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Abstract. The theory of institutions provides an abstract mathemati-
cal framework for specifying logical systems and their semantic relation-
ships. Institutions are based on category theory and have deep roots
in a well-developed branch of algebraic specification. However, there
are no machine-assisted proofs of correctness for institution-theoretic
constructions—chiefly satisfaction conditions for institutions and their
(co)morphisms—making them difficult to incorporate into mainstream
formal methods. This paper therefore provides the details of our approach
to formalizing a fragment of the theory of institutions in the Coq proof
assistant. We instantiate this framework with the institutions FOPEQ
for first-order predicate logic and EVT for the Event-B specification lan-
guage, both of which will serve as an illustration and evaluation of the
overall approach.

1 Introduction

The theory of institutions dates to Joseph Goguen and Rod M. Burstall’s 1984
paper [7] and the subsequent more detailed analysis in 1992 [8]. An institution
is a mathematical realisation of the notion of “logical system” which does not
commit to any single concrete system. The key insight is that many general
results about logical systems do not depend in any interesting way on the details
of that system.

In her PhD thesis [6], Marie Farrell uses the theory of institutions to provide
a semantics for the Event-B formal modelling method with an eye to address-
ing some drawbacks of the Event-B language—namely the lack of standardised
modularisation constructs. EVT was shown by Farrell [6], on paper, to support
such constructs.

Indeed, the theory of institutions has been applied to a wide variety of lan-
guages and formal methods; CLEAR [2], CSP [15], and UML [10] have been
given an institution-theoretic semantics, to name but a few. The Hets tool for
heterogeneous specification [12] has the largest single repository of such insti-
tutions and their logical relationships, represented mainly by institution mor-
phisms and comorphisms; but as far as we know there are no machine-checked
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proofs that these constructions are correct. Many of the requirements—checking
that categories are really categories, that functors are really functors, as well
as satisfaction conditions for institutions and for the (co)morphisms that relate
them—amount in some parts to simple bookkeeping, and in other parts to more
novel and interesting results.

We hence provide here a framework in the Coq proof assistant [5] for interac-
tive machine-assisted proofs for institutions and an instantiation of this frame-
work to two institutions: the institution FOPEQ for first-order predicate logic
and the institution EVT for Event-B. Coq has two properties desirable for this
work. First, it is based on a dependent type theory called the calculus of induc-
tive constructions (CIC) which makes the representation of mathematical objects
and the subtle constraints that they impose on one another easier than in a sys-
tem without dependent types. Second, it is an interactive proof assistant rather
than an automated proof assistant. The user can design automated tactics that
can discharge many simple goals, but crucially Coq allows the user to step in
and spell out the proofs in detail if necessary. Our framework is available on
GitHub at https://github.com/ConorReynolds/coq-institutions.

We build directly on the work done by Emmanuel Gunther, Alejandro Gadea,
and Miguel Pagano [9] formalizing multi-sorted universal algebra in Agda. We
also note some other work in this direction in Coq by Venanzio Capretta [3], and
by Gianluca Amato, Marco Maggesi and Maurizio Parton and Cosimo Perini
Brogi [1] which makes use of homotopy type theory—but none go quite as far as
defining institutions or instantiating first-order logic at the time of this writing.
This is the first such formalization of which we are aware.

We will begin by laying the basic mathematical groundwork for institution
theory, multi-sorted universal algebra, and first-order predicate logic, before
explaining how these concepts are defined in our Coq developments. First-order
logic is an extremely central institution, on which many others build (including
EVT ) and provides an appropriate first example. We then provide the same
treatment for EVT as a further case study, and to provide a concrete example
of one institution building on another.

2 Mathematical Background

Institutions are based on category theory. A category consists of a collection of
objects, and a collection of arrows or morphisms between those objects, subject
to some straightforward laws. A functor is a map between categories which pre-
serves the categorical structure—more precisely, it preserves identity morphisms
and composition of morphisms. Definitions for these concepts can be found in
Emily Riehl’s freely available Category Theory in Context [14]. We only require
very light familiarity with categories and functors for this paper.

Definition 1. An institution [7] consists of

– a category Sig of signatures;
– a sentence functor Sen : Sig → Set;

https://github.com/ConorReynolds/coq-institutions
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– a model functor Mod : Sigop → Cat; and
– a semantic entailment relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for any signature morphism σ : Σ → Σ′, any sentence φ ∈ Sen(Σ),
and any model M ′ ∈ Mod(Σ′), the satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ

ensuring that a change in signature induces a consistent change in the satisfac-
tion of sentences by models.

The signatures contain non-logical symbols: data types, constants, functions,
and so on. The sentence functor explains how to build sentences over the non-
logical symbols. The model functor explains how to interpret the symbols in
any given signature. The semantic entailment relation explains how to decide
if a given sentence is true or false in a given model. The requirement that the
signatures form a category, and that the sentence and model constructors are
functors, is due to the central concept of a signature morphism, a mapping
between signatures—a “change in notation”. If the sentence construction is a
functor then we can be sure that signature translations preserve the sentence
structure.

The satisfaction condition explains how the components should interact with
one another, and in particular how they behave under a change in signature.
Without such a condition, the semantic entailment relation |= could behave just
as expected on one signature, but behave utterly erratically on another. But
we expect the entailment relation |= to change only so much with a change in
signature. The satisfaction condition ensures that satisfaction of sentences by
models is consistent under a change in signature.

2.1 First-Order Predicate Logic

We provide a brief account of multi-sorted universal algebra and first-order pred-
icate logic, in preparation for a formal encoding in Coq (Sect. 4); see Sannella
and Tarlecki’s Foundations of Algebraic Specification [17] for details.

Definition 2. An S-indexed set is a family of sets X = (Xs)s∈S.

Definition 3. A signature is a 3-tuple 〈S,F ,P〉 where S is a set of sorts, F
is a (List(S) × S)-indexed set of function symbols, and P is a List(S)-indexed
set of predicate symbols.

Here List(A) is just as expected: the set of all finite sequences of elements from
A. The idea is that a symbol F ∈ Fw,s has arity w and result sort s, and a
predicate symbol P ∈ Pw has arity w and no result sort (since it represents a
predicate). If the signature is clear from context, we instead write F :

∏
i wi � s

for function symbols, and P :
∏

i wi � Prop for predicate symbols. If a function
symbol C has arity nil and result sort s, then it is called a constant symbol and
we denote it C : s.
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As a running example, let stackSig be a signature consisting of the symbols
required to describe a stack. It has two sorts elem and stack; some function
symbols empty : stack, push : elem × stack � stack, and pop : stack � stack; and
a predicate symbol isEmpty : stack � Prop.

Definition 4. Let Σ = 〈S,F ,P〉 and Σ′ = 〈S′,F ′,P ′〉 be two signatures. A
signature morphism σ : Σ → Σ′ consists of a function σsorts : S → S′, which
will usually be written σ, as well as a pair of functions

σfuncs :
∏

w,s

Fw,s → F ′
σ(w),σ(s)

σpreds :
∏

w

Pw → P ′
σ(w)

respectively mapping sorts, function symbols, and predicate symbols, in such a
way that the sorts are translated consistently with σsorts . We define σ(w) as the
action of σsorts on each of the sorts in w.

Definition 5. An algebra A for a signature Σ = 〈S,F ,P〉 consists of three
functions 〈Asorts , Afuncs , Apreds〉, all of which we denote by A, each respectively
interpreting the sorts, function symbols, and predicate symbols as sets, functions,
and predicates:

– for any sort s ∈ S, A(s) is a set, which we typically denote As;
– for any F ∈ Fw,s, we have A(F ) : Aw1 × · · · × Awn

→ As; and
– for any P ∈ Pw, we have A(P ) ⊆ Aw1 × · · · × Awn

.

Algebras give meaning to the symbols in a signature. Consider again our run-
ning example stackSig; we could interpret the sort elem as the set N of natural
numbers, and the sort stack as the set List(N) of lists of natural numbers; the
function symbols empty, push, and pop as nil ∈ List(N), cons : N × List(N) → N,
and tail : List(N) → N, respectively; and the predicate symbol isEmpty as the
predicate {s | s = nil} ⊆ List(N). We are by no means bound to this interpreta-
tion, of course.

Definition 6. Let Σ and Σ′ be signatures, let σ : Σ → Σ′ be a signature
morphism, and let A′ be a Σ′-algebra. The reduct algebra A′|σ is a Σ-algebra
defined at each component of the algebra to be A′ ◦ σ.

Algebras are best thought of (loosely) as functions providing a concrete denota-
tion for the symbols in a signature—functions from symbols to “real” mathemat-
ical objects. In the presence of a change in signature σ : Σ → Σ′, a Σ′-algebra
can interpret symbols in Σ by first applying σ and interpreting the resulting
Σ′-symbol; hence we “precompose” A′ by σ to obtain a Σ-algebra. Note that the
direction is reversed; we are taking Σ′-algebras to Σ-algebras using σ : Σ → Σ′.
Now is a good time to note the contravariance of the model functor in the defi-
nition of an institution: if σ : Σ → Σ′ then Mod(σ) : Mod(Σ′) → Mod(Σ).

The following pair of definitions explain how we may build more complex
expressions, which we will call terms, out of the basic symbols of a signature.
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Definition 7. A set of variables for a signature Σ = 〈S,F ,P〉 is an S-indexed
set.

Definition 8. A term over a signature Σ = 〈S,F ,P〉 with variables in X is
defined inductively as follows.

– A variable x ∈ Xs is a term of sort s.
– A constant symbol C ∈ Fnil,s is a term of sort s.
– If |w| = n > 0, then given terms t1 : w1, . . . , tn : wn and a function symbol

F ∈ Fw,s, the expression F (t1, . . . , tn) is a term of sort s.

Terms explain how sorted variables and symbols may be put together. For exam-
ple, let x : elem and s : stack be two variables; then push(x, s) : stack is a valid
term; as is push(x, push(x, s)). But, for example, pop(x) is not since x has the
wrong sort.

With terms and algebras defined, all that is left is to define first-order sen-
tences.

Definition 9. Let Σ = 〈S,F ,P〉 be a signature. The sentences of first-order
logic are built from the logical symbols =, →, ¬, ∧, ∨, ∀, ∃. The atomic sentences
are

– u = v for terms u and v with the same sort; and
– P (t1, . . . , tn) for any predicate symbol P ∈ Pw and terms ti.

The sentences in general are defined inductively as follows:

– Any atomic sentence φ is a sentence.
– The expressions ¬φ, φ → ψ, φ∧ψ, φ∨ψ, ∀x. φ and ∃x. φ, for any sentences

φ, ψ and variable x, are all sentences.

We can now write sentences like ∀x. ∀s. pop(push(x, s)) = s. The interpretation
of first-order sentences is defined by induction on the sentence structure. We will
give a more precise account in Sect. 4.

3 Institutions in Coq

Coq is an interactive proof assistant for higher-order logic based on a depen-
dent type theory called the calculus of inductive constructions (CIC). Dependent
type theories allow for extremely elegant representation of complex mathemati-
cal objects such as those found in category theory, institution theory, universal
algebra, etc. All of the work presented here is formalised fully in Coq.

We depend on a formalization of category theory by John Wiegley [20]. Mor-
phisms between objects and are denoted , and functors between cat-
egories and are denoted . The generic form of an institution can be
defined directly as a dependent record.
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Here refers to the semantic entailment relation |= for an institution and
refers to the category of sets, which here just means the category of Coq

types and functions. The term is short for “functor map” and describes the
action of a functor on morphisms. For the purposes of this paper, we implement
so-called set/set institutions [11], in which the target of Mod is Set, the category
of sets, and not Cat, the category of all small categories.

Our focus for this paper is on an instantiation of this object to FOPEQ , the
institution for first-order predicate logic, and EVT , the institution for Event-B
defined in [6]. Since EVT builds on FOPEQ , we will begin with FOPEQ and
work up.

4 First-Order Logic in Coq

We partially build upon a formalization of multi-sorted universal algebra in
Agda [9], though we deviate in many of the details. As we define objects in Coq,
we will make reference back to their mathematical definitions from Sect. 2.1. We
do not show everything, only what we deem crucial to follow the basic idea of
the formalization.

4.1 Representing FOL

Signatures (cf. Definition 3) are represented by a dependent record, mirroring
the mathematical definition exactly.

An algebra (cf. Definition 5) for a signature needs to interpret sorts as Coq types
and the function and predicate symbols as Coq functions with the right type.

For this we use heterogeneous lists—henceforth h-lists—following Gunther
et al. [9]. A heterogeneous list can contain elements of different types, as distin-
guished from a homogeneous list which contains only elements of a single type.
Our definition of h-lists comes from Chlipala’s CPDT [4], where the reader can
find a more detailed description of the implementation details.

Let U be a universe of types. Given an index type I : U , a list w : List(I) and
a type family A : I → U which selects for each i : I a type Ai : U , we can build
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a h-list v : HList(A,w) which contains |w| elements and where the ith element
of v, denoted vi, has the type Awi

. For example, if w = [N, bool, string] and if A
is the identity, then 〈3, true, ‘hello’〉 would be a valid h-list of type HList(A,w).
Another example, more pertinent to our discussion: Consider again our running
example stackSig. Let I = {elem, stack}, let w = [elem, stack], and let A : I → U
be defined by elem �→ N and stack �→ List(N). Then 〈2, [3, 4]〉 would be a valid
term of type HList(A,w).

A h-list is a concrete implementation of a kind of dependent n-tuple; that is
to say, HList(A,w) is a concrete Coq encoding of the dependent sum

∑
i A(wi).

Now, let Σ = 〈S,F ,P〉 be a signature, let F ∈ Fw,s and let A be a Σ-algebra.
Since HList(A,w) → A(s) ∼= ∑

i A(wi) → A(s), we should interpret A(F ) as a
function HList(A,w) → A(s).

We are so far no different from Gunther et al. [9]. Our first deviation is in the
definition of variables and terms (cf. Definition 8).

Variables (cf. Definition 7) are not represented here by members of an indexed
set; instead they are dependent de Bruijn indices—see CPDT chapter nine [4].
The member type is exactly as it appears there; a term i : member(s, Γ ) can be
thought of as a constructive proof that s appears at index i in the list Γ . By
defining variables this way, we can quite easily define quantifiers which correctly
track the locations of free variables, as we will see.

Signature morphisms (cf. Definition 4) are the cornerstone of institution the-
ory; much of the implementation depends on this definition.

No surprises here, but note that we must translate the sorts in and
using . With this we can now define reduct algebras (cf. Defi-

nition 6).
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Note that the function reindex is computationally the identity but converts
between the equivalent types HList(A ◦ f, w) and HList(A,map f w).

We can now start to build the syntactic and semantic structure of first-order
sentences. The syntax is as follows.

We omit the other connectives since their definitions are straightforward. Syntac-
tically, a quantifier accepts as argument a sentence in which at least one variable
appears free and binds it. If ψ is a sentence with context s ::Γ , then the sentence
Qs. ψ is a sentence with context Γ , where Q is either quantifier. Formally, we
have the following syntactic formation rule:

s :: Γ � φ

Γ � Qs. φ

To interpret a first-order sentence, we must decide what the logical symbols mean
and what values the free variables will get. If θ is an environment providing values
for the variables in Γ , then we denote the semantic interpretation of a sentence
φ with free variables from Γ by an algebra A with environment θ by A �θ φ.
Precisely, in the case of the quantifiers, we have

A �θ Foralls(ψ) iff for all x ∈ As we have A �x,θ ψ

A �θ Existss(ψ) iff there exists x ∈ As such that A �x,θ ψ

This setup makes the definition of the semantic entailment relation relatively
painless. (The triple-colon operator denotes the cons function for h-lists.)

The institution FOPEQ requires closed first-order sentences, i.e. sentences of the
form ψ : FOL(Σ, nil); hence A |= ψ will really mean interp_fol(A,ψ, hnil).

The relation above relies on two mutually-defined term evaluation functions,
for which we use the library [18].
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On variables, it looks up the right value in the environment. On terms, it inter-
prets the function symbol with the given algebra and calls itself on the function
symbol’s arguments. It is possible to write this function (and others) without

, but this gives the best computational behaviour and plays rela-
tively nicely with the proofs.

4.2 Proofs and Proof Strategy

There are some more definitions that are crucial for proving the satisfaction
condition for first-order predicate logic. The following mutually-defined functions
promote signature morphisms to term translations:

Applying a signature translation to a variable amounts only to a reindexing; all
the work is happening at the type level, but the underlying “number” i doesn’t
change. To apply a signature translation to a term, we just apply it to the
function symbol and then apply it to all its arguments. Promoting this a level
higher to first-order sentences is a simple matter, since the sentence structure
will be ignored by signature morphisms.

We will also need to define a custom induction principle for terms; the induc-
tion principle automatically generated by Coq is too weak because it is missing
a hypothesis in the case where the term has the form F (t1, . . . , tn); namely that
the predicate P :

∏
i Ai → Prop holds for all t1, . . . , tn. In Coq this is represented

by HForall P 〈t1, . . . , tn〉.
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Proofs Involving Indexed Types. Consider how to define the composition of two
signature morphisms σ and τ . Doing so directly will result in a type-level mis-
match between map τ (map σ w) and map (τ ◦ σ) w. Of course, these terms are
propositionally equal via the proof p = map_map σ τ w; so we need to mention
this to Coq at the point of definition. As an example, here is the definition of the
composition of two first-order signature morphisms, simplified for readability.

Many definitions in our developments take a similar form. Proofs of most propo-
sitions involving such terms should follow by computation and induction on the
involved identity proofs—an identity proof being a proof of the form p : x = y.
We call upon a range of tactics and rewriting strategies for identity proofs, many
of which are defined in and some of which come from the homo-
topy type theory [19] Coq developments, specifically

Proofs about terms caused the most consternation. Using the following
lemma,

we can write map_on_terms in terms of hmap and on_terms; this exposes reindex,
which we may convert into using some combination of the following two
lemmas.
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This process pulls out the hidden identity proof such that it may be combined
with others. We then required the lemma

for converting the hypothesis generated by our custom induction principle for
terms into a useful rewrite rule.

There is one more trick we employ, and for which we must assume proof
irrelevance. Often the subject of an identity proof is of the form x :: xs, as in,
for example, p′ : map id (x :: xs) = x :: xs. If one has a proof p : map id xs = xs,
then in fact f_equal (cons x) p is also a proof that map id (x :: xs) = x :: xs.
By proof irrelevance, p′ and f_equal (cons x) p are themselves equal, but the
point is that the latter form has useful structure that we can exploit. This is
not always necessary—often the tactic is enough—but we found it
indispensable in proofs which required more careful rewriting of identity proofs.

The Proof of Satisfaction. Throughout the process, we identified at least one
non-obvious lemma required for the proof of satisfaction for first-order logic.

Lemma 1. Let σ : Σ1 → Σ2 be a signature morphism, let t1 be a Σ1-term with
Σ1-context Γ1, and let A2 be a Σ2-algebra. Let θ : HList(A2|σ, Γ1) be a valuation
of the variables in Γ1. Then

A
σ(θ)
2 (σ(t1)) = (A2|σ)θ(t1)

Since θ is a h-list, the action of σ on θ is just a reindexing; hence we obtain
σ(θ) : HList(A2,map σ Γ1). The specific requirement generated by the proof of
satisfaction, for one of the atomic sentences, t1 = t2, is

A′ |=σ(θ) (σ(t1 = t2)) iff (A′|σ) |=θ (t1 = t2)

Lemma 1 is a strict strengthening of this requirement, since it shows in fact that
the terms under analysis are equal. This lemma handles the atomic sentences;
the other cases follow without much trouble.

5 Formalizing EVT

Readers should consult the backmatter of [16] for a summary of the Event-B
language by Thai Son Hoang. Not much, if any, familiarity with the system will
be required beyond what we describe here. Event-B machines consist, at the
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most basic level, of discrete state-transitions called events. Our approach is to
use first-order sentences to represent updates to the machine state; for example,
the variable-update statement is written as a first-order sentence
x′ = x+1. The unprimed variables represent the state of the machine before an
event, the primed variables represent the state of the machine after an event.

We will formally describe a more generic institution for Event-B than is pre-
sented in Farrell [6], dropping event names from the representation. We will
call this institution EVT where there is no room for confusion. We found that
defining EVT without event names results in simplified constructions and gives
us more room for defining potential extensions to EVT—but, crucially, with-
out changing the details of the proof of satisfaction. For a short account of a
formalization that matches Farrell’s more closely, see [13].

First, we’ll define signatures and signature morphisms for EVT .

Definition 10. An EVT -signature Σ̂ is a 3-tuple 〈Σ,X,X ′〉 where Σ is a first-
order signature and X and X ′ are Sorts(Σ)-indexed sets, such that (−)′ : X →
X ′ is an equivalence.

Definition 11. An EVT -signature morphism σ̂ : Σ̂1 → Σ̂2 consists of a first-
order signature morphism σ : Σ1 → Σ2 and two variable morphisms on_vars :
X1 → X2 and on_vars′ : X ′

1 → X ′
2 such that the following diagram commutes.

X1 X2

X ′
1 X ′

2

on_vars

(−)′ (−)′

on_vars′

In all cases where not otherwise specified, the EVT -signature Σ̂ is given by
〈Σ,X,X ′〉.

A standard construction in institution theory is the signature extension. We
add variables by adding them directly into the signature as constant function
symbols.

Definition 12. Let Σ = 〈S,F ,P〉 be a first-order signature and let X be an
S-indexed set. The expansion of Σ by X is a first-order signature Σ +X which
is equal to Σ everywhere except on the constant function symbols; Σ + X has
constant symbols Fnil,s + Xs, for each s ∈ S.

To model signatures of the form Σ +X, we need only expand a given Σ-algebra
by a valuation X → A.

Definition 13. Let Σ = 〈S,F ,P〉 be a first-order signature and let A be a Σ-
algebra. Let X be an S-indexed set of variables and let θ : X → A be a valuation
of variables. The expansion of A by θ is a (Σ + X)-algebra Aθ, which behaves
like A on symbols from Σ and takes variables x ∈ Xs to θ(x) ∈ As.

Definition 14. A Σ̂-model M is a 3-tuple 〈A, θ, θ′〉, where A is a Σ-algebra
and θ : X → A and θ′ : X → A are valuations of variables.
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To illustrate what we have so far, consider the following example. A model for
a (Σ + X + X ′)-sentence consists of a Σ-algebra A and two valuations of the
variables θ : X → A and θ′ : X ′ → A, usually referred to as a Σ-states—θ
is the pre-state and θ′ is the post-state. One possible model for the sentence
x′ = x + 1 consists of the usual algebra for natural numbers, a pre-state x �→ 2,
and a post-state x′ �→ 3. One possible model for the sentence s′ = push(x, s)
consists of an algebra for a stack of characters, a pre-state x �→ e, s �→ [v, t], and
a post-state s′ �→ [e, v, t]. Here, x′ can consistently be assigned anything. If we
wish to avoid this, we can assume that sentences ψ which don’t mention a given
primed variable x′ are really shorthand for ψ ∧ (x′ = x).

Let us formally define the sentences for EVT . Note that FOSen(Σ) denotes
the set of all first-order Σ-sentences.

Definition 15. Let Σ̂ be an EVT -signature. A Σ̂-sentence is either an initial-
ization sentence Init(φ) where φ ∈ FOSen(Σ+X ′), or an event sentence Event(φ)
where φ ∈ FOSen(Σ + X + X ′).

Initialization sentences constrain the range of possible initial states for a machine;
often only one such state is possible. There is no previous state yet, so any
initialization sentence is built over Σ + X ′. Event sentences explain how an
event updates the state, and therefore can access both pre- and post-variables;
thus event sentences are built over Σ + X + X ′.

Finally, let’s define the semantic entailment relation for EVT .

Definition 16. Let Σ̂ be an EVT -signature, M = 〈A, θ, θ′〉 a Σ̂-model, and ψ
an EVT -sentence. We define M |= ψ by induction on ψ: M |= Init(φ) if Aθ′ |= φ;
and M |= Event(φ) if Aθ+θ′ |= φ.

5.1 Representing EVT

We have a much easier job here than we did for first-order predicate logic since
EVT builds directly on FOPEQ . We rely on a couple of major first-order con-
structions. First, we will define signature extensions by a set of variables (cf.
Definition 12). Note that is the category of indexed types I → U .

The main part of an algebra expansion (cf. Definition 13) is given by the following
function; no other part of the algebra is changed.
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EVT -signatures (cf. Definition 10) are represented exactly as they are given
mathematically.

Here is the proof that (−)′ : X → X ′ is an equivalence.
For EVT signature morphisms (cf. Definition 11), we simply define on_vars′

in terms of on_vars to simplify matters.

EVT -models (cf. Definition 14) and EVT -sentences (cf. Definition 15) also offer
no surprises.

Finally, the semantic entailment relation for EVT (cf. Definition 16) defers
directly to entailment for FOPEQ .

Here, stitches two valuations θ : X → M and θ′ : X ′ → M (with the
same target) into Θ : X + X ′ → M .
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5.2 Proofs and Proof Strategy

Most of the tricks we needed for first-order logic apply just as well here. The
main additional proof strategy emerged while proving equality for dependent
records.

As an example, let’s consider EVT signature morphisms. To prove that two
EVT signature morphisms are equal, we need to prove that they are equal
componentwise—the first-order signature morphisms have to agree everywhere,
as do the two variable morphisms. The proofs that the variable morphisms are
equal appear at first to depend on the proof that the base first-order signature
morphisms are equal. But actually, that’s not strictly the case; we only need to
know that the first-order signature morphisms agree on sorts to prove that the
two variable morphisms are equal.

We can write custom equality lemmas which state the dependencies between
proofs more precisely. Here is one such lemma for EVT signature morphisms.

Here we build a proof that two signature morphisms are equal from proofs that
they are equal at each of their components. Note that q depends on p′ only,
and not p. Normally the dependency is on p—but p′ is typically much simpler
than p and is all that is necessary. Often p′ is refl, meaning computes away,
simplifying the proofs considerably.

Most other constructions and proofs revolved around signature and model
extensions. The following was the main non-trivial lemma which we identified
while proving the satisfaction condition for EVT . Note that the following holds
for any indexed sets X1 and X2 and any function f : X1 → X2 ◦ σ.

Lemma 2. Let σ : Σ1 → Σ2 be a first-order signature morphism, let f : X1 →
X2 ◦ σ be a variable morphism, let A2 be a Σ2-algebra, and let θ2 : X2 → A2 be
a valuation of variables. Then

(A2|σ)θ2◦f = (Aθ2
2 )|σ+f

We’re taking some liberties with the notation. Note that θ2 ◦ f is a shorthand
for λs, x. θ2(σ(s), f(s, x)) and σ+ f : Σ1+X1 → Σ2+X2 is a shorthand for the
extension of σ by f .

The proof of satisfaction itself proceeds by two cases, both of which are
essentially the same, and both of which rely on the satisfaction condition for
FOPEQ and Lemma 2, with f instantiated to different maps in each.

6 Conclusion

We have detailed the most important points of our formalisation of two insti-
tutions in Coq: the institution FOPEQ for first-order predicate logic, and the
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institution EVT for Event-B. According to the tool1 we have over 3,000
significant lines of Coq developments, not including the many experimental or
variant implementation attempts. Initial progress was slow, but the overall app-
roach was successful; the satisfaction condition is fully formalized for both—with
some difficulty for FOPEQ , but with far greater ease for EVT . Furthermore,
both institutions have many reusable components which will aid in the construc-
tion of other concrete institutions and with proving their satisfaction conditions.
Proofs involving indexed types in Coq are notoriously difficult, but we suspect
for the purposes of our formalism that they are all difficult in the same way, so
that the lessons we learn here can be applied more generally.

Having a formal framework for defining institutions continues to be useful
in our own work. Indeed, we have already begun applying it to the problem of
integrating linear-time temporal logic with Event-B specifications. We have also
defined some institution-independent constructions not covered here, specifically
modal and linear-time temporal logics over an arbitrary institution.

We intend in the future to add more concrete institutions to this framework;
to show that both FOPEQ and EVT have the amalgamation property; to build
more institution-independent constructions; to improve proof automation for
institutions; and to define and verify some institution (co)morphisms. This work
could also, in time, become a fully formal basis for the work already done for
the Hets tool for heterogeneous specification.
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