
On Verification of Smart Contracts via
Model Checking

Yulong Bao1,2, Xue-Yang Zhu1,2(B), Wenhui Zhang1,2, Wuwei Shen3,
Pengfei Sun1,2, and Yingqi Zhao1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{baoyl,zxy,zwh,sunpf,zhaoyq}@ios.ac.cn
2 University of the Chinese Academy of Sciences, Beijing, China

3 Department of Computer Science, Western Michigan University,
Kalamazoo, MI, USA
wuwei.shen@wmich.edu

Abstract. Combined with smart contracts, the application of
blockchain techniques has grown faster and broader. However, it is very
difficult to write secure and functionally correct smart contracts because
of the openness of blockchain platforms. Formal verification, such as
model checking, has been proven to be an effective way of guaranteeing
security and correctness of systems. In this paper, we propose a novel
model checking based framework, called mcVer, to support the verifica-
tion of smart contracts written in Solidity. Built on model checking tool
VERDS, the mcVer framework is able to verify not only safety properties
but also liveness properties of smart contracts. For the properties that are
not satisfied, mcVer produces a counter example by showing a sequence
of statements in the original Solidity program as a hint for fault local-
ization. We implemented the automatic transformation from a subset of
the Solidity language to the modeling language of VERDS, that there-
fore provides automatic verification for smart contracts. Experiments are
carried out on various cases, including checking contracts for finding typ-
ical security vulnerabilities and verifying properties of an access control
smart contract. The experimental results demonstrate the flexibility and
efficiency of mcVer.

1 Introduction

Since Bitcoin was first introduced in 2009 [32], the blockchain has been regarded
as a promising but yet challenging technology. According to a recent study by
Garther [16], the market value for the blockchain-based technology can exceed
$3.1 trillion by 2030. Many cloud platform giants such as Microsoft, IBM, Ama-
zon, Oracle have proposed Blockchain-as-a-Service (BaaS) solutions to support
various enterprise scenarios such as financial services and supply chains. These

This work is partially supported by the National Natural Science Foundation of China
(No. 62072443).
c© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 92–112, 2022.
https://doi.org/10.1007/978-3-031-10363-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_7

On Verification of Smart Contracts via Model Checking 93

solutions are based on programs called smart contracts [40]. However, due to the
openness of blockchain platforms, people have suffered some devastating conse-
quence caused by the errors in smart contracts. For instance, the infamous The
DAO exploit [4] resulted in the loss of almost $60 million worth of Ether, and the
Parity Wallet error caused $169 million worth of Ether to be locked forever [41].
Obviously, unsafe smart contracts not only result in huge financial loss but also
seriously undermine the confidence about the development of blockchain-based
technologies.

Realizing the importance of safe and secure smart contracts, researchers have
conducted various types of studies [25,27,44] to reveal the nature of unsafe smart
contracts as well as to detect such problems. As reported, many common vul-
nerabilities in the blockchain domain are related to nondeterminism [46], which
is actually caused by concurrent calls. Model checking [17] has been success-
fully applied in the verification for many modern software systems with the
concurrency feature. Generally, model checking techniques can be used to check
various properties expressed by temporal logics [28], including safety properties
and liveness properties. A safety property specifies that something bad never
happens, while a liveness property specifies that something good will eventually
happen, playing an important role in the correctness of smart contracts. Security
requirements are usually a kind of safety properties.

While model checking techniques are promising for reducing the potential
threats and errors of smart contracts, they currently require the skill of writing
formal models and logic formulas, which is challenging for engineers who do not
have solid mathematical background. Learning how to write formal models and
specifications increases the learning curve and thus reduces the applicability of
these techniques. We propose in this paper a novel framework mcVer to ease
the difficulty of using model checking techniques and deal with the diversity of
smart contract properties.

Our framework mcVer uses model checking tool VERDS [50] as the foun-
dation to support the verification of smart contracts written in Solidity, which
is a smart contract language of Ethereum [47]. The contributions of this paper
are summarized as follows.

1. The mcVer framework is able to verify not only safety properties but also
liveness properties of smart contracts. For the properties that are not satisfied,
mcVer produces a counter example by showing a sequence of statements in
the original Solidity program as a hint for fault localization.

2. We provide automatic verification for smart contracts by means of the auto-
matic transformation from a subset of the Solidity language to the modeling
language of VERDS.

3. We implement the framework and apply it to several case studies, includ-
ing checking some typical security vulnerabilities and verifying properties,
including liveness properties, of an access control smart contract [51].

The remainder of this paper is organized as follows. Related work is reviewed
in Sect. 2. Solidity and VERDS are introduced in Sect. 3. We present the general
idea of mcVer framework in Sect. 4 and illustrate the technical details in Sects. 5,

94 Y. Bao et al.

6 and 7. Case studies and experiments are shown in Sect. 8. Section 9 concludes
and discusses limitations of mcVer and the future work.

2 Related Work

Luu Loi [27] and Atzei [9] summarized several types of common security vul-
nerabilities, such as Transaction-Ordering Dependency (TOD) and Reentrancy
Vulnerability. Based on these types of common security vulnerabilities, a num-
ber of research efforts have been made to ensure the safety and security for
smart contracts. The most explored are testing based techniques [21,48] and
static analysis-based techniques, usually based on the symbolic execution, includ-
ing Oyente [27], Securify [45], Slither [18], ETHBMC [20], Mythril [42], Sol-
Met [22], SmartCheck [43], Ethainter [12], Manticore [30], VeriSmart [38] and
FAIRCON [26]. However, these approaches heavily depend on known security
patterns to detect errors and cannot guarantee the functional correctness in
blockchain-based applications.

To overcome the limitation of above-mentioned approaches, formal verifi-
cation techniques [15] have been proposed to verify the correctness of smart
contracts. Research on formal verification of smart contracts starts with theo-
rem proving based approaches. Hirai [24] uses theorem prover Isabelle [35] to
verify smart contracts [23] and uses the Lem [31] to define a formal model for
the Ethereum virtual machine (EVM). Bhargavan et al. [11] convert Solidity
and EVM bytecode contracts into functional programming language F* [39].
Nehai et al. [34] translate smart contracts into models of Why3 [19]. The verifi-
cation procedures in this kind of approaches generally require user’s interaction
and are difficult to deal with liveness properties. The verification procedure of
mcVer is automatic and not only safety properties but also liveness properties
can be verified in mcVer.

Model checking based techniques are also studied by many researchers. Albert
et al. [7] use existing verification engines developed for C programs [10] to ver-
ify safety properties of low-level EVM code. Sukrit Kalra et al. [25] present
ZEUS, which uses bounded model checking techniques to verify safety proper-
ties of smart contracts. Anton Permenev et al. [36] present VerX, which combines
reduction of temporal safety verification to reachability checking, with symbolic
execution and delayed abstraction. Mavridou [29], Nehai [33] and Abdellatif [8]
present their work based on the model checking tool NuSMV [14]. A model-
based framework VeriSolid is proposed in [29], which focuses more on the code
generation procedure rather than verifying Solidity source code. Authors of [33]
and [8] present work that verifies particular smart contracts. The former focuses
on the contracts in the energy market field and the latter tries to verify a supply
chain management smart contract. The NuSMV based methods are possible to
deal with more properties, but existing work does not provide methodological
techniques to support the verification of commonly developed contracts. Our
framework mcVer is able not only to verify various properties but also imple-
ments the related tool to smooth the verification procedure that starts directly

On Verification of Smart Contracts via Model Checking 95

from the Solidity source code. The tool may return a counter example when a
property is not satisfied, providing a further help for debugging. To the best
of our knowledge, none of the formal method based work for the verification of
smart contracts is able to provide such a functionality.

3 Solidity and VERDS

3.1 Solidity

1 pragma solidity ^0.4.22;
2 contract Auction{
3 address public bene;
4 address public hBidder;
5 uint public hBid;
6 bool ended;
7 constructor(address _beneficiary)

public {
8 bene = _beneficiary;
9 }

10 function bid() public payable{
11 require (! ended);
12 require(msg.value > hBid);
13 if (hBid !=0) {
14 require(hBidder.send(hBid)

);
15 }
16 hBidder = msg.sender;
17 hBid = msg.value;
18 }
19 function aucEnd () public{
20 require (! ended);
21 ended = true;
22 bene.send(hBid);
23 }
24 }

Fig. 1. aucSC, a smart contract for auction.

Solidity is a programming lan-
guage developed to write smart
contracts that run on the EVM.
A Solidity smart contract mainly
consists of two parts, the variable
declaration and the function def-
inition. The former defines state
variables used by the contract and
the latter specifies the potential
behavior of the contract. Figure 1,
for example, shows partial code
of our running example, aucSC, a
simple auction contract modified
from [1].

State variables of a smart con-
tract are variables whose values
are permanently stored in the
blockchain and each has a type.
For example, variables bene and
hBidder, indicate addresses of the

beneficiary and the current highest bidder of the auction, respectively. Variable
hBid denotes the current highest bid and variable ended indicates whether an
auction is ended or not.

Besides global state variables, there are implicit global variables that are
defined by the EVM, including related accounts and balances. Once an account
is created on the blockchain, it has an address as its identification and a variable
to record the changes of its balance. When an account uses a smart contract,
its address is the value of msg.sender, which is used but not defined in the
contract. See aucSC for example. Accounts related to a smart contract include
the account that deploys it (its owner), the accounts that use it (its users), and
some accounts specified by the contract, e.g. the address of the beneficiary in
sucSC. The balances related include its own balance and balances of the related
accounts.

A function consists local variable declaration and statements. Functions can
receive data via parameters, perform computation, manipulate state variables,
and interact with other accounts. Functions are defined to operate on the states
of the contract. The constructor() is a special function that is executed only

96 Y. Bao et al.

once when the contract is deployed on the blockchain. The account who calls
constructor() is the owner of the contract. Other functions can be called and
executed many times during the lifecycle of the contract. For example, function
bid(), which defines the bidding behavior, can be executed by arbitrary number
of users before aucEnd(), which sets variable ended to be true. A function may
also operate on the implicit global variables. An execution of a function may
receive msg.value amount of money from its trigger msg.sender, and change the
balances of related accounts.

We consider a subset of Solidity language that are sufficient to express most
contracts. The supported subset is summarized in Fig. 2.

type ::= address|bool|uint|mapping|enum|array|struct
operator ::= +| − | ∗ |/| + +| − −|+ = |− = |∗ = |/ =
logic op ::= || | && | > | < | >= | <= | !

statement ::= assignment | condition statement
| for statement | while statement
| continue | break | return | throw | require

Fig. 2. Subset of Solidity language mcVer supports

A call to a function of a contract activates an execution. The execution
terminates after successfully updating the state of blockchain, or aborting and
rolling back to the state before the call. While smart contracts allow the concur-
rent calls, the executions of concurrent calls are sequential due to the execution
model of EVM [37]. We take this into account when formalize smart contracts.

3.2 Model Checking Tool VERDS

Model checking is considered one of the most practical applications of theoret-
ical computer science in the verification of concurrent systems. The basic idea
of model checking is to use the state transition system (S) to represent the
behavior of the system, and the modal formula (F) to describe the properties
of the system. In this way, the question of whether the system has the desired
properties can be transformed into a question of whether S satisfies F. For finite
state systems, this problem is algorithmically decidable. We use VERDS as the
verification engine. VERDS is a model checking tool that has been applied in
many aspects, such as the verification of SystemC design [49] and the verification
of multi-agent systems [13]. The input to a model checking tool usually includes
a system model and a specification. The modeling language of VERDS is called
VERDS modeling language (VML). A verification model specified in VML is
called a VERDS verification model (VVM), including a system model defined
by the guarded command transition systems and specifications expressed by the
computation tree logic (CTL).

Suppose p is any propositional atom, then CTL has the syntax given as
follows.

Φ ::=p|¬Φ|Φ ∧ Φ|Φ ∨ Φ|AΨ |EΨ
Ψ ::=XΦ|FΦ|GΦ|(ΦUΦ)

On Verification of Smart Contracts via Model Checking 97

Among them, Φ is the CTL formula and Ψ is the auxiliary path formula. The
set of operators of CTL formula is divided into path operators and temporal
operators. There are two kinds of path operators: AΨ indicates that on all paths
Ψ should be true, and EΨ indicates that Ψ should be true on at least one path.
The temporal operators are X,F,G,U . Two kinds of temporal operators are
used in this paper: FΦ indicates that Φ will eventually be true on a certain state
on a path; GΦ indicates that Φ should be satisfied for all the states on a path.
Properties to be checked on guarded transition system can be of various kinds:

– safety: ‘something bad never happens’ is usually expressed in CTL as AG(¬p);
– liveness: ‘something good will eventually happen’ is usually expressed in CTL as AF (p).

Each VVM consists of six parts: global alias definition, global variable dec-
laration, initialization, module definition, process instantiation, and property
specification. These six parts are distinguished by keywords DEFINE, VAR,
INIT, MODULE, PROC and SPEC, respectively. Variables should be bounded.

A module in VVM is a template of a transition system, defined under key-
word MODULE. Each module consists of four parts: module identifier and list
of parameters, local variables declaration (VAR), local variables initialization
(INIT), and collection of transitions (TRANS). A transition consists of two
parts: logical expressions (guard) and assignments (command). When the log-
ical expression is true, the assignment statement will be executed atomically.
When logical expressions in different transitions are true at the same time, a
random one of them will be executed. A process in PROC part is an instance of
a module; a local variable x in a process p0 can be accessed using the form p0.x.
Properties under verification are specified in SPEC part. If a property does not
hold, a counterexample can be found in the CEX file returned by VERDS.

4 Overview of mcVer Framework

Smart Contract
Modeling

Formulation
VERDS

Holds?VVM File

Smart
Contract

Counter
Example

Scenerio Scenario

 Counter Example
Extraction

CEX File

Property

mcVer

Fig. 3. Overall framework of mcVer .

The framework of mcVer is
shown in Fig. 3, in which
our main contributions are
in boxes with purple bor-
der. The smart contract
under verification are either
entirely or partly translated
into the VAR, INIT, and
MODULE parts of a VVM;
the scenario corresponds to
the PROC part, and the
specification is formulated
as CTL formulas in the

SPEC part. The model checker VERDS is then used to verify whether the
smart contract satisfies required properties. If a property is not satisfied,

98 Y. Bao et al.

VERDS returns the trace indicating the problematic behavior in a CEX file.
A counter example on the Solidity level is then extracted from it.

We present Smart contract modeling in the next section, Scenario Configura-
tion and Specification Formulation in Sect. 6, and Counter Example Extraction
in Sect. 7. Smart contract aucSC (Fig. 1) will be used as running example to
help illustrating our ideas. Part of its corresponding VVM, aucVVM, is shown
in Fig. 4. Details will be explained in the later sections.

Fig. 4. aucVVM, the corresponding VVM of aucSC.

5 Smart Contract Modeling

The behavior of smart contracts is defined by the guarded command transition
system. To be intuitive, we describe the semantics of smart contracts directly
with the VML. We discuss key points of mapping behavior of the EVM, variables,
functions and function call in smart contracts to VVMs in this section.

Behavior of EVM. Due to the execution model of EVM, transactions are exe-
cuted in a single-threaded manner. A boolean variable pCtrl is declared to con-
trol the execution of processes and is false by default. Only when pCtrl is true,
a process except for that of constructor can move to the next step. When a
process ends its execution, it releases the control by setting pCtrl to be true.
Function constructor executes only once before all other functions. It needs not
to check pCtrl to go. For example, a process instantiated from module bid in
Fig. 4 is waiting until the control variable pCtrl becoming true (Line 38) to start

On Verification of Smart Contracts via Model Checking 99

its execution and change pCtrl to be false to block other process. It sets pCtrl
to be true at the end of its execution (Line 51).

Related balances are explicitly defined as a global array balance in VVM.
They are defined at Line 5 and initialized at Line 13 in Fig. 4, for example. The
trigger address msg.sender and the amount of money msg.value are modeled as
two parameters of each module in the VVM. See Line 34 in Fig. 4 for example.
Changes of balances of related accounts are coded in the last transition of the
module of each function.

State Variables. State variables of smart contracts are accordingly defined as
bounded integer (in the VAR part) and initialized (in the INIT part) in the
VVM. For readability, we use characters to represent the values of variables with
address type. The address of contract under verification is set to be ‘Z’ by default.
For example, Lines 3–4 and 11–12 in Fig. 4 are definition and initialization of
state variables of aucSC in aucVVM. Constants is defined in the DEFINE part.

Functions. A function in a contract is modeled by a module in VVM, which
is a guarded command transition system. By this we in fact define a transition
system semantics for the behavior of contracts. Let S be the set of statements in
a function and Ps be the label of statement s. Each statement in S is modeled
as one or multiple transitions in VVM. Each module in VVM has an extra local
variable pc to model the change of Ps. The mapping of statements in the subset
of Solidity (Fig. 2) to VML is shown in Table. 1. The module in VVM of bid()
in aucSC (Fig. 1) is shown in Fig. 4 (Lines 34–51). Line 34 declares the module
identifier.

Table 1. Statements mapping

statement solidity VML

assignment Ps1 y = e; pc = Ps1 : y = e &pc = Ps2;
Ps2 ...

condition

Ps1 if (cond) {
Ps2 ... pc = Ps1 &cond : pc = Ps2;

}else{ pc = Ps1 &!cond : pc = Ps3;
Ps3 ...}

while

Ps1 while(cond){ pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps4;
Ps3 } pc = Ps3 : pc = Ps1;
Ps4 ...

for

Ps1 for(i = 0; cond; st){ pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps4;
Ps3 } pc = Ps3 : st &pc = Ps1;
Ps4 ...

break

while(cond1){
if(cond2){

Ps1 break; } pc = Ps1 : pc = Ps2;
...}

Ps2 ...

continue

Ps1 while(cond1){
if(cond2){ pc = Ps2 : pc = Ps1;

Ps2 continue; }
...}

retrun

function foo(){
throw if(cond){

Ps1 throw; } pc = Ps1 : pc = Ps2;
...

Ps2 }

require

function foo(){
Ps1 require(cond); pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps3;
Ps3 }

100 Y. Bao et al.

Fig. 5. Illustration of function call.

Function Call. We use shared
variables to handle calls between
functions, which may be in the
same contract or not. The caller
and callee can execute in parallel,
with the blocking feature. Once
one function is active, the other
one is blocked. Some callees may
return uncertain values because
they are defined outside and con-

trolled by the environment, such as functions transfer() and send(). We model
this uncertainty by using non-deterministic choice of transitions in a module.

A module to model function send() called in bid() in aucSC is shown in Lines
52–60 in Fig. 4, for example. Auxiliary variables sta, rtv, rcv and amount are
defined as global variables (Lines 8–9) to model starting or ending the process,
returned value, the address of the sender and the amount of money sent, respec-
tively. A process of module send() starts when sta = 1 and sets sta to 0 and
returns rtv when it finishes. At Lines 57 and 58, VERDS randomly chooses one
transition to execute and so is the value of rtv. This makes the returned value
non-deterministic. When bid() is trying to call send() (Line 42), it sets sta to
1 and then the execution does not resume until sta becomes 0. The interaction
between the caller and the callee in a function call is depicted in Fig. 5.

6 Scenario Configuration and Specification Formulation

6.1 Scenario Configuration

A scenario defines how a contract is used. Since smart contracts are deployed on
the blockchain, which is an open environment, the order of calls to its functions
are not deterministic. This uncertainty is modeled as concurrency in mcVer.
In some cases, e.g. sequential transactions submitted by the same account, the
corresponding functions, i.e. callees, should be scheduled to execute sequentially.

We propose a scenario definition language (SDL), which is simple but capable
of expressing both sequential and concurrent executions of function. Sequential
execution of functions is separated by line shift and concurrent execution of
functions is separated by symbol ‘|’. For example, in contract aucSC shown in
Fig. 1, users can only call function bid() after the contract has been deployed.
After its deployment (constructor()); there may be multiple users bidding at
the same time; the owner may call function aucEnd() to end it. Suppose the
owner is A and there are three bidders B, C and D bidding with amount 2, 3,
4, respectively. After the owner has deployed the contract on the blockchain,
the three bidders can bid in any order. Then the owner ends the auction. The
scenario, named aucSNR, is formulated in SDL as:

On Verification of Smart Contracts via Model Checking 101

p0 : constructor(A, 0, A)
p1 : bid(B, 2) | p2 : bid(C, 3) | p3 : bid(D, 4)
p4 : aucEnd(A, 0)

This scenario is then translated into the PROC part of the VVM (Lines
18–23 in Fig. 4). The three biddings can be executed in any order, but can
only be executed sequentially due to the execution model of the EVM. The
execution order is controlled by variable order. The variable leveli indicates how
many processes have been executed so far under order = i. Intuitively, variable
order controls line execution, while leveli controls the execution of processes
in the same line. For scenario aucSNR, for example, we have level0 ∈ [0, 1] and
level1 ∈ [1, 3] because only one process p0 is executed under order = 0 but three
concurrent processes p1, p2, p3 are executed under order = 1. A process control
module porderctrl() is used to help execution order (Lines 27–33 in Fig. 4).

6.2 Specification

Specifications of smart contracts are defined under scenarios. For example there
are some basic requirements for the aucSC contract:

1. Eventually there is a bidder win (liveness property);
2. The winner is always the bidder with the highest bid (safety property).

The requirements demand that after the auction is ended, 1) there is a winner
and the winner must be one of the bidders, and 2) the winner must be the bidder
with highest bid. Consider above mentioned scenario. There are three bidders.
One of them will win. That is, hBidder = B, C or D. The bidder D pays
the highest bid. When the value of the order reaches the maximum, 3 in this
scenario, all processes are executed and the scenario finishes. We use a keyword
End to indicate that the involved scenario is ended. Therefore, the requirements
formulated under aucSNR are expressed by the following CTL formulas:

1. aucPr1: AF ((End)&((hBidder = B)|(hBidder = C)|(hBidder = D)));
2. aucPr2: AG(!(End)|(hBidder = D)).

Where !p|q is equivalent to p implies q. The specifications written in CTL
formulas are used in the SPEC part of the VVM, shown in Fig. 4 (Lines 25–26).

102 Y. Bao et al.

7 Verification and Counter Example Extraction

The generated VVM is then verified by VERDS. If a property is satisfied, we
can guarantee that the contract meets the corresponding requirement under the
given scenario. Otherwise, VERDS may return a CEX file that records the trace
of a counter example. A trace is a sequence of states generated by an execution of
the contract. The procedure of counter example extraction starts from the trace.
By the values of variables in states, we find the corresponding transitions in the
VVM. Then according to Table 1, a reverted procedure of contract modeling is
used to map the transitions to the Solidity contract. As such we have a counter
example on the Solidity level. Below we illustrate the procedure by an example.

 require failed

bid(B,2)

send()

if

aucEnd(A,0)

send()
failed(rtv=0)

S0
bene=X hBidder=X
hBid=0 p0.pc=0
p1.pc=0 p2.pc=0

S4
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=0 p2.pc=0

S7
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=3 p2.pc=0

S16
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=5

S20
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=6

S21
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S33
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S39
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S8
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=7 p2.pc=0

S15
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=4

S10
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=0

bid(C,3)

bid(D,4)

S22
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

Fig. 6. A trace returned by VERDS.

By manually checking the aucSC contract (Fig. 1), it seems that it meets
the second requirement (aucPr2). The result of the verification under scenario
aucSNR, however, shows otherwise. That is, aucSC does not always choose the
bidder with the highest bid as a winner. The trace returned by VERDS is shown
in Fig. 6. The trace shows that when the three bidders bid sequentially in the
order of bidder B, bidder C and then bidder D, the winner is bidder B. The
corresponding order of calls on aucSC is shown in Fig. 7. Statements with process
identifiers, i.e., p0, ..., p3 and p4, on the left are executed but the gray statements
are not in a trace for a counter example.

On Verification of Smart Contracts via Model Checking 103

p0 constructor(address _beneficiary)
public {

p0 bene = _beneficiary;
p0 }
p1 call bid() public payable{
p1 require (!ended);
p1 require(msg.value > hBid);
p1 if (hBid !=0) {

require(hBidder.send(hBid));
p1 }
p1 hBidder = msg.sender;
p1 hBid = msg.value;
p1 }
p2 call bid() public payable{
p2 require (!ended);
p2 require(msg.value > hBid);
p2 if (hBid !=0) {
p2 require(hBidder.send(hBid));

}
hBidder = msg.sender;
hBid = msg.value;

p2 }
p3 call bid() public payable{
p3 require (!ended);
p3 require(msg.value > hBid);
p3 if (hBid !=0) {
p3 require(hBidder.send(hBid));

}
hBidder = msg.sender;
hBid = msg.value;

p3 }
p4 call aucEnd () public{
p4 require (!ended);
p4 ended = true;
p4 bene.transfer(hBid);
p4 }

Fig. 7. A counter example of aucSC.

When bidder B bids, p1 :
bid(B, 2) is called. At state S7,
where p1.pc = 3 and hBid = 0,
the condition of transition at Line
45 of aucVVM (Fig. 4) is satisfied,
then p1.pc is changed to 7, corre-
sponding to the transition of Line
46 of aucVVM. By the information
of the transitions in aucVVM, we
then can find that after Line 13 of
aucSC (Fig. 1), the execution go to
Line 16, skipping Line 14, where is
the gray line in Fig. 7.

The execution trace of bid(C, 3)
and bid(D, 4) from the states shown
in Fig. 6 to the execution path
shown in Fig. 7 can be similarly
explained.

In the counter example, after
the first bidder, say, with bid 2,
other higher biddings 3 and 4 may
be aborted because the send oper-
ation fails. Recall that the return
value of send() depends on what
happens outside the contract and

may return true or false nondeterministically. The subtle potential error is
revealed by the counter example.

8 Case Studies and Experiments

We implemented mcVer and applied it to several case studies, including some
reported contracts with typical security vulnerabilities [2,3,6] and an access con-
trol smart contract [51]. Our experiments are carried out on a machine with 3.10
GHz CPU, 512 GB RAM. The dataset is available on [5].

8.1 Security Vulnerabilities Checking

We show in this section some examples to illustrate how vulnerabilities such
as Transaction-Ordering Dependency (TOD) and Reentrancy Vulnerability are
revealed in mcVer.

Transaction-Ordering Dependency. Assume two transactions invoke a con-
tract at the same time. If a final state depends on the order of these transactions,
then a TOD vulnerability may exist. An attacker can enforce a specific execution
order to make profit [27].

104 Y. Bao et al.

1 pragma solidity ^0.4.16;
2 contract EthTxOrderDependenceMinimal{
3 address public owner;
4 bool public claimed;
5 uint public reward;
6 constructor () public{
7 owner = msg.sender;
8 }
9 function setReward () public payable{

10 require (! claimed);
11 require(msg.sender == owner);
12 owner.transfer(reward);
13 reward = msg.value;
14 }
15 function claimReward(uint256

submission) {
16 require (! claimed);
17 require(submission <10);
18 msg.sender.transfer(reward);
19 claimed = true;
20 }
21 }

Fig. 8. A contract with TOD [6], todSC

An example of a con-
tract with TOD vulnerabil-
ity [6] is shown in Fig. 8.
Suppose the reward is first
set to 3 by the owner A
after the contract is deployed.
Then user B sees the reward
and tries to claim, and at
the same time the owner
resets the reward to 1. These
two transactions may be exe-
cuted in any order. The con-
tract is first translated into a
VVM with a module setRe-
ward(msg_sender, msg_value)
to model function setReward(),

a module claimReward(msg_sender, msg_value, submission) to model func-
tion claimReward(uint submission) and a module to model the constructor. The
aforementioned scenario is configured as:

p0 : EthTxOrderDependenceMinimal(A, 0)
p1 : setReward(A, 3)
p2 : setReward(A, 1)|p3 : claimReward(B, 0, 3)

Suppose user B has a balance 5 before a transaction. After that, he should
expect a balance to be 8, since the reward is 3 when he submits the transaction.
Therefore, the property is denoted as follows.

AG(!(End)|(balance[B] = 8))

VERDS exhaustively explores the state space of the model and finds violation
of the property. Therefore, a trace where the user’s balance is only 6 at the end of
the scenario is returned by VERDS as a counter-example. The trace shows that
setReward() is executed before claimReward() and the reward is set to 1. Then,
should B always have balance of 6 after the scenario? Verification of the following
property shows otherwise, because claimReward() may also be executed first.

AG(!(End)|(balance[B] = 6))

The results show that a different execution order may lead to different balance
of B. The TOD vulnerability is detected.

Reentrancy Vulnerability. If a function of a contract is called again before
its previous invocations complete execution and the next call leads to incon-
sistency of balances of related accounts, a Reentrancy Vulnerability exists in

On Verification of Smart Contracts via Model Checking 105

the contract. The reason of TheDAO event is exactly that the Reentrancy Vul-
nerability in the DAO was exploited by attackers. A contract with Reentrancy
Vulnerability is shown in Fig. 9. When function withDraw() is called, the state-
ment msg.sender.call.value(amount)() in Line 8 will transfer some money to
another contract and trigger its fallback function. When there is a callback to
withDraw() in the fallback function, a reentrancy is formed and an attacker
may withdraw more amount of money than his balance in the contract.

1 pragma solidity ^0.4.19;
2 contract Victim{
3 mapping(address => uint) public

userBalance;
4 uint public amount =0;
5 function withDraw (){
6 uint amount = userBalance[msg.sender];
7 if(amount >0){
8 msg.sender.call.value(amount)();
9 userBalance[msg.sender] = 0;

10 }
11 }
12 function receiveEther () payable{
13 if(msg.value >0){
14 userBalance[msg.sender] += msg.

value;
15 }
16 }
17 }

Fig. 9. Contract with Reentrancy [3], reSC

The contract is translated
into a VVM with a set of
modules. We set the num-
ber of callbacks to 1, because
if there is a re-entry it will
be found in one callback. An
extra module fallback() is
used to model fallback func-
tion in the external contract
which is triggered automati-
cally by withDraw(), and a
module withDraw_back() is
used to model the re-invoked
withDraw() in fallback func-
tion. Suppose a user B first
deposits 2 wei (a unit of Ether)
into the contract by invoking

receiveEther() and then withdraws his money. The scenario is configured as fol-
lows.

p0 : receiveEther(B, 2)
p1 : withDraw(B, 0)

Suppose the initial balance of the user is 5, the required property is that his
balance after the execution of the scenario is still 5. This property is formulated
as follows.

AG(!(End)|(balance[B] = 5))

106 Y. Bao et al.

Checking this property with the above scenario, mcVer returns with false,
meaning that the balance of the user is inconsistent before and after the scenario.
The Re-entrancy Vulnerability is then detected.

Table 2. Checking time for security vulner-
abilities.
Contract Vul. Bound Execution Time (second)

MaxD MaxI Modeling Veri Counter Ex. Total

todSC TOD 2 8 0.071 3.41 0.003 3.484
reSC Reentrancy 2 8 0.051 4.099 0.002 4.152

Experimental Results. Table 2
shows the time required for mcVer to
detect the vulnerabilities contained
in the above four cases. The bound
of number of addresses, MaxD, and
the bound of integer, MaxI, are

shown in the third colomn. The procedures of model extraction and counter
example generation are very fast, and the times required for verification of them
are within several seconds.

8.2 Access Control Contract

The previously discussed properties related to security are all safety properties.
In this section we study an access control contract [51] to show that mcVer can
also deal with liveness properties.

Problem Description. The ubiquitous interconnection of physical objects has
significantly accelerated data collection, aggregation, and sharing, making Inter-
net of Things (IoT) one of the most basic architectures for applications in the
smart health-care, smart transportation, and home automation domains. How-
ever, such interconnection may also bring serious security problems to IoT sys-
tems. If a system does not have secure access control, through intrusion into the
system, unauthorized entities (attackers) can illegally access existing IoT devices
by simply deploying their own resources. Therefore, the access control issue of
the IoT has received extensive attention from academia and industry. The access
control system should satisfy the following four requirements:

PR1. Regardless of whether a user has rights or not, the system should return a result;
PR2. Users who have no right to access can’t get access rights;
PR3. Users with access rights can always obtain access rights;
PR4. Only specific users (such as administrators) can modify users’ access rights.

On Verification of Smart Contracts via Model Checking 107

1 contract AccessControlMethod{
2 address public owner;
3 address public subject;
4 address public object;
5 mapping(bytes32=>PolicyItem) policies;
6 mapping (bytes32 => BehaviorItem)

behaviors;
7
8 constructor (address _subject) public {}
9 function policyAdd(bytes32 _action , bool

_permission , uint minInterval , uint
_threshold) public {}

10 function policyUpdate(bytes32 _action ,
bool _newPermission) public {}

11 function accessControl(bytes32 _action ,
uint _time) public{uint err ;...}

12 }

Fig. 10. Access control contract [51].

We outline the contract and
show it in Fig. 10. There are five
global variables, among which
owner, subject and object indi-
cate the address who deployed
the contract, the address of the
accessing user and IoT device
bound to the contract, respec-
tively; the variables policies
with mapping type are used
to record the access policies.
There are also three main func-
tions in this contract. Function
AcessControlMethod() is the
constructor, initializing owner,
subject and object. Function
policyAdd() is used to add
new access policy. Function

policyUpdate() is used to update the access permissions in an access policy.
Function accessControl() is used to get access rights. There is a local variable
err in accessControl() representing whether a user can get access right. Dif-
ferent values of err represent different return results as shown in the following
list.

1. err = 0 means right is granted;
2. err = 1 means punishment isn’t ended and right is not granted;
3. err = 2 means user has no permission and right is not granted;
4. err = 3 means that although the user has the permission but he will be punished and right

isn’t granted, because he visits too frequently;
5. err = 4 means user has no permission and visit too frequently in the minimal interval, will

be punished, right isn’t granted;
6. err = 5 means the device that the user wants to visit is not current device and right isn’t

granted.

Modeling. For the verification of aforementioned four basic properties, we
design three different scenarios. The first scenario, denoted by SNR1, is defined
as:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, Y, 2, 2)
p2 : policyUpdate(A, 0, R, N)|p3 : accessControl(B, 0, R, 2)

In this scenario, administrator A deploys a contract for user B. He then sends
a transaction calling policyAdd to add a new policy which allows B to read (R)
the data on resource with identifier 3. This policy allows the user to visit the
resource twice in interval 2 units of time. Then B tries to get access right and A

108 Y. Bao et al.

tries to withdraw the permission for user B at the same time. Scenario SNR1 can
be used to check properties PR1 and PR3, which are concretized and specified
respectively by SNR1.pr1 and SNR1.pr2, shown as follows.

SNR1.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR1.pr2: AG(!(End)|(p3.err = 0))

The second scenario, SNR2, is defined as:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, Y, 2, 2)
p2 : policyUpdate(A, 0, R, N)
p3 : accessControl(B, 0, R, 2)

After policyAdd finishes, policyUpdate withdraws the permission of user B.
The B tries to access the resource. Scenario SNR2 can be used to check properties
PR1 and PR2, which are concretized and specified respectively by SNR2.pr1 and
SNR2.pr2, shown as follows.

SNR2.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR2.pr2: AG(!(End)|(p3.err = 2))

The last scenario, SNR3, describes the situation that a user B with no per-
mission tries to update his own permission and then tries to get access right:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, N, 2, 2)
p2 : policyUpdate(B, 0, R, Y)
p3 : accessControl(B, 0, R, 2)

Scenario SNR3 can be used to check properties PR1 and PR4, which are
concretized and specified respectively by SNR3.pr1 and SNR3.pr2, shown as
follows.

SNR3.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR3.pr2: AG(!(End)|(p3.err = 2))

The changes of permission can only be checked by the returned error code of
accessControl(), so in this scenarios p3 is added and the formula SNR3.pr2 is
the same as SNR2.pr2.

On Verification of Smart Contracts via Model Checking 109

Table 3. Verification results for
access control contract.
Requirements Properties Verification Results Time

(second)

PR1 SNR1.pr1 True True 17.155
SNR2.pr1 True 18.977
SNR3.pr1 True 22.329

PR2 SNR2.pr2 True True 17.367
PR3 SNR1.pr2 False False 21.201
PR4 SNR3.pr2 False False 19.019

Verification. After the contract, the sce-
narios and the property specification are
translated into VVM, we verified the VVM
using VERDS. The results are shown in
Table 3. The first column list the names of
requirements, the second column lists the
related CTL formula, the third and forth
columns are verification results, and the last

column shows verification time for each property. The result for PR1 is true
only when the verification results of SNR1.pr1, SNR2.pr1 and SNR3.pr1 are all
true. From the results, we know that the contract doesn’t meet PR3 and PR4.
And the counter-example returned when verifying SNR3.pr2 shows that user B,
who is not an administrator, successfully changes his own permission by calling
function policyUpdate(), and gets the access right which violates PR4. All six
properties are verified in about two minutes.

9 Conclusion and Future Work

In this paper, the model checking based framework, mcVer, has been proposed
to support the verification of smart contracts written in Solidity. mcVer is able
to verify a variety of properties of smart contracts. For the properties that are
not satisfied, mcVer produces a counter example by showing a sequence of
statements in the original Solidity program as a hint of where a faulty statement
may be located. We have implemented mcVer and applied it to automatically
checking various types of security vulnerabilities and properties of an access
control smart contract. The results show that the proposed framework is flexible
and efficient and can facilitate software development in the blockchain domain
in terms of the diversity of detecting software breaches.

The limitations of mcVer framework come from two folds. The first is from
the model checking technique itself, which can only deal with bounded systems
and may suffer from state explosion issue when the model scales up. The second
is that we have to configure the scenarios with particular values of parameters,
which confines the space to be explored and limits the ability of mcVer. In the
future, we will study the property-based contract modeling technique to reduce
the size of the model to be verified and consider a better way to model the
environment and user behaviors to broaden the scope of verification. Also, we
will consider the impact of gas limitation to the behavior of contracts.

References

1. https://solidity-cn.readthedocs.io/zh/develop/solidity-by-example.html
2. https://bitcoinist.com/smart-contract-bug-disable-icon-icx-transfers/
3. https://blog.csdn.net/programmer_cjc/article/details/85987234
4. Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/

analysis-of-the-dao-exploit/

https://solidity-cn.readthedocs.io/zh/develop/solidity-by-example.html
https://bitcoinist.com/smart-contract-bug-disable-icon-icx-transfers/
https://blog.csdn.net/programmer_cjc/article/details/85987234
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

110 Y. Bao et al.

5. Dataset for mcver. https://gitee.com/fmpa/dataset-for-mcVer
6. Transaction order dependence. https://swcregistry.io/docs/swc-114
7. Albert, E., Correas, J., Gordillo, P., Román-Díez, G., Rubio, A.: SAFEVM: a safety

verifier for Ethereum smart contracts. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 386–389 (2019)

8. Alqahtani, S., He, X., Gamble, R., Mauricio, P.: Formal verification of functional
requirements for smart contract compositions in supply chain management sys-
tems. In: Proceedings of the 53rd Hawaii International Conference on System Sci-
ences (2020)

9. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6_8

10. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

11. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96 (2016)

12. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
a smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 454–469 (2020)

13. Chen, R., Zhang, W.: Checking multi-agent systems against temporal-epistemic
specifications. In: the 24th International Conference on Engineering of Complex
Computer Systems, pp. 21–30. IEEE (2019)

14. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

15. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

16. Costello, K.: Gartner predicts 90% of current enterprise blockchain platform
implementations will require replacement by 2021 (2019). https://www.gartner.
com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-
enterprise-blockchain

17. Clarke Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing, 2nd edn. MIT Press, Cambridge (2018)

18. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB), pp. 8–15. IEEE (2019)

19. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

20. Frank, J., Aschermann, C., Holz, T.: ETHBMC: a bounded model checker for smart
contracts. In: 29th USENIX Security Symposium, pp. 2757–2774 (2020)

21. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,
and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 557–560 (2020)

22. Hegedűs, P.: Towards analyzing the complexity landscape of solidity based
ethereum smart contracts. Technologies 7(1), 6 (2019)

https://gitee.com/fmpa/dataset-for-mcVer
https://swcregistry.io/docs/swc-114
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://doi.org/10.1007/978-3-642-37036-6_8

On Verification of Smart Contracts via Model Checking 111

23. Hirai, Y.: Formal verification of deed contract in ethereum name service, November
2016. https://yoichihirai.com/deed.pdf

24. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

25. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Network and Distributed Systems Security (NDSS) Symposium, pp.
1–12 (2018)

26. Liu, Y., Li, Y., Lin, S.W., Zhao, R.: Towards automated verification of smart
contract fairness. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 666–677 (2020)

27. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269 (2016)

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (2012). https://doi.org/10.1007/978-1-
4612-0931-7

29. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: VeriSolid: correct-by-design
smart contracts for ethereum. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 446–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32101-7_27

30. Mossberg, M., et al.: Manticore: a user-friendly symbolic execution framework for
binaries and smart contracts. In: 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1186–1189 (2019)

31. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. In: the 19th ACM SIGPLAN international confer-
ence on Functional programming, pp. 175–188 (2014)

32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report,
Manubot (2019)

33. Nehaï, Z., Piriou, P., Daumas, F.: Model-checking of smart contracts. In: IEEE
International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 980–987

34. Nehai, Z., Bobot, F.: Deductive proof of ethereum smart contracts using why3.
arXiv preprint arXiv:1904.11281 (2019)

35. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

36. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX:
safety verification of smart contracts. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 1661–1677 (2020)

37. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0_30

38. So, S., Lee, M., Park, J., Lee, H., Oh, H.: VeriSmart: a highly precise safety verifier
for ethereum smart contracts. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1678–1694 (2020)

39. Swamy, N., et al.: Dependent types and multi-monadic effects in F. In: Proceed-
ings of the 43rd annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 256–270 (2016)

https://yoichihirai.com/deed.pdf
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
http://arxiv.org/abs/1904.11281
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-70278-0_30

112 Y. Bao et al.

40. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). https://firstmonday.org/ojs/index.php/fm/article/view/548

41. Thomson, I.: Parity: the bug that put $169m of ethereum on ice? Yeah, it was on
the todo list for months (2017). https://www.theregister.com/2017/11/16/parity_
flaw_not_fixed/

42. Thomson, I.: Mythril classic: security analysis tool for ethereum smart contracts
(2018). https://github.com/ConsenSys/mythril

43. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: static analysis of ethereum smart contracts. In: Pro-
ceedings of the 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain, pp. 9–16 (2018)

44. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7), 1–38 (2022)

45. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82
(2018)

46. Wang, S., Zhang, C., Su, Z.: Detecting nondeterministic payment bugs in ethereum
smart contracts. Proc. ACM Program. Lang. 3, Article 189 (2019)

47. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

48. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1398–
1409 (2020)

49. Zeng, N., Zhang, W.: An executable semantics of SystemC transaction level mod-
els and its applications with VERDS. In: the 19th International Conference on
Engineering of Complex Computer Systems, pp. 198–201 (2014)

50. Zhang, W.: VERDS: verification of hierarchical discrete systems by symbolic tech-
niques. Manuscript (2013). http://lcs.ios.ac.cn/~zwh/verds

51. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2018)

https://firstmonday.org/ojs/index.php/fm/article/view/548
https://www.theregister.com/2017/11/16/parity_flaw_not_fixed/
https://www.theregister.com/2017/11/16/parity_flaw_not_fixed/
https://github.com/ConsenSys/mythril
http://lcs.ios.ac.cn/~zwh/verds

	On Verification of Smart Contracts via Model Checking
	1 Introduction
	2 Related Work
	3 Solidity and VERDS
	3.1 Solidity
	3.2 Model Checking Tool VERDS

	4 Overview of mcVer Framework
	5 Smart Contract Modeling
	6 Scenario Configuration and Specification Formulation
	6.1 Scenario Configuration
	6.2 Specification

	7 Verification and Counter Example Extraction
	8 Case Studies and Experiments
	8.1 Security Vulnerabilities Checking
	8.2 Access Control Contract

	9 Conclusion and Future Work
	References

