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Abstract. The increasingly stringent dependability requirements on
communication networks as well as the need to render these networks
more adaptive to improve performance, demand for more automated
approaches to operate networks. We present AllSynth, a symbolic syn-
thesis tool for updating communication networks in a provably correct
and efficient manner. AllSynth automatically synthesizes network update
schedules which transiently ensure a wide range of policy properties
(expressed in the LTL logic), also during the reconfiguration process.
In particular, in contrast to existing approaches, AllSynth symbolically
computes and compactly represents all feasible solutions. At its heart,
AllSynth relies on a novel, two-level and parameterized use of BDDs
which greatly improves performance. Indeed, AllSynth not only provides
formal correctness guarantees and outperforms existing state-of-the-art
tools in terms of generality, but often also in terms of runtime as docu-
mented by experiments on a benchmark of real-world network topologies.

1 Introduction

A more automated operation of communication networks is considered one of the
most important research problems in networking today, for two main reasons.
First, communication networks and their configurations are highly complex, forc-
ing operators to become “masters of complexity” [24]; many major Internet out-
ages over the last years were caused by human errors [5,12,15]. Today’s manual
approach hence stands in stark contrast to the increasingly stringent dependabil-
ity requirements on communication networks, which are a critical infrastructure
of our digital society. Second, network traffic is not only growing explosively but
also features much temporal and spatial structure [4,6,48]; this introduces a sig-
nificant potential to improve operational efficiency by rendering networks more
adaptive towards the actual traffic patterns they serve.

Motivated by the vision of more automated networks [17], over the last years,
great efforts were made in laying the foundations for automated network verifi-
cation, and in designing synthesis tools [3,16,27,42,45]. Furthermore, motivated
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by the benefits of more adaptive network operations, e.g., to improve availabil-
ity and performance [28], automated tools for consistently updating network
configurations have been developed [11,23,38,43,46] which overcome the lim-
itations of existing hand-crafted algorithms [2,34,37]. However, the computa-
tion of provably consistent network update schedules remains challenging, due
to the required performance and expressiveness. The performance requirements
are multidimensional: network update schedules should not only be quickly com-
putable but also account for operator preferences, like requiring that certain
switches or routers are updated first. However, existing approaches only provide
one update sequence that may not be preferred by the network operator.

Our Contributions. We present an automated network update synthesis tool,
AllSynth, that computes and represents in a compact BDD form all correct
update sequences that respect various logical properties expressible in linear
temporal logic (LTL) [41] like reachability, waypointing and service chaining.
AllSynth comes with formal correctness guarantees and for situations in which
provably no simple update schedule exists, it can make suggestions for alternative
solutions (where the same switch is updated multiple times).

Despite being more general, AllSynth significantly outperforms state-of-the-
art tools in terms of runtime on all non-trivial real-world networks from the
standard Topology Zoo benchmark [29]. The update synthesis problem solved
by AllSynth is NP-hard, even if restricted to preserving the basic loop-freedom
and waypointing properties [34]. To combat the complexity of the problem, All-
Synth exploits a novel two-level use of binary decision diagrams (BDDs) [32] to
compactly encode not only the network topology and policy invariant, but also
the set of all correct update sequences.

The fact that AllSynth computes all feasible update sequences enables future
use cases for the tool, such as finding an optimal schedule, providing multiple
alternative solutions and filtering based on operator requirements (e.g. some
switches must be updated before the rest or in a certain order). The source code
of AllSynth and all our experimental artefacts are available at [31].

Related Work. Motivated by the benefits of adaptive and software-defined (i.e.,
programmable) communication networks [30], as well as the increasingly strin-
gent dependability requirements, the question of how to correctly update network
configurations has received much attention over the last years. A recent survey
summarizes over one hundred approaches [19].

In their seminal work, Reitblatt et al. [43] showed that a strong per-
packet consistency can be achieved using packet versioning during reconfigu-
rations. Their approach, which was subsequently studied intensively in the lit-
erature [8,10,20,25,26,33,40], has the drawback that it requires packet header
modifications and additional memory at the nodes: switches and routers need to
store forwarding rules for each version.

A clever alternative approach, introduced by Mahajan and Wattenhofer [37],
schedules batches of updates over time, where the set of updates within a batch
can take effect in any order without harming consistency. This approach has
also been explored extensively already [2,14,21,34–36,47], however, it can only



346 K. G. Larsen et al.

be used to provide a subset of the consistency properties of [43]. This in turn
motivated hybrid approaches such as FLIP [46]. Interestingly, similar to All-
Synth, FLIP also supports alternative solutions in case a simple update cannot
be found. However, in contrast to FLIP which relies on a heuristic algorithm,
AllSynth only presents alternative solutions in case a simple solution provably
does not exist. Furthermore, while FLIP resorts to a packet tagging alternative
(which consumes header space and switch memory), AllSynth is light-weight and
fully symbolic approach aiming at updating nodes multiple times.

The need for supporting more general or even customizable consistency prop-
erties [49] as well as more automated synthesis approaches [18,23,39] has already
received attention in the literature as well. However, our approach is the first one
that is using the BDD-based technology for the synthesis and representation of
all correct network updates. The competing tool NetSynth [38] for update syn-
thesis is relying on an incremental enumeration of candidates of update sequences
that are then verified by external model checkers, like NuSMV [13], and the tool
terminates as soon as the first correct update sequence is found.

2 A Model for Update Synthesis

Before we formally define our problem, we shall provide an intuitive motiva-
tion for the update synthesis problem. In Fig. 1 we see a simple network with
four nodes (routers). Packets from the source node s are forwarded to the des-
tination node d along the solid edges (links) that represent the initial routing
configuration. The network operator aims to change this routing to an alterna-
tive one represented by the dashed edges. The task is to schedule the order of
node updates (changing the forwarding function at the updated node from the
solid edge to the dashed one) so that in every intermediate routing configuration
we preserve the reachability between s and d and at the same time always visit
the waypoint node v1 (representing for example a firewall).

s v1 v2 d

Fig. 1. Update synthesis problem

If the node s is updated first, the
new routing will follow the path s, v2, d
which preserves the reachability prop-
erty but not the waypointing. On the
other hand, if we first update the
node v2, we create an undesirable for-
warding loop s, v2, v1, v2, v1, . . . which
breaks the reachability property. Hence the only option is to update first the
node v1, after which we have a correct forwarding path s, v1, d satisfying both
reachability and waypointing. After this we can update the node v2 because this
update does not change the forwarding path and lastly, we update the node s
that completes the update sequence from the initial to the final routing. We are
now ready to provide the formalization of the update synthesis problem.

We model the network as a multigraph, allowing us to describe multiple con-
nections between nodes (i.e., switches or routers, which are treated as synonyms
in the following); these connections can have different quantitative attributes
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(e.g. latency). Henceforth, we adopt graph-theory terminology and refer to such
connections or links as edges.

Definition 1 (Network Topology). A network topology is a directed multi-
graph G = (V,E, src, tgt) where V is the set of nodes, E is the set of edges and
src, tgt : E → V are respectively the source and target functions.

In order to route traffic from a node v0 to a node v′, each node v has a
forwarding rule that specifies an appropriate outgoing edge e such that src(e) =
v. This rule can be per-flow or apply to multiple flows; in the following, we do
not explicitly distinguish between the two scenarios. Not all nodes need to have
defined their forwarding edge (e.g. the target node v′ or the nodes that are not
involved in packet forwarding from v0 to v′). We capture this formally by the
notion of a routing configuration.

Definition 2 (Routing Configuration). A routing configuration, or routing
for short, in a network topology G = (V,E, src, tgt) is a partial function ρ : V ⇀
E such that src(ρ(v)) = v for all v ∈ V where ρ(v) is defined.

For a given network topology G = (V,E, src, tgt) with the source node v0 ∈ V ,
a routing configuration ρ defines a unique sequence of edges (a path) that is finite
if the routing is loop free; otherwise it is infinite. In the finite case, the path is
given by π = e0e1 · · · en such that ρ(tgt(ei−1)) = ei for all i, 0 ≤ i ≤ n, where by
convention tgt(e−1) = v0 and where ρ(tgt(en)) is undefined. The corresponding
sequence of traversed nodes is then π = src(e0)src(e1) · · · src(en)tgt(en). In the
infinite case, the path is given by π = e0e1 · · · such that ρ(tgt(ei−1)) = ei for all
i ≥ 0 where as before tgt(e−1) = v0. The sequence of traversed nodes is given by
the infinite sequence π = src(e0)src(e1) · · · . If π = v0v1 . . . is a (finite or infinite)
sequence of nodes then we refer to its suffix vivi+1 . . . by πi and to the initial
node v0 by π[0]. For a node v0 ∈ V and routing ρ, we let πρ(v0) denote the
unique (finite or infinite) path induced by ρ from the source node v0 and let
πρ(v0) be the corresponding sequence of traversed nodes.

2.1 Routing Policies

We shall now define an LTL-based logic [41] that allows us to describe the policy
of acceptable routings (both statically and transiently).

Definition 3 (Policy Syntax). For a network topology G = (V,E, src, tgt),
a policy ϕ is constructed according to the following LTL-based abstract syntax,
where v ∈ V :

ϕ ::= true | v | ¬ϕ | ϕ ∧ ϕ | NoLoop | X ϕ | ϕU ϕ .

In addition to the classical LTL operators, our logic includes a loop freedom
predicate. We now give the formal semantics of our logic, interpreted both on
infinite and finite paths [22].
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Reach(d) ≡ trueU d

Waypoint(v, d) ≡ ¬Reach(d) ∨ (¬d U v ∧ Reach(d))

MultiWaypoint(W, d) ≡
∨

v∈W

Waypoint(v, d)

Service(ω, d) ≡

⎧
⎪⎨true if |ω| = 0

¬Reach(d)∨
v′ ω′ v′ d U (v Service(ω′, d))

if ω = v ◦ ω′

where v V

Fig. 2. Encoding of standard policies where v, d ∈ V , ∅ �= W ⊆ V and ω ∈ V ∗

Definition 4 (Policy Semantics). For a network topology G = (V,E, src, tgt),
satisfaction of a policy ϕ by a path π ∈ E∗ ∪ Eω, written π |= ϕ, holds iff the
corresponding sequence of traversed nodes π satisfies π |= ϕ, defined inductively
on the structure of ϕ as follows:

π |= true always π |= v iff π[0] = v

π |= ¬ϕ iff π �|= ϕ π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= NoLoop iff π is finite π |= X ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff ∃j∀i < j.πj |= ϕ2 and πi |= ϕ1.

We now formulate some standard routing policies as presented in Fig. 2. The sim-
plest policy, Reach(d), specifies that the destination node d must eventually be
reached while Waypoint(v, d) asks that any path reaching the destination d must
necessarily pass through waypoint node v. For multiple alternative waypoints,
MultiWaypoint(W,d) specifies that any path reaching destination d must neces-
sarily pass through either of the waypoints in W . Finally, Service(ω, d) ensures
that the sequence of waypoints in ω is visited in this fixed order.

2.2 Update Synthesis

In the following we assume a fixed network topology G = (V,E, src, tgt). An
update u ∈ E ∪ V on G under a current routing configuration ρ specifies that
the source node of edge u (if u ∈ E) must now forward its traffic along u or that
the routing for the node u (if u ∈ V ) is set to undefined. We write ρu for the
new routing configuration, defined for any v ∈ V as

ρu(v) =

⎧
⎪⎨

⎪⎩

u if u ∈ E and v = src(u)
undefined if u = v

ρ(v) otherwise.

We inductively extend this notation to sequences of updates by letting ρε = ρ
and ρwu = (ρw)u for any w ∈ (E ∪V )∗ and u ∈ E ∪V . An update sequence may
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in general contain an arbitrary number of updates that change multiple times the
routing of the same node, however an important set of update sequences is the
class of simple update sequences, meaning that each update changes the routing
for a given node v from its initial routing ρi(v) directly to its final routing ρf (v).

Definition 5 (Simple Updates). Let ρf be the final routing. An update u is
simple if ρf (src(u)) = u whenever u ∈ E and ρf (src(u)) is undefined whenever
u ∈ V . A simple update sequence is then a sequence of simple updates, where
each update appears at most once.

A basic property of simple update sequences is that any reordering results
in the same final routing configuration i.e., if w is a simple update sequence and
w′ is any permutation of w, then ρw = ρw′

for any routing ρ.
Although any reordering of a simple update sequence yields the same final

routing configuration, the intermediate routing configurations induced by each
update may not respect a given policy invariant. This is also the case for general
update sequences. We therefore say that an update sequence is correct with
respect to a policy ϕ and a node v, if the unique path from v induced by any
intermediate routing configuration satisfies ϕ.

Definition 6 (Update Correctness). An update sequence w ∈ (E ∪ V )∗ on
network topology G with initial routing configuration ρ is correct with respect to
source node v0 and a policy ϕ, if πρw′ (v0) |= ϕ for any prefix w′ of w.

The network update synthesis problem is thus the problem of constructing a
correct update sequence that updates an initial routing to a desired final routing.

Definition 7 ((Simple) Update Synthesis Problem). Given a topology G,
an initial routing configuration ρi, a final routing configuration ρf , source node
v0 ∈ V and a policy ϕ, the simple update synthesis problem asks to construct a
simple update sequence w that is correct with respect to v0 and ϕ such that ρw

i =
ρf . The update synthesis problem omits the requirement that the constructed
update sequence is simple.

In the following, we let P = (G, ρi, ρf , v0, ϕ) denote a (simple) update synthesis
problem and say that a constructed update sequence w that satisfies the condi-
tions above is a solution. For any simple update synthesis problem P , the set of
solutions is always finite. This is not the case for the general problem as there
may be infinitely many (longer and longer) solutions.

While much prior work focused on simple update problems, there are exam-
ples which are only solvable with a general solution (as supported by our app-
roach). To see this, consider the network topology in Fig. 3a with initial and
final routings visualised respectively as solid and dashed lines in Fig. 3b. We fix
the source node s and the policy ϕ = Waypoint(v2, d)∧Reach(d) requiring that
waypoint v2 must be visited before reaching d. An update of any node v from the
initial to the final routing violates ϕ—either by introducing a loop or it bypasses
the waypoint. Hence there is no correct simple update sequence. However, the
update sequence that first updates s to route to v2, followed by the update of
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s v1 v2 v3 d

(a) Network topology

s v1 v2 v3 d

(b) Initial (solid) and final (dashed) routings

Fig. 3. Update synthesis problem with only a general solution

the nodes v1, v2 and v3 and finally updating s again to route to v3 is a correct
update sequence.

2.3 Simple Update Sequence Reordering

In case of simple update sequences, we shall now argue that for routing policies
that (i) include the preservation of reachability between the source and a target,
and (ii) for which it holds that once a packet is delivered, no further routing is
defined from the target node, we can reorder certain updates in the sequence
without invalidating the correctness of the sequence. More specifically, we shall
show that if a node routing is to be changed from undefined to some concrete
edge, we can safely schedule such updates (in any order) to the very beginning of
the update sequence. Similarly, all nodes that change their current routing into
undefined can be scheduled (again in arbitrary order) at the end of the update
sequence.

Lemma 1. Let w be a solution to a simple update synthesis problem P =
(G, ρi, ρf , v0, ϕ) where ϕ = Reach(d) ∧ ϕ′ for any policy ϕ′ and where ρi(d)
and ρf (d) are undefined.

1. If w = w1 ◦ u ◦ w2 where u ∈ E is an update s.t. ρi(src(u)) is undefined then
u ◦ w1 ◦ w2 is a solution to P .

2. If w = w1 ◦ u ◦ w2 where u ∈ V updates the routing in u to undefined then
w1 ◦ w2 ◦ u is a solution to P .

s
v1

v2

d
e1

e2
e3

e4

Fig. 4. Counter example for Waypoint(v2, d);
initial/final routing is in solid/dashed lines

Lemma 1 can be used to iden-
tify all nodes that have an unde-
fined forwarding function in ρi

and schedule them to the begin-
ning of the update sequence.
Symmetrically, all updates that
change a node forwarding to an
undefined value (in the routing
ρf ), can be placed at the end of
the update sequence. This may simplify the synthesis of the update sequence by
analysing only the nodes that have a defined forwarding function both in the
initial and final routing.
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Inputs OutputsAllSynth

Network
topology

Policy
formula ϕ and
initial node v0

Initial/final routing

BDD T (x, z,y) of
parameterized transitions

BDD B∗
ϕ(z) of all

routings satisfying ϕ

BDD U
(s)
ϕ (z, zz) of all

correct updates

Correct update sequences
S

(s)
ϕ (z0, . . . , zN )

Size of solution space

Fig. 5. AllSynth workflow

The requirement in Lemma 1 that the policy must enforce at least the reach-
ability of d is essential, as illustrated in Fig. 4 where e2◦e3◦e4 is a correct update
sequence preserving Waypoint(v2, d). This is because until the last update, the
destination d is not reachable and hence the waypointing policy trivially holds.
However, even though the routing of v1 is undefined in the initial routing, mov-
ing the update e4 to the beginning of the update sequence creates a transient
forwarding following the path e1e4 and violates Waypoint(v2, d).

3 The AllSynth Tool and the Synthesis Algorithm

The diagram in Fig. 5 illustrates the main components of AllSynth. The inputs
to AllSynth are the network topology G, a policy of interest ϕ, as well as the
initial routing ρi and final routing ρf from the node v0.

From the input network topology G, a BDD representation of the edges
in G is combined with the input policy ϕ and a source node v0 to produce a
BDD representing all routing configurations ρ where the unique path πρ(v0)
satisfies ϕ. This BDD is then in turn combined with the initial and final routing
configurations ρi and ρf , to construct a BDD representation of all correct update
sequences.

We shall now present our algorithmic solution to the update synthesis prob-
lem, based on a symbolic encoding of routing configurations using BDDs. This
encoding allows for an efficient fixed-point computation of those routing config-
urations that satisfy a given routing policy, and subsequently to find a correct
update sequence solving the synthesis problem.

Boolean decision diagrams [32] are data structures for the compact represen-
tation of a Boolean function. A BDD is a rooted directed acyclic graph (DAG),
with nonleaf nodes labeled by Boolean variables, and leaf nodes labeled with 0
(false) or 1 (true). Each node that is labelled by a variable has two outgoing
edges, a solid one representing the true assignment to the variable and a dotted
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v0

v1

v2

v3

(a) Running example with initial (solid
line) and final (dashed line) routings

(b) T as ROBDD

(¬x1 ∧ ¬x2 ∧ z1 ∧ ¬y1 ∧ y2) ∨
(¬x1 ∧ ¬x2 ∧ ¬z1 ∧ y1 ∧ ¬y2) ∨

(¬x1 ∧ x2 ∧ z2 ∧ y1 ∧ y2) ∨
(¬x1 ∧ x2 ∧ ¬z2 ∧ y1 ∧ ¬y2) ∨
(x1 ∧ ¬x2 ∧ z3 ∧ y1 ∧ y2) ∨
(x1 ∧ ¬x2 ∧ ¬z3 ∧ ¬y1 ∧ y2)

(c) Expression T

Fig. 6. Running example and encoding of the transition function

one for the false assignment. By following the paths from the root to the leaf
labelled with 1, we obtain all satisfying Boolean assignments. BDDs were intro-
duced by Lee [32] and later Bryant [9] presented their reduced ordered version
(ROBDD), where the ordering between the Boolean variables are fixed along
each path from the root to a leaf, and isomorphic parts are combined. We show
how to exploit ROBDDs for solving the update synthesis problem.

First, let us recall how to encode subsets of a finite set S using Boolean
expressions—hence ROBDDs. The encoding is relative to a given enumeration
s0, s1, s2, . . . s|S|−1 of S and it is based on n = 	log(|S|)
 Boolean variables
x = x1, x2, . . . , xn. Now, any truth assignment μ to x may be seen as a binary
encoding of a natural number n(μ) ∈ N and hence an encoding of the n(μ)’th
element sn(μ) ∈ S. We shall use the short notation s(μ) for the element sn(μ)

as well as the notation x(s) to denote a Boolean expression over x encoding
the singleton-set {s}. Now any Boolean expression t(x) over x may be seen as
encoding the subset [[t(x)]] = { sn(μ) |μ satisfies t(x) } ⊆ S.

Example 1. Consider the network topology in Fig. 6a with the nodes V =
{v0, v1, v2, v3} enumerated by the given indices. We encode any subset of V by a
Boolean expression over two Boolean variables x1, x2—note that the encoding of
e.g. {v1} is x(v1) = ¬x1 ∧ x2 as the binary encoding of v1 is 01. Conversely, the
subset identified by the Boolean expression t ≡ ¬x1 ∨¬x2 is [[t]] = {v0, v1, v2} as
the binary encoding of v0, v1, v2 are 00, 01, 10, respectively.

BDD Encoding of Routing Configurations. Let G = (V,E, src, tgt) be a network
topology and let v ∈ V . We denote by Ev the set of edges having v as a source-
node, i.e. Ev = {e ∈ E | src(e) = v}. Now, a routing configuration ρ : V ⇀ E
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is isomorphic to indicating for each node v whether ρ(v) is defined and if so to
identify an element from Ev. For the Boolean encoding of (sets of) elements from
Ev we use, as described above, 	log(|Ev|)
 Boolean variables zv. To indicate
the definedness of ρ(v), we use an additional Boolean variable zd

v . To encode
the possible transitions between nodes v and v′ enabled by a given routing
configuration ρ, we use Boolean variables x for encoding the source node v and
equally many Boolean variables y for encoding the target node v′. The following
Boolean expression T encodes the possible transitions:

T (x, zv0 , . . . , zvk
, zd

v0
, . . . , zd

vk
,y) =

∨

v∈V

∨

e∈Ev

(
x(v) ∧ zv(e) ∧ zd

v ∧ y(tgt(e))
)

where V = {v0, . . . , vk}.

Example 2. Reconsidering the network topology from Fig. 6a, we shall use three
Boolean variables z1, z2, z3 for encoding routing configurations in terms of their
choice of successor-node from v0, v1 and v2

1. Using the encoding of nodes from
Example 1, the possible transitions between nodes are given by the Boolean
expression T in Fig. 6c. The resulting unique ROBDD in Fig. 6b with only 11
non-leaf nodes illustrates the compactness of the ROBDD data structure (the
missing edges lead to 0). The highlighted path encodes the transition (routing)
from v0 to v1 under the initial routing. Here the chosen ordering of the Boolean
variables is crucial. Alternative orderings, e.g. with the z variables being tested
first respectively last results in ROBDDs with 25 respectively 17 non-leaf nodes.

BDD Encoding of Routing Policies. Now let G = (V,E, src, tgt) be a network
topology and let ϕ be a routing policy expressed in the LTL logic of Defini-
tion 3. Using Boolean variables x for encoding nodes and Boolean variables z for
encoding routing configurations2, we shall construct an ROBDD Bϕ(x, z) such
that: (v, ρ) ∈ [[Bϕ(x, z)]] if and only if πρ(v) |= ϕ where πρ(v) is the unique path
starting in the node v following the the routing configuration ρ.

Definition 8. Let G = (V,E, src, tgt) be a network topology and ϕ a routing
policy. We define the ROBDD Bϕ(x, z) inductively on ϕ as follows:

Btrue(x, z) = 1
Bv(x, z) = x(v)

B¬ϕ(x, z) = ¬Bϕ(x, z)
Bϕ1∧ϕ1(x, z) = Bϕ1(x, z) ∧ Bϕ2(x, z)

BNoLoop(x, z) min= ∀y.(T (x, z,y) → BNoLoop(y, z))

BXϕ(x, z) = ∃y.
(
T (x, z,y) ∧ Bϕ(y, z)

)

Bϕ1Uϕ2(x, z) min= Bϕ2(x, z) ∨ (
Bϕ1(x, z) ∧ ∃y.

(
T (x, z,y) ∧ Bϕ1Uϕ2(y, z)

))

1 In this running example, we shall for simplicity assume that routing configurations
are total functions, e.g. that the variables zd

v are true.
2 Recall that z consists of variables zv1 , . . . , zvk and zd

v1 , . . . , zd
vk .
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(a) B2
Reach(v3)

(b) B3
Reach(v3)

(c) B4
Reach(v3)

Fig. 7. Increasing approximants Bn
Reach(v3)

In the above definition we exploit that ROBDDs are closed under Boolean
operations as well as Boolean quantification. In the cases NoLoop and ϕ1 U ϕ2,
the changes of Boolean variables used in the parameter lists in the right-hand
sides are obtained by simple substitution of variables, an operation that may
efficiently be performed on ROBDDs. Finally, note that the definitions of BNoLoop

and Bϕ1 U ϕ2 are given as minimal fixed points. These fixed points, e.g. BNoLoop,
are obtained after a finite number of applications of the corresponding right-
hand sides on increasing approximations Bn

NoLoop, starting with B0
NoLoop = 0,

and terminating when Bn+1
NoLoop = Bn

NoLoop.

Lemma 2. We have (v, ρ) ∈ [[Bϕ(x, z)]] if and only if πρ(v) |= ϕ.

Example 3. Consider the network topology from Fig. 6a with the routing policy
Reach(v3). Given the LTL-definition of Reach(v3), the ROBDD BReach(v3) is given
by the limit of the following inductively defined sequence: Bn+1

Reach(v3)
(x, z) =

x(v3) ∨ ∃.y.
(
T (x, z,y) ∧ Bn

Reach(v3)
(y, z)

)
with B0

Reach(v3)
= 0. Figure 7 provides

some of the approximants with B4
Reach(v3)

found to be the least fixed point.

We shall denote by B∗
ϕ(z) the ROBDD ∃x.Bϕ(x, z) ∧ x(v0), where v0 ∈ V

is the source node. Rather than using BDDs for model-checking that individual
routing configurations satisfy a given policy ϕ one by one, B∗

ϕ(z) characterizes
exactly in one single ROBDD the full set of routing configurations satisfying ϕ.

Example 4. Recall the network topology from Fig. 6a and the Boolean encoding
of routing configurations and nodes from Example 2. Now consider the routing
policies W = Waypoint(v2, v3) and R = Reach(v3). The resulting ROBDDs for
B∗

R, B∗
W and B∗

W∧R are given in Fig. 8. It can be concluded that there are 6,
6 respectively 4 routing configurations satisfying the policies R, W respectively
R ∧ W . Moreover, both ρi and ρf satisfy all three policies.
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(a) R (b) W (c) W R

Fig. 8. Encoding of different routing policies

BDD Encoding of Update Sequences. Again let G = (V,E, src, tgt) be a net-
work topology and let ϕ be a routing policy, with ρi respectively ρf being initial
respectively final routing configuration. We shall show how to symbolically syn-
thesize correct (simple) update sequences using BDD encodings. The basis of
the synthesis is the ROBDD B∗

ϕ(z) encoding all routing configurations that are
correct with respect to ϕ using Boolean variables z = zv0 . . . zvk

, zd
v0

, . . . , zd
vk

. For
simple updates it suffices to use single Boolean variables zvj

, with zvj
encoding

ρi(vj) and ¬zvj
encoding ρf (vj), i.e. in case ρf (vj) �= ρi(vj). To encode a sim-

ple update between configurations ρ and ρ′ we shall use Boolean variables z for
encoding ρ and a corresponding (distinct) sequence of Boolean variables zz for
encoding ρ′. The following Boolean expression Us

ϕ encodes the set of possible
simple updates that preserve correctness with respect to ϕ.

Us
ϕ(z, zz) = B∗

ϕ(z) ∧ B∗
ϕ(zz) ∧ ∃i.

[
zvi

∧ ¬zzvi
∧

∧

j �=i

zvj
= zzvj

]

Note that in this simple update the routing configuration changes for exactly
one node vi from the setting in the initial configuration ρi, encoded as zvi

, to
the setting in final configuration ρf , encoded as ¬zzvi

. In the general case, the
update can change the setting of any node arbitrarily, as given by the following
Boolean expression Uϕ.

Uϕ(z, zz) = B∗
ϕ(z) ∧ B∗

ϕ(zz) ∧ ∃i.
[
zvi

�= zzvi
∧

∧

j �=i

zvj
= zzvj

]

Lemma 3. We have (ρ, ρ′) ∈ [[Uϕ(z, zz)]] (resp. [[Us
ϕ(z, zz)]]) iff ρ �= ρ′ and

there exists an update (resp. simple update) u such that ρu = ρ′, πρ(v0) |= ϕ and
πρ′(v0) |= ϕ, where v0 is the given source node.

To enable synthesis of correct (simple) update sequences, the following recur-
sively defined ROBDD is key.

Rs
ϕ(z, zz) min= z(ρf ) ∨ ∃zzz.( Us

ϕ(z, zz) ∧ Rs
ϕ(zz, zzz)

)
(1)
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(a) W (b) R (c) W R (d) UUS

Fig. 9. Encoding of all correct simple update-steps (a–c); unique update sequence
(UUS) for W ∧ R (d)

The expression encodes the set of simple updates that preserve correctness
with respect to ϕ while ensuring reachability of the final routing configuration.

Lemma 4. We have (ρ, ρ′) ∈ [[Rs
ϕ(z, zz)]] iff there exists a correct simple update

sequence w = u0u1 · · · uk with respect to ρ and ϕ such that ρ′ = ρu0 and ρw = ρf .

All correct, simple update sequences of length N may now be characterized
by the following Boolean expression, where zi are (distinct) Boolean variables
encoding the routing configuration after i updates:

Ss
ϕ(z0, . . . , zN ) = z0(ρi) ∧ zN (ρf ) ∧

N−1∧

i=0

Rs
ϕ(zi, zi+1) (2)

Theorem 1. We have (ρ0, ρ1, . . . , ρN ) ∈ [[Ss
ϕ(z0, . . . , zN )]] iff there exists a sim-

ple correct update sequence w = u0u1 · · · uN−1 with respect to ϕ and ρ0 such that
ρk+1 = ρuk

k for all k with 0 ≤ k < N , ρ0 = ρi and ρN = ρf .

For the synthesis in the general case: simply replace Us
ϕ in (1) with Uϕ to

get a ROBDD Rϕ characterizing (general) update sequences leading to ρf . Now,
replace Rs

ϕ with Rϕ in (2) to get a characterization of all correct (general) update
sequences of length N .

Example 5. Consider again the network topology from Fig. 6a and the routing
policies W = Waypoint(v2, v3) and R = Reach(v3). The full sets of correct simple
update-steps with respect to W,R and W ∧R are given by the ROBDDs Rs

W , Rs
R

and Rs
W∧R given in Fig. 9(a–c). Instantiating Eq. (2) with these ROBDDs reveals
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that there are 3, 3 respectively 1 correct simple update sequences of length 3
with respect to the routing policies W,R respectively W ∧ R.

The unique simple update sequence for W ∧ R (ignoring the initial and final
routing configurations) is given by the ROBDD in Fig. 9(d)3. Here the values
suggested for the first three Boolean variables z11 , z

1
2 , z

1
3 indicate that the routing

configuration after the first update is given by the edges (v0, v2), (v1, v2), (v2, v3).
Similarly, the values of the last three Boolean variables z21 , z

2
2 , z

2
3 indicate the

edges (v0, v2), (v1, v3), (v2, v3) as the configuration after the second update. Note,
that in case there is no correct (simple) update sequence the resulting ROBDD
becomes empty (just consisting of the node false).

4 Implementation and Evaluation

Our tool AllSynth is implemented in Python and relies on a Cython wrapper [1]
of the CUDD [44] package for manipulation of ROBDD. From a given network
topology with the initial and final routing, the tool produces either a simple
or general update sequence satisfying a given policy, as well as the information
about the number of possible solutions. As all such correct solutions are sym-
bolically represented in a compact way as an ROBDD, it is possible to generate
alternative solutions without any additional computational effort.

We evaluate AllSynth against two state-of-the-art update synthesis tools,
NetSynth [38] and FLIP [46]. NetSynth can compute only a simple update
sequence or inform the user that there is no solution; the synthesis of gen-
eral update sequences is not supported. FLIP can synthesise sequences of steps
(groups of switches or routers) in which order the network can be updated,
however, if such a sequence does not exist, the tool may introduce additional
forwarding rules and use tagging of packets. As NetSynth and FLIP do not
support general update sequences, compare the running times only for simple
updates.

All experiments are executed on Ubuntu 14.04 cluster with 2.3 GHz AMD
Opteron 6376 processors with 2 h timeout and 14 GB memory limit. A repro-
ducibility package is available in [31].

We consider a scalable synthetic topology and the standard benchmark of
261 real-world network topologies from the Topology Zoo dataset [29]. The class
of synthetic topologies, referred to as diamond topologies, are overtaken from the
NetSynth evaluation benchmark [38] and are formed by disjoint initial and final
routing paths that only share the initial and final node. The size of the problem
is defined to be the sum of the lengths of the two paths—we include instances of
sizes up to 2000. The Topology Zoo instances are five times sequentially concate-
nated in order to obtain larger topologies where the size of the update problems
ranges from 20 to 679. We display the 50 most difficult instances of the problem.

We consider three classes of update policies: Reach(d), MultiWaypoint(W,d)
and Service(ω, d). For MultiWaypoint(W,d), we let every 5th node on both the

3 Note that zij in the figure is to be read as the variable zj
i .
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(a) Zoo reachability and service chaining (b) Zoo multiple waypoints

(c) Diamond reachability (d) Diamond multiple waypoints

Fig. 10. Experimental results

initial and final path be included in W . For Service(ω, d), the sequence ω is gen-
erated by including every 5th node that is traversed by both the initial and final
path. Because the diamond update problem consists of two disjoint paths, the
service chaining policy is not considered here. The policy language of NetSynth is
identical to our LTL-based specifications and hence it is able to directly express
all these properties. On the other hand, the policy input to FLIP enumerates all
admissible subpaths that are considered, in logical disjunction. The encoding of
the service chaining policy then entails an exhaustive enumeration of all paths
that satisfy the service chaining policy and we therefore do not include FLIP in
our service chaining experiments.

Results. The experiments are summarized in a number of so-called cactus
plots [7] in Fig. 10, where for each method all instances of the problem are
independently sorted from the fastest to the slowest one and plotted on the x-
axis, and the y-axis (note the logarithmic scale) shows the increasing running
time. If some curve does not reach to the right end of the plot, this means that
the corresponding tool is not able to solve the remaining instances within the
given timeout and memory limit. While cactus plots do not provide instance-to-
instance runtime comparison, they provide an overall performance evaluation of
the different tools.

For the experiments on the collection of real networks from the Topology Zoo
presented in Figs. 10a and 10b, we notice that none of the tools has difficulty
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solving the synthesis of the plain reachability policy and it takes less than 10 s
for all instances—here our approach has a slight margin. For waypointing, while
FLIP is performing well on small instances, it shows a noticeable penalty once it
reaches the most difficult problems where its running time quickly deteriorates
and it is as the only tool not able to solve some of the largest instances. We
maintain about one order of magnitude advantage over NetSynth (NS), which
is the case also for service chaining.

Results for diamond topologies are given in Figs. 10c and 10d. We observe
that for reachability our computation of all solutions is almost one order of mag-
nitude faster than FLIP and several orders of magnitude faster than NetSynth
(both tools terminate as soon as they find the first correct update sequence).
For waypointing, we still significantly outperform NetSynth and we are almost
comparable with FLIP which shows better performance at the largest instances.

In conclusion, our experiments demonstrate that AllSynth, based on the sym-
bolic BDD technology, not only significantly outperforms state-of-the-art tools
on all non-trivial real-world networks, but also provides higher generality. Indeed,
AllSynth computes all solutions, compared to only one solution returned by Net-
Synth or a more general sequence of update steps generated by FLIP. This aspect
is important for the practical usage by network operators as it allows them to
iteratively choose the most suitable update sequence.

5 Conclusion

We presented an efficient approach for synthesizing correct update sequences for
software-defined networks. In contrast to existing tools, our approach is fully
symbolic and relies on BDD technology. As a result, we are able to represent all
solutions to the update synthesis problem in a succinct binary tree, preserving
generic routing policies (e.g., service chaining) that can be described in the LTL
logic. Our prototype implementation of AllSynth outperforms the state-of-the-
art tools NetSynth and FLIP in many scenarios (e.g., on the real-world Internet
topologies), while at the same time extending the generality.

Our experiments focused on the generation of simple update sequences (at
most one update per flow per switch), similar to the methodology used in Net-
Synth and FLIP. AllSynth however also supports a novel generalization where a
switch can be updated several times. This is particularly useful for the instances
of the update synthesis problem that do not have any simple solution. In this
case, NetSynth does not provide any alternative (and in fact does not terminate
even on relatively small negative instances); FLIP may degrade to a two-phase
commit strategy that is less preferable as it requires the duplication of forward-
ing rules as well as additional packet header space. AllSynth instead tries to
suggest a general update sequence that does not require packet tagging.
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LASSO, the Villum Investigator Grant S4OS, DFF project QASNET as well as DIREC:
Digital Research Centre Denmark.



360 K. G. Larsen et al.

References

1. dd python package (2021). https://github.com/tulip-control/dd
2. Akhoondian Amiri, S., Dudycz, S., Schmid, S., Wiederrecht, S.: Congestion-free

rerouting of flows on DAGs. In: 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), vol. 107, pp. 143:1–143:13. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018)

3. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. ACM SIG-
PLAN Notices 49(1), 113–126 (2014)

4. Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic traces
and implications. In: Proceedings of the ACM SIGMETRICS (2020)

5. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Don’t mind the gap:
bridging network-wide objectives and device-level configurations. In: Proceedings
of the 2016 ACM SIGCOMM Conference, pp. 328–341 (2016)

6. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 267–280 (2010)

7. Brain, M.N., Davenport, J.H., Griggio, A.: Benchmarking solvers, SAT-style. In:
Proceedings of the 2nd International Workshop on Satisfiability Checking and Sym-
bolic Computation co-located with the 42nd International Symposium on Symbolic
and Algebraic Computation (ISSAC 2017). CEUR, vol. 1974, pp. 1–15. CEUR-
WS.org (2017)

8. Brandt, S., Förster, K.T., Wattenhofer, R.: On consistent migration of flows in
SDNs. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications, pp. 1–9. IEEE (2016)

9. Bryant: Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput. C3-5(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

10. Canini, M., Kuznetsov, P., Levin, D., Schmid, S.: A distributed and robust SDN
control plane for transactional network updates. In: 2015 IEEE Conference on
Computer Communications (INFOCOM), pp. 190–198. IEEE (2015)
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