LNCS 13299

Yamine Ait-Ameur
Florin Craciun (Eds.)

Theoretical Aspects
of Software Engineering

16th International Symposium, TASE 2022
Cluj-Napoca, Romania, July 8-10, 2022
Proceedings

@ Springer

Lecture Notes in Computer Science

Founding Editors
Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China
Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

13299

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Yamine Ait-Ameur - Florin Craciun (Eds.)

Theoretical Aspects
of Software Engineering

16th International Symposium, TASE 2022
Cluj-Napoca, Romania, July 8-10, 2022
Proceedings

@ Springer

Editors

Yamine Ait-Ameur Florin Criaciun

IRIT Babes-Bolyai University
Toulouse, France Cluj-Napoca, Romania
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-031-10362-9 ISBN 978-3-031-10363-6 (eBook)

https://doi.org/10.1007/978-3-031-10363-6

© Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4582-9712
https://orcid.org/0000-0003-0335-8369
https://doi.org/10.1007/978-3-031-10363-6

Preface

The International Symposium on Theoretical Aspects of Software Engineering (TASE)
gathers researchers and practitioners interested by the new results on innovative advances
in software engineering. It records the latest developments in formal and theoretical
software engineering methods and techniques.

The 16th edition of TASE was held in the beautiful city of Cluj-Napoca in Romania
during July 8-10, 2022. TASE 2022 received 71 submissions covering different areas of
theoretical software engineering. Each paper was reviewed by at least three reviewers
and the Program Committee accepted 21 long papers and five short papers leading to an
attractive scientific program.

This edition of TASE was enhanced by the presence of four keynote speakers. The
first talk, given by Erika Abraham from RWTH Aachen University in Germany, entitled
“SMT Solving: Historical Roots, Recent Developments and Future Directions” dealt
with SMT-based formal verification techniques and provided a technical view on the
progress in SMT solving. In the second talk entitled “Practical Theory of Computation
on Structures”, Klaus-Dieter Schewe, from the ZJU-UIUC Institute in China, sketched a
theory of computation centered around the notion of algorithmic systems. The two other
talks dealt with formal software engineering and artificial intelligence. The talk of Sun
Jun, from the Singapore Management University in Singapore, entitled “Neural Network
Discrimination: Evaluation, Mitigation and Certification” addressed certification of
fairness of neural networks using formal verification techniques. The last talk entitled
“Rigorous system design for Al software” given by Saddek Bensalem, from Verimag
at the University of Grenoble Alpes in France, presented the results of the FOCETA
European project in rigorous verification and validation of critical systems.

TASE 2022 would not have succeeded without the deep investment and involvement
of the Program Committee members and the external reviewers who evaluated (with
more than 215 reviews) and selected the best contributions. This event would not exist
without the authors and contributors who submitted their proposals. We address our
thanks to everyone—reviewers, authors, Program Committee members, and organization
committee members—involved in the success of TASE 2022.

The EasyChair system was set up for the management of TASE 2022, supporting
submission, review, and volume preparation processes. It proved to be a powerful
framework.

TASE 2022 had one affiliated workshop, the International Workshop on Formal
Engineering of Cyber-Physical Systems, which brought additional participants to the
symposium and helped make it an interesting and successful event. We thank all the
workshop chairs, organizers, and authors for their hard work on this.

TASE 2022 was hosted and sponsored by Babes-Bolyai University, Cluj-Napoca,
Romania. The local organization committee offered all the facilities to run the event in
a lovely and friendly atmosphere. Many thanks to all the local organizers.

vi Preface

Lastly, we wish to express our special thanks to the steering committee members, in
particular Shengchao Qin and Huibiao Zhu, for their valuable support.

July 2022 Yamine Ait-Ameur
Florin Crédciun

Program Committee

Erika Abraham
Yamine Ait Ameur (Chair)
Etienne André
Toshiaki Aoki
Christian Attiogbe
Guangdong Bai
Richard Banach
Luis Soares Barbosa
Marcello Bonsangue
Marius Bozga
Ligian Chen

Wei-Ngan Chin
Horatiu Cirstea

Florin Craciun (Chair)
Guillaume Dupont

Flavio Ferrarotti
Simon Foster

Marc Frappier
Radu Grosu

Kim Guldstrand Larsen
Thai Son Hoang
Zoltan Horvath

Zhe Hou

Fuyuki Ishikawa
Andreas Katis

Olga Kouchnarenko
Regine Laleau
Guogiang Li

Qin Li

Dorel Lucanu
Frederic Mallet
Amel Mammar
Dominique Mery
Simona Motogna

Organization

RWTH Aachen University, Germany

IRIT, INPT-ENSEEIHT, France

Loria, Université de Lorraine, France

JAIST, Japan

LS2N, Université de Nantes, France

University of Queensland, Australia

University of Manchester, UK

University of Minho, Portugal

Leiden University, The Netherlands

Verimag, Université Grenoble Alpes, France

National University of Defense Technology,
China

National University of Singapore, Singapore

Loria, France

Babes-Bolyai University, Romania

Institut de Recherche en Informatique de
Toulouse, France

Software Competence Centre Hagenberg, Austria

University of York, UK

Université de Sherbrooke, Canada

Stony Brook University, USA

Aalborg University, Denmark

University of Southampton, UK

Eotvos Lorand University, Budapest

Griffith University, Australia

National Institute of Informatics, Japan

KBR Inc., NASA Ames Research Center, USA

University of Franche-Comté, France

Paris-East Créteil University, France

Shanghai Jiao Tong University, China

East China Normal University, China

Alexandru Ioan Cuza University, Romania

Université Nice Sophia-Antipolis, France

Telecom SudParis, France

Loria, Université de Lorraine, France

Babes-Bolyai University, Romania

viii Organization

Kazuhiro Ogata
Jun Pang
Shengchao Qin
Adrian Riesco
Cristina Seceleanu
Neeraj Singh

Meng Sun
Rob van Glabbeek
Naijun Zhan

Huibiao Zhu
Xue-Yang Zhu

Additional Reviewers

An, Jie

Ardourel, Gilles
Chen, Mingshuai
Cheng, Zheng
Chouali, Samir
Dubois, Catherine
Ehrlinger, Lisa
Enoiu, Eduard Paul
Fan, Guangsheng
Fehnker, Ansgar
Gervais, Frédéric
Gibson, J. Paul
Guo, Xiaoyun
Guok, Ernest
Hajder, Levente
Halder, Raju

He, Mengda

Ishii, Daisuke
Jérome, Rocheteau
Kobayashi, Tsutomu
Ko1bl, Martin
Ligeti, Peter

Lin, Bo

Lin, Shang-Wei
Liu, Ai

JAIST, Japan

University of Luxembourg, Luxembourg

Teesside University, UK

Universidad Complutense de Madrid, Spain

Milardalen University, Sweden

IRIT, INPT-ENSEEIHT, University of Toulouse,
France

Peking University, China

Data61, CSIRO, Australia

Institute of Software, Chinese Academy of
Sciences, China

East China Normal University, China

Institute of Software, Chinese Academy of
Sciences, China

Liu, Zengyu
Marinho, Dylan
Masson, Pierre-Alain
McClurg, Jedidiah
Merz, Stephan
Nguyen, Thuy
Pardillo Laursen, Christian
Pintér, Balazs
Seceleanu, Tiberiu
Shi, Ling

Sochor, Hannes
Sun, Weidi

Tejfel, Maté
Tomita, Takashi
Truscan, Dragos
Wang, Shuling
Wen, Cheng

Xue, Bai

Yan, Fang

Zhan, Bohua
Zhang, Haitao
Zhang, Miaomiao
Zhao, Ying

Zhao, Yongxin

Keynotes

Neural Network Discrimination: Evaluation, Mitigation
and Certification

Jun Sun
Singapore Management University

Abstract. In recent years, neural network based machine learning has
found its way into various aspects of people’s daily life, such as face
recognition, personal credit rating, and medical diagnose. One desir-
able property of neural networks for applications with societal impact
is fairness. Since there are often societal biases in the training data, the
resultant neural networks might be discriminative as well. Recently, there
have been multiple attempts on improving fairness of neural networks,
with a focus on fairness testing.

In this line of research, we develop a series of approaches and
associated software tool-kits to evaluate a given neural network’s
fairness by systematically generating discriminatory instance (published
at ICSE’20), to mitigate discrimination in the neural network by fining
tuning a small number of guilty neurons (published at ICSE’22), and to
certify the neural network’s fairness through formal verification (pub-
lished at FM’21). We demonstrate that with our approaches are both
effective and efficiency using real-world applications.

SMT Solving: Historical Roots, Recent Developments
and Future Directions

Erika Abrahdm
RWTH Aachen University, Germany

The development of decision procedures for checking the satisfiability of
logical formulas has a long history in mathematical logic and symbolic
computation. Besides theoretical interest, their automation in the 60’s
raised their practical importance and increased the intensity of research
in this area. Besides computer algebra systems on the mathematical side,
in the 90’s another line of developments has been initiated in computer
science. Unified under the name satisfiability checking, powerful SAT
and SAT-modulo-theories (SMT) solvers have been developed that are
nowadays at the heart of many techniques for the synthesis and analysis
of software and hardware systems with probabilistic, timed, discrete,
dynamical or discrete-continuous components, and in general for all types
of large combinatorial problems like complex planning and scheduling
tasks.

In this talk we give a historical overview of this development, describe
our own solver SMT-RAT, discuss some fascinating new developments
for checking the satisfiability of real-arithmetic formulas, and conclude
with some challenges for potential future research directions.

Rigorous System Design for AI Software

Saddek Bensalem

University Grenoble Alpes, VERIMAG, Grenoble, France
Saddek.Bensalem@univ-grenoble-alpes.fr

Abstract. The convergence of scientific and technological developments
in computing and networking with the physical side and Artificial Intelli-
gence (Al) will impact the forthcoming period concerning several system
aspects and disciplines. Learning-enabled Systems represent an exam-
ple of that convergence, which embraces engineering and technological
products. The learning-enabled system technologies are expected to bring
large-scale improvements through new products and services across var-
ious applications ranging from healthcare to logistics through manufac-
turing, transport, and more. Software is inarguably the enabling factor
for realizing such systems. Unfortunately, we still encounter deployment
limitations in the safety-critical application (transportation, healthcare,
etc.) due to a lack of trust, behavioral uncertainty, and technology com-
patibility with safe and secure system development methods. I will first
provide an overview of the project FOCETA1 (FOundations for Continu-
ous Engineering of Trustworthy Autonomy) and discuss its strategic goal
and its challenges. In the second part of my talk, I will present the prob-
lem of the verification and validation methods considered in the project
and discuss future research directions.

Supported by the European project Horizon 2020 research and innovation programme under
grant agreement No. 956123.

Contents

Practical Theory of Computation on Structuresc.c.covune...
Klaus-Dieter Schewe

Complexity of Distributed Petri Net Synthesis
Raymond Devillers and Ronny Tredup

Repairing Adversarial Texts Through Perturbation
Guoliang Dong, Jingyi Wang, Jun Sun, Sudipta Chattopadhyay,
Xinyu Wang, Ting Dai, Jie Shi, and Jin Song Dong

Formal Verification of a Keystore,
Jaap Boender and Goran Badevic

A Case Study in the Automated Translation of BSV Hardware to PVS
Formal Logic with Subsequent Verification
Nicholas Moore and Mark Lawford

Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial
of Service Attacks
Francesco Parolini and Antoine Miné

On Verification of Smart Contracts via Model Checking
Yulong Bao, Xue-Yang Zhu, Wenhui Zhang, Wuwei Shen, Pengfei Sun,
and Yingqi Zhao

Equivalence of Denotational and Operational Semantics for Interaction
Languageso e
Erwan Mahe, Christophe Gaston, and Pascale Le Gall

Automatic Classification of Bug Reports Based on Multiple Text
Information and Reports’ Intentionooiiiiiiiiiiiinn...
Fangi Meng, Xuesong Wang, Jingdong Wang, and Peifang Wang

Collaborative Verification of Uninterpreted Programs
Yide Du, Weijiang Hong, Zhenbang Chen, and Ji Wang

MSDetector: A Static PHP Webshell Detection System Based
on Deep-Learningt
Baijun Cheng, Yanhui Guo, Yan Ren, Gang Yang, and Guosheng Xu

XVi Contents

Extending Process Algebra with an Undefined Action 173
S. Arun-Kumar

Machine-Assisted Proofs for Institutions in Coqccovinn.... 180
Conor Reynolds and Rosemary Monahan

Optimizing Trans-Compilers in Runtime Verification Makes Sense —
SOMEIMES . .ttt 197
Hannes Kallwies, Martin Leucker, Meiko Prilop, and Malte Schmitz

Testing Vehicle-Mounted Systems: A Stepwise Symbolic Execution
Approach for OSEK/VDX Programscoouiiiiiiiniiiiinnan. 205
Haitao Zhang and Bowen Pu

Dynamic Specification Mining Based on Transformer 220
Ying Gao, Meng Wang, and Bin Yu

Dynamic Environment Simulation for Database Performance Evaluation 238
Chunxi Zhang, Rong Zhang, and Kai Liu

Extending SYSML with Refinement and Decomposition Mechanisms

to Generate EVENT-B Specificationso i, 256
Racem Bougacha, Régine Laleau, Simon Collart-Dutilleul,
and Rahma Ben Ayed

Development of Monitoring Systems for Anomaly Detection Using ASTD
SPECIfICAIONS . . ottt ettt e e e 274
El Jabri Chaymae, Frappier Marc, Ecarot Thibaud,
and Tardif Pierre-Martin

A Language-Based Causal Model for Safety 290
Marcello Bonsangue, Georgiana Caltais, Hui Feng, and Hiinkar Can Tung

Consistency of Heterogeneously Typed Behavioural Models:
A Coalgebraic Approach 308
Harald Konig and Uwe Wolter

Improving Adversarial Robustness of Deep Neural Networks via Linear
Programming e 326
Xiaochao Tang, Zhengfeng Yang, Xuanming Fu, Jianlin Wang,
and Zhenbing Zeng

AllSynth: Transiently Correct Network Update Synthesis Accounting
for Operator Preferencesottt 344
Kim Guldstrand Larsen, Anders Mariegaard, Stefan Schmid, and Jiti Srba

Contents Xvii

End-to-End Heat-Pump Control Using Continuous Time Stochastic

Modelling and UPPAAL STRATEGOttt 363
Imran Riaz Hasrat, Peter Gjgl Jensen, Kim Guldstrand Larsen,
and Jiri Srba

Security Vulnerabilities Detection Through Assertion-Based Approach 381

Salim Yahia Kissi, Rabéa Ameur-Boulifa, and Yassamin Seladji

The Complexity of Evaluating Nfer i, 388
Sean Kauffman and Martin Zimmermann

Supporting Algorithm Analysis with Symbolic Executionin Alk 406
Alexandru-loan Lungu and Dorel Lucanu

Author Index e 425

®

Check for
updates

Practical Theory of Computation
on Structures

Klaus-Dieter Schewe(®)
Zhejiang University, UIUC Institute, 718 East Haizhou Road, Haining 314400,
Zhejiang, China
kd.schewe@intl.zju.edu.cn

Abstract. There are hardly two fields in Computer Science that are
further apart than Software Engineering and Theoretical Computer Sci-
ence. The lack of theoretical foundations in the field of Software Engi-
neering has a counterpart, as the theoretical foundations have not caught
up with the development of practical software systems. This raises the
question how a theory of computation should look like that modernises
the classical theory and at the same time is suitable for practical systems
development. This article is dedicated to a sketch of a theory of com-
putation centred around the notion of algorithmic systems. I will argue
that behavioural theories are key to the understanding, i.e. we require
language-independent axiomatic definitions of classes of algorithmic sys-
tems that are accompanied by abstract machine models provably captur-
ing the class under consideration. The machine models give further rise
to tailored logics through which properties of systems in the considered
class can be formalised and verified, and to fine-tuned classifications on
the grounds of complexity restrictions. All extensions are conservative in
the sense that the classical theory of computation is preserved, universal
in the sense that all practical developments are captured uniformly, and
practical in the sense that languages associated with the abstract machine
models can be used for rigorous high-level systems design and develop-
ment, and the logics can be exploited for rigorous verification of desirable
properties of systems.

Keywords: Theory of computation - Behavioural theory -
Computation on structures + Abstract State Machines - Algorithmic
system - Software engineering

1 Introduction

Computer Science has many origins, the most important ones in Mathematics
and in Electrical Engineering. As described in detail in Egon Borger’s 1985
influential monograph on computability, complexity and logic (see the English
translation in [2]) it took decades to solve the key problem phrased by Alan
Turing to capture in a mathematically precise way the notion of algorithm (or at
least a specific class of algorithms) and to provide formalisms that can then be

© Springer Nature Switzerland AG 2022
Y. Ait-Ameur and F. Craciun (Eds.): TASE 2022, LNCS 13299, pp. 1-14, 2022.
https://doi.org/10.1007/978-3-031-10363-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_1

2 K.-D. Schewe

used to specify and reason about them. Borger’s monograph was at that time the
most advanced text summarising the “classical” theory of computation centred
around the links between computation theory, logic and complexity theory.

Throughout the centuries the research on the mathematical foundations of
a universal computation theory was always coupled with the construction of
machines that can be used to do practical computations. With the advent of
transistors it became possible to create large computers, which enabled the prac-
tical realisation of many computation problems. This example of the engineering
of practically useful machines was deeply grounded in the development in the
mathematical science, which provided first the understanding of computing.

While the hardware had become available and the foundational theory
existed, the bridge between an understanding of what a computation is to a
practical development of algorithmic software systems did not exist. This led
to an increasing number of fatal software errors caused by a reduction of soft-
ware development to “quick and dirty” programming. In order to address these
problems leading computer scientists came together in a conference dedicated
to analyse the problems and find ways out of the “software crisis”. The lengthy
discussions were summarised in a report [18].

In a nutshell, while there were differing opinions, the conference participants
agreed on the need to establish an engineering discipline addressing the sys-
tematic development of software systems. Software Engineering was supposed to
work as any other engineering discipline: deeply grounded in scientific knowledge,
focussed on problems arising in practice, and universal in the sense that software
systems of all kinds are to be supported. More than 50 years have passed since
this conference, but “Software Engineering” is still far away from the rigour in
other engineering disciplines.

Let us take an example from civil engineering, the construction of a large
bridge with multiple pillars and long swinging segments. He would most likely
start with an idea of the architecture: what type of bridge it should be, how long,
how wide, how many pillars would be required, etc. He would investigate the fea-
sibility, whether the bridge could be built at the designated location. He would
proceed calculating the statics and dynamics of the construction: which forces are
expected, which environmental and weather conditions are to be expected, how
the bridge will swing etc. to ensure the stability of the construction under all fore-
seeable conditions. He would verify, which materials would be required to satisfy
all requirements and proceed with a detailed construction plan. Throughout the
process all design decisions and all verification would be carefully documented.

These principles of engineering should also apply to the engineering of soft-
ware systems. In a recent article Borger analyses the role of executable abstract
programs for software development and documentation [4]. The intuitive under-
standing of those programs fits the computational mindset of software system
engineers and can be supported by a simple but precise behavioural definition.
They can be used in the practitioner’s daily work to rigorously formulate every
design or implementation decision taken on the path from the application view
of the system that is to be developed system. The executable abstract programs

Practical Theory of Computation on Structures 3

of the resulting system documentation represent definitions of implementation
steps one can check and justify by validation (due to their executable charac-
ter) or by reasoning (due to the mathematical definition of their behaviour).
For complex systems the implementation obviously involves multiple refinement
steps. As such the development process produces as side effect a documentation
that facilitates the understandability of the final software and improves its reli-
ability. It also enhances the maintenance process (including reuse and change)
and reduces enormously its cost. However, most common methods on Software
Engineering lack this grounding in mathematical foundations.

On the other hand, also more than 35 years have passed since the publication
of Borger’s monograph on the theory of computation, complexity and logic. Over
this period the practice of computing has changed a lot, but it seems that also
the theoretical foundations have not caught up with the practical challenges.

In this article I will first sketch in Sect.2 how a theory of computation cen-
tred around the notion of algorithmic systems could look like. I will argue that
behavioural theories are key to the understanding, i.e. we require language-
independent axiomatic definitions of classes of algorithmic systems that are
accompanied by abstract machine models provably capturing the class under
consideration. The machine models give further rise to tailored logics through
which properties of systems in the considered class can be formalised and veri-
fied, and to fine-tuned classifications on the grounds of complexity restrictions. I
will briefly discuss the practical consequences a precise classification of software
systems according to their complexity has. In Sect. 3 as an example I will address
Gurevich’s conjecture that there is no logic capturing PTIME.

2 Towards a Theory of Computation on Structures

In the introduction we stated that software systems have significantly changed
over the last decades. We are now dealing with systems of systems that operate
in parallel exploiting synchronously multiple processor cores and asynchronously
computing resources distributed over networks, interact with their environment,
adapt their own behaviour, integrate reasoning about themselves and their envi-
ronment, and support random choices.

All these developments require scientific foundations centred around compu-
tation theory, complexity and logic:

— Is there a theory of computation that faithfully covers all the aspects of
systems of computing systems that occur in practice?

— Is there a methodology grounded in such a theory of computation that permits
the definition and classification of complex systems and the provision of means
for specification, systematic development, validation and verification?

— Is there a methodology that permits reasoning about problems and their
solutions in terms of correctness and complexity?

A first answer was given in 1985 by Gurevich’s “new thesis” [14], which was
further elaborated in the 1995 Lipari guide [16]. The new theory emphasises

4 K.-D. Schewe

Tarski structures (aka universal algebras) to capture abstract states of systems
and evolving algebras, now known as Abstract State Machines (ASMs), as the
abstract machines capturing the algorithms on arbitrary levels of abstraction.
Egon Borger realised that these ideas do not only create a new paradigm for
the foundations of computing subsuming the classical theory, but at the same
can be exploited for rigorous systems engineering in practice thereby fulfilling
the criteria of a “software engineering” discipline that deserves this name as
envisioned in the 1968 conference in Garmisch [18].

A remarkable success story started leading to proofs of compiler correctness
for the Warren Abstract Machine for Prolog [7], the translation from Occam
to transputers [5], the compilation of Java and the bytecode verifier [23], the
development of the sophisticated theory of ASM refinements [3], and much more.
The state of the theory and practice of ASMs is well summarised in Egon Borger’s
and Robert Stéark’s monograph on ASMs [9]. More recent examples are found in
the modelling companion by Borger and Raschke [6].

While the development proved that ASMs can take over the role of the formal
languages in computation theory, it took until 2000 to develop the celebrated
“sequential ASM thesis” [17]’. On one hand the thesis provided a language-
independent definition of the notion of sequential algorithm giving for the first
time in history a precise axiomatic definition of the notion of “algorithm”
(though restricted to sequential algorithms). On the other hand it contained
the proof that all algorithms as stipulated by the defining postulates are faith-
fully captured by sequential ASMs. This justified further to establish another
new notion: a behavioural theory comprises a machine-independent axiomatic
definition of a class of algorithms (or more generally: algorithmic systems), an
abstract machine model, and a proof that the machine model captures the class
of computations.

Starting from the first behavioural theory, the theory of sequential algo-
rithms, another behavioural theory of parallel algorithms was developed in [11]
closing the case of synchronous parallel algorithms. A convincing behavioural
theory for asynchronous algorithmic systems was developed in [8] with concur-
rent ASMs as the machine model capturing concurrent algorithms, i.e. families
of sequential or parallel algorithms associated with agents that are oblivious to
the actions of each other apart from recognising changes to shared locations.
Recently, a behavioural theory of reflective algorithms was developed address-
ing the question how to capture algorithmic systems that can adapt their own
behaviour [20].

The behavioural theories yield variants of Abstract State Machines that can
be used for rigorous systems development. Furthermore, Stark and Nanchen
developed a logic for the reasoning about deterministic ASMs [22], which was
extended to non-deterministic ASMs in [12] by making update sets first-class
objects in the theory and proving completeness with respect to Henkin semantics.
It was also shown how the logic can be adapted to reason about concurrent ASMs
[13]. An extension to reflective ASMs was approached in [21].

Practical Theory of Computation on Structures 5

Complexity theory provides means for fine-tuned classification. One of the
few studies trying to bring complexity theory to the theory of ASMs is the theory
of choiceless polynomial time (CPT) [1], which studies the choiceless fragment of
PTIME using PTIME bounded deterministic Abstract State Machines. Though
it was possible to show that CPT subsumes other models of computation on
structures, it is strictly included in PTIME, so Gurevich posted his conjecture
that there is no logic capturing PTIME [15].

What is the impact of such fine-tuned classification on the field of Software
Engineering? Consider the complexity class NP, which is captured by the exis-
tential fragment of second-order logic. That is, if a decision problem can be
formulated in this logic, a solution is always possible by a backtracking algo-
rithm, which explores in a depth-first approach an exponentially sized search
space. Disregarding the “forgetfull” backtracking all other steps can be cap-
tured by deterministic PTIME ASMs. In this way the class the problem is in
already determines the structure of the solution algorithm, which adds further
support to the rigorous development method. If likewise we have a characteri-
sation of problems in PTIME, we should obtain a different class of algorithms
corresponding to ASMs of a certain type. In the next section I will outline that
non-deterministic PTIME ASMs with a restricted choice operator will suffice.

Certainly, NP and PTIME provide only a very coarse classification, but this
only reflects the state of the theory. It illustrates, however, how the mutual inter-
action between theory of computation on structures and practical engineering
works. Same as the civil engineer whose methods are grounded in mathemati-
cal theories, the computation theory must provide the templates for the various
problems of software engineers.

3 Insignificant Non-determinism

As an example we will now explore PTIME deeper addressing the problem,
whether there exists a computation model over structures that captures the
complexity class PTIME rather than Turing machines that operate over finite
strings. This problem was raised in 1982 by Chandra and Harel [10].

3.1 Abstract State Machines

An ASM is defined by a signature, i.e. a finite set of function (and relation) sym-
bols, a background, and a rule [9]. The signature defines states as structures, out
of which a set of initial states is defined. The sets of states and initial states are
closed under isomorphisms. The background defines domains and fixed opera-
tions on them that appear in every state, and the rule defines a relation between
states and successor states and thus also runs. Here we follow the development
for CPT [1] using hereditarily finite sets.

The background of an