
Test Versions

The results of true-score equating can differ depending on the model that is applied.
In the example we compare the results with equating the same test versions on the
same data using the Rasch model and the OPLM. The IRFs are described by Eqs.
(13.5) and (13.7), respectively. The first step is to build an item bank based on real
data. This step was also taken in the project in which data were collected. In the
second step, a reference test with a cut-off score was identified, and this cut-off score
was equated to four different test versions. This step is taken here for illustrative
purposes: the selection of the items in the reference test and alternative tests and the
cut-off score on the reference test are not used in practice
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Table 13.1 Test design: distribution of 78 items over 8 test versions

Table 13.2 Characteristics of the distribution of observations (N) per item

mean sd min Percentiles max
5 10 25 50 75 90 95

N 570 41 479 498 510 546 579 596 621 629 635

13.2.1 Data

The data in this example was collected for a national assessment. In total 78
dichotomously scored items measuring knowledge citizenship in grade 8 in primary
education in The Netherlands, which in the Dutch educational system is the year
before most students start secondary education. The items were distributed over 8
test versions, with 4 test versions containing 19 items and the other 4 containing
20 items. Each item can be found in two test versions. With 8 test versions, 28
combinations of two test versions can be made. All test combinations have at least
two items in common. This is an incomplete design with overlap,where each student
is given about 25% of the items in the item bank. In Table 13.1, the design is given
for illustrative purposes.

Data was collected from 2275 eight grade students in the regular primary
education1. The number of candidates per test version ranged from 211 to 327, with
an average of 284, with more student taking a 20-item test version (304 students
on average per version) than a 19-item test version (265 students on average per
version). The number of observations per item ranged from 479 to 635, with a
median of 579 and a mean number of 570 observations per item. Characteristics
of the distribution of observations per item are given in Table 13.2.

13.2.2 Model Fit

Both a Rasch model and an OPLM are used to describe the data. In the OPLM the
a-parameters are integers with a minimum value of 1. This means that, with varying
a-parameters, the mean a-parameter is by definition larger than 1. We applied an
OPLMmodel where the mean of the a-parameters was arbitrarily set to 3 to identify
the scale and to allow for enough variability in the slopes. To make the OPLM and
Rasch model more comparable, the a-parameter in the Rasch model as defined in

1 A specific national assessment on this topic for special education was also performed, but in order
not to make the example for complicated, these data are not included here.
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Table 13.3 The number of
items with a particular
a-parameter (in both models
total J = 78 and mean a = 3)

Number of items Values of the a-parameters

Model: 1 2 3 4 5 6
Rasch 0 0 78 0 0 0
OPLM 9 24 18 13 13 1

Table 13.4 Values of the fit statistic of the Rasch model and the OPLM in relation to the data

Statistic Likelihood statistics R1c statistics Item misfit (% of items)

Model log-likelihood .−2*log-likelihood N pars R1c df p p < .01 p < .05 p < .10

Rasch −17574.9 35149.7 77 866.51 515 0.000 17% 26% 31%

OPLM −14967.2 29934.3 77 581.78 515 0.021 0% 4% 6%

Eq. (13.5) was also set to 3 for all items. Thus, in the Rasch model all items had an
a-parameter equal to 3 (Table 13.3).

In the program OPLM that can also be used to analyze the Rasch model, a
number of statistics are given to determine model fit (Verhelst & Verstralen, 1994).
In Table 13.4 an overview of the values of the fit statistics is given for the two models
with regard to the data.

The log-likelihood results are better for the OPLM. Note that in the OPLM, the
a-parameters are considered to be imputed and not estimated, which is why the
number of estimated parameters is identical. However, if the a-parameters would
be considered as estimates, the likelihood is higher, and thus the fit is better for the
OPLM. The R1c-statistic shows that the misfit of the OPLM is not significant (p
= 0.021; alpha = 0.01; one-tailed test p = .01). At the level of item fit, we see
in the Rasch model that 17% of the items (13 of the 78 items) show a significant
misfit at the 1% significance level, while this is the case for none of the items in the
OPLM. When we also look at the item misfit at 5% of 10% significance levels, we
see that 26% and 31% of the items in the Rasch model show misfit, whereas in the
OPLM, this is 4% and 6%, which could be considered as no misfit to the model. The
conclusion is that OPLM has a (much) better fit to the data than the Rasch model.
Thus, we consider the OPLM as a better description of the item characteristics than
the Rasch model.

All items in the item bank can be used to estimate the population distributions.
The population distribution shows a mean of 0.397 (SE = .006) and a standard
deviation of .201 (SE = .006) on the Rasch scale. The population distribution on the
OPLM has a mean of .406 (SE = .007) and a standard deviation of .233 (SE = .006).

13.2.3 Test Versions: Reference Test and Alternative Versions

Next, the important question is whether the choice of the model has any impact on
the equating results and consequently has any impact for the candidates’ pass-fail
decisions. Again, note that the selections given next here are only for illustrative
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Table 13.5 Characteristics of the reference and alternative test

Test Number of items RASCH scalea OPLM scale
Mean δj Mean δj Mean aj Line patternsb

REFERENCE 10 0.10 0.10 3.0 Solid
b1 10 0.25 −0.02 1.1 Lines & dots
b2 10 −0.21 −0.01 5.0 Short lines
b3 10 −0.49 −0.35 3.8 Dotted
b4 10 0.49 0.57 1.9 Long lines
aMean a in Rasch scale is always 3
bThe line patterns colors refer to the line in the Figures in the next section

purposes and do not relate to choices and procedures in the national assessment. For
example, the number of items selected for the reference test and the alternative tests
are somewhat arbitrary. Somewhat more realistic numbers could have been chosen;
however for illustrative purposes, these numbers suffice as the principles behind the
example do not change for different numbers of items.

We start with the selection of a set of ten items that form a reference test. These
were ten items that have a mean a-parameter of 3, also in the OPLM. On this 10-item
reference test, the cut-off score that denotes the required ability is set at 6. Usually,
a cut-off score is determined by some sort of standard setting procedure (e.g., Cizek
& Bunch, 2007). These procedures can considerably vary in complexity.

The four alternative tests versions, b1 through b4, that are selected are also 10-
item tests. However, the characteristics of these tests differ over the Rasch and
OPLM model. In Table 13.5 the characteristics in terms of parameters from the
item bank as a Rasch-scale and as an OPLM scale are given. It is obvious from the
mean parameters that the characterization of the alternative tests may vary in case
the parameters from the item bank are from the Rasch model or based on the OPLM.

13.2.4 Equating Results

The equating procedure uses the continuous latent trait scale to compare the totals
score result. If the cut-off score equals 6 correct on the reference set, we know
that the lowest score that is indicative for the required level is 6 items correct out
of 10. This also means that the highest score that yields the conclusion that this
level is not obtained is 5 out of 10. If no more precise information on the cut-off
score is available, for the transfer to the continuous latent trait scale, the actual
cut score can be set at 5.5. Thus, we find the value for θ on the scale that yields
E(Xreference test|θ ) = 5.5 and then relate this point to the expected score of each of
the alternative test. We can do this both on the Rasch scale (left side graph in Fig.
13.1) and on the OPLM scale (right side graph in Fig. 13.1). These functions E(X|θ )
can be considered test characteristic curves (TCCs).
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Fig. 13.1 Cut-off score equating on the Rasch scale (left) and OPLM scale (right)

We see that that most TCCs on the left side of Fig. 13.1 are clearly different from
those on the right side. Whereas on the left side, the TCCs do not seem to cross2,
and the tests only seem to differ in difficulty; this is not the case on the right side.

The true-score equating procedure (Kolen & Brennan, 2014) can be shown as
follows. We start with the solid horizontal line at the expected score of 5.5 and
evaluate where on the latent scale this line crosses the TCC of the reference test. That
is where the expected score of the reference test is 5.5. Next, for all the alternative
test versions, the expected test score at that position is determined. Now for each
test, the expected score is determined that is equated to the expected score of 5.5
on the reference test. In practice the cut-off score is obtained by rounding up this
expected score to the next integer. That is the lowest possible number correct that is
indicative of the required level on that test.

In practice this is not done by a visual inspection, and these expected values can
easily be obtained by applying Eq. (13.7) for the reference test and the alternative
test. First the values for θ is found for which E(Xreference test|θ ) = 5.5. Next, this
value of θ is imputed in Eq. (13.7) for each of the alternative tests. Because the
TCCs differ for the Rasch model and the OPLM, the results may differ depending
on the model that is fitted to the data. In Table 13.6 the results are given for the four
alternative tests.

For three of the four tests in this example, the cut-off score differs depending on
the model and thus the scale that is used for equating. In all instances the difference
is only one point. If we consider the difference in the percentage of candidates
that would pass applying the Rasch model rather than the OPLM, we see that the

2 Note that also under the Rasch model, TCCs may cross, depending on the distribution of the
item difficulties in the tests. It is a not a property of the Rasch model that the TCCs do not cross.
However, in practice it is often found that they do not.
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Table 13.6 Equated cut-off scores on the Rasch scale and on the OPLM scale

Scores Equated on Rasch scale Equated on OPLM scale Difference
Test Exact Cut-off score Exact Cut-off score Cut-off score

b1 (lines & dots) 4.47 5 5.35 6 1
b2 (short lines) 7.42 8 6.98 7 −1
b3 (dotted) 8.57 9 8.61 9 0
B4 (long lines) 2.85 3 3.38 4 1

difference on average is 4%. This may seem like a relatively small percentage, but
is meaningful for the candidates.

In the example the different versions differ in characteristics. This was done
for illustrative purposes, but also because in practice different versions can be
developed for different groups of testees, for example, to make the test suitable
to for different ability levels. This is useful if for one group another ability level is
expected than for another group, for example for measurement in special education
comparedwith regular education. Theoretically this should be possible as long as the
scale is a unidimensional scale and the model fits the data. The main disadvantage
of the short versions is that these are less reliable, and the small difference in
cut-off score has a higher impact in terms of difference in pass-fail percentages.
If we would equate from the 10-item reference test to the maximum size test,
namely, the whole item bank excluding the reference test, we would still have
a 3% difference in student passing, again with more passing under the Rasch
model. Note, however, that it is not the case that one model necessarily results
in stricter cut-off scores than another. One may argue that these small differences
could also be found because of measurement error, but note that the differences in
equating do not replace measurement error. Measurement error will be an additional
nuisance.

Results like these can be relevant to various stakeholders. For example, con-
fronted with two different percentages, policymaker want to know which of the two
is the “true percentage”, especially if larger differences are found between the two
models. Also after explaining issues like measurement error, they want to know
which one to use. Obviously this matters to the testees as well: they only get one
result. We would like to argue that this is not an arbitrary choice, and it is not that it
is simply the case that models just differ, so one is not better than the other. When
we find that one model has a much better fit to the data, we would advise to use
that model to equate tests. The predictions made with that model that can be tested,
for example, the estimation of CTT item and test characteristics of the eight test
versions with the OPLM resembling the observed characteristics better than the
estimations with the Rasch model. We would advise to put faith in the model with
the best predictions.
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13.2.5 Advantage of the Approach

Irrespective of the scales being used, the cut-off scores are only based on
(unweighted) total scores. Alternatively, psychometricians often opt for a cut-
off score on a theta scale. This can have its advantages, as it is precise and all results
from every possible test that are made from the item bank that uses this scale can
be “translated” to that scale. However, there are some disadvantages as well. First
of all, a value on a theta scale in itself is somewhat meaningless to practitioners,
whereas they can understand a number of items correct on a (reference) test.
Another disadvantage is that in this procedure, usually the theta scale is fixed,
because the cut-off score is defined as a value on this theta scale. Consequently,
psychometricians often opt to work with all item parameters as fixed values,
even after new data are collected and the parameters can and sometimes should
be updated. Updating the parameters is especially relevant when the number of
observations exceeds considerably the number of observations on with the original
parameters are obtained. Finally, if a 2pl type of model is used to determine the
theta scale, usually the person estimates are based on score patterns and items are
weighted differently to determine the estimate, while in practice it is often required
to use the (unweighted) total number correct responses.

In the true-score equating procedure, these issues can be avoided. It uses the theta
scale to compare total scores from one test to another, but no real meaning is given to
the actual values on the scale. Any model, also with more than two item parameters,
could be used, and it can be updated over time, to give the best possible cut-score in
terms of a unweighted total score.

13.3 Tales of Caution on the Application of the a-Parameter

The previous paragraphs expanded on the use of the a-parameter. The fact that we
may not need the Rasch model every time we want to use the unweighted total
score adds to appeal of the use of the slope parameter and the use of the better
fitting model. However, there are a number of reasons to use the slope parameter
without giving it too much thought. These cautions are especially relevant for
psychometricians and practitioners who want to use the slopes as weights for the
weighted score anyway, as it should be a better indication than the unweighted score.

13.3.1 Number of Observations per Item

The advantage of the Rasch model is that it is robust. Also in smaller samples,
the estimates for the b-parameters are relatively stable. The COTAN review system
for evaluating test quality (Evers et al., 2010) refers to a 1998 paper by Parshall,
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Davey, Spray, and Kalohn3 as the basis for a table that gives minimum number of
observations to have sufficiently stable results for various models. For the Rasch
model, the minimum of 200 was mentioned, while for the two-parameter logistic
model, at least 400 observations are necessary4. In case the slope parameters are
based on lower number of students, the results are not stable, and the better fit to the
model is actually a matter of overfitting. With a new sample, the results may change
so much that the Rasch results are better. Note that this caution is also relevant for
researcher who want to apply true-score equating.

13.3.2 The Interpretation of the Cause for Varying
a-Parameters

The variation of the slope parameters can simply be used at face value as a
characteristics of the IRF: the higher the slope parameter the more information
the item has at the location given by the parameter δj of that item. However, the
evaluation of the estimated slope parameters should also be with regard to the
content of the items and the test (e.g., Roelofs et al., 2021).

High values for the slope parameters can, and probably should be found, for items
that refer to crucial knowledge rather than items that refer to somewhat less relevant
details. Items pertaining to crucial knowledge often yields higher correlations with
other items than items relating to details and therefore usually result in higher
slope estimates. In this case one may choose to use weighted scores to reflect the
importance of these questions. However, it is only fair to the candidates to indicate
in the test that this item has a higher weight. Another option might be to delete the
items referring to details, if the construct being measured allows it, especially if the
estimates of the slope parameters are very low.

Variation in slope parameters may also be a reflection of variation in item quality.
Some items may better measure the ability or trait that is measured with the test due
to inter- and intra-item writer variability of quality of items. Preferably a review of
the items beforehand makes sure that the candidates are not bothered with badly
written items, in which it is unclear for the candidates what is actually being asked
from them. However, especially inexperienced item writers find it hard to really get
it right. Many gruesome examples can be given. For this reason, pretesting is very
useful. Badly written items, with (almost) flat slopes for a, should not be in the
final test. In some cases rewriting them is possible, but note that pretesting of the
new version of the item is highly recommended. As a result, if all items are equally

3 No reference to the actual is given in the COTAN review system and was not found; only a paper
from 2002 by these four authors was found online.
4 In an unpublished pilot study by Remco Feskens and Bas Hemker in 2020, similar numbers are
found for OPLM. The estimated with the Rasch model seemed to be better and more robust in case
there are less than 400 observations per item.
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relevant, and are of good quality, in the final test the variation of slope parameters
should not be very high.

Another reason why slope parameters may vary is because the test pertains
to a multidimensional measurement. Note that a variation in slope parameters is
not a proof for multidimensionality, neither is the lack of variation a proof for
unidimensionality. However, when a large variation in slopes is found, it may reflect
that more than one trait is being measured. This could be by design, for example, in
a math test where two third of the course work was about algebra and one third was
about statistics. It could be wise to simply make two different tests, one for each
subject being measured, but often both subjects are in the same test resulting in one
test score, especially in case of summative measurement such as exams. In those
cases, often the mean a-parameter of the items relating to the dominating topic often
is larger than that of the items regarding the other topic, or topics. Then, if weighted
scores are used, the dominance of the majority items exceeds the percentages of
items allocated the topics.. For example, in case of a 30 items test with 20 items
(67%) on a majority topic with a mean a-parameter of 3.5 and 10 items (33%) on a
minority topic with mean a-parameter of 2 (total mean a = 3), the weighted score
ranges from 0 to 90. Only (10*2 =) 20 of these points (22%) then relate to the
minority topic, and (20*3.5 =) 70 points (78%) relate to the majority topic which
changes the intended ratio of the content being measured and therefore the intended
content validity.

Also it may happen that there is no intended dominating topic, but one type of
items that have the same form or refer to the same topic and have a higher inter item
correlation than other items. As a results, for these items the mean slope parameter
is higher than for other items. Thus, these items start to dominate the score range. A
real-life example was once found in pretest of a vocabulary test. Whereas most items
related to the meaning of the items, in 20% of the items the respondents were asked
to select the opposite meaning. A relatively large part of the students had missed that
not a similarity was requested and gave an incorrect response on all these items. This
inflated the inter-item correlation on these items. As a result, in the OPLM the mean
a-parameter of these items was more than twice as high than the mean a-parameter
for the other items. Instead of the 20% of the intended score range, reflected by the
number of this type of items, 36% of the weighted scores was related to these items.
For this reason, especially if the test contains well-defined topics, or types of items,
it is important to evaluate whether the mean slope parameters on one set of items is
not much larger than that for the other sets.

A related issue is that local stochastic dependence can be masked as items
with high slope parameters. Say, there are two items, and the second can only
be responded correctly in case of a correct response to the first, these items are
dependent. They will have a relatively high inter-item correlation, and both items
will get a relatively high slope parameter. These high slope parameters do not mean
that these items measure the topic very well, or reflect the trait the best. However,
in case of weighted scores, they will have an huge impact simply because of the
interdependence of the items. Thus, if in a calibration two items that are next to
each other and that both have very high slope parameters, this may indicate that
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the assumption of local stochastic independence has been violated. It is advised to
check this before scoring. The solution, if the items turn out to be interdependent, is
easy: these items can be scored as one polytomous item. All parameters then should
be estimated again. Usually, the slope of the resulting polytomous item is similar to
that of the other items.

The main message from this paragraph is that the variability in slope parameters
can indicate important issues in the test. The assumption that the slope parameter
simply reflects the quality of the item, as items with high a-parameters often
regarded as good items, may not always be true. A considerable variation in a-
parameters should trigger a further investigation of the content of the items on
whether this optimistic assumption is correct.

13.4 Discussion

As psychometricians who apply IRT, our question is not so much Hamlet’s “to be
or not to be” (Shakespeare, 1600), but “to a or not to a.” A first question might be:
does it matter? As was mentioned, for estimating candidates’ abilities, the impact
seems relatively mild. Then, if only the ordering of the candidates is important, it
could be argued that it hardly matters, because usually high correlations are found
between the weighted and unweighted scores. A very important reason to stick
to the unweighted sum score is the transparency to the testees and other societal
requirements.

If these requirements do not apply, the psychometric perspective optimal
weighted score can be used. However, a number of cautions are given, because
the weights based on the slope parameters may not always reflect the relevance
of the item and may change the validity of the measurement. A wide variation
of values of the slope parameters may hide model violations, such as a lack of
unidimensionality, or the lack of local independence. Note that varying slopes
are definitely not proofs of such violations, but it may be wise to return to the
actual items to see why some extreme a-parameter estimates occur. In the end
psychometrics should always go hand in hand with the expert view of the persons
who constructed the items.

In equating tests, where not only the ordering of candidates is important but also
whether a specific cut-off point is reached, it can matter what model is used to
equate. Whether these differences are considerable or not can be debated. However,
with true-score equating, the optimal, best fitting model can be used while still
reporting on the basis of the unweighted total score. It will get better results, because
in most cases the models with slope parameters give a better description of the data.
Therefore, the translation of the cut-off score over test versions is also better when
the right model is applied. The need to use the total score does not imply that the
Rasch model is necessary in this equating procedure.

An advantage of the true-score equating is the generality of the procedure. In this
paper we focused on the Rasch model and the 2plm type of models, but it could
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easily be extended to other IRT models as well that throw more item parameters in
the mix. This extends to polytomous models as well, so equating of test with other
response formats (partial scoring, Likert-scales) is also possible. The caution with
regard to the necessary number of observations per item in case a slope parameter is
used extends to the addition of more parameters as well: the number of observations
necessary to get stable estimate of each parameter increases with the number of
parameters per item.

Note that in the example we equated only one cut-off score. The procedure
can also be applied for multiple cut-off points, such as a cut-off for the required
fundamental level of ability and for a more ambitious target level. In the extreme
case, each item score on the reference test can be considered as a cut-off point. In our
example that would yield 10 cut-off points. However, some additional challenges
occur in those cases that are worthy of their own study.

A final remark is that if you read between the lines, this study also advocates
the communication of results in terms of observed, unweighted total scores, and
other easy-to-grasp statistics. We can use IRT as a tool, but societal demands
require that we need as transparent as possible, or as least have explainable
results. To communicate in terms of ability scales with values that in itself have
no real meaning, and can be transformed into all kinds of different scales as
well, may be confusing, especially, in educational measurement where over time
the dimensionality of the scale changes due to changes in the curriculum. The
translation to make what we do statistically understandable for, in our case teachers,
students and their parents, policy makers, and the general public, is of utmost
importance. The use of easy-to-understand statistics is to explain our more difficult
models is key here.
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Chapter 14
A Bayesian Test for the Association
of Binary Response Distributions

Rudy Ligtvoet

Abstract Item response theory models impose testable restrictions on the observed
distribution of the response variables. In this chapter, the inequality restrictions
are investigated imposed by Mokken’s model of monotone homogeneity (MH)
for binary item response variables. A Bayesian test for the observable property of
variables being associated is proposed for the trivariate distributions of all triplets of
items. This test applies to a wide range of item response theory models that extend
beyond the MH model assumptions.

List of Abbreviations

MH Mokken’s (1971) model of monotone homogeneity.
SPOD Strongly positive orthant dependence (Definition 1).
A Variables being associated (Definition 2).
CI Assumption of (local or) conditional independence.
UD Assumption of unidimensionality.
M Assumption of (latent) monotonicity.
LND Assumption of local non-negative dependence.
DINA The deterministic inputs, noisy, AND gate model.

14.1 Introduction

Mokken scale analysis consists of a collection of diagnostics to assess the assump-
tion underlying the model of monotone homogeneity (MH; Mokken, 1971; Mokken
& Lewis, 1982; Molenaar & Sijtsma, 2000; Sijtsma, 1988; Van der Ark, 2007; see
List of Abbreviations section). The MH model allows for ordinal inferences about
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a latent variable based on the observed responses to the item variables that make up
a test. For example, for binary item variables, the MH model implies a stochastic
ordering on the latent variable by the sum of the item scores (Grayson 1988; Ghurye
& Wallace 1959; Huynh 1994; Ünlü 2008). The assumptions that constitute the MH
model are useful in applications when ordinal inferences are required and no further
(parametric) assumptions are deemed either necessary or appropriate.

The diagnostic statistics most prominently used in Mokken scale analysis are the
scalability coefficients, which are calculated from the bivariate distribution of pairs
of item variables (Loevinger 1948; Molenaar 1991; Warrens 2008). The MH model
requires that these scalability coefficients are all non-negative, whereas any negative
coefficient discredits or invalidates the model assumptions. However, non-negative
scalability coefficients are not sufficient for the MH model. A more restrictive
demand of the model is the requirement of non-negative partial correlations, for
all triplets of items (Ellis 2014). The restrictions imposed on the trivariate item
distributions by this latter requirement are part of a wider class of properties of
multivariate positive dependence. Examples of these properties are multivariate
total positivity (Ellis 2015; Karlin & Rinott 1980) and conditional association
(Holland & Rosenbaum 1986; Rosenbaum 1984), which are also implied (necessary
but not sufficient) by the MH model.

A set of assumptions, other than those that define the MH model, was proposed
by Holland (1981), with the aim of testing a wider range of item response theory
model. These assumptions pertain to perfect scores (all zeros or ones) on subsets
of item variables and hold, if and only if any subset of item variables satisfies the
property of strongly positive orthant dependence (SPOD; Joag-Dev, 1983). Because
conditional association implies SPOD (Definition 1 below), it follows that SPOD
includes the MH model as a special case (Holland & Rosenbaum 1986).

In this chapter, a Bayesian test is proposed for a wide range of models for
binary response data. This test is based on the observable property of variables
being associated (A; Esary et al., 1967; Walkup, 1968), but applied to all trivariate
distributions of triplets of item variables (cf. non-negative partial correlations). In
the following section, I introduce some properties of latent variable models and the
observable properties that are implied by these models. In Sect. 14.3, the restrictions
imposed on the data distribution by the testable properties are expressed in terms of
inequality constraints on the log-odds ratios related to the multinomial parameters.
This allows for a convenient way of expressing the Bayes factor in favor of property
A. The analysis of response data using the Bayes factor is illustrated in Sect. 14.4,
followed by a short discussion in Sect. 14.5.

14.2 Preliminaries and Notation

Let .X = (X1, . . . , XJ ) denote the random vector containing the J binary item
response variables. The (real) latent vector .θ is introduced through the law of total
probability, .P(X = x) = ∫

P(X = x|θ)dG(θ), with its distribution function
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G further left unspecified. To define a model, several conditions are considered.
The first of these conditions is that of local or conditional independence (CI):
.X1, . . . , XJ are conditionally independent, given .θ. The latent vector is said to be
unidimensional (UD), whenever .θ = θ (scalar-valued). The conditions of CI and UD
alone, however, are not enough to impose testable restrictions on the distribution of
.X (Suppes & Zanotti 1981). The additional condition of monotonicity (M) states
that the item response functions .P(Xj = 1|θ) are (element-wise) non-decreasing
in .θ, for all .j = 1, . . . , J . Holland and Rosenbaum (1986) referred to a model that
assumes CI and M as a monotone latent variable model, whereby the additional
assumption UD defines Mokken’s (1971) MH model for .(X, θ).

14.2.1 Strongly Positive Orthant Dependence

Holland (1981) proposed a set of conditions, with the purpose of providing a test of
a wide range of item response theory models. He showed that these conditions hold,
if and only if X satisfies the observable property of SPOD (Joag-Dev 1983), for any
selection of variables from X.

Definition 1 The vector X is said to satisfy the property of SPOD (X is SPOD), if
for any partition X = (Y,Z), the following three inequalities hold:

.
P(Y = 1)P (Z = 1) ≤ P(X = 1), P (Y = 0)P (Z = 0) ≤ P(X = 0),

and P(Y = 1)P (Z = 0) ≥ P(Y = 1,Z = 0).
(14.1)

For the special case J = 3, there are only three distinct (non-empty) partitions
of X to consider, with Y = Xi and Z = (Xj ,Xk), for i = 1, 2, 3 and j, k �= i. This
is because, for J = 3, the first two inequalities in Definition 1 imply (if and only if)
the last inequality for both Y = Xi and Y = (Xj ,Xk). For example, for Y = X1
and p(x) = P(X = x), with u = (0, 1, 1), the first inequality implies that

.
P(X1 = 1)(p(u) + p(1)) ≤ p(1) ⇔ p(u)/p(1) ≤ 1/P (X1 = 1) − 1
⇔ p(1)/p(u) ≥ 1/P (X1 = 0) − 1 ⇔ P(X1 = 0)(p(1) + p(u)) ≥ p(u),

(14.2)

where the last expression corresponds to the third inequality in Definition 1, for
Y = (X2,X3).

For the general case (any J ), the condition of local non-negative dependence
(LND) is obtained from Definition 1, by conditioning each term on θ . The following
result by Holland (1981, Theorem 2) shows that SPOD provides a characterization
of a wide class of latent variable models for binary response variables.
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Theorem 1 (Holland, 1981) The binary random vector X is SPOD, if and only if
UD and LND hold, and for any partition X = (Y,Z), both

.
P(Y = 1|θ) is non-decreasing in θ and
P(Y = 0|θ) is non-increasing in θ.

(14.3)

The set of conditions listed in Theorem 1 contain the MH model as a special
case (Holland & Rosenbaum 1986), where Holland (1981) referred to Eq. 14.3 as
monotonicity of the subtest characteristic curves.

14.2.2 Variables Being Associated

Holland (1981) generalized the conditions that define the MH model (i.e., UD, CI,
and M) by relaxing the CI condition and replacing M by Eq. 14.3. Alternatively,
one may replace the UD restriction by less restrictive constraints on the multidi-
mensional vector θ, to obtain a multivariate version of the MH model for (X, θ).
Here, one such relaxation is considered, namely, that θ is A.

Definition 2 (Esary et al., 1967) The random vector θ is said to be associated with
(θ is A), whenever the covariance between φ(θ) and ϕ(θ) is non-negative, for any
(element-wise) non-decreasing functions φ and ϕ, for which the involved expected
values are defined.

If θ is A, then any selection of variables from θ is also A, which follows by taking
φ and ϕ to pertain only to the selected variables. Assuming CI and M, the following
testable result is obtained (Holland & Rosenbaum, 1986, Theorem 8, referring for
the proof to Jogdeo, 1978).

Theorem 2 (Jogdeo, 1978) If θ is A, CI and M imply that X is also A.

Proof Together, M and CI imply that E[φ(x)|θ] is non-decreasing in θ for any non-
decreasing function φ (e.g., Holland & Rosenbaum, 1986, Lemma 2). Also, X|θ is
A, because of CI (Esary et al. 1967, Theorem 2.1). Then, by the Theorem in Jogdeo
(1978, p. 234), (X, θ) is A, and X is also A, because any subset of associated random
variables satisfies A. ��
The MH model is a special case of the conditions in Theorem 2, which in turn are a
special case of the conditions in Theorem 1, as property A implies property SPOD
(e.g., Holland & Rosenbaum, 1986, p. 1536).

Another example of a model that satisfies the conditions in Theorem 2 can
be obtained by considering α = (α1, . . . , αK) to be a binary random vector of
latent attributes. The DINA model (Doignon & Falmagne 2012; Tatsuoka 1995) is
a response model for cognitive assessment, with a successful outcome expected on
an item, if all the relevant attributes are possessed. The relevance of the attributes
for item j is determined by the binary vector (qj1, . . . , qjK), which is usually fixed
in advance for all items. For the response functions, let P(Xj = 1|α) = P(Xj =
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1|ξj = 0)P (Xj = 1|ξj = 1), with ln(ξj ) = qj1 ln(α1) + . . . + qjK ln(αK). Then,
the DINA model implies condition M, if and only if P(Xj = 1|ξj = 0) ≤ P(Xj =
1|ξj = 1) (Junker & Sijtsma 2001).

Proposition 1 Assuming CI and M, the DINA model implies that X is A, if (α, η)

satisfies the MH model, with η denoting a second-order latent variable.

Proof The MH model for (α, η) implies that α is A, so that (X,α) satisfies the
conditions of Theorem 2 (replacing θ by α). ��

The second-order latent variable in Proposition 1 can be thought of the cognitive
growth that stimulates the development of the attributes, with η positively related to
the total number of attributes under the MH model. The purpose of Proposition 1 is,
however, not to propose another cognitive diagnostic model, but rather to illustrate
the generality of the conditions in Theorem 2.

14.3 Restrictions on the Log-Odds Ratios

Both the property of SPOD and A impose a number of inequality restrictions on the
distribution of .X. In order to test these restrictions, it is convenient to denote by .p
the vector containing the elements .p(x) = P(X = x), arranged in lexicographical
order of .x (with elements on the right running faster from 0 to 1). Also assume that
.p > 0. Then, the restrictions imposed by either of the properties can be concisely
expressed in terms of inequality restrictions on the log-odds ratios, as

.K ln(Mp) ≥ 0, (14.4)

(cf. Bartolucci & Forcina, 2005) with .K = Iv ⊗ (1,−1,−1, 1) and .Iv is the identity
matrix of dimensions v equal to the number of restriction. The matrix .M is a binary
design matrix which can be adapted to pertain to the restrictions of either A or
SPOD. For example, for .J = 2, take .v = 1 and .M = I4, so that Eq. 14.4
yields .ln p(0, 0) − ln p(0, 1) − ln p(1, 0) + ln p(1, 1) ≥ 0, which corresponds to
.Cov(X1,X2) ≥ 0.

Walkup (1968) listed the set of all pairs of binary non-decreasing functions that
characterize property A, for up to four items. For .J = 3, there are nine such pairs
of function. One example of such a pair corresponds to Cov.(X2,X3) ≥ 0. It can be
verified that this restriction is obtained from Eq. 14.4 using .M = (1, 1) ⊗ I4. Let
.pk denote the kth element of .p, with .p1 = p(0), p2 = p(0, 0, 1), . . . , p8 = p(1).
Another example imposes the restriction Cov.(1 − (1 − X1)(1 − X2),X3) ≥ 0,
which corresponds to the restriction .ln p1 − ln(p3 + p5 + p7) − ln p2 + ln(p4 +
p6 + p8) ≥ 0, obtained from Eq. 14.4, using “.⊗” for the Kronecker product, as
.M = (I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′, (1, 1) ⊗ I2 ⊗ (0, 1)′). By going though all .v = 9
pairs of functions listed by Walkup (1968), and stacking on top of one another all the
corresponding design matrices, we find that property A holds for .J = 3, if Eq. 14.4
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holds, with design matrix

.M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1

M2

M3

M4

M5

M6

M7

M8

M9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1, 1) ⊗ I4

I2 ⊗ (1, 1) ⊗ I2

I4 ⊗ (1, 1)

I2 ⊗ ((1, 0)′ ⊗ (1, 1)) ⊗ I2

I2 ⊗ (I2, (0, 1)′ ⊗ (1, 1))

(I2 ⊗ (1, 0)′ ⊗ (1, 1), I4)

(I4, I2 ⊗ (0, 1)′ ⊗ (1, 1))

((1, 1) ⊗ I2 ⊗ (1, 0)′, I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′)
(I2 ⊗ (1, 0)′, I2 ⊗ (0, 1)′, (1, 1) ⊗ I2 ⊗ (0, 1)′)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.5)

The matrix .M in Eq. 14.5 consists of .v = 9 stacked matrices .M1, . . . ,M9, each of
dimensions .4 × 8.

The following result shows that SPOD and A coincide in case .J = 3.

Theorem 3 For .J = 3 binary variables and .p > 0, property A is satisfied if and
only if property SPOD is satisfied for all subsets of variables.

Proof For any subset of two variables from .X = (X1,X2,X3), SPOD implies
that the covariance between the two variables are non-negative. This corresponds
to .M1, .M2, and .M3 in Eq. 14.5 for the three distinct subsets .(X2,X3), .(X1,X3),
and .(X1,X3), respectively. The remainder of the proof consists of going through
the process of exhaustively listing all restrictions imposed by SPOD for .J = 3
and expressing these in terms of the log-odds ratios. It can then be shown that
.M4, . . . ,M9 of the design matrix .M in Eq. 14.5 match one-to-one with those
obtained for property SPOD. As an example, consider the inequality .P(Y =
1)P (Z = 0) ≥ P(Y = 1,Z = 0) from Definition 1, which reduces for
.Y = (X1,X2) and .Z = X3 to .(p7 + p8)(p1 + p3 + p5 + p7) ≥ p7 and yields
.ln p8 − ln(p2 + p4 + p6) − ln p7 + ln(p1 + p3 + p5) ≥ 0. The last inequality is
obtained from Eq. 14.4 using .M8 in Eq. 14.5. The remaining five inequalities can
be obtained similarly. ��

One problem when testing either the properties A or SPOD using Eq. 14.4 is
that the number of constraints grows fast as J increases to a more realistic size. For
example, for .J = 4, Walkup (1968) listed 99 restrictions imposed by property A.
Furthermore, many of the restrictions pertain to outcomes for which observations
may be sparse as these restrictions involve ever higher-order interactions between
the variables in .X. A solution to both these problems is to consider testing the
property A for all triplets of item response variables from .X only. By considering
the trivariate distributions, the hope is to have a test that is more powerful than a
test that involves only the bivariate distribution while at the same time being broad
enough to target a wide range of response models.
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14.3.1 Trivariate Associated Distributions

Considering all the triplets of item variables of a test of length .J ≥ 3. With property
A imposing .J (J − 1)/2 inequality restrictions on the bivariate distributions, and six
restrictions involving three items for each trivariate distribution, the total number of
restrictions .v = J (J − 1)(J − 3/2).

The design matrix .M for assessing the v inequality restrictions is obtained as
follows. First, let

.Bjk = Bjk1 ⊗ · · · ⊗ BjkJ , with Bjkl =
{

I2 if either j = l or k = l

(1, 1) otherwise,
(14.6)

and let the matrix .B be obtained by stacking on top of one another all matrices .Bij ,
which contains all the restrictions imposed on the bivariate distributions. Second,
for the trivariate distributions, let .R be the 8 by 3 matrix with in its rows all binary
vectors of length 3, in lexicographical order. Likewise, let .S be the .2J by J matrix
with in its rows all binary vectors of length J , and let .T denote the matrix in Eq. 14.5,
but without .M1,M2, and .M3. Third, let .Cjkl be a matrix of dimensions 24 by .2J .
Matrix .Cjkl is assigned to its ath column the same values as .T has in its bth column,
whenever .(saj , sak, sal) = (rb1, rb2, rb3), for .1 ≤ a ≤ 2J and .1 ≤ b ≤ 8. Finally,
matrix .C is obtained by stacking all matrices .Cjkl on top of each other.

The goal is to test the hypothesis H of trivariate A, for all triplets of response
variables, with H obtained as the set of vectors .p, which satisfy .p > 0 and .1′p = 1
(multinomial model), and Eq. 14.4, with the matrix .M obtained from stacking matrix
.B on top of .C. A maximum likelihood procedure for testing inequality restrictions
requires the estimation of .p and produces test statistics which asymptotic sampling
distributions are difficult to obtain (e.g., Bartolucci & Forcina, 2000, 2005; Vermunt,
1999). Here, a Bayesian approach is considered instead, which requires a prior
density to be assigned to .p, but has the advantage that it allows for hypothesis H

to be tested against its complement of at least one violation of Eq. 14.4. As a prior
for .p, a flat (uniform) Dirichlet distribution is chosen, where the influence of this
particular choice is expected to be small as long as all observations of .X = x have
enough support.

14.3.2 Bayes Factor for Trivariate Associated Distribution

The Bayes factor in support of hypothesis H is expressed in terms of the prior
and posterior probabilities that the restrictions imposed by H are satisfied (Klugkist
& Hoijtink 2007; Tijmstra et al. 2015). The prior probability of H is estimated
by sampling a large number of vectors .p from the flat Dirichlet distribution and
calculating the proportion c that satisfies Eq. 14.4. Let .n denote the vector containing
the observed frequencies of .X = x, arranged as .p. Also, let d denote the proportion
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of samples that satisfy Eq. 14.4, with the samples obtained from a Dirichlet
distribution, with the hyper-parameters equal to .n + 1. The ratio .d/c provides an
estimate of the Bayes factor in favor of H over the multinomial model. The Bayes
factor for the evidence in favor of H over its complement (at least one violation)
then becomes

.L = (1/c − 1)/(1/d − 1), (14.7)

where a value .L > 1 expresses support in favor of H , whereas a value .L < 1
expresses support for the hypothesis that there is at least one violation of H (Lavine
& Schervish 1999; Kass & Raftery 1995).

The sampling procedure for obtaining the proportions c and d can be made more
efficient by “activating” the restrictions one by one. Let .ck denote the conditional
proportion of samples that satisfy the kth restrictions, given that all previous .k − 1
restrictions are satisfied. Then, .c = c1 · · · cv and similarly for d (Mulder et al. 2009;
Tijmstra & Bolsinova 2019), where a sample of vectors .p under the first .k − 1
restrictions can be obtained using a Gibbs sampler similar to Hoijtink and Molenaar
(1997; Ligtvoet & Vermunt, 2012).

For illustration of the Gibbs sampler, let .J = 3, and consider sampling .p3 from
the prior distribution constrained by Eq. 14.4 using for .M in Eq. 14.5 only .M1, .M2,
and .M3. Let

.a = min((p̃1 + p̃5)(p̃4 + p̃8)/(p̃2 + p̃6) − p̃7, (p̃1 + p̃2)(p̃7 + p̃8)/(p̃5 + p̃6) − p̃4)

and b = (p̃2 + p̃4)(p̃5 + p̃7)/(p̃6 + p̃8) − p̃1, (14.8)

with .p̃k denoting the values sampled at the previous iteration. The newly sampled
value .p̃3 obtained from the gamma distribution truncated between a and b then
yields .p̃/1′p̃ as a single sample from the prior distribution constrained by the
restrictions imposed by matrices .M1, .M2, and .M3. This sampling procedure is
repeated (for both the prior and posterior) for each .pk many times over, gradually
adding the restrictions by extending .M1,M2, . . . , up to .Mv . An R program for
implementing this algorithm and calculating the Bayes factor is available from the
author’s website.

14.4 Application

As a small application, consider the transitive reasoning data (Verweij et al. 1996,
for details), which are available from the mokken package in R (Van der Ark
2007). These data consist of the binary responses of .N = 425 children to transitive
reasoning tasks, where we limit the analyses to those tasks that relate to the task
property Length (.J = 4) and Weight (.J = 5).
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For the .J = 4 items related to the task property Length, hypothesis H imposes
.v = 30 inequality restrictions. Considering only the restrictions on the bivariate
distributions, we get a Bayes factor of .L = 1.2936, indicating no clear evidence
in favor or against property A. Including the remaining 24 restrictions imposed by
hypothesis H yields .1/L = 4.6555, which indicates substantial evidence against the
variable of the task property Length being A. The result thus discredits any model
that is a special case of the general conditions listed in Theorem 2, including the MH
model. This result, however, was not obvious when only the information contained
in the bivariate distributions was considered.

For the .J = 5 items related to the task property Weight, .L = 13.1766, indicating
strong evidence in favor of hypothesis H .

14.5 Discussion

The Bayes factor for the hypothesis that the observable property A holds for
all trivariate distributions of triplets of item variables (hypothesis H ) provides
a convenient way of summarizing evidence in favor of the many restrictions
the property imposes on the observed binary data distribution. The application
illustrated that the restrictions imposed by the property on the trivariate distributions,
in addition to the restrictions on the bivariate distributions, cannot generally be
ignored. A test of property A for all J item variables becomes practically infeasible
due to the large numbers of restrictions. Hence, the proposed test strikes a balance
between the power of the test and what is practically feasibility. However, the
procedure for computing the Bayes factor is still computationally very intensive
and is no longer feasible for more than seven items. The procedure would thus
benefit from alternative ways of estimating or approximating the prior and posterior
probabilities for the Bayes factor.

One easy way of alleviating the computational burden when assessing trivariate
A is to consider calculating the Bayes factors separately for each of the triplets of
item variables, rather than combining these same restrictions into a single test. Note
that the number of restrictions in both cases is the same, but the Gibbs sampler
runs faster many times on smaller problems than on a single run across the entire
.2J multinomial outcome space. However, the challenge then is to combine the
.J (J − 1)(J − 2)/6 Bayes factors to come to a judgment about the validity of the
assumptions being tested for subsets of response variables. The use of a single global
test has a clear advantage here.

Theorem 2 shows that property A for all trivariate distributions is implied by
any model for binary response data that assumes the conditions CI and M to
hold and additionally assumes that the random vector of (multidimensional) latent
variables satisfies property A. These conditions include those that were proposed
by Holland (1981) for trivariate distributions, Mokken (1971)s MH model, and a
special multilevel version of the DINA model (Proposition 1). Whereas specific
tests can be designed for each of the special instances of the conditions listed in



280 R. Ligtvoet

Theorem 2, the test proposed here is aimed at assessing whether the pursuit of any
of such models is worth the effort at all.
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Chapter 15
Efficiency and Effectiveness
of Teacher-Informed Targeting Testing
from Different Perspectives

J. Hendrik Straat, Renske E. Kuijpers, Kimberley Lek,
and Wilco H. M. Emons

Abstract This chapter explores targeting testing in applications where the main
interest is in classifying the test takers into three (or more) ordered proficiency
levels. A targeted test consists of several fixed booklets, balanced in content but
varying in the overall difficulty. The booklets are assigned to test takers using
background information about the ability. Usually it is the teacher who assigns
the booklets. Targeting testing can be conceived as a modest form of adaptivity
that balances psychometric, substantive, instructional, and practical requirements.
Using simulations, we studied the consistency and accuracy of targeted tests for
polytomous classifications. A distinction is made between the use of targeting
testing for making decisions about individuals and its use for interpreting group-
level results. Results are obtained for various number of items per booklet, different
booklet compositions, and different optimal or less optimal strategies for assigning
booklets to candidates.

15.1 Efficiency and Effectiveness of Teacher-Informed
Targeting Testing from Different Perspectives

Educational assessments are oftentimes used for multiple purposes, even if obtained
with a fixed set of instruments. The results are of interest to different groups of
stakeholders. For example, teachers use the assessments to monitor student learning,
to provide feedback to students (Hattie & Timperley, 2007), to communicate about
learning achievements with student’s parents, or to make informed instructional
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decisions either at the individual level or at the class or course level (i.e., formative
assessment; e.g., Wiliam, 2011). School councils use the results to evaluate their
performance and for accountability purposes. Policy-makers use the results of
educational tests in evaluation studies on school effectiveness, to monitor nation-
level student achievements over the years and to evaluate the impact of specific
educational policies.

Different testing purposes generally require different test specifications. If the
test is only used for pass-fail decisions – like with mastery testing and credentialing
(Jodoin et al., 2006) – then the test items must be composed in such a way that pass-
fail decisions can be made as reliably as possible. To accomplish this goal, the test
has to consist of items that are most informative for ability levels close to the cutoff,
which amounts to items having about the same difficulty. However, if the test is used
to monitor student achievement over a longer period of time, either at the individual
level or the group level, then the test should be informative about the entire ability
range. This means that the items should have a greater variation in difficulty. In other
words, from a psychometric perspective, what works well for one purpose may be
less effective for another.

To achieve the intended educational goals, it is important that the tests meet
the basic psychometric requirements, but designing assessment programs involves
many other considerations as well. What different testing goals often have in
common is that they require assessments across different content domains and,
perhaps more importantly, that measurements are taken periodically. Research has
suggested that periodic monitoring student achievement is a key driver to successful
learning and advancing school effectiveness (e.g, Fuchs et al., 1984; Ysseldyke et
al., 2003). It enables teachers to detect individual learning delays at an early stage
and intervene timely if there is a reason to do so. It also gives teachers, schools,
and policy-makers the necessary tools to make informed decisions, particularly in
the event of unforeseen complications such as the school closures during COVID-
19 pandemic in 2020. For many weeks, students had to follow the lessons online,
and students were dependent on homeschooling. The impact that may have had
on student learning created a sudden urgency to use all available test information
to study the immediate effects on educational progress and possible learning loss
(Engzell et al., 2021; see also Lek et al., 2020).

Extensive periodic testing, however, may have a downside because it may
consume valuable teaching time. Therefore, it is imperative that the allocated
assessment time is used as efficient as possible. It is well-known that tests are
most informative if the item difficulties match the ability level of the test taker
(Lord, 1980). Items that are way too easy or way too difficult provide little
information about the student’s ability and should better be avoided. Adaptive
testing (e.g., Weiss, 1982) refers to assessment methodologies that take the ability
level of the candidate into account in the selection of the items to be administered.
Computerized adaptive assessments (CAT; Lord, 1980; Eggen & Straetmans, 2000;
Van der Linden & Glas, 2010; Wainer, 2000; Weiss, 1982) select the items in real
time, each item using the information about the ability which is available so far.
In multistage testing (Berger et al., 2019; Lord, 1971; Yan et al., 2014), ability-
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matching clusters of items are selected sequentially throughout the test. These
clusters are equally balanced in content. Research has shown that well-designed
CATs may reduce test length considerably (e.g., Van der Linden & Glas, 2010).

It goes without saying that CATs have high potential, but building CATs can be
difficult and costly to realize in practice. It requires a well-calibrated item bank,
which in turn requires extensive item pretesting in large samples. In addition to
the high development costs, there are also educational concerns regarding their
feasibility in practical settings. For individual learning and feedback, but also to
evaluate learning in relation to the curriculum at aggregated levels, it is important
that the tests adequately cover the relevant educational objectives, where each
objective is tested at the desired cognitive level. When different test forms would
vary too much with respect to the tested subjects – for example, one math test
contains more items about addition and another math test contains more items about
division – the test results may not be generalizable to the content domain. This need
to adequately control the content has led to further technical innovations in CAT
such as Van der Linden and Veldkamp’s (2004) shadow test approach. It has been
also a driving force for new developments in multistage testing (Luecht & Nugester,
1998; Yan et al., 2014; Zenisky et al., 2010).

In addition to concerns about psychometric efficiency and content validity, other
contextual considerations play a role as well. These considerations pertain to the
testing conditions, transparency, and technical feasibility. First, in linear tests, test
takers can easily skip questions and come back to them later. Research has shown
that the possibility of review and changing answers had a positive effect on the
results (Vispoel, 1998). Second, because CATs rely on IRT-based pattern scoring,
the items may receive different weights in a CAT without the student being aware
of it, rendering the scoring less transparent. With a fixed linear test, the student
can be clearly communicated in advance how many score credits he/she needs to
achieve a certain mastery level. Finally, computer-based testing may still not always
be practically feasible, even in times where many students have laptops and tablets
at their disposal.

A modest and accessible approach to adaptive testing for multiple purposes,
including class-room settings, is the so-called targeting testing (e.g., Berger et
al., 2019; Eggen & Verhelst, 2011; Mislevy & Wu, 1996; Wainer, 2000). The
measurement instrument consists of a collection of linear tests, henceforth referred
to as booklets, which cover the same content domain but differ in overall difficulty.
Test takers are assigned to booklets using background information related to ability
such as grades or class performance. In practice, it is usually the teacher who
determines which booklet is to be administered to the student. Targeted testing
is particularly interesting in classroom settings. By working with fixed booklets,
teachers get easily experienced with the test materials and then can use those
experiences to easily identify the learning objectives the student is struggling with
(e.g., William & Leahy, 2015). Likewise, the teacher can better evaluate whether the
performances are in line with expectations.

However, the effectiveness of targeting testing depends on the composition of the
booklets and the accuracy by which booklets are optimally assigned to test takers.
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Because booklets are assigned based on auxiliary background information, it cannot
be guaranteed that the test takers always receive the booklet that best matches their
ability. Therefore, it is important that the booklets in targeted test are generic enough
to compensate modest misassignments, but specific enough to realize the benefits of
an adaptive test. Finally, the booklets must be designed in such a way that valid
conclusions can be reached at multiple levels (student, class, cohort).

This chapter explores targeting testing in applications where the main interest
is in classifying the test takers into three (or more) ordered proficiency levels.
These levels may pertain to educational achievement (e.g., below basic, basic,
proficient) or used as input for making placement decisions (e.g., Berger et al.,
2019). In particular, we are interested to what extent targeting testing allows
consistent and accurate decisions – either at the individual level or the group
level – using subjective booklet assignment and a limited number of items. The
overarching goals of this chapter are twofold: first, to provide a better understanding
of implementations of targeted testing for multiple purposes. Results of our study
may help test publishers to improve their policies towards teachers with respect to
the assignment of booklets with an optimal level of difficulty to each test taker.
More insights into the extent to which results are sensitive to accurate assignment
of the booklets will help in practice to further increase the efficiency of targeting
testing. Second, this chapter illustrates a comprehensive framework to study the
consistency and accuracy of tests for classification problems both at the individual
level and group level. In particular, when using tests for individual decision-making,
one should not be fooled by general measures of reliability because low reliability
does not necessary disqualify a test for individual decision-making (see also Sijtsma,
2009, for a critical discussion).

15.2 Perspectives on Classification Consistency and Accuracy

Consistency and accuracy are two important indicators to gauge the psychometric
quality of tests for classifying students into categories (e.g., Cheng&Morgan, 2013;
Kim et al., 2006, Livingston & Lewis, 1995). Classification consistency refers to
the agreement between observed classifications across two independent replications.
The accuracy is the level of agreement between the classifications based on the
observed scores in a single administration and those that would be obtained based on
true (errorless) scores. Accuracy thus refers to test’s ability to assign the candidate to
the mastery level that adequately reflects his or her knowledge, that is, the extent to
which the test yields the correct inferences about the person’s mastery level. Note
that in case of mastery testing, there is usually no gold standard, but the mastery
criteria are defined by thresholds on the sum-score scale, as determined by experts
(Cizek & Bunch, 2007). The experts basically determine what minimum true score
is needed for each proficiency level. This means that if the test takers are classified
by their true scores, the classifications will be correct by construction. As a result,
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the consistency provides a lower bound for the accuracy, and both consistency and
accuracy go to one as the reliability goes to perfect.

Furthermore, it is important to emphasize that common indices of consistency
and accuracy (Cheng & Morgan, 2013; Livingston & Lewis, 1995) reflect how the
test functions at the group level, but they do not provide a detailed picture of the
functioning of the test at the individual level. To illustrate, consider as a simple
measure of consistency the percentage of test takers consistently classified into the
same category across two replications. Let say for the moment that there is 80%
agreement. This means that in every (hypothetical) retest, about 80% of the test
takers will be classified into the same category as they were before. However, in
each replication, the composition of the group of test takers that is consistently
classified may change. Hence, an overall percentage of 80% correct classifications
does not imply 80% certainty of a consistent classification for each individual. More
importantly, the probability of an individual student being consistently classified
depends on the ability relative to the cutoffs. To decide whether a test is suitable
for making individual decisions, we need to look at classification decisions as the
individual level in addition to group-level classification consistencies.

15.2.1 Individual-Level Classification Certainty

It is generally accepted that test scores have occasion-specific randommeasurement
errors. As a consequence, if we were able to test an individual many times, each time
with a brainwash in between, we expect to observe a distribution of scores. Lord
and Novick (1968, p. 30) refer to this (hypothetical) distribution as the propensity
distribution. Using the propensity distribution, we can compute the certainty that
the individual will be consistently classified into a particular category (Emons et al.,
2007). For a test to function reliably, this certainty needs to exceed a certain lower
limit. For example, a certainty of 0.8 or higher is deemed necessary for making
important decisions. However, because in real life we cannot retest an individual
under identical conditions, the certainty cannot be established empirically, and we
have to infer those properties from group-level information.

To illustrate the concepts at hand, Fig. 15.1 shows the propensity distributions for
a hypothetical student, for three different dichotomously scored tests of 30 items.
The tests differ in the mean and range of the item difficulties. Furthermore, we
assume that the students taking this test will be classified into one of three mastery
levels, defined by carefully selected cutoffs (e.g., Cizek & Bunch, 2007). Panel A
shows the propensity distribution if the person is measured using a “broad” booklet
having items informative across the entire ability scale. Panels B and C show the
distributions for an easy and difficult booklet, respectively. The cutoffs for the broad
booklet were arbitrarily set at 5 and 15, and the cutoff scores for the other booklets
were obtained using true-score equating (e.g., Kolen & Brennan, 2014). Based
on the propensity distributions, we can infer that this particular student has 81%
certainty of being consistently classified at level II with the broad booklet (Panel
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Fig. 15.1 Propensity distributions and classification certainties for a level-II student, for three
different booklets: (a) a broad booklet, (b) an easy booklet, and (c) a difficult booklet
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A), 53% certainty for the easy booklet (Panel B), and only 78% for the difficult
booklet (Panel C). In general, for level II students, the certainty is highest if their
ability lies halfway between the two cutoffs.

Two remarks are in order. First, for short (dichotomously scored) tests, the test
scores are highly discrete. As a result, changing the cutoff – even if it is by only one
score point – may affect the classification consistencies substantively. For example,
if in Panel C the cut score was set at 12 instead of 11, then the certainty increases to
0.89. Second, as shown in Panel B, when tests are short and the difficulty does not
match the ability, the propensity distribution is affected by floor or ceiling effects
causing an asymmetry in the misclassification probabilities.

15.2.2 Group-Level Classification Statistics

To further quantify the reliability of tests for individual decision-making, Emons
et al. (2007) introduced an index based on the individual classification certainties,
which they called classification consistency. It is defined as follows. Let π ∗ denote
a user-specified lower bound for the desired certainty of a correct classification.
The choice of π ∗ depends on the consequences the test results can have for the
individual. For high-stakes test and irreversible decisions, certainties of 0.8 or 0.9
are desired, whereas for low-stakes tests, lower values, say 0.7, may be deemed
suffice. The .CCπ∗ is the proportion of individuals for whom the certainty of a
correct classification exceeds πc. For example, if CC.8 = .65, it means that about
65% of the test takers will be measured with at least a certainty of 0.8. Notice that
Emons et al.’s CC considers individual-level consistency across many independent
replications, not just two. Furthermore, it does not require a correction for chance
as is the case with traditional group-level measures of consistency defined by two
independent replications (e.g., Cheng & Morgan, 2013).

As noted above, accuracy refers to the extent to which classifications are correct
given the true status of the students as reflected by their true scores. In the current
context, accuracy can also be conceived as a measure for the (global) reliability of
the test because the thresholds that mark the categories are defined in terms of the
true score. Hence, misclassifications are due to random measurement errors only.
However, when the test results are used for making inferences about educational
achievement in populations (e.g., cohort studies), the inferences actually go into
the other direction. Specifically, the question at hand is: Given the observed
classifications, what proportion of students in each observed category truly has
that mastery level? To answer this question, it is important to take not only the
reliability but also the distribution over the categories in the population into account.
By ignoring this population distribution while drawing conclusions from fallible
information, one may fall prey to the base rate fallacy (e.g., Bar-Hillel, 1980).

An index that takes both reliability and the prior distribution into account is the
posterior predictive value (PPV). The PPVs can be used to compare the practical
use of different tests. For example, assume that students who score at mastery level
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I are subjected to a tutoring program. If the PPV for mastery level I is 0.60, it means
that for 60% of the students, the training was truly needed, but maybe not for the
other 40%. It is important to emphasize that the students for whom the test result
may be incorrect differ across replications, but with every repeated measurement,
for about 40% students, the treatment may be ineffective.

15.3 Simulation Study

15.3.1 General Setup

We assume that students are classified into one of three ordered proficiency levels.
The levels are referred to as mastery levels and labeled as below basic, basic, and
proficient. In addition, we assume that different booklets are available, one general
booklet covering all levels and a targeted booklet for each level separately. We will
explore several compositions of the booklets with regard to the item difficulties
and their match with the different mastery levels. Finally, we assume that booklets
are assigned to pupils based on fallible background information such as teacher’s
appraisals. This means that the assignment of students to booklets is not necessarily
optimal. In this simulation study, we will study the impact of different, possibly
suboptimal, allocation strategies on consistencies and accuracy (to be explained
below).

15.3.2 Data Generation

Data were generated using the one-parameter logistic model (1-PLM; Hambleton &
Swaminathan, 1985). Let θ be a continuous latent variable (e.g., ability, proficiency).
We arbitrarily assume that θ is standard normally distributed. The cutoffs that
define the boundaries between mastery levels I and II and II and III were set at
θ1 = − 0.674 and θ2 = 0.674, respectively. As a result, about 25% in the population
performs at level I (e.g., below basic), 50% at level II (e.g., basic), and 25% at
level III (e.g., proficient). Furthermore, let Xj be the observed item response variable
having realizations 1 for a correct response and 0 otherwise. The 1-PLM assumes
unidimensionality, local independence, and response probabilities defined by

Pj (θ) = P
(
Xj = xj |θ

) = exp
[
a

(
θ − δj

)]xj

1 + exp
[
a

(
θ − δj

)] , xj = {0, 1} . (15.1)

Parameter δj is the difficulty parameter. When θ = δj, we have Pj(θ ) = 0.5.
Parameter a is the discrimination parameter. Notice that items are most informative
for θ -levels around δj. Moreover, we assume that a is a constant for all items, which
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amounts to assuming a Rasch model (Fischer & Molenaar, 1995). If a = 1, Eq.
(15.1) reduces to the traditional Rasch model. The a-parameter is included to be
able to easily manipulate the test-score reliability in the simulations.

15.3.3 Independent Variables

Number of Booklets Two conditions were considered. In the first condition, three
targeted booklets were defined. One booklet consisted of items most informative
around the lower cutoff, one booklet having items being informative around the
upper cutoff, and one booklet that is a mixture of items informative about either the
low or upper cutoff (generic booklet). Specifically, we sampled δs from the uniform
distribution. For booklets 1 and 2, parameters δs were sampled from U[−1.2,−0.2]
and U[0.2, 1.2], respectively. For booklet 3, half of the items were sampled from
U[−1.2,−0.2] and the other half from U[−1.2,−0.2]. In the second condition, we
defined four booklets for the targeted test. One booklet having amajority of items for
which the difficulty was below the lower cutoff, one booklet having predominantly
items for which the difficulty was between the two cutoffs, one booklet for which the
difficulty ofmost items was above the cutoff, and finally, one booklet where the item
difficulties were spread out across the entire θ -scale. This setup was operationalized
by sampling δs from U[−2,−0.2] for booklet 1, U[−1, 1.2] for booklet 2, U[0.2, 2]
for booklet 3, and U[−2, 2] for booklet 4 (generic booklet).

Allocation Strategy We considered four scenarios for allocating booklets to the
students: (1) the booklets were optimally matched with the true mastery level;
(2) booklets were assigned randomly; (3) all students received the generic (non-
mastery-level specific) booklet; (4) and booklets were assigned based on a deliberate
mismatch with the true mastery level. The latter condition was implemented as
follows. For the three-booklet case, the more difficult booklet was assigned to ability
levels θ < 0, and the easier booklet was assigned for ability levels θ > 0. For the
four-booklet case, ability levels θ < 0 were assigned booklet 3 (most difficult), and
all other students (i.e., mastery levels II and III) were assigned booklet 1 (easiest
booklet).

Test Length Data were simulated for tests of 10, 20, and 30 items, respectively.
According to Kruyen et al. (2012), tests of at least 20 items are generally needed
to have acceptable reliability for both individual decision-making and for group-
level results. However, Kruyen et al. did not specifically look at tailored testing, and
their study was restricted to dichotomous classifications (e.g., accepting or rejecting
applicants). See also Béguin and Straat (2019) for test length considerations in
mastery testing. Using Bayesian analyses, they concluded that for dichotomous
mastery decisions and a well-designed test, six items are the bare minimum to be
able to decide about on mastery with enough certainty and, in general, that test
lengths of 10 or more seem reasonable.
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Reliability Reliability was manipulated by varying the a-parameter in the 1-PLM
(Eq. 15.1). In particular we used a = 1 (‘moderate’ reliability) or a = 1.5 (‘high’
reliability). These a-levels resulted in tests with classical test-score reliabilities
ranging from 0.65 to 0.92.

All factors were fully crossed. The result is a factorial design with
2 × 4 × 3 × 2 = 48 cells. Each cell in the design was replicated 500 times. In each
replication, we drew new item parameters, so that the results can be generalized to
a broader population of items and tests.

15.3.4 Dependent Variables

Individual-Level Classification Consistencies Let fθ (Xb) be the conditional dis-
tribution of total score Xb for persons at ability θ completing booklet b (b = 1,
. . . , B). For dichotomous items, the conditional Xb distribution is a compound
binomial distribution (e.g., Lord, 1980, p. 45). Furthermore, as stated above, we
assume that candidates are classified into one of three mastery levels, which are
defined by two thresholds. The threshold values were −0.67 and 0.67, respectively.
The thresholds divide the θ -scale into three intervals, denoted θl (l = 1, . . . , 3),
where θ1 = (−∞,−0.67), θ2 = (−0.67, 0.67) and θ3 = (0.67,∞). Let pl denote the
population proportion of students at mastery level l (l = 1, . . . , 3). The thresholds
on the θ -scale were defined such that p1 and p3 were about 0.25, and p2 about 0.50.
The latent thresholds are converted to thresholds on the sum score scale, denoted
by cl (l = {1, 2}), using the well-known relation .E(X) = ∑J

j=1 Pj (θ) (e.g., Lord,
1980, p. 46). The three sum-score intervals defining the mastery levels, where the
intervals are represented as x1 = [0, c1), x2 = [c1, c2) and x3 = [c2, J].

Two remarks about the intervals xl are in order. First, the intervals are closed
below, which means that when a person scores at the threshold, say cl (l = {1, 2}),
he or she will be classified at level l + 1. Second, because the sum scores
represent a discretized measure of a continuous ability, the resulting population-
level proportions of students at each mastery level may be slightly different from
those obtained using θ . To signify the difference, we use pl for the latent distribution
of mastery levels and p̃l for the distribution of mastery based on the sum-score
distribution in the population.

For each mastery level, we can compute a classification consistency index for a
desired certainty level. Let π lb(θ ) be the person-specific (conditional) certainty of
being classified at mastery level l (=1, . . . , 3) when assessed with booklet b. This
certainty is defined as

πlb (θ) =
J∑

x=0

I [x+ ∈ xl] · fθ (Xb = x) , (15.2)
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where I[·] represents the indicator function taking the value 1 if the condition
within the brackets is true, and 0 otherwise. Notice that

∑
lπ lb(θ ) = 1 because the

categories are exhaustive and mutually exclusive. The certainties from Eq. (15.2)
can be used to compute the classification consistencies (CC) given the minimum
desired certainty level π ∗ ; that is,

CCπc (l) = 1

pl

∫

θ

I
[
πlb (θ) > π∗] · I [θ ∈ θl] dθ. (15.3)

We computed CCs for certainty levels of π ∗ = 0.7 and 0.8. The integrand in Eq.
(15.3) will be evaluated using 101 equidistant Gaussian quadrature points on the
interval−3 to 3. The CC conveys the proportion of students’ mastery-level decisions
is made with a minimum certainty.

Group-Level Consistency and Accuracy Evaluating targeted testing at the popu-
lation level requires a formalization of the process by which booklets are assigned
to test takers. Let g(b| θ ) be the conditional probability of assigning booklet b to a
student at level θ . The values of g(b| θ ) depend on the specific mechanism by which
booklets are assigned to students. For example, if the booklets would be assigned
completely at random, we have f (b|θ) ≡ 1

B
. However, if the same booklet would

be assigned to all students at a certain ability level, we have g(b| θ ) = 1 for one
particular booklet and 0 for all other booklets. Ideally, students are consistently
assigned to the booklet that best matches their ability and thus for which the
certainty of being assessed at the correct mastery level is highest.

Using the assignment probabilities g(b| θ ), we can easily compute the relevant
group-level statistics. Let c(X) denote the observed mastery level given observed
sum score X; that is, c(X) ∈ {1, 2, 3}. Furthermore, let c(θ ) be the true mastery level
given θ ; that is, c(θ ) ∈ {1, 2, 3}. The marginal joint probability of observingmastery
level l for respondents having a true latent mastery level k equals

pkl ≡ p [c(X) = l, c (θ) = k] =
∫

θ

I [c (θ) = k]

(∑B

b=1
[πlb (θ) · g (b|θ)]

)
dθ.

(15.4)

From the marginal joint probabilities, we can compute the classification indices
of interest.

Accuracy (ACC). The ACC expresses for each mastery level what proportion of
the students would have an observed score indicating that particular mastery level;
that is,

p [c (X+) = l|c (θ) = k] = pkl
∑3

h=1 pkh

, (15.5)

where (k = 1, . . . , 3) and l = k.
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Posterior predictive values (PPV): The PPV is the proportion of students who
truly function at level m among the students for mastery level m is observed. The
PPVs are obtained by

p [c (θ) = k|c (X+) = l] = pkl
∑3

h=1 phl

(15.6)

where ( l = 1, . . . , 3) and k = l.

15.4 Results

Table 15.1 shows the classification consistencies for the condition with three
booklets, for two certainty levels π ∗ = 0.7 and 0.8, for low reliability (upper panel)
and high reliability (lower panel). The results read as follows. Consider the value of
0.46 for mastery level I, booklet 1 and J = 10 items. This value suggests that when
booklet 1 is used, about 46% of the students at mastery level 1 will be correctly
classified at that level with a certainty of at least 0.70. Hence, booklet 1 is deemed
reliable enough for individual decision-making for 46% of the students at mastery
level I. For the other 54%, the measurement errors in the observed scores are too
large to reach individual decisions at the desired certainty level. In this particular
example, the difficulty of booklet 1 matches mastery level I. As the Table 15.1
shows, if booklet 2 is used for level I students, meaning a less optimal match
between ability and difficulty, then only 32% of the students at mastery level I in
the population would be classified with the desired certainty. Likewise, about 41%
of students is assessed with the desired precision if the general booklet is used.

In general, our results suggest that the particular choice of the booklet may have
a profound impact on the reliability with which individual decisions are made. The
effect is largest for high-reliable short tests and decreases as test length grows, or as
reliability gets lower. For example, consider the high reliable 10-item test with three
booklets (Table 15.1; lower panel). Booklet 2 would only yield reliable decisions for
about 28% of the test takers at level-1, whereas booklet 1, which difficulty matches
the mastery level, reaches the desired reliability for about 60% of the test takers.
Table 15.1 also shows that the general booklets were less reliable for individual
decision-making than the targeted tests, but differences with the optimal situation
were modest. Results thus suggest that the general booklet provides a safe choice if,
for example, teachers feel insecure about their a priori ability estimate.

Table 15.1 further suggests that classification certainties for mastery level II
students are smallest and for short tests and low reliability even dramatically low.
This trend can be explained by a combination of limited scale range and the fact that
the presence of measurement errors can play out in two ways. That is, the test-takers
may obtain a score so high that they are rated at a higher mastery level than their
true score justifies, but it might as well go the other way. As a result, the certainty
that he/she score that exactly matches his/her mastery level may be low. This effect
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Table 15.1 Classification consistencies for three Booklets, for low reliability (upper panel) and
high reliability (lower panel)

Mastery level Certainty level (π ∗ )

0.7 0.8
Booklet: 1 2 3 1 2 3

Low reliability
J = 10, ρ = 0.66

I 0.46 0.32 0.41 0.32 0.18 0.27

II 0.00 0.15 0.04 0.00 0.00 0.00

III 0.95 0.84 0.87 0.67 0.63 0.64

J = 20, ρ = 0.80
I 0.63 0.53 0.59 0.50 0.37 0.45

II 0.57 0.64 0.61 0.27 0.33 0.32

III 0.87 0.84 0.85 0.67 0.68 0.68

J = 30, ρ = 0.87
I 0.70 0.62 0.67 0.59 0.48 0.55

II 0.68 0.72 0.70 0.48 0.52 0.51

III 0.86 0.85 0.85 0.70 0.72 0.71

High reliability
J = 10, ρ = 0.80

I 0.60 0.28 0.51 0.48 0.14 0.37

II 0.47 0.70 0.60 0.21 0.42 0.32

III 1.00 0.90 0.93 0.82 0.74 0.75

J = 20, ρ = 0.89
I 0.73 0.55 0.67 0.64 0.40 0.56

II 0.67 0.77 0.74 0.51 0.60 0.58

III 0.95 0.89 0.90 0.77 0.78 0.76

J = 30, ρ = 0.92
I 0.79 0.66 0.75 0.70 0.54 0.65
II 0.74 0.81 0.79 0.60 0.67 0.66
III 0.92 0.89 0.90 0.78 0.80 0.79

becomes less severe when test length grows or reliability increases. Nonetheless,
even with a reliable 30-item test, the amount of students for whom the test does not
meet the desired certainty level is substantial.

Most remarkable trends were found for mastery level III. Results suggest that
level-III test takers are more accurately assessed using booklet 1 than when the
targeted booklet 2 was used, which is in contrast with our expectations. This trend
can be explained by the fact that decisions are based on discrete scores, discrete
cutoffs, and a limited score scale. Consider for example J = 10, which yields
X ∈ {0, 1, 2, . . . , 10}. Now suppose that for booklet 1 test takers are assigned to
mastery level III if their X-score is greater or equal to 9. With a relatively easy
test, for almost all test takers at mastery level III, which are students having a high
proficiency, it is likely that they will answer all items correct or at most miss one
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item and thus the probability of having a score of at least 9 equals at least 0.70 for
most of them.

Table 15.2 shows the group-level statistics. Column 1 shows the overall
(marginal) proportion of correct classifications. For example, for J = 10,
low reliability, and matched booklet assignment, we expect that 68% of the
students in the population is categorized at the correct mastery level. The overall
proportion of correct classifications increases with test length and with increasing
reliability given test length. The effects of different assignment strategies were
small.

Columns 2 through 4 show the conditional proportions of a correct classification.
For example, we see that of all students whose ability is truly at mastery level 1,
about 70% will be categorized at level 1 based on their observed score X when the
booklets are chosen such that match the true master level. Likewise, of all students
at mastery level II, about 61% will be categorized at level II, and of all level-III
students, about 84% will be correctly classified.

Comparison of Tables 15.1 and 15.2 shows the differences between consistency
defined at the individual level and what is realized at the group level. For example,
about 60% of mastery will end up in the correct level, but for few students,
this correct classification can be assured even when the test would be replicated.
Furthermore, comparing the results across different test lengths and reliabilities
suggests that effects of booklet assignment are limited. Meaningful effects are only
observed if students would collectively and systematically be allocated a booklet
that does match the true mastery level.

The final three columns show the posterior predictive values. To illustrate,
consider the value of 0.73 at mastery level I, for J = 10 and low reliability. This
value suggests that of all students who have been categorized as a master level I
student by their observed sum score, about 73% truly masters the content at level I.
Just like the previous results, the booklet assignment mechanism had a minor effect.
In many conditions, the broad booklets performed comparable to the situation where
the booklets were optimally matched to the individual’s abilities. Notice that the
PPVs for mastery level III also show how using discrete scores affect the inferences.
The PPVs at mastery level III are smallest because when the student has a score
at the upper cutoff, the student migrates to level III. But if students score at the
lower cutoff, they remain at level II. As a result, the chance of migrating upwards is
higher than migrating downwards. Together the accuracy and PPV convey that if a
student is a level-III student, we can be certain that he/she produces an observed test
score corresponding to level III, but of all students for whom a test score indicating
mastery level III is observed, a considerable percentage does not have a truemastery
level III. Only for J = 30 do the percentages seem acceptable from a practical point
of view. Tables 15.3 and 15.4 show the results for the four-booklet test. The trends
are the same as for the condition with three booklets.
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Table 15.2 Group-level statistics for three booklets, for different assignment Scenarios, for high
reliability

Scenario Marg. Corr. Class Accuracy PPV
Mastery level: I II III I II III

Low reliability
J = 10, ρ = 0.66

Matched 0.68 0.70 0.61 0.84 0.73 0.74 0.60
Random 0.66 0.67 0.58 0.84 0.73 0.71 0.58
Biased 0.65 0.62 0.59 0.83 0.71 0.70 0.57
Broad 0.67 0.65 0.58 0.85 0.74 0.70 0.59

J = 20, ρ = 0.80
Matched 0.77 0.76 0.73 0.88 0.79 0.80 0.70
Random 0.75 0.75 0.71 0.88 0.78 0.80 0.68
Biased 0.74 0.71 0.71 0.88 0.77 0.78 0.68
Broad 0.75 0.75 0.72 0.88 0.78 0.80 0.70

J = 30, ρ = 0.86
Matched 0.81 0.80 0.78 0.88 0.83 0.83 0.76
Random 0.80 0.80 0.78 0.88 0.83 0.83 0.76
Biased 0.78 0.76 0.75 0.88 0.79 0.81 0.72
Broad 0.80 0.80 0.78 0.88 0.83 0.83 0.76

High reliability
J = 10, ρ = .80

Matched 0.76 0.75 0.71 0.89 0.82 0.81 0.69
Random 0.74 0.69 0.70 0.88 0.80 0.79 0.64
Biased 0.70 0.59 0.67 0.90 0.72 0.78 0.58
Broad 0.74 0.71 0.71 0.88 0.81 0.78 0.66

J = 20, ρ = .89
Matched 0.84 0.83 0.81 0.91 0.85 0.87 0.78
Random 0.81 0.78 0.78 0.89 0.84 0.83 0.75
Biased 0.77 0.71 0.75 0.88 0.81 0.79 0.71
Broad 0.82 0.80 0.79 0.89 0.84 0.84 0.75

J = 30, ρ = .92
Matched 0.87 0.87 0.85 0.92 0.88 0.89 0.83
Random 0.84 0.84 0.81 0.91 0.85 0.87 0.79
Biased 0.81 0.80 0.77 0.90 0.83 0.84 0.74
Broad 0.85 0.84 0.82 0.91 0.86 0.88 0.80

15.5 Discussion

This chapter explored the efficiency of targeted testing for assessing educational
achievements at the individual level and at aggregated levels. Targeting testing
involves a modest degree of adaptivity in which fixed linear tests of varying
difficulty are assigned to the test takers using background information related to
their abilities. When the booklets are assigned optimally – i.e., such that the overall
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Table 15.3 Classification consistencies for the four booklets test, for different assignment
scenarios, for low reliability (upper panel) and high reliability (lower panel)

Mastery level Certainty level (π ∗ )

0.7 0.8
Booklet: 1 2 3 4 1 2 3 4

Low reliability
J = 10, ρ = 0.65

I 0.43 0.40 0.26 0.37 0.30 0.26 0.14 0.23
II 0.07 0.03 0.19 0.15 0.00 0.01 0.00 0.00
III 0.97 0.87 0.84 0.89 0.71 0.64 0.62 0.64

J = 20, ρ = 0.78
I 0.61 0.59 0.46 0.56 0.48 0.45 0.31 0.42
II 0.42 0.61 0.58 0.55 0.04 0.32 0.20 0.16
III 0.89 0.85 0.83 0.84 0.67 0.68 0.67 0.367

J = 30, ρ = 0.85
I 0.69 0.67 0.57 0.65 0.57 0.55 0.43 0.52
II 0.62 0.71 0.69 0.68 0.39 0.52 0.47 0.46
III 0.87 0.85 0.85 0.85 0.69 0.71 0.71 0.70

High reliability
J = 10, ρ = 0.77

I 0.57 0.51 0.32 0.45 0.45 0.37 0.17 0.33
II 0.17 0.60 0.40 0.49 0.02 0.33 0.04 0.15
III 1.00 0.93 0.89 0.94 0.85 0.75 0.73 0.74

J = 20, ρ = 0.87
I 0.71 0.67 0.46 0.64 0.60 0.56 0.32 0.52
II 0.57 0.75 0.74 0.72 0.35 0.59 0.52 0.53
III 0.97 0.90 0.89 0.90 0.80 0.77 0.77 0.75

J = 30, ρ = 0.92
I 0.77 0.75 0.57 0.72 0.68 0.65 0.42 0.61
II 0.68 0.80 0.79 0.77 0.53 0.67 0.63 0.63
III 0.95 0.90 0.88 0.90 0.78 0.79 0.79 0.78

difficulty matches the ability of the test taker – then the targeted test functions as
an adaptive test by optimizing measurement precision with the same test length.
Targeting testing tries to balance the psychometric benefits of computerized adaptive
testing and practical benefits of linear tests. A good match ensures that tests are as
accessible as possible and that testees experience a good balance between intrinsic
and extraneous cognitive load throughout the test (Sweller, 1994).

One of the goals of our study was to provide some guidelines for practical
use of targeted classification tests for multiple purposes. This line of research
may help practitioners to find a better balance between the amount of test time
and the quality of the test results. To accomplish our goal, we took two different
perspectives. First, how do different implementations of targeted testing affect the
reliability of individual decision-making? Results suggest that at the individual



15 Efficiency and Effectiveness of Teacher-Informed Targeting Testing. . . 299

Table 15.4 Group-level statistics for four booklets, for different assignment scenarios, for high
reliability

Scenario Marg. Corr. Class Accuracy PPV
Mastery level: I II III I II III

Low reliability
J = 10, ρ = 0.65

Matched 0.67 0.65 0.59 0.84 0.74 0.71 0.58
Random 0.65 0.64 0.57 0.84 0.73 0.70 0.57
Biased 0.63 0.61 0.53 0.88 0.70 0.71 0.54
Broad 0.65 0.64 0.57 0.84 0.73 0.70 0.57

J = 20, ρ = 0.78
Matched 0.76 0.76 0.71 0.85 0.79 0.78 0.71
Random 0.74 0.72 0.70 0.84 0.78 0.76 0.68
Biased 0.71 0.68 0.65 0.84 0.77 0.73 0.62
Broad 0.74 0.72 0.70 0.84 0.78 0.76 0.68

J = 30, ρ = 0.85
Matched 0.80 0.80 0.78 0.88 0.83 0.83 0.76
Random 0.79 0.76 0.75 0.88 0.79 0.81 0.73
Biased 0.76 0.75 0.72 0.88 0.82 0.80 0.69
Broad 0.79 0.76 0.75 0.88 0.79 0.81 0.73

High reliability
J = 10, ρ = 0.80

Matched 0.75 0.75 0.71 0.88 0.82 0.80 0.69
Random 0.72 0.69 0.65 0.88 0.78 0.74 0.66
Biased 0.68 0.65 0.55 0.90 0.81 0.67 0.63
Broad 0.72 0.68 0.67 0.88 0.81 0.76 0.62

J = 20, ρ = 0.89
Matched 0.82 0.80 0.80 0.88 0.87 0.83 0.76
Random 0.79 0.76 0.76 0.88 0.83 0.81 0.73
Biased 0.75 0.71 0.69 0.88 0.81 0.78 0.66
Broad 0.80 0.76 0.76 0.88 0.83 0.81 0.73

J = 30, ρ = 0.92
Matched 0.86 0.84 0.84 0.92 0.88 0.88 0.82
Random 0.83 0.80 0.82 0.92 0.87 0.85 0.79
Biased 0.79 0.75 0.76 0.88 0.86 0.81 0.71
Broad 0.83 0.80 0.82 0.88 0.87 0.84 0.79

level, the reliability of the conclusions drawn about the student’s mastery level is
significantly impacted by how well the booklet level matches the student’s level.
On the other hand, the results suggest that if there is no convincing information
available to decide which targeted booklet is most appropriate, it is advised to
choose the general booklet. Simulations also emphasize the importance of using
enough items when students are categorized in three or more categories. This is
especially important if the tests are used to make placement decisions. Furthermore,
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test length requirements become more stringent if the number of categories grow
(Cheng & Morgan, 2013). As an aside, if it turns out that lengthy tests are needed to
be able to reliably classify students, it may also be a reason to take a closer look at
the categories and to re-evaluate whether the categories are not defined too narrow.

Second, we also explored to what extent group-level results are affected by
different implementations of the targeted test and suboptimal assignment of forms.
These results have practical consequences when targeted tests are used for, for
example, evaluating educational achievements at the school or national level, or
when results are used for educational policy analysis. A specific example from the
Netherlands may be a point in case. Reference levels have been developed for Dutch
and arithmetic in order to be able to evaluate educational progress, either at the
individual level, the school level, or the national level. These reference levels reflect
the desired levels for Dutch language proficiency and arithmetic/math students
should have at different points in their educational career. Hence, these reference
levels form benchmarks against which individual or general learning performance
can be measured. A similar approach has been developed for English proficiency
(i.e., Common European Framework of Reference for Languages, CEFR). The
percentages of students that reach different levels are monitored over time to
identify important trends. Standardized tests are available for each level. However,
most often students are assigned a test given the number of years of education
completed, rather than the booklet that presumably matches their current ability
level. This system of student monitoring may gain effectivity when the level of the
administrated tests better match the individual mastery levels of the students.

This research is only a start of hopefully a line of research that provides more
guidance in general design issues for test administrations. As a follow-up on this
study, we see four possible directions for future research. First, the importance of
the conclusions drawn may differ greatly. For a single cut score, a test material
can be optimized for measurement precision at that single point, but in this line of
research, we are mainly interested in more precise measurement across the entire
scale. The focus was now on correct prediction of one out of three levels, but future
research may focus on more levels, the minimum level – i.e., prevention of under
estimation – or precise point estimation across the entire scale.

Second, the present research may be extended to other forms of adaptive systems,
such as computerized adaptive testing and multistage testing. Test adaptivity has
a clear advantage in that it follows the student’s ability level during the test
administration. Hence, there is less need for a high-quality a priori indication of
a student’s ability level. On the other hand, when the high-quality a priori indication
is available, a targeted test may be more efficient because all administered items
are then at the student’s ability level. It is interesting to also take this trade-off into
account in future research.

Third, in our simulations we used the (unweighted) sum scores as the basis for
mastery-level decisions. The use of sum scores has some practical advantages. First
and foremost they are easy to communicate to students. Especially when questions
are scored differently, it is important that students know in advance howmany points
they can earn with each question so that they can divide their attention efficiently
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and effectively. From a statistical perspective, taking the sum may not be the most
efficient scoring algorithm as it ignores which items have been answered correctly,
although correlations between the optimally weighted and unweighted scores are
usually high (>0.95). Nevertheless, one may use weighted scoring as is implicitly
done when using, for example, IRT scoring under the 2-PLM or generalized partial
credit model (Van der Linden & Hambleton, 1997). However, given the high
correlations between sum scores and IRT scores, it is indifferent whether sum scores
or estimated abilities are used for decision-making. Therefore, we expect our results
will be largely generalizable under IRT scoring.

As a final remark, we may add that this study only considered a single test
administration. As mentioned before, student monitoring systems commonly consist
of a complete testing program with multiple follow-up tests. If a single test
administration leads to a wrong conclusion about the student’s ability level, can
a student easily recover from this single measurement error, or may this wrong
classification cause misclassification on follow-up tests? Future research is needed
to better understand how a testing program may affect the observed learning
trajectory of a student, especially when previous measurement outcomes are used
as entry level for the next assessment.
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Chapter 16
The Hierarchical Model for Response
Times: Advantages, Limitations,
and Risks of Its Use in Measurement
Practice

Jesper Tijmstra and Maria Bolsinova

Abstract With the advance of computerized testing in educational and psycholog-
ical measurement, the availability of response time data is becoming commonplace,
and practitioners are faced with the question if and how they should incorporate
this information into their measurement models. For this purpose, the use of the
hierarchical model is often considered, which promises to improve the precision
of measurement and has various other appealing properties. However, practitioners
also need to be aware of the several limitations and risks involved when using this
model, which have been covered less extensively in the literature. This chapter
covers both the advantages and disadvantages of using the hierarchical model,
to allow practitioners to form a balanced assessment of the potential use of the
hierarchical model for their testing application.

16.1 Introduction

The testing of abilities and skills has a long history in both psychology and
educational measurement. While until recently the default administration form of
such tests was paper and pencil, with the advance of computerized testing in many
fields of psychology and educational measurement, it is becoming commonplace to
administer tests digitally. One clear benefit of this digital administration of tests
is the potential availability of process data that can be registered in addition to
the registration of the response that is provided (Goldhammer & Zehner 2017).
These process data can come in many forms, ranging from registering the number
of attempts made on an item to data based on advanced mouse- and eye-tracking
techniques. However, by far, the most commonly considered type of process data
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is the registering of the response time (RT, the time that passes between reaching
an item and providing the final response), a measure that is generally considered
to at least potentially contain information that is relevant in a wide range of testing
settings.

While there have been many different ways of looking at and using RTs proposed
in the literature over at least the last 70 years (Gulliksen 1950; van der Linden 2009),
one relatively new method that has gained a lot of attention in recent years is the
hierarchical model (van der Linden 2007), which jointly models the RTs together
with the correctness of the responses. Partly due to its relatively simplicity, and
partly due to its promise to improve the precision of measurement, practitioners are
not only becoming aware of the existence of this model but are taking steps toward
implementing this model as part of their measurement practice. While the model
itself is rather simple and well known, the challenges that one should be aware of
when using this model in practice are both less straightforward and less well known.
This chapter aims to address these issues by providing a comprehensive overview
of what the hierarchical model for RTs has to offer for measurement practice, what
its limitations are (and how some of these limitations can be addressed), and what
the risks are of using this model in practice.

16.2 An Overview of the Hierarchical Model and Its
Advantages

The hierarchical model consists of two measurement models, one concerning the
accuracy of the response (RA, for item j denoted by .Xj ) and one concerning the
speed of the response (RT, for item j denoted by .Tj ). The measurement model
for RA concerns the latent ability parameter .θ , while the measurement model for
RT concerns the latent speed parameter.τ .1 The modeling framework leaves it open
which specific measurement models are used for modeling RA and RT and as such
is neutral with respect to the particular relationship that is expected between the
response data and the latent variables in the model. In practice, standard IRT models
are commonly considered for modeling RA, and RTs are often modeled through a
lognormal model (van der Linden 2006).

Regardless of which particular measurement models are chosen, both measure-
ment models are connected at a higher level, through the inclusion of correlations
between the different item parameters (e.g., item difficulty and item time intensity)
and the inclusion of a correlation between the person parameters .θ and .τ . It
is through these correlations that the hierarchical model can explain possible
associations observed at the response level between RA and RT. The general

1 For reasons of simplicity but without loss of generality, we will only consider versions of the
hierarchical model that have a single ability and a single speed parameter.
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Fig. 16.1 The general
structure of the hierarchical
model

structure of the hierarchical model is presented in Fig. 16.1, which remains neutral
with respect to the choice of measurement models for RA and RT.

16.2.1 Using RTs to Improve the Precision of Measurement

When contrasting the hierarchical model for RT and RA with standard IRT models
that consider only RA, one clear advantage of the hierarchical model becomes
readily apparent: In addition to the information about ability that is captured by
the IRT measurement model that considers the RA, the hierarchical model also
considers information about ability that is contained in the RTs (van der Linden
et al. 2010). As Fig. 16.1 shows, the RTs are indirectly linked to ability, through the
latent speed variable .τ . Thus, if in the population speed and ability are correlated,
the measurement model for speed provides collateral information for the estimation
of ability, on top of what is provided by standard IRT models.

The correlation between speed and ability can take on any value between .−1
and 1, and in practice, positive values (e.g., see Loeys et al. 2011; Wang & Xu
2015; Meng et al. 2015), negative values (e.g., see Klein Entink et al. 2009;
Goldhammer & Klein Entink 2011; Scherer et al. 2015), and values close to 0 (e.g.,
see van der Linden et al. 1999; Bolsinova etal. 2017; Shaw et al. 2020) have been
observed. Rather intuitively, the amount of information that the RTs can provide
for improving the precision with which ability is estimated is bounded by the size
of this correlation: If there is only a weak correlation between speed and ability,
even a perfectly estimated speed latent variable will only be able to explain a small
part of the variance in the latent ability variable. This also means that the marginal
amount of information about ability that is gained through the measurement model
of speed by adding items to the test quickly decreases as the test increases in
length: Once speed is estimated with a reasonable amount of precision, for the
precision with which ability is measured, the gain of reducing the measurement
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error with which speed is measured will be minimal (Ranger 2013).2 This is in
contrast with the measurement model for ability, where each new item contains new
and independent information about ability that continues to increase precision as test
length increases. Effectively, the RAs on all the items together with speed provide
information about ability in the hierarchical model, and the relative relevance of
the speed latent variable decreases as more RAs are observed, even if the latent
speed dimension does end up being measured with lower measurement error as the
test length increases. The consequence of this is that the biggest relative gains of
using the hierarchical model instead of a “RA-only” model in terms of improving
precision can be expected to be found for relatively short tests, where the added
explanatory power of including an additional (imperfectly measured) predictor can
be expected to matter the most.

16.2.2 Relevance of RT for Test Construction and Analysis

In addition to improving the precision of measurement of ability, the hierarchical
model also provides the user with a more extensive toolbox to evaluate the quality
of the test, the individual items, and the performance of individuals. In this sense,
it can provide practitioners with more options for critically evaluating items during
test construction, for evaluating the performance of an existing test, and for detecting
aberrant responding.

Since for every item not only characteristics in the measurement model of
ability are considered, but also characteristics in the model for speed are measured,
a more complex and more complete picture emerges of the properties of the
different items on the test. Not only is it possible to determine which items are
relatively time intense, but it is also possible to assess the relationship between
the different item characteristics in the two measurement models. Since in the
context of the hierarchical model all commonly considered measurement models for
ability and for speed contain a location parameter, this is also the most commonly
studied association between the item characteristics (van der Linden 2009). Not
unsurprisingly, the correlation between item difficulty and item time intensity is
generally found to be positive, with more difficult items requiring on average more
time from the respondents to be solved. While this pattern may not be unexpected,
it is something that test constructors should keep in mind when designing a test,
especially when there will be strict limits to the amount of testing time. Less
studied, but equally relevant, is the relationship between time intensity and item
discrimination in the RA model: Do items on the test that respondents spend more
time on provide us with more information about ability than items that are answered
more rapidly? If the answer is no for a particular testing setting, it may make sense

2 This limiting aspect of the hierarchical model is addressed in one of its extensions, as will be
discussed in the next section.



16 The Hierarchical Model for Response Times: Advantages, Limitations,. . . 311

for test constructors to focus on designing items with at most a moderate time
intensity, to optimize the total testing time or the precision of measurement of ability
obtained within a certain time limit.

On the person side, a similar picture emerges. Not only do we obtain information
about the speed with which different individuals answer items on the test, but we
also gain insight into the relationship between the speed with which persons take the
test and their overall performance (as captured by their estimated ability). Since this
speed-ability correlation takes on wildly different values in practice, studying that
correlation can be considered important for getting a better picture of the response
processes of different types of respondents who take the test: Do people who work
fast on average show a better or worse performance than those that take more
time on the test? It is important to stress that since this correlation considers a
between-person association, it should not be confusedwith the often studied “speed-
accuracy” trade-off (Heitz 2014): the well-known phenomenon that increasing the
speed with which one executes cognitive tasks generally decreases the accuracy
of the outcome of that task. This speed-accuracy trade-off (which in the context
of IRT might better be considered in the form of a “speed-ability trade-off”; van
der Linden 2009) describes a negative within-person association, which does not
need to translate to a negative association at the between-person level. That is, the
speed-ability trade-off is only one of the factors that contributes to the between-
person association between speed and ability. Another phenomenon that contributes
to this association is well known from cognitive psychology: More competent
persons may be able to execute a task both faster and with higher accuracy than
less competent persons (i.e., have a speed-accuracy trade-off curve that is positioned
above those of other respondents). This explains why it is possible for the between-
person association of speed and ability to be positive, even though the within-person
speed-ability trade-off pushes this association in the negative direction. When the
speed-ability trade-off is the main factor driving between-person differences, a
negative correlation between speed and ability will emerge. In those cases, one
could be worried about the validity of measurement of ability, since it means that
many respondents performed suboptimally on the test (i.e., unnecessarily sacrificed
performance in favor of speed). This phenomenon may be especially prevalent in
low-stakes assessment, where it may not be safe to assume that all respondents
are fully engaged with the test and where differences in observed performance (as
captured by estimated ability) could possibly to a large extent be attributable to
differences in engagement rather than to differences in actual ability.

Finally, the hierarchical model extends the possibilities for detecting aberrant
persons and items on the test, compared to what is possible using standard IRT
models (van der Linden & Guo 2008). When using the hierarchical model, in
addition to determining whether (a set of) responses should be considered an outlier
in terms of the observed RAs, other outliers can be studied. On the person side,
outliers in RTs on the full set of items could suggest that the person may not be
taking the test seriously (in case of both overly fast or overly slow responses).
On the item side, observing overly fast or overly slow responses for a significant
portion of the respondents could suggest problems with that item, such as possible
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guessing (in case of many fast responses) or possible issues with the clarity of the
item (in case of many slow responses). Since the hierarchical model considers RAs
and RTs simultaneously, these cases can be studied in further detail by considering
whether the conjunction of the RA and RT of a (set of) response(s) should be
considered an outlier. For example, observing many fast incorrect responses on an
item might suggest that guessing is prevalent, while many fast correct responses
might suggest that item preknowledge is a problem or that it can be solved using
an unintended heuristic. While these patterns can to some extent be studied without
the use of advanced psychometric models, the advantage of using the hierarchical
model is that one can truly consider whether a (combination of) response(s) should
be considered an outlier, since one can determine whether a (set of) residual(s) is
extreme compared to what is expected under the model. This makes it possible
to contrast an item that is simply so easy that many people provide a fast correct
response to it with an item where a part of the population provides unexpectedly
fast responses with an unexpectedly high rate of success.

16.2.3 Simple Structure and Flexibility

A final major advantage of using the framework of the hierarchical model is
its relative simplicity and flexibility, which go hand in hand. The framework’s
flexibility comes from the fact that a simple structure is assumed and the two
measurement models are separated and are only linked through correlations at the
higher level. Because of this, one can consider a wide range of models for the
RA side (including all commonly considered IRT models) and independent of that
choice also consider different models for the RT side of the model. This makes it
possible to choose a model specification that is tailored to the specific needs of the
testing context that is considered.

On the interpretation side, the simplicity that is entailed by this simple structure is
also beneficial. On the RA side of the model, one generally uses one of the common
IRT models for dichotomous or polytomous data, with the standard interpretation
of both the item and the person parameters remaining applicable, unaffected by
the fact that RTs are considered elsewhere in the model. Similarly, on the RT side,
item and person parameters are considered that keep their standard interpretation
and only relate to the RTs. The connection between the two measurement models
is likewise easy to understand, since correlations between the different item
parameters and between the different person parameters are considered. All of this
can be considered to be an advantage for practitioners, both who themselves have
to fully understand the workings of the model and who will need to be able to
effectively communicate findings based on the models to stakeholders.
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16.3 Limitations: A Range of Conditional Independence
Assumptions

While the simplicity of the hierarchical model is often considered as one of its
selling points, this simplicity is at the same time at the root of a set of limitations
that have both an important practical and theoretical impact. That is, the assumption
of a simple structure can often be considered problematic in practice, not only in the
sense that the model shows less than perfect fit but also in the sense that important
patterns may be overlooked or even that bias may occur in one of the outcome
measures (e.g., the ability estimates or the estimated precision). It is therefore
of great importance that practitioners are aware of these limitations before they
consider applying the framework in practice.

The different limitations of the hierarchical model that will be considered in
this section all relate to different conditional independence assumptions that are
made by (all standard versions of) the hierarchical model. The hierarchical model
as it was presented graphically in Fig. 16.1 shows that various variables in the
model are not directly connected to each other, although all of them are indirectly
connected. Figure 16.2 provides a graphical overview of the five different forms
of conditional independence that are assumed by the model, where dashed lines
indicate a residual correlation of 0 (i.e., conditional independence). A violation of
any of these conditional independence assumptions constitutes a violation of the
hierarchical model, which can result in various issues beyond simply a reduced
model fit, all of which will be covered in this section.

Fig. 16.2 The hierarchical
model and its five conditional
independence assumptions.
All conditional independence
assumptions are indicated by
numbered broken lines,
which indicate the assumed
absence of a relationship
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16.3.1 Conditional Independence of the RAs

The first conditional independence assumption considered is that of the RAs given
the latent variables:

.P(X|θ, τ ) = P(X1|θ, τ )P (X2|θ, τ ) . . . P (XJ |θ, τ ),

where .X is the vector containing all the item responses .X1, . . . , XJ . Since the
hierarchical model assumes a simple structure, the RAs do not depend on speed
given ability, so this assumption reduces to the standard local independence
assumption considered in IRT:

.P(X|θ) = P(X1|θ)P (X2|θ) . . . P (XJ |θ).

Compared to the other four assumptions of conditional independence, violations
of local independence and their impact have been studied rather extensively (Yen
1984; Wainer & Thissen 1996; Chen & Thissen 1997; Hoskens & De Boeck
1997; Zenisky et al. 2001). Since this form of conditional independence is shared
by almost all commonly used IRT models, and since one can in principle use
a measurement model for RA that allows for local dependence, this conditional
independence assumption will not be discussed here extensively. It is however
important to note that the presence of local dependence generally results in an
underestimation of the standard error of ability (e.g., see Zenisky et al. 2001), such
that in its presence one overestimates the precision with which ability is measured.

16.3.2 Conditional Independence of the RTs

Similar to the assumption of conditional independence of the RAs, standard versions
of the hierarchical model assume conditional independence of the RTs given the
latent variables:

.P(T|θ, τ ) = P(T1|θ, τ )P (T2|θ, τ ) . . . P (TJ |θ, τ ) = P(T1|τ )P (T2|τ ) . . . P (TJ |τ ),

where .T is the vector containing the RTs .T1, . . . , TJ . Effectively, this assumption
tells us that the RT of a response only depends on the overall speed of the respondent
(and the item parameters in the RT model), but not on the RT of the previous
response or of any other response.

While this assumption has not been studied extensively in the context of the
hierarchical model, it links directly to the extensive literature on RT modeling.
For example, the phenomenon of speeding on the test is well established in
many testing settings with effective time limits (e.g., see Lu & Sireci 2007).
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Similarly, it is well known that respondents generally spend a relatively long time
answering the first few items presented on a test. Both of these phenomena concern
violations of the assumption of the hierarchical model that the latent variables are
“stationary” throughout the test (Fox & Marianti 2016). This non-stationarity of
speed throughout the test may lead to conditional dependence between the RTs in
two ways. Firstly, respondents may differ in the extent to which they work with
a slow start and speeded conclusion on the test, which should result in positive
dependence between the RTs of adjacent responses of items in the beginning or at
the end of the test. Secondly, if the items are presented in booklets, the item position
will likely be different for different respondents, and hence respondents will differ
in whether they encounter the item in the beginning, in the middle, or at the end of
the test. In that case, even if all respondents show the exact same pattern of slowing
down in the beginning and speeding up near the end of the test, positive residual
dependencies will remain between adjacent items (i.e., between items in a booklet).

While the impact of unmodeled conditional dependence between the RTs in the
hierarchical model has to our knowledge not been studied, one can be hopeful that
in practice its impact is relatively limited. That is, one can expect an impact similar
to what is commonly found in IRT models where unmodeled local dependencies
are present: an underestimation of the standard error of the latent variable in the
measurementmodel.While this may be undesirable, its impact in settings where one
mainly uses the hierarchical model for improving the precision of measurement of
ability can be expected to be minor, since it only directly concerns the precision with
which speed is estimated. It does however mean that there is relevant model misfit
and that one misses potentially relevant information about the response processes.
If getting a more complete picture of these processes is considered desirable, one
could consider workingwith a more complexmeasurementmodel for RT that allows
for local dependencies.

16.3.3 Conditional Independence of RT and RA

While the previous two forms of conditional independence both only concerned one
of the two measurement models, the remaining three forms of conditional indepen-
dence all concern the relationship between the RA and RT side of the hierarchical
model. In this sense, the remaining three forms of conditional independence can be
considered to be unique to models that jointly consider RA and RT. The most well
known and well studied of these assumptions is conditional independence of RT and
RA:

.P(X,T|θ, τ ) = P(X|θ, τ )P (T|θ, τ ).

This assumption of conditional dependence thus states that once the latent variables
are taken into account, the accuracy of the response is not linked to the RT:
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Unexpectedly fast or slow responses cannot be expected to be more (or less) likely
to be correct, and vice versa.

Conditional dependence between RA and RT implies that the association
between RA and RT that is observed is not fully explained by the two latent variables
in the model and hence that unexplained patterns remain. Since the hierarchical
model purports to fully explain the observed association between RA and RT, this
form of conditional dependence can be considered conceptually important. As will
be discussed below, its presence both poses risks for the model inferences and
creates opportunities to gain better insight into the response processes for specific
items and for specific persons.

Bolsinova et al. (2017) have provided an extensive overview of the various
possible sources of positive and negative conditional dependence, which will briefly
be summarized here. As they point out, conditional dependence may both be
present in situations where all individuals answer the items in similar ways (i.e.,
homogeneous response processes) and when individuals differ in how they answer
the items (i.e., heterogeneous response processes).

When respondents take the test in similar ways, conditional dependence may
occur due to between-person differences in the item parameters (i.e., differential
item functioning). If differential item functioning (DIF) is present, an item may
be relatively more difficult for one respondent than for another respondent with
the same ability level. Since time intensity is generally positively correlated with
item difficulty, it is reasonable to expect the item time intensity to similarly show
DIF, meaning that respondents for whom the item is relatively difficult may also
spend a relatively large amount of time on solving the item, introducing DIF for
the item time intensity parameter as well. This covariation of item difficulty and
item time intensity will generally result in negative conditional dependence, since
those persons who find the item more difficult are both expected to provide a less
accurate and slower response to the item. While DIF is normally only studied in the
context of contrasting specific subgroups in the population that is tested, the negative
conditional dependence described here can occur even if there is no DIF that links
specifically to group membership, but only concerns “unexplained” between-person
variation in the item parameters (e.g., the item having a higher difficulty parameter
for one respondent than for another, without this difference being attributable to
group membership). Such DIF is not studied in practice for the obvious reason
that there is always too little data to consider it (since it concerns person-by-
item interactions rather than group-by-item interactions), but this does not mean
that such between-person variation in the item parameters should not be expected,
as Bolsinova et al. explain (2017). Thus, any between-person covariation of item
difficulty and item time intensity is sufficient for causing negative conditional
dependence, and this covariance can be present even if the DIF on the RA and
on the RT side average out at the level of the different groups and hence is not
detected. This means that standard DIF analysis (even if extended to the hierarchical
model) will not be able to show that such DIF is not present, since it only considers
variation in the item parameter(s) across a small prespecified set of respondent
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groups. Unfortunately, this means that in practice excluding the possibility of this
kind of DIF is empirically practically infeasible.

Additionally, conditional dependence may occur due to non-stationarity of the
two latent variables. That is, while the hierarchical model assumes that all persons
work at a constant speed and with a constant ability level, this assumption may
often be unrealistic in practice. On any test with an effective time limit, speeding
near the end of the test will occur for at least a subset of the respondents, meaning
that their effective speed for those later items is higher than it was for the earlier
items. Due to the speed-accuracy trade-off, we can expect responses to those later
items to be both faster (i.e., negative residual RT) and more often incorrect (i.e.,
negative residual RA), resulting in positive dependence.

While the abovementioned sources of conditional dependence between RA and
RT concern situations where respondents still take the test in comparable ways,
additional sources of conditional dependence may play a role when there are
qualitative differences in how respondents take that test. That is, when the response
processes of respondents differ for a particular item, these differences can be
expected to result in conditional dependence between the RA and RT of responses
to that item. The most obvious example is rapid responding, which means that some
respondents provide low-quality fast responses to the item, introducing positive
dependence. In contrast, slow disengaged or unmotivated respondingwould result in
negative dependence. Additionally, when engaged respondents show differences in
their answer strategy, conditional dependence can be expected. For example, when
some respondents produce the answer to an item through heuristics, while others
solve the item algorithmically, both differences in the expected RA and the expected
RT will be present, leading to dependence.

With all these different possible sources of conditional dependence between RT
and RA, it should not come as a surprise that this assumption often appears to be
violated in practice (Ranger & Ortner 2012; Meng et al. 2015; Bolsinova et al. 2017;
Bolsinova etal. 2017; Bolsinova &Molenaar 2018). It should also be noted that both
positive and negative conditional dependence between RA and RT can be observed
within the same test. This will, for example, be the case if a heuristic approach
leads to the correct response on one item, while it leads to an incorrect response on
another item. Thus, conditional dependence between RA and RT should always be
studied at the item level.

It may be noted that in addition to a possible dependence between the RA and
RT on the same item, dependencies across items are also possible. For example, the
well-studied phenomenon of post-error slowing (Rabbitt & Rodgers 1977; Laming
1979) suggests that there may often be a negative dependence between the RA
of one response and the RT of the subsequent response. To our knowledge, this
phenomenon has not been studied in the context of the hierarchical model, but it
seems reasonable to assume that the impact of this kind of violation of conditional
dependence will be similar to the impact of conditional dependence between RA
and RT of the same item.

Beyond the fact that misfit shows that the model inadequately captures the
patterns observed in the data, the presence of conditional dependence between RA
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and RT suggests that there may be important aspects of the response process that
are not captured by the model or perhaps even misrepresented. Thus, a variety
of extensions of the hierarchical model have been considered (Ranger & Ortner
2012; Meng et al. 2015; Bolsinova etal. 2017; Bolsinova et al. 2017) that attempt to
incorporate possible residual dependencies between RA and RT in the model. These
models generally provide a more flexible toolkit for jointly modeling RA and RT,
allowing users to get a more complete picture of the response processes and item
and person characteristics, at the cost of increased model complexity. Thus, it can be
considered important to first critically test for the possible presence of conditional
dependence between RA and RT (e.g., using the test proposed by Bolsinova &
Tijmstra 2016) and subsequently explore the use of one of the extensions of the
hierarchical model if needed and desired.

16.3.4 Conditional Independence of RT and Ability

In addition to the RT of a response possibly depending on the RA of that response
or the RT of other responses, there is also the possibility that RT depends on ability.
That is, there may be difference between persons of different ability levels in terms
of how much time they spend on each item, beyond what can be explained through
their overall speed. This would entail a violation of the following conditional
independence assumption:

.P(T|θ, τ ) = P(T|τ ).

This possibility was considered by Bolsinova and Tijmstra (2018).
Conceptually, the possibility of ability being linked to how much time a

respondent spends on one item, relative to the other items, makes a lot of sense.
Low-ability respondents in all likelihood realize that some of the more difficult items
are too difficult for them to solve and may decide to allocate most of their limited
time to solving the easier items, where they do stand a reasonable chance of finding
the right answer. In contrast, high-ability respondents likely do not need to spend a
lot of time in solving easy items and allocate most of their time to tackling the more
difficult items. Effectively, the hierarchical model states that throughout the entire
test, there will be no difference in how high-ability respondents allocate their time,
compared to low-ability respondents. This assumption may not be plausible in most
practical testing settings.

The ignored possibility of conditional dependence between RT and ability is not
only a limitation for the standard hierarchical model in the sense that it introduces
model misfit, but it also means that not all relevant information about ability that
is contained in the RTs is utilized by the model. That is, conditional dependence
between RT and ability means that there is collateral information in the RTs for
the estimation of ability, beyond that which is contained in the overall correlation
between speed and ability. Bolsinova and Tijmstra (2018) developed a model that
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allows for this kind of conditional dependence and found that in practice the gain
in precision with which ability is estimated when allowing for this dependence can
be notable and may exceed the original gain in precision when moving from an IRT
model to the standard hierarchical model (i.e., from including speed as a predictor
of ability). This is especially likely for larger tests, since in the extended model
the collateral information in RT for the estimation of ability effectively increases
linearly with every additional item, while in terms of collateral information, the
standard hierarchical model can never do better than the inclusion of a single
perfectly estimated covariate (i.e., speed). Thus, if one’s main reason for using the
hierarchical model is to increase the precision with which ability is estimated, it
makes sense to explore whether the extended model proposed by Bolsinova and
Tijmstra makes better use of the collateral information from the RTs than the
standard hierarchical model.

16.3.5 Conditional Independence of RA and Speed

In addition to the RA of a response possibly depending on the RAs of other
responses and the RTs, it may also be the case that under the hierarchical model,
a residual association remains between RA and speed. In that case, one is dealing
with a violation of the following conditional independence assumption:

.P(X|θ, τ ) = P(X|θ).

Such violations can be expected when the effect of “operating speed” on the
probability of success is not the same for all items. For example, it may be realistic
that some items can be solved rather easily using heuristics, in which case a high
speed would not necessarily lead to a low expected RA or a lower expectation
than what is expected for respondents operating at lower speed levels. If there are
other items on the same test where using heuristics does not lead to the correct
(and possibly to an incorrect) answer, respondents who operate at that same high
speed level would now be expected to do relatively worse compared to respondents
operating at a lower speed level. This differential impact of speed on the expected
accuracy of the response for different items would show up as a negative residual
dependence between speed and RA.

Extensions of the hierarchical model that specifically attempt to address possible
residual dependencies between RA and speed have to our knowledge not been
developed. Additionally, no formal study into the possible presence of this kind
of dependence in real life data has to our knowledge been conducted, nor have tests
been developed that specifically aim to detect such possible dependence. However,
an approach similar to the one proposed by Bolsinova and Tijmstra (2018) for
dealing with conditional dependence between RT and ability could be explored.
While such an extension would not lead to a notable improvement in the precision
with which ability is estimated, it would provide users with relevant information
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about how different items function, which can be considered relevant for testing
practice and especially test design (e.g., intentionally ex- or including items where
fast operating speed improves the expected accuracy).

16.4 Risks of Using the Hierarchical Model in Practice

In addition to the formal and practical limitations of the standard hierarchical
modeling framework discussed above, there are important risks and misconceptions
of the framework that should be well understood by practitioners before they choose
to use the model in practice, which will be covered in this section.

One important misconception that should be avoided concerns the interpretation
of the correlation between speed and ability in the model. Given that in standard
formulations of the model, .τ effectively captures the (weighted) average RT on the
test what could be called “effective speed,” while .θ captures “effective ability” (i.e.,
overall performance on the test), all that this correlation tells us is whether persons
who provide answers faster generally do so with higher or lower accuracy than those
who provide answers more slowly (Tijmstra & Bolsinova 2018). While it may be
tempting to take this between-person association and assume that it informs us what
would happen to the expected performance of respondents if they would provide
answers more (or less) quickly, no such inferences can be made, since this concerns
a (counterfactual) within-person association that cannot be assessed based on the
model. Fundamentally differentmodels and a fundamentally different testing setting
are needed if one wants to assess this within-person speed-ability trade-off (e.g.,
see Goldhammer 2015), which require respondents to operate at different levels of
effective speed.

Another potential risk of the hierarchical model is that unlike standard IRT
models, the estimates of ability depend on more than just the accuracy of the
responses, since the correlation between speed and ability means that speed
estimates affect ability estimates. Of course, this was also one of its main selling
points, but the inclusion of speed as an additional predictor of ability does run the
risk of introducing bias. That is, while the precision of measurement will increase
through the inclusion of this additional predictor, if the actual relationship between
these two variables does not fully match their relationship in the model, we will
introduce bias in the ability estimates that would not have been there if we had used
a “RA-only” model. With the complexity of standard test taking settings in mind,
it may not be overly realistic to assume that the simple linear relationship between
speed and ability completely and correctly captures the relationship between RT and
RA, meaning that at least some degree of bias in the estimate of ability should be
expected. Thus, the risk of introducing systematic bias is prominent if the actual
relationship between speed and ability is not captured well by a linear correlation.
This will, for example, be the case when respondents differ in how they take the test
and, for example, a subset of the respondents provide fast disengaged responses. It
is therefore important to ascertain that respondents all took the test in similar ways



16 The Hierarchical Model for Response Times: Advantages, Limitations,. . . 321

(e.g., with similar levels of engagement and using similar response processes). This
will of course be difficult to actually establish in testing practice, where there is only
a limited amount of information available per respondent.

There is another risk that follows from using speed as an additional predictor
of ability that specifically applies to high-stakes testing. Since the speed with which
responses are givenwill have an influence on the estimated ability, it may be possible
to optimize one’s speed to maximize one’s estimated ability. Since the association
between speed and ability is assumed by the model to be linear, this is simply a
matter of responding as fast as possible in case of a positive association between
speed and ability and as slow as possible when the association is negative. Giving
very fast responses will likely result in a strong reduction in the accuracy of the
responses, meaning that this strategy will likely not be very effective in case of
a positive association between speed and ability. However, if the association is
negative, there is nothing stopping a well-informed respondent from giving slow
responses to all of the items (to the extent that the time limit allows) to obtain a speed
estimate that is as high as possible. While one could partially address this issue by
not informing respondents of how their speed will affect their estimated ability, this
would mean that the scoring rule cannot be communicated to respondents before
or during the test, which may also be problematic. These issues, together with the
general possibility of introducing bias discussed in the previous paragraph, make it
that using the hierarchical model for improving the precision of ability estimates in
high-stakes testing settings may be ill-advised.

In contrast, using the model in low-stakes testing settings may be more defensi-
ble, since the introduction of some degree of bias in the individual ability estimates
could be considered acceptable there if it leads to a relevant increase in precision
of those ability estimates. However, in these settings, the risk of heterogeneous
response processes will be more prominent, since unlike in high-stakes testing,
settings there likely will be a relevant subset of respondents who are providing fully
or partially disengaged responses. If these “deviant” responses and respondents are
not detected and excluded from the analysis, they will likely have a notable impact
on the estimated correlation between speed and ability. Concretely, when many
fast disengaged responses are present, the correlation between speed and ability
will likely be more negative than it would be if those disengaged responses would
be excluded from the analysis. While RTs may provide relevant information for
determining disengaged responding (e.g., see Goldhammer et al. 2016; Nagy &
Ulitzsch 2021), it is unlikely that any method will succeed in detecting disengaged
responses with such a degree of accuracy that their presence no longer biases the
estimate of the correlation between speed and ability.3 Consequently, there remains

3 It is important to stress here that the estimated ability effectively just summarizes the observed
performance on the test, meaning that it only captures “effective ability.” Since the effective ability
of a respondent who is not fully engaged on the test will be lower than their actual ability level
(i.e., the ability level that they would display when being fully engaged), these respondents should
ideally be excluded from the analysis, since their estimated ability will be a (potentially highly)
biased estimate of their actual ability level. With this in mind, they should therefore also not be
included in the analysis when determining the correlation between speed and ability, which one
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a risk of introducing notable bias in the estimate of ability for engaged respondents
due to the failure to sufficiently exclude disengaged respondents and responses from
the analysis.

Even if all disengaged responses and respondents can be eliminated from
the analysis, the possibility of heterogeneous response processes remains. For
example, if respondents differ in the extent to which they work heuristically versus
algorithmically, this will affect both their expected RAs and RTs on the test. If
one ignores these differences, one ends up with one overall association between
speed and ability that aggregates the patterns found for the two styles of taking
the test, which will likely not adequately represent the association between speed
and ability in either of the subgroups, and hence potentially introduces bias in the
ability estimates. While one would ideally study each subgroup separately, there
may often be a variety of differences between persons in how they take the test, and
adequately capturing this heterogeneity in the response processes will often not be
feasible in practice. Thus, the possibility of heterogeneous response processes poses
a challenge for the use of the hierarchical model, in both low- and in high-stakes
testing settings.

An additional risk of bias lies in the assumption of the model that RTs are
informative of ability (through speed) regardless of the accuracy of the response.
Bolsinova and Tijmstra (2019) have found that in some settings, it may be plausible
that only the RTs of correct responses are informative of ability. They proposed
the possibility of separately measuring the speed with which correct and incorrect
responses are given, respectively. Since the standard hierarchical model assumes
that there is a single speed latent variable that explains the RTs and that RT
(conditionally) does not depend on RA, it is not equipped to deal with this
possibility. By combining the RTs of correct and incorrect responses together in
a single latent speed variable, bias in the estimated ability may be introduced. This
makes carefully checking whether there is indeed a single latent speed variable that
explains the RTs important when using the hierarchical model in practice.

Finally, it may be relevant to point out the importance of distinguishing between
.θ and the construct of interest that the test is supposed to measure. While ideally the
two overlap perfectly, even in the best of settings, it may be realistic to assume that
there is some degree of construct-irrelevant variance present in the true value of .θ

of different respondents, meaning that .θ is not a perfect proxy for the construct of
interest even if there were no uncertainty in its estimates. For example, in addition
to depending on ability, someone’s test performance might be influenced by their
experience in test taking or by their general reading skill. Such construct-irrelevant
factors that influence .θ could easily affect the expected RTs as well. Thus, there
is the risk that the predictive power of speed is especially linked to this construct-
irrelevant variance in .θ , which would mean that using the hierarchical model instead
of a standard IRT model would exacerbate the confounding of measurement that

wants to establish for the population of respondents who provided “normal” engaged responses to
the items.
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occurs. That is, the precision with which .θ is estimated would increase, but at the
cost of increasing the discrepancy between .θ and the construct that the test was
intended to measure. Using the hierarchical model therefore requires users to be
confident that there is no issue with construct-irrelevant variance in .θ , which may
be difficult to establish in practice.
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Chapter 17
Computer-Adaptive Testing with Fewer
Assumptions

Jules L. Ellis

Abstract Two methods for computer-adaptive testing are being developed, based
on monotone homogeneity. The first method uses the latent or observed item
difficulties, and the second method is based on item-rest regressions. These methods
can be used for the scaling of subjects and/or the selection of items. Seven
combinations of nonparametric scaling and selection are studied and compared with
a parametric method in various item banks. The nonparametric method based on
item-rest regressions, for both scaling and selection, performs almost as good as the
parametric method for computer-adaptive testing.

17.1 Computer-Adaptive Testing with Fewer Assumptions

This chapter will explore two methods of computer-adaptive testing based on
monotone homogeneity. Computer-adaptive testing (CAT) is defined here as a test
method where each subject may be exposed to a different combination of items from
a given pool of test items. CAT is usually based on parametric item response theory
(IRT) models such as the Rasch model and the 2-parameter logistic (2PL) model
(e.g., van der Linden & Glas, 2010), and relatively few attempts have been made to
base it on nonparametric IRT (e.g., Chiu & Chang, 2021). This chapter will use the
nonparametric IRT model of monotone homogeneity developed by Mokken (1971;
Sijtsma, 2005) for binary variables Xj, j = 1, . . . , J. This model has relatively few
assumptions, namely:

• Unidimensionality: there is a real-valued latent variable (denoted as θ ).
• Monotonicity: the item response functions (IRFs) P(Xj = 1| θ ) are increasing in

θ .
• Conditional independence: the item scores .

(
Xj

)J

j=1 are independent given θ .
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Authors on monotone homogeneity often use the term “monotonically nonde-
creasing” instead of “increasing,” but the conventional mathematical definition of
both terms is the same (a function f () is increasing if x > y ⇒ f (x) ≥ f (y) for all x, y
in the domain of f ()).

Developing a CAT method on the basis of monotone homogeneity may have
two advantages. The first advantage is that the use of such a method is easily
defensible in situations where monotone homogeneity holds while it is known that
more specific models such as the 2PL model are violated. In such situations it would
probably still be technically possible to base the CAT method on the 2PL model: the
ordinary estimation algorithms used in CAT will produce estimates for the item and
subject parameters even if the model is wrong. However, it would be hard to defend
that these estimates are useful and to base decisions on them, if it is known that
the underlying model is wrong. The second advantage of developing a CAT method
based on monotone homogeneity is that it can be used to study the robustness of
outcomes produced by a CAT method based on a parametric model. That is, in a
situation where there is no clear violation of the 2PL model, one may still wonder
whether similar outcomes will be obtained with less specific assumptions.

Two different problems of CAT can be distinguished. The first problem is that of
scaling the subjects: how to assign scale values to subjects if they have responded to
different items? The second problem is that of selecting the items: how to select the
next item for a subject, given the previously administered items and the subject
responses to them? In a CAT algorithm, these problems are usually addressed
repeatedly and in sequence: (1) an item is selected, and the subject responds; (2)
the scale value of the subject is estimated; (3) repeat.

The outline of the paper is as follows. The following sections will briefly
review some examples of CAT that have been developed in nonparametric IRT and
explicate the assumptions and objectives of this chapter. The subsequent section
develops the nonparametric CAT methods that will be studied. After this, we
describe the design of the simulation study and present the results of the simulation
study. The last section is the discussion.

17.2 CAT in Nonparametric IRT

Nonparametric IRT has a longstanding relation with cognitive diagnosis modeling
(Junker & Sijtsma, 2001; van der Ark et al., 2019). Chang et al. (2019) and Chiu
and Chang (2021) discuss CAT with cognitive diagnosis models, where “the latent
attribute profile of examinee i is a K × 1 vector denoted as αi = (αi1,αi2, . . . ,αiK)T .
The latent space expanded by the K attributes thus contains 2K latent proficiency
classes, and the ultimate goal of CD is to assign examinees to the proficiency class
to which they belong” (Chang et al., 2019, p. 545). Of special interest here is the
nonparametric classification (NPC) method (Chiu & Douglas, 2013):
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The NPC method classifies examinees by evaluating the distance between the observed and
ideal item responses. Specifically, for the 2K possible attribute profiles, the corresponding

ideal response patterns are denoted as .η(1), η(2), . . . , η
(
2K

)
where .η(m) =

(
η

(m)
1 , . . . , η

(m)
J

)

for m = 1, . . . , M = 2K . The examinee’s attribute profile is then estimated by minimizing
the distance between the observed and ideal item responses, d(Yi, η(m)), where m = 1, . . . ,
M. For binary data, a natural and frequently used distance measure is the Hamming distance,
which simply counts the number of times that the entries in two vectors disagree. (Chang et
al., 2019, p. 546; boldface in one formula omitted)

For example, if latent attribute 1 indicates whether the subject knows everything
about Julius Caesar, and latent attribute 2 indicates whether the subject knows
everything about Napoleon, and the first three items are questions about Julius
Caesar and the fourth question is about Napoleon, and the fifth item requires
knowledge of both Julius Caesar and Napoleon, then the ideal response pattern of
someone with latent attribute profile (1, 0)T is (1, 1, 1, 0, 0), and the ideal response
pattern of someone with attribute profile (0, 1)T is (0, 0, 0, 1, 0). These ideal response
patterns are latent too; the observed response pattern on the five items can deviate
from the ideal patterns because of mistakes and guessing.

The first CAT method that will be developed in this chapter is a special case
of this, where the ideal response patterns form a Guttman scalogram. However,
items that satisfy monotone homogeneity do not necessarily fit into this cognitive
diagnosis model, and one can wonder how good this CAT technique performs if the
items actually satisfy a 2PL model.

A second approach to CAT in nonparametric IRT is to estimate the IRFs (Xu
& Douglas, 2006), based on, for example, the kernel smoothing (Ramsay, 1991).
Douglas (1997) showed that the estimates of θ and the IRFs are consistent if both
the number of subjects and the test length go to infinity. The second method that
will be developed in this chapter will use the item-rest regressions instead of the
kernel-smoothened IRF estimates. The item-rest regressions have the advantage that
it is known that they have to be increasing under monotone homogeneity for binary
items (Junker & Sijtsma, 2000), and this is true even for a finite number of items.
Moreover, they are computationally very easy to obtain.

A third approach to CAT in nonparametric IRT is the use of a monotonic
polynomial model (Falk & Feuerstahler, 2022). This model is based on the 2PL
model, but each item can have additional parameters that accommodate deviations
of the IRF from the logistic shape. This approach will not be explored in this chapter.

17.3 Assumptions and Objectives

17.3.1 Assumptions

(1) There is a large pool of test items that can be selected. All items are binary:
each answer on an item is either correct or incorrect. We will denote the score
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on item j as Xj, with values 1 (subject gave a correct answer) or 0 (subject gave
an incorrect answer).

(2) The items have previously been administered in a large group of subjects, and
from this the item means E

(
Xj

)
, and the item-rest regressions E

(
Xj |R(j)

)
,

where R(j) := ∑J
k=1 Xk − Xj , are known. In parametric examples, the latent

item parameters are known too.
(3) The items satisfy monotone homogeneity.
(4) For each item the IRF has an infimum less than 0.50 and a supremum larger

than 0.50.
(5) The item selection in the CATmethod depends only on the item parameters such

as E
(
Xj

)
and E

(
Xj |R(j)

)
, and not on the substantive domain of the items.

(In practical applications, it is common practice to require that the items are
balanced across certain domains. This will be avoided here because it obscures
the differences between various methods.)

(6) Each subject receives the same number of items. That is, the termination
criterion is simply the number of items which the subject answered. (As a
consequence, the CAT method will not directly render the test shorter for some
subjects, but it may make the test more reliable because a smarter subset of
items is used for each subject. And, knowing this, the test administrator may
decide to decrease the general test length.)

17.3.2 Objectives

We seek nonparametric CAT methods based on monotone homogeneity. The
monotone homogeneity model is more general than the 2PL model, and therefore
the nonparametric methods based on monotone homogeneity should at least work
in cases where the 2PL model holds, and preferably they should work in more
situations. If the 2PL model holds, one can apply a parametric CAT method
based on the 2PL model, and that will presumably be optimal; it is not expected
that our nonparametric methods will outperform the parametric methods in that
case. However the nonparametric method should produce outcomes that are very
similar to the outcomes of a parametric method. Thus, even though the objective
of this chapter is to develop a nonparametric method, without the 2PL model, its
effectiveness will be studied both inside and outside the 2PL model.

If the accuracy of subject scale values (i.e., subject parameter estimates) is stud-
ied, this will be based on rank correlations rather than product-moment correlations.
It is often argued that the subject parameters of the Rasch model have only ordinal
meaning, and no one ever argued that the subject parameters of the monotone
homogeneity model have more than ordinal meaning; therefore a rank correlation is
more appropriate than a product-moment correlation.

With respect to the selection of items, it would be futile to require that parametric
and nonparametric CAT methods select the same items, since even two parametric
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methods will often not do so. What counts is how precise the ensuing subject
estimates are. The error variance is not a good measure here because it depends
on the scale, which is only ordinal. Therefore, the rank correlation between the true
subject parameters and the estimated subject parameters will be used as a measure
of ordinal reliability.

In sum, the nonparametric CAT method will be developed with the following
objectives in mind:

(1) If the test items satisfy the 2PL model, it will be required that the ordinal
reliability of the new method is close to that of the parametric method.

(2) If the test items do not satisfy the 2PL method, the outcomes of our new method
should still be good; the ordinal reliability should still be high.

17.4 Description of the CAT Methods

17.4.1 Nonparametric CAT Method 1: Latent and Observed
Difficulty Matching

The first new method is based on the idea that the items can be sorted on difficulties,
and that the response pattern of a subject suggests the subject’s location in relation to
the difficulties. For example, if the items have increasing difficulty, and the subject
has response pattern 11100, one would infer that the subject is positioned between
the third and fourth item.

In the context of monotone homogeneity, item difficulty is often defined with
an additional assumption, called uniform relative difficulty (Rosenbaum, 1987) or
invariant item ordering (Sijtsma & Junker, 1996), which means that the IRFs do not
intersect. However, in the present paper, we do not assume invariant item ordering.
Let us therefore define a concept of item difficulty in monotone homogeneity
without invariant item ordering. It was assumed that the items satisfy monotone
homogeneity and that the IRFs increase from some value below 0.50 to some value
above 0.50. Denote the IRFs as Pj(θ ) = P(Xj = 1| � = θ ). If the IRF assumes the
value 0.50 at exactly one value of θ , we can in theory define a difficulty parameter
for the item as the value of θ for which Pj(θ ) = 0.50. If the IRF assumes the value
0.50 for multiple θ , we can still define a difficulty as the average value of θ for
which Pj(θ ) = 0.50. If the IRF does not assume the value 0.50 anywhere, we can
still define the item difficulty as the infimum of all θ for which Pj(θ ) > 0.50. Denote
the difficulty of the j-th item as δj.

If a subject answers item j correctly, then the most likely inference from that
observation is that θ > δj. If a subject answers item j incorrectly, then the most likely
inference from that observation is that θ < δj. Therefore, the most likely answer
patterns would be that of a Guttman scale; that is, if the items are ordered from
easiest to most difficult by their δj, then the answer patterns are most likely of the
form 1...111000...0. The most relevant property of θ would be its rank relative to
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the δj. This will now be used as the scale on which estimates of θ are expressed.
Similarly, the item difficulties will now be expressed as ranks, which means that the
easiest item has δj = 1 and the most difficult item has δj = J if the pool has J items.
The index used to label the items is quite arbitrary; therefore we will simply assume
that they are indexed in order of difficulty; thus δj = j for j = 1, . . . , J.

Suppose the subject answers only a few of the items, for example, the items with
rank 3, 5 and 9 (from easy to difficult) and that the score pattern is 110. From this
one would infer that the subject’s θ is between 5 and 9, and we will then take the
average of these values: .θ̂ = (5 + 9) /2.

For a more general estimator, define new functions gj() that will be called the
quasi-IRFs. They are supposed to indicate the modal response on each item for
each possible value of θ = 0, 1, 2, . . . , J. Let them be defined as follows:

gj (θ) = 1 if θ ≥ δj

gj (θ) = 0 if θ < δj

These quasi-IRFs are similar to the IRFs that one would have in a Guttman
scalogram. They describe the ideal response patterns of a cognitive diagnosis model
(Chang et al., 2019). Now, the reader may frown upon the usage of this model and
believe that our theory is developing in the wrong direction, in that the model is
getting more strict instead of less strict. However, it is not assumed that the gi specify
the IRFs; they are rather used as a simplification of the IRFs where the probabilities
are rounded to the nearest integer value. That being said, we are now going to treat
them as if they are the IRF anyways. Define the discrepancy function

dis1 (θ) =
∑

j

(
xj − gj (θ)

)

where the summation runs across all items that were answered by the subject. The
estimated value .θ̂1 of θ is now defined as the mean value of all θ for which |dis1(θ )|
is minimal. This describes how the subject parameter, on the scale of the item ranks,
can be estimated from an incomplete response pattern. This method utilizes the
order of the item difficulties on the scale of the latent variable, θ . This estimation
method will be called latent difficulty matching.

Note the similarity of this estimation method to the maximum likelihood estimate
in the Rasch model. In the Rasch model, the derivative of the log likelihood of the
response pattern would be

∑
j(xj − Pj(θ )) (e.g., Rose, 2010), and the maximum

likelihood estimate would be obtained by setting it equal to 0 and solving in θ . This
will be discussed further at the end of this section.

Although we want to avoid the assumption of invariant item ordering, one
may wonder whether it is implicitly used in latent difficulty matching. One of
the questions in this chapter, however, is whether latent difficulty matching can
produce acceptable estimates even without invariant item ordering, that is, with
intersecting IRFs. One reason for this question is this. In case of the 2PL model
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with discrimination parameters αj, if the subject answered all items, the weighted
sum score

∑
jαjxj is known to be a sufficient statistic for θ (Birnbaum, 1968, p.

429). However, the unweighted sum score
∑

jxj often correlates very highly with a
positively weighted sum score (Wilks, 1938, p. 27), and it has monotone likelihood
ratio with θ (Grayson, 1988; Huynh, 1994; Unlü, 2008). Thus, the discrimination
and difficulty parameters seem not very important for a rough, ordinal estimate of
θ . In case of a CAT, where some items are unanswered, the difficulties may be more
important, but it remains to be seen whether invariant item ordering is important.

The latent difficulty matching method can be applied only if one knows the rank
order of the items by latent difficulty. The item means and regressions, known
by assumption 2, do not provide sufficient information for the latent difficulties.
Alternatively, the items can be ranked based on the observed difficulties .1− E

(
Xj

)

instead of the latent difficulties. More sophisticated estimates may be created, but
the idea of difficulty matching is to keep things simple. If the difficulty ranks based
on .1 − E

(
Xj

)
are labeled .δ∗

j , then the corresponding quasi-IRFs are .g∗
j (θ) =

1
[
θ ≥ δ∗

j

]
, where 1 is the indicator function, and then the discrepancy is

dis2 (θ) =
∑

j

(
xj − g∗

j (θ)
)

.

The estimated value .θ̂2 of θ is now defined as the mean value of all θ for
which |dis2(θ )| is minimal. This estimation method will be called observed difficulty
matching.

If the IRFs are non-intersecting (i.e., with invariant item ordering), the observed
item difficulties .δ∗

j will agree with the latent difficulties δj. However, we are not
assuming invariant item ordering, and then the two difficulty rankings can be
different. We will study how well observed difficulty matching performs without
this assumption.

The next question is how items can be selected during the CAT administration.
For this I suggest to pick, from the items that have not been used so far for the
subject, the item with the difficulty rank closest to the estimated subject parameter.
This method to select items will also be labelled latent difficulty matching or
observed difficulty matching.

17.4.2 Nonparametric CAT Method 2: Item-Rest Regressions

In this second new method we use a second kind of quasi-IRFs, defined by the item-
rest regressions. They are supposed to indicate the expected response on each item
for each possible value of r = 0, 1, . . . , J − 1. Let them be defined as follows:

hj (r) = E
(
Xj |R(j) = r

)
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Again, we know that these quasi-IRFs are generally not equal to the true IRFs,
but they will be used as an approximation nonetheless. Indeed, other IRF estimates
(e.g., Ramsay, 1991; Douglas, 1997 (both are used in the program TestGraf)) could
be used too. The item-rest regressions have the advantage that they are easily
computed, and they are known to be increasing under monotone homogeneity of
binary items (Junker & Sijtsma, 2000), and consequently, isotonic regression can be
used to smoothen sample estimates (although this was not used in the simulations
of section 5 and 6).

Similar to the difficulty matching method, we define the discrepancy function

dis3(r) =
∑

j

(
xj − hj (r)

)

where the summation runs across all items that were answered by the subject. The
estimated value .θ̂3 of θ should now be one of the values of r with |dis3(r)| minimal.
If only a few items have been administered, there can be many values of r with
dis3(r) = 0, and in that case I suggest to take .θ̂3 close to the middle of the range of
the rest scores, which is (J − 1)/2. The estimated value .θ̂3 of θ is thus defined as
the value of r for which |dis3(r)| is minimal and for which, given this restriction,
|(J − 1)/2 − r| is minimal. This describes how the subject parameter, on the scale
of the item ranks, can be estimated from an incomplete response pattern.

Note that, in comparison with difficulty matching, the scale of the subject
estimates is now changed from J + 1 possible levels of .θ̂1 to J possible levels of .θ̂3,
because the rest-scores run from 0 to J − 1. Furthermore, the rest-score regressions
are not entirely equivalent: if we start with a model in which θ is defined by, say,
the 2PL model, then the posterior distribution of θ given R(j) = r depends on the
item, j. These differences are ignored in the definition of .θ̂3. For a large number of
items, these differences are presumably negligible. For example, if a subject has a
rest score of 115 in a pool of 300 items, it does not matter very much which item
was omitted in the rest score of 115; the posterior distributions of θ are probably
very similar.

The next question is how items can be selected during the CAT administration.
For this I suggest the item with the largest slope of the item-rest regression in a
neighborhood of the estimated subject parameter. That is, for some value ε > 0,

define a neighbourhood of .θ̂3 by the lower bound .x1 := max
(
θ̂3 − ε, 0

)
and upper

bound .x2 := min
(
θ̂3 + ε, (J − 1)

)
, and define the local slope of each item j as

slope(j) := h (x2) − h (x1)

x2 − x1

Now pick, from the items that have not yet been used for the subject, the item
with the largest slope. Since the estimated θ ranges between 0 and J − 1, it may be
wise to let the value of ε depend on the number of items, but we do not yet have
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general recommendations for it. In the simulations reported below, ε = 10 was being
used, with J = 162 and J = 347, which seemed to work slightly better than ε = 1.

17.4.3 Parametric CAT Method

As specified in the objectives, the two new nonparametric methods will be compared
with a well-established parametric CAT method for the 2PL model. For this
parametric method, I choose the following specification. Subject parameters are
estimated by Warm’s (1989) weighted maximum likelihood, which will be denoted
as .θ̂4. The items are selected on basis of maximum information given the current
estimate of θ .

17.4.4 Comparison with Expected Moments and Maximum
Likelihood Estimation of Subjects

If the IRFs are known, then estimation of θ by the expected moments method,
applied to the total score, entails setting

∑
jxj = ∑

jPj(θ ), and therefore solving

∑

j

(
xj − Pj (θ)

) = 0

That is, the expected moments estimate is a value of θ for which the average
residual xj − Pj(θ ) equals zero. The nonparametric CAT methods to estimate θ ,
introduced here, are very similar to this, but replace the IRFs by discretized and/or
estimated IRFs.

Next, consider maximum likelihood estimates. Under monotone homogeneity, if
the derivative of Pj exists and is denoted as .P ′

j , the derivative of the log likelihood
of the response pattern is

∑

j

(
xj − Pj (θ)

) P ′
j (θ)

Pj (θ)
(
1 − Pj (θ)

)

This can be viewed as a positively weighted average of residuals, with the
remark that the weights .wj (θ) := P ′

j (θ) /
[
Pj (θ)

(
1 − Pj (θ)

)]
depend on θ . The

maximum likelihood estimate is a value of θ for which .
∑

j

(
xj − Pj (θ)

)
wj (θ) =

0, that is, a weighted mean of the residuals equals 0.
A reviewer asked why we do not use weights similar to the maximum likelihood

equation in the nonparametric CAT methods. For the discretized IRFs, this would
be impossible because the denominator of wj(θ ) would become zero everywhere.
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For the item-rest regression method, the IRFs Pj would be replaced by the item-rest
regressions hj in the computation of wj, and the item-rest regression would become
very influential if it is close to 0 or 1. This happens at extreme values of θ , where
there are usually few observations, rendering the estimate of the item-rest regression
unreliable. Therefore, I do not expect much benefits from including such weights.

In a 2PL model, wj(θ ) ≡ αj, which depends on the item but not on θ . This might
seem an advantage of the 2PL model in comparison to monotone homogeneity, but
note that if there are few observations with extreme θ , one does not really know
whether the 2PL model holds exactly for such θ , and then the increased precision of
using the maximum likelihood equation with wj(θ ) ≡ αj is based on speculation.

17.5 Design of Simulation Study

Monte Carlo simulations were conducted with four item banks that will be described
below. The first two item banks satisfy the 2PLmodel; the last two item banks satisfy
monotone homogeneity but not the 2PL model. The scaling of subjects and the
selection of items are not necessarily based on the same information: for example,
the subjects can be estimated by item-rest regression, while the items are selected
by observed difficulty matching. Additionally, the possibility to select the items
randomly without replacement was studied as a kind of baseline. Table 17.1 lists
the combinations of methods that were studied. Each combination will be referred
to as a “CAT.”

In each item bank and for each combination of methods, the CAT was simulated
for 1000 subjects with a standard normal distribution for θ . The test length was fixed
a priori at values of 20, 40, or 80 items. After the simulation, the rank correlation
between the true values of θ and the estimates was computed.

Table 17.1 List of methods used in the simulations

CAT Scaling of subject Selection of items

1 Latent difficulty matching Random
2 Latent difficulty matching Latent difficulty matching
3 Observed difficulty matching Random
4 Observed difficulty matching Observed difficulty matching
5 Item-rest regression Random
6 Item-rest regression Observed difficulty matching
7 Item-rest regression Item-rest regression
8 Parametric Parametric
9 Parametric + observed difficulty matchinga Parametric
aIn CAT 9, the item selection and the intermediary subject estimates are based on the parametric
method, but in the last phase, after the subject completed the last item, the subject parameter
is estimated by the observed difficulty matching method. This method is studied in order to
distinguish the effects of item selection method and subject estimation method



17 Computer-Adaptive Testing with Fewer Assumptions 337

Table 17.2 Descriptive
statistics of item parameters
of item bank 2

Discrimination αj Difficulty δj

Mean 1.131 −0.646
SD 0.354 1.643
Minimum 0.383 −4.909
Quartile 1 0.874 −1.943
Median 1.151 −0.550
Quartile 3 1.360 0.513
Maximum 3.003 3.971

17.5.1 Description of Item Banks

17.5.1.1 Item Bank 1 (2PL, Artificial Parameters)

This item bank was simulated with a 2PL model, P(Xj = 1| θ ) = (1 + exp (αj

(θ − δj)))−1. The item bank contained 162 items with discrimination parameter αj

equal to 1 or 2, and difficulty parameters δj evenly spaced between −2 and 2, where
each value of the difficulty parameter occurred once with αj = 1 and once with
αj = 2. These were created by setting for odd j, 1 ≤ j ≤ 162: αj = 1, αj + 1 = 2,
δj = − 2 + (j − 1) * 0.05, δj + 1 = δj.

17.5.1.2 Item Bank 2 (2PL, Realistic Parameters)

This item bank was simulated with a 2PL model, P(Xj = 1| θ ) = (1 + exp (αj

(θ − δj)))−1. The item bank contained 347 items. The item parameters were
obtained from a real item bank with Arithmetic items that was used in 2021 as
test in Dutch primary schools. In the Dutch school system, children are required to
make a test at the end of primary school that serves as the basis for advisements
for secondary school. Several commercial test developers may provide their own
version of an end test, of which the quality is evaluated by a government committee.
The estimated item parameters of one such commercial test developer were used.
These parameters were estimated on the basis of data obtained from 4223 children,
who made the test as a parametric CAT. Each item was answered by at least 800
children. Descriptive statistics of the item parameters are given in Table 17.2.

17.5.1.3 Item Bank 3 (Non-2PL)

This item bank was simulated with IRFs that have a 2PL shape for low and high
values of θ , but a plateau with constant value 0.50 in a middle region of θ . The
width of the middle region is modeled by a third item parameter γ j. The IRFs are
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thus defined by these rules:

P(Xj = 1| θ ) = (1 + exp (αj(θ − δj)))−1 if θ ≤ δj.
P(Xj = 1| θ ) = 0.50 if δj < θ < δj + γ j

P(Xj = 1| θ ) = (1 + exp (αj(θ − δj − γ j)))−1 if θ > δj + γ j

In this item bank, 347 items were used with the same αj and δj parameters as in item
bank 2, and with γ j = 0.50 for all items.

17.5.1.4 Item Bank 4 (Non-2PL)

This item bank was simulated with IRFs that are the mean of two 2PL-shaped
IRFs with the same discrimination parameter but different difficulty parameters.
The difference between the two difficulty parameters is modeled by a third item
parameter γ j. The IRFs are thus defined by these rules:

P(Xj = 1| θ ) = 0.5(1 + exp (αj(θ − δj)))−1+0.5(1 + exp (αj(θ − δj − γ j)))−1

In this item bank, 347 items were used with the same αj and δj parameters as in item
bank 2 and with γ j = 0.50 for all items.

17.5.2 Estimation of Observed Means and Item-Rest
Regressions

In each item bank, the items were ranked based on .1 − E
(
Xj

)
, estimated

by 1000,000 draws of standard normal θ . The empirical rest score regressions,
.E

(
Xj |R(j)

)
were estimated based in 1000,000 draws. Groups of R(j) with less

than 100 subjects were deleted. The function hj was now defined as .hj (r) =
E

(
Xj |R(j) = r

)
on the values of r where the latter quantity was defined. For values

of r for which .E
(
Xj |R(j) = r

)
was unknown, hj was set to 0 for low values of r

(i.e., values r for which .E
(
Xj |R(j) = r ′) was unknown for all r

′
< r) and set to 1

for high values of r (i.e., values r for which .E
(
Xj |R(j) = r ′) was unknown for all

r
′
> r), and interpolated on the middle values of r.

17.6 Results

Table 17.3 shows the ordinal reliabilities of the various CATs in the four item banks
for varying test lengths.

CAT 7, where both subject scaling and item selection are based on the item-rest
regressions, has the highest ordinal reliability among the nonparametric CATs (1–7)
in all four item banks. The ordinal reliabilities of this CAT are very close to the
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ordinal reliabilities obtained by the parametric CAT (CAT 8), with the difference at
most 0.017 and the ratio at least 0.983.

CAT 9, which utilizes parametric item selection but nonparametric subject
estimation in the final phase, has also high ordinal reliabilities that are close to
the fully parametric method. This suggests that once the items are selected, the
nonparametric estimation of subjects by observed difficulty matching is almost as
good as the parametric estimation.

CATs 5 and 6, based only partially on item-rest regressions, have considerable
lower ordinal reliability than CAT 7 in most item banks.

CATs 1–4, based on difficulty matching, consistently have the lowest ordinal
reliability, and substantially lower than CAT 7. In these cases, the CATs with
randomly selected items outperform the CATs with items that were selected by
difficulty matching – which is counterintuitive.

17.7 Discussion

The results are encouraging. A nonparametric CAT can be based on item-rest
regressions, and in the cases studied here, it proved to be almost as reliable as a
parametric CAT based on the 2PL model.

An almost equally high performance was obtained in the combination method,
where the items are selected by the parametric method and the final subject estimates
are obtained with observed difficulty matching. The fact that the combination
procedure performs so well can be used in robustness studies to corroborate subject
estimates after a parametric CAT has been administered. It might also be used to
explain to lay people the basic idea of subject scaling in a CAT.

Future research may study how various smoothing methods for the item-rest
regressions affect the performance, how to pick the optimal value of epsilon (the
radius of the neighborhood on which the slope is determined), and the effect of
sample fluctuations in the prior calibration phase in which item-rest regressions
are estimated. Item-rest regressions based on smaller samples might perform much
worse than observed here with N = 106. In an explorative simulation with ten
independent calibrations of N = 10,000 each, we found an average correlation
of 0.900 with standard error 0.009 for CAT 7 with maximum test length 20 and
item bank 2 (this correlation was 0.943 in Table 17.3 with N = 106). The item-
rest regressions in the simulations with N = 10, 000 were smoothened by deleting
groups of R(j) with group size less than 20, and the result may improve further if
the smoothening is based on isotonic regression instead (e.g., Tijmstra et al., 2012).
Thus, the nonparametric method based on item-rest regressions may still work for a
realistic size of N, but obviously it will break down if N becomes too small. A fair
comparison would also study the effect of estimation error of item parameters in
parametric methods. Note that if the calibration sample size is so small that the IRFs
cannot be estimated accurately, assuming that the IRFs are logistic seems premature.
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For practical applications it should also be studied how content constraints can
be added and which termination criteria can be used to create CATs with flexible
test length. A more elaborate study can investigate how the item-rest regression
method performs in comparison to other methods for CAT in nonparametric IRT,
notably cognitive diagnosis CAT (Chiu & Chang, 2021), kernel smoothing of IRFs
(Xu & Douglas, 2006), and monotonic polynomial models (Falk & Feuerstahler,
2022). Finally, as pointed out by a reviewer, our estimation equation can be rewritten
as .

∑
j xj − ∑

j E
(
xj |θ

) = 0, and this may work for polytomous items too. This
requires further investigation.
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Chapter 18
Validity Indices for Interpreting
Informant Discrepancies in ADHD
Assessment

Judith M. Conijn, Mengdi Chen, Hanneke van Ewijk,
and L. Andries van der Ark

Abstract In ADHD assessment, discrepancies between informants’ test scores
complicate decision-making with respect to treatment and educational adaptations.
These informant discrepancies may be due to meaningful differences such as
variations in assessed behavior across settings (i.e., school vs. home) but may
also be due to response biases or unsystematic error. We propose using response-
pattern-based validity indices for studying which is the most plausible of the two
explanations. These indices detect invalid test scores through identifying extreme,
repetitive, or inconsistent response patterns. To illustrate the use of validity indices
for interpreting informant discrepancies, we used a subset of data (N = 431) from
the self-report and parent-report version of Conners ADHD rating scales collected in
the NeuroIMAGE study. Pairs of self-report and parent-report scores were classified
as either discrepant or non-discrepant, and validity indices were applied to classify
self- and parent-report scores as suspect (i.e., potentially invalid due to rater effects)
or not. Finally, we demonstrate how information from validity indices can be taken
into account in diagnostic decision-making.
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18.1 Introduction

Attention-deficit hyperactivity disorder (ADHD) is defined as a disorder with
symptoms present in two or more settings (such as home, school, or work) with
functional impairment in at least one of these settings. In an educational setting, a
student’s inattentiveness symptoms of ADHD, for example, may lead to difficulties
in following instructions, organizing, and completing assignments. For diagnosing
ADHD, data are commonly collected from multiple sources, for example, self-
reports and informant reports from teachers, parents, or peers (Achenbach, 2006;
De Los Reyes, 2011; Dirks et al., 2012). Typically, informants assess student’s
inattentiveness symptoms of ADHD on a multi-item checklist, and the item scores
are then added to a total symptom score. Collecting data from multiple informants
is crucial for decision-making considering that one of the criteria for an ADHD
diagnosis is the presence of symptoms across multiple contexts.

An important problem for researchers, school psychologists, and clinicians
working with data on symptom severity from multiple informants is that different
informants may not provide the same score, which is known as informant discrep-
ancy (De Los Reyes et al., 2019; De Los Reyes & Kazdin, 2005; Martel et al., 2017).
For example, Nelson and Lovett (2019) found that students’ self-reports on ADHD
symptoms showed only moderate correlations (r = .3 − .5) with parent reports.
An analysis of response validity showed that a large part of the discrepancies could
be explained by students and parents reporting inconsistent symptoms or students
overreporting symptoms to obtain the academic benefits of an ADHD diagnosis
(e.g., extended testing time for taking exams).

In scientific research on ADHD, informant discrepancies may lead to biased
research conclusions because informants may provide different or even contra-
dictory information. However, in educational practice informant discrepancies
are particularly problematic. They complicate individual treatment decisions and
decisions regarding academic benefits, as clinicians or school psychologists need to
base their diagnostic decisions on discrepant information (De Los Reyes & Kazdin,
2005; De Los Reyes et al., 2019; Smith, 2007). Nevertheless, as Martel et al.
(2017) already noticed, there have been conducted only few studies that propose
and evaluate solutions for handling discrepancies in practical settings.

In the current study, we propose that the use of validity indices can solve part
of the difficulties due to informant discrepancies in individual decision-making.
This approach can be applied to the assessment of ADHD—as demonstrated in the
example below. However, the approach is general and can be applied to all sorts
of contexts in which educational—and also clinical—decision-making is based on
multiple informants providing data on the same set of symptoms. Before explaining
our approach, we first discuss several existing methods for dealing with informant
discrepancies, which also depend on the specific cause of the discrepancy.
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18.1.1 Approaches and Explanations for Informant
Discrepancies

A first strategy to mitigate the effect of informant discrepancies is to combine the
item scores of multiple informants into a single item score. For example, there are
approaches that minimize the Type I error (an item score equals 1, if and only if all
informants rated the symptom as present) and approaches that minimizes the Type II
error (an item score equals 1, if at least one informant rated the symptom as present).
Alternatively, Martel et al. (2017) used the average across respondents of the total
symptom score. In an empirical comparison of these three approaches, Martel et
al. (2015) found the averaging method to be most valid for determining the total
number of children’s ADHD symptoms and taking diagnostic ADHD decisions. A
second strategy is to select the score of a specific informant that has been shown to
produce the most useful or valid score in empirical research. This informant is called
the optimal informant (Bird et al., 1992; Kraemer et al., 2003). Research has shown
that the optimal informant depends on the characteristics of the informants and
constructs measured. For example, Smith (2007) developed a model that combines
three characteristics (age, setting, and construct type) to help in deciding the optimal
informant in the assessment of child psychopathology based on previous research
results (e.g., incremental validity coefficients).

A third approach for dealing with discrepancies is the general framework of
De Los Reyes et al. (2013, 2019): the operations triad model. In this approach,
the chosen method for handling informant discrepancies depends on the main
explanation for the informant discrepancies. The first possible explanation is the
presence of meaningful variation across reports due to differences in observed
behavior. For example, if a child’s behavior varies between school and home, a
possible discrepancy between parents and teacher’s informant reports may be due to
true differences in observed behavior (Dirks et al., 2012; De Los Reyes et al., 2009;
Martel et al., 2017). Secondly, error sources may explain informant discrepancies.
Error sources may be due to poor psychometric properties of a given informant
measure (i.e., poor reliability or validity of a questionnaire) in a specific sample, or
methodological issues such as differences in item content between the two versions
of a questionnaire (De Los Reyes et al., 2013).

Based on the two main explanations for informant discrepancies, the operations
triad model outlines how researchers may deal with informant discrepancy, for
example, as evidenced by an unexpected low correlation between scores of different
informants that should assess the same construct. In short, it is argued that a lack of
correspondence between scores of different informants may be meaningful and, in
that case, the scores reported by all informants should be used as separate variables
in a study. However, before concluding that informant discrepancies are meaningful
and adjusting the analyses accordingly, researchers should first systematically rule
out that informant discrepancy is due to error sources. To this end, researchers
should examine reliability indices for each of the informant measures and validity
indices such as correlations representing convergent or divergent validity. If the
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psychometric properties of both informant measures are favorable in the population
of interest and no other methodological issues can be identified (e.g., differences
in the item wording of the two informant measures) that can explain informant
discrepancies, support for meaningful differences between informant scores is found
(De Los Reyes et al., 2013, 2019). Instead of being averaged or combined into
a single variable, the scores should then be treated as separate yet dependent
observations in further analyses, for example, extensions of the generalized linear
model that account for correlations among dependent variables.

18.1.2 Rater Effects as an Additional Explanation for
Informant Discrepancy

The operations triad model could be regarded as the more sophisticated and
advanced approach for dealing with informant discrepancy since it takes the
source of the discrepancy into account. Moreover, the psychometric analyses and
methodological checks proposed in the operations triad model seem to be an
appropriate approach for assessing whether error sources can explain informant
discrepancy in group-level research. On the other hand, these analyses do not
provide a sufficient means to assess whether the response pattern of a specific
individual respondent is reliable and valid. Even when a measure shows adequate
psychometric properties in the population of interest, rater effects may compromise
the accuracy of the test score of an individual respondent (e.g., Martel et al., 2015).

Rater effects can be manifested as response biases or unsystematic error in a
response pattern. Response biases, for example, include social desirability bias,
overreporting, underreporting, or malingering (Martel et al., 2017; Smith, 2007).
Unsystematic error can be due to careless responding when respondents face
complicated questions, lack of motivation, a too lengthy test, or environmental dis-
tractions (Meade & Craig, 2012). Low cognitive or reading skills and idiosyncratic
interpretation of item content may also result in unsystematic error (e.g., Meijer et
al., 2008; Smith et al., 2010). If rater effects are substantial, they result in invalid test
scores and are likely to generate informant discrepancies (e.g., Martel et al., 2015).

Rater effects are mainly problematic for individual decision-making. In group-
level research, the different types of rater effects that occur across respondents partly
cancel each other out and therefore may not strongly affect group-level statistics
such as group means (e.g., Conijn et al., 2019). In contrast, in individual decision-
making, rater effects due to for example overreporting or careless responding can
result in severely biased decisions. In this study, we therefore propose that when
individual decision-making is hampered by informant discrepancy, an additional
psychometric approach (i.e., next to the standard validity and reliability checks
using group-level data) is needed to separate informant discrepancy due to error
sources from informant discrepancy due to meaningful differences. The goal of
the current study is therefore to describe an additional approach that is useful for
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interpreting informant discrepancy in an individual decision context. The first part of
this paper provides a general description of the validity-index approach. The second
part provides an illustration of the method by means of an application to a dataset
of self-reported and parent-reported ADHD symptoms.

18.2 The Validity-Index Approach

The validity-index approach can be applied in cases that individual decision-making
is hampered by a discrepancy between test scores of different informants regarding
the same construct, for example, a college student reporting a clinical level of
symptom severity on a self-report questionnaire and his parents reporting a non-
clinical level of symptom severity on the same questionnaire. This discrepancy
interferes with decision-making regarding whether or not the student has a right
to receive educational adaptations. The specific definition of informant discrepancy
will depend on the particular decision-making context and is actually not relevant
for how to use the validity-index approach. Informant discrepancy may, for example,
also be defined as a specific size of a test score difference between two informants
that is clinically relevant. Alternatively, it may be a score difference that is
significant given the estimated reliability of the measures.

For a given pair of discrepant test scores, the main goals of the validity-index
approach are to categorize response patterns of each of the informants as likely
invalid due to rater effects or likely valid and to take that categorization into account
in individual decision-making. In the validity-index approach, the categorization of
response patterns is done using response-pattern-based validity indices. Response-
pattern-based validity indices are computed using the observed response pattern and
quantify the degree that an individuals’ pattern of responses is aberrant (Meade &
Craig, 2012; Niessen et al., 2016; Wanders et al., 2017). Response patterns may
be aberrant because they include inconsistent item scores, excessive repetition (i.e.,
long sequences of the same item score), or many extreme item scores. Such aberrant
response patterns may indicate careless responding, malingering, or another type of
response bias or unsystematic error. The corresponding test scores are therefore
likely to be invalid. Examples of validity indices are the item response theory (IRT)-
based lz person-fit index (Drasgow et al., 1985; Emons, 2008) and the long-string
index of repetitive responding (Johnson, 2005).

To classify response patterns as potentially invalid, a cutoff value for the validity
index is needed. Such a cutoff value is commonly based on the distribution of
the indices in a large sample of representative respondents. For example, Meijer
et al. (2016) suggested using a cutoff value corresponding to the 5% most extreme
observed values on a validity index. Several other more sophisticated methods based
on IRT-based simulations have also been proposed (see Conijn et al., 2019, for an
overview). The choice for the specific classification method depends on properties
of the questionnaire data (e.g., the use of IRT-based simulations requires that an
IRT model fits the data) but also on the stakes of the decisions that are taken using
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the validity-index method (i.e., higher stakes require more sophisticated methods).
If liberal cutoff values are used, auxiliary information such as interviews with the
respondents should also be collected to confirm invalid responding after the initial
round of screening (Meijer et al., 2016).

In short, application of the validity-index approach to a discrepant set of
informant scores includes the following steps:

1. Assess which validity indices are appropriate for the data. This depends on the
properties of the informant and/or self-report measures such as the response scale
of the items and the wording of the items (Conijn et al., 2019). In general, it is
useful to select different types of validity indices representing different types of
response biases and unsystematic error.

2. Establish appropriate cutoffs for the validity indices that are used to classify
respondents as having a “suspect” (i.e., likely invalid) test score.

3. Compute the selected validity indices for each of the response patterns, and
apply the cutoff values to classify informant scores as suspect or not suspect.
This results in three different categories: discrepancy that is likely due to rater
effects of one of the informants, discrepancy that is likely due to rater effects of
multiple informants, or discrepancy that is likely due to meaningful differences.
In the latter category, none of the informants produced a response pattern that is
suspect of problematic rater effects.

4. Account for the validity information in individual decision-making, for example,
in a diagnostic algorithm (i.e., the approach for combining the different pieces
of information on symptom severity into a diagnosis).

The exact procedure in Step 4 depends on the specific diagnostic algorithm or
decision-making rule used in the study, but we provide some basic suggestions:
If the results show that one of the multiple informant scores is suspect, the
other informant score(s) should gain most weight in (clinical) decision-making.
If each of the informant scores is flagged as suspect, retesting should be done,
or clinical interviews should be conducted. Finally, if neither of the informant
scores is classified as suspect, the discrepancy is likely due to meaningful variation
in informant scores such as variation in the subjects’ observed behavior. Such
explanations can then be further explored.

As a final note, the validity-index approach presupposes that reliable and
valid informant and self-report measures are used in the assessment and there
are no important methodological issues in the research design that can explain
informant discrepancies. Given these assumptions, the discrepancies between scores
of different informants can only be attributable to either rater effects or to true and
meaningful differences in observed behavior. The validity-index approach could
therefore also be regarded as the next step after the group-level analyses that were
proposed in the operations triad model have shown to support the validity and
reliability of the measures used and have not identified other methodological issues.
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18.2.1 Illustrative Example

We illustrate the proposed validity-index approach using data from 441 self-reports
and corresponding parent proxy-reports on Conners ADHD Rating Scales from the
NeuroIMAGE study (Von Rhein et al., 2015). Conners Rating Scales include scales
for self-report, parent-report, and teacher report of ADHD symptoms. In educational
contexts, the scales are commonly used to assess whether ADHD causes functional
impairment at school (e.g., Purpura & Lonigan, 2009).

We used two selected subscales among Conners ADHD Rating Scales, the
Inattentive symptoms scale and the Hyperactive-Impulsive symptoms scale, to study
discrepancies between self-reports and parents’ informant-reports. First, we present
the dataset, the measures, and descriptive statistics on invalid responding in the
NeuroIMAGE dataset. Next, we illustrate how the validity-index approach can be
used in individual decision-making by accounting for validity information in the
diagnostic algorithm of the NeuroIMAGE study.

18.3 Method

18.3.1 Participants

We used secondary data collected between 2009 and 2012 in the NeuroIMAGE
study (Von Rhein et al., 2015). The NeuroIMAGE study includes ADHD ratings
for 1978 studied participants. Ratings came from different informants: parents and
either teachers (if participants were still in school and less than 18 years old) or self-
reports (if participants were either at least 18 years old or no longer in school). For
the current study, we used only a small subset of NeuroIMAGE data. Specifically,
our inclusion criteria were the following: The rated participant had (a) available self-
report data on Conners Adult ADHD Rating Scales—Self-Report: Long Version
(CAARS- S: L), (b) available informant report data from one of their parents on
Conners Parent Rating Scale (CPRS), and (c) no more than 5% missing data on
both the CAARS and the CPRS. Cases with more than 5% missing data were
excluded because missing values may interfere with the comparability of validity-
index values across respondents with and without missing item scores.

Our subsample consisted of N = 431 participant pairs, including adolescents as
well as young adults and one corresponding parent providing the informant data
about their child. Among the participants being rated, 56% were male and the mean
age was 20.3 (SD= 2.4; range = 15 − 30). Following the diagnostic algorithm used
in the NeuroIMAGE study, participants were diagnosed as affected with ADHD
(37%; n = 160), as unaffected with ADHD (45%; n = 196), or they were labeled
as “subthreshold” because they did not meet the criteria for either being affected or
unaffected (13%; n = 57). For 18 (4%) of the rated participants, the diagnosis was
missing.
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Table 18.1 Description of the Conners ADHD rating scales

Rating scale Factor-analysis-derived subscales

DSM-IV symptom-count subscales (T
scores ≥ 65 indicate a positive
screening outcome)

CAARS (66 items; self-report)
Inattention-Memory problems (12
items)

Inattentive symptoms (9 items)

Hyperactivity-Restlessness (12
items)

Hyperactive- Impulsive symptoms (9
items)

Impulsivity/Emotional lability (12
items)

Total symptoms (sum of the two
specific symptom scales)

Problems with Self-Concept (6
items)

CPRS (80 items; parent-report)
Cognitive problems (10 items) Inattentive symptoms (9 items)
Oppositional (12 items) Hyperactive- Impulsive symptoms (9

items)
Hyperactivity-Impulsivity (9 items) Total symptoms (sum of the two

specific symptom scales)
Anxious-shy (8 items)
Perfectionism (7 items)
Social problems (5 items)
Psychosomatic problems (6 items)

Note. Post hoc validity indices were computed using the respondents’ complete response pattern
on the CAARS/CPRS; informant discrepancy was computed only for the DSM Inattentive
symptoms subscale and the DSM Hyperactive-Impulsive symptoms subscale

18.3.2 Conners ADHD Rating Scales: CAARS and CPRS

Participants completed the CAARS (Conners et al., 1999), and one of their parents
completed the CPRS (Conners et al., 1998) about the participant. The CAARS and
the CPRS are designed to screen for ADHD but also include items to assess a range
of externalizing (e.g., aggression) and internalizing (e.g., anxiety) symptomatology
(Table 18.1). The CAARS is a 66-item self-report measure for adults; 42 of the items
belong to one of the 4 factor-analysis-derived subscales (Conners et al., 1999). The
CPRS is an 80-item standardized behavior rating scale designed to be completed
by parents; 56 items are included in the seven factor-analysis-derived subscales
(Conners et al., 1998). Respondents indicated on a 4-point response scale how
frequently they (or their child) experience(s) the symptom described in the item:
seldom/never (0), sometimes (1), quite often (2), or very often (3). For all the items,
higher scores indicate more severe psychopathology.

Next to the factor-analysis-derived subscales, both the CAARS and the CPRS
include subscales that provide a count of Diagnostic and Statistical Manual of
Mental Disorders-IV (DSM-IV) ADHD symptoms: the Inattentive symptoms sub-
scale (DSM Inattentive; nine items), the Hyperactive-Impulsive symptoms subscale
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(DSM Hyperactive-Impulsive; nine items), and the Total symptoms subscale (i.e.,
the inattentive and hyperactive-impulsive symptoms combined; 18 items). The three
subscales are used to screen for the diagnosis of the inattentive ADHD subtype,
hyperactive-impulsive ADHD subtype, and the combined ADHD subtype (i.e.,
both inattentive and hyperactive-impulsive), respectively. Test scores on the three
subscales are transformed to T scores (M = 50; SD = 10).

18.3.3 Informant Discrepancy

We investigated informant discrepancies on both the DSM Inattentive subscale and
the DSM Hyperactive-Impulsive subscale. We defined pairs of informants to have a
discrepant set of scores on the DSM Inattentive subscale and the DSM Hyperactive-
Impulsive subscale, respectively, when they showed a 15-point difference on the
T score scale (i.e., corresponding to 1.5 SD difference on the T score scale). A
difference of 1.5 SD seemed both clinically relevant and unlikely to occur due to
chance but at the same time did result in a substantial proportion of discrepant cases
for further analysis. Our chosen definition of informant discrepancy was pragmatic
considering that it served an illustrative example and is not part of the validity-
index approach. Previous studies that investigated informant discrepancy on other
psychopathology scales defined informant discrepancy using cutoffs of 1 or 2 SD
score-point difference between two informants (e.g., Conijn et al., 2018; Dorz et al.,
2004).

The DSM Inattentive subscale and the DSM Hyperactive-Impulsive were chosen
to define informant discrepancy because they are used for diagnostic decisions rather
than for descriptive purposes. Furthermore, the value of Cronbach’s alpha equaled
0.84 for the DSM Inattentiveness subscale and 0.88 for the DSM Hyperactive-
Impulsive subscale, suggesting that test-score reliability was no cause of informant
discrepancy. Also, differences in item content between the two versions of the
subscales were unlikely to cause substantial informant discrepancy. Item wording
of the CPRS and CAARS version of these subscales is not exactly equal, but item
content is similar: for the DSM Inattentive subscale, each CPRS item can be paired
with a CAARS item, and for the DSM Hyperactive-Impulsive subscale, seven out
of nine items can be paired.

18.3.4 Validity Indices

Although we investigated informant discrepancies on the DSM symptom scales,
we used the respondents’ response pattern on the complete set of CPRS/CAARS
items to determine whether their response pattern was suspect. The reason for doing
so was that the use of more item scores renders the validity indices more reliable
(i.e., resulting in higher sensitivity and specificity; Conijn et al., 2019). Moreover,
we expected invalid response behavior to be consistent across different subscales
because items from different subscales were presented in a mixed order.
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Table 18.2 Description of the validity indices and their cutoff values

Validity index Short description Cutoff method Cutoff valuea

CPRS CAARS

.l
p
z person-fit index Detects inconsistent

responding with respect
to the graded response
IRT model. First
computed for separate
subscales, next averaged
into a single index

95th percentile value 0.51 0.89

Mahalanobis distance
(MD)

Detects multivariate
outliers; quantifies the
distance between an
observed response
pattern and the
remaining response
patterns in the sample

95th percentile value 223.0 123.9

Long-string index (Lmax) Detects repetitive
responding by the
maximum length of
strings of consecutive
identical answers.
Computed for separate
response options

2.5% most extreme
observed values

0 score 64 24
1 score 6 8
2 score 4 5
3 score 4 4

Overreporting index Detects overreporting
using the CAARS
Infrequency Index (CII)
for the CAARS and the
percentage of 3 scores
for the CPRS

Cutoff value CII N/A 20

98th percentile value 24% 29%
Underreporting index Detects underreporting

by the percentage 0
scores

95th percentile value 96% 82%

Note.aResponse patterns with index values larger than the specified cutoff value are classified as
suspect

Five validity indices were applied to the CPRS and CAARS data resulting in
an index-specific validity classification for each informant. If at least one of the
index-specific classifications was suspect, the response pattern was overall classified
as “suspect.” Table 18.2 summarizes indices and methods for establishing cutoff
values. Next, we describe the validity indices in detail.

Mahalanobis Distance The Mahalanobis distance (MD) is a multivariate outlier
statistic (e.g., Johnson & Wichern, 2008). When used as a validity index, MD
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quantifies the distance between an observed response pattern and the remaining
response patterns in the sample while taking the inter-item correlation matrix into
account. Several studies have found the MD index appropriate for detecting random
responding (Curran, 2016; DeSimone, et al., 2015). We used the 95th percentile
value as a cutoff value for classifying response patterns as suspect. To account
for missing values, we using the R package modi (Hulliger, 2018) to compute
an adapted MD in which the missing values are ignored and a correction factor
is applied to MD based on the number of observed values.

.l
p
zmPerson-Fit Index The parametric .l

p
z person-fit index (Drasgow et al., 1985)

is the standardized log-likelihood of a polytomous response pattern given the
estimated unidimensional item response theory (IRT) model. The .l

p
z index mainly

detects random or inconsistent responding but can also pick up other types of invalid
response styles if these lead to deviations with respect to the IRT model (Emons,
2008).1 We computed .l

p
z with respect to the graded-response IRT model, using the

R package Perfit (Tendeiro et al., 2016). We took the negative of the .l
p
z index so

that a higher value of the index was indicative of a more inconsistent response
pattern. As the .l

p
z index should be computed for unidimensional subscales, we first

computed the index for each factor-derived subscale (Table 18.1) and next averaged
the subscale .l

p
z values into an overall multiscale validity index .l

p
zm (e.g., Conijn et

al., 2014; Niessen et al., 2016). Items that did not belong to a CPRS/CAARS factor-
derived subscale were excluded from computing .l

p
z . We used the 95th percentile

value as a cutoff value for classifying response patterns as suspect (Meijer et al.,
2016). Missing item scores were imputed by the default non-parametric single
imputation method in the R package Perfit. We regarded the single imputation
method sufficient for our purpose because we were only interested in quantifying
validity. Imputed item scores are not informative about the validity of the response
pattern, even if a superior multiple imputation method would have been used (e.g.,
Van Ginkel et al., 2007).

Long-String Index: Lmax Long-string indices count the length of strings of con-
secutive identical answers to detect repetitive careless responding (Johnson, 2005;
Kam & Chan, 2018; Meade & Craig, 2012). Lmax equals the maximum length
of a string of consecutive identical answers and has been found to have higher
power to detect careless responding compared to other long-string indices (Meade
& Craig, 2012; Niessen et al., 2016). We computed Lmax for each of the four score
options separately, resulting in four response-option-specific Lmax values for each
respondent. Different cutoff values for the different response options were used to
take into account the skewed item-score distribution (Conijn et al., 2019; Johnson,
2005). The four cutoff scores were based on the 2.5% most extreme observed Lmax

1 We used the .l
p
z index instead of other possible person-fit indices (e.g., the Guttman person-fit

indices) because previous research suggests that .lpz (1)has relatively high power to detect careless
responding, (2) is least confounded with the substantive trait measured, and (3) is least strongly
correlated with the MD index (Conijn et al., 2019).
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values for that response option. Missing values were ignored in the computation of
Lmax, meaning that the length of strings of identical answers was computed after
excluding the missing values from the response pattern.

Overreporting Index To detect overreporting and malingering on the CAARS, we
used the CAARS Infrequency Index (CII) index (Suhr et al., 2011). This index
equals the sum score of 12 items that were endorsed infrequently in the Suhr et al.
(2011) study. Scores greater than 20 are classified as suspect (Suhr et al., 2011). For
the CAARS data, the CII index classified 2% (n = 9) response patterns as suspect
of overreporting. No overreporting indices have been developed for the CPRS. We
therefore used the percentage of 3 scores as an indicator of possible overreporting.
Based on the 2% suspect cases that were identified using the CII in the CAARS
data, we used a cutoff value equal to the 98th percentile value in the CPRS data.2

Missing values were ignored in the computation of the percentage value.

Underreporting Index To detect underreporting, no specific indices have been
proposed for the CAARS or CPRS. We therefore used the percentage of 0-scores as
an indicator of possible underreporting, using the 95th percentile value as a cutoff
value for classifying response patterns as suspect. Missing values were ignored in
the computation of the percentage value, meaning that percentages were computed
after excluding the missing values from the response pattern.

18.3.5 Statistical Analyses

In preliminary analyses, we used the full dataset, including the data of informant
pairs that were not discrepant. In this full dataset, we inspected descriptive statistics
for informant discrepancy and the validity indices, and we analyzed the relationship
between informant discrepancy and validity-index classification. Informant pairs
were categorized into four categories: (a) non-discrepant and no suspect response
pattern(s), (b) discrepant and no suspect response pattern(s), (c) discrepant and
suspect response pattern(s), (d) non-discrepant and suspect response pattern(s).

The main analyses illustrate how the validity-index approach can be used to
improve diagnostic decision-making in the presence of informant discrepancy. For
the two categories of informant pairs having discrepant response patterns [i.e.,
categories (b) and (c)], we describe the outcomes of the application of validity
indices and discuss possible rater effects that may have caused the informant
discrepancy. We also illustrate how the validity-index information can be taken into
account in a diagnostic algorithm to establish ADHD diagnosis. To this end, we
applied both the original “basic” diagnostic algorithm used in the NeuroIMAGE
study and an adapted diagnostic algorithm that takes into account the validity-

2 In the CAARS data, we assessed the correspondence between classifications based on the CII
index and the percentage of 3 scores. We found moderate agreement (Cohens Kappa: 0.58) between
the CII classification and the alternative classification based on the percentage of 3 scores.



18 Validity Indices for Interpreting Informant Discrepancies in ADHD Assessment 357

index information to data of discrepant informant pairs. The difference between
the basic and adapted algorithm was that the latter excluded the rating scale data
(either CAARS or CPRS or both) that was classified as suspect by at least one
of the validity indices. We provide simple descriptive statistics to summarize the
differences between diagnostic outcomes from the basic and the adapted diagnostic
algorithm. The diagnostic algorithms are explained in detail in the following section.

18.3.6 Diagnostic Algorithm

The diagnostic algorithm in the NeuroIMAGE study (Von Rhein et al., 2015) for
establishing an ADHD diagnosis was based on a combination of data from diagnos-
tic interviews and data from CAARS and/or CPRS. Specifically, a semi-structured
clinical interview, the Schedule for Affective Disorders and Schizophrenia—present
and lifetime version (K-SADS; Kaufman et al., 1997)—was used. The K-SADS was
conducted with participants and, to provide an informant interview, with one of their
parents. From these two K-SADS interviews and the impression of the interviewer,
a K-SADS ADHD symptom count was derived.

Basic Algorithm First, a combined symptom count was calculated by counting a
symptom as present if it was scored as present in the K-SADS symptom count or
the self-report CAARS data. Based on this symptom count, the CAARS and the
CPRS, criteria for being considered affected with ADHD were the following:3 (a)
combined symptom count ≥ 5 symptoms of inattentive or hyperactive/impulsive
behavior, and (b) T score ≥ 63 on at least one of the CPRS or CAARS ADHD
symptom scales (filled in about a period without medication): the Inattentive
symptoms subscale, the Hyperactive-Impulsive Symptoms subscale and the Total
symptoms subscale. Criteria for being considered unaffected with ADHD were:
(a) ≤ 2 symptoms derived from the combined symptom count and (b) T scores
< 63 on each of the CPRS or CAARS ADHD symptom scales. Table 18.3 (left-
hand column) shows a summary. Participants who did not meet the requirements
for the affected or unaffected status were classified as “subthreshold.” Additional to
this basic algorithm, in the NeuroIMAGE study, cases with inconsistent information
were evaluated by a team of experts to derive a consensus (best-estimate) diagnosis.
We did not use these (clinical) adjustments in the current study because we were
interested in the difference between a basic algorithm without and with adjustment
for validity information.

Adapted Algorithm To assess the impact of taking into account validity information
in diagnostic decisions, we defined an adapted algorithm that took into account

3 The other basic requirements for diagnosis were as follows: an age of onset before 12, meeting
the DSM criteria for pervasiveness and impairment, and symptoms are not better accounted for by
another disorder.
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Table 18.3 Basic and diagnostic algorithm used in this study

Algorithm
Basic Adapted

Diagnosis
ADHD S ≥ 5 ∩ {TI ≥ 63 ∪ TH ≥ 63 ∪ TT ≥ 63} .S∗ ≥ 5 ∩ {

T ∗
I ≥ 63 ∪ T ∗

H ≥ 63 ∪ T ∗
T ≥ 63

}

No
ADHD

S ≤ 2 ∩ {TI < 63 ∩ TH < 63 ∩ TT < 63} .S∗ ≤ 2 ∩ {
T ∗
I < 63 ∩ T ∗

H < 63 ∩ T ∗
T < 63

}

Note. S = Combined symptom count of inattentive or hyperactive/impulsive behaviour based on
the K-SADS data and the CAARS. S∗ = combined symptom count that excludes the CAARS
subscale data if classified suspect. TI= T score on the CAARS or CPRS Inattentive symptoms
subscale; TH= T score on the CAARS or CPRS Hyperactive/impulsive symptoms subscale; TT=
T score on the CAARS or CPRS Total symptoms subscale. .T ∗

H/I/T =T score on the CAARS or
CPRS symptoms subscales but excluding T scores of informants whose data is classified suspect

the validity-index information. In contrast to the original algorithm, the adapted
algorithm completely excluded the item-response patterns (either CAARS or CPRS
or both) that were classified as suspect by at least one of the validity indices. This
also applied to the combined symptom count. So, if the CAARS data was found to
be suspect, an “adapted” combined symptom count was computed using only the
K-SADS interview data. If the CPRS data was classified as suspect, the combined
symptom count was not affected (i.e., since it was not taken into account in the
total symptom count in the basic algorithm either). The criteria for being affected
with ADHD were equal to those of the basic algorithm, but now the CPRS/CAARS
data of informants that generated a suspect response pattern were excluded from the
algorithm (Table 18.3, right-hand column).

18.4 Results

18.4.1 Preliminary Analyses

Both the DSM Hyperactive-Impulsive subscale score and the Inattentive subscale
score of the CAARS (self-report) correlated .62 with the corresponding CPRS
(parent-report) subscale scores. The percentage of informant pairs that was classi-
fied discrepant was 22.3% for the DSM Hyperactive-Impulsive subscale and 22.6%
for the DSM Inattentive subscale. For 8.5% of the informant pairs, the test scores
were discrepant for both the Inattentiveness and the Hyperactive-Impulse subscales.

For the CPRS and CAARS, Table 18.4 shows the percentages of response
patterns classified as suspect by each separate validity index and the percentages
of response patterns classified as suspect based on at least one of the indices
(Table 18.4, last row). The percentage of response patterns classified as suspect
by at least one validity index was 19.7% for CAARS and 20.0% for CPRS. These
percentages are very similar as for each validity index, the cutoff scores for CAARS
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Table 18.4 Percentage of response patterns classified as suspect by each separate index and by
at least one of the indices

Validity classification as suspect % Classified suspect
CAARS self-report CPRS parent-report

Index-specific classification
.l
p
z 5.1 5.1

MD 5.1 5.1
Lmax 8.4 9.5
Overrep. index 2.1 2.3
Underrep. index 5.8 5.1

Overall classified as suspect (≥ 1 index-specific) 19.7 20.0

Note. The overall classification as suspect is used in the subsequent and main analyses

Table 18.5 Cross tabulation of validity and informant discrepancy

Validity classificationa Informant discrepancyb

Non-discrepant Discrepant Total

DSM Hyperactive-Impulsive subscale
Not suspect 237 (0.81) 54 (0.19) 291 (1.00)
Suspect 100 (0.71) 40 (0.29) 140 (1.00)
Total 337 (0.78) 94 (0.22) 431 (1.00)

DSM Inattentive symptoms subscale
Not suspect 233 (0.80) 58 (0.20) 291 (1.00)
Suspect 100 (0.71) 40 (0.29) 140 (1.00)
Total 333 (0.77) 98 (0.23) 431 (1.00)

Note.aSuspect when at least one response pattern within an informant pair classified as suspect
by at least one validity index; bDiscrepant when the difference in T scores is >15

and CPRS were determined using the same percentile score (95 for MD, .l
p
zm, and

underreporting index; 97.5 for Lmax, and 98 for overreporting index).
Table 18.5 shows a cross-tabulation of informant discrepancy and the presence

of at least one suspect response pattern within that informant pair. Informant pairs
with at least one suspect response pattern (either the CAARS pattern, the CPRS
pattern, or both; Table 18.4) are more likely to have a discrepant set of scores on the
DSM Inattentive subscale (X2 =4.02, df = 1, p = .045) and the DSM Hyperactive-
Impulsive subscale (X2 =5.56, df = 1, p = .018). Phi coefficients equal 0.09 for the
DSM Inattentive subscale and 0.11 for the DSM Hyperactive-Impulsive subscale,
indicating a (very) weak relationship between the discrepancy and the “suspect”
classifications (Cohen, 1988). The positive relationships between the discrepancy
and the “suspect” classifications suggest that part of the discrepancy is due to rater
effects. However, the weak relationships also suggest that most discrepancies in the
data may be due to meaningful test-score differences between participants and their
parents.
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18.4.2 The Validity-Index Approach in Diagnostic
Decision-Making

We applied the adapted algorithm to the data of 169 informant pairs with discrepant
test scores on either the Hyperactivity/Impulsivity subscale or the Inattentive
subscale. Hundred and eight pairs did not have a suspect response pattern, and
the adapted algorithm therefore produced the same diagnostic ADHD decision as
the basic algorithm. Ten informant pairs had suspect response patterns for both
the CAARS and the CPRS. For these informant pairs, the adapted algorithm used
only the K-SADS data, which resulted in a different diagnosis (“subthreshold”
instead of “affected”) for one of the ten pairs. For 8 of the 29 informant pairs
with a suspect CPRS score but a valid CAARS score, we found that the adapted
diagnostic algorithm produced a different diagnosis (either “unaffected” instead of
“threshold” or “threshold” instead of “affected”). For 10 out of the 22 informant
pairs with a suspect CAARS score and a valid CPRS score, the adapted diagnostic
algorithm produced a different diagnosis (either “unaffected” instead of “threshold”
or “threshold” instead of “affected”). The diagnosis from the adapted algorithm was
always more conservative than the diagnosis of the original algorithm because it
used a compensatory rule, defining symptoms to be present if at least one informant
rates the symptom to be present. As an illustration, Table 18.6 describes three
parent-child pairs who had a discrepant set of test scores and who had one of the
two Conners rating-scale response patterns classified as suspect. In the following,
we describe each case in more detail.

Participant A The rated participant was a 22-year-old female. The self-report scores
on the Hyperactive-Impulsive and Inattentive CAARS subscales were approxi-
mately 30 T score units higher than for the corresponding CPRS parent-report.
The self-report pattern was classified as suspect based on four different validity
indices: .l

p
zm, CII/overreporting index, Lmax, and MD. The CII index classified

the response pattern as suspect of overreporting. Consistently, we found that for
48% of the 66 items the respondent selected the response option “very frequent.”
Furthermore, the Lmax index suggested a repetitive response bias, and the .l

p
z values

for separate subscales indicated severe response inconsistency on the CAARS
Inattention/Memory problems subscale and milder response inconsistency on the
other three subscales (for a description of the subscales, see Table 18.1). An example
of response inconsistency is that the respondent indicated to “always plan things in
advance,” but also indicated to often be “disorganized” and “dependent on others
organizing my life and helping focusing on details.”

Based on three CAARS T scores ≥ 82 and a combined symptom count of 9
for both Hyperactive-Impulsive symptoms and Inattentive symptoms, the original
diagnostic algorithm resulted in an “affected with ADHD” diagnosis. In the adapted
algorithm, the CAARS subscale scores were excluded from the algorithm, and none
of the CPRS subscale scores were high enough to meet the criteria for the affected
status. So, the adapted algorithm resulted in a “subthreshold ADHD” diagnosis.
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Table 18.6 Data of three illustrative cases and outcomes of a basis diagnostic algorithm and an
adapted algorithm that takes into account validity information

Construct/subscale Informant Variable

Participant A
Suspect
self-report

Participant B
Suspect
self-report

Participant C
Suspect
parent-report

Hyperactive-
Impulsive
symptoms

Parent CPRS T
score

53 43 90

Self CAARS T
score

82 44 61

Parent + self K-SADS
symptom
count

6 1 6

Parent + self S (S∗ ) 9 (6) 2 (1) 8 (8)
Inattentive
symptoms

Parent CPRS T
score

56 45 90

Self CAARS T
score

85 74 63

Parent + self K-SADS
symptom
count

8 4 7

Parent + self S (S∗ ) 9 (8) 6 (4) 8 (8)
Total
symptoms

Parent CPRS T
score

55 44 90

Self CAARS T
score

88 61 64

Outcome of
diagnostic
algorithm

Basic
algorithm

Affected Affected Affected

Adapted
algorithm

Subthreshold Subthreshold Affected

Note. The basic diagnostic algorithm comes from the NeuroIMAGE study and does not take into
account validity information. The adapted algorithm takes into account validity information. Only
the bold data is used in the adapted algorithm for a specific case. S = Combined symptom count
of inattentive or hyperactive/impulsive behavior based on the K-SADS data and the CAARS. S∗

= Combined symptom count that excludes the CAARS subscale data if classified suspect

Given this outcome, a clinician may decide to interview the participant and the
parent about the aberrant response pattern and the discrepancy in their scores to
understand which of the two diagnostic outcomes is most appropriate.

Participant B The rated participant was a 20-year-old male. There was no informant
discrepancy for the Hyperactive-Impulsive subscale, but the T score for the CAARS
self-report Inattentive subscale was 29 points higher than the corresponding CPRS
parent-report. The self-report response pattern was classified suspect based on
the .l

p
zm statistic. The respondent showed inconsistent responding particularly on

the Inattention/Memory problems and Impulsivity/Emotional lability subscales.
Examples of inconsistent responding were that the respondent indicated that he quite
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often “explodes,” “has bad tempers,” and “is easily irritated,” but on the other hand
also indicated that his temper is not at all unpredictable.

Based on the self-report CAARS T score of 74 and a combined symptom count of
6, the original diagnostic algorithm resulted in an “affected with ADHD” diagnosis.
Using the adapted algorithm, both the total symptom count and the CPRS T scores
were not high enough for meeting the affected status, but they were also not low
enough to meet the unaffected status. The adapted algorithm therefore resulted in a
“subthreshold ADHD” diagnosis. Similarly as for Participant A, the clinician may
decide to collect additional (interview) data to make a final diagnostic decision.

Participant C The rated participant was a 20-year-old female. The T scores for
each three parent-report CPRS subscales were at the maximum value (i.e., T score
= 90), while the self-report CAARS scores were at least 26 score points lower.
The parent report was classified suspect based on Lmax and the overreporting
index. The Lmax index indicated several long strings of 3 scores (i.e., the response
option “very frequent”) with a maximum length of seven. The overreporting index
indicated that 50% of all item scores were in the “very frequent” category, which is
particularly notable because the CPRS measures a wide range of different symptoms
(Table 18.1). So, the validity information suggested that the parent exaggerated the
symptoms and used a repetitive response style.

Based on three CPRS T scores of 90, CAARS T scores of 63 (Inattentive
symptoms) and 64 (Total symptoms), and a combined symptom count of eight for
each specific type of symptoms, the participant was diagnosed as “affected with
ADHD.” The adapted algorithm resulted in the same diagnosis: although the suspect
CPRS scores were excluded from the algorithm, the CAARS T scores on the total
symptoms subscale were high enough for meeting the affected ADHD status.

18.5 Discussion

We illustrated how post hoc validity indices can be used for studying whether
informant discrepancies may be due to invalid test scores caused by rater effects
of individual respondents. In the example dataset from the NeuroIMAGE study,
we found a weak relationship between informant discrepancies and rater effects,
suggesting that most discrepancies are due to meaningful test score differences
between informants. Furthermore, we provided an example on how information
about the validity of an individual’s response pattern can be taken into account
into a diagnostic algorithm. Here we found that for 19 (11%) out of 169 informant
pairs with discrepant test scores, an adapted diagnostic algorithm led to a different
diagnostic outcome.

Nelson and Lovett (2019) studied invalid responding on the CAARS ADHD
symptom subscales for the same pairs of informants as we studied (young adults
and their parents). Compared to their results, the level of informant discrepancy
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was low in our illustrative dataset. We found cross-informant correlations of .64,
whereas Nelson and Lovett (2019) found correlations between parent and self-
report scores on exactly the same CAARS subscales ranging from .37 to .42. The
difference in results is likely due to the context in which data were collected. In the
Nelson and Lovett study, data were collected in a naturalistic environment where
symptom exaggeration could lead to benefits for students, whereas data collection in
the NeuroIMAGE study was primarily done for scientific research purposes. In both
our study and the Nelson and Lovett study, the diagnostic outcome was generally
more conservative for informant pairs with no evidence of an invalid report. Both
studies thus suggest that invalid responding is likely to lead to an overestimation of
the prevalence of ADHD.

The strengths of our study are the following. Firstly, we demonstrated how
a widely applicable, general approach to check validity of a response pattern
can be used to study and take into account informant discrepancies. This is
valuable because most psychopathology scales do not have built-in validity scales.
Furthermore, our illustrative example is particularly useful as we used an ADHD
dataset. In the context of diagnostic ADHD assessment, informant discrepancies
as well as systematic rater effects (e.g., overreporting and underreporting) are
important and often studied topics (Luderer et al., 2019; Martel et al., 2015; Sibley
et al., 2012; Walls et al., 2017). Second, unsystematic error (e.g., inconsistent and
random responding) can also be expected to be problematic given the core symptom
of ADHD such as inattentiveness and impulsivity (Nelson & Lovett, 2019; Raiker
et al., 2012; Sibley et al., 2019). Third, this study provides one the first application
examples of response-pattern based validity indices to individual decision-making.
A previous study showed how the IRT-based .l

p
z person-fit index can be used to

detect inconsistent responding on a depression measure and provide psychiatrists
with valuable information for treatment and diagnostic decision-making (Wanders et
al., 2017). Our study adds to Wanders et al. (2017) by using multiple validity indices
to evaluate a response pattern and by applying validity indices to solve informant
discrepancies.

There are also several important limitations to this study. Because we used
secondary data, we could not show to the full potential of the validity-index
approach for handling informant discrepancies. The validity-index information can
be used optimally if the response patterns identified as inconsistent, repetitive, or
extreme can be discussed with the patient or the other informant (Nelson & Lovett,
2019; Wanders et al., 2017). Such qualitative interview data can provide additional
evidence for the invalidity of a test score, information on the reasons underlying
the unexpected response pattern, or may lead to the conclusion that the validity-
index approach resulted in a false-positive classification. A second limitation is
that the percentile-based method that we used for establishing cutoff values for
the validity indices was relatively simple. In previous research, for some of the
validity indices, more sophisticated methods have been suggested (Conijn et al.,
2019; De la Torre & Deng, 2008). For example, one approach for establishing a
cutoff-value is to generate multiple (e.g., 20) “clean” datasets based on an IRT
model estimated in the empirical questionnaire dataset and use the average 95th
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percentile value of a specific validity index across the simulated datasets as a cutoff
value (Conijn et al., 2019). We did not use this approach in the current study because
it requires the questionnaire items to belong to a unidimensional (sub)scale. Third,
a limitation specific to using data from the NeuroIMAGE study was a mismatch
between respondents and questionnaires used in that study. The CAARS, a rating
scale designed for adults, was administered to children (12% of the sample was 15–
17 years old). Likewise, the CPRS, an informant scale for parents to rate children
up to 17 years old, was applied in the study although 88% of the rated children were
actually young adults.

Finally, we provide several suggestions for future research. First, future research
could conduct a pilot implementation of the validity-index method in a clinical
or educational practice where ADHD assessment is complicated by informant
discrepancies. By following and interviewing the clinicians working with the
method, the study could evaluate the practical value of using the validity indices.
Second, if a dataset is available where different informants (e.g., children or parents)
completed exactly the same questionnaire, validity indices can be used to investigate
which informant shows most rater effects (Conijn et al., 2020). This type of study
may point to one type of informant being more accurate in responding than the other.
Third, investigating the relationship between respondents’ ADHD symptom severity
and validity indices can provide insight into the extent that ADHD symptoms
interfere with valid self-report responding (Sibley et al., 2019).
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Chapter 19
Computerized Adaptive Testing Without
IRT for Flexible Measurement
and Prediction

L. Andries van der Ark and Niels Smits

Abstract In education, testing procedures can be lengthy. The long duration takes
up precious time and affects the quality of responses, possibly resulting in a biased
diagnosis or wrong treatment. The problem can be reduced using computer adaptive
testing (CAT). However, three issues prevent the use of traditional CAT: (1) the type
of tests and questionnaires we focus on do not allow for the construction of large
item banks, (2) the test data are usually not (approximately) unidimensional, and
(3) the aim of the researchers may not only be measurement but also prediction. We
propose a flexible generalization of CAT to accommodate these three issues, coined
FlexCAT. First, FlexCAT estimates the (discrete) density of item-score vectors
(denoted p) using any convenient model that provides a good description of p; this
need not be an IRTmodel. Second, FlexCAT estimates test scores from .p̂. In contrast
to traditional CAT, the test score need not be a latent trait but can also be the total
score, ordinal scores such as percentiles, or external criteria that the test aims to
predict. We introduce FlexCAT for the case that a latent class model is used to
estimate p, and the total score is used as a test score. Using a real-data example,
we compare the accuracy of FlexCAT and traditional CAT. Finally, we discuss the
challenges FlexCAT still faces.

19.1 Introduction

In education, testing procedures can be lengthy. Especially for respondents who are
unable to focus for long time periods, such as very young students or students in
special needs education, standard educational tests pose a problem. When students
get tired or distracted, they may resort to careless responding, or they may decide to
stop the test procedure, possibly resulting in a biased test result or incorrect follow-
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up treatment. The test time can be reduced using computer adaptive testing (CAT;
e.g., Magis et al., 2017; Wainer, 2000). However, CAT requires a large item bank,
approximately unidimensional test data, and a latent trait with a known (typically a
normal) distribution. Many tests, especially typical performance tests, do not allow
for the construction of large item banks, as there are only a limited number of
things one can ask a respondent. Also, many tests produce test data that are not
approximately unidimensional. For example, there may be a dominant dimension
and one or more nuisance dimensions. Finally, tests measuring certain phenomena
typically produce a latent trait that has a skewed distribution (for some examples,
see Molenaar et al., 2012). For such tests, traditional CAT may be suboptimal.

Consider the School Attitude Questionnaire Internet (SAQI, Vorst, 2006; also
see, Psi Testuitgevers, n.d.), a test for students aged 9–16 years. The 160 trichoto-
mous items measure motivation, well-being, and self-confidence with respect to
going to school. The SAQI consists of ten scales. The SAQI provides scores at the
scale level, aggregated scale level (i.e., motivation, well-being, and self-confidence),
and at the overall level (a total score). The administration of 160 items may take
more than 2 h, which can be strenuous for young students. Using a CAT could be
helpful to reduce the response burden. However, the requirements of a CAT pose
a problem. For constructs such as motivation, well-being, and self-confidence, it is
infeasible to write enough items to fill a large item bank, as there is only a limited
number of questions one can ask on these topics. Also, the SAQI aggregated-level
scores “motivation,” “well-being,” and “self-confidence,” and the SAQI total score
are the sum of multiple scale scores. As a result these scores are multidimensional.
Also, even several SAQI scale-level scores are multidimensional. As traditional
CAT assumes that the data are unidimensional, traditional CAT may produce biased
estimates of the SAQI scores, and this bias may also be present in other typical-
performance tests and possibly also in some maximum-performance tests.

In this chapter, we propose an alternative view on CAT, coined FlexCAT, that
allows for the use of more flexible models than item response theory (IRT) models,
which are traditionally used in CAT. First, we briefly describe the five building
blocks of a traditional CAT. Second, we introduce FlexCAT using the same five
building blocks. Third, using SAQI item scores, we compare the accuracy of
FlexCAT and traditional CAT. Finally, we discuss the challenges of FlexCAT that
must be resolved.

19.2 Traditional CAT

CAT procedures are iterative procedures. The algorithms for CAT have often
been described as containing five building blocks (e.g., Wainer, 2000; Weiss &
Kingsbury, 1984). Figure 19.1 shows a flow diagram of the five building blocks
in an iterative CAT procedure that also fits FlexCAT. Building blocks “calibration”
and “starting level” are grouped together in the preliminary phase, as the calibration
and determining the starting level take place before the item administration. The
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Fig. 19.1 Flow diagram of the five numbered building blocks of CAT in an iterative process
(indicated by i): (1) calibration, (2) starting level, (3) item selection, (4) scoring, and (5) the
decision whether to stop the CAT. Administering an item to a respondent (indicated by “Item
administration”) is not part to the CAT algorithm and therefore not considered a building block

remaining building blocks are grouped together in the item administration phase,
these building blocks are part of the measurement procedure of a single respondent.

Calibration First, the items of the complete test (the “item bank”) should be
calibrated under an IRT model to obtain the item parameters that feed the CAT-
algorithm. The selected IRT model should match the item format (e.g., Edelen
& Reeve, 2007). Suppose the two-parameter logistic model is used to model
dichotomously scored items. The probability that a randomly chosen respondent
with latent trait score θ has a response Xj of 1 on item j is given by

P
(
Xj = 1|θ) = eαj (θ−δj )

1 + eαj (θ−δj )
, (19.1)

where αj is the item’s slope parameter and δj is its location parameter.

Starting Level Usually, there is no information available about the respondent
before the administration of the first item, and therefore some provisional estimate
of the latent trait is required at the start of the CAT (Wainer, 2000). Most often, the
average of the latent trait in the population is taken as a starting point, and the item
that is most informative for that value is thus selected. Once the starting level has
been determined, the item administration stage starts.
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Item Selection Once an estimate of the respondent’s latent trait has been obtained, a
new item is selected that is most informative about this estimate. Let a prime denote
the first derivative. Then, for item j, Fisher information

Ij (θ) = [P ′(Xj =1|θ)]2
P(Xj =1|θ)P(Xj =0|θ) , (19.2)

may be used to quantify measurement quality as a function of the latent trait.
From the items that have not yet been administered, the item with the highest
information at the current estimate .θ̂ is selected. The selected item is administered
to the respondent, and the resulting item score is obtained.

Scoring After obtaining the item score, the CAT updates the estimate of the
respondent’s latent trait value. There are two popular latent trait estimation methods.
Maximum likelihood (ML) estimates θ as the value with the highest likelihood of
producing the observed responses (Thissen, 1991). By contrast, Bayesian estimation
adds to this likelihood a prior distribution of the latent trait, such as the standard
normal distribution (e.g., Embretson & Reise, 2000). Bayesian estimation can and
ML estimation cannot provide an estimate for perfect response patterns. Let f (θ)
denote the prior distribution of θ, and let L(θ) denote the likelihood function. One
Bayesian method, expected a posteriori (EAP), takes the average of the posterior
distribution of the latent trait, that is,

θ̂EAP =
∫

θf (θ)L(θ)dθ∫
f (θ)L(θ)dθ

. (19.3)

Stopping Rule The CAT algorithm alternately administers items and updates the
estimate of the respondent’s latent trait score until the item pool is exhausted unless
a termination criterion is specified, such as a pre-specified level of measurement
precision. This criterion is met when the respondent’s standard error of θ is small
enough. The standard error when using EAP estimation is given by

SE
(
θ̂EAP

)
=
√
∫ (

θ−θ̂EAP

)2
f (θ)L(θ)dθ

∫
f (θ)L(θ)dθ

. (19.4)

19.3 General Concept of FlexCAT

The main differences between FlexCAT and traditional CAT are in the building
blocks calibration and starting level. The other building blocks also differ between
FlexCAT and traditional CAT, but these differences are merely adaptations that
are required because the building blocks calibration and starting level are rather
different. Therefore, we discuss these two building blocks first.
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19.3.1 Calibration

In FlexCAT, the calibration step entails the estimation of the density of the item-
score vectors using a large sample. An item-score vector is a vector containing
scores on all items. Suppose a test consists of J items, indexed by j (j = 1, . . . ,
J), and suppose that item j has Cj + 1 response categories, 0, . . . , c, . . . Cj. Then
the number of possible item-score vectors equals V = ∏

j (Cj + 1). For simplicity,
but without loss of generalizability, we assume that all items have the same number
of categories, that is, Cj = C for all j. As a result, the number of possible item-score
vectors equals

V =
∏

j
(C + 1) = (C + 1)J . (19.5)

Let Xj denote the integer score on item j, with realization xj (xj ∈ {0, . . . , c,
. . . ,C}. Let rv = (xv1, . . . , xvJ)T (v = 1, . . . , V) denote the vth item-score
vector. The item-score vectors can be collected in a V × J matrix .R =(
rT
1 , . . . , rT

V

)
. The density of the item-score vectors, collected in the V × 1

vector p = (P(r1), . . . ,P(rV )), plays a central role in the calibration step.
In traditional CAT, it is assumed that an IRT model generates p. Using Eq. 19.1

and the property of local independence, it follows that

P(rv) = P(X1 = xv1, . . . , XJ = xvJ ) = ∫ ∏

j

P
(
Xj = xvj |θ

)
f (θ) dθ

= ∫ ∏

j

[
e
αj (θ−δj )

1+e
αj (θ−δj )

]xvj
[
1 − e

αj (θ−δj )

1+e
αj (θ−δj )

]1−xvj

f (θ) dθ.
(19.6)

Estimation of p in traditional CAT (Eq. 19.6) thus requires estimating the item
parameters αj and δj and the distribution of the latent trait, f (θ).

The first notion of FlexCAT is that it has no assumptions on the process that
may have generated p, and the procedure is completely data driven. Vector p can
be estimated using any convenient model that provides a good description of the
item-score vector density. In this chapter, “convenient” means that p can be esti-
mated directly from the test data, without the test constructor providing additional
information (e.g., the number of dimensions or distributional assumptions). A “good
description” is used pragmatically and means that the estimated item-score density,
.p̂, describes the associations in the test data so well that it provides a useful tool for
measurement and prediction.

Hence, in FlexCAT the calibration stage consists of finding an estimate of p with
a model of choice. Besides IRT models, candidate models for estimating p include
the latent class model (LCM; e.g., Vermunt et al., 2008; Linzer, 2011; Van Buuren
& Eggen, 2017), the divisive LCM (Van der Palm et al., 2016), kernel estimation
methods (e.g., Li & Racine, 2003), and decision trees (e.g., Ho, 1995; Yan et al.,
2004).
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19.3.2 Starting Level

In traditional IRT, the estimated latent trait (e.g., .θ̂EAP, Eq. 19.4) is used as a score
to communicate the measurement of a respondent. The starting level—when there
is no information about the respondent yet—is the average latent trait level. The
second notion of FlexCAT is that any score that can be derived from p can be used to
communicate measurement results. Hence, for FlexCAT, determining which score
will be used in the CAT procedure is part of the building block “starting level.”
Besides .θ̂EAP, a possible candidate is the total score (or equivalently, the mean
item score) as most tests use the total score for measurement. Both the estimated
latent trait and the total score can also be transformed to standard scores, percentile
scores, or stanines to facilitate communication and interpretation. These adapted
test scores can also be used as scores in FlexCAT. If the goal of the test is selection
or prediction, a response variable could be a useful score. Examples of response
variables include treatment (yes, no), placement (several nominal categories), or
selection (selected, not selected). Note that when FlexCAT is used for prediction,
the response variable (Y) must be included in the calibration model. For example,
if a ten-item test should predict whether or treatment is effective (Y = 1) or
not (Y = 0), then the vth item-score vector used for estimating p should be
rv = (Xv1 = xv1, . . . ,Xv10 = xv10,,Yv = yv). LCMs and decision trees can easily
incorporate response variables while calibrating items, but this is more difficult for
standard IRT models.

19.3.3 Item Selection, Scoring, and Stopping Rule

In FlexCAT, the item-administration stage—item selection, scoring (or more accu-
rately updating the score), and stopping rules—are essentially the same as for
traditional CAT. However, based on the choices made during building blocks
“calibration” and “starting level,” the building blocks in the item administration
stage may have to be adapted. For example, when using the LCM for calibration and
the total score for measurement, Fisher information (Eq. 19.2) is unavailable, and
alternatives should be developed. Also, for the—discrete—total score, a stopping
rule based on the modal value may be preferred over a stopping rule based on stan-
dard errors of the score (Eq. 19.4). As the building blocks in the item administration
stage should be adapted depending on the choices made for calibration model and
score, FlexCAT is more like an umbrella term for different types of CAT.
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19.4 FlexCAT Using the Latent Class Model and the Total
Score

19.4.1 Calibration

As a showcase, we show the estimation of item-score vector density p using
the LCM with W latent classes denoted LCM(W). Let � denote the categorical
latent variable having Wcategories (classes). The parameters of LCM(W) are the
class weights πw ≡ P(� = w) (w = 1, . . . , W) and the conditional item score
probabilities π j(c)|w ≡ P(Xj = c|� = w) (j = 1, . . . , J; c = 0, . . . , C; w = 1, . . . ,
W). Under the LCM(W)

P
(
Xj = xj

) =
∑

w
πwπj(cj )|w. (19.7)

LCMs assume that item scores are locally independent given the score on �, that
is,

P (rv) = P (X1 = x1, . . . , XJ = cJ ) =
∑

w

∏

j
πwπj(cj )|w (19.8)

(cf. Eq. 19.6).
Table 19.1 shows a constructed small example with three dichotomous items. It

is assumed that the estimated parameters of the LCM(2) provide a good description
of the data. Hence, .p̂ is derived from the parameters of the LCM(2) (see note in
Table 19.1). For density estimation using the LCM, two issues are important.

Table 19.1 Example of LCM(2) parameter estimates for three dichotomous items, the matrix
containing the V = 8 possible item-score vectors (R), and the estimated density of the item-
score vectors .(p̂), which is derived from the latent class parameters (see note)

Latent class parameters R .p̂
.π̂w .π̂j |1 .π̂j |2

.

(
.2

.8

)

.

⎛

⎜
⎝

.3 .7

.2 .8

.1 .9

⎞

⎟
⎠ .

⎛

⎜
⎝

.6 .4

.9 .1

.6 .4

⎞

⎟
⎠ .

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

.2604

.1836

.0336

.0624

.1756

.1404

.0304

.1136

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

Note. .p̂1 = π̂1 × (
π̂1(0)|1 × π̂2(0)|1 × π̂3(0)|1

) + π̂2 × (
π̂1(0)|2 × π̂2(0)|2 × π̂3(0)|2

) = .2 ×
(.3 × .2 × .1) + .8× (.6 × .9 × .6) = .2604, .p̂2 = π̂1 × (π̂1(0)|1 × π̂2(0)|1 × π̂3(1)|1

)+ π̂2 ×(
π̂1(0)|2 × π̂2(0)|2 × π̂3(1)|2

) = .2 × (.3 × .2 × .9) + .8 × (.6 × .9 × .4) = .1836, etc.
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Goodness of Fit If the LCM is used as a density estimation tool, the interpretation
of the latent classes is not particularly important (Vermunt et al., 2008; also, see
Linzer, 2011). Therefore, issues that are important in traditional latent class analysis,
such as local optima (e.g., McCutcheon, 2002), obtaining a modest number of latent
classes to facilitate interpretation, and identifiability (e.g., Goodman, 1974), are not
so important for the LCM as a density estimation tool, as long as the estimated
density captures the higher-order interactions well. If the number of latent classes,
W, is too small, the density is underfitted, which means that important associations
or interactions are possibly ignored in the estimated density. If W is too large, the
density may be overfitted; that is, the density estimate contains certain random
fluctuations that are sample specific. Determining the correct W is typically done
using information criteria, such as AIC (e.g., Bozdogan, 1987) or BIC (Schwarz,
1978). For increasing numbers of W (starting with W = 1), the information criterion
is computed for LCM(W), and the LCM(W) that produces the lowest value of
the information criterion is selected as a density estimator. It is well known that
AIC tends to overestimate W, and BIC tends to underestimate W (e.g., Lukociene
& Vermunt, 2010). Vermunt et al. (2008, p. 378) noted that overfitting is less
problematic than underfitting, and for now, we advocate using AIC to determine
W. However, this is an issue that should be investigated further, as there are many
alternative information criteria and also indices for local fit (e.g., Nagelkerke et al.,
2016).

Computational Feasibility The size of the V × 1 vector p can increase dra-
matically. For example, for the SAQI (J = 160 items, C + 1 = 3 categories),
V = 3160 ≈ 2.18 × 1076 (cf. Equation 19.5), which is computationally infeasible.
As the number of free parameters in the LCM equals W − 1 + W × J × C, for the
SAQI, .p̂ is estimated using W − 1 + W × 480 parameters. For W = 200, which is a
large number of latent classes (e.g., see example in Vermunt et al., 2008), the number
of parameters is less than 100,000, which is computationally feasible, although the
density estimation procedure may be slow. Standard software (e.g., poLCA; Linzer
& Lewis, 2011; or Latent GOLD, Vermunt & Magidson, 2013) can be used to
estimate p.

19.4.2 Starting Level

At the starting level, the density of the selected score is estimated. Here we use
total score X+ = ∑

jXj. For J items, each having item scores 0, 1 . . . , C, there
are H = JC + 1 possible total scores, indexed by h (h ∈ {0, 1, . . . ,H − 1}). Let
x+ = (0, . . . ,H − 1)T be an H × 1 vector containing all possible total scores.
The density of the total scores can be collected in an H × 1 vector .pX+ =
(P [X+ = 0] , . . . , P [X+ = H − 1])T . LetQ be a V × H design matrix that relates
p to .pX+ , and let r+ = (r+1, . . . , r+v, . . . , r+V )T be a V × 1 vector containing the
total scores of the item-score vectors in R; that is, r+ = R · 1. For the elements ofQ,
simple matrix algebra shows that qv, h + 1 = 1 if r+v = h and qv, h + 1 = 0 otherwise,
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Table 19.2 Continuation of the example in Table 19.1 showing the relation between the estimated
item-score vector density .p̂ and total-score density .p̂X+ . Item-score vectors (R) and their estimated
density ( .p̂) are taken from Table 19.1. The total scores produced by the item-score vectors are in
r+ = R · 1. Design matrix Q is derived from r+ (see text). Vector x+ contains all possible total
scores. Total-score-density equals .p̂X+ = QTp̂

R .p̂ r+ Q x+ .p̂X+

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

.2604

.1836

.0336

.0624

.1756

.1404

.0304

.1136

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

0

1

1

2

1

2

2

3

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜⎜
⎝

0

1

2

3

⎞

⎟⎟⎟
⎠

.

⎛

⎜⎜⎜
⎝

.2604

.3928

.2332

.1136

⎞

⎟⎟⎟
⎠

for h = 0, . . . , H − 1. It follows that .pX+ = QTp (and .p̂X+ = QTp̂). Table 19.2
continues the example from Table 19.1 and illustrates .p̂X+ = QTp̂.

19.4.3 Selecting the Next Item

Just as CAT, FlexCAT is an iterative process (Fig. 19.1). The starting level can be
seen as iteration i = 0, where no item has yet been administered. Iteration i (i = 1,
2, . . . ) starts with the selection of the ith item. As noted earlier, Fisher information
(Equation 19.2) is unavailable here. A possible strategy for selecting the ith item for
respondent n is searching for the item that provides as much information as possible
on respondent n’s expected total score.

At the start of iteration i, there are i − 1 items that have already been administered
to respondent n, whereas the remaining G = J − i + 1 items, indexed by g
(g = 1, . . . , G), have not yet been administrated to respondent n. Let rn, i − 1denote
the item-score vector of respondent n at iteration i − 1; that is, rn, i − 1 contains
i − 1 observed item scores obtained in the previous iterations and G missing item
scores. Similarly, let .rn,i−1

Xg=c denote the item-score vector of respondent n at iteration
i − 1, assuming that respondent n will obtain score c on item g in iteration i. Let
P(Xg = c| rn, i − 1) denote the probability that respondent n will obtain score c on
item g in iteration i, let E(X+| rn, i − 1) denote the expected total score at iteration

i − 1 for respondent n, and let .E
(
X+|rn,i−1

Xg=c

)
denote the expected total score at

iteration i − 1 for respondent n assuming that respondent n will obtain score c on
item g in iteration i. A possible way to express the additional value of item g in
iteration i on respondent n’s expected total score is

�n,i
g =

∑

c

P
(
Xg = c|rn,i−1

) ∣∣∣E
(
X+|rn,i−1

Xg=c

)
− E

(
X+|rn,i−1

)∣∣∣ . (19.9)
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The absolute difference between .E
(
X+|rn,i−1

Xg=c

)
and E(X+| rn, i − 1) in Equation

19.9 is the effect of having Xg = c on the expected total score; this effect is weighed
by the probability that Xg = c actually occurs. .�n,i

g is then the sum of these weighed
effects over all response categories of item g. The item that produces the highest
value .�

n,i
g is selected as the next item to be administrated. .�n,i

g can be computed
relatively easily. Let ai − 1, n be an indicator vector of length V, with .ai−1,n

v = 1if
the vth item-score vector in R is still admissible given respondent n’s responses in
the previous i − 1 iterations, and .ai−1,n

v = 0, otherwise. Similarly, let .ai−1,n
Xg=cbe an

indicator vector of length V, with .a
i−1,n
v|Xg=c = 1if the vth item-score vector inR is still

admissible given respondent n’s responses in the previous i − 1 iterations and given
that respondent n would obtain item score Xg = c if item g were to be administered

in iteration i; and .a
i−1,n
v|Xg=c = 0, otherwise. Table 19.3 shows an example to illustrate

ai − 1, n and .ai−1,n
Xg=c .

Let x ◦ y denote the Hadamard or elementwise product of vectors x and y, and

let .
[
x
y

]
be a vector that consist of the elementwise division of x by y. For example,

for x = [3, 2] and for y = [1, 2], then x ◦ y = [3, 4], and .

[
x
y

]
= [3, 1]. The terms in

Eq. 19.9 can be expressed as

P
(
Xg = c|ri−1,n

)
=

1T
[
ai−1,n
Xg=c ◦ p

]

1T
[
ai−1,n ◦ p

] , (19.10)

E
(
X+|ri−1,n

)
= xT+ QT

[
ai−1,n ◦ p

11T
(
ai−1,n ◦ p

)

]

, (19.11)

Table 19.3 Example showing design vectors ai − 1, n and .ai−1,n
Xg=c for respondent n in iteration

i = 2, who has endorsed item 3 (X3 = 1) in iteration 1

R a1, n .a1,nX1=0 .a1,nX1=1 .a1,nX2=0 .a1,nX2=1

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

1

0

1

0

1

0

1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

1

0

1

0

0

0

0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

0

1

0

1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

1

0

0

0

1

0

0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

1

0

0

0

1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

Note: As respondent n has endorsed item 3 in iteration 1, all item-score vectors in R containing
X3 = 0 are inadmissible in iteration 2; hence, the corresponding elements in a1, n are zeroes. In
.a1,nX1=0, the additional constraint is that X1 = 0, leaving only two admissible item-score vectors.

A similar logic applies to .a1,nX1=1, .a
1,n
X2=0, and .a1,nX2=1
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and

E
(
X+|ri−1,n

Xg=c

)
= xT+ QT

⎡

⎣
ai−1,n
Xg=c ◦ p

11T
(
ai−1,n
Xg=c ◦ p

)

⎤

⎦ . (19.12)

We have provided Eqs. 19.10, 19.11, and 19.12 in matrix notation, so they are
consistent with our computer code in the vector-based programming language R
(R Core Team, 2021). In the Appendix, we elaborate on these equations. As .xT+
and Q are fixed design matrices, and p has been estimated in the preliminary stage
(Fig. 19.1) and remains fixed in the item administration stage, Eqs. 19.10, 19.11,
and 19.12 show that only design vectors ai − 1, n and .ai−1,n

Xg=c require modification

for computing .�
n,i
g (Eq. 19.9). In the running example, at iteration 1 (no items

have been administered), Eq. 19.9 results in .�
n,1
1 = 0.612, .�

n,1
2 = 0.544, and

.�
n,1
3 = 0.660. Hence, item 3 would be selected as the first item to be administered

to all respondents.

19.4.4 Scoring

After a new item has been selected, the item is administered to the respondent (Fig.
19.1). Once the respondent has provided the score to the selected item, the estimated
score density has to be updated from .p̂i−1,n

X+ to .p̂i,n
X+ . Suppose that respondent n has

obtained score c on item g in iteration i, then ai, n is an V × 1 indicator vector, with
.ai,n

v = 1if the vth item-score vector in R is still admissible given respondent n’s
responses to the previously administered i items, and .ai,n

v = 0, otherwise.
Vector ai, n can be updated from ai − 1, n by setting the elements in ai − 1, n that

correspond to response patterns in which Xg = c to 0. The item-score vector density
and total-score density are updated using

p̂i,n =
[

ai−1,n ◦ p

11T
(
ai−1,n ◦ p

)

]

(19.13)

and

p̂(i,n)
X+ = QTp̂(i,n) (19.14)
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19.4.5 Stopping Rule

As a possible stopping rule, FlexCAT may be terminated if the modal value of

.p̂i,n
X+ > c; that is, .max

(
p̂i,n

X+

)
> c,where 0 ≤ c ≤ 1. If .c < max

(
p̂0,nX+

)
, FlexCAT

stops before any item has been administered. If c = 1, all items will be administered.
For all remaining values of c, it holds that if c becomes larger, the precision of the
score estimate increases, but the expected number of administered items increases
as well. We stress that alternative stopping rules may be used as well. For example,
one may compute the expected sum score E(X+| ri, n) (cf. Equation 19.9) and use its
standard deviation as a measure of precision.

19.4.6 Small Example

Table 19.4 shows the iterative procedure for the running example based on the

LCM(2) in Table 19.1, using the stopping rule .max
(
p̂i,n

X+

)
> .9. At iteration i = 0,

Table 19.4 shows thematrix of item-score vectors (R; taken fromTable 19.1), design
matrix a0, n, estimated item-score vector density .p̂ (taken from Table 19.1), the
best estimate of the item-score vector density for respondent n at iteration 0 .(p̂0,n),
transformation matrix Q (taken from Table 19.2), and the estimated score density
.(p̂0,nX+). Note that a0, n = 1 shows that all item-score vectors are still admissible. Also

note that .p̂0,n = p̂ as there is no information yet on respondent n in iteration 0. As

.max
(
p̂0,nX+

)
= .3929 < .9, FlexCAT continues.

At iteration i = 1, .�1,n =
(
�

1,n
1 ,�

1,n
2 ,�

1,n
3

)T

(Equation 19.9) has the highest

value at .�1,n
3 ; hence, item 3 is selected as the new item and presented to respondent

n. Respondent n obtains item score X3 = 1. Hence design matrix a1, n has all
elements that pertain to item-score vectors for which X3 = 0 set to zero, resulting
in updates of the item-score vector density .(p̂1,n) and total-score density .(p̂1,nX+). As

.max
(
p̂1,nX+

)
= .4056 < .9, the CAT continues. At iteration 2, item 1 is selected, and

respondent n obtains item score X1 = 1. As .max
(
p̂2,nX+

)
= .5527 < .9, the CAT

continues. At iteration 3, all items have been administered, necessarily leading to

.max
(
p̂3,nX+

)
= 1 > .9, so FlexCAT terminates, and the expected (and real) score

equals 2.
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Table 19.4 Iterative procedure for the running example based on the LCM(2) in Table 19.1. For
details see text

i �i, n g Xg R ai, n p pi, n lQ .pi,n
X+ S

0 .

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1

1

1

1

1

1

1

1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

.2604

.1836

.0336

.0624

.1756

.1404

.0304

.1136

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

.2604

.1836

.0336

.0624

.1756

.1404

.0304

.1136

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

⎛

⎜⎜⎜
⎝

.2604

.3928

.2332

.1136

⎞

⎟⎟⎟
⎠

N

1 .

⎛

⎜
⎝

.6120

.5440

.6600

⎞

⎟
⎠ 3 1 .

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0

1

0

1

0

1

0

1

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

.

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0

.3672

0

.1248

0

.2808

0

.2272

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

.

⎛

⎜⎜
⎜
⎝

0

.3672

.4056

.2272

⎞

⎟⎟
⎟
⎠

N

2 .

⎛

⎜
⎝

.5966

.5530

−

⎞

⎟
⎠ 1 1 .

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

0

1

0

1

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

0

.5528

0

.4472

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜
⎜⎜
⎝

0

0

.5527

.4472

⎞

⎟
⎟⎟
⎠

N

3 .

⎛

⎜
⎝

−
.4944

−

⎞

⎟
⎠ 2 0 .

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

0

1

0

0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

0

1

0

0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

⎛

⎜
⎜⎜
⎝

0

0

1

0

⎞

⎟
⎟⎟
⎠

Y

Note: i = iteration; �i, n = vector of deltas (see text); g = selected item; Xg = respondent’s n

score on the selected item; for R, ai, n, .p̂, .p̂i,n, Q, and .p̂i,n
X+ , see text; S = Stop?; N = No (i.e.,

.max
(
p̂i,n

X+

)
≤ .9); Y = Yes (i.e., .max

(
p̂i,n

X+

)
> .9)
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19.5 Comparing FlexCAT and Traditional CAT

We compared the outcomes of traditional CAT to the outcomes of FlexCAT using
LCM and the total score as described above. The study serves as an illustration of
how different types of CAT can be compared.

19.5.1 Method

Data We used the scores from 4211 Belgian students aged between 9 and 19 (53%
women) to the 16 items of the SAQI scale Leertaakgerichtheid (Orientation Towards
Learning Task). The data had been deidentified, and respondents with missing item
scores had been removed before we obtained the data. As dichotomous item scores
were easiest to handle in a traditional CAT, we coded the response “that is true”
to item score 1, and responses “that is sometimes true” and “that is not true”
to item score 0. We investigated the dichotomous item scores using the Mokken
scale analysis (e.g., Sijtsma & Van der Ark, 2017) and found no violations of
unidimensionality, local independence, or monotonicity. The scalability coefficient
for the entire scale was H = .427 (SE = .007), suggesting a “medium scale” using
Mokken’s (1971) benchmarks.

Simulation Design The original data were split randomly in a training set (80% of
the item-score vectors, N = 3369) used for calibration and a validation set (20% of
the item score vectors, N = 842). The two types of CAT were applied to each of
the 842 item-score vectors in the validation set. The response to an item in the CAT
equaled a respondent’s actual response in the data. As a result, the data obtained
from each CAT procedure was a 842 × 16 matrix. Items administered in the CAT
had scores equal to the item scores in the data, and items not administered in the
CAT had missing values.

For FlexCAT, we used the settings as described in this chapter. As a stopping

rule, we used max
(
pi,n

X+

)
> c, using the following values of c : .90, .85, .80,

and .75. The LCM was estimated using the R-package poLCA (Linzer & Lewis,
2011). For the remainder, we used our own computer code. For the calibration of
traditional CAT, we used the two-parameter logistic model. In the traditional CAT,
the average percentage of administered items was set approximately equal to the
average percentage of administered items of FlexCAT by finetuning the required
standard error in traditional CAT’s stopping rule. This allowed us to compare the
quality of the measurement under an equal level of response burden. Both the
calibration and the iterative item administration of the CAT were conducted using
the R-packagemirt (Chalmers, 2012) for calibration, and the R-packagemirtCAT
(Chalmers, 2016) for running the traditional CAT with default settings.
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Dependent Variables As the scores used in traditional CAT (estimated latent trait
value) and FlexCAT (estimated total score) were incomparable, we used the stanines
of the respective scores to compare the two types of CAT: More specifically,
we reported the percentage of respondents for which the stanine estimated using
CAT was equal to the stanine computed from the complete data, the percentage
of respondents for which the difference between the two stanines was 1, and the
percentage of the respondents for which the difference between the two stanines
was greater than 1. In addition we compared computed the correlation between a
respondent’s estimated and real score.

19.5.2 Results and Discussion

Depending on the stopping rule, for FlexCAT, the median percentage of adminis-
tered items ranged between 75% (12 items) and 87.5% (14 items) and for traditional
CAT between 75% (12 items) and 100% (16 items). For FlexCAT, the distribution
of the number of administered was approximately symmetric (Table 19.5, upper
panel) and skewed to the left for traditional CAT (Table 19.5, lower panel). These
skewed distributions indicate that, compared to FlexCAT, a large proportion of
the respondents in the traditional CAT required relatively few items, and a large
proportion of the respondents require all items. FlexCAT showed smaller differences
between the actual stanine and the expected stanine than traditional CAT (Table
19.6, middle columns), whereas the correlation between the actual scores and
estimated scores where very high for both types of CAT (Table 19.6, last column).

For this example, results showed that FlexCAT and traditional CAT are both
doing well, and although FlexCAT performed a bit better, the differences were not
overwhelming. This can be expected as we found no violations of unidimensionality,
local independence, and monotonicity for this scale, which suggests that a two-
parameter logistic model can estimate the item-score vector density rather well. The
percentage of items that were administered was less than typically expected in CAT,

Table 19.5 The percentage items of administered in FlexCAT and the corresponding percentage
of items administered in traditional CAT, for the SAQI scale Leertaakgerichtheid (Orientation
Towards Learning Task)

CAT c Min (%) First quartile (%) Second quartile (%) Third quartile (%) Max (%)

FlexCAT .90 75.0 81.2 87.5 93.8 100.0
.85 62.5 75.0 81.2 87.5 100.0
.80 56.2 75.0 81.2 87.5 100.0
.75 50.0 68.8 75.0 81.2 100.0

Trad. CAT .90 56.3 68.8 100.0 100.0 100.0
.85 50.0 62.5 93.8 100.0 100.0
.80 50.0 56.3 81.2 100.0 100.0
.75 43.8 50.0 75.0 100.0 100.0
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Table 19.6 Difference
between actual stanine and
estimated stanine for
FlexCAT and traditional CAT
for the SAQI scale
Leertaakgerichtheid
(Orientation Towards
Learning Task) and the
correlation between the
estimated and actual score

CAT c Difference Correlation
0 1 >1

FlexCAT .90 98% 2% 0% .998
.85 96% 4% 0% .997
.80 93% 7% 0% .995
.75 91% 9% 0% .993

Trad. CAT .90 92% 8% 0% .996
.85 93% 7% 0% .994
.80 89% 11% 0% .992
.75 87% 13% 0% .991

which may be due to the rather strict stopping rules. Finally, it may be noted that
FlexCAT was rather slow: In the simulations, processing a single respondent took
approximately 40 s, compared to less than 1 s for a traditional CAT. As the number
of items increase, computation time increases too, so for larger data sets, FlexCAT
may be too slow.

19.6 Discussion

We proposed a generalization of CAT, coined FlexCAT, and we conjecture that Flex-
CAT will be useful for tests and questionnaires that do not meet the requirements
of IRT models, tests, and questionnaires that are used for both measurement and
prediction, and tests and questionnaires that have different measurement levels and
items with different numbers of response categories. In a first example concerning
the SAQI scale “Orientation Towards Learning Task,” we used the LCM to
estimate the density of the item-score vectors (p), and we used the total score
for measurement, finding slightly better results for FlexCAT. The similarity could
explain the quality of the scale, which showed no violations of the IRT-model
assumptions. However, when multiple scales of SAQI should be administered, then
FlexCAT has the additional advantage over traditional CAT: Item scores from scales
that already have been administered may help predict the total score of a scale that
still has to be administered, and thus reducing the response burden. The percentage
of administered items was higher than expected, which suggests that stopping rules
and other settings of FlexCAT should be thoroughly investigated. This chapter
is merely the start of FlexCAT, and many things need to be investigated before
FlexCAT can be used.

The LCM is an attractive candidate to estimate p. We are not the first ones to
apply the LCM tot CAT. Cheng (2009) and Wang et al. (2012) used the LCM for a
CAT for cognitive diagnostic models, which can be conceived as an LCM with 2Q

latent classes, where Q is the number of attributes required to make a test. From a
FlexCAT perspective, these authors estimated p using the LCM(2Q) and used the
same 2Q classes weights as measurement scores. Similarly, Van Buuren and Eggen
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(2017) estimated p using the LCM with a small number of latent classes and used
expected class membership as the measurement score. Our use of LCMs in the SAQI
example was different, in the sense that we used the LCM as a convenient device
to obtain an accurate estimate of p, and we were not interested in the number of
latent classes, class weights, or parameter identifiability. We were not the first to use
the LCM as a density estimation method either. Van der Palm et al. (2016) used the
divisive LCM to estimate discrete densities.

Before the LCM can be used as an off-the-shelf density estimator for FlexCAT,
the following problems need to be resolved. First is the curse of dimensionality
problem. As the number of items increases, the order of vector p, which is
CJ , increases exponentially. For, example, for J = 130 items having C = 5
ordered response categories, CJ ≈ 7.3 × 1090. As 7.3 × 1090 is more than
1 billion times the commonly accepted number of particles in the observed
universe, these numbers are beyond the computational limits that are physically
possible (cf. Lloyd, 2000). Estimating p for this test using the LCM(200) requires
(W − 1) + W × J × (C − 1) = 199 + 200 × 130 × 4 = 104, 199 free parameters.
This is not a computational problem, even for a regular laptop, but the huge model
makes FlexCAT very slow, possibly too slow for a sound administration. The
administration of a ten-item CAT required 40 seconds, and the computation time
increases as the number of items increases. This is one of the main issues that must
be investigated. In addition, local optima (e.g., Shireman et al., 2016) may have
a large effect on the estimates. Second, choices for goodness of fit criteria, item
selection rules, and stopping rules need to be investigated.

Other models can also be used to estimate p. From a FlexCAT perspective, Yan
et al. (2004) used decision trees to estimate p and the total score for measurement.
Recently, Gonzalez (2021) provided machine-learning techniques for individual
diagnostic assessment. Implementation of other models requires an adaptation of
“building blocks” 2, 3, 4, and 5, which will lead to new challenges. Various choices
of density-estimation models and scores for FlexCAT must be compared using both
simulated and real-life data, to learn which choices tend to work well.

Probably the biggest challenge is the application of FlexCAT in real-life CAT
administrations. In addition to a well-working FlexCAT, in which optimal choices
have been made with respect to the density estimation, the score, item-selection
rules, and stopping rules, it requires fast and user-friendly software and training
programs for test administrators.

A.1 Appendix

Consider Eq. 19.10:

P
(
Xg = c|ri−1,n

)
=

1T
[
ai−1,n
Xg=c ◦ p

]

1T
[
ai−1,n ◦ p

] . (19.10)
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In the numerator, .ai−1,n
Xg=c ◦ p produces a V × 1 vector p∗∗ where .p∗∗

v = pv

if .a
i−1,n
Xg=c = 1 and .p∗∗

v = 0 otherwise; that is, those probabilities from pT are
selected that pertain to item-score vectors that are still admissible for respondent
n, given the i − 1 previous item scores and given that score c on item g has
been obtained in iteration i. Pre-multiplying p∗∗ with a unit vector sums up
the admissible probabilities producing P(rn, i − 1,Xg = c). Analogously, in the
denominator, ai − 1, n ◦ p produces a V × 1 vector p∗ where .p∗

v = pv if ai − 1, n = 1
and .p∗

v = 0 otherwise; that is, those probabilities from pT are selected that pertain
to item-score vectors that are still admissible for respondent n, given the i − 1
previous item scores. Pre-multiplying p∗ with a unit vector sums up the admissible
probabilities producing P(rn, i − 1). The ratio of P(rn, i − 1,Xg = c) and P(rn, i − 1)
equals P(Xg = c| ri − 1, n).

In Eq. 19.11,

E
(
X+|ri−1,n

)
= xT+ QT

[
ai−1,n ◦ p

11T
(
ai−1,n ◦ p

)

]

, (19.11)

the numerator of the last term results in vector p∗ (cf. denominator of Eq. 19.10),
whereas the denominator equals 11Tp∗ , which is a V × 1 vector with each element
equal to .

∑
vp

∗
v . Hence the last term of Eq. 19.11 is theV × 1 vector of rescaled prob-

abilities of admissible item-score vectors .

[
p∗
1∑

v p∗
v
,

p∗
2∑

v p∗
v
, . . . ,

p∗
V∑

v p∗
v

]T = pn, i − 1

(e.g., Table 19.4), Hence, Eq. 19.11 reduces to

E
(
X+|rn,i−1

)
= xT+.QT .pn,i−1 = xT+.pn,i−1

X+ , (A.1)

where .pn,i−1
X+ is the density of the total scores given the admissible item-score

vectors. Because .xT+.pn,i−1
X+ = ∑H−1

h=0 h P
(
X+ = h|rn,i−1

) = E
(
X+|rn,i−1

)
, Eq.

19.11 is true. Equation 19.12 follows a very similar logic.
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Chapter 20
On the Relationship Between
Unidimensional Item Response Theory
and Higher-Order Cognitive Diagnosis
Models

Jimmy de la Torre and Kevin Carl Santos

Abstract Cognitive diagnosis models (CDMs) have gained popularity in recent
years due to the diagnostic feedback they could provide. For this reason, its
emergence brought about a shift in the psychometric paradigm—from merely
determining the subjects’ locations on a latent continuum to generating the subjects’
multidimensional profiles for a given set of fine-grained attributes. Although based
on disparate underlying assumptions, it is not usual for many researchers to
fit unidimensional item response theory (IRT) models and CDMs to the same
educational or psychological assessment data. This chapter aims to explore the
conditions under which such a practice can be deemed acceptable. By imposing
certain conditions, the higher-order generalized deterministic input, noisy, “and”
gate (HO-G-DINA) model is reformulated to express the success probability on an
item as a function of the higher-order latent trait. Based on this model reformulation,
this study provides a framework for relating the two classes of psychometric
models, as well as boundaries within which this can be done. The correspondence
between unidimensional IRT and the HO-G-DINA models is further examined using
simulated and real data.

20.1 Introduction

At present, many existing large-scale educational assessments are developed and
analyzed using unidimensional item response theory (IRT) models, which assume
that the success probability on an item is a function of a single latent trait .θ .
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Although scores derived from these models are useful for scaling and ordering
purposes, they are typically of limited value when it comes to pinpointing the
students’ specific strengths and weaknesses. As such, these scores do not provide
diagnostic and prescriptive information that can facilitate instruction and learning.

In this regard, the advent of cognitive diagnosis models (CDMs), which are
psychometric models that can be used to support instruction and learning, has
sparked a vast interest among researchers and practitioners. These models are
developed specifically to determine a student’s mastery or nonmastery of multiple
fine-grained skills (e.g., de la Torre 2009). To maximize the benefits of CDMs, they
should be used in conjunction with cognitively diagnostic assessments (CDAs),
which are assessments deliberately and thoughtfully designed to measure the
different components required for someone to be deemed proficient in a particular
domain of interest (de la Torre & Minchen 2014).

As of yet, the potential advantages of using CDMs to generate richer diag-
nostic feedback have not been fully realized as the rapid methodological CDM
advancement has outpaced their applications in the educational settings. To date,
only few diagnostic assessments have been developed within the CDM framework.
For instance, Tjoe and de la Torre (2014) developed a proportional reasoning (PR)
test for middle school students, whereas Bradshaw et al. (2014) constructed a
multidimensional test examining middle grade teachers’ understanding of fraction
multiplication and division. Due to the dearth of such assessments, researchers have
employed CDMs on assessments anchored in unidimensional IRT framework in
the hope of extracting more diagnostic information. This approach is referred to as
retrofitting as CDMs are fitted to the data post hoc (De la Torre & Karelitz 2009).

Retrofitted applications abound and include the analyses of the Trends in Interna-
tional Mathematics and Science Study data (Birenbaum et al. 2005; Choi et al. 2015;
Lee et al. 2011; Tatsuoka et al. 2004), the 2003 Florida Comprehensive Assessment
Test (FCAT) data (Lee et al. 2012), the 2003 National Assessment of Educational
Progress data (de la Torre 2006), and the Graduate Record Examinations (GRE)
data (Gorin & Embretson 2006) as examples. Chen and de la Torre (2014) laid out
a procedure on how to diagnostically model extant large-scale assessment data by
demonstrating it using the reading assessment of the Programme for International
Student Assessment (PISA) 2000. More recently, Liu et al. (2018) proposed a step-
by-step retrofitting framework and illustrated it by using a mock version of the Test
of English as Foreign Language listening test.

Although a number of studies (e.g., De la Torre & Karelitz 2009; Lee et al. 2012)
have compared CDMs and IRT models, it remains unclear to date the extent to which
CDMs and unidimensional IRT models can be simultaneously used to analyze the
same assessment data. To address this issue, the current study examines a unifying
framework for relating the two psychometric frameworks, as well as boundaries
within which the relationship can be expected to hold.
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20.2 Background

20.2.1 Unidimensional Item Response Theory Models

IRT is a model-based measurement, where item responses are expressed as a
function of the examinees’ proficiency levels and item characteristics. Unidimen-
sional IRT models provide single overall scores reflecting the proficiency levels
of the examinees. Many new and revised assessments were developed based on
IRT principles, including the Armed Services Vocational Aptitude Battery, the
Scholastic Aptitude Test (SAT), and the GRE (Embretson & Reise 2000).

Four of the commonly used unidimensional IRT models are the four-parameter
logistic (4PL; Barton & Lord 1981), the three-parameter logistic (3PL; Birnbaum
1968), the two-parameter logistic (2PL; Birnbaum 1968), and the Rasch (Rasch
1960), sometimes referred to as the one-parameter logistic (1PL), models. Let .Xj

be the binary response to item j . It is equal to 1 if item j is answered correctly and 0
otherwise. The item response function (IRF) of the 4PL IRT model can be expressed
as

.P(Xj = 1) = γj + (νj − γj )
1

1 + e−αj (θ−δj )
, (20.1)

where .αj and .δj are the discrimination and difficulty parameters and .γj and .νj are
the lower and the upper asymptotes, respectively, for item j and .θ is the proficiency
parameter. When .νj = 1, Eq. 20.1 reduces to the 3PL model; furthermore, if .γj = 0,
the 3PL simplifies to the 2PL model. Additionally, when common slope for all items
(i.e., .αj = α for all j ) is assumed, the 2PL reduces to the 1PL.

20.2.2 Cognitive Diagnosis Models

CDMs, also referred to as diagnostic classification models, are restricted
latent class models that can generate a multivariate binary vector .α =
(α1,α2, . . . ,αk, . . . ,αK)T , where .αk = 1 or .αk = 0 indicates mastery or
nonmastery of attribute k. An important component of CDMs is the Q-matrix
(Tatsuoka, 1983). It is a .J × K binary matrix that specifies the required skills to
answer each item correctly, where J and K represent the number of test items and
the number of attributes, respectively. The .(j, k)th element of the Q-matrix, denoted
by .qjk, is equal to 1 if the kth attribute is required to answer item j correctly and is
equal to 0 otherwise.

Although one of the most studied CDMs, the conjunctiveness condensation
function assumed by the deterministic input, noisy, “and” gate (DINA; Haertel
1989; Junker & Sijtsma 2001) is deemed too restrictive. To relax the conjunctive
assumption, several general CDMs for dichotomous responses have been proposed
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in the literature, and one of these is the generalized DINA (G-DINA; de la Torre
2011) model. Without loss of generality, let the first .K∗

j attributes be required for
item j and .α∗

lj be the lth reduced attribute pattern whose elements are the required
attributes for item j . The IRF of the G-DINA model is given by

.P(α∗
lj ) = δj0 +

K∗
j∑

k=1

δjkαlk +
K∗

j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αlkαlk′ + · · · + δj12...K∗
j

K∗
j∏

k=1

αlk,

(20.2)

where .δj0 is the baseline probability, .δjks are the main effects, .δjkk′s are the two-
way interaction effects, and .δj12...K∗

j
is the highest-order interaction effect.

Each reduced attribute pattern corresponds to a latent group. As a general CDM,
aside from according each latent group its own success probability, the G-DINA
model subsumes several reduced CDMs. The G-DINA model reduces to the DINA
model by setting all the parameters, except .δ0j and .δj12...K∗

j
, to zero; it reduces to

the deterministic input, noisy, “or” gate (DINO; Templin & Henson 2006) model
with the constraints

.δjk = −δjk′k′′ = · · · = (−1)
K∗

j +1
δj12...K∗

j
, (20.3)

for .k = 1, . . . ,K∗
j −1, and .k′′ > k′, . . . ,K∗

j ; finally, it reduces to the additive CDM
(A-CDM; de la Torre 2011) when all interaction effects are set to zero. Additive
CDMs in other link functions can be derived in the same manner.

20.2.3 Relating IRT and CDMs

De la Torre and Karelitz (2009) systematically examined the relationship of
unidimensional IRT models and CDMs, particularly, between the 2PL IRT model
and the DINA model with a hierarchical attribute structure assumed. To allow for
the data from the two psychometric frameworks to be comparable, the 2PL item
parameters were transformed into the DINA model’s slip and guessing parameters,
denoted by .sj and .gj , respectively, using the logistic-to-step transformation (LST),
which employs the group-level expected misclassification indices to convert the
2PL model parameters into the DINA model parameters. Their simulation study
revealed that, when highly diagnostic IRT-based data are retrofitted with CDM,
and vice versa, comparable results can be obtained. They also found that the 2PL
analysis of the IRT-based data resulted in small biases compared with CDM-based
data analyzed using the DINA model, whereas the 2PL analysis of the CDM-based
data yielded relatively large biases relative to the CDM analysis of the IRT-based
data. Furthermore, in terms of item parameter estimation, large inaccuracies were
found in retrofitting CDM data with the 2PL model. This could be attributed to the
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differences between the IRFs of two the models—the 2PL model has 0 and 1 as
its lower and upper asymptotes, respectively, whereas the DINA model has .gj and
.1 − sj , which are typically greater than 0 and less than 1, respectively.

Meanwhile, Lee et al. (2012) investigated the relationships between CDM
and IRT, as well as classical test theory (CTT) indices using empirical data,
specifically the FCAT data. Their results found that items with low CTT-based
discrimination index, and, to some extent, high IRT-based guessing parameter, can
be expected to have low CDM-based discrimination index. Moreover, it was found
that items deemed diagnostic in the CDM sense are slightly less difficult but highly
discriminating in the CTT sense or more moderately difficult with lower guessing
and higher discrimination parameters in the IRT sense.

Finally, de la Torre and Douglas (2004) fitted the higher-order version of
the DINA model and 2PL model to fraction-subtraction data. The proficiencies
estimated from the two models had a correlation of 0.96. This result points to the
relationship that may exist between unidimensional IRT and CDM.

As a first foray, these studies provided interesting insights regarding the relation-
ship between IRT models and CDMs. However, it is not clear that these findings
have sufficient generalizability given the specific models considered, assumptions
made, and data analyzed. For this reason, a more rigorous investigation, which
includes establishing the mathematical relationship between unidimensional IRT
models and CDMs, is needed.

20.3 Equivalence Between Unidimensional Item Response
Theory and Higher-Order Cognitive Diagnosis Models

As with many approaches to latent variable modeling, a distinction between
the measurement and structural components can be made in cognitive diagnosis
modeling. The measurement component or the IRF, .p(xj |αl), .j = 1, . . . , J and
.l = 1, . . . , L, where J and L are the test length and the number of attribute
patterns, respectively, is represented by CDMs, whereas the structural component
is represented by the joint distribution of the attributes, .p(αl ). In the CDM
specification, various formulations have been used to specify the joint distribution
of the attributes. One formulation involves the use of a unidimensional higher-
order latent trait .θ, and an example of such a formulation is the higher-order DINA
(HO-DINA; de la Torre & Douglas 2004) model. In this formulation, the elements
of .αl are assumed to be conditionally independent given .θ. Specifically, the joint
distribution of .αl conditional on .θ can be written as

.p(αl |θ) =
K∏

k=1

pk(αlk|θ), (20.4)
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where .pk(αlk|θ) is called the attribute mastery function (AMF). Taken together, the
marginal probability of .xj can be written as

.p(xj ) =
L∑

l=1

p(xj |αl )p(αl ) =
L∑

l=1

∫

θ

p(xj |αl )p(αl |θ)p(θ)∂θ. (20.5)

As previously stated, the probability of success on item j based on the G-
DINA model can be expressed as a function of the reduced attribute vector, as in,
.p(xj |αlj ) = p(xj |α∗

lj ). Lemma 20.1 states that the property in Eq. 20.4 can be
extended to .α∗

lj .

Lemma 20.1 Let .α∗
lj be the reduced attributed vector for item j and .θ be the

proficiency parameter. The joint distribution of .α∗
lj conditional on .θ can be written

as

.p(α∗
lj |θ) =

1∑

αl(Kj∗+1)=0

· · ·
1∑

αlK=0

p(αl |θ) =
K∗

j∏

k=1

pk(αlk|θ), (20.6)

where the summations are taken across the attributes that are not required for the
item.

Proof By definition of a marginal probability, we have

.p(α∗
lj |θ) =

1∑

αl(Kj∗+1)=0

· · ·
1∑

αlK=0

p(αl |θ). (20.7)

Using Eq. 20.4 yields the following:

.p(α∗
lj |θ) =

1∑

αl(Kj∗+1)=0

· · ·
1∑

αlK=0

K∏

k=1

pk(αlk|θ)

=
K∗

j∏

k=1

pk(αlk|θ)
1∑

αl(Kj∗+1)=0

· · ·
1∑

αlK=0

K∏

k=K∗
j +1

pk(αlk|θ)

=
K∗

j∏

k=1

pk(αlk|θ)
1∑

αl(Kj∗+1)=0

· · ·
1∑

αlK=0

K−1∏

k=K∗
j +1

pk(αlk|θ)pK(aK |θ)

=
K∗

j∏

k=1

pk(αlk|θ)



20 On the Relationship Between Unidimensional Item Response Theory and. . . 395

×
1∑

αl(Kj∗+1)=0

· · ·
1∑

αl(K−1)=0

⎛
⎜⎝

K−1∏

k=K∗
j +1

pk(αlk|θ)pK(0|θ)

+
K−1∏

k=K∗
j +1

pk(αlk|θ)pK(1|θ)
⎞
⎟⎠ . (20.8)

By factoring .
∏K−1

k=K∗
j +1 pk(αlk|θ) out, and using the fact that .pK(0|θ)+pK(1|θ) = 1,

we get

.p(α∗
lj |θ) =

K∗
j∏

k=1

pk(αlk|θ)
1∑

αl(Kj∗+1)=0

· · ·
1∑

αl(K−1)=0

K−1∏

k=K∗
j +1

pk(αlk |θ) [pK(0|θ) + pK(1|θ)]

=
K∗

j∏

k=1

pk(αlk|θ)
1∑

αl(Kj∗+1)=0

· · ·
1∑

αl(K−1)=0

K−1∏

k=K∗
j +1

pk(αlk |θ).

...

=
K∗

j∏

k=1

pk(αlk|θ). (20.9)

To compare unidimensional IRT models and CDMs, it would be necessary to
express the CDM success probability on item j as a function of .θ. This probability,
.p(xj |θ), is simply

.p(xj |θ) =
2K∑

l=1

p(xj ,αl |θ) =
2K∑

l=1

p(xj |αl )p(αl|θ) =
2
K∗

j∑

l=1

p(xj |α∗
lj )p(α∗

lj |θ).
(20.10)

We can use Lemma 20.1 to breakdown .p(α∗
lj |θ) into the marginal distributions of

.αlks and use the higher-order formulation for the CDMs. For greater generality, the
G-DINA model is employed for .p(xj |α∗

lj ).
To understand the properties of .p(xj |θ), it would be helpful to re-express

Eq. 20.10. For notational convenience, we can write .pk(1|θ) and .pk(0|θ) as .pk and
.1 − pk , respectively. In addition, when there is no confusion, the item subscript j
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can also be omitted. Specifically, we want to show that

.p(xj |θ) = δ0 +
K∗

j∑

k=1

δkpk +
K∗

j−1∑

k=1

K∗
j∑

k′=k+1

δkk′pkpk′ + · · · + δ1···K∗
j

K∗
j∏

k=1

pk.

(20.11)

When only one attribute is required, Eq. 20.11 simplifies to

.p(x|θ) =
1∑

a1=0

p(x|a1)p1(a1|θ) = p(x|0)p1(0|θ) + p(x|1)p1(1|θ)

= δ0q1 + (δ0 + δ1)p1 = δ0 + δ1p1. (20.12)

Now, when two attributes are required, Eq. 20.11 can be written as

.p(x|θ) =
1∑

a1=0

1∑

a2=0

p(x|a1, a2)p(a1, a2|θ)

=
1∑

a1=0

1∑

a2=0

p(x|a1, a2)p1(a1|θ)p2(a2|θ)

= p(x|0, 0)p1(0|θ)p2(0|θ) + p(x|1, 0)p1(1|θ)p2(0|θ)
+p(x|0, 1)p1(0|θ)p2(1|θ) + p(x|1, 1)p1(1|θ)p2(1|θ). (20.13)

Using the fact that .P(x|0, 0) = δ0, .P(x|1, 0) = δ0 + δ1, .P(x|0, 1) = δ0 + δ2, and
.P(x|1, 1) = δ0 + δ1 + δ2 + δ12 and after simplifying, we have

.p(x|θ) = δ0q1q2 + (δ0 + δ1)p1q2 + (δ0 + δ2)q1p2 + (δ0 + δ1 + δ2 + δ12)p1p2

= δ0 + δ1p1 + δ2p2 + δ12p1p2. (20.14)

To generalize this to .K∗
j , we first define the following:

.A = {a1, . . . , aK∗
j
}

A(−k) = A \ {ak} = {a1, . . . , ak−1, ak+1, . . . , aK∗
j
}

A(−k,−k′) = A \ {ak, ak′ } = A(−k) ∩ A(−k′),

P = {p1, . . . , pK∗
j
}

P (−k) = P \ {pk} = {p1, . . . , pk−1, pk+1, . . . , pK∗
j
}

P (−k,−k′) = P \ {pk, pk′ } = P (−k) ∩ P (−k′),
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and .δ(−k) = δ1···(k−1)(k+1)···K∗
j
. When .K∗

j attributes are required for item j , we can
write the general expression for .p(xj |θ) as

.p(xj |θ) =
1∑

a1=0

· · ·
1∑

aK∗
j
=0

p(xj |a1, . . . , aK∗
j
)p(a1, . . . , aK∗

j
|θ)

= δ0

∑

A

∏

A,P
p

ak

k q
1−ak

k +
K∗

j∑

k=1

δkpk

∑

A−k

∏

A−k ,P−k

p
ak′
k′ q

1−ak′
k′

+
K∗

j −1∑

k=1

K∗
j∑

k′=k+1

δkk′pkpk′
∑

A−k,−k′

∏

A−k,−k′
,

P−k,−k′

p
ak′′
k′′ q

1−ak′′
k′′ + · · ·

+
K∗

j∑

k=1

δ(−k)

K∗
j∏

k′=1

pk′(pk + qk)/pk + δ1···K∗
j

K∗
j∏

k=1

pk

= δ0 +
K∗

j∑

k=1

δkpk +
K∗

j−1∑

k=1

K∗
j∑

k′=k+1

δkk′pkpk′ + · · · + δ1···K∗
j

K∗
j∏

k=1

pk.

(20.15)

We refer to Eq. 20.15 as the reformulated higher-order G-DINA (RHO-G-DINA)
model. Note that for the RHO-G-DINA model to be a valid IRF, it should be
monotonically nondecreasing as a function of .θ.

20.3.1 Sufficient Conditions for a Monotonically
Nondecreasing p(x|θ)

For .p(x|θ) to be monotonically nondecreasing, the following sufficient conditions
need to be met.

1. The AMF of .pk, k = 1, . . . ,K , is of the form

.pk = exp[ζk(θ − ϕk)]
1 + exp[ζk(θ − ϕk)] , (20.16)

where .ζk and .ϕk represent the higher-order discrimination and difficulty param-
eters with respect to attribute k, respectively.
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2. Monotonicity property should be satisfied. That is, .p(x|α∗
l ) ≤ p(x|α∗

l′) whenever
.α∗

l � α∗
l′ .

As defined by de la Torre (2011), .α∗
l � α∗

l′ means .αlk ≤ αl′k for .k = 1, . . . ,K∗
j .

For .K∗
j = 1, .p(x|α∗

l ) ≤ p(x|α∗
l′) implies that .δ1 ≥ 0; for .K∗

j = 2, it implies that
.δ1, δ2 ≥ 0 and .δ12 ≥ max(−δ1,−δ2); and so forth.

For notational convenience, we can assume that all the K attributes are required;
however, the results are equally applicable to .K∗

j . We also define .qk = 1 − pk .
To prove Theorem 20.1, we need Lemma 20.2, which states that the function g of
.p1, . . . , pK can simply be expressed as a product of the .qks.

Lemma 20.2 For any positive integer K ,

.g(p1, . . . , pK) = 1 −
K∑

k=1

pk +
K−1∑

k=1

K∑

k′>k

pkpk′ + · · ·

+(−1)K−1
K∑

k=1

K∏

k′=1

pk′/pk + (−1)K
K∏

k=1

pk

=
K∏

k=1

qk. (20.17)

Proof When .K = 1, .1 − p1 = q1. For .K = 2,

.1 − p1 − p2 + p1p2 = (1 − p1)(1 − p2) = q1q2.

Thus, Lemma 20.2 holds for .K = 1 and 2. Now, assume that this is true for
.K − 1. That is,

.g(p1, . . . , pK−1) = 1 −
K−1∑

k=1

pk +
K−2∑

k=1

K−1∑

k′>k

pkpk′ + · · ·

+(−1)K−2
K−1∑

k=1

K−1∏

k′=1

pk′/pk + (−1)K−1
K−1∏

k=1

pk

=
K−1∏

k=1

qk. (20.18)
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To show that it is true for K , we have

.g(p1, . . . , pK) = 1 −
K∑

k=1

pk +
K−1∑

k=1

K∑

k′>k

pkpk′ + · · ·

+(−1)K−1
K∑

k=1

K∏

k′=1

pk′/pk + (−1)K
K∏

k=1

pk

= 1 −
(

K−1∑

k=1

pk + pK

)
+

(
K−2∑

k=1

K−1∑

k′>k

pkpk′ + pK

K−1∑

k=1

pk

)

+ · · · +
(

(−1)K−1
K−1∏

k=1

pk + (−1)K−1pK

K−1∑

k=1

K−1∏

k′=1

pk′/pk

)

+(−1)KpK

K−1∏

k=1

pk.

(20.19)

Grouping together similar terms yields the following expression:

.g(p1, . . . , pK) =
(

1 −
K∑

k=1

pk +
K−1∑

k=1

K∑

k′>k

pkpk′ + · · · + (−1)K
K∏

k=1

pk

)

−pK

(
1 −

K∑

k=1

pk +
K−1∑

k=1

K∑

k′>k

pkpk′ + · · · + (−1)K
K∏

k=1

pk

)
.

(20.20)

Using the assumption in Eq. 20.18 will produce the desired result, as in,

.g(p1, . . . , pK) =g(p1, . . . , pK−1) − pKg(p1, . . . , pK−1) = qK

K−1∏

k=1

qk.=
K∏

k=1

qk.

(20.21)

Therefore, we have shown that Lemma 20.2 holds true for any K .
To show that .p(xj |θ) is monotonically nondecreasing, we need to show that

.∂p(xj |θ)/∂θ ≥ 0. Note that when .K∗
j = 1, the derivative is equal to

.
∂p(xj |θ)

∂θ
= ∂(δ0 + δ1p1)

∂θ
= δ1ζ1p1q1 ≥ 0, (20.22)
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which is always nonnegative because .δ1 ≥ 0, .ζ1 > 0, and .0 ≤ p1 ≤ 1. For .K∗
j = 2,

we assume that .δ = δ1 ≤ δ2. Then, the derivative is equal to

.
∂p(xj |θ)

∂θ
= ∂(δ0 + δ1p1 + δ2p2 + δ12p1p2)

∂θ

= δ1ζ1p1q1 + δ2ζ2p2q2 + δ12 [p1p2 (ζ1q1 + ζ2q2)] . (20.23)

Without loss of generality, we assume that .δ = δ1 ≤ δ2 so that .max(−δ1,−δ2) =
−δ implies that .δ12 ≥ −δ. Hence,

.
∂p(xj |θ)

∂θ
≥ δ [ζ1p1q1 + ζ2p2q2 − (p1p2(ζ1q1 + ζ2q2))]

= δ [q1q2(ζ1p1 + ζ2p2] ≥ 0. (20.24)

Again, without loss of generality, we can assume that .ζk = ζ for all k. Because .ζ and
.δ are always assumed to be positive, they can be dropped from Eq. 20.24. Therefore,
in general, showing .∂p(xj |θ)/∂θ ≥ 0 is equivalent to showing that Theorem 20.1 is
true.

Theorem 20.1 For any K ,

.f (p1, . . . , pK) =
K∑

k=1

pkqk −
K−1∑

k=1

K∑

k′>k

pkpk′(qk + qk′)

+
K−2∑

k=1

K−1∑

k′>k

K∑

k′′>k′
pkpk′pk′′(qk + qk′ + qk′′) + · · ·

+(−1)K+1
K∏

k=1

pk

K∑

k

qk

=
K∑

k=1

pk

K∏

k=1

qk ≥ 0. (20.25)

Theorem 20.1 can be proved using mathematical induction. Previously, we have
verified that the theorem holds for .K = 1 and 2. We now assume that Theorem 20.1
holds true for .K − 1. That is,

.f (p1, . . . , pK−1) =
K−1∑

k=1

pkqk −
K−2∑

k=1

K−1∑

k′>k

pkpk′(qk + qk′)

+
K−3∑

k=1

K−2∑

k′>k

K−1∑

k′′>k′
pkpk′pk′′(qk + qk′ + qk′′) + · · ·
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+(−1)K
K−1∏

k=1

pk

K−1∑

k=1

qk

=
K−1∑

k=1

pk

K−1∏

k=1

qk ≥ 0. (20.26)

We can then rewrite the .f (p1, . . . , pK) in Eq. 20.25 as

.

(
K−1∑

k=1

pkqk + pKqK

)
−

⎛

⎝
K−2∑

k=1

K−1∑

k′=k+1

pkpk′ (qk + qk′ ) +
K−1∑

k=1

pkpK(qk + qK)

⎞

⎠

+
⎛

⎝
K−3∑

k=1

K−2∑

k′=1

K−1∑

k′′=k+1

pkpk′pk′′ (qk + qk′ + qk′′ ) +
K−2∑

k=1

K−1∑

k′=k+1

pkpk′pK(qk + qk′ + qK)

⎞

⎠

+ · · · + (−1)K

[
K−1∏

k=1

pk

K−1∑

k=1

qk +
K−1∑

k=1

K∏

k′
pk′1/pk

(
K∑

k′=1

qk′ − qk

)]

+(−1)K+1
K−1∏

k=1

pkpK

(
K−1∑

k=1

qk + qK

)
. (20.27)

We can group the terms of Eq. 20.27 as follows:

.

[ K−1∑

k=1

pkqk −
K−2∑

k=1

K−1∑

k′=k+1

pkpk′ (qk + qk′ )

+
K−3∑

k=1

K−2∑

k′=1

K−1∑

k′′=k+1

pkpk′pk′′ (qk + qk′ + qk′′ ) + · · · + (−1)K
K−1∏

k=1

pk

K−1∑

k=1

qk

]

+
[
pKqK −

K−1∑

k=1

pkpK(qk + qK) +
K−2∑

k=1

K−1∑

k′=k+1

pkpk′pK(qk + qk′ + qK) + · · ·

+ (−1)K
K−1∑

k=1

K∏

k′=1

pk′1/pk

(
K∑

k′=1

qk′ − qk

)
+ (−1)K+1

K−1∏

k=1

pkpK

(
K−1∑

k=1

qk + qK

) ]
.

(20.28)
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Using the definition of .f (p1, . . . , pK−1) in Eq. 20.26, we can simplify Eq. 20.28 as

. f (p1, . . . , pK−1) + pKqK −
(

pK

K−1∑

k=1

pkqk − pKqK

K−1∑

k=1

pk)

)

+
⎛

⎝pK

K−2∑

k=1

K−1∑

k′=k+1

pkpk′(qk + qk′) + pKqK

K−2∑

k=1

K−1∑

k′=k+1

pkpk′

⎞

⎠ + · · ·

+(−1)K

[
pK

K−1∑

k=1

K−1∏

k′=1

pk′1/pk

(
K−1∑

k′=1

qk′ − qk

)
+ pKqK

K−1∑

k=1

K−1∏

k′=1

pk′1/pk

]

+ (−1)K+1

(
pK

K−1∏

k=1

pk

K−1∑

k=1

qk + pKqK

K−1∏

k=1

pk

)
. (20.29)

This can be further simplified as

. f (p1, . . . , pK−1) − pK

[ K−1∑

k=1

pkqk −
K−2∑

k=1

K−1∑

k′=k+1

pkpk′(qk + qk′) + · · ·

+(−1)K−1
K−1∑

k=1

K−1∏

k′=1

pk′1/pk

(
K−1∑

k′=1

qk′ − qk

)
+ (−1)K

K−1∏

k=1

pk

K−1∑

k=1

qk

]

+pKqK

⎛

⎝1 −
K−1∑

k=1

pk +
K−2∑

k=1

K−1∑

k′=k+1

pkpk′ + · · ·

+(−1)K
K−1∑

k=1

K−1∏

k′=1

pk′1/pk + (−1)K+1
K−1∏

k=1

pk

)

(20.30)

Using the definitions of .g(p1, . . . , pK−1) in Eq. 20.18 based on Lemma 20.2 and
.f (p1, . . . , pK−1) in Eq. 20.26, Eq. 20.30 can be written as

.f (p1, . . . , pK) = [f (p1, . . . , pK−1) − pKf (p1, . . . , pK−1)] + pKqKg(p1, . . . , pK−1)

= (1 − pK)f (p1, . . . , pK−1) + pKqKg(p1, . . . , pK−1)

= qK [f (p1, . . . , pK−1) + pKg(p1, . . . , pK−1)]

= qK

[
K−1∑

k=1

pk

K−1∏

k=1

qk + pK

K−1∏

k=1

qk

]
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= qK

K−1∏

k=1

qk

(
K−1∑

k=1

pk + pK

)

=
K∑

k=1

pk

K∏

k=1

qk. (20.31)

Because .pks and .qks for all k are probabilities, then .f (p1, . . . , pK) is nonnegative.
This completes the proof of Theorem 20.1. Note that Theorem 20.1 states that, as
long as the AMF of .pk is of the form Eq. 20.16 and the monotonicity property is
satisfied, .p(xj |θ), based on RHO-G-DINA model, is a monotonically nondecreasing
function of .θ.

20.3.2 Special Cases of p(x|θ)

In this subsection, we examine some special cases of .p(xj |θ) based on the RHO-G-
DINA model. As noted earlier, when .K∗

j = 1, Eq. 20.11 reduces to

.p(x|θ) = δ0 + δ1p1, (20.32)

which is equivalent to the 4PL IRT model in Eq. 20.1 with the upper asymptote
.ν = δ0 + δ1 and the guessing parameter .γ = δ0. It reduces to the 3PL IRT model
when .ν = δ0 + δ1 = 1 with .γ = δ0. When .δ1 = 1 and .δ0 = 0, it simplifies to the
2PL or 1PL IRT model, depending on the values of .ζks. Because the RHO-G-DINA
model is saturated when .K∗

j = 1, .p(x|θ) is already in its simplest form (i.e., no
other specific CDM can be considered). Note that this equivalence is not surprising
because there is only one required attribute (i.e., unidimensional case).

Now, we examine the case when .K∗
j ≥ 2. Again, it has been shown that when

.K∗
j = 2, Eq. 20.11 is equal to

.p(xj |θ) = δ0 + δ1p1 + δ2p2 + δ12p1p2. (20.33)

Similarly, when .K∗
j = 3, .p(xj |θ) reduces to

.p(xj |θ) = δ0 + δ1p1 + δ2p2 + δ3p3

+δ12p1p2 + δ13p1p3 + δ23p2p3 + δ123p1p2p3. (20.34)

To illustrate how .p(xj |θ) behaves for .K∗
j = 2 and 3, .p1, .p2, and .p3 are plotted

together with .p(xj |θ) in Fig. 20.1. The curve of each AMF, which follows a logistic
function, is to be expected because of its assumed form. However, because the IRF
of the RHO-G-DINA model is a function of multiple AMFs, it resembles but does
not strictly follow a logistic function. Thus, provided that the sufficient conditions
are met, the RHO-G-DINA model IRF may be approximated by logistic function.
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Fig. 20.1 Attribute mastery probabilities .pks and item success probability .p(xj |θ) conditional on
ability level .θ for .K∗

j = 2 and 3

However, the exact conditions under which an IRT model can approximate the
RHO-G-DINA IRF needs to be explored. Additionally, the extent to which the
estimated .θ obtained when unidimensional IRT models are fitted to CDM-based
data will correspond to the RHO-G-DINA-generated .θ remains to be seen.

20.4 A Simulation Study

In this section, a small simulation study was conducted to further examine the
relationship of the two psychometric frameworks. The primary objective of this
simulation study is to investigate the impact of a number of factors on the quality of
the approximation of the RHO-G-DINA model IRF and the correlation between the
true and estimated proficiencies.

20.4.1 Design and Analysis

In this simulation study, the item responses were generated from the RHO-G-DINA
model, with the test length fixed to .J = 50, the number of attributes to .K = 10,
and the sample size to .N = 10,000. For the slope, .ζk were set to either 0.5 or 2.5,
for all k, to represent low or high attribute discrimination parameters, respectively.
The intercepts .ϕks were selected from the intervals .(−2.5, 2.5) or .(−3.5, 3.5) with



20 On the Relationship Between Unidimensional Item Response Theory and. . . 405

equal increments; for the item quality, the lowest and one minus the highest success
probabilities .P(0) and .1 − P(1) were set to 0.0, 0.1, or 0.2. Finally, the proficiency
parameter .θ was generated from the standard normal distribution. Each attribute
was measured by 11 test items, and the test contained 10, 20 and 20 one-, two-, and
three-attribute items, respectively.

The IRF of the RHO-G-DINA model was approximated using the 2PL, 3PL,
or 4PL IRT model. For each IRT model, the item parameters were chosen by
minimizing the squared weighted Euclidean distance between the IRFs of the IRT
and RHO-G-DINA models, where the weights were obtained from the standard
normal density function. The mean of the weighted Euclidean distances across
the 50 items were then calculated. In addition to the IRF comparison, the three
unidimensional IRT models were fitted to the HO-G-DINA-generated data to
examine the correspondence between the IRT-estimated .θ and the true as well as
estimated higher-order .θ. The GDINA (Ma & de la Torre 2020) and mirt (Chalmers
2012) R packages were used in the simulation study.

20.4.2 Results

Table 20.1 presents the mean of the weighted Euclidean distance between the fitted
IRT model and the true RHO-G-DINA model IRFs. The simulation results indicated
that even the simplest IRT model under consideration (i.e., the 2PL) can provide
a good approximation to the RHO-G-DINA model when .P(0) and .1 − P(1) are

Table 20.1 Mean of the weighted Euclidean distance between the fitted IRT and the RHO-G-
DINA model IRFs

Discrimination Location P (0), 1 − P (1)
Fitted model

2PL 3PL 4PL

High Narrow 0.0 0.005 0.005 0.005

0.1 0.049 0.035 0.003

0.2 0.085 0.074 0.002

Wide 0.0 0.007 0.007 0.007

0.1 0.050 0.037 0.005

0.2 0.084 0.070 0.004

Low Narrow 0.0 0.002 0.001 0.001

0.1 0.012 0.007 0.001

0.2 0.015 0.009 0.001

Wide 0.0 0.002 0.002 0.001

0.1 0.011 0.006 0.000

0.2 0.013 0.008 0.001

Notes: The discrimination parameter was set to either 2.5 (high) or 0.5 (low); the location parameter
was obtained from either (−2.5, 2.5) (narrow) or (−3.5, 3.5) (wide); P(0) and 1-P(1) are the lowest
and highest success probabilities
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both zero. However, as expected, when the success probabilities were increased to
0.1 and 0.2, the 2PL approximation got poorer due to its inability to approximate
the lower and upper asymptotes of the RHO-G-DINA model IRF. As can be seen
from Table 20.1, better approximations were obtained when more complex IRT
models (i.e., 3PL and 4PL) were used. It was not surprising that the lower and upper
asymptotes of the 4PL IRT model allowed it to provide the best approximation of
the RHO-G-DINA model IRFs. It can be noted that although a smaller value of .ζk
led to better results, the impact of the range of .ϕk was not very clear, at least when
.ζk = 2.5.

Figure 20.2 displays the 4PL IRT model approximations of the RHO-G-DINA
model IRFs for .K∗

j = 1, 2, and 3 when .ζk = 2.5, .ϕk ranged from .−2.5 to 2.5,
and .P(0) and .1 − P(1) were both 0.2. For these specific conditions, the CDM and
IRT curves are virtually indistinguishable, which is an indication that the IRF of the
RHO-G-DINA model can be well approximated by an IRT model.

The range of the intercept did not have a substantial impact on the correla-
tion between the true and estimated proficiencies; hence, only results for .ϕk ∈
(−2.5, 2.5) are presented. Table 20.2 gives the correlations between the true (i.e.,
RHO-G-DINA-based) and the estimated proficiencies. As a baseline, the correlation
between .θ and .θ̂ using the RHO-G-DINA model was obtained, and the correlation
was at least 0.89 when the attribute discrimination parameter was high (i.e., .ζk =
2.5). When the unidimensional IRT models were fitted to the data, the .θ̂ estimates
had correlations that were only slightly lower than those from the RHO-G-DINA
estimates. However, with low attribute distribution parameter (i.e., .ζk = 0.5),
the correlations between true and RHO-G-DINA estimated proficiencies dropped
dramatically to as low as .0.46. The corresponding correlations between true and
IRT estimated proficiencies were also much lower.

To examine the correspondence between IRT and CDM, the correlation between
unidimensional IRT and RHO-G-DINA proficiency estimates is given in Table 20.3.
The two estimates were highly correlated. In particular, the correlation was at least
0.97 when .ζϕk = 2.5. Thus, when the attributes are discriminating, unidimensional

Fig. 20.2 Exact CDM (reformulated higher-order G-DINA model) and approximate IRT (four-
parameter logistic model) item success probabilities conditional on ability level .θ for .K∗

j = 1, 2,
and 3, .ζk = 2.5, and .P (0) = 1 − P (1) = 0.2
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Table 20.2 Correlation between .θ and .θ̂ with difficulty parameter .ϕkε(−2.5, 2.5)

Disc. .P (0), .1 − P (1)
True model Fitted model

RHO-G-DINA 2PL 3PL 4PL

.ζ = 2.5 0.0 0.92 0.91 0.91 0.91

0.1 0.91 0.90 0.89 0.89

0.2 0.89 0.87 0.87 0.88

.ζ = 0.5 0.0 0.53 0.44 0.45 0.42

0.1 0.51 0.45 0.45 0.42

0.2 0.46 0.42 0.43 0.40

Note: Disc. = discrimination parameter

Table 20.3 Correlation
between RHO-G-DINA and
IRT .θ̂s with difficulty
parameter .ϕkε(−2.5, 2.5)

Disc. .P (0), .1 − P (1)
Fitted model

2PL 3PL 4PL

.ζ = 2.5 0.0 0.98 0.98 0.98

0.1 0.98 0.97 0.98

0.2 0.97 0.98 0.98

.ζ = 0.5 0.0 0.82 0.85 0.79

0.1 0.89 0.89 0.82

0.2 0.90 0.93 0.86

Note: Disc. = discrimination parameter

IRT models provide a good approximation of RHO-G-DINA .θ̂. This has a practical
implication when K is large—as the number of attributes increases, it becomes more
computationally challenging to fit a HO-CDM because the number of latent classes
grows exponentially; however, this is not the case with unidimensional IRT models;
thus, it can provide a good approximation when the primary interest is to estimate
the proficiency levels of the examinees.

20.5 Real Data Example

Apart from a simulation study, we also conducted an IRT and CDM analysis of a
PR dataset. The goal of this analysis is to explore the relationship between the two
psychometric frameworks using real educational assessment data.

20.5.1 Proportional Reasoning Test

20.5.1.1 Data

Tjoe and de la Torre (2014) developed a PR test to measure the proportional
reasoning skills of middle school students. The test measures eight attributes,
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namely, a1, prerequisite skills and concepts (e.g., basic arithmetic operations,
finding the greatest common factors, reducing fractions); a2, comparing two frac-
tions; a3, ordering three or more fractions; a4, constructing ratios; a5, constructing
proportions; a6, identifying a multiplicative relationship between sets of values;
a7, differentiating a proportional relationship from a non-proportional relationship;
and a8, applying algorithms in solving PR problems (e.g., cross-multiplication
algorithm, building-up/down strategy). The responses of 807 middle school students
from two different schools in the United States to 31 PR items were analyzed in this
chapter to illustrate the relationship between the two psychometric frameworks.

20.5.1.2 Method

In a recent analysis, Ma et al. (2020) fitted several CDMs and the 3PL model to
the PR data. In this analysis, we fitted three CDMs (i.e., saturated and 1PL and
2PL higher-order G-DINA models) and four unidimensional IRT models (i.e., 4PL,
3PL, 2PL, and 1PL) to the same data. The Akaike information criterion (AIC;
Akaike 1974) and Bayesian information criterion (BIC; Schwarz 1978) were used
to evaluate the relative fit of the aforementioned models. Moreover, the correlations
among the different .θ̂s obtained were calculated to determine the extent of the
correspondence between the different models. To further compare and contrast the
IRT and CDM estimates, the number of mastered attributes was also plotted against
the proficiency estimates. Again, the GDINA (Ma & de la Torre 2020) and mirt
(Chalmers 2012) R packages were used in the analysis of the PR data.

20.5.1.3 Results

Table 20.4 shows the AIC and BIC of the fitted IRT and CDM models. Among
the IRT models, the 3PL and 2PL models were preferred because they obtained
the lowest AIC and BIC, respectively; for the CDMs, the 2PL-G-DINA model was
preferred based on AIC and BIC, followed by the 1PL-G-DINA model. Table 20.5
displays the correlations between the HO-G-DINA and IRT proficiency estimates.
For the models preferred, the correlations between the two sets of proficiency

Table 20.4 Model fit
evaluation for the PR test data

Framework Model AIC BIC

IRT 4PL 27,865.39 28,447.36

3PL 27,834.06 28,270.54

2PL 27,836.10 28,127.08

1PL 28,278.97 28,429.16

CDM Sat. G-DINA 28,246.16 30,419.17

2PL-G-DINA 27,988.05 29,039.35

1PL-G-DINA 28,060.15 29,078.60
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Table 20.5 Correlation
between the
HO-G-DINA-based θ̂ and the
IRT-based θ̂

CDM

IRT 2PL-G-DINA 1PL-G-DINA

4PL 0.96 0.96

3PL 0.96 0.96

2PL 0.96 0.96

1PL 0.94 0.95
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Fig. 20.3 (a) Plot of 2PL-G-DINA .θ̂ versus number of attributes mastered. (b) Plot of 2PL .θ̂ versus
number of attributes mastered

estimates were very high (i.e., 0.96). It should be noted that this correlation is
consistent with what de la Torre and Douglas (2004) found in analyzing a fraction-
subtraction dataset.

Figure 20.3 plots the .θ̂ based on the 2PL-G-DINA and 2PL IRT models against
the number of attributes mastered. The two plots show the same general trend—
students with higher proficiencies also had mastered more attributes. However, it
can also be seen that a fixed number of attributes mastered can correspond to a wide
range of (and overlapping) proficiency estimates. That is, some individuals with
higher proficiencies had fewer number of attributes mastered. This finding suggests
that targeted remediation cannot be solely based on proficiency estimates. The
overlaps also indicate that for a fixed proficiency level, students can have different
numbers of attributes mastered. For instance, students with .θ̂ = 0.0 based on the
2PL-G-DINA model can master three to five attributes; similarly, students with
a relatively high estimated proficiency (i.e., .θ̂ > 1.0) still can have a deficiency.
Finally, although the two estimates had a high correlation (i.e., 0.96), it can be noted
that their ranges differ—estimates based on the 2PL have a larger variability. This
suggests that additional adjustments may be needed to put the two estimates on the
same scale.
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20.6 Discussion

CDMs can provide diagnostic feedback that can inform instruction and learning, and
their potential can be maximized when used in conjunction with CDAs. However,
developing CDAs from scratch requires substantial time and resources. For this
reason, it is not uncommon for unidimensional IRT models and CDMs to be
treated interchangeably, as in, they are fitted to the same assessment data. However,
without the necessary framework to relate the two classes of models, the validity of
inferences from such analyses can be called into question.

In this work, certain conditions were imposed to reformulate the HO-G-DINA
model and express its success probability as a function of a higher-order latent
trait .θ. Based on this reformulation, a framework for relating the two classes of
psychometric models, as well as boundaries when this can be done, is provided. It
has been shown that when the attributes follow a higher-order structure and the AMF
slope is sufficiently large, a correspondence between unidimensional IRT models
and CDMs can be established. Under these conditions, estimating both finer-grained
attributes and an overall proficiency from the same data is deemed reasonable.
Results from analyzing simulated and real data indicate that IRT and CDM can
provide highly correlated estimates of the latent trait. However, estimating the latent
trait estimate alone would be insufficient to provide the finer-grained information
necessary to differentiate individuals based on their attribute profiles.

This chapter also suggests that a higher-order attribute structure alone may not
be sufficient to establish a correspondence between unidimensional IRT models and
CDMs. Specifically, when the AMF slope is low, the resulting data may be too
multidimensional for a unidimensional IRT model to adequately fit. Thus, not all
data can be fitted IRT models and CDMs simultaneously. The opposite problem—
the data may be too unidimensional—is an equally important issue worth discussing.
It remains to be seen whether additional information can be gained by fitting CDMs
to highly unidimensional data. If anything can be gleaned from a number of existing
examples, retrofitting CDMs to unidimensional IRT-based assessment data may not
lead to appreciable diagnostic insights. For data to be simultaneously appropriate for
both the unidimensional IRT models and the multidimensional CDMs, they need to
follow the Goldilocks principle—they have to have just the right dimensionality, not
too unidimensional, yet not too multidimensional.

The framework discussed in this chapter solely focuses on relating CDMs to
parametric IRT; thus, exploring the relationship between CDMs and nonparametric
IRT is also of interest (see Chap. 10 of this book). The seminal work on this topic
was done by Junker and Sijtsma (2001). However, their work included only two
constrained CDMs—the DINA and noisy input, deterministic, “and” gate models.
In addition, as Sijtsma and Van der Ark (2021) noted, a number of outstanding issues
remain in this area (e.g., deriving the stochastic ordering of the latent trait by means
of the sum scores property for the DINA model). Aside from considering a wider
class of CDMs, future research should examine the extent to which using a higher-
order rather than a saturated attribute distribution can facilitate the understanding of
how CDMs are related to nonparametric IRT.
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Chapter 21
A Sparse Latent Class Model for
Polytomous Attributes in Cognitive
Diagnostic Assessments

Siqi He, Steven Andrew Culpepper, and Jeff Douglas

Abstract Diagnostic models (DMs) have been widely applied to binary response
data. However, in the field of educational and psychological measurement, a wealth
of ordinal data are collected to measure latent structures where the traditional binary
attributes may not adequately describe the complex response patterns. Considering
that, we propose an extension of the sparse latent class model (SLCM) with ordinal
attributes, with the purpose of fully exploring the relationships between attributes
and response patterns. Furthermore, we discuss the strict and generic identifiability
conditions for the ordinal SLCMs. We apply the model to the Short Dark Triad data
and revisit the underlying personality structure. Evidence supports that SLCMs have
better model fit to this real data than the exploratory factor models. We also confirm
the efficiency of a Gibbs algorithm in recovering the empirical item parameters via a
Monte Carlo simulation study. This study discusses a way of constructing DMs with
ordinal attributes which helps broaden its applicability to personality assessment.

21.1 Introduction

Cognitive diagnostic assessments, aimed at providing fine-grained information
about respondents’ mastery of latent attributes, have gained increasing research
attention in recent decades. The considerable expansion of cognitive diagnostic
models (CDMs) has heightened the need for an inclusive and comprehensive
modeling approach, where the sparse latent class models (SLCM; Chen et al. 2020)
have served this purpose to fit most existing CDMs in an exploratory fashion.

The SLCM was originally proposed with binary attributes, including the deter-
ministic input, noisy, “and” gate model (DINA; De La Torre 2009; Junker &
Sijtsma 2001); the deterministic input, noisy, “or” gate model (DINO; J. L. Templin
& Henson, 2006); the reduced non-compensatory reparameterized unified model
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(NC-RUM; DiBello et al. 1995; Templin et al. 2010) and the compensatory-
RUM model (C-RUM; Hagenaars 1993; Maris 1999); and the family of general
diagnostic models (De La Torre 2011; Henson et al. 2009; von Davier 2005).
With binary representations of latent attributes, examinees’ attribute patterns are
composed of either “mastery” or “non-mastery.” However, binary attributes are
sometimes not accurate enough to describe the level of mastery as respondents can
theoretically possess a specific attribute to different extents. Bolt and Kim (2018)
provided empirical evidence that attributes derived from the fraction subtraction
test (Tatsuoka 1987) are oversimplified if defined as binary. In addition, previous
research also found that allowing attributes to have multiple levels improved the
model-data fit (Haberman et al. 2008; von Davier 2018). These justifications support
that assuming multiple levels of attributes are sometimes more desirable than binary
levels. Therefore, developing CDMs with polytomous attributes would maximize
the understanding of response patterns in binary or even polytomous data.

Many existing CDMs have been developed to measure polytomous responses,
such as the Ordered Category Attribute Coding DINA model (OCAC-DINA;
Karelitz 2004), the reduced reparameterized unified models (R-RUM; Templin
2004), the log-linear cognitive diagnostic model (LCDM ; Templin & Bradshaw(
2013), the general diagnostic models (GDM; von Davier 2005), and the pG-DINA
model (Chen & Culpepper 2020). Based on whether the interactions between
attributes are considered, these models can be further specified as the main-effect
cognitive diagnostic models (i.e., the OCAC-DINA, R-RUM, LCDM, and GDM)
and the all-effect cognitive diagnostic models (i.e., the pG-DINA). The former
involves only the main effects of the required attributes, whereas the latter involves
both the main effects and interaction effects. With the between-attribute interaction
effects being considered, we are able to discover all types of attribute relationships
and how they can affect the observed responses. A fully saturated model is the
most general parameterization of the joint attribute distribution, where all the
main effects and interaction effects are taken into consideration. However, the
challenge is, when the attributes or attribute levels increase, the item parameters
increase exponentially. This risk of the overparameterization makes its application
restricted to the confirmatory settings. The fact is for confirmatory models, accurate
scoring requires the correct specification of item-attribute relationship. Otherwise,
misspecification of the item structure could result in inaccurate classification. To this
end, an exploratory model has been instrumental in promoting our understanding of
the item-attribute structures when they are not prespecified.

With the intention of constructing an exploratory SLCM model, the key concern
is to determine whether polytomous attributes are necessary and how many inter-
mediate levels are appropriate. With data-defined polytomous attributes, the levels
of attributes and their interpretations can be derived from the model-fitting process.
With expert-defined polytomous attributes, the justifications of attribute levels can
be provided by experts in the related areas, especially in the area of educational
testing and psychopathology. In this study, we take on the first approach to explore
the attribute dimensions and levels. Once an adequate model size is determined, we
can move to the formal estimation of model parameters.
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This chapter is organized in the following sections. The 2. A Sparse Latent Class
Model with Polytomous Attributes section introduces the model parameterization
and discusses the identifiability conditions for the model. The 3. Gibbs Sampling
section provides a Gibbs algorithm for Markov chain Monte Carlo estimation with
the potential to enforce the identifiability and monotonicity constraints. The 4. An
Empirical Application section illustrates how well the model fits the Short Dark
Triad (SD3) data compared to an exploratory item factor model and performs a
Monte Carlo simulation study to assess the statistical properties and feasibility of
our model. The 5. Discussion section provides a summary of this study and some
potential directions for future research.

21.2 A Sparse Latent Class Model with Polytomous
Attributes

21.2.1 Model Configurations

21.2.1.1 Unstructured Mixture Model

Consider a scale that consists of J items and K underlying attributes. We denote
the vector of response probabilities for a latent class c on item j as .θ cj =(
θcj0, . . . , θcj,P−1

)′, where the element .θcjp represents the probability of observing
the response category p on item j by the latent class c. Note that the scale can be
either dichotomous (.P = 2) or polytomous (.P > 2). Given the vector of response
probability .θ cj , the probability of observing an ordinal response .yj is written
as

.P
(
yj | θ cj , η

′v = c
) =

P−1∑

p=0

θcjpI
(
yj = p

)
, (21.1)

where .yj ∈ {0, · · · , P − 1} and .I is an indicator function. To describe the observed
response patterns .

∏J
j=1 Pj , we introduce a collection of K ordinal attributes with

M levels. In this setting, a total of .MK latent classes can be created. Let the
latent class index be .c ∈ {0, . . . ,MK − 1}; each latent class has a K-vector of
latent ordinal attributes .η ∈ {0, . . . ,M − 1}K that can be mapped to an integer
index c via bijection .η′v = c with .v = (MK−1,MK−2, . . . , 1)′. Next, we
assume the membership in class c follows a multinomial distribution with structural
parameters .πc ∈ {π0, . . . , πMK−1} where .πc denotes the probability of membership

in latent class c and .
∑MK−1

c=0 πc = 1. By integrating out the latent class variable
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c, we can write the likelihood of observing a random vector .y = (y1, . . . , yJ )

as

.p(y | Θ,π) =
MK−1∑

c=0

πc

J∏

j=1

P
(
yj | θ cj , η

′v = c
)
, (21.2)

where .Θ ∈ R
J×MK×P denotes the response probability array and .π denotes the

structural parameter vector. In a sample of N respondents, we denote the ordinal
responses for respondent i as .yi , .i = 1, . . . , N . The likelihood of observing this
sample is

.p(Y | Θ,π) =
n∏

i=1

p(yi | Θ,π), (21.3)

where .Y denoted the .N × J response matrix.
In addition, a cumulative link function .�(·) is proposed to define the ordinal

responses (Culpepper 2019). Specifically, we compute the probability of response
category p by taking the difference in two adjacent cumulative probabilities. The
response probability for latent class c on item j is written as

.θcjp = �
(
τj,p+1 − μcj

) − �
(
τj,p − μcj

)
. (21.4)

�
(
τj,p − μcj

) = P
(
yj ≤ p | μcj , τj,p

)
, (21.5)

where .τ ∈ {τj,0, . . . , τj,P }. We define .τj,0 = −∞, .τj,P = ∞ which result
in .�

(
τj,0 − μcj

) = 0, .�
(
τj,P − μcj

) = 1. Here, .μcj is the latent class mean
parameter discussed in the next section. .�(τj,p − μcj ) denotes the cumulative
probability of a response at level p or less.

The assumption of local independence implies the response distribution .Y given
.B and .π can be presented as

.p(Y | B,π) =
J∏

j=1

p
(
Y j | βj ,π

) =
N∏

i=1

MK−1∑

c=0

πc

J∏

j=1

p(yij | βj ,αi = αc),

(21.6)

where .yij refers to individual i’s response on item j and .αi denotes the attribute
profile vector for individual i.

21.2.1.2 Structured Mixture Model

A challenge with unstructured mixture model is that, as K or M increases, the
number of parameters per item .MK grows exponentially. To reduce the number
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of parameters, we impose a specific structure on .μcj by representing .μcj as .μcj :=
α′

cβj where .αc is attribute profile design vector and .βj is an item parameter vector
of the same length as .αc. A saturated model is the most general exploratory model
which includes all the main- and higher-order interaction terms of predictors.Within
the saturated model framework, K attributes with M levels lead to a total number
of .MK predictors. We let .A = (α0, . . . ,αMK−1) be a .MK × MK design matrix
which comprises the attribute profile vector .α for each latent class. Moreover, we
let .B = (β1, . . . ,βJ ) be a .J × MK item coefficient matrix. In this way, since we
assume a sparse pattern on .B explained later, the number of effective parameters is
greatly reduced.

We code the attribute profile .η as the design vector .α using a cumulative coding
strategy. Specifically, for attribute k, we define

.ak = (1,I(ηk ≥ 1), . . . ,I(ηk ≥ M − 1))′ , (21.7)

so that .ak incorporates an intercept for the first element and main effects for the
exceeding different attribute levels. Therefore, the attribute design vector for an
arbitrary class can be written as

.α = (
a′
1 ⊗ · · · ⊗ a′

K

)′
, (21.8)

where .
⊗

is the Kronecker product sign which frames all possible cross-level
interactions between K attributes. Below we illustrate how the coding system works
with a specific example.

Table 21.1 displays the attribute profile matrix .A for a saturated SLCM with
.K = 2 attributes and .M = 4 levels per attribute, where the first column prints
the latent class integer c and the second column prints the latent class label in the
way that each digit represents to which level latent classes master the attributes.
For instance, latent class “12” in the column name implies the possession of the
first attribute to the first level, and the remaining columns in the table refer to the
predictors which compose the attribute profile vector .α as Eq. 21.8 describes. The
design vector .α contains intercept component “00”; main-effect components “01,”
“02,” “03,” “10,” “20,” and “30”; and two-way interaction components “11,” “12,”
“13,” “21,” “22,” “23,” “31,” “32,” and “33.” For instance, label “11” in the row name
corresponds to the cross-attribute effect between the first level of attribute 1 and the
first level of attribute 2. For latent class “12” ( .η1 = 1, .η2 = 2), component “11”
(.a1 = 1, a2 = 1) is active given the coding rule .η1 ≥ 1 and .η2 ≥ 1. Specifically, for
latent class “12” (i.e., .η1 = 1, η2 = 2), the active components refer to “00,” “01,”
“02,” “10,” “11,” and “12” columns.

21.2.1.3 Model Identifiability

Model identifiability issues have received considerable attention in the study
of CDMs. Traditionally, parameter constraints derived for model identifiability
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Table 21.1 Example design matrix A of latent classes by attribute predictors for .K = 2, .M = 4

.α

c .η 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 02 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 03 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 10 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

5 11 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

6 12 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

7 13 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

8 20 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

9 21 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

10 22 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

11 23 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

12 30 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

13 31 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

14 32 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

15 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

are often imposed on a design Q-matrix. The Q-matrix specifies item-attribute
relationships by showing which attributes each item measures but not showing how
attributes interact to affect response probabilities. Conversely, in SLCM, a sparsity
matrix .	J×MK substitutes the role of the traditional Q-matrix but takes the inter-
attribute relationships into consideration. The sparsity matrix .	J×MK depicts the
underlying pattern of the item parametermatrix .B , where J denotes the total amount
of items and .MK denotes the total amount of predictors. An element .δ = 1 suggests
its corresponding .β is active, whereas an element .δ = 0 suggests its corresponding
.β is 0.

Definition 2.1 presents a classic notion of likelihood identifiability where a
different set of parameter values leads to different values of likelihood. To this end,
a model must be identifiable to elicit consistent parameter estimates. Based on the
work established by Culpepper (2019) for the SLCM with binary attributes and
ordinal responses, and the work by Chen et al. (2020) with binary attributes and
dichotomous responses, we propose identifiability conditions for the SLCM with
ordinal responses and ordinal attributes.

Definition 2.1 A parameter set .	(π,B) is identifiable, if there are two sets of
parameters .(π ,B) and .(π̄ , B̄) such that .P(π,B) = P(π̄, B̄) implies .π = π̄ ,
.B = B̄.
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We define a parameter space .	(π,B) for the latent class proportion parameter
.π and the item coefficient parameter .B as

.	(π,B) = {(π,B) : π ∈ 	1(π),B ∈ 	2(B)}, (21.9)

where .	1(π) = {π ∈ R
MK : ∑MK−1

c=0 πc = 1, πc > 0} and .	2(B) = {B ∈
R

J×MK }.
Conditioned on the attribute profile vector .α, the joint distribution of .Y is a

product of multinomial distributions represented by a .PJ vector:

.Pα(B) =
J⊗

j=1

θ cj , (21.10)

where .
⊗

refers to the Kronecker product and .θ cj = (
θcj0, . . . , θcj,P−1

)′
. Further,

the marginal distribution of .Y over the proportion parameter .π is

.P (π ,B) =
∑

α

παPα(B). (21.11)

21.2.1.4 Monotonicity Constraints

Imposing monotonicity constraints ensures that mastering any irrelevant skills to
an item will not increase the endorsing probability. Xu (2017) and Xu and Shang
(2018) proposed the monotonicity constraints as follows:

.min
c∈S0

μcj ≥ μc0j , . (21.12)

max
c∈S0

μcj < min
c∈S1

μcj = max
c∈S1

μcj , (21.13)

where .c0 represents the latent class that does not own any relevant attribute and
.μc0j denotes its latent class mean parameters. .S0 denotes a set of latent classes
that own at least one but not all relevant attributes, and .S1 denotes a set of latent
classes that own all the relevant attributes. Given .μcj = β ′

jαc, we can derive a lower
bound condition .Lcj for each item parameters .βcj that if .βcj is lower bounded, the
constraints above are satisfied. The derivation details can be found in Chen et al.
(2020).
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21.2.1.5 Strict Identifiability

Theorem 2.2 The parameter space 	(π,B) is strictly identifiable if conditions
(S1) and (S2) are satisfied.

(S1) When 
 matrix takes the form of 
 =
⎛

⎝
D1

D2

D∗

⎞

⎠ after row swapping where D1,

D2 ∈ Ds ,Ds=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D ∈ {0, 1}K×MK : D=

⎡

⎢
⎢
⎢
⎣

0 1′
M−1 0 . . . 0 . . . 0

0 0 1′
M−1 . . . 0 . . . 0

... 0 0
. . . 0 . . .

...

0 0 0 . . . 1′
M−1 . . . 0

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Note: 1M−1 is a vector of 1 of length M − 1 which represents the activeness
of an attribute on all M − 1 levels.

(S2) In D∗, for any attribute k = 1, 2, . . . ,K , there exists an item j > 2K ,
such that all the main-effect components regarding this attribute are active
(δj,k0, δj,k1, . . . , δj,k(M−1)) = 1.

The proof details are provided in Appendix “Strict Identifiability Proof”.

21.2.1.6 Generic Identifiability

In this section, we propose the generic identifiability condition in (G1) and (G2) in
Theorem 2.4. The generic condition is less stringent than the strict conditions (S1)
and (S2) given in 2.2. Generic identifiability allows part of the model parameters
to be non-identifiable such that these exceptional values are of measure zero in the
parameter space.

Definition 2.3 A parameter set .	
(π,B) is generically identifiable if the
Lebesgue measure of the unidentifiable space .C
 with respect to .	
(π,B) is
zero.

Theorem 2.4 The parameter space .		(π ,B) is generically identifiable if condi-
tion (G1) and (G2) are satisfied.

(G1) When .
 matrix takes the form of .
 =
⎛

⎝
D1

D2

D∗

⎞

⎠ after row swapping where .D1,

.D2 .∈ Dg , .Dg=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D ∈ {0, 1}K×MK : D=

⎡

⎢
⎢
⎢
⎣

∗ 1′
M−1 ∗ . . . ∗ . . . ∗

∗ ∗ 1′
M−1 . . . ∗ . . . ∗

... ∗ ∗ . . . ∗ . . .
...

∗ ∗ ∗ . . . 1′
M−1 . . . ∗

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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Note: .1M−1 is a vector of 1 of length .M − 1 which represents the activeness
of a specific attribute on all levels.

(G2) In .D∗, for any attribute .k = 1, 2, . . . ,K , there exists an item .j > 2K ,
such that all the main-effect components regarding this attribute are active
.(δj,k0, δj,k1, . . . , δj,k,M−1) = 1.

The proof details are provided in Appendix “Generic Identifiability Proof”.

21.3 Gibbs Sampling

Following the Bayesian model formulation displayed in Sect. 21.2.1, this section
outlines an MCMC approach for the proposed SLCM models. First, we introduce
a deterministic relationship between the observed ordinal response .Yij and a
continuous augmented latent variable .Y ∗

ij as Eqs. 21.14 and 21.15 show. The
augmented variable .Y ∗

ij is generated from a normal distribution conditioned on the
latent class mean parameter .μij = α′

iβj . If .Y
∗
ij falls into the range .[τjp, τj,p+1), the

random variable .Yij takes the value of p.

.Yij =
P∑

p=0

pI(τjp ≤ Y ∗
ij < τj,p+1). (21.14)

Y ∗
ij |αi ,βj ∼ N(α′

iβj , 1) (21.15)

We consider a multinomial prior for latent attribute variable .αi as .αi ∼
Multinomial(π). The latent class structural probability .π follows a conjugate
Dirichlet distribution .π ∼ Dirichlet (d0) with hyperparameter .d0 = 1′

MK .
In addition, we adopt a spike and slab prior for .B as Culpepper (2019) described.

For each single .β parameter, we formulate the Bayesian model as follows:

.βjc|δjc ∼
{
N

(
0, σ 2

β

)
I(βjc > Ljc) δjc = 1

I (βjc = 0
)

δjc = 0

δjc|ω ∼ Bernoulli (ω)

ω ∼ Beta (w0, w1) ,

where .(σ 2
β ,w0, w1) are user-specified hyperparameters and .Ljc refers to the lower

bound for satisfying the monotonicity constraints mentioned in Sect. 21.2.1.4. Noted
that the intercepts in .	 are always set to be active with .δj0 = 1.
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As a binary variable, we sample .δjc from the following conditional distribution:

.δjc | y∗
j ,A,βj (c), ω, σ 2

β ∼ Bernoulli(ω̃jc), (21.16)

where .A = (α1, . . . ,αMK ) refers to the attribute profile matrix, .y∗
j is the augmented

responses vector, and .βj (c) is the coefficient vector .βj that discards the p-th
element. Once .δjc is updated, we update .βj(c) given the full conditional distribution:

.βjc | y∗
j ,A,βj (c), ω, σ 2

β , δjc ∼ N
(
μ̃jc, σ̃

2
c

)
[I(βjc > Ljc)]δjc [I(βjc = 0)]1−δjc .

(21.17)

Given Eqs. 21.16 and 21.17, the Bernoulli parameter .ω̃jc is derived as

.wjc =
w(

−Ljc

σβ
)
−1

( σ̃c

σβ
)(

μ̃jc−Ljc

σ̃c
)exp(

μ̃2
jc

2σ̃ 2
c
)

w(
−Ljc

σβ
)−1( σ̃c

σβ
)(

μ̃jc−Ljc

σ̃c
)exp(

μ̃2
jc

2σ̃c
) + 1 − w

. (21.18)

μ̃jc = σ̃ 2
c A′

c(y
∗
jc − A(c)βj (c)). (21.19)

σ̃ 2
c = (A′

cAc + σβ
−2)−1 (21.20)

where .Ac refers to the c-th column in the design matrix A. Note the derivation
details can be found in Chen et al. (2020). The full MCMC sampling process is
summarized in Algorithm 1, whereas Algorithm 2 presents the detailed sampling
steps of the parameter matrix .B and .	.

21.4 An Empirical Application

21.4.1 Short Dark Triad

In the past decade, a great interest has been directed to measure the dark pattern of
behaviors, goals, and characters. The Dark Triad (DT; Paulhus & Williams 2002) is
one of the most popularly studied personality constructs, which encompasses three
substantive dimensions: Machiavellianism, narcissism, and psychopathy. However,
different studies have made contrasting conclusions on the construct of the DT
(Persson et al. 2019). For instance, Furnham et al. (2013) have argued that
psychopathy sometimes subsumes Machiavellianism and narcissism inadvertently.
Others have declared that Machiavellianism and psychopathy have the same
core and should be deemed as the same measure (Garcia & Rosenberg 2016;
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Glenn & Sellbom 2015; McHoskey et al. 1998). Traditionally, assessment of
the DT often requires distinct measures for each dimension. To simplify the
process of data collection, a measure, namely, Short Dark Triad (SD3; Jones
& Paulhus 2014), was created with 27 items selected in a 5-point Likert-type
scale (1, “Strongly disagree”; 2,“Slightly disagree”; 3,“Neutral”; 4,“Slightly agree”;
and 5, “Strongly agree”). The SD3 items are shown in Appendix “Short Dark
Triad” .

In this study, we investigate the latent construct underlying the SD3 scale through
exploratory SLCMs. The dataset are available on the Open Psychometrics website
(https://openpsychometrics.org/tests/SD3/), where we select a random sample of
.N = 5000 observations. Original item affiliations to the three dimensions can
be inferred from the item index in Appendix “Short Dark Triad” (“M” refers
to “Machiavellianism”; “N” refers to “narcissism”; “P” refers to “psychopa-
thy”).

21.4.2 Model Comparisons

Traditionally, exploratory factor analysis (EFA; Furnham et al. 2014) has been the
most popular tool to excavate latent constructs underlying manifest variables in a
self-reported questionnaire. Unlike EFA models which treat personality traits as
continuous variables, the SLCM allows us to explore the potential for interpreting
the personality trait as discrete variables. The purpose of this section is to (1) fit
exploratory SLCM with different attributes (.K = 2, 3, 4) and attribute levels (.M =
2, 3, 4) and (2) compare the exploratory SLCM to EFA models with (.K = 2, 3, 4)
factors.

Using a Bayesian approach, we apply a tenfold cross-validation approach to
estimate out-of-sample predictive accuracy using within-sample estimates. We
choose the k-fold cross-validation approach due to its simplicity compared to the
leave-one-out method. Considering that an increasing number of folds help reduce
the bias term (Vehtari & Lampinen 2002) caused by data split, we partition the DT3
dataset (.N = 5000) into ten subsets .{yk | k = 1, . . . , 10}. One fold is used as testing
data .(N = 500), and the remaining folds are used as training data .(N = 4500).
For fold k, the testing and training data are denoted as .yk and .y(−k), respectively.
For each training data .y(−k), we employ the algorithm discussed in Sect. 21.3 to
obtain posterior draws of the exploratory SLCM and computed posterior means as
the point estimates for .B and .	. Thresholds .τ are fixed to be .τ = {−∞, 0, 2, 4,∞}.
We run 10 Markov chain Monte Carlo (MCMC) chains, and for each MCMC
chain, a total of .80,000 iterations are generated. Specifically, within each chain,
the first .20,000 iterations are discarded as burn-in samples, and the left .60,000
iterations are retained as posterior samples. Finally, one chain is chosen out of the
ten MCMC chains as it generated the highest marginal likelihood. Note here the

https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
https://openpsychometrics.org/tests/SD3/
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point estimates are computed by taking element-wise means for the item parameter
matrix .B and the structural parameter vector .π over posterior distributions. With
the posterior distributions estimated from the training data, we then evaluate model
fit in the testing data using log point-wise predictive density (lpd) which is defined
as

. lpd =
10∑

k=1

∑

i∈yk

logp
(
yi | y(−k)

)

=
10∑

k=1

∑

i∈yk

log
∫

p
(
yi | �k

)
p
(
�k | y(−k)

)
d�k, i ∈ yk, (21.21)

where .�k = {Bk,πk} represents the item parameters estimated from the training
data .y(−k). To compute lpd in practice, we evaluate the integration of .�k using
MCMC posterior draws, and the log point-wise predictive density for data points in
the testing data .yk is written as

.l̂pdk =
∑

i∈yk

log
1

S

S∑

s=1

fm

(
yi | Bk,s ,π

)
, (21.22)

where .Bk,s are the .sth draws from the posterior distributions given the training data
.y(−k) and i is the index of individuals. The complete log predictive density can be

calculated by summing all observations over the 10-folds as .l̂pd = ∑10
k=1 l̂pdk .

Furthermore, the marginal likelihood of response .yi for the .sth draws is
written as

.fm

(
yi | Bk,s,π

)
=
∑

α
k,s
i

fc(yi | Bk,s,α
k,s
i )g(α

k,s
i | π), (21.23)

where the latent variable .α
k,s
i is integrated out with the hyperparameter .π . Since

data .yij are independent response data conditioned on the model parameter .βj and
the attribute pattern .αi , we have

.fc

(
yi | Bk,s,α

k,s
i

)
=

J∏

j=1

P−1∑

p=0

1(yij = p)P(yij = p | β
k,s
j ,α

k,s
i ) (21.24)

For EFA models, we apply the function “MCMCordfactanal” in the R
package MCMCpack (Martin et al. 2011) to perform Bayesian estimation for
posterior inference. We use its default setting of .10,000 burn-in and .20,000
mcmc iterations, and for each training sample .y(−k), we take 500 posterior
draws to compute predictive accuracy in testing sample .yk . Similar to SLCM,
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we calculate the lpd criterion for the EFA models wherein the integration
in Eq. (21.22) is obtained via the function “hcubature” in the R package
cubature (Narasimhan et al. 2020). A higher lpd value indicates a model
with higher prediction accuracy. Note that, considering the variety of latent
variables assumed by SLCM and EFA, we use the marginal likelihoods .fm

instead of the conditional likelihoods .fc in the predictive likelihood function
.fm

(
yi | Bk,s ,π

)
.

As seen in Table 21.2, inclusion of more factors leads to a superior fit of
EFA models for the reason that more nuisance variance is considered. In the two-
dimensional case of .K = 2, the SLCM (.lpd ≥ −183595.3) performs better than
the EFA (.lpd = −186914.5) if the attribute is ordinal .M ≥ 3. Furthermore, in
the three-/four-dimensional case of .K ≥ 3, the SLCM consistently outperform the
EFA regardless of the choice of M . Overall, the lpd of SLCM shows a slight rise
when the dimension K or attribute level M increases, suggesting that increasing
either the dimension or attribute level could improve the model fit. At this point, the
best fitting model is the SLCM with .K = 2 attributes and .M = 4 attribute levels
(.lpd = −183,443.2).

Given the information concerning the relative model fit, we estimated an
exploratory SLCM with .K = 2 and .M = 4 in the same SD3 dataset (.N =
5000). We ran 10 chains of length .80,000 with a burn-in of .20,000 iterations
and keep the chain with the highest marginal likelihood. Figure 21.1 displays
the estimated sparse structure of .B, where we can summarize the two attributes
as (1) narcissism and (2) Machiavellianism. The x-axis of Fig. 21.1 presents the
predictors, where 01, 02, and 03 refer to the main-effect predictors of Machi-
avellianism; 10, 20, and 30 refer to the main-effect predictors of narcissism;
and sparsity of the matrix is reflected on the fact that loadings manifest on the
main-effect predictors. To this end, we can obtain a rough conclusion on the
item and attribute relationships. In particular, items M1–M9, P1, P3, P5, P6,
and P9 load mostly on Machiavellianism; items N1–N4, N6–N8, P2, and P7
load on narcissism; and items N5, N9, P4, and P8 load equally on the two
dimensions.

Table 21.2 Model
comparison results in lpd,
SD3 (.N = 5000)

Dimension EFA SLCM

.K = 2 .−186,914.5 .M = 2 .−189,320.7

.M = 3 .−183,595.3

.M = 4 .−183,443.2

.K = 3 .−185,898.2 .M = 2 .−183,929.6

.M = 3 .−183,916.3

.M = 4 .−183,902.9

.K = 4 .−184,743.8 .M = 2 .−183,577.2

.M = 3 .−183,552.5

.M = 4 .−183,532.1
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Fig. 21.1 Estimated .B matrix for DT3 data under SLCM with .K = 2, .M = 4

Fig. 21.2 Estimated item category response function by latent class and category probability
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Fig. 21.3 Dominant responses by latent classes and items

As a fully saturated model, interactions can take place between any level of any
two attributes. Figure 21.2 are stack barplots that clearly depict how increases in
attributes correspond to changes in category response probabilities. The x- and y-
axes indicate the latent classes and response probabilities; the stacked bars represent
the five response categories. The barplots selectively present the item category
response function for items M1, M7, N2, and P7. Item M1 has active coefficients
.β00 = 2.0, .β01 = 0.5, .β02 = 0.6, .β03 = 0.8, .β21 = 0.3, .β22 = 0.1, and .β23 = 0.2.
We can see that all main-effect terms regarding Machiavellianism manifest, while
narcissism is active only on the interaction terms. In Fig. 21.3, latent classes 10, 20,
and 30 that represents the group are less likely to endorse category 5 (5 = “Strongly
agree) compared to other latent classes.

The active coefficients of item N2 are .β10 = 1.3, .β30 = 1.2, .β32 = 0.3, and
.β33 = 0.9. We can tell that narcissism is more significant than Machiavellianism. In
Fig. 21.3, latent classes 01, 02, and 03 which reflects the mastery of three levels on
narcissism are most likely to endorse category 1 (5 = “Strongly disagree) compared
to other latent classes.

Moreover, Fig. 21.3 shows the dominant response category for each latent class
on the 27 items. Given a specific item, the value on the table represents the response
category which a latent class has the highest probabilities to endorse over the other
response categories.
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21.4.3 Monte Carlo Simulation Study

This section presents a simulation study to evaluate the parameter recovery rate for
SLCM with different sample sizes. We use the previous estimates of item parameter
.B and the structural parameter .π (see Appendix “Empirical Item Parameters”) as
the population parameters. Specifically, we have .J = 27 items and assume the
underlying dimension is .K = 2 and attribute level is .M = 4. The sample size
is set to be .n = 1000, 2000, 3000, with each sample size condition replicated for
100 times. For each replicated dataset, we run 10 chains where each single chain
has a total of .60,000 iterations with a burn-in sample of .20,000 inside. The chain
with the highest likelihood is chosen to perform posterior inference and compute the
recovery accuracy. Note here we generate different attribute profiles .α and responses
.Y per replication.

The estimation accuracy of .B is evaluated in terms of the mean absolute
deviation (MAD) for each single .β. For each replication, we record the posterior
mean of each single parameter in .B as the estimates. Next, we compute the
absolute deviation between the estimates and the true parameters. Then, we take
the average of the absolute deviation over replications. Table 21.3 enunciates the
MAD of .βs with its activeness into consideration. In specific, the first row “.B	”
refers to the MAD averaged over the entire matrix .B. The second row “.B	=1”
and the third row “.B	=0” refer to the MAD averaged over the locations where
.δs = 1 and .δs = 0, respectively. Likewise, we also compute and record the
mean absolute deviation (MAD) for each .π . Table 21.4 presents the recovery
rate of .	 in terms of the proportion of entries that are correctly recovered.
The first row “.	” refers to the proportion of correctly recovered .δs over the
whole matrix. The second row “.	 = 1” and the third row “.	 = 0” refer
to the proportion of 1’s and 0’s in the population .	 matrix that are correctly
recovered.

The result in Table 21.3 shows that the average EAD for .B is .0.100, .0.069
and .0.052 for sample sizes of .n = 1000, 2000, and 3000. The average EAD for
.π is .0.009, .0.008, and .0.007 corresponding to sample sizes of .n = 1000, 2000,
and 3000. Additionally, Table 21.4 shows the recovery rate for .D is .0.883, .0.913,

Table 21.3 Mean absolute
deviation (MAD) of .B and .π

.n = 1000 .n = 2000 .n = 3000

.B	 0.100 0.069 0.052

.B	=1 0.237 0.166 0.128

.B	=0 0.046 0.031 0.022

.π 0.009 0.008 0.007

Table 21.4 Recovery
accuracy of .	

.n = 1000 .n = 2000 .n = 3000

.	 0.883 0.913 0.931

.	 = 1 0.702 0.773 0.814

.	 = 0 0.954 0.968 0.976
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and .0.932 for sample sizes of .n = 1000, 2000, and 3000. As seen, for both of
them, the estimation accuracy rises as the sample size increases. Furthermore, in
Table 21.3, we observe that the active entries in .B have a larger bias than the
inactive entries. Similarly, we have at least .0.954 of the inactive entries in .D that
are correctly estimated as “0” and at least .0.702 of the active entries in .D that are
correctly estimated as “1.” The simulation results support that the model can be
mostly recovered by our Gibbs algorithm.

21.4.4 Model Convergence

To evaluate the convergence of the Gibbs sampler, we generate three chains
for the SLCM with .K = 2 and .M = 4 under the most computationally
intensive condition .N = 3000. For each of the latent class mean parameter .μ

and the structural parameter .π , the Gelman-Rubin proportional scale reduction
factor (PSRF), also known as .R̂, is calculated. A .R̂ value of below .1.2 indicates
the acceptable convergence. In our simulation, the maximum .R̂ is found to
be .0.97 for .π and .1.06 for .μ, with the .80,000 iterations and .20,000 burn-in
samples inside. Therefore, we conclude the MCMC chains have reached a steady
state.

21.5 Discussion

In this study, we propose a strict and generic model identifiability condition for
SLCM with polytomous attributes, which expands the work of SLCM with binary
attributes by Chen et al. (2020) and Culpepper (2019). We develop a Gibbs
sampling algorithmwith the design of enforcing the identifiability and monotonicity
constraints. Specifically, with strict identifiability conditions imposed, we notice that
the MCMC chains are often trapped and have a slow move forward. A possible
explanation is that the strict conditions are too restrictive for the chains to search
the right parameter space. Without explicitly enforcing the strict identifiability
constraints, the models convergence in .80,000 draws with estimates satisfying
the proved generic identifiability conditions. The simulation results demonstrate
that the algorithm is efficient in recovering the parameters in different sample
sizes.

Overall, our study is innovative in the following aspects. First, we provide a
successful case study of applying SLCM to a personality scale. Personality have
traditionally been viewed as continuous traits instead of discrete categories, and
factor analysis (FA) approach which assumes continuous latent variables is often
used in personality measurement. However, with the estimated person scores, it
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is always a critical issue to identify cut-offs and classify individuals into different
classes. To this end, if variables can be viewed more or less categorical, we can rely
on the models with discrete latent variables to provide fine-grained information on
the individual differences. Another advantagewith discrete latent variables lies in its
greatly reduced parameter space, with a potential of facilitating sampling. Overall,
our study provides new insights into interpreting personality traits as a discrete
measure. Plus, the model also has the potential of being applied to educational
settings and contributes to better measurement for educational intervention (Chen
& Culpepper 2020).

Second, our study, for the first time, compares SLCM and EFA models from
an exploratory perspective. We found the SLCM fit significantly better than the
EFA models with a higher prediction accuracy in several configurations. This
finding has important implications for promoting applications of CDMs to the areas
outside of educational measurement, where another early example is by Cho (2016)
who has explored the construct validity of emotional intelligence in situational
judgmental tests. In addition, our analysis of the item-attribute structures underlying
SD3 supports the previous finding by Persson et al. (2019) that Machiavellianism
and psychopathy are subsumable constructs. Moreover, they found the subscale
composite scores for the three constructs contain relatively little specific variance,
with an implication that reporting the total scores is more appropriate for SD3 than
reporting the subscale scores. In our result, most items do not follow a simple
structure pattern, which further support this statement that dimensions of SD3 are
somewhat inseparable.

Third, from a methodology perspective, our paper addresses the model identi-
fiability concerns of SLCM with polytomous attributes. The strict identifiability
condition is way too restrictive in practice. For instance, when the number of
attributes is relatively large compared to the items, (e.g., close to half the number of
items), enforcing strict identifiability is equivalent to presuming a simple structure
on all items. For personality assessment, a simple item structure is often unrealistic
to achieve. For this reason, the generic identifiability that loosens some constraints
broadens the model applicability.

There are still several recommendations for future study. First, although the
MCMC chains successfully converge to the posterior distributions, the Gibbs
samplers are still not efficient enough in exploring the parameter space. We have
to run several chains and conduct a likelihood selection to find the one with best
mixing. The difficulty of mixing could be due to the complexity of the saturated
model wherein we have 16 parameters per item. To solve the mixing issue, future
work is required to develop more flexible moves in the algorithm that can break
local traps or jump between difference spaces.

Second, instead of framing the SLCM in an unstructured way, it is interesting
to include a higher-order factor model (Culpepper & Chen 2019; De La Torre
& Douglas 2004; Henson et al. 2009) or a multivariate normal distribution with
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a vector of thresholds and a polychoric correlation matrix (Chen & Culpepper
2020; Henson et al. 2009; Templin et al. 2008) in the latent class structure. There
is also abundant room for future progress in selecting the competing structures
for . π .

Third, it is also possible to prespecify the number of attributes with a more
established approach. For instance, Chen et al. (2021) present a crimp sampling
algorithm to jointly infer the number of attribute for DINA model. In our study, the
choice of attribute level is limited by the study design. Future work with focus on
the selection of attribute level is greatly suggested.

Algorithm 1 Full Gibbs sampling algorithm
Data: YN×J ; π ; α1:N ; BJ×MK ; τ ; AMK×MK ; chain length T

Result: Y ∗; π ; α
for t in (1, · · · , T ) do

for j in (1, · · · , J ) do
for c ∈ (0, · · · ,MK − 1) do

for yij ∈ {0, · · · , P − 1} do
θjc,yij

= (τyij+1 − α′
cβj ) − (τyij

− α′
cβj );

end
end

end
for i in (1, · · · , N) do

Sample αi from multinomial distribution;

P (αi = αc | π , yi ) ∝ πc

∏J
j=1 θcj,yij

∑MK −1
c=0 πc

∏J
j=1 θcj,yij

;

end
for c ∈ (0, · · · ,MK − 1) do

Sample π from Dirichlet distribution;

P (π | A) ∝ ∏MK−1
c=0 π

∑N
i=1 I (αi=αc)+doc

c

end
for j in (1, · · · , J ) do

for i in (1, · · · , N) do
Sample y∗

ij from truncated normal distribution;
P (y∗

ij | αi, βj ) ∝ N(α′
iβj , 1)I (τj,yij

< y∗
ij < τj,yij+1)

end
end
Sample B and 	 from Algorithm 2

end
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Algorithm 2 Full Gibbs sampling algorithm: .B; .	

Data: Hyperparameters σβ , w, w0, w1; Y 0 from Algorithm 1
Result: B ,	
for t in (1, · · · , T ) do

for c in (1, · · · ,MK − 1) do
σ̃ 2

c = 1
A′

cAc+σβ
−2 ;

for j in 1, · · · , J do
μ̃jc = σ̃ 2

c A′
c(Y

0
j − A(c)βj(c));

L ← max
{
maxα∈L1 −γ ′

α,maxα∈L0 γ ′
α − γ ′

qj

}
;

if (L ≤ 0) and the identifiability condition is satisfied then

wjc =
w( −L

σβ
)
−1

(
σ̃ 2c
σ 2
β

)
1
2 (

μ̃jc−L

σ̃c
)exp(

μ̃2
jc

2σ̃ 2c
)

w( −L
σβ

)−1(
σ̃ 2c
σ 2
β

)
1
2 (

μ̃jc−L

σ̃c
)exp(

μ̃2
jc

2σ̃c
)+1−w

;

Sample δjc from Bernoulli(wjc)
end
if δjc = 1 then

Sample βjc from a truncated normal distribution;
P (βjc | μ̃jc, σ̃c, δjc = 1) ∝ N(μ̃jc, σ̃

2
c )I (βjc > L)

else
βjc = 0

end
end

end
Sample w from Beta(

∑
j,c(1 − δjc) + w0,

∑
j,c δjc + w1)

end

Appendices

Short Dark Triad

See Table 21.5.



21 A Sparse Latent Class Model for Polytomous Attributes in Cognitive. . . 433

Table 21.5 Short dark triad items in the original item affiliation

Statements

M1 It’s not wise to tell your secrets.

M2 I like to use clever manipulation to get my way.

M3 Whatever it takes, you must get the important people on your side.

M4 Avoid direct conflict with others because they may be useful in the future.

M5 It’s wise to keep track of information that you can use against people later.

M6 You should wait for the right time to get back at people.

M7 There are things you should hide from other people because they don’t need to know.

M8 Make sure your plans benefit you, not others.

M9 Most people can be manipulated.

N1 People see me as a natural leader.

N2 I hate being the center of attention.

N3 Many group activities tend to be dull without me.

N4 I know that I am special because everyone keeps telling me so.

N5 I like to get acquainted with important people.

N6 I feel embarrassed if someone compliments me.

N7 I have been compared to famous people.

N8 I am an average person.

N9 I insist on getting the respect I deserve.

P1 I like to get revenge on authorities.

P2 I avoid dangerous situations.

P3 Payback needs to be quick and nasty.

P4 People often say I’m out of control.

P5 It’s true that I can be mean to others.

P6 People who mess with me always regret it.

P7 I have never gotten into trouble with the law.

P8 I enjoy having sex with people I hardly know.

P9 I’ll say anything to get what I want.

Empirical Item Parameters

See Table 21.6.
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Strict Identifiability Proof

The proof is mainly based on Kruskal’s theorem (Kruskal 1976, 1977) and the
tripartition strategy proposed by Allman et al. (2009). We first introduce the
probability matrix .H (	,B) and its Kruskal rank in Definitions 1 and 2.

Definition 1 The class-response matrix .H (	,B) is a matrix of size .MK × PJ ,
wherein the rows denote attribute patterns and the columns denote response patterns.
An arbitrary element .(αc, y) in .H (	,B) presents the probability of observing a
response pattern .y from the latent class with attribute profile .αc:

.H c,j (	,B) = P(Y = y | βj ,αc) =
J∏

j=1

P−1∑

p=0

θcjpI(p = yj ), (21.25)

Definition 2 (Kruskal Rank) The Kruskal rank of matrix .H is the largest number
j such that every set of j columns in .H is independent. If .H has full row rank, the
Kruskal rank of .H is its row rank.

Theorem 3 (Allman et al. 2009) Consider a general latent class model with r

classes and .J items, where .J ≥ 3. Suppose all entries of .π are positive. If there
exists a tripartition of the item set .J = 1, 2, . . . , J that divides .J into three disjoint,
nonempty subsets .J1, .J2, and .J3 such that the Kruskal ranks of the three class-
response matrices .H 1, .H 2, and .H 3 satisfy

.I1 + I2 + I3 ≥ 2r + 2,

then the parameters of the model are uniquely determined, up to label switching.

To prove the model parameters are uniquely determined, we need to find three
subsets of items in SLCMs that satisfy Theorem 3. Suppose we have three disjoint,
nonempty subsets .J1, .J2, and .J3, the marginal probability of response .Y can be
reframed as a three-way tensor .T of dimension .P |J1| × P |J2| × P |J3|. Specifically,
the .(y1, y2, y3)-th element in .T is the marginal probability of the products of the
three subsets items:

.T (y1,y2,y3) = P
(
YJ1 = y1,YJ2 = y2,YJ3 = y3 | B,π

)

=
∑

c

πcP
(
YJ1 = y1,YJ2 = y2,YJ3 = y3 | B,αc

)

=
∑

c

πcP
(
YJ1 = y1 | B1,αc

)
P
(
YJ2 = y2 | B2,αc

)

× P
(
YJ3 = y3 | B3,αc

)
. (21.26)

In other words, tensor .T can be decomposed as an outer product of three vectors:
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.T =
∑

c

πcHαc (D1,B1) ⊗ Hαc (D2,B2) ⊗ Hαc (D3,B3),

where .Hαc (Di ,B i ) represents a row vector of .MK in the class-probability matrix
.H (Di ,B i ) of size .MK × PJI .

Kruskal (1976, 1977) and Allman et al. (2009) state that if the sum of the Kruskal
ranks of .H (D1,B1), .H (D2,B2), and .H (D3,B3) is greater or equal to .2MK + 2,
the tensor decomposition is unique up to the row rescaling and label switching. Now
we will give the proof by showing the existence of three item subsets .J1, .J2, and
.J3. If the corresponding item-attribute matrices .D1, .D2, .D3 satisfy the structure
of .Ds,Ds , andD∗ in Theorem 2.2, the Kruskal rank sum of their class-probability
matrix .H 1, .H 2, and .H 3 satisfies the minimum requirement .2MK +2, and the model
parameters are uniquely determined.

Proof 4 shows if .D1 and .D2 take the form of .Ds in Theorem 2.2, the class-
response matrices .H (D1,B1) and .H (D2,B2) have a full Kruskal row rank of .MK .

Proof 4 .Ds is the defined item structure matrix of dimension .K × MK in
Theorem 2.2, wherein the k-th item loads on all of the levels in attribute k, i.e.,
.δk = (δk,0, . . . , .δk,M−1) = 1, and the corresponding item parameters .βk,m �= 0 for
.m ∈ {0, . . . ,M−1}. The class-response matrix .H (Ds,Bs ) of dimension .MK ×PK

can be written as the Kronecker product of K sub-matrices .H k:

.H (Ds ,Bs ) :=
K⊗

k=1

H k

=
K⊗

k=1

⎡

⎢
⎢⎢
⎢
⎣

�(τ1 − μk,0) �(τ2 − μk,0) − �(τ1 − μk,0) . . . 1 − �(τ(P−1) − μk,0)

�(τ1 − μk,1) �(τ2 − μk,1) − �(τ1 − μk,1) . . . 1 − �(τ(P−1) − μk,1)

�(τ1 − μk,2) �(τ2 − μk,2) − �(τ1 − μk,2) . . . 1 − �(τ(P−1) − μk,2)

�(τ1 − μk,M−1) �(τ2 − μk,M−1) − �(τ1 − μk,M−1) . . . 1 − �(τ(P−1) − μk,M−1)

⎤

⎥
⎥⎥
⎥
⎦

,

(21.27)

where .H k can be viewed as the attribute-category matrix of dimension .M × P

for the k-th item in .Ds . In .H k , the rows indicate the attribute levels and columns
indicate the response categories.

Given the item parameters are all nonzero .βk,m �= 0, the latent class mean
parameter .μk,m is different from each other given .μk,0 = βk,0, .μk,1 = βk,0 +
βk,1,.μk,2 = βk,0 + βk,1 + βk,2, and .μk,M−1 = βk,0 + βk,1 + · · · + βk,M−1. Then,
the rows in matrix .H k are not linearly dependent so that .H k is of full row Kruskal
rank, namely, .rank(H k) = M . For each item k in .Ds , we have .rank(H k) = M .
According to the property of Kronecker products, .H (Ds,Bs ) = ⊗K

k=1 H k is also
full Kruskal row rank with .rank(H (Ds ,Bs)) = MK .

The following Proof 5 shows if .D3 takes the form of .D∗ in Theorem 2.2, the
class-response matrix .H (D3,B3) has Kruskal row rank of 2.
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Proof 5 Condition (S2) in Theorem2.2 ensures the main-effect components of each
attribute to be nonzero in at least one item in .D∗ so that .D∗ can distinguish every
pair of latent classes. Specifically, there must exist an item .j0 in .D∗ that any two
latent class .c1 and .c2 has different response probability matrix, i.e., .Θj0,c1 �= Θj0,c2 .
Therefore, there must exist two rows in .H (D∗,B∗) that are independent of each
other, implying that the Kruskal rank of .H (D∗,B∗) is at least 2.

With Proofs 4 and 5, we have .rank(H 1) + rank(H 2) + rank(H 3) ≥ 2MK + 2.

Generic Identifiability Proof

In the context of SLCMs, the item structure matrix .	 is a sparse matrix, so the real
parameter space should be of dimension less than .J × MK . To be differentiated
from Eq. 21.9, we denote the parameter space with a sparsity structure .	 as

.		(π ,B) = {(π ,B) : π ∈ 	1(π),B ∈ 	∗
	(B)}, (21.28)

where .	∗
	(B) presents the parameter space for .B which have nonzero entry at

position .β when the corresponding .δ = 1. Then, we define the unidentifiable
parameter set .C	 as

.C	 = {(π ,B) :P(π ,B) = P(π̃, B̃), (π ,B) �∼ (π̄, B̄),

(π ,B) ∈ 		(π,B), (π̃, B̃) ∈ 	
	̃
(π ,B)}. (21.29)

As Definition 2.3 stated, .		(π,B) is a generically identifiable parameter space if
the unidentifiable set .C	 is of measure zero within .		(π,B).

Similar to the strict identifiability proof, we will use the tripartition strategy to
find three item subsets .J1, .J2, and .J3 that generate a tensor decomposition of
.D1, .D2, and .D3. We proceed to show if .D1, .D2, and .D3 satisfy the structure of
.Dg,Dg, andD∗ in Theorem 2.4, the Kruskal rank sum of the corresponding class-
probability matrices .H 1, .H 2, and .H 3 satisfies the minimum requirement .2MK +2.

Proof 6 For .H 1 and .H 2, we use Theorem 7 to show that .rank(H 1) = MK

and .rank(H 2) = MK hold almost everywhere in .	D1 and .	D2 , respectively.
Different from the Theorem 4 in Chen et al. (2020), we perform a transpose
multiplication to the response-class matrix .H (Dg,Bg) so that it can be transformed
into a square matrix .H (Dg,Bg)

′H (Dg,Bg) which has an accessible determinant
function. Given Proof 10, we show .GD(B) → R is a real analytical function of .B ,
and then we know .λ	D (A) has the Lebesgue measure zero. By Theorem 7, we can
infer that .H (Dg,Bg) is a full row rankmatrix. Therefore, if .D1 ∈ Dg and .D2 ∈ Dg ,
we have .rank(H 1) + rank(H 2) = 2MK holds almost everywhere in .	D1

⊗
	D2 .
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Theorem 7 Given .D ∈ Dg, the corresponding class-response matrix .H (D,B) is
of full rank except some values of .B from a measure zero set with respect to .�D ,
i.e.,

.λ	D {B ∈ �D : det[H (D,B)′H (D,B) = 0]} = 0,

where .λ	D (A) denotes the Lebesgue measure of set A with respect to .�D.

Proposition 8 If .f : Rn → R is a real analytic function which is not identically
zero, then the set .{x : f (x) = 0} has Lebesgue measure zero.
Remark 9 .GD(B) = det[H (	,B)′H (	,B)] : 	D → R is a real analytic
function of .B.

Proof 10 .GD(B) is a composition function:

.GD(B) = det[H (	,B)′H (	,B)] = h[(θα0, . . . , θα
MK−1

)′(θα0, . . . , θα
MK−1

)]

where .h(θ ) : [0, 1]K×MK
denotes a polynomial function and .θαc represents

the probability vector for the latent class .αc, which can be further written as
the difference of two CDFs. A polynomial function is a real analytic function.
Since the CDF is an integral of a real analytic function, the composition of real
analytic functions (difference between two CDFs) is still a real analytic function.
Furthermore, .h(θ) is also a real analytic function of .B. .GD(B), as a determinant of
.h(θ)′h(θ), is also a real analytic function.

Proof 11 For .H 3, if .D3 takes the form of .D∗ in [S2], we can infer that there
must exist an item .j0 in .D3 that for any two latent classes .c1 and .c2, we have
.μj0,c1 �= μj0,c2 . Then we have at least two rows in matrix .H (D3,B3) to be
independent of each other, implying that the Kruskal rank of .H (D3,B3) is at least
2. The exceptional case could exist when .βk,m = 0 holds for some k and m, which
has Lebesguemeasure zero with respect to .		∗ . Consequently, .rank(H 3) ≥ 2 holds
almost everywhere in .		∗

With Proofs 6 and 5, we have .rank(H 1) + rank(H 2) + rank(H 3) ≥ 2MK + 2
holds almost everywhere in .		(π ,B).
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