
Yamine Aït-Ameur
Florin Crăciun (Eds.)

LN
CS

 1
32

99

Theoretical Aspects
of Software Engineering
16th International Symposium, TASE 2022
Cluj-Napoca, Romania, July 8–10, 2022
Proceedings

Lecture Notes in Computer Science 13299

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Yamine Aït-Ameur · Florin Crăciun (Eds.)

Theoretical Aspects
of Software Engineering
16th International Symposium, TASE 2022
Cluj-Napoca, Romania, July 8–10, 2022
Proceedings

Editors
Yamine Aït-Ameur
IRIT
Toulouse, France

Florin Crăciun
Babes,-Bolyai University
Cluj-Napoca, Romania

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-10362-9 ISBN 978-3-031-10363-6 (eBook)
https://doi.org/10.1007/978-3-031-10363-6

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4582-9712
https://orcid.org/0000-0003-0335-8369
https://doi.org/10.1007/978-3-031-10363-6

Preface

The International Symposium on Theoretical Aspects of Software Engineering (TASE)
gathers researchers and practitioners interested by the new results on innovative advances
in software engineering. It records the latest developments in formal and theoretical
software engineering methods and techniques.

The 16th edition of TASE was held in the beautiful city of Cluj-Napoca in Romania
during July 8–10, 2022. TASE 2022 received 71 submissions covering different areas of
theoretical software engineering. Each paper was reviewed by at least three reviewers
and the Program Committee accepted 21 long papers and five short papers leading to an
attractive scientific program.

This edition of TASE was enhanced by the presence of four keynote speakers. The
first talk, given by Erika Àbrahàm from RWTH Aachen University in Germany, entitled
“SMT Solving: Historical Roots, Recent Developments and Future Directions” dealt
with SMT-based formal verification techniques and provided a technical view on the
progress in SMT solving. In the second talk entitled “Practical Theory of Computation
on Structures”, Klaus-Dieter Schewe, from the ZJU-UIUC Institute in China, sketched a
theory of computation centered around the notion of algorithmic systems. The two other
talks dealt with formal software engineering and artificial intelligence. The talk of Sun
Jun, from the SingaporeManagement University in Singapore, entitled “Neural Network
Discrimination: Evaluation, Mitigation and Certification” addressed certification of
fairness of neural networks using formal verification techniques. The last talk entitled
“Rigorous system design for AI software” given by Saddek Bensalem, from Verimag
at the University of Grenoble Alpes in France, presented the results of the FOCETA
European project in rigorous verification and validation of critical systems.

TASE 2022 would not have succeeded without the deep investment and involvement
of the Program Committee members and the external reviewers who evaluated (with
more than 215 reviews) and selected the best contributions. This event would not exist
without the authors and contributors who submitted their proposals. We address our
thanks to everyone—reviewers, authors, ProgramCommitteemembers, and organization
committee members—involved in the success of TASE 2022.

The EasyChair system was set up for the management of TASE 2022, supporting
submission, review, and volume preparation processes. It proved to be a powerful
framework.

TASE 2022 had one affiliated workshop, the International Workshop on Formal
Engineering of Cyber-Physical Systems, which brought additional participants to the
symposium and helped make it an interesting and successful event. We thank all the
workshop chairs, organizers, and authors for their hard work on this.

TASE 2022 was hosted and sponsored by Babes, -Bolyai University, Cluj-Napoca,
Romania. The local organization committee offered all the facilities to run the event in
a lovely and friendly atmosphere. Many thanks to all the local organizers.

vi Preface

Lastly, we wish to express our special thanks to the steering committee members, in
particular Shengchao Qin and Huibiao Zhu, for their valuable support.

July 2022 Yamine Aït-Ameur
Florin Crăciun

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Yamine Ait Ameur (Chair) IRIT, INPT-ENSEEIHT, France
Étienne André Loria, Université de Lorraine, France
Toshiaki Aoki JAIST, Japan
Christian Attiogbe LS2N, Université de Nantes, France
Guangdong Bai University of Queensland, Australia
Richard Banach University of Manchester, UK
Luís Soares Barbosa University of Minho, Portugal
Marcello Bonsangue Leiden University, The Netherlands
Marius Bozga Verimag, Université Grenoble Alpes, France
Liqian Chen National University of Defense Technology,

China
Wei-Ngan Chin National University of Singapore, Singapore
Horatiu Cirstea Loria, France
Florin Craciun (Chair) Babeş-Bolyai University, Romania
Guillaume Dupont Institut de Recherche en Informatique de

Toulouse, France
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Simon Foster University of York, UK
Marc Frappier Université de Sherbrooke, Canada
Radu Grosu Stony Brook University, USA
Kim Guldstrand Larsen Aalborg University, Denmark
Thai Son Hoang University of Southampton, UK
Zoltán Horváth Eotvos Lorand University, Budapest
Zhe Hou Griffith University, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Andreas Katis KBR Inc., NASA Ames Research Center, USA
Olga Kouchnarenko University of Franche-Comté, France
Regine Laleau Paris-East Créteil University, France
Guoqiang Li Shanghai Jiao Tong University, China
Qin Li East China Normal University, China
Dorel Lucanu Alexandru Ioan Cuza University, Romania
Frederic Mallet Université Nice Sophia-Antipolis, France
Amel Mammar Telecom SudParis, France
Dominique Mery Loria, Université de Lorraine, France
Simona Motogna Babeş-Bolyai University, Romania

viii Organization

Kazuhiro Ogata JAIST, Japan
Jun Pang University of Luxembourg, Luxembourg
Shengchao Qin Teesside University, UK
Adrian Riesco Universidad Complutense de Madrid, Spain
Cristina Seceleanu Mälardalen University, Sweden
Neeraj Singh IRIT, INPT-ENSEEIHT, University of Toulouse,

France
Meng Sun Peking University, China
Rob van Glabbeek Data61, CSIRO, Australia
Naijun Zhan Institute of Software, Chinese Academy of

Sciences, China
Huibiao Zhu East China Normal University, China
Xue-Yang Zhu Institute of Software, Chinese Academy of

Sciences, China

Additional Reviewers

An, Jie
Ardourel, Gilles
Chen, Mingshuai
Cheng, Zheng
Chouali, Samir
Dubois, Catherine
Ehrlinger, Lisa
Enoiu, Eduard Paul
Fan, Guangsheng
Fehnker, Ansgar
Gervais, Frédéric
Gibson, J. Paul
Guo, Xiaoyun
Guok, Ernest
Hajder, Levente
Halder, Raju
He, Mengda
Ishii, Daisuke
Jérôme, Rocheteau
Kobayashi, Tsutomu
Kölbl, Martin
Ligeti, Peter
Lin, Bo
Lin, Shang-Wei
Liu, Ai

Liu, Zengyu
Marinho, Dylan
Masson, Pierre-Alain
McClurg, Jedidiah
Merz, Stephan
Nguyen, Thuy
Pardillo Laursen, Christian
Pintér, Balázs
Seceleanu, Tiberiu
Shi, Ling
Sochor, Hannes
Sun, Weidi
Tejfel, Máté
Tomita, Takashi
Truscan, Dragos
Wang, Shuling
Wen, Cheng
Xue, Bai
Yan, Fang
Zhan, Bohua
Zhang, Haitao
Zhang, Miaomiao
Zhao, Ying
Zhao, Yongxin

Keynotes

Neural Network Discrimination: Evaluation, Mitigation
and Certification

Jun Sun

Singapore Management University

Abstract. In recent years, neural network based machine learning has
found its way into various aspects of people’s daily life, such as face
recognition, personal credit rating, and medical diagnose. One desir-
able property of neural networks for applications with societal impact
is fairness. Since there are often societal biases in the training data, the
resultant neural networks might be discriminative as well. Recently, there
have been multiple attempts on improving fairness of neural networks,
with a focus on fairness testing.

In this line of research, we develop a series of approaches and
associated software tool-kits to evaluate a given neural network’s
fairness by systematically generating discriminatory instance (published
at ICSE’20), to mitigate discrimination in the neural network by fining
tuning a small number of guilty neurons (published at ICSE’22), and to
certify the neural network’s fairness through formal verification (pub-
lished at FM’21). We demonstrate that with our approaches are both
effective and efficiency using real-world applications.

SMT Solving: Historical Roots, Recent Developments
and Future Directions

Erika Ábrahám

RWTH Aachen University, Germany

The development of decision procedures for checking the satisfiability of
logical formulas has a long history in mathematical logic and symbolic
computation. Besides theoretical interest, their automation in the 60’s
raised their practical importance and increased the intensity of research
in this area. Besides computer algebra systems on the mathematical side,
in the 90’s another line of developments has been initiated in computer
science. Unified under the name satisfiability checking, powerful SAT
and SAT-modulo-theories (SMT) solvers have been developed that are
nowadays at the heart of many techniques for the synthesis and analysis
of software and hardware systems with probabilistic, timed, discrete,
dynamical or discrete-continuous components, and in general for all types
of large combinatorial problems like complex planning and scheduling
tasks.

In this talkwe give a historical overview of this development, describe
our own solver SMT-RAT, discuss some fascinating new developments
for checking the satisfiability of real-arithmetic formulas, and conclude
with some challenges for potential future research directions.

Rigorous System Design for AI Software

Saddek Bensalem

University Grenoble Alpes, VERIMAG, Grenoble, France
Saddek.Bensalem@univ-grenoble-alpes.fr

Abstract. The convergence of scientific and technological developments
in computing and networking with the physical side and Artificial Intelli-
gence (AI) will impact the forthcoming period concerning several system
aspects and disciplines. Learning-enabled Systems represent an exam-
ple of that convergence, which embraces engineering and technological
products. The learning-enabled system technologies are expected to bring
large-scale improvements through new products and services across var-
ious applications ranging from healthcare to logistics through manufac-
turing, transport, and more. Software is inarguably the enabling factor
for realizing such systems. Unfortunately, we still encounter deployment
limitations in the safety-critical application (transportation, healthcare,
etc.) due to a lack of trust, behavioral uncertainty, and technology com-
patibility with safe and secure system development methods. I will first
provide an overview of the project FOCETA1 (FOundations for Continu-
ous Engineering of Trustworthy Autonomy) and discuss its strategic goal
and its challenges. In the second part of my talk, I will present the prob-
lem of the verification and validation methods considered in the project
and discuss future research directions.

Supported by the European project Horizon 2020 research and innovation programme under
grant agreement No. 956123.

Contents

Practical Theory of Computation on Structures . 1
Klaus-Dieter Schewe

Complexity of Distributed Petri Net Synthesis . 15
Raymond Devillers and Ronny Tredup

Repairing Adversarial Texts Through Perturbation . 29
Guoliang Dong, Jingyi Wang, Jun Sun, Sudipta Chattopadhyay,
Xinyu Wang, Ting Dai, Jie Shi, and Jin Song Dong

Formal Verification of a Keystore . 49
Jaap Boender and Goran Badevic

A Case Study in the Automated Translation of BSV Hardware to PVS
Formal Logic with Subsequent Verification . 65
Nicholas Moore and Mark Lawford

Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial
of Service Attacks . 73
Francesco Parolini and Antoine Miné

On Verification of Smart Contracts via Model Checking . 92
Yulong Bao, Xue-Yang Zhu, Wenhui Zhang, Wuwei Shen, Pengfei Sun,
and Yingqi Zhao

Equivalence of Denotational and Operational Semantics for Interaction
Languages . 113
Erwan Mahe, Christophe Gaston, and Pascale Le Gall

Automatic Classification of Bug Reports Based on Multiple Text
Information and Reports’ Intention . 131
Fanqi Meng, Xuesong Wang, Jingdong Wang, and Peifang Wang

Collaborative Verification of Uninterpreted Programs . 148
Yide Du, Weijiang Hong, Zhenbang Chen, and Ji Wang

MSDetector: A Static PHP Webshell Detection System Based
on Deep-Learning . 155
Baijun Cheng, Yanhui Guo, Yan Ren, Gang Yang, and Guosheng Xu

xvi Contents

Extending Process Algebra with an Undefined Action . 173
S. Arun-Kumar

Machine-Assisted Proofs for Institutions in Coq . 180
Conor Reynolds and Rosemary Monahan

Optimizing Trans-Compilers in Runtime Verification Makes Sense –
Sometimes . 197
Hannes Kallwies, Martin Leucker, Meiko Prilop, and Malte Schmitz

Testing Vehicle-Mounted Systems: A Stepwise Symbolic Execution
Approach for OSEK/VDX Programs . 205
Haitao Zhang and Bowen Pu

Dynamic Specification Mining Based on Transformer . 220
Ying Gao, Meng Wang, and Bin Yu

Dynamic Environment Simulation for Database Performance Evaluation 238
Chunxi Zhang, Rong Zhang, and Kai Liu

Extending SysML with Refinement and Decomposition Mechanisms
to Generate Event-B Specifications . 256

Racem Bougacha, Régine Laleau, Simon Collart-Dutilleul,
and Rahma Ben Ayed

Development of Monitoring Systems for Anomaly Detection Using ASTD
Specifications . 274
El Jabri Chaymae, Frappier Marc, Ecarot Thibaud,
and Tardif Pierre-Martin

A Language-Based Causal Model for Safety . 290
Marcello Bonsangue,Georgiana Caltais,Hui Feng, andHünkar Can Tunç

Consistency of Heterogeneously Typed Behavioural Models:
A Coalgebraic Approach . 308
Harald König and Uwe Wolter

Improving Adversarial Robustness of Deep Neural Networks via Linear
Programming . 326
Xiaochao Tang, Zhengfeng Yang, Xuanming Fu, Jianlin Wang,
and Zhenbing Zeng

AllSynth: Transiently Correct Network Update Synthesis Accounting
for Operator Preferences . 344
Kim Guldstrand Larsen, Anders Mariegaard, Stefan Schmid, and Jiří Srba

Contents xvii

End-to-End Heat-Pump Control Using Continuous Time Stochastic
Modelling and Uppaal Stratego . 363

Imran Riaz Hasrat, Peter Gjøl Jensen, Kim Guldstrand Larsen,
and Jiří Srba

Security Vulnerabilities Detection Through Assertion-Based Approach 381
Salim Yahia Kissi, Rabéa Ameur-Boulifa, and Yassamin Seladji

The Complexity of Evaluating Nfer . 388
Sean Kauffman and Martin Zimmermann

Supporting Algorithm Analysis with Symbolic Execution in Alk 406
Alexandru-Ioan Lungu and Dorel Lucanu

Author Index . 425

Practical Theory of Computation
on Structures

Klaus-Dieter Schewe(B)

Zhejiang University, UIUC Institute, 718 East Haizhou Road, Haining 314400,
Zhejiang, China

kd.schewe@intl.zju.edu.cn

Abstract. There are hardly two fields in Computer Science that are
further apart than Software Engineering and Theoretical Computer Sci-
ence. The lack of theoretical foundations in the field of Software Engi-
neering has a counterpart, as the theoretical foundations have not caught
up with the development of practical software systems. This raises the
question how a theory of computation should look like that modernises
the classical theory and at the same time is suitable for practical systems
development. This article is dedicated to a sketch of a theory of com-
putation centred around the notion of algorithmic systems. I will argue
that behavioural theories are key to the understanding, i.e. we require
language-independent axiomatic definitions of classes of algorithmic sys-
tems that are accompanied by abstract machine models provably captur-
ing the class under consideration. The machine models give further rise
to tailored logics through which properties of systems in the considered
class can be formalised and verified, and to fine-tuned classifications on
the grounds of complexity restrictions. All extensions are conservative in
the sense that the classical theory of computation is preserved, universal
in the sense that all practical developments are captured uniformly, and
practical in the sense that languages associated with the abstract machine
models can be used for rigorous high-level systems design and develop-
ment, and the logics can be exploited for rigorous verification of desirable
properties of systems.

Keywords: Theory of computation · Behavioural theory ·
Computation on structures · Abstract State Machines · Algorithmic
system · Software engineering

1 Introduction

Computer Science has many origins, the most important ones in Mathematics
and in Electrical Engineering. As described in detail in Egon Börger’s 1985
influential monograph on computability, complexity and logic (see the English
translation in [2]) it took decades to solve the key problem phrased by Alan
Turing to capture in a mathematically precise way the notion of algorithm (or at
least a specific class of algorithms) and to provide formalisms that can then be
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-031-10363-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_1

2 K.-D. Schewe

used to specify and reason about them. Börger’s monograph was at that time the
most advanced text summarising the “classical” theory of computation centred
around the links between computation theory, logic and complexity theory.

Throughout the centuries the research on the mathematical foundations of
a universal computation theory was always coupled with the construction of
machines that can be used to do practical computations. With the advent of
transistors it became possible to create large computers, which enabled the prac-
tical realisation of many computation problems. This example of the engineering
of practically useful machines was deeply grounded in the development in the
mathematical science, which provided first the understanding of computing.

While the hardware had become available and the foundational theory
existed, the bridge between an understanding of what a computation is to a
practical development of algorithmic software systems did not exist. This led
to an increasing number of fatal software errors caused by a reduction of soft-
ware development to “quick and dirty” programming. In order to address these
problems leading computer scientists came together in a conference dedicated
to analyse the problems and find ways out of the “software crisis”. The lengthy
discussions were summarised in a report [18].

In a nutshell, while there were differing opinions, the conference participants
agreed on the need to establish an engineering discipline addressing the sys-
tematic development of software systems. Software Engineering was supposed to
work as any other engineering discipline: deeply grounded in scientific knowledge,
focussed on problems arising in practice, and universal in the sense that software
systems of all kinds are to be supported. More than 50 years have passed since
this conference, but “Software Engineering” is still far away from the rigour in
other engineering disciplines.

Let us take an example from civil engineering, the construction of a large
bridge with multiple pillars and long swinging segments. He would most likely
start with an idea of the architecture: what type of bridge it should be, how long,
how wide, how many pillars would be required, etc. He would investigate the fea-
sibility, whether the bridge could be built at the designated location. He would
proceed calculating the statics and dynamics of the construction: which forces are
expected, which environmental and weather conditions are to be expected, how
the bridge will swing etc. to ensure the stability of the construction under all fore-
seeable conditions. He would verify, which materials would be required to satisfy
all requirements and proceed with a detailed construction plan. Throughout the
process all design decisions and all verification would be carefully documented.

These principles of engineering should also apply to the engineering of soft-
ware systems. In a recent article Börger analyses the role of executable abstract
programs for software development and documentation [4]. The intuitive under-
standing of those programs fits the computational mindset of software system
engineers and can be supported by a simple but precise behavioural definition.
They can be used in the practitioner’s daily work to rigorously formulate every
design or implementation decision taken on the path from the application view
of the system that is to be developed system. The executable abstract programs

Practical Theory of Computation on Structures 3

of the resulting system documentation represent definitions of implementation
steps one can check and justify by validation (due to their executable charac-
ter) or by reasoning (due to the mathematical definition of their behaviour).
For complex systems the implementation obviously involves multiple refinement
steps. As such the development process produces as side effect a documentation
that facilitates the understandability of the final software and improves its reli-
ability. It also enhances the maintenance process (including reuse and change)
and reduces enormously its cost. However, most common methods on Software
Engineering lack this grounding in mathematical foundations.

On the other hand, also more than 35 years have passed since the publication
of Börger’s monograph on the theory of computation, complexity and logic. Over
this period the practice of computing has changed a lot, but it seems that also
the theoretical foundations have not caught up with the practical challenges.

In this article I will first sketch in Sect. 2 how a theory of computation cen-
tred around the notion of algorithmic systems could look like. I will argue that
behavioural theories are key to the understanding, i.e. we require language-
independent axiomatic definitions of classes of algorithmic systems that are
accompanied by abstract machine models provably capturing the class under
consideration. The machine models give further rise to tailored logics through
which properties of systems in the considered class can be formalised and veri-
fied, and to fine-tuned classifications on the grounds of complexity restrictions. I
will briefly discuss the practical consequences a precise classification of software
systems according to their complexity has. In Sect. 3 as an example I will address
Gurevich’s conjecture that there is no logic capturing PTIME.

2 Towards a Theory of Computation on Structures

In the introduction we stated that software systems have significantly changed
over the last decades. We are now dealing with systems of systems that operate
in parallel exploiting synchronously multiple processor cores and asynchronously
computing resources distributed over networks, interact with their environment,
adapt their own behaviour, integrate reasoning about themselves and their envi-
ronment, and support random choices.

All these developments require scientific foundations centred around compu-
tation theory, complexity and logic:

– Is there a theory of computation that faithfully covers all the aspects of
systems of computing systems that occur in practice?

– Is there a methodology grounded in such a theory of computation that permits
the definition and classification of complex systems and the provision of means
for specification, systematic development, validation and verification?

– Is there a methodology that permits reasoning about problems and their
solutions in terms of correctness and complexity?

A first answer was given in 1985 by Gurevich’s “new thesis” [14], which was
further elaborated in the 1995 Lipari guide [16]. The new theory emphasises

4 K.-D. Schewe

Tarski structures (aka universal algebras) to capture abstract states of systems
and evolving algebras, now known as Abstract State Machines (ASMs), as the
abstract machines capturing the algorithms on arbitrary levels of abstraction.
Egon Börger realised that these ideas do not only create a new paradigm for
the foundations of computing subsuming the classical theory, but at the same
can be exploited for rigorous systems engineering in practice thereby fulfilling
the criteria of a “software engineering” discipline that deserves this name as
envisioned in the 1968 conference in Garmisch [18].

A remarkable success story started leading to proofs of compiler correctness
for the Warren Abstract Machine for Prolog [7], the translation from Occam
to transputers [5], the compilation of Java and the bytecode verifier [23], the
development of the sophisticated theory of ASM refinements [3], and much more.
The state of the theory and practice of ASMs is well summarised in Egon Börger’s
and Robert Stärk’s monograph on ASMs [9]. More recent examples are found in
the modelling companion by Börger and Raschke [6].

While the development proved that ASMs can take over the role of the formal
languages in computation theory, it took until 2000 to develop the celebrated
“sequential ASM thesis” [17]’. On one hand the thesis provided a language-
independent definition of the notion of sequential algorithm giving for the first
time in history a precise axiomatic definition of the notion of “algorithm”
(though restricted to sequential algorithms). On the other hand it contained
the proof that all algorithms as stipulated by the defining postulates are faith-
fully captured by sequential ASMs. This justified further to establish another
new notion: a behavioural theory comprises a machine-independent axiomatic
definition of a class of algorithms (or more generally: algorithmic systems), an
abstract machine model, and a proof that the machine model captures the class
of computations.

Starting from the first behavioural theory, the theory of sequential algo-
rithms, another behavioural theory of parallel algorithms was developed in [11]
closing the case of synchronous parallel algorithms. A convincing behavioural
theory for asynchronous algorithmic systems was developed in [8] with concur-
rent ASMs as the machine model capturing concurrent algorithms, i.e. families
of sequential or parallel algorithms associated with agents that are oblivious to
the actions of each other apart from recognising changes to shared locations.
Recently, a behavioural theory of reflective algorithms was developed address-
ing the question how to capture algorithmic systems that can adapt their own
behaviour [20].

The behavioural theories yield variants of Abstract State Machines that can
be used for rigorous systems development. Furthermore, Stärk and Nanchen
developed a logic for the reasoning about deterministic ASMs [22], which was
extended to non-deterministic ASMs in [12] by making update sets first-class
objects in the theory and proving completeness with respect to Henkin semantics.
It was also shown how the logic can be adapted to reason about concurrent ASMs
[13]. An extension to reflective ASMs was approached in [21].

Practical Theory of Computation on Structures 5

Complexity theory provides means for fine-tuned classification. One of the
few studies trying to bring complexity theory to the theory of ASMs is the theory
of choiceless polynomial time (CPT) [1], which studies the choiceless fragment of
PTIME using PTIME bounded deterministic Abstract State Machines. Though
it was possible to show that CPT subsumes other models of computation on
structures, it is strictly included in PTIME, so Gurevich posted his conjecture
that there is no logic capturing PTIME [15].

What is the impact of such fine-tuned classification on the field of Software
Engineering? Consider the complexity class NP, which is captured by the exis-
tential fragment of second-order logic. That is, if a decision problem can be
formulated in this logic, a solution is always possible by a backtracking algo-
rithm, which explores in a depth-first approach an exponentially sized search
space. Disregarding the “forgetfull” backtracking all other steps can be cap-
tured by deterministic PTIME ASMs. In this way the class the problem is in
already determines the structure of the solution algorithm, which adds further
support to the rigorous development method. If likewise we have a characteri-
sation of problems in PTIME, we should obtain a different class of algorithms
corresponding to ASMs of a certain type. In the next section I will outline that
non-deterministic PTIME ASMs with a restricted choice operator will suffice.

Certainly, NP and PTIME provide only a very coarse classification, but this
only reflects the state of the theory. It illustrates, however, how the mutual inter-
action between theory of computation on structures and practical engineering
works. Same as the civil engineer whose methods are grounded in mathemati-
cal theories, the computation theory must provide the templates for the various
problems of software engineers.

3 Insignificant Non-determinism

As an example we will now explore PTIME deeper addressing the problem,
whether there exists a computation model over structures that captures the
complexity class PTIME rather than Turing machines that operate over finite
strings. This problem was raised in 1982 by Chandra and Harel [10].

3.1 Abstract State Machines

An ASM is defined by a signature, i.e. a finite set of function (and relation) sym-
bols, a background, and a rule [9]. The signature defines states as structures, out
of which a set of initial states is defined. The sets of states and initial states are
closed under isomorphisms. The background defines domains and fixed opera-
tions on them that appear in every state, and the rule defines a relation between
states and successor states and thus also runs. Here we follow the development
for CPT [1] using hereditarily finite sets.

The background of an ASM, as we use them here, comprises logic names and
set-theoretic names. Logic names comprise the binary equality =, nullary func-
tion names true and false and the usual Boolean operations. All logic names are

6 K.-D. Schewe

relational. Set-theoretic names comprise the binary predicate ∈, nullary function
names ∅ and Atoms, unary function names

⋃
and TheUnique, and the binary

function name Pair .
The signature Υ of an ASM, as we use them here, comprises input names,

dynamic and static names. Input names are given by a finite set of relation
symbols, each with a fixed arity. Input names will be considered being static, i.e.
locations defined by them will never be updated by the ASM. Dynamic names
are given by a finite set of function symbols, each with a fixed arity, including
Output and a nullary function symbol Halt . Some of the dynamic names may be
relational. Static names are given by a finite set K of nullary function symbols
cf for all dynamic function symbols f .

States S are defined as structures over the signature Υ plus the background
signature, for which we assume specific base sets. A base set B comprises three
parts: a finite set A of atoms, which are not sets, the collection B = HF (A)
of hereditarily finite sets built over A, and a set K of constants cf /∈ B for all
static names cf . Each element x ∈ HF (A) has a well-defined rank rk(x). We
have rk(x) = 0, if x = ∅ or x is an atom. If x is a non-empty set, we define its
rank as the smallest ordinal α such that rk(y) < α holds for all y ∈ x. The atoms
in A and the sets in HF (A) are the objects of the base set B = HF (A) ∪ K. A
set X is called transitive iff x ∈ X and y ∈ x implies y ∈ X. If x is an object,
then TC (x) denotes the least transitive set X with x ∈ X. If TC (x) is finite,
the object x is called hereditarily finite.

The logic names are interpreted in the usual way, i.e. true and false are
interpreted by 1 and 0, respectively (i.e. by {∅} and ∅). Boolean operations
are undefined, i.e. give rise to the value 0, if at least one of the arguments is
not Boolean. An isomorphism is a permutation σ of the set A of atoms that
is extended to sets in B by σ({b1, . . . , bk}) = {σ(b1), . . . , σ(bk)} and to the
constants cf by σ(cf) = cf . Then every isomorphism σ will map the truth
values ∅ and {∅} to themselves. The set-theoretic names ∈ and ∅ are interpreted
in the obvious way, and Atoms is interpreted by the set of atoms of the base set.
If a1, . . . , ak are atoms and b1, . . . , b� are sets, then

⋃
{a1, . . . , ak, b1, . . . , b�} =

b1 ∪ · · · ∪ b�. For b = {a} we have TheUnique(b) = a, otherwise it is undefined.
Furthermore, we have Pair(a, b) = {a, b}.

An input name p is interpreted by a Boolean-valued function. If the arity
is n and p(a1, . . . , an) holds, then each ai must be an atom. Finally, a dynamic
function symbol f of arity n is interpreted by a function fS : Bn → B (or by fS :
Bn → {0, 1}, if f is relational). The domain {(a1, . . . , an) | f(a1, . . . , an) �= 0} is
required to be finite. For the static function symbols we have the interpretation
(cf)S = cf . With such an interpretation we obtain the set of states over the
signature Υ and the given background.

An input structure is a finite structure I over the subsignature comprising
only the input names. Without loss of generality it can be assumed that only
atoms appear in I. If the finite set of atoms in the input structure is A, then |A|
is referred to as the size of the input. An initial state S0 is a state over the base
set B = HF (A) ∪ K which extends I such that the domain of each dynamic

Practical Theory of Computation on Structures 7

function is empty. We call S0 = State(I) the initial state generated by I. To
emphasise the dependence on I, we also write HF (I) instead of B.

Terms and Boolean terms are defined in the usual way assuming a given set
of variables V . The set fr(t) of free variables in a term t is defined as usual, in
particular fr({t(v) | v ∈ s ∧ g(v)}) = (fr(t(v)) ∪ fr(s) ∪ fr(g(v))) − {v}. Also the
interpretation of terms in a state S is standard. ASM rules as we use them are
defined as follows:

skip. skip is a rule.
assignment. If f is a dynamic function symbol in Υ of arity n and t0, . . . , tn

are terms, then f(t1, . . . , tn) := t0 is a rule.
branching. If ϕ is a Boolean term and r1, r2 are rules, then also if ϕ then r1

else r2 endif is a rule. We also use the shortcut if ϕ then r1 endif for if ϕ
then r1 else skip endif.

parallelism. If v is a variable, t is a term with v /∈ fr(t), and r(v) is a rule, then
also forall v ∈ t do r(v) enddo is a rule. We use the shortcut par r1 . . . rk

endpar for forall i ∈ {1, . . . , k} do if i = 1 then r1 else if i = 2 then r2
else . . . if i = k then rk endif . . . endif enddo.

choice. If v is a variable, t is a term with v /∈ fr(t), and r(v) is a rule, then also
choose v ∈ {x | x ∈ Atoms ∧ x ∈ t} do r(v) enddo is a rule.

In the sequel we further use the shortcut let x = t in r(x) for choose
x ∈ Pair(t, t) do r(x) enddo. The rule associated with an ASM must be closed.
The semantics of ASM rules is defined via update sets that are built for the
states of the machine. Applying an update set to a state defines a successor
state.

If f is dynamic function symbol in Υ of arity n, and a1, . . . , an are objects
of the base set B of a state S, then the pair (f, (a1, . . . , an)) is a location of the
state S. We use the abbreviation ā for tuples (a1, . . . , an), whenever the arity
is known from the context. For a location � = (f, ā) we write valS(�) = b iff
fS(a1, . . . , an) = b; we call b the value of the location � in the state S. An update
is a pair (�, a) consisting of a location � and an object a ∈ B, and an update set
(for a state S) is a set of updates with locations of S and objects a in the base
set of S.

Now let S be a state with base set B, and let ζ : V → B be a variable
assignment. Let r be an ASM rule. Then we define a set of update sets Δr,ζ(S)
on state S for the rule r depending on ζ i the common way [9].

3.2 Polynomial-Time-Bounded ASMs

An update set Δ is consistent iff for any two updates (�, a1), (�, a2) ∈ Δ with
the same location we have a1 = a2. This defines the notion of successor state
S′ = S +Δ of a state S. For a consistent update set Δ ∈ Δr,ζ(S) and a location
� we have valS′(�) = a for (�, a) ∈ Δ and valS′(�) = valS(�) else. In addition, let
S + Δ = S for inconsistent update sets Δ.

Then the (closed) rule r of an ASM defines a set of successor states for each
state S. We write Δr(S, S′) for an update set in Δr(S) with S′ = S +Δr(S, S′).

8 K.-D. Schewe

A run of an ASM M with rule r is a finite or infinite sequence of states S0, S1, . . .
such that S0 is an initial state and Si+1 = Si + Δ holds for some update set
Δ ∈ Δr(Si). Furthermore, if k is the length of a run (k = ω for an infinite run),
then Halt must fail on all states Si with i < k.

Let S be a state with base set B. An object a ∈ B is called critical iff a is
an atom or a ∈ {0, 1} or a is the value of a location � of S or there is a location
� = (f, ā) with valS(�) �= ∅ and a appears in ā. An object a ∈ B is called
active in S iff there exists a critical object a′ with a ∈ TC (a′). In addition, if
R = S0, S1, . . . is a run of an ASM, then we call an object a ∈ B active in R iff
a is active in at least one state Si of R.

A PTIME (bounded) ASM is a triple M̃ = (M,p(n), q(n)) comprising an
ASM M and two integer polynomials p(n) and q(n). A run of M̃ is an initial
segment of a run of M of length at most p(n) with a total number of at most
q(n) active objects, where n is the size of the input in the initial state of the run.

We say that a PTIME ASM M̃ accepts the input structure I iff there is a
run of M̃ with initial state generated by I and ending in a state, in which Halt
holds and the value of Output is 1. Analogously, a PTIME ASM M̃ rejects the
input structure I iff there is a run of M̃ with initial state generated by I and
ending in a state, in which Halt holds and the value of Output is 0.

3.3 Insignificant Choice ASMs

Choice rules in the ASMs defined in the previous section are already restricted, as
only choices among atoms are permitted. We now introduce two further restric-
tions. An insignificant choice ASM (for short: icASM) is an ASM (as defined
above) that satisfies the following two conditions:

local insignificance condition. For every state S any two update sets Δ,Δ′ ∈
Δ(S) are isomorphic, and we can write Δ(S) = {σΔ | σ ∈ G} with a set of
isomorphisms G ⊆ Iso and Δ ∈ Δ(S).

branching condition. For isomorphic update sets Δ ∈ Δ(S) and Δ′ = σ(Δ) ∈
Δ(S′) we have σ(Δ(S + Δ)) = Δ(S′ + Δ′), i.e. σ defines an isomorphism
between the sets of update sets in the corresponding successor states.

A PTIME (bounded) icASM is a PTIME ASM M̃ = (M,p(n), q(n)) with
an ic-ASM M . The name “branching condition” is due to the fact that this
condition mainly depends on branching rules, as we shall see later. The name
“local insignificance condition” refers to the fact that condition only refers to
update sets in a state. We can also define a “global insignificance condition”.

An ASM M is globally insignificant iff for every run S0, . . . , Sk of length k such
that Halt holds in Sk, every i ∈ {0, . . . , k − 1} and every update set Δ ∈ Δ(Si)
there exists a run S0, . . . , Si, S

′
i+1, . . . , S

′
m such that S′

i+1 = Si +Δ, Halt holds in
S′

m, and Output = true (or false, respectively) holds in Sk iff Output = true (or
false, respectively) holds in S′

m. A PTIME (bounded) globally insignificant ASM
is a PTIME ASM M̃ = (M,p(n), q(n)) with a globally insignificant ASM M .

Proposition 3.1. Every ic-ASM is globally insignificant.

Practical Theory of Computation on Structures 9

The complexity class insignificant choice polynomial time (ICPT) is the col-
lection of pairs (K1,K2), where K1 and K2 are disjoint classes of finite structures
of the same signature, such that there exists a PTIME icASM that accepts all
structures in K1 and rejects all structures in K2.

We also say that a pair (K1,K2) ∈ ICPT is ICPT-separable. As for the
analogous definition of CPT a PTIME icASM may accept structures not in
K1 and reject structures not in K2. Therefore, we also say that a class K of
finite structures is in ICPT, if (K,K ′) ∈ ICPT holds for the complement K ′ of
structures over the same signature.

3.4 PTIME Logics

Let us link the definition of ICPT to PTIME logics as defined in [1]. In general,
a logic L can be defined by a pair (Sen,Sat) of functions satisfying the following
conditions: Sen assigns to every signature Υ a recursive set Sen(Υ), the set of
L-sentences of signature Υ . Sat assigns to every signature Υ a recursive binary
relation SatΥ over structures S over Υ and sentences ϕ ∈ Sen(Υ). We assume
that SatΥ (S, ϕ) ⇔ SatΥ (S′, ϕ) holds, whenever S and S′ are isomorphic. We say
that a structure S over Υ satisfies ϕ ∈ Sen(Υ) (notation: S |= ϕ) iff SatΥ (S, ϕ)
holds.

If L is a logic in this general sense, then for each signature Υ and each sentence
ϕ ∈ Sen(Υ) let K(Υ, ϕ) be the class of structures S with S |= ϕ. We then say
that L is a PTIME logic, if every class K(Υ, ϕ) is PTIME in the sense that it
is closed under isomorphisms and there exists a Turing machine that maps ϕ
to a PTIME Turing machine Mϕ that accepts exactly the standard encodings
of ordered versions of the structures in the class. We further say that a logic L
captures PTIME iff it is a PTIME logic and for every signature Υ every PTIME
class of Υ -structures conincides with some class K(Υ, ϕ).

These definitions of PTIME logics can be generalised to three-valued logics,
in which case SatΥ (S, ϕ) may be true, false or unknown. For these possibilities
we say that ϕ accepts S or ϕ rejects S or neither, respectively. Then two disjoint
classes K1 and K2 of structures over Υ are called L-separable iff there exists a
sentence ϕ accepting all structures in K1 and rejecting all those in K2.

In this sense, ICPT is to define a three-valued PTIME logic that separates
pairs of structures in ICPT. The idea is that sentences of this logic are PTIME
icASMs, for which Υ is the signature of the input structure. By abuse of termi-
nology we also denote this logic as ICPT. We therefore have to show that these
PTIME icASMs over Υ form a recursive set. We also have to show that every
PTIME icASM M can be simulated by a PTIME Turing machine M ′ such that
M produces Output = true iff M ′ accepts the standard encoding of an ordered
version of the input structure for M .

10 K.-D. Schewe

3.5 Recursive Syntax

We defined icASMs by three restrictions. Choices are only permitted among
atoms, which is already covered by the syntactic restriction of choice rules, in
which the condition x ∈ Atoms is required.

Using the logic of non-deterministic ASMs [13] without meta-finite states,
multiset functions and update multisets, we will show that the local insignificance
and the branching conditions can be expressed in this logic. We then modify
the semantics of choice and the semantics of ASM rules by integrating these
conditions, which allows us to define icASMs syntactically in the same way as
the ASMs in the preceding section. In this way we obtain the required recursive
set of “sentences”.

Local Insignificance Condition. First we show how to express that X rep-
resents an update set, or is consistent. For these we have

isUSet(X) ≡ ∀x1, x2, x3.X(x1, x2, x3) →
∨

f∈Υdyn

(x1 = cf ∧ ∃y1, . . . , yar(f).x2 = (y1, . . . , yar(f))

using ar(f) to denote the arity of f and Υdyn to denote the set of dynamic
function symbols and

conUSet(X) ≡ isUSet(X)∧∀x1, x2, x3, x4.

(X(x1, x2, x3) ∧ X(x1, x2, x4) → x3 = x4).

For local insignificance we need that all update sets in Δr(S) are isomorphic,
so we express that X is an isomorphism by

iso(X) ≡ ∀x, y1, y2.(X(x, y1) ∧ X(x, y2) → y1 = y2) ∧
∧

f∈Υdyn

X(cf , cf)∧

∀x1, x2, y.(X(x1, y) ∧ X(x2, y) → x1 = x2) ∧ ∀x∃y.X(x, y) ∧ ∀y∃x.X(x, y)∧
∀x, y.[X(x, y) → (x ∈ Atoms ↔ y ∈ Atoms)

∧ ∀u.(u ∈ x → ∃v.v ∈ y ∧ X(u, v)) ∧ ∀v.(v ∈ y → ∃u.u ∈ x ∧ X(u, v))]

This leads to the following constraint for a rule r expressing that any two update
sets yielded by r are isomorphic:

∀X1,X2. updr(X1) ∧ updr(X2) → ∃X.(iso(X) ∧ updIso(X1,X2,X))

with

updIso(X1,X2,X) ≡
∧

f∈Υdyn

[∀x̄1, x2, ȳ1, y2.(X1(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2)

→ X2(cf , ȳ1, y2))

Practical Theory of Computation on Structures 11

∧ ∀x̄1, x2, ȳ1, y2.(X2(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2)

→ X1(cf , ȳ1, y2))]

We can use this characterisation of insignificant choice to modify the logic
in such a way that a choice rule will either become an insignificant choice or
there is no update set at all. In order to express local insignificance we modify
the definition of formulae updr(X) expressing that the rule r yields an update
set X (for details see [13]) by introducing new formulae of the form updic

r (X).
If r is not a choice rule, we simply keep the definitions of updr (i.e. we replace
updr everywhere by updic

r (X)), but for a choice rule r of the form choose
v ∈ {x | x ∈ Atoms ∧ x ∈ t} do r′(v) enddo we define

updic
r (X) ↔ ∃v.v ∈ Atoms ∧ v ∈ t ∧ updic

r′(v)(X)∧
∀Y.(∃x.x ∈ Atoms ∧ x ∈ t ∧ updic

r′(x)(Y)) → ∃Z.(iso(Z) ∧ updIso(X,Y,Z))

Syntactically, rules of icASMs are the same as arbitrary ASM rules, but the
semantics of choice is changed to enforce semantically the satisfaction of the
local insignificance condition.

Branching Condition. For the branching condition two states S and S′ have
to be considered. However, given a state S of an icASM we only need to consider
states S′, for which there exists update sets Δ′ ∈ Δr(S′) isomorphic to some
Δ ∈ Δr(S). We can therefore assume that there exists an ASM rule rini such
that S′ = S+Δini for some Δini ∈ Δrini

(S)—we will investigate this rule further
in the next section. Then the following constraint expresses that the branching
condition is satisfied, more precisely: if the condition holds in state S, then the
branching condition holds for state pairs S, S′, where S′ results from S by the
rule rini.

∀X1,X2, Z.isUSet(X1) ∧ isUSet(X2) ∧ isUSet(Z) ∧ updic
r (X1) ∧ updic

rini
(Z)∧

[Z]updic
r (X2) ∧ ∃X.iso(X) ∧ updIso(X1,X2,X) → updIsoSet(X1,X2,X, Z)

using the definition

updIsoSet(X1,X2,X, Z) ≡ ∀Y1, Y2.(isUSet(Y1) ∧ isUSet(Y2)∧
updIso(Y1, Y2,X)) → ([X1]updr(Y1) ↔ [Z][X2]updr(Y2))

Now we can modify the semantics of icASM rules by enforcing that update
sets are only yielded in states S that satisfy the condition (??) above. Otherwise
no update set will be yielded, which implies the computation of the machine to
get stuck. We therefore define

Updr(X) ≡ updic
r (X) ∧ ∀Y,Z.(isUSet(Y) ∧ isUSet(Z) ∧ updic

rini
(Z)∧

[Z]updic
r (Y) ∧ ∃U.iso(U) ∧ updIso(X,Y,U) → updIsoSet(X,Y,U, Z))

Syntactically, rules of icASMs are still the same as arbitrary ASM rules, but their
semantics is changed to enforce semantically the satisfaction of the branching
condition.

12 K.-D. Schewe

3.6 PTIME Verification

We want to show that ICPT captures PTIME, so we need to show that (1) for
every PTIME problem expressed by a Boolean query ϕ on a structure I there
exists a PTIME icASM that halts on the input structure I with Output = true
iff I satisfies ϕ, and (2) any PTIME icASM M can be simulated by a PTIME
Turing machine. More precisely, we need to translate M into a TM T such that
M halts on an input structure I with a result Output = true iff T accepts the
standard encoding of an ordered version of I.

While (1) is rather straightforward, there are several problems associated
with (2). We need to simulate a non-deterministic ASM by a deterministic Tur-
ing machine. However, according to Lemma 3.1 icASMs are globally insignificant,
so a choice can always be replaced by the selection of the smallest atom satisfy-
ing the required condition. The translation must be effective, so we consider the
direct simulation of every rule construct by a Turing machine. This is straight-
forward, as we know how to combine Turing machines to realise branching, mul-
tiple parallel branches and choices. The simulating Turing machine must work
in polynomial time. As the bounds in set terms appearing in forall-rules ensure
that the number of parallel branches is polynomially bounded by the number
of active elements, the crucial problem is to ensure that checking the branching
condition in every step as well as checking the local insignificance condition for
every execution of a choice-rule can be done in polynomial time.

For the local insignificance condition a simulating Turing machine can pro-
duce encodings of all update sets in Δ(S) and write them onto some tape. Any
object appearing in an update set must be active, and there is a polynomial
bound q(n) on the number of active objects. Furthermore, as choices are only
among atoms there are at most n such update sets, and it suffices to explore at
most n− 1 isomorphisms defined by transpositions of two atoms. Applying such
an isomorphism to an update set requires time linear in the size of the update
set, and a follow-on check of set equality is again possible in polynomial time.
Hence checking the local insignificance condition can be simulated by a Turing
machine in polynomial time.

Checking the branching condition in PTIME will be more difficult. In the
following let S be a fixed state. We then say that a state S′ satisfies BC iff the
pair (S, S′) the branching condition.

Lemma 3.1. It can be checked in polynomial time, if S satisfies BC.

Next we show that BC satisfaction extends to isomorphic states.

Lemma 3.2. If S1 satisfies BC and S2 is isomorphic to S1, then also S2 satisfies
BC.

In order to further reduce the states, for which BC satisfaction needs to be
checked, we exploit bounded exploration witnesses, which are generalised from
parallel ASMs [11] to non-deterministic ASMs. We use the notation 〈t | ϕ〉V for
multiset comprehension terms, where t is a term defined over the signature of

Practical Theory of Computation on Structures 13

an ASM, ϕ is a Boolean term, and V is the set of free variables in the multiset
comprehension term. As we deal also with choice, we consider multiset compre-
hension terms, in which the term t itself is a multiset comprehension term. Call
such terms access terms. Clearly, the evaluation of an access term in a state S
yields a multiset of multisets of objects. A bounded exploration witness for an
ASM M with rule r is a finite set W of access terms such that for any two states
S1, S2 of M that coincide on W we have Δr(S1) = Δr(S2).

Then we show that BC satisfaction only depends on the W -similarity class.
For a bounded exploration witness W and a state S define an equivalence relation
∼S on W by t ∼S t′ iff valS(t) = valS(t′). Then we call states S and S′ W -similar
iff ∼S=∼S′ .

Lemma 3.3. If S1 satisfies BC and S1, S2 are W -similar, then also S2 satisfies
BC.

Lemma 3.3 shows that we only need to consider representatives S′ of W -
similarity classes in order to check the branching condition. As W is finite, there
are only finitely many equivalence relations on W , so we get only finitely many
W -similarity classes, and this number only depends on the ASM M and not
on the fixed state S. In order to avoid isomorphism checking for update sets,
we may further restrict the states that need to be considered by constructing
representatives of the W -similarity classes that yield an update set isomorphic
to an update set on S from the given state S.

Theorem 3.1. ICPT captures PTIME on arbitrary finite structures, i.e. ICPT
= PTIME.

With this theorem we obtain the desired syntactic characterisation of algo-
rithm solving problems in PTIME. Instead of exploiting search with backtracking
it is always possible to make a locally insignificant choice, so the algorithm will
obtain a solution without ever looking back.

References

1. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Ann. Pure Appl.
Logic 100, 141–187 (1999)

2. Börger, E.: Computability, Complexity, Logic, Studies in Logic and the Founda-
tions of Mathematics, vol. 128. North-Holland (1989)

3. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15(2–3), 237–
257 (2003). https://doi.org/10.1007/s00165-003-0012-7

4. Börger, E.: The role of executable abstract programs for software development and
documentation (2022, personal communication, to be published)

5. Börger, E., Durdanovic, I.: Correctness of compiling Occam to Transputer code.
Comput. J. 39(1), 52–92 (1996). https://doi.org/10.1093/comjnl/39.1.52

6. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Cham (2018). https://doi.org/10.1007/978-3-662-56641-1

7. Börger, E., Rosenzweig, D.: A mathematical definition of full Prolog. Sci. Comput.
Program. 24(3), 249–286 (1995). https://doi.org/10.1016/0167-6423(95)00006-E

https://doi.org/10.1007/s00165-003-0012-7
https://doi.org/10.1093/comjnl/39.1.52
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1016/0167-6423(95)00006-E

14 K.-D. Schewe

8. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Informatica
53(5), 469–492 (2015). https://doi.org/10.1007/s00236-015-0249-7

9. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
10. Chandra, A.K., Harel, D.: Structure and complexity of relational queries. J.

Comput. Syst. Sci. 25(1), 99–128 (1982). https://doi.org/10.1016/0022-
0000(82)90012-5

11. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016). https://doi.org/10.1016/j.tcs.2016.08.013

12. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A complete logic for Database
Abstract State Machines. Logic J. IGPL 25(5), 700–740 (2017)

13. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing – simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016). https://doi.org/10.1016/j.tcs.2016.08.013

14. Gurevich, Y.: A new thesis (abstract). Am. Math. Soc. 6(4), 317 (1985)
15. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)

Current Trends in Theoretical Computer Science, pp. 1–57. Computer Science
Press (1988)

16. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press (1995)

17. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

18. Naur, P., Randell, B.: Software Engineering, Report on a conference sponsored by
the NATO Science Committee (1968)

19. Schewe, K.-D.: Computation on structures. In: Raschke, A., Riccobene, E., Schewe,
K.-D. (eds.) Logic, Computation and Rigorous Methods. LNCS, vol. 12750, pp.
266–282. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76020-5 15

20. Schewe, K.D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR abs/2001.01873 (2020). http://arxiv.org/abs/2001.
01873

21. Schewe, K.-D., Ferrarotti, F.: A logic for reflective ASMs. In: Raschke, A., Méry,
D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 93–106. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48077-6 7

22. Stärk, R., Nanchen, S.: A logic for abstract state machines. J. Univ. Comput. Sci.
7(11) (2001)

23. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Cham (2001)

https://doi.org/10.1007/s00236-015-0249-7
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1016/j.tcs.2016.08.013
https://doi.org/10.1016/j.tcs.2016.08.013
https://doi.org/10.1007/978-3-030-76020-5_15
http://arxiv.org/abs/2001.01873
http://arxiv.org/abs/2001.01873
https://doi.org/10.1007/978-3-030-48077-6_7

Complexity of Distributed Petri Net
Synthesis

Raymond Devillers1 and Ronny Tredup2(B)

1 Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe, 1050 Brussels, Belgium

rdevil@ulb.ac.be
2 Institut Für Informatik, Universität Rostock,

Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Distributed Petri Net Synthesis corresponds to the task to
decide, for a transition system A (with event set E) and a natural number
κ, whether there exists a surjective location map λ : E → {1, . . . , κ}
and a Petri net N (with transition set E) such that, if two transitions
e, e′ ∈ E share a common pre-place, then they have the same location
(λ(e) = λ(e′)), whose reachability graph is isomorphic to A (in which
case such a solution should be produced as well). In this paper, we show
that this problem is NP-complete.

1 Introduction

Labeled transition systems, TS for short, are a widely used tool for describing
the potential sequential behaviors of discrete-state event-driven systems such as,
for example, Petri nets.

Petri net synthesis consists in deciding, for a given transition system A,
whether there exists a Petri net N whose reachability graph AN is isomorphic
to A, i.e., whether the TS indeed describes the behavior of a Petri net. In case of
a positive decision, a possible solution N should be constructed as well. In this
case, many solutions may usually be exhibited, sometimes with very different
structures, and we may try to find solutions in a structural subclass of Petri
nets with a particular interest.

Petri net synthesis has numerous practical applications, for example, in the
field of process discovery to reconstruct a model from its execution traces [1], in
supervisory control for discrete event systems [8], and in the design and synthesis
of speed-independent circuits [5].

One of the most important applications of Petri net synthesis is the extraction
of concurrency and distributability data from the sequential behavior given for
instance by a TS [3]: Although TS are used in particular to describe the behavior
of concurrent systems like Petri nets [10], they reflect concurrency only implicitly
by the non-deterministic interleaving of sequential sequences of events.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 15–28, 2022.
https://doi.org/10.1007/978-3-031-10363-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_2

16 R. Devillers and R. Tredup

In a Petri net whose reachability graph is isomorphic to a TS, the events of the
TS correspond to the transitions of the Petri net, and the pre-places of a transition
(an event in the TS) model the resources necessary for the firing of the transition
(the occurrence of the event in the TS). Accordingly, the pre-places of a transition
control the executability of the latter and, following Starke [11], transitions may be
considered to be potentially concurrent if the intersection of their presets is empty,
i.e., if they do not require the same resources. The concurrency of events (of the
TS) thus becomes explicitly visible through the empty intersection of the presets
of their corresponding transitions (in a synthesized net).

The question whether a TS having the event set E allows a distributed imple-
mentation not only asks about the concurrency of events, but goes a step further
and asks whether concurrent events can actually be implemented at different phys-
ical locations. More exactly, for a set L of locations, one wonders if there is a sur-
jective mapping λ : E → L that assigns a (physical) location to each event e ∈ E
of the TS such that no two events sent to different locations share an input place.

In particular, it should be emphasized that concurrency and distributability
are not equivalent properties: As elaborated in [4], transitions can be concurrent,
but still not distributable. This phenomenon occurs, for example, in the context
of the problem known as confusion: Although two transitions, say a and b, do
not share any pre-places (do not require the same resources), there is a third
transition, say c, that requires both resources from a and resources from b, so
that a, b, and c must always be assigned to the same physical location.

The distributability of a transition system can thus be reduced to the dis-
tributability of Petri nets [3]. Note however that a TS may have various kinds
of synthesized nets, some of which may be more or less highly distributed, while
other ones are not at all. If λ is a distribution over E (in the sense just described),
we may then say that a TS is λ-distributable if it has a λ-distributable Petri net
synthesis. It is known that the question whether, for a TS A with event set E
and a location map λ : E → L, a corresponding λ-distributable Petri net exists
can be decided in polynomial time if λ is fixed in advance [3]. However, it is not
clear a priori how a set of locations, and a location map can be chosen such that
they describe an optimal distributed implementation of A, i.e., such that they
imply a solution of the following optimization problem:

Given a TS A with event set E, find the maximum number κ of locations,
and a (surjective) location map λ : E → {1, . . . , κ} that allow a distributed
implementation of A, i.e., such that there exists a λ-distributable Petri net N
whose reachability graph is isomorphic to A.

Since location maps are surjective, κ ≤ |E|, and sending all transitions to a
single location is always valid so that κ ≥ 1. Moreover, if we have a distribution
over κ locations, by grouping some of them we can get location maps to any
subset of them. Hence, we can reduce by dichotomy the previous problem to the
following:

Given a TS A with event set E, and a natural number κ between 1 and
|E|, decide whether there exists a (surjective) location map λ : E → {1, . . . , κ}
allowing a λ-distributable Petri net N whose reachability graph is isomorphic
to A.

Complexity of Distributed Petri Net Synthesis 17

In this paper, we shall show that the latter problem is NP-complete, hence
also the optimal one (so that these problems most probably cannot be solved
efficiently in all generality).

The remainder of this paper is organized as follows: The following Sect. 2
introduces the definitions, and some basic results used throughout the paper,
and provides them with examples. After that, Sect. 3 analyzes the distribution
problem and Sect. 4 provides the announced NP-completeness result. Finally,
Sect. 5 briefly closes the paper. The appendix contains some figures to help the
reader understand some of the proofs.

2 Preliminaries

In this paper, we consider only finite objects, i.e., sets of events, states, places,
etc. are always assumed to be finite.

Definition 1 (Transition System). A (deterministic, labeled) transition sys-
tem, TS for short, A = (S,E, δ, ι) consists of two disjoint sets of states S and
events E and a partial transition function δ : S × E −→ S and an initial state
ι ∈ S.
An event e occurs at state s, denoted by s

e , if δ(s, e) is defined. By ¬e we

denote that δ(s, e) is not defined. We abridge δ(s, e) = s′ by s
e

s′ and call

the latter an edge with source s and target s′. By s
e

s′ ∈ A, we denote that

the edge s
e

s′ is present in A. A sequence s0
e1 s1, s1

e2 s2, . . . , sn−1
en sn

of edges is called a (directed labeled) path (from s0 to sn in A), denoted by

s0
e1 s1

e2 . . .
en sn.

We assume that A is reachable: there is a path from ι to s for every state
s ∈ S \ {ι}.
Two transition systems A1 = (S1, E, δ1, ι1) and A2 = (S2, E, δ2, ι2) on the event
set E are said isomorphic (denoted A1

∼= A2) if there is a bijection β : S1 → S2

such that β(ι1) = ι2 and s1
e

s2 ∈ A1 iff β(s1)
e

β(s2) ∈ A2 for any s1, s2 ∈
S1, and e ∈ E.

s0 s1

s2s3

A

a

bb

a

110 011

002101

A

a

bb

a

Fig. 1. Two isomorphic TS A and A′; the initial states are indicated in bold.

18 R. Devillers and R. Tredup

Definition 2 (Petri net). A (weighted) Petri net N = (P,E, f,m0) consists
of finite and disjoint sets of places P and transitions E, a (total) flow f :
((P × E) ∪ (E × P)) → N and an initial marking m0 : P → N (more generally,
a marking is any function P → N, interpreted as giving a number of tokens
present in each place).
The preset of a transition is the set •e = {p ∈ P | f(p, e) > 0} of its pre-places.
The same may be defined for places, as well as postsets.
A transition e ∈ E can fire or occur in a marking m : P → N, denoted by

m
e , if m(p) ≥ f(p, e) for all places p ∈ P . The firing of e in marking m

leads to the marking m′(p) = m(p) − f(p, e) + f(e, p) for all p ∈ P , denoted by

m
e

m′. This notation extends to sequences w ∈ E∗ and the reachability set

RS(N) = {m | ∃w ∈ E∗ : m0
w

m} contains all of N ’s reachable markings. The
reachability graph of N is the TS AN = (RS(N), E, δ,m0), where, for every

reachable marking m of N and transition e ∈ E with m
e

m′, the transition
function δ of AN is defined by δ(m, e) = m′ (δ(m, e) is undefined if e cannot fire
in m).

Many subclasses of Petri nets may be defined, and we shall consider some
examples in the next section.

Definition 3 (Petri net synthesis). Petri net synthesis consists in deciding,
for a given transition system A, whether there exists a Petri net N whose reach-
ability graph AN is isomorphic to A, i.e., whether the TS indeed describes the
behavior of a Petri net.
In the positive case, one usually wants to also build such a net, called a solution
of the synthesis problem. In the negative case, it may be useful to exhibit one or
more reasons of the failure.
It is also possible to restrict the target to some specific subclass of nets.

N

a b

p0 p1

N

a b

p2

p0 p1

N

a b

p2

p0 p1

Fig. 2. Three different solutions of the TS A and A′ in Fig. 1. A′ is the reachability
graph of N ′.

Classical synthesis procedures are linked to the notion of regions and to the
solution of separation properties.

Complexity of Distributed Petri Net Synthesis 19

Definition 4 (Region). Let A = (S,E, δ, ι) be a TS. A region R = (sup, con,
pro) of A consists of three mappings support sup : S → N, as well as consume

and produce con, pro : E → N, such that if s
e

s′ is an edge of A, then con(e) ≤
sup(s) and sup(s′) = sup(s) − con(e) + pro(e).

A region may be seen as a place of a Petri net with transition set E, with
sup giving the marking of the place at each reachable state as specified by A,
con(e) giving the number of tokens needed (and thus consumed when firing) by
e in that place, and pro(e) giving the number of tokens produced by e in that
place when firing.

The state separation property ensures that different states may be differenti-
ated by a region, i.e., be associated with different markings:

Definition 5 (State Separation Property). Two distinct states s, s′ ∈ S
define the state separation atom, SSA for short, (s, s′) of A. A region R =
(sup, con, pro) solves (s, s′) if sup(s) 	= sup(s′). A state s ∈ S is called solvable
if, for every s′ ∈ S \ {s}, there is a region that solves the SSA (s, s′). If every
state of A is solvable, then A has the state separation property, SSP for short.

The event state separation property ensures that if an event e does not occur

at a state s in A, that is s
¬e , then the transition e cannot fire in the marking

associated to s in some region:

Definition 6 (Event State Separation Property). An event e ∈ E, and a

state s ∈ S of A such that s
¬e define the event state separation atom, ESSA for

short, (e, s) of A. A region R = (sup, con, pro) solves (e, s) if con(e) > sup(s).

An event e ∈ E is called solvable if, for every state s ∈ S such that s
¬e , there

is a region of A that solves the ESSA (e, s). If all events of A are solvable, then
A has the event state separation property, ESSP for short.

Definition 7 (Admissible Set). Let A = (S,E, δ, ι) be a TS. A set R of
regions of A is called an admissible set if it witnesses the SSP and the ESSP
of A, i.e., for every SSA, and for every ESSA of A, there is a region in R that
solves it.
If R is an (admissible) set of regions of A, NR

A is the Petri net where E is the set
of transitions, R is the set of places and, for each place R = (sup, con, pro) ∈ R,
the initial marking is sup(ι) and, for each transition e ∈ E, f(R, e) = con(e)
and f(e,R) = pro(e).

A classical result about Petri net synthesis is then:

Theorem 1 ([6]). A labeled transition system A has a weighted Petri net solu-
tion iff it has an admissible set R of regions. A possible solution is then NR

A .

20 R. Devillers and R. Tredup

3 Distributability

The idea here is to bind the events of a transition system or a Petri net to certain
(physical) locations.

Definition 8 (Location Map). Let E be a set, and L a set of locations. A
location map (over E and L) is a surjective mapping λ : E → L.

In the case of a Petri net, the intent is to separate the pre-sets of transitions
sent to different locations:

Definition 9 (Distributable Petri net). Let N = (P,E, f,m0) be a Petri
net, L a set of locations, and λ : E → L a location map. N will be called
λ-distributable if the following condition is satisfied: for all transitions e, e′ ∈ E
and every place p ∈ P , if f(p, e) > 0 and f(p, e′) > 0, then λ(e) = λ(e′).
Let κ ∈ N; N will be called κ-distributable (with 1 ≤ κ ≤ |E|) if it is
λ-distributable for some location map λ such that |L| = κ.

The last definition results from the observation that the exact identity of the
locations is not important: what really matters is the partition of the transition
set defined by λ, i.e., {λ−1(e) | e ∈ L}. Hence we may always choose L =
{1, . . . , |L|}. Moreover, if π is a permutation of L, we may use equivalently π ◦ λ
instead of λ.

For instance, the nets N and N ′ in Fig. 2 are λ-distributable with λ(a) =
1 and λ(b) = 2, hence also 2-distributable. On the contrary, N ′′ is only
1-distributable.

We may then consider the synthesis problems where the target is the class of
λ-distributable Petri nets, for some location map λ, or the class of κ-distributable
Petri nets, for some κ ∈ {1, . . . , |E|}.

Definition 10 (Localized Region). Let A = (S,E, δ, ι) be a TS, L a set of
locations and λ : E → L a location map. A λ-localized region is a region R =
(sup, con, pro) of A such that, if con(e) > 0, and con(e′) > 0, then λ(e) = λ(e′).

In other words, if λ(e) 	= λ(e′), then either con(e) = 0 or con(e′) = 0 (or
both).

Definition 11 (Localized admissible Set). Let A = (S,E, δ, ι) be a TS, L
a set of locations, and λ : E → L a location map. An admissible set R of regions
of A will be said λ-localized if all its members are λ-localized. It will be said κ-
localizable (for some κ ∈ {1, . . . , |E|}) if it is λ-localized for some location map
λ with |λ(E)| = κ.

The following result extends Theorem 1 to the localized context. It states
that the question whether there is a λ-distributable (or a κ-distributable) Petri
net whose reachability graph is isomorphic to A is equivalent to the question
whether there is a λ-localized (or a κ-localizable) admissible set of regions of A:

Complexity of Distributed Petri Net Synthesis 21

Theorem 2 ([2]). Let A = (S,E, δ, ι) be a TS, L a set of locations, λ : E → L a
location map, and κ ∈ {1, . . . , |E|} a degree of distribution. A has a λ-distributed
(or a κ-distributed) Petri net solution iff it has an admissible λ-localized (or κ-
localizable) set R of regions. A possible solution is then NR

A .

If a TS A allows a λ-distributed (hence also a κ-distributed) Petri net solu-
tion N , it is possible to extend the location map to the places: if p ∈ •e, we
may coherently state λ(p) = λ(e). If a place p has an empty post-set, we may
arbitrarily associate it to any location, for instance to λ(e) if e ∈ •p (if any),
but here the location may rely on the particular choice of e. If we add the ini-
tial marking and the arcs between the connected places and transitions in each
location, we shall then get |L| subnets N1, . . . , N|L|.

If these subnets are well separated, N =
⊕|L|

i=1 Ni is the disjoint sum of its
various localized components, in the sense of [7], and then its reachability graph is
isomorphic to the disjoint product of the reachability graphs of those components:
if Ai = RG(Ai) for each i ∈ {1, . . . , |L|}, A ∼= RG(N) ∼= ⊗|L|

i=1 RG(Ni). This is
the case for example for the net N in Fig. 2, but not for N ′ while both nets are
2-distributable and solutions of the same TS A.

In general, however, each component Ni still has to send tokens to places
belonging to other components, and the relationship on the reachability graphs
is not so obvious. In [3], the authors show how to get around the difficulty. Albeit
we shall not need it in the following, we sketch here their procedure. When com-
ponents have to exchange tokens, it is not possible to read it in the corresponding
transition systems, since the latter are considered up to isomorphisms, so that
the markings disappear. Instead, the idea is to add special transitions materializ-
ing the sending or reception of a token to or from another component, but these
extra transitions will be considered as invisible from outside. This leads to reach-
ability graphs and transition systems with invisible events, but it is possible to
define an equivalence, called branching bisimulation, which generalizes the iso-
morphism between transition systems without invisible events, and to combine
disjoint transition systems with invisible events in such a way that the combi-
nation of the reachability graphs of the (extended) components Ni is branching
bisimilar to the original TS A. For instance, for net N ′ in Fig. 2, this leads to
the components, reachability graphs and combination illustrated by Figs. 3, 4,
and 5.

4 Complexity Analysis

In [3], it is shown that the question whether, for a TS A with event set E and a
location map λ : E → L, a corresponding λ-distributable Petri net exists can be
decided in polynomial time. But this is only proved when λ is fixed in advance,
and it is not clear a priori if this remains true if λ is left unknown, as in the
decision problems mentioned in the introduction, which may now be formalized
as follows:

22 R. Devillers and R. Tredup

Optimal Distributability
Input: A TS A with event set E and an integer κ ∈ {1, . . . , |E|}.
Question: Is κ the maximal value such that A has a κ-distributable solu-

tion?

N1

a

p2
p0

1!p2

N2

b

p2 p1

2?p2

m

Fig. 3. N ′
1 and N ′

2 are the local components of N ′ associated to locations 1 and 2,
respectively; 1!p2 is the invisible transition that sends asynchronously a token to p2 in
N ′

2 from location 1, and 2?p2 is the invisible transition that receives asynchronously in
N ′

2 a token for p2. We can think of this sending/receiving of tokens as follows: There
is an additional (message) place m; the firing of 1!p2 produces a token on m (message
“N ′

1 sends a token for p2”); the firing of 2?p2 consumes a token from m, and produces
a token on p2 (“message received”).

10 01

00

A1

a

1!p2

10

01 02

11 12

A2

b

2?p2

2?p2

b

2?p2

Fig. 4. A′
1 and A′

2 are the corresponding reachability graph (bounded by the maximal
marking 2 of p2 in N ′).

(10, 10), (0) (01, 10), (0) (00, 10), (1) (00, 11), (0)

(10, 01), (0) (01, 01), (0) (00, 01), (1) (00, 02), (0)

A1 A2

a 1!p2 2?p2

a 1!p2 2?p2

b b b b

Fig. 5. Finally, A′
1 ⊗ A′

2 is the combination of A′
1 and A′

2 that is branching bisimilar
to A. A state (〈(s, s′)〉, (i)) of A′

1 ⊗ A′
2 corresponds to the pair (s, s′) of states of A′

1

and A′
2, respectively, and i is the number of messages sent but not yet received.

Complexity of Distributed Petri Net Synthesis 23

κ-Distributability
Input: A TS A with event set E and an integer κ ∈ {1, . . . , |E|}.
Question: Is there a κ-distributable solution?

We shall show in this section that the second problem (hence also the first one)
is unfortunately NP-complete. First of all, we argue for the membership in NP:
On the one hand, if, for a given TS A, and a natural number κ, there is a location
map λ that allows a corresponding λ-admissible set, then a non-deterministic
Turing machine can compute λ in polynomial time by simply guessing λ(e) ∈
{1, . . . , κ} for all e ∈ E: If E = {e1, . . . , e|E|}, then, for all i ∈ {1, . . . , |E|}, the
length of the binary encoding of λ(ei) is bounded by log2(|E|) + 1. Hence, the
nondeterministic computation of λ is bounded by O(log2(|E|)·|E|). On the other
hand, as mentioned above, it is known that once λ is fixed, one can compute
in polynomial time a corresponding λ-distributable admissible set R if it exists
(and reject the input otherwise) [2]. Hence, κ-distributability is in NP.

Cubic Monotone 1 in 3 3Sat (CM1in33Sat)
Input: A pair (U,M) that consists of a set U of boolean variables

and a set of 3-clauses M = {M0, . . . ,Mm−1} such that Mi =
{Xi0 ,Xi1 ,Xi2} ⊆ U and i0 < i1 < i2 for all ∈ {0, . . . , m − 1}.
Every variable of U occurs in exactly three clauses of M

Question: Does there exist a one-in-three model of (U,M), i. e., a subset
S ⊆ U such that |S ∩ Mi| = 1 for all i ∈ {0, . . . , m − 1}?

Theorem 3 ([9]). Cubic Monotone 1 in 3 3Sat is NP-complete.

Example 1. The instance (U,M), where U = {X0,X1,X2,X3,X4,X5}, and
M = {M0, . . . ,M5} such that M0 = {X0,X1,X2}, M1 = {X0,X1,X3}, M2 =
{X0,X1,X5}, M3 = {X2,X3,X4}, M4 = {X2,X4,X5}, and M5 = {X3,X4,X5},
allows a positive decision: S = {X0,X4} defines a one-in-three model for (U,M).

In the following, until explicitly stated otherwise, let (U,M) be an arbitrary
but fixed instance of CM1in33Sat such that U = {X0, . . . , Xm−1}, and M =
{M, . . . ,Mm−1}, where Mi = {Xi0 ,Xi1 ,Xi2} ⊆ U, and i0 < i1 < i2 for all
i ∈ {0, . . . , m − 1}. Note that |U| = |M | holds by the definition of a valid input.

Lemma 1. If S ⊆ U, then S is a one-in-three model of (U,M) if and only if
S ∩ Mi 	= ∅ for all i ∈ {0, . . . , m − 1}, and m = 3 · |S|.
Proof. Every variable of U occurs in exactly three distinct clauses. Hence, every
set S ⊆ U intersects with 3|S| (distinct) clauses Mi0 , . . . ,Mi3|S|−1 ∈ M if and
only if |S ∩ Mij

| = 1 for all j ∈ {0, . . . , 3|S| − 1}. ��
We shall polynomially reduce (U,M) to a TS A = (S,E, δ, ι) and a number κ

such that there is location map λ : E → {1, . . . , κ}, and a λ-localizable admissible
set of A if and only if (U,M) has a one-in-three model.

24 R. Devillers and R. Tredup

For a start, let κ = 2m
3 + 3, and L = {1, . . . , 2m

3 + 3}. (By Lemma 1, if
m 	≡ 0 mod 3, then (U,M) has no one-in-three model.) We proceed with the
construction of A, being the composition of several gadgets that are finally con-
nected by some uniquely labeled edges. First of all, the TS A has the following
gadget H that will allow to consider the ESSA α = (k, h1):

H = h0 h1

f0,0 f0,1

f1,0 f1,1

f2,0 f2,1

...
...

fm−1,0 fm−1,1

k

u0

k

u1

k

u2
k

um−1

k

Moreover, for every i ∈ {0, . . . , m − 1}, the TS A has the following gadget Ti

that represents the clause Mi = {Xi0 ,Xi1 ,Xi2} by using its variables as events,
and uses the event ui again.

Ti =

ti,0 ti,1

ti,2ti,3

ti,4 ti,5

ti,6ti,7

Xi0

Xi0

Xi0

Xi0

Xi1

Xi1

Xi1

Xi1

Xi2

Xi2

Xi2

Xi2

ui

Finally, the TS A = (S,E, δ, ι) has the initial state ι from which all introduced
gadgets are reachable by unambiguous labeled edges: for every i ∈ {0, . . . , m−1},

the TS A has the edge ι
ai ti,0, and, moreover, it has the edge ι

am h0. Note
that E = U ∪ {k} ∪ {a0, . . . , am} ∪ {u0, . . . , um−1}, and |E| = 3m + 2. In the
following, for any gadget G, we shall denote by S(G) the set of all its states.

Lemma 2. If there is a location map λ : E → L and a λ-localizable admissible
set R of A, i.e., for all e 	= e′ ∈ E and all R = (sup, con, pro) ∈ R, if con(e) > 0
and con(e′) > 0, then λ(e) = λ(e′), then there is a one-in-three model for (U,M).

Complexity of Distributed Petri Net Synthesis 25

Proof. We show that if R = (sup, con, pro) is a λ-distributable region of R that
solves (k, h1), then the set S = {X ∈ U | con(X) > 0} defines a one-in-three
model of (U,M).

We first argue that λ(ai) = λ(aj) for all i 	= j ∈ {0, . . . , m}: Since R witnesses

the ESSP of A, and tj,0
¬ai , there is a region R = (sup, con, pro) ∈ R that

solves the ESSA (ai, tj,0). By ι
ai , we have con(ai) ≤ sup(ι), and, since R

solves (ai, tj,0), we have con(ai) > sup(tj,0) ≥ 0. Together this implies sup(ι) >
sup(tj,0), and thus con(aj) > pro(aj) ≥ 0, since sup(tj,0) = sup(ι) − con(aj) +
pro(aj). Hence, by con(ai) > 0, and con(aj) > 0, we obtain λ(ai) = λ(aj).

Similarly, one argues that if i 	= j ∈ {0, . . . , m − 1} are arbitrary but fixed,
then λ(ui) = λ(uj), which results from a region that solves (ui, fj,0). Hence,
λ(ui) = λ(uj) for all i 	= j ∈ {0, . . . ,m}.

Let R = (sup, con, pro) be a region of R that solves (k, h1). (Note that R
exists, since R is an admissible set.) We first show now that the set S = {X ∈ U |
con(X) > 0} contains at least m

3 elements (which thus have all the same location

as k): Let i ∈ {0, . . . , m−1} be arbitrary but fixed. By h0
k , we have con(k) ≤

sup(h0), and since R solves (k, h1), we have con(k) > sup(h1). On the other hand,

by fi,0
k , we have con(k) ≤ sup(fi,0), which implies sup(h1) < sup(fi,0), and

thus con(ui) < pro(ui). By ti,6
ui ti,0, and con(ui) < pro(ui), we have that

sup(ti,0) > sup(ti,6). This implies that there is an event X ∈ {Xi0 ,Xi1 ,Xi2} on

the path ti,0
Xi0 ti,1

Xi1 ti,2
Xi2 ti,6 that satisfies con(X) > 0. This is due to the

fact that sup(ti,6) = sup(ti,0)− (
∑2

j=0 con(Xij
))+ (

∑2
j=0 pro(Xij

)). Since i was
arbitrary, this is simultaneously true for all i ∈ {0, . . . , m − 1}. Hence, as every
X ∈ U occurs in exactly three distinct clauses, say Mi,Mj ,M� (corresponding
to Ti, Tj , T�), we have 3|S| ≥ m, and thus |S| ≥ m

3 . Moreover, for all X ∈ S, it
holds λ(k) = λ(X).

Finally, we argue that S contains exactly m
3 elements: Since λ is a surjec-

tive mapping, and |{1, . . . , 2m
3 + 3} \ {λ(k), λ(a0), λ(u0)}| ≥ 2m

3 , and λ(a0) =
· · · = λ(am), and λ(u0) = · · · = λ(um−1), there have to be 2m

3 pairwise dis-
tinct events left that correspond to the remaining locations, i.e., we have that
|E \ ({k, a0, . . . , am, u0, . . . , um−1} ∪ S)| = |(U \ S)| ≥ 2m

3 . By |U| = m, and
|S| ≥ m

3 , this implies |S| = m
3 . In particular, by Lemma 1, we obtain that S

defines a one-in-three model of (U,M). This proves the lemma. ��
In order to complete the proof of the adequacy of our reduction, we now

show that the existence of a one-in-three model for (U,M) implies the existence
of a location map λ : E → {1, . . . , 2m

3 + 3} such that there is a λ-localizable
admissible set R of A. So let S be a one-in-three model of (U,M), and let
U \ S = {Xj1 , . . . , Xj 2m

3
} be set of all variable events, which do not participate

at the model. For all e ∈ E, we define λ as follows:

26 R. Devillers and R. Tredup

λ(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if e ∈ {k} ∪ S

2, if e ∈ {a0, . . . , am}
3, if e ∈ {u0, . . . , um−1}
	 + 3, if e = Xj�

for some 	 ∈ {1, . . . , 2m
3 }

The following facts show that A’s events are solvable by λ-localizable regions.
Due to space restrictions, we present regions R = (sup, con, pro) only implicitly
by sup(ι), and con, and pro; it will be easy to check that the definitions are
coherent, i.e., no support is negative and two different paths to a same state do
not lead to different supports. We summarize events by ER

c,p = {e ∈ E | con(e) =
c and pro(e) = p}. If e ∈ E is not explicitly mentioned in a set Ec,p, where c 	= 0
or p 	= 0, then e ∈ ER

0,0 = E \ {e ∈ E | con(e) 	= 0 or pro(e) 	= 0}, and we leave
this set implicitly defined in the obvious way.

In order to help the reader understand the regions presented in Fact 1 to
Fact 4, and Lemma 3, we gathered in an Appendix several figures illustrating
the gadgets H,T0, . . . , T5 of the TS A that would be the result of the reduction
applied on the instance of Example 1. For every figure, the coloring of the states
corresponds to the support of the states according to the region addressed by
the figure: red colored states have support 1, green colored states have support
2, blue colored states have support 3, and states without color have support 0.
These figures are intended to be withdrawed in a ready to publish version, to
cope with length constraints.

Fact 1. The event k is solvable by λ-localizable regions.

Proof. The following region R1 = (sup1, con1, pro1) solves (k, s) for all s ∈
{h1} ∪ ⋃m−1

i=0 {fi,1}: sup1(ι) = 1, and ER1
1,0 = {k} ∪S, and ER1

0,1 = {u0, . . . , um−1}.
The following region R2 = (sup2, con2, pro2) solves (k, s) for all states S \

S(H): sup2(ι) = 0, and ER2
1,1 = {k}, and ER2

0,1 = {am}. ��
Fact 2. If e ∈ {a0, . . . , am}, then e is solvable by λ-localizable regions.

Proof. The following region R3 = (sup3, con3, pro3) solves (e, s) for all e ∈
{a0, . . . , am} and all s ∈ S \ {ι}: sup3(ι) = 1, and ER3

1,0 = {a0, . . . , am}. ��
Fact 3. If e ∈ {u0, . . . , um−1}, then e is solvable by λ-localizable regions.

Proof. The following region R4 = (sup4, con4, pro4) solves (u, s) for all u ∈
{u0, . . . , um−1}, and all s ∈ S \ ({h1} ∪ ⋃m−1

i=0 {ti,6}): sup4(ι) = 0, and ER4
3,0 =

{u0, . . . , um−1}, and ER4
0,2 = {k}, and ER4

0,1 = {am} ∪ U.
Let j ∈ {0, . . . , m − 1} be arbitrary but fixed. The following region Rj

5 =
(supj

5, con
j
5.proj

5) solves (uj , s) for all s ∈ (
⋃m−1

i=0 {ti,6}) \ {tj,6}: supj
5(ι) = 0, and

ERj
5

1,1 = {uj}, and ERj
5

0,1 = {aj , am}. ��
Fact 4. For every e ∈ U, the event e is solvable by λ-localizable regions.

Complexity of Distributed Petri Net Synthesis 27

Proof. Let i ∈ {0, . . . , m − 1} be arbitrary but fixed, and let i0, i1, i2 ∈
{0, . . . , m − 1} be the three pairwise distinct indices such that Xi ∈ Mij

for
all j ∈ {0, 1, 2}. The following region Ri

6 = (supi
6, con

i
6, proi

6) solves (Xi, s) for

all s ∈ S \ ({s ∈ S | s
Xi } ∪ S(H)): supi

6(ι) = 0, and ERi
6

1,0 = {Xi}, and

ERi
6

0,1 = {ai0 , ai1 , ai2 , ui0 , ui1 , ui2}.
The following region Ri

7 = (supi
7, con

i
7, proi

7) solves (Xi, s) for all s ∈ S(H):

supi
7(ι) = 0, and ERi

7
1,1 = {Xi}, and ERi

7
0,1 = {ai0 , ai1 , ai2}. Since i was arbitrary,

this proves the lemma. ��
The following lemma completes the proof of Theorem 4:

Lemma 3. If there is a one-in-three model for (U,M), then there is a location
map λ : E → {1, . . . , 2m

3 + 3}, and a λ-localizable admissible set R of A.

Proof. By Fact 1 to Fact 4, there are enough λ-localizable regions of A that
witness the ESSP of A. Moreover, the region R3 of Fact 2 solves (ι, s) for all
s ∈ S \ {ι}. Furthermore, if i ∈ {0, . . . , m − 1} is arbitrary but fixed, then the
following region Ri

8 = (supi
8, con

i
8, proi

8), which is defined by supi
8(ι) = 0, and

ERi
8

0,1 = {ai}, solves (s, s′) for all s ∈ S(Ti) and all S \S(Ti). Hence, it remains to
argue for the solvability of the SSA (s, s′) such that s and s′ belong to the same
gadget of A.

Let i ∈ {0, . . . , m − 1} be arbitrary but fixed. One finds out that the regions
Ri0

6 , and Ri1
6 , and Ri2

6 that are defined in Fact 4 in order to solve the events Xi0 ,
and Xi1 , and Xi2 , respectively, altogether solve all SSA of Ti.

Hence, it remains to consider the SSA of H. Let i 	= j ∈ {0, . . . , m − 1} be
arbitrary but fixed. The region R1 of Fact 1 solves (h0, h1), and (fi,0, fi,1), and
the region Ri0

6 of Fact 4 solves (s, s′) for all s ∈ {h0, h1}, and all s′ ∈ {fi,0, fi,1}.
It remains to show that (s, s′) is solvable for all s ∈ {fi,0, fi,1}, and all

s′ ∈ {fj,0, fj,1}. In order to do that, we observe that there is a 	 ∈ {0, 1, 2}, such
that Xi�

	∈ Mj , since Mi, and Mj would be equal otherwise. Hence, the region
Ri�

6 of Fact 4 solves (s, s′). By the arbitrariness of i, and j, we have finally argued
that there is a witness of λ-localizable regions for the SSP of A. ��

Combining the various results of this section, we thus get our main result:

Theorem 4. κ-Distributability is NP-complete.

5 Conclusion

In this paper, we show that the problem of finding an optimal distributed imple-
mentation of a given TS A is a computationally hard problem by showing that
the corresponding decision problem is NP-complete. The presented reduction is
crucially based on the fact that the transitions of λ-distributed Petri nets may
simultaneously consume and produce from the same place. Future work could
therefore investigate the complexity of the problem restricted to pure Petri nets.
Also, one may investigate whether the parameterized version of the problem is
fixed parameter tractable when κ is chosen as the parameter.

28 R. Devillers and R. Tredup

Acknowledgements. We would like to thank the anonymous reviewers for their
detailed comments and valuable suggestions.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Cham (2011). https://doi.org/10.1007/978-
3-642-19345-3

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES,
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

4. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

5. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A
region-based theory for state assignment in speed-independent circuits. IEEE
Trans. CAD Integr. Circuits Syst. 16(8), 793–812 (1997). https://doi.org/10.1109/
43.644602

6. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315
(1996). https://doi.org/10.1007/s002360050046

7. Devillers, R.: Factorisation of transition systems. Acta Informatica 55(4), 339–362
(2017). https://doi.org/10.1007/s00236-017-0300-y

8. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of Petri net methods for controlled
discrete event systems. Discret. Event Dyn. Syst. 7(2), 151–190 (1997). https://
doi.org/10.1023/A:1008271916548

9. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discret. Comput.
Geom. 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6

10. Mukund, M.: Transition system models for concurrency. DAIMI Report Series
21(399) (1992). https://doi.org/10.7146/dpb.v21i399.6633. https://tidsskrift.dk/
daimipb/article/view/6633

11. Starke, P.H.: Analyse von Petri-Netz-Modellen. Teubner, Leitfäden und Monogra-
phien der Informatik (1990)

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1109/43.644602
https://doi.org/10.1109/43.644602
https://doi.org/10.1007/s002360050046
https://doi.org/10.1007/s00236-017-0300-y
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.7146/dpb.v21i399.6633
https://tidsskrift.dk/daimipb/article/view/6633
https://tidsskrift.dk/daimipb/article/view/6633

Repairing Adversarial Texts Through
Perturbation

Guoliang Dong1, Jingyi Wang1(B), Jun Sun2, Sudipta Chattopadhyay3,

Xinyu Wang1(B), Ting Dai4, Jie Shi4, and Jin Song Dong5

1 Zhejiang University, Hangzhou, China
{dgl-prc,wangjyee,wangxinyu}@zju.edu.cn

2 Singapore Management University, Singapore, Singapore
junsun@smu.edu.sg

3 Singapore University of Technology and Design, Singapore, Singapore
sudipta chattopadhyay@sutd.edu.sg

4 Huawei International Pte. Ltd., Singapore, Singapore
{daiting2,SHI.JIE1}@huawei.com

5 National University of Singapore, Singapore, Singapore
dongjs@comp.nus.edu.sg

Abstract. It is known that neural networks are subject to attacks through adver-
sarial perturbations. Worse yet, such attacks are impossible to eliminate, i.e., the
adversarial perturbation is still possible after applying mitigation methods such
as adversarial training. Multiple approaches have been developed to detect and
reject such adversarial inputs. Rejecting suspicious inputs however may not be
always feasible or ideal. First, normal inputs may be rejected due to false alarms
generated by the detection algorithm. Second, denial-of-service attacks may be
conducted by feeding such systems with adversarial inputs. To address this, in
this work, we focus on the text domain and propose an approach to automatically
repair adversarial texts at runtime. Given a text which is suspected to be adversar-
ial, we novelly apply multiple adversarial perturbation methods in a positive way
to identify a repair, i.e., a slightly mutated but semantically equivalent text that
the neural network correctly classifies. Experimental results show that our app-
roach effectively repairs about 80% of adversarial texts. Furthermore, depending
on the applied perturbation method, an adversarial text could be repaired about
one second on average.

Keywords: Adversarial text · Detection · Repair · Perturbation

1 Introduction

Neural networks (NNs) have achieved state-of-the-art performance in many tasks, such
as classification, regression and planning [31,36]. For instance, text classification is one
of the fundamental tasks in natural language processing (NLP) and has broad appli-
cations including sentiment analysis [10,41], spam detection [19,32] and topic label-
ing [50]. NNs have been shown to be effective for many text classification tasks [52].

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 29–48, 2022.
https://doi.org/10.1007/978-3-031-10363-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_3

30 G. Dong et al.

At the same time, NNs are found to be vulnerable to various attacks, which raise
many security concerns especially when they are applied in safety-critical applications.
In particular, it is now known that NNs are subject to adversarial perturbations [40], i.e.,
a slightly modified input may cause an NN to predict wrongly. Many attacking methods
have been proposed to compromise NNs designed and trained for a variety of applica-
tion domains, including images [6], audio [7] and texts [29]. Multiple approaches like
HotFlip [12] and TEXTBUGGER [22] have been proposed to attack NNs trained for
text classification. TEXTBUGGER attacks by identifying and changing certain impor-
tant characters (or words) in the text to cause a change in the classification result. For
example, given the text “Unfortunately, I thought the movie was terrible” which is
classified as ‘negative’ by an NN for sentiment analysis, TEXTBUGGER produces an
adversarial text “Unf0rtunately, I thought the movie was terrib1e” which is classified
as ‘positive’. While the above perturbation is detectable with a spell checker, there are
attacking methods like SEAs [33] that generate hard-to-detect adversarial texts.

Efforts on defending against adversarial attacks fall into two categories. One is to
train a robust classifier which either improves the accuracy on such examples, e.g.,
adversarial training [25,37] and training models with pre-processing samples generated
by dimensionality reduction or JPEG compression [8,49], or decreases the success rate
for attackers on generating adversarial samples, e.g., obfuscated gradients [9]. None
of these approaches, however, can eliminate adversarial samples completely [4] as the
adversarial samples may not be a flaw of the model but features in data [17]. Alternative
mitigation approaches alleviate the effects of such samples by detecting adversarial
samples [23,45,48,53].

Although most of the detecting approaches have focused on the image domain, sim-
ple approaches have been proposed to detect adversarial texts as well. One example is
to apply a character/word checker, i.e., Gao et al. [13], to detect adversarial texts gen-
erated by HotFlip and TEXTBUGGER. Detecting adversarial samples is however not
the end of the story. The natural follow-up question is then: what do we do when a
sample is deemed adversarial? Some approaches simply reject those adversarial sam-
ples [24,27,45]. Rejection is however not always feasible or ideal. First, existing detec-
tion algorithms often generate a non-negligible amount of false alarms [45,48], particu-
larly so for the simple detection algorithms proposed for adversarial texts [34]. Second,
rejection may not be an option for certain applications. For example, it is not a good
idea to reject an edit in public platforms (e.g., Wikipedia, Twitter and GitHub) even
if the edit is suspected to be maliciously crafted (e.g., toxic) [16]. Rather, it would be
much better to suggest a minor “correction” on the edit so that it is no longer malicious.
Lastly, rejecting all suspicious samples would easily lead to deny-of-service attacks.

Beyond rejection, a variety of techniques in the image domain are proposed to miti-
gate the effect of the adversarial samples after these samples are identified. For example,
Pixeldefend [39] rectified the suspicious images by changing them slightly towards the
training distribution. Akhtar et al. [2] attached a network to the first layer of the target
NN to reconstruct clean images from the suspicious ones. Agarwal et al. [1] proposed
to use wavelet transformation and inverse wavelet to remove the adversarial noise.

However, to the best of our knowledge, the question that whether we can effectively
repair adversarial texts has been largely overlooked so far. Even worse, the aforemen-
tioned mitigation approaches cannot be easily extended to the text domain due to sev-
eral fundamental new challenges. To address the gap, in this work, we aim to develop a

Repairing Adversarial Texts Through Perturbation 31

framework that automatically repairs adversarial texts. That is, given an input text, we
first check whether it is adversarial or not. If it is deemed to be adversarial, we identify
a slightly mutated but semantically equivalent text which the neural network correctly
classifies as the suggested repair.

Two non-trivial technical questions must be answered in order to achieve our goal.
First, how do we generate slightly mutated but semantically equivalent texts? Our
answer is to novelly apply adversarial perturbation methods in a positive way. One of
such methods is the SEAs attacking method which generates semantically ‘equivalent’
texts by applying neural machine translation (NMT) twice (i.e., translate the given text
into a different language and back). Another example is a perturbation method which
is developed based on TEXTBUGGER, i.e., identifying and replacing important words
in a sentence with their synonyms. Second, how do we know what is the correct label,
in the presence of adversarial texts? Our answer is differential testing combined with
majority voting. Given two or more NNs trained for the same task, our intuition is that
if there is a disagreement between the NNs, the labels generated by the NNs are not reli-
able. Due to the transferability of adversarial samples [14], a label agreed upon by the
NNs may still not be reliable. We thus propose to compare the outputs of the models
(in the form of probability vectors) based on KL divergence [42] to identify the cor-
rect label. Furthermore, we apply the sequential probability ratio test (SPRT) algorithm
to systematically evaluate the confidence of each possible label and output the most-
likely-correct label based on majority voting only if it reaches certain level of statistical
confidence.

We implemented our approach as a self-contained toolkit targeting NNs trained for
text classification tasks. Our experiments on multiple real-world tasks (e.g., for senti-
ment analysis and topic labeling) show that our approach can effectively and efficiently
repair adversarial texts generated using two state-of-the-art attacking methods. In par-
ticular, we successfully repair about 80% of the adversarial texts, and depending on the
applied perturbation method, an adversarial text could be repaired in as few as 1 second.

2 Background

In this section, we present the background that is relevant to this work, including a brief
introduction of text classification and several state-of-the-art approaches to generate
adversarial texts for NNs.

Text classification is one of the most common tasks in NLP. The objective is to
assign one or several pre-defined labels to a text. Text classification is widely applied
in many applications such as sentiment analysis [10,41], topic detection [50] and spam
detection [19,32]. Neural networks (NNs) have been widely adopted in solving text
classification tasks. In particular, Recurrent Neural Networks (RNNs), designed to deal
with sequential data, are commonly applied in many NLP tasks. In addition, Convolu-
tional Neural Networks (CNNs) are shown to achieve similar results on text classifica-
tion tasks [21]. In this work, we focus on RNNs and CNNs.

TEXTBUGGER is a general framework for crafting adversarial texts [22], which has
a similar mechanism as HotFlip [12], but is more efficient and scalable. Given an input
text, it first identifies the most important sentence and then the most important word. A

32 G. Dong et al.

Fig. 1. Overview of our approach.

word is most important if removing it leads to the biggest decrease in the classification
confidence. After a word is selected, five operations are applied to generate adversarial
texts. Four of the five operations are character-level operations which aim to generate
“human-imperceptible” texts, i.e., deleting a character. Similarly, adversarial texts gen-
erated by these operations are easily detected by a spell-checker. The last operation is to
substitute the selected word with a synonym (hereafter Sub-W), which is hard to detect
and likely semantic-preserving.

TEXTFOOLER is another recent method to generate adversarial texts [20]. Instead
of sorting sentences by importance at first, TEXTFOOLER directly performs word
importance ranking, and then replaces the words in the ranking list one by one
with a synonym until the prediction of the target model is changed. Compared with
TEXTBUGGER, TEXTFOOLER is more likely to generate more natural adversarial
texts since it takes the part of speech into account when selecting synonyms.

SEAs aims to generate semantic-equivalent adversarial texts by paraphrasing [33]
based on Neural Machine Translation (NMT). SEAs applies NMT to generating
semantic-preserving texts as adversarial texts, i.e., SEAs translates an input sentence
into multiple foreign languages and then translates them back to the source language
using NMT. Next, SEAs selects an adversarial text among those according to a seman-
tic score, which measures how semantic-preserving the text is compared to the original
input.

3 Our Repair Approach

Our aim is to automatically repair adversarial texts. We define our problem as follows.
Given a text input x and a pair of different NNs (f1, f2) which are trained for the same
task, how to automatically check whether x is likely adversarial and generate a repair
of x if x is deemed adversarial? Note that we assume the availability of two models f1
and f2. In practice, multiple models can be easily obtained by training with slightly dif-
ferent architectures, or different training sets, or through model mutation [45]. Figure 1
shows the overall workflow of our approach. Given an input text x and two models
(f1, f2), we first check whether x is likely adversarial. If the answer is positive, we

Repairing Adversarial Texts Through Perturbation 33

apply adversarial perturbation to generate a set of texts X∗ such that each x ∈ X∗ is
slightly different from x and likely semantically equivalent to x. Afterwards, we apply
a statistical testing method to identify the most-likely correct label of x (with a guaran-
teed level of confidence) based on X∗ and output a text in X∗ which is slightly different
from x as the repair. In the following paragraphs, we present the details of each step.

3.1 Adversarial Text Detection

Given an input text x, we first check whether it is adversarial. There are multiple meth-
ods for detecting adversarial perturbations in the image domain [45,53], but the topic
is relatively less studied in the text domain [48]. In this work, we propose an alterna-
tive approach to detect adversarial texts by differential testing [26]. We remark that the
objective of this work is to propose a framework for automatically repairing an adver-
sarial text and the detection part can be flexibly replaced by other detection method.

Algo 1: TbPerturb(x, g, f1, f2)
1 Let Cs be the importance scores for each sentence

in x;
2 for si ∈ x do
3 Cs(i) = DKL(si);

4 S ← sort the sentences in x according to Cs;
5 for si ∈ Sordered do
6 Let Cw be the importance scores for each

word in si;
7 for wj ∈ si do
8 Compute Cw(j) according to Eq. 1;

9 W ← sort the words in si according to Cw ;

10 Γ ← select g words according to S and W ;
11 x′ ← replace word w ∈ Γ in x with synonyms;
12 return x′;

Algo 2: hypTest(ci,X
∗, f1, α, β, σ, ρ)

1 Let k be the size of X∗;
2 Let z be the size of {y|y ∈ X∗ ∧ f1(y) = c};
3 Let α, β, σ, ρ be the parameter of hypothesis

testing;
4 p0 = ρ + σ;
5 p1 = ρ − σ;
6 sprt ratio ← Pr(z, k, p0, p1);

7 if sprt ratio ≤ β
1−α then

8 Accept the hypothesis that H(c) ≥ p0 ;
9 return;

10 if sprt ratio ≥ 1−β
α then

11 Accept the hypothesis that H(c) ≤ p1 ;
12 return;

13 return Inconclusive;

Applying differential testing naively in our context is however problematic because
of the transferability of adversarial samples, i.e., f1 and f2 may generate the same
wrong label given the same input. We thus need a more reliable way to check whether
x is adversarial. Our remedy is to further measure the difference between the prediction
distributions of the two models. Concretely, the output of a neural network for multi-
class classification is a probability vector f(x) = [p0, p1, · · · , pK], where f is a model
and pi is the probability of the input being class i and K is the total number of classes.
We enhance differential testing by comparing the difference of two models’ probability
vectors. That is, the input x is regarded adversarial if the difference of the probability
vectors is larger than a threshold.

We adopt KL divergence (DKL) [42] to measure the difference between the
two probability vectors. Formally, let f1(x) = [p0, p1, · · · , pK] and f2(x) =
[q0, q1, · · · , qK], then we have DKL(f1(x), f2(x)) = −∑K

i=1 pi ln qi

pi
. Hereafter, we

write DKL(x) to denote DKL(f1(x), f2(x)). Intuitively, DKL(x) is smaller if two dis-
tributions are more similar. Our hypothesis is that if the input is not adversarial, the
probability vectors f1(x) and f2(x) should be similar and thus the difference DKL(x)
should be small; otherwise it should be large. This is confirmed empirically as we show

34 G. Dong et al.

in Sect. 4. Thus, an input x is considered to be normal only if the labels generated by the
two models are the same and the DKL(x) is below the threshold. Otherwise, the input
is regarded as adversarial. The remaining question is how to set the threshold value,
which we solve using the standard method of golden-section search as we discuss in
Sect. 4.

3.2 Semantic-Preserving Perturbation

Once we identify an adversarial text x, the next challenge is how to automatically repair
the input. In general, a repaired text x′ should satisfy the following conditions: 1) x′ is
syntactically similar to x and semantically equivalent to x; 2) x′ is classified as normal
by the adversarial sample detection algorithm; and 3) x′ is labeled correctly. In the
following, we describe how to systematically generate a set of candidate repairs X∗

satisfying 1) and discuss how to identify a repair among the candidates that satisfies all
the conditions in Sect. 3.3.

We generate candidate repairs through perturbation, i.e., the same technique for
generating adversarial texts except that they are used in a positive way this time. In
particular, three different adversarial perturbation methods are applied to generate syn-
tactically similar and semantically equivalent texts.

The first one is random perturbation (RP). Let x = [w1, w2, · · · , wn] where wi is a
word in the text x. This method randomly selects g words in x and replaces them with
their synonyms. Note that to preserve the semantics, g is typically small. In particular,
for each selected word wi, we identify a ranked list [wi1, · · · , wiL] of its synonyms of
size L As a result, we obtain gL perturbations.

The second one is based on the idea of TEXTBUGGER with the Sub-W opera-
tion (SubW). That is, we first identify the important sentences, and replace the impor-
tant words in the sentence with their synonyms. Note that different from TEXTBUG-
GER [22], our goal is to decreaseDKL(x) so that the perturbed text passes the enhanced
differential testing. Thus, we evaluate the importance of a sentence and a word based
on its effect on DKL(x) (instead of the effect on the model prediction as in [22]). Con-
cretely, to obtain the importance of a sentence si, we calculate DKL(f1(si), f2(si)). A
sentence with a larger DKL is considered more important. Within a sentence, we obtain
the importance of a word wj by measuring the DKL of the sentence with/without wj .

DKL(f1(si), f2(si)) − DKL(f1(si \ wj), f2(si \ wj)) (1)

Intuitively, a word causing a larger decrease of DKL is more important. Afterwards,
the important words are replaced with their synonyms to generate perturbations. The
details are shown in Algorithm 1.

The third one is a paraphrase-based perturbation approach using NMT (ParaPer).
Formally, an NMT is a function T (s, d, x) : Xs → Xd, where s is the source lan-
guage, d is the destination language and x is the input text. The basic idea is to trans-
late the input text into another language and then translate it back, i.e., the new text is
x′ = T (d, s, T (s, d, x)). By varying the target language d, e.g., French and German, we
can generate multiple perturbations in this way. Furthermore, it is possible to translate
across multiple languages to generate even more perturbations. For instance, with two

Repairing Adversarial Texts Through Perturbation 35

target languages d1 and d2, we can generate x′ = T (d2, s, T (d1, d2, T (s, d1, x))) as
perturbations.

3.3 Voting for the Correct Label

After generating a set of texts X∗ which are slightly mutated from x and yet are seman-
tically equivalent to x, our next step is to identify a member x′ of X∗ that satisfies the
condition 2) and condition 3) proposed in Sect. 3.2. Satisfying 2) is straightforward.
That is, we filter those in X∗ which are determined to be adversarial using our detec-
tion algorithm. Satisfying 3) requires us to know what the correct label is. Our idea is
that we can ‘vote’ and decide on the correct label. Our hypothesis is that the majority
of texts in X∗ are likely classified correctly, and thus a democratic decision would be
correct. This idea is inspired by the observation made in [45], which shows that adver-
sarial samples (with wrong labels) in the image domain have a high label-change rate
when perturbations are applied. In other words, perturbing adversarial samples would
often restore the correct label. One interpretation is that adversarial samples are gen-
erated by perturbing normal samples just enough to cross the classification boundary,
and thus a slight mutation often restores the original label. We evaluate this hypothesis
empirically in Sect. 4. Based on the hypothesis, we formulate the problem as a statistical
testing problem. That is, we present it with a set of hypotheses (e.g., the correct label of
a text is ci where ci is one of the labels) and the problem is to identify the hypothesis
which is most likely true with statistical confidence.

Concretely, we adopt hypothesis testing [38] to guarantee that the probability of
choosing the correct label is beyond a threshold, say ρ. That is, given a label ci, we
systematically test the null hypothesis (H0) and the alternative hypothesis (H1) which
are defined as follows: H0(ci) : P (f(x) = ci) ≥ ρ and H1(ci) : P (f(x) = ci) < ρ,
where P (f(x) = ci) is the probability that the true label of x is ci. Given X∗ which
contains only texts that are semantically equivalent to x, we estimate P (f(x) = ci) as
|y∈X∗∧f1(y)=ci|

|X∗| . Note that all texts in X∗ have the same label. In general, given a lim-
ited number of perturbations, it might be possible that none of the H0(ci) is accepted.
Since there are multiple labels, we maintain a pair of hypotheses for each ci ∈ C and
perform a hypothesis testing procedure for every pair. There are two ways for perform-
ing hypothesis testing. One is the fixed-size sampling test (FSST), which performs the
test on a fixed number of samples. FSST requires to determine the minimum number
of samples to use such that the error bounds are satisfied. Typically, FSST requires a
large number of samples [3]. In general, the more samples used, the more accurate the
result would be. However, the more samples required, the more computational overhead
there is, which may be problematic if such repairing is to be carried out in an online
manner. We thus propose to use the sequential probability ratio test (SPRT) [43], which
dynamically determines the number of samples required and is known to be faster than
FSST [44]. Central to SPRT is to repeatedly sample until enough evidence is accumu-
lated to make a decision (accepting either hypothesis).

Algorithm 2 shows the details on how SPRT is applied in our work, where α is the
probability of the case in which H0 is rejected while H0 is true (a.k.a. Type I error), β
is the probability of the case in which H1 is rejected while H1 is true (a.k.a. Type II

36 G. Dong et al.

error), ρ is the confidence threshold described before, and σ is the indifference interval
used to relax the threshold. We then test hypotheses H0(ci) : P (f(x) = ci) ≥ p0
and H1(ci) : P (f(x) = ci) < p1 where p0 = ρ + σ and p1 = ρ − σ. At line 6,
we compute the likelihood ratio of SPRT [44] which is defined as: Pr(z, k, p0, p1) =
pz
1(1−p1)

k−z

pz
0(1−p0)k−z . At line 7, we check whether the ratio is no larger than β

1−α . If it is the

case, the hypothesis H0(ci) ≥ p0 is accepted and report the label ci as the true label
with error bounded by β. If the ratio is no less than 1−β

α , we then accept H1(ci) ≤ p1 at
line 11 and report the label ci is not the true label with error bounded by α. Otherwise,
it is inconclusive (i.e., more samples are required).

3.4 Overall Algorithm

Algorithm 3 shows the overall algorithm. The inputs include an input text x, a pair of
NNs f1 and f2, a threshold ε for hypothesis testing, and four parameters {α, β, σ, ρ}
for Algorithm 2. We first check whether x is adversarial or not at line 1. If it is normal,
x is returned without any modification. If it is adversarial and the labels from the two
models are the same, the label is added into D at line 3 since we assume that it is not
the correct label. The loop from line 4 to 15 then aims to repair x. We first obtain a
semantic-preserving perturbation of x at line 5. Note that function perturb(x) can be
implemented using either RP, SubW or ParaPer as we discussed in Sect. 3.2. We then
check whether the newly generated text x̂ is adversarial at line 6. If it is, we generate
another one until a perturbed text x̂ which is determined to be normal is generated.
If x̂ has a label which is never seen before, we add the label to C which is a set of
potentially correct labels for x. Afterwards, for each ci ∈ C, we conduct hypothesis
testing using Algorithm 2 at line 11. If H0(ci) is accepted, we identify a text in X∗

Algo 3: Repair(x, f1, f2, ε, α, β, σ, ρ)
1 if isAdversarial(x, f1, f2, ε) then
2 Let X∗ be an empty set, C = ∅ be a set of possible labels, and D = ∅ be a set of

rejected labels;
3 Add f1(x) into D if f1(x) = f2(x);
4 while true do
5 Let x̂ = perturb(x);
6 if not isAdversarial(x̂, f1, f2, ε) then
7 c = f1(x̂);
8 X∗ = X∗ ∪ {x̂};
9 Add label c into C if c /∈ C and c /∈ D;

10 for each ci ∈ C and ci /∈ D do
11 Let co be hypTest(ci, X

∗, f1, α, β, σ, ρ);
12 if co is accepted then
13 return x′ ∈ X∗ s.t. f1(x′) = ci;

14 if co is rejected then
15 D = D ∪ {ci};

16 return x;

Repairing Adversarial Texts Through Perturbation 37

which has the label ci as the repair of x and return it. If H0(ci) is rejected, the label
ci is added into D and we continue with the next iteration. Otherwise, if it is inclusive,
we continue with the next iteration. Note that to reduce the computational overhead, we
conduct hypothesis testing in a lazy way. That is, we maintain a set of witnessed labels
C (which is initially empty) and only test those in C. Furthermore, we maintain a set of
rejected labels D so that when a label is rejected, it is never tested again. Algorithm 3
always terminates. Given any label ci, Algorithm 2 always terminates since SPRT is
guaranteed to terminate with probability 1 [44]. As there are finitely many labels, and
each label is tested by Algorithm 2 once, it follows Algorithm 3 always terminates.

4 Experiments

We have implemented our approach as a prototype1. All experiments are carried out on
a workstation with 1 Xeon 3.50GHz CPU and 64GB system memory.

4.1 Experimental Settings

We conduct our experiments on the following three popular real-world datasets: 1) News
Aggregator (NA) Dataset. [11] This dataset contains 422419 news stories in four cat-
egories: business, science and technology, entertainment, and health. For the sake of
efficiency, we randomly take 10% of the dataset for our experiment. 2) Rotten Tomatoes
Movie Review (RTMR). This is a movie review dataset collected from Rotten Tomatoes
pages [28] for sentiment analysis consisting of 5331 positive and 5331 negative sen-
tences. 3) IMDB. This dataset is widely used in sentiment analysis classification and
contains 25k positive movie reviews and 25k negative movie reviews. Following [22],
we randomly select 20% of the training data for training the NNs. We follow the stan-
dard splitting to have 80% of the dataset for training and 20% for testing.

We adopt two heterogeneous NNs widely used for text classification as the target
models: LSTM [15] and TextCNN [21]. In our case, LSTM is a vanilla one as used
in [52] and for the TextCNN we follow the configuration used in [21]. Note that each
word is transformed into a 300-dimensions numerical vector using GloVe2 before train-
ing models. The test accuracy of our trained models is 89.21%/87.04%, 79.71%/77.88%
and 88.24%/87.24% for TextCNN/LSTM on NA, RTMR and IMDB dataset.

We adopt the three state-of-the-art approaches introduced in Sect. 2 to craft adver-
sarial texts, i.e., TEXTBUGGER with Sub-W, TEXTFOOLER and SEAs. For each
model, we randomly select 300 texts from the dataset and apply these attacks to generate
adversarial texts. To generate perturbations using RP and SubW, we limit the maximum
number of words to be replaced to be 4 so that the resultant text is likely semantic-
preserving. To obtain the synonyms of a chosen word, we use gensim3, an open-source
library to find the most similar words in the word embedding space. To perform SEAs
perturbation, we utilize the NMTs from an online Translation API service4.

1 https://github.com/dgl-prc/text-repair.
2 https://nlp.stanford.edu/projects/glove/.
3 https://radimrehurek.com/gensim/.
4 http://api.fanyi.baidu.com/api/trans/product/index.

https://github.com/dgl-prc/text-repair
https://nlp.stanford.edu/projects/glove/
https://radimrehurek.com/gensim/
http://api.fanyi.baidu.com/api/trans/product/index

38 G. Dong et al.

4.2 Research Questions

RQ1: Is KL divergence useful in detecting adversarial samples? To answer the
question, we measure the accuracy of detecting adversarial texts using the algorithm
depicted in Sect. 3.1 and compare that to the basic differential testing. Note that to
apply our detection algorithm, we must first select the threshold ε. Ideally, the threshold
ε should be chosen such that DKL of normal texts are smaller than ε and DKL of adver-
sarial texts are larger than ε (in which case the accuracy of the detection is 1). We adopt
golden-section search [5] to identify ε and the results are 0.0288/0.0266, 0.0655/0.111
and 0.1593/0.1806 for TextCNN/LSTM on NA, RTMR and IMDB dataset, respectively.

After setting ε, we apply our detection algorithm to a set of texts which mixes all
adversarial texts and an equal number of normal texts. For the baseline comparison, we
compare our algorithm with the alternative approach which simply checks whether the
two models agree on the output labels. The text is regarded as adversarial if the answer
is no. Otherwise, the text is regarded as normal. To the best of our knowledge, there are
few methods or tools which are available for detecting adversarial texts. Note that the
tool mentioned in [34,46] are not available. Results are shown in Table 1.

We observe that our approach detects most of the adversarial texts and significantly
outperforms the baseline for all datasets and models, i.e., on average 76.5% of the
adversarial texts generated by SEAs are detected, 87% of TEXTBUGGER and 84%
of TEXTFOOLER are detected, which are 23.5%, 15% and 21.5% higher than that of
the baseline respectively. In particular, the detection rate is 41% higher for the TextCNN
model with SEAs as the attacking method on the NA dataset. This shows that our

Table 1. The detection rate (“dr”) and false discovery rate (“fdr”) of baseline approach (“BL”)
and our approach (“KL-D”).

Attack Dataset TextCNN LSTM

BL KL-D BL KL-D

dr(%) fdr(%) dr(%) fdr(%) dr(%) fdr(%) dr(%) fdr(%)

SEAs NA 47 10 88 19 59 2 92 17

RTMR 44 19 68 36 44 18 63 29

IMDB 64 14 76 25 59 7 73 18

Avg 52 14 77 27 54 9 76 21

TEXTBUGGER NA 68 7 93 19 73 1 93 18

RTMR 54 16 76 33 68 12 79 25

IMDB 84 12 89 23 85 7 93 17

Avg 69 12 86 25 75 7 88 20

TEXTFOOLER NA 62 9 95 23 65 6 95 17

RTMR 41 16 67 39 50 13 68 28

IMDB 77 9 89 19 79 9 90 19

Avg 60 11 84 27 65 9 84 21

Avg 60 12 82 26 65 8 83 21

Repairing Adversarial Texts Through Perturbation 39

adversarial detection algorithm effectively addresses the problem caused by the trans-
ferability of adversarial texts. We also observe that our approach achieves a higher
detection rate in detecting adversarial texts generated by TEXTBUGGER than detect-
ing those generated by SEAs, i.e., 10.5% higher on average. One possible explanation
is that the adversarial texts generated by TEXTBUGGER are likely to have a rela-
tively small ‘distance’ from the original text. In comparison, adversarial texts generated
by SEAs may have different structures (after two translations) and thus a relatively
large distance to the original text. We also notice that the detection rate of adversarial
texts generated by TEXTBUGGER is close to that of adversarial texts generated by
TEXTFOOLER, i.e., only about a 3% gap. This is not surprising since the two meth-
ods in crafting adversarial text are pretty similar as depicted in Sect. 2. On average, our
method has false discovery rate of 26% for the adversarial texts generated by attacking
the TextCNN and 21% for those generated by attacking the LSTM, which is higher than
the baseline approach. Considering that the baseline approach overlooks many adversar-
ial texts (e.g., almost half of those generated by SEAs), we believe this is acceptable. In
addition, our framework aims to automatically repair the “alarms” and thus some false
positives can be eliminated by the subsequent repair. Later, we will show the effective-
ness of our approach on handling the false positive samples in RQ3.

Table 2. Effectiveness of detection and repair when
adversarial texts are from a third model.

The third model Detection rate Repair accuracy

BiLSTM 89% 60%

LSTM 92% 61.4%

TextCNN 87% 46.1%

Avg 89% 55.83%

Effectiveness on a Third Model. In
the above experiments, we assume
that the adversarial samples are from
one of the two models used in detec-
tion. A natural question is that if our
approach can deal with the adversar-
ial texts from a model which is dif-
ferent from the two models used in
detection. To answer this question,
we introduce a new model, i.e., BiLSTM [35]. We apply our approach to detect the
adversarial texts generated from one model and use the other two for the detection. For
every third model, we take 1000 adversarial texts (generated by TEXTBUGGER) and
1000 normal texts for the experiments. The results are summarized in Table 2. We can
observe that the average detection rate is 89%, which suggests our approach can effec-
tively identify the adversarial texts from an unseen model. Thus, the answer to RQ1 is
that our approach is effective in detecting adversarial texts with a relatively low false
discovery rate.

RQ2: Is our hypothesis for voting justified? To answer this question, we take all the
adversarial texts and apply semantic-preserving perturbations to generate 100 perturbed
texts for each of them and measure the percentage of the perturbed texts that are labeled
correctly. The results are shown in Fig. 2. We can observe that our hypothesis holds
across all models, methods used to generate adversarial texts and perturbation methods,
i.e., the percentage of perturbed texts with correct labels is more than 50% in all cases.
Comparing the results on different perturbation methods, perturbation using ParaPer
restores the correct label significantly more often than the other two. This is expected
since the ParaPer is paraphrase-based, which preserves the most semantics when gener-
ating adversarial texts among the three methods. Comparing different adversarial texts,

40 G. Dong et al.

Fig. 2. Results of justifying voting.

adversarial texts generated by TEXTBUGGER, once perturbed, are more likely to have
the correct label than those generated by SEAs and TEXTFOOLER. This is reasonable
as the adversarial texts generated by SEAs and TEXTFOOLER are more semantically
similar to the original texts compared with these texts generated by TEXTBUGGER.
Thus, the answer to RQ2 is that our hypothesis for voting is justified

RQ3: Is our approach effective in repairing adversarial texts? To answer this ques-
tion, we systematically apply Algorithm 3 to all the adversarial texts, and measure its
overall repair accuracy, which is the percentage of the number of texts which can be cor-
rectly predicted after repair in the total number of adversarial texts. The error bounds α
and β are both set as 0.1, the confidence threshold ρ is 0.8, and the indifference region σ
is to be 0.2×ρ. Note that when we apply ParaPer to generate perturbed texts, we use 25
different target languages for generating 25 semantic-preserving perturbations through
two translations. If more is required, we use two target languages each time (and three
translations), which provides us additionally 25 × 25 perturbed texts. To be consistent
with ParaPer, we set the perturbation budgets (maximum number of perturbations) for
RP and SubW as 650 as well. We compare our approach with two baselines [13,30].

Repairing Adversarial Texts Through Perturbation 41

Table 3. Overall repair accuracy (%) comparison between our approach and two baselines.

Attack Dataset Model Our approach Baselines

RP SubW ParaPer Autocorrect scRNN

SEAs NA TextCNN 23.66 42.75 70.23 4.70 27.52

LSTM 26.71 49.32 67.81 5.66 28.93

MR TextCNN 50.00 60.00 76.00 6.76 30.18

LSTM 50.38 51.13 78.20 5.71 19.05

IMDB TextCNN 60.94 53.13 79.69 4.82 38.69

LSTM 35.25 34.42 75.41 10.12 34.34

Avg 41.16 48.46 74.56 6.30 29.79

TEXTBUGGER NA TextCNN 64.94 67.53 79.74 18.79 29.09

LSTM 52.35 58.82 82.84 18.79 36.81

MR TextCNN 72.57 67.43 80.01 19.21 29.26

LSTM 69.40 59.02 79.23 23.81 25.97

IMDB TextCNN 87.62 73.27 93.56 27.19 68.86

LSTM 62.15 56.57 90.44 29.63 64.81

Avg 68.17 63.77 84.30 22.90 42.47

TEXTFOOLER NA TextCNN 37.37 52.00 70.71 12.00 22.60

LSTM 38.21 46.21 75.51 12.90 21.60

MR TextCNN 40.39 48.21 54.95 20.50 23.30

LSTM 39.35 41.49 56.99 22.10 23.50

IMDB TextCNN 82.35 71.57 90.69 39.30 57.21

LSTM 53.97 45.63 87.30 36.07 57.14

Avg 48.61 50.85 72.69 23.81 34.23

Avg 52.65 54.36 77.18 17.67 35.49

Both baselines can automatically detect and correct adversarial examples with mis-
spellings. The first baseline [13] used the Python autocorrect package5 to detect and
automatically correct the adversarial texts with misspellings. In the following, we refer
this baseline to Autocorrect. The second baseline [30] proposed a word recognition
model scRNN for the same task. We first attempt to repair adversarial texts using each
baseline and then test the accuracy of the target model on the repaired texts.

The results are summarized in Table 3. On average, we can correctly repair 54.66%,
56.12% and 79.43% of the adversarial texts using RP, SubW and ParaPer respectively,
while the two baselines achieve 14.60% and 36.91%. That is, all the three sort of meth-
ods in our approach outperform the two baselines and ParaPer achieves the best overall
performance among the three. Comparing adversarial texts generated using different
methods, we observe that adversarial texts generated by SEAs are harder to repair than
those generated by TEXTBUGGER. This is expected as adversarial texts generated

5 https://pypi.org/project/autocorrect/.

https://pypi.org/project/autocorrect/

42 G. Dong et al.

Fig. 3. Accuracy of adversarial-trained models (“AT”) and our approach (“Ours”) on adversarial
texts.

by SEAs (with two translation) are often structurally different from the original nor-
mal texts, whereas adversarial texts generated by TEXTBUGGER are very similar to
the original normal texts. Comparing different repairing methods, we also observe that
ParaPer performs significantly better than the other methods. This is also expected due
to the same reason above. The performance of the two baselines is significantly worse
than our approaches, which is as expected since the two baselines are to detect the
misspellings and thus are not able to handle semantic-preserved adversarial texts.

Table 4. Success rate(%) of attacking dif-
ferent targets.

Dataset Model Ori AT Ours

NA TextCNN 53.1 49.4 1.6

LSTM 63.3 52.8

RTMR TextCNN 74.1 71.7 28.4

LSTM 78.4 77.8

IMDB TextCNN 63.9 62.5 6.5

LSTM 96.3 95

We also compare our approach with the
adversarial training method. We retrained the
target model by adding 10% of adversar-
ial texts (half of them are generated by
TEXTBUGGER and half by TEXTFOOLER)
into the training set. Firstly, we compare the
robustness of the models obtained through
the two approaches. The results are shown
in Fig. 3. We can observe that, respectively,
51.92% and 78.5% of adversarial texts can be
predicted correctly by the models from adver-
sarial training and our approach. Secondly, we conducted experiments to evaluate if
the model obtained through adversarial training is robust against adversarial attacks
(with TEXTBUGGER). The results are shown in Table 4 where “Ori”, “AT” and “Ours”
denote the original model, the adversarially retrained model and our approach. We can
observe that the success rate of attacking indeed decreases, but not significantly, i.e.
a 3.3% drop on average. This is consistent with the well-known result that adversar-
ial training easily overfits and has limited effectiveness in defending against unknown

Repairing Adversarial Texts Through Perturbation 43

Table 5. The time overhead of our repair approach.

Attack Dataset Model Detect (ms) Repair (s)

RP SubW ParaPer

SEAs NA TextCNN 7.6 55.1 1.2 181.6

LSTM 8.2 48.8 1.0 223.2

RTMR TextCNN 3.2 46.3 1.4 171.6

LSTM 3.3 36.5 1.1 144.0

IMDB TextCNN 13.4 61.5 1.0 134.8

LSTM 13.3 92.7 1.1 167.3

Avg 8.2 56.8 1.1 170.5

TEXTBUGGER NA TextCNN 6.6 35.0 0.7 157.8

LSTM 6.4 31.2 0.8 171.5

RTMR TextCNN 3.6 39.6 1.4 81.1

LSTM 3.4 40.0 1.2 67.7

IMDB TextCNN 15.2 51.7 0.8 47

LSTM 17.3 101.0 1.0 76.3

Avg 8.8 49.7 1.0 102.8

TEXTFOOLER NA TextCNN 6.7 47.4 0.7 109.0

LSTM 8.6 54.5 0.7 98.0

RTMR TextCNN 4.9 34.2 0.8 85.7

LSTM 4.8 46.9 1.1 90.3

IMDB TextCNN 28.9 141.4 1.5 79.4

LSTM 32.8 102.6 1.1 99.6

Avg 14.5 71.2 1.0 93.7

Avg 10.5 59.2 1.0 122.4

attacks [51], which is also evidenced in [20] where adversarial training only decreases
the attack success rate by 7.2% on MR dataset. On the other hand, our approach is
resilient under different kinds of attacks with a totally different defense paradigm, i.e.
decreasing the attack success rate by 59.4% on average.

Effectiveness on False Positive Samples. Our detection approach may report false posi-
tive samples, thus, one question is whether our repair is effective on these samples. To
address this concern, we conduct a simple experiment on NA dataset with TextCNN and
LSTM. Concretely, we apply our approach to repair randomly selected 1000 samples
which are wrongly detected as adversarial. The results show that 81.4% (TextCNN) and
85.2% (LSTM) of samples can be correctly classified after repair, suggesting that our
approach can correctly handle most of the false positive samples.

Effectiveness on a Third Model. The column “Repair accuracy” of Table 2 shows the
repair results when the adversarial texts from a third model. We can observe that
our approach achieves 55.83% repair accuracy on average, which suggests that our

44 G. Dong et al.

approach is still effective in handling this sort of adversarial text. In general, adversarial
samples from the third model can be categorized into two groups: 1) adversarial sam-
ples which are invalid for both of our models (used for adversarial detection), and 2)
adversarial samples which can still fool at least one of our models. In the first case,
even if it is wrongly identified as adversarial (because of the large KL divergence), our
approach can still produce a right prediction with high probability (see previous para-
graph). In the second case, our approach is able to repair the adversarial sample just in
the same way with adversarial samples from our own models. Thus, the answer to RQ3
is our approach can repair about 80% of the adversarial texts and ParaPer performs
the best.

RQ4: What is the time overhead of our approach? The time overhead of our app-
roach mainly consists of two parts: detection and repairing. For detection, measuring
the time spent is straightforward. For repairing, precisely measuring the time is a bit
complicated. For RP and SubW, the time taken to obtain the synonymy might be dif-
ferent depending on the configuration of gensim. For ParaPer, our implementation uses
an online NMT service which often suffers from network delay and as a result, the time
measure is inaccurate. To discount the effect of the network delay, we thus count the
average number of perturbed texts required for voting, which is then multiplied with the
average time needed to obtain a perturbed text using the respective methods. Accord-
ing to our empirical study on 1000 trials, the average time taken for generating one
perturbed text is 0.55, 0.09, and 1.44 s for RP, SubW and ParaPer respectively.

The results are summarized in Table 5 where column ‘Detect’ is the average detec-
tion time and column “Repair” is the average repair time. The results show that detec-
tion is very efficient, i.e., the average time across all datasets are 8.2 ms, 8.8 ms and
14.5 ms for SEAs, TEXTBUGGER and TEXTFOOLER generated adversarial texts
respectively. For repairing, RP needs 59.2 s on average (maximum 141 s); SubW needs
1 s on average (maximum 1.5 s); ParaPer needs 122.4 s on average (maximum 223.2 s).
Repairing using SubW takes much less time as SubW is designed to generate perturbed
texts under the guidance of DKL and the resulting texts thus have a much higher prob-
ability to be detected as normal. Besides, we observe that repairing adversarial texts
generated by SEAs and TEXTFOOLER are more difficult (consistent with the above).
On average, the time needed for repairing adversarial texts generated by the three meth-
ods are 76.13 s, 51.16 s and 55.3 s respectively. The results show that adversarial texts
generated by TEXTFOOLER are relatively time-consuming to be repaired compared
with that of TEXTBUGGER. This is reasonable since the adversarial texts generated
by TEXTFOOLER are more nature compared with that of TEXTBUGGER. If our app-
roach is to be used in an online setting, we thus would recommend repairing with
SubW which repairs 77% of the adversarial texts with a total time overhead of 1.1 s.
We remark that we can easily parallelize the generation of perturbed texts to reduce the
time overhead for all three methods. Thus, the answer to RQ4 is that our approach has
the potential to detect and repair adversarial texts at runtime.

4.3 Threats to Validity

Quality of NMTs. Our ParaPer perturbation method requires the availability of multiple
NMTs. In this work, we utilize the online industrial NMTs. The quality of NMTs will

Repairing Adversarial Texts Through Perturbation 45

influence the performance of our repair algorithm, i.e., we might need more perturba-
tions for a successful repair with worse NMTs.

Word substitution. Random perturbation and Algorithm 1 work by replacing selected
words with their synonyms. Currently, we look for synonyms by searching the neigh-
borhood of a given text in the embedding space. However, this may not always find
the ideal synonyms, i.e., words which cause syntactical or grammar errors may be
returned. Besides, finding better synonyms usually takes more time, which can be time-
consuming.

Limited datasets and adversarial texts. Our experiments results are subject to the
selected datasets and generated adversarial texts, which have a limited number of labels.
In general, it is difficult to vote for the correct label if there are many candidate labels,
i.e., more perturbations are needed. Besides, we evaluate our approach on three existing
attacks, it is not clear if our algorithm repairs adversarial texts from future attacks.

5 Related Work

This work is related to works on text adversarial attacks, which can be roughly divided
into the following categories. One category is adversarial misspelling, which tries to
evade the classifier by some “human-imperceptible” misspelling on certain selected
characters [12,22]. The core idea is to design a strategy to identify the important posi-
tions and afterwards some standard character-level operations like insertion, deletion,
substitution and swap can be applied. Another is adversarial paraphrasing. Compared
to misspelling, paraphrasing aims to generate semantics-preserving adversarial samples
either by replacing certain words with their synonyms or paraphrasing the whole sen-
tence [18,33]. Our work uses paraphrasing as a way of generating repairs instead.

This work is related to the detection of adversarial inputs. Existing detection meth-
ods for adversarial perturbation mainly focuses on the image domain [23,45,48,53].
Recently, Rosenberg et al. devised a method to detect adversarial texts for Recurrent
Neural Networks [34]. The idea is to compare the confidence scores of the original
input and its squeezed variant. Wang et al. [46] detect adversarial texts by comparing
the label of the input given by the target model with the label given by simply quan-
tifying the impact of positive words and negative words of the input text in sentiment
analysis. However, this method is not easy to extend to other text classification tasks
since obtaining the label of an input text by simply analyzing individual words’ polarity
is not always attainable.

This work is related to work on defending adversarial perturbation in the text
domain. Rosenberg et al. [34] presented several defense methods for adversarial texts,
like adversarial training in the text domain or training ensemble models. Pruthi et
al. [30] proposed to place an auxiliary model before the classifier. The auxiliary model
is separately trained to recognize and correct the adversarial spelling mistakes. In [47],
Wang et al. proposed Synonyms Encoding Method to defend adversarial texts in the
word level, which maps all the semantically similar words into a single word randomly
selected from the synonyms. By contrast, our approach can resist attacks of sentence
level, i.e., SEAs. Li et al. proposed a robust text classification to resist adversarial
attacks, but it is specially designed for Chinese-based text classification models.

46 G. Dong et al.

6 Conclusion

In this work, we propose an approach to automatically detect and repair adversarial texts
for neural network models. Given an input text to a pair of neural networks, we first
identify whether the input is adversarial or normal. Afterwards, we automatically repair
the adversarial inputs by generating semantic-preserving perturbations which collec-
tively vote for the correct label until a consensus is reached (with certain error bounds).
Experiments on multiple real-world datasets show the effectiveness of our approach.

Acknowledgements. This research is supported by the Key-Area Research and Development
Program of Guangdong Province (Grant No.2020B0101100005), Key R&D Program of Zhe-
jiang (2022C01018) and the NSFC Program (62102359). This research is also supported by the
National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No:
AISG-RP-2019-012).

References

1. Agarwal, A., Singh, R., Vatsa, M., Ratha, N.K.: Image transformation based defense against
adversarial perturbation on deep learning models. IEEE Trans. Dependable Secure Comput.
15(5), 2106–2121 (2021)

2. Akhtar, N., Liu, J., Mian, A.: Defense against universal adversarial perturbations. In: Pro-
ceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3389–3398 (2018)

3. Anscombe, F.J.: Fixed-sample-size analysis of sequential observations. Biometrics 10(1),
89–100 (1954)

4. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of security:
circumventing defenses to adversarial examples. In: Proceedings of the 35th International
Conference on Machine Learning, pp. 274–283 (2018)

5. Avriel, M., Wilde, D.J.: Optimally proof for the symmetric Fibonacci search technique.
Fibonacci Q. J. (1966)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Proceed-
ings of the 38th IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

7. Carlini, N., Wagner, D.A.: Audio adversarial examples: targeted attacks on speech-to-text.
In: Proceedings of the 39th IEEE Symposium on Security and Privacy Workshops, pp. 1–7
(2018)

8. Das, N., et al.: Keeping the bad guys out: protecting and vaccinating deep learning with
JPEG compression. CoRR abs/1705.02900 (2017)

9. Dhillon, G.S., et al.: Stochastic activation pruning for robust adversarial defense. In: Pro-
ceedings of the 6th International Conference on Learning Representations (2018)

10. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short
texts. In: Proceedings of the 25th International Conference on Computational Linguistics:
Technical Papers, pp. 69–78 (2014)

11. Dua, D., Graff, C.: UCI machine learning repository (2017)
12. Ebrahimi, J., Rao, A., Lowd, D., Dou, D.: HotFlip: white-box adversarial examples for text

classification. In: Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 31–36 (2018)

13. Gao, J., Lanchantin, J., Soffa, M.L., Qi, Y.: Black-box generation of adversarial text
sequences to evade deep learning classifiers. In: Proceedings of the 39th IEEE Symposium
on Security and Privacy Workshops, pp. 50–56 (2018)

Repairing Adversarial Texts Through Perturbation 47

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2015)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

16. Hosseini, H., Kannan, S., Zhang, B., Poovendran, R.: Deceiving Google’s perspective API
built for detecting toxic comments. arXiv preprint arXiv:1702.08138 (2017)

17. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples
are not bugs, they are features. In: Proceedings of the 33rd Annual Conference on Neural
Information Processing Systems, pp. 125–136 (2019)

18. Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with
syntactically controlled paraphrase networks. arXiv preprint arXiv:1804.06059 (2018)

19. Jain, G., Sharma, M., Agarwal, B.: Spam detection in social media using convolutional and
long short term memory neural network. Ann. Math. Artif. Intell. 85(1), 21–44 (2019)

20. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? A strong baseline for natu-
ral language attack on text classification and entailment. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence, pp. 8018–8025 (2020)

21. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, pp. 1746–1751
(2014)

22. Li, J., Ji, S., Du, T., Li, B., Wang, T.: TextBugger: generating adversarial text against real-
world applications. In: Proceedings of the 26th Annual Network and Distributed System
Security Symposium (2019)

23. Liu, J., et al.: Detection based defense against adversarial examples from the steganalysis
point of view. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4825–4834 (2019)

24. Lu, J., Issaranon, T., Forsyth, D.: SafetyNet: detecting and rejecting adversarial examples
robustly. In: Proceedings of the IEEE International Conference on Computer Vision, pp.
446–454 (2017)

25. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning mod-
els resistant to adversarial attacks. In: Proceedings of the 6th International Conference on
Learning Representations (2018)

26. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107 (1998)
27. Meng, D., Chen, H.: MagNet: a two-pronged defense against adversarial examples. In: Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 135–147 (2017)

28. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)

29. Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input sequences
for recurrent neural networks. In: Proceedings of the 2016 IEEE Military Communications
Conference, pp. 49–54 (2016)

30. Pruthi, D., Dhingra, B., Lipton, Z.C.: Combating adversarial misspellings with robust word
recognition, pp. 5582–5591 (2019)

31. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46493-0 32

32. Ren, Y., Ji, D.: Neural networks for deceptive opinion spam detection: an empirical study.
Inf. Sci. 385, 213–224 (2017)

http://arxiv.org/abs/1702.08138
http://arxiv.org/abs/1804.06059
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32

48 G. Dong et al.

33. Ribeiro, M.T., Singh, S., Guestrin, C.: Semantically equivalent adversarial rules for debug-
ging NLP models. In: Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 856–865 (2018)

34. Rosenberg, I., Shabtai, A., Elovici, Y., Rokach, L.: Defense methods against adversarial
examples for recurrent neural networks. arXiv preprint arXiv:1901.09963 (2019)

35. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal
Process. 45(11), 2673–2681 (1997)

36. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep neural net-
works and symbolic AI. Nature 555(7698), 604 (2018)

37. Shafahi, A., et al.: Adversarial training for free! In: Proceedings of the 33rd Annual Confer-
ence on Neural Information Processing Systems, pp. 3353–3364 (2019)

38. Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46(1), 561–584 (1995)
39. Song, Y., Kim, T., Nowozin, S., Ermon, S., Kushman, N.: PixelDefend: leveraging generative

models to understand and defend against adversarial examples. In: Proceedings of the 6th
International Conference on Learning Representations (2018)

40. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the 2nd Inter-
national Conference on Learning Representations (2014)

41. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for senti-
ment classification. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 1422–1432 (2015)

42. Van Erven, T., Harremos, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans.
Inf. Theory 60(7), 3797–3820 (2014)

43. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)
44. Wald, A.: Sequential Analysis, 1st edn. Wiley, Hoboken (1947)
45. Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P.: Adversarial sample detection for deep

neural network through model mutation testing. In: Proceedings of the 41st International
Conference on Software Engineering, pp. 1245–1256. IEEE Press (2019)

46. Wang,W., Wang, R., Ke, J., Wang, L.: TextFirewall: omni-defending against adversarial texts
in sentiment classification. IEEE Access 9, 27467–27475 (2021)

47. Wang, X., Jin, H., He, K.: Natural language adversarial attacks and defenses in word level.
arXiv preprint arXiv:1909.06723 (2019)

48. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J.
Autom. Comput. 17(2), 151–178 (2020)

49. Yang, J., Wu, M., Liu, X.Z.: Defense against adversarial attack using PCA. In: Proceedings of
the 6th International Conference on Artificial Intelligence and Security, pp. 627–636 (2020)

50. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks
for document classification. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 1480–1489 (2016)

51. Zhang, H., Chen, H., Song, Z., Boning, D., Dhillon, I.S., Hsieh, C.J.: The limitations of
adversarial training and the blind-spot attack. arXiv preprint arXiv:1901.04684 (2019)

52. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification.
In: Proceedings of the 29th Annual Conference on Neural Information Processing Systems,
pp. 649–657 (2015)

53. Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrinsic prop-
erties of deep neural networks. In: Proceedings of the 32nd Annual Conference on Neural
Information Processing Systems, pp. 7913–7922 (2018)

http://arxiv.org/abs/1901.09963
http://arxiv.org/abs/1909.06723
http://arxiv.org/abs/1901.04684

Formal Verification of a Keystore

Jaap Boender(B) and Goran Badevic

Hensoldt Cyber GmbH, Taufkirchen, Germany
{jacob.boender,goran.badevic}@hensoldt.net

Abstract. This paper is an experience report concerning the verifica-
tion of a component of our operating system using Isabelle. The compo-
nent allows for the secure storage of cryptographic key material. We will
discuss the method used, describe the connection we created between
the component and a standard library, identify lessons learned (both for
the verification itself as to the process followed to write and adapt the
software to be verified), and discuss possible avenues for further research.

Keywords: Formal verification · Software verification · C language ·
Experience report · Isabelle · Key store

1 Introduction

Formal verification of software is a concept that has been around for decades.
Yet despite continuous advances, it has not been widely adopted in the software
industry. Using formal verification in an industrial setting is still an onerous
process which, to boot, can only be executed by specialists.

In this paper, we present the work done at Hensoldt Cyber GmbH on verifying
a component (a keystore) in the TRENTOS operating system. This keystore,
though written specifically to be easy to verify, and therefore not as complex
as it might have been, is nonetheless a nontrivial piece of code that is fully
integrated within the operating system.

The specific contributions of this paper are a real-world verification project
that uses the AutoCorres tool [3], as well as a way to use AutoCorres’ heap
abstraction mechanism with non-heap abstracted functions (in Sect. 3). More
generally, it contributes a description of this verification project that can serve
as a guideline to similar verification efforts.

1.1 Related Work

Using proof assistants, by now, is a well established approach for program verifi-
cation. This development was driven by two landmark verification projects: the
CompCert optimising C compiler [7] and the seL4 microkernel [5]. Both of these
are software projects of considerable scale and are highly relevant for real world
applications.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 49–64, 2022.
https://doi.org/10.1007/978-3-031-10363-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_4&domain=pdf
http://orcid.org/0000-0002-7066-8554
http://orcid.org/0000-0001-8348-2866
https://doi.org/10.1007/978-3-031-10363-6_4

50 J. Boender and G. Badevic

The CompCert project specified, implemented, and proved correctness of an
optimising C compiler. It compiles essentially the whole ISO C99 language and
targets several architectures. seL4 is a microkernel of the L4 family. Its verifica-
tion includes functional correctness as well as the proof of security properties.
seL4 is implemented in C and was formally verified using a C verification frame-
work including Isabelle/HOL. Functional correctness was demonstrated down to
formal ISA specifications of the ARM and RISC-V architecture [5,10].

AutoCorres was developed to aid in the verification of the seL4 microkernel,
but has not been used there so far (our understanding is that this would involve
a large redevelopment of the existing proofs, and the team prefers to focus on
extending the verification). However, it is increasingly being picked up as a tool
for program verification: SABLE [2] is a trustworthy secure loader with close
to 4000 lines of code which was partly formally verified. The same team also
verified a heap allocator [8] using AutoCorres. More details on AutoCorres can
be found throughout the paper, especially in Sect. 2.3.

1.2 The Keystore

The component to be verified is the secure keystore from our operating system
TRENTOS. This is a component that allows for the storage of cryptographic
keys so that applications can encrypt or decrypt data (through a crypto server)
without having access to the keys themselves. The keystore should be accessed
only through this crypto server, which will take care of things like access control
and privileges.

Every component has an ID (the app ID), and the keystore is partitioned
by app IDs, so that components do not have access to keys stored for another
component.

It is possible to initialise the keystore with an initial list of keys, for exam-
ple stored in ROM. Furthermore, there are functions to add and remove keys,
to retrieve a given key (either by name or by an index number that uniquely
identifies it), and to wipe the keystore entirely.

It should be noted that to the keystore, the key data, as well as the key
names, are simply binary blobs. It should not be difficult to adapt it into a
generic key-value store by adding some marshalling capability (which could be
verified as well).

1.3 Verification Objectives

We will discuss the properties that we intend to verify here; more details about
how specifically these properties are verified will then follow in Sect. 2.

First, there are the general properties that pertain to any program, such
as memory safety and termination. The semantic model of the tools allows for
reasoning about these properties, for example by inserting guards around each
C statement that accesses memory.

Second, there is the functional correctness of the program, i.e. that it cor-
rectly implements its specification. This is achieved by implementing an abstract

Formal Verification of a Keystore 51

specification in Isabelle, and then showing that the C implementation refines this
abstract specification. We also verify some properties of the abstract specifica-
tion, in order to validate that this abstract specification reflects our informal
ideas of what the keystore should be.

Third, we want to specifically verify that the keystore is indeed partitioned
by app ID. Since we have already proven that the C implementation refines the
abstract specification, we can prove this property on the abstract specification,
for example showing that retrieving a key using app ID a will only ever result
in a key with app ID a.

Since the keystore will only be accessed through the crypto server, we assume
that the app ID given is legitimate (checking this is within the purview of the
crypto server); dealing with components that present with a false app ID is
therefore outside the scope of this verification effort.

In short, the properties we have verified are safety properties; for ensuring
security we rely on the general security properties of the seL4 kernel, as well
as (on a higher level) the CAmkES component model [6], and the fact that
the keystore is not supposed to be accessed otherwise than through the crypto
server.

2 Methodology

In this section, we present the methodology used for verifying the keystore, both
the process followed in writing the code and keeping it integrated with the proofs,
as well as the more technical details of the specifications and proofs themselves.
This process is very similar to the verification of the seL4 kernel as described
in [5]. The main difference is that we use the AutoCorres tool [3].

The general method of proof is by refinement. We show that the C imple-
mentation refines the abstract specification; the formal model of C semantics
that we base this on is described in [1]. We use the same refinement framework
that is used for the verification of seL4.

The process followed is standard, but described in a relatively detailed way
to present a good overview of the keystore and the properties verified, and so
that it can serve as a guideline for other verification efforts.

We have followed the same steps as in the seL4 proof, with the exception
that we have not used an executable specification to bridge the gap between the
abstract specification and the C implementation; instead, we have used Auto-
Corres to generate a simplified version of the C code, on which more below.

A basic diagram of the verification steps and how they depend on each other
can be found in Fig. 1.

2.1 The Code

After agreeing on an informal specification, we wrote the C code for the key-
store. There already was an existing keystore in TRENTOS, but we decided to
reimplement the keystore from the ground up. Experience from the seL4 project

52 J. Boender and G. Badevic

C implementation

refinementproperties

abstract specificationinformal specification simulation

WP-style triples invariants

WP-style triples invariantsstate relation

agree implement

implement

specify

prove prove

prove

prove

proveprove

prove

prove
prove

prove

prove

prove

Fig. 1. Schematic overview of the verification components

has shown that code that is not written with verification in mind is very hard,
even impossible to verify [4], and in any case the existing keystore had some fea-
tures that made it unnecessarily complex, such as extensive use of preprocessor
macros to simulate a form of polymorphism.

Thus, we wrote a new keystore version that consisted of roughly 250 lines of C,
containing the description of the keystore data structure and the implementation
of its interface functions. Initially, this code did not depend on external functions
of any kind, so as to make it as easy as possible to verify.

The main data structure of the implementation is a simple C array. The
canonical solution here would be to use a hash table, but verifying this would
have been significantly more effort. Since the number of keys stored in the key-
store is likely to be very small, this should not impact performance too much.
Moreover, to increase performance, we included a function to retrieve a key based
on its index in the array, which did complicate verification, as we will see in the
next subsection.

Initially, all keystore functions were set up to pass their parameters by value
(in practical terms, this was realised by using nested structs). This makes ver-
ification significantly easier, as there is no need to prove that the pointers being
passed around are correct—this is all taken care of by the verification tools.

During the time needed to write the code, we verified a few standard library
functions that were used in the existing version of the keystore1. We decided to
slightly adapt the new keystore implementation to use these functions, both for
efficiency and to find out whether it was possible to do this without complicating
the proofs too much. We will discuss this in more detail in Sect. 3.

For the code, this had the effect that the nested structs were removed from
the keystore, and the keystore name and data elements became simple char
arrays and the parameters to the keystore functions were passed by name.

1 The functions verified are memcmp, memcpy, memset, strncmp, strncpy and strlen.

Formal Verification of a Keystore 53

We used the unit tests as inspiration for the desired properties to validate the
abstract specification. In general, it is not possible to validate a specification,
but unit tests give some properties that the implementation should have (for
example, checking that trying to retrieve a deleted key results in an error, or
that a key cannot be added to an already full keystore). If we can prove that these
properties also hold (mutatis mutandis) for the abstract specification, we can be
more confident that the specification is indeed what we intend it to be—even
though it is never possible to be 100% confident.

We also decided during verification to have the add and get functions return
a result struct consisting of the actual return value and a possible error code;
idiomatic C usage is to return a negative value in case of errors, but this would
have made verification much more complex due to either having to deal with
signed integers, or (when keeping the return type as an unsigned integer) having
to deal with -1 as a special value.

2.2 Abstract Specification

As noted, the verification of the keystore is by showing that the C implementa-
tion refines the specification.

The abstract specification of the keystore was written in Isabelle itself, using
the same state monad that will later be used to model the C implementation in
Isabelle, though at a much higher level of abstraction, using Isabelle datatypes.
The Isabelle specification of the keystore data type is shown in Fig. 2.

record keystore_state =
freeSlots :: nat
maxElements :: nat
elementStore :: "(app_id_t key_name_t) (nat bool key_data_t)"

Fig. 2. The abstract keystore datatype

We see that, essentially, the keystore is a map from key name to key data,
partitioned by app ID. The freeSlots field is not strictly necessary (its value
can be derived from the contents of elementStore), but it is included on the C
side for efficiency reasons, and it then makes the refinement proofs simpler if it
is included on the abstract side as well.

There are two extra fields in the key data tuple. One (of type nat) is the index
of the key, which corresponds to the index of the key in the keystore on the C
side; this information is superfluous on the Isabelle side, but it is needed in order
to be able to verify functions that use the index (as discussed in the previous
subsection). The other (of type bool) indicates whether the key is read-only.

An example function on this abstract specification (in this case, the function
to retrieve a key) is shown in Fig. 3. This uses the state monad referred to
earlier. We first check whether the parameter a is greater than the maximum
allowed app ID (using condition). If this is the case, we terminate with an

54 J. Boender and G. Badevic

error condition (throwError); otherwise we execute a monad (between doE and
odE) that executes the getsE function to retrieve the desired element from the
state, and depending on the result we either terminate with an error condition,
or terminate normally and return the desired element (returnOk).

definition Keystore_get :: "app_id_t ⇒ key_name_t ⇒
(keystore_state, unit + (nat × bool × key_data_t)) nondet_monad" where

"Keystore_get a kn ≡
condition (λst. a > MAX_APP_ID) (throwError ())
(doE e <- getsE (λst. elementStore st (a, kn));

case e of
None ⇒ throwError ()

| Some x ⇒ returnOk x
odE)"

Fig. 3. The Keystore get function

The next step was to create Hoare triples that exactly describe the effect
of these functions. An example for key store get is shown in Fig. 4. We can
see that this Hoare triple closely reflects the conditions in the implementation
of key store get. There are two possible options: either everything is all right
(the app ID is within range and the key exists in the keystore), in which case the
generic success postcondition Q should hold (in the same state as before, since
retrieving a key does not change the state), or there is some error, in which case
the generic error postcondition E should hold in the unchanged state.

lemma Keystore_get_wp [wp]: "
{| λst. (∀ i kd. ((a > MAX_APP_ID ∨ elementStore st (a, kn) = None) E () st) ∧

((a ≤ MAX_APP_ID ∧ elementStore st (a, kn) = Some (i, kd)) Q (i, kd) st)) |}
Keystore_get a kn

Q , E !"

Fig. 4. Hoare triple with weakest precondition for key store get

These Hoare triples are written in weakest precondition style, i.e. they specify
the weakest precondition that must hold for a generic success condition (Q) and
a generic error condition (E) to hold. The exclamation point at the end signifies
that we are specifying total correctness, i.e. not only that the properties specified
hold after execution, but also that the execution terminates.

We also specify some invariant properties over the abstract keystore, shown
in Fig. 5.

Formal Verification of a Keystore 55

definition store_invariants where
"store_invariants st ≡

finite (dom (elementStore st)) ∧
freeSlots st ≤ maxElements st ∧
inj_on (λx. fst (the (elementStore st x))) (dom (elementStore st)) ∧
maxElements st - freeSlots st = card (dom (elementStore st)) ∧
(x i d. elementStore st x = Some (i, d) i < maxElements st)"

Fig. 5. Abstract keystore invariants

These are invariants that are needed to prove refinement, such as the invariant
specifying that the fields keeping track of the number of elements in the keystore
and the maximum keystore size are always kept current with the actual contents
of the keystore.

We also verified several more general properties that were inspired by the unit
tests, for example showing that adding a key and then retrieving it will return
the same key; this is shown in Fig. 6. In this way, we validated the specification
to the furthest possible extent.

lemma key_add_get: "
{| λst. a ≤ MAX_APP_ID ∧ freeSlots st > 0 ∧ elementStore st (a, kn) = None |}
doE Keystore_add a kn kd;

(i, r, kd’) <- Keystore_get a kn;
returnOk kd’

odE
λr st. r = kd , λr st. False !"

Fig. 6. Hoare triple showing the result of adding and retrieving a key

This Hoare triple expresses that this program terminates (the exclamation
point at the end), and that after termination we must be in a state where no
error occurred, and the return value r of the program must be equal to the
parameter kd. The program adds a key with app ID a and key name kn, then
immediately retrieves the same key and finally returns the result, so this shows
that adding a key and retrieving it afterwards works as expected. The False in
the second part of the postcondition indicates that an error condition does not
occur.

2.3 C Code

In order to reason about the C code, we must somehow obtain a representation
in Isabelle. For this we use the C parser developed for the seL4 project, as well
as the AutoCorres tool.

The C parser [11], which is also used in the verification of seL4, reads a C file
and generates a representation in the SIMPL language [9]. This representation
can be used in Isabelle, though not easily, since the representation is very low-
level and close to the original C code. This is a deliberate design choice made for
the C parser: given that it is not verified, its functionality has deliberately been

56 J. Boender and G. Badevic

kept to a minimum so as to reduce the chances of introducing bugs. Indeed, the
C parser must be trusted, since any semantic model it might be verified against
would itself be untrusted, creating something of a Catch-22 situation. The way
around this is binary verification [10], where the binary code produced by a com-
piler can be verified against binary code that is proven to refine from the Isabelle
representation. This removes the compiler from the trusted computing base, at
the cost of needing to trust the formal ISA description used; this description is
much simpler than the compiler and therefore easier to trust. This approach has
been used for seL4, and should work on the keystore as well, given that we have
used the same tools, but we have not attempted binary verification as yet.

Concerning the proof itself, the use of AutoCorres is a key difference between
the verification of seL4 and the keystore verification: in the seL4 verification,
there is an intermediate layer (the executable specification) between the abstract
specification and the SIMPL representation of the C implementation, and refine-
ment is proven by hand.

In the keystore verification, instead of writing an executable specification
by hand, and then manually proving refinement, we have used AutoCorres to
not only generate a simplified version of the SIMPL representation which is
much more easy to work with, but also to generate a proof that this simplified
representation is a refinement of the original SIMPL representation.

2.4 Refinement

For the keystore, we show that each of the functions of the C implementation
refines its equivalent from the specification.

First, we need to establish a state relation that associates the state of the
abstract specification with the state of the C implementation. For the keystore,
states are equivalent if and only if the maximum number of keys is the same, and
the keys contained in the keystore are the same. There is a similar mechanism to
relate the return values of functions. The exact specification of the state relation
in Isabelle is shown in Fig. 7.

definition state_relation where
"state_relation ks ≡ {

(sa, sc). maxElements sa = unat (ks_maxElements s c ks) ∧
(∀ a kn idx r kd. (elementStore sa) (a, kn) = Some (idx, r, kd)

(∃ i. i<unat (ks_maxElements s c ks) ∧
ks_isFree sc ks (int i) = 0 ∧
ks_appId sc ks (int i) = a ∧
unat (ks_index s c (int i)) = idx ∧
(ks_readOnly sc ks (int i) = 0 r) ∧
ks_name sc ks (int i) = kn ∧
ks_data sc ks (int i) = kd))}"

Fig. 7. State relation

We also need to prove some invariants over the C implementation of the key-
store, for example that the C data structures in memory that hold the keystore

Formal Verification of a Keystore 57

are valid at all times. We also need the C equivalents of the invariants for the
abstract specification. The Isabelle specification of the invariants is shown in
Fig. 8.

definition conc_store_invariants where
"conc_store_invariants st ks ≡

unat (ks_maxElements st ks) * size_of TYPE(KeystoreRamFV_ElementRecord_C) < ADDR_MAX ∧
is_valid_KeystoreRamFV_C st ks ∧
(∀ i<unat (ks_maxElements st ks).

is_valid_KeystoreRamFV_ElementRecord_C st (ks_elementRecord_p st ks (int i))) ∧
card {i. i < unat (ks_maxElements st ks) ∧ ks_isFree st ks (int i) = 0} =

unat (ks_freeSlots st ks) ∧
(∀ x<unat (ks_maxElements st ks).

∀ y<unat (ks_maxElements st ks).
ks_isFree st ks (int x) = 0 ∧ ks_isFree st ks (int y) = 0 ∧
ks_appId st ks (int x) = ks_appId st ks (int y) ∧
ks_name st ks (int x) = ks_name st ks (int y) x = y)"

Fig. 8. Concrete keystore invariants

We then prove that each C function in the keystore implementation refines
its equivalent in the abstract specification.

The refinement relation is specified by the corres underlying predicate.
This predicate states in essence that the function g (concrete) refines function
f (abstract) if and only if given two related states s and s′ that satisfy precon-
ditions G and G′ respectively, for every state t and return value r that are the
result of executing f , there are a state t′ and a return value r′ that are the result
of executing g, such that t and t′ are related, as well as r and r′.

The statement of the lemma that shows refinement between key store add
and its C implementation key store add’ is shown in Fig. 9.

The corres underlying predicate takes as parameters the state relation,
two parameters determining whether we are reasoning about total correctness
(in practice these are almost always True), the return value relation (in this
case translating between the option type returned by the abstract function and
the C struct returned by the C function), the preconditions, and finally the two
functions.

The return relation specifies the fact that on the abstract side, the state is
an option type with has value Inl in case of an error condition, and Inr (with a
return value) if there is no error. The equivalent C conditions are shown by the
error and index members of the returned struct, access to which is modelled
in Isabelle by the error C and index C functions.

We will explain the preconditions for the concrete function in some more
detail below, since they use some specific notation.

– First, we show that the invariants on the concrete side must hold;
– Then, we specify that the kn parameter on the abstract side must be equal

to the name member of the struct k on the concrete side. Since k is a pointer,
we first dereference it (in state s) and then use the name C function to model
struct access;

58 J. Boender and G. Badevic

– We do the same for the kd parameter and the data member of k;
– Then we specify that k cannot be the NULL pointer;
– We specify that the name member of struct k cannot be a NULL pointer either,

using a short-hand notation that is akin to the arrow operator in plain C;
– And finally, we specify that the pointer k in state s must point to a valid

instance in memory of a KeystoreRamFV KeyRecord datatype.

theorem Keystore_add_refine:
"corres_underlying (state_relation ks) True True

(λra rc.
case ra of Inl () ⇒ error_C rc = 0 | Inr i ⇒ error_C rc = 0 ∧
index_C rc = of_nat i)

(λs. store_invariants s)
(λs. conc_store_invariants s ks ∧ name_C s[k] = kn ∧ data_C s[k] = kd ∧

k = NULL ∧ &(k [’’name_C’’]) = 0 ∧ is_valid_KeystoreRamFV_KeyRecord_C s k)
(Keystore_add a kn kd) (KeystoreRamFV_add’ ks a k)"

Fig. 9. Refinement for key store add

During verification, minor changes to the code were made. The largest change
(unrelated to the verification effort) was the addition of a new feature: the pos-
sibility of initialising the keystore with a predetermined list of keys. The only
actual bug discovered during verification was in the code implementing this new
feature.

There is an auxiliary function in the keystore that searches the keystore array
for a key with a certain app ID and name. Originally, this function would just
iterate over all possible elements of the array, and simply skip free elements. The
code added for the initialisation feature used this function to check for possible
duplicates in the list of given keys, which could result in checking for duplicates
in uninitialised memory.

Discovering bugs during formal verification in this way is not
straightforward—if there is a bug in the implementation, it means that refine-
ment cannot be proven, but there is no indication of why this is the case2.
Figuring out what exactly causes refinement to be unprovable can be difficult.

The verification-related changes were simpler. One change involved seman-
tics: we realised that the key names only had to be unique in combination with
an app ID domain rather than across the entire keystore, which was a helpful
improvement with regards to the keystore functionality.

2.5 Simulation

After proving refinement for each of the functions of the keystore, what remains is
to tie everything together. To this end, we define two state machines (one on the
abstract side, one on the C side) where the transitions are the different functions
2 In fact, if refinement cannot be proven, one cannot even be sure if this is due to user

incompetence or due to bugs in the code...

Formal Verification of a Keystore 59

of the keystore. We then show that there is a forward simulation relation between
these two state machines.

In this step, we also need to show that the invariants shown in Figs. 5 and 8
hold across functions; i.e. that they are preserved by every transition in the
automaton.

This step serves to show that there is also a refinement relation between
arbitrary sequences of function calls.

2.6 Integration

After verification was completed, several changes to the code were requested
for integration into TRENTOS. Adapting the proofs to these changes was not
entirely trivial, but did not require major changes to the structure of the proofs.
The adaptations took about a month of work for one person. This shows that
in order to avoid duplication of work, it is important to make sure that such
integration efforts must be completed before starting formal verification (or at
least before the parts that actually involve the code, i.e. the refinement proofs).

3 Standard Library Connection

The main innovation in the verification of the keystore is its use of standard
library functions that have been verified separately without using AutoCorres’
heap abstraction mechanism (explained below) and then lifted to the level of the
keystore verification, which does use the heap abstraction mechanism. There are
some examples in the AutoCorres distribution which do this on a small scale,
but as far as we are aware, using this for struct types had not been attempted
before.

In this section, we will describe this development in more detail.

3.1 Heap Abstraction

AutoCorres has a heap abstraction mechanism. This mechanism ensures heap
separation by providing a separate virtual heap for each different datatype, guar-
anteeing that there is no memory overlap between different types. This guarantee
comes with a price: each struct type will be assigned its own virtual heap, and
the only way to access the members of the struct is through predefined access
functions; it is not possible, for example, to access members of a struct through
the virtual heap corresponding to the type of the member.

This creates difficulties when using standard library functions such as
strncpy, for example when trying to copy a string that is a member of a struct
to another string that is on its own. The heap abstraction mechanism does not
offer the possibility of showing that two places in two different heaps refer to the
same thing.

In order to circumvent this limitation, we have written a connecting layer
(inspired by some of the examples included with the AutoCorres distribution)
that makes it possible to combine standard-library functions that do not use the
heap abstraction mechanism with functions that do.

60 J. Boender and G. Badevic

3.2 The Connector

In a nutshell, the connector works by defining a Hoare triple for the non-heap-
abstracted standard library function, and then using this Hoare triple to prove
another Hoare triple, which can be used in the heap-abstracted calling functions.
It is necessary to define versions of this second Hoare triple for each possible
permutation of argument types, as we shall see below.

As an example, the non-heap-abstracted Hoare triple for memcpy fv is shown
in Fig. 10. We see that src and dst have to be valid pointers (well aligned and
not NULL), that src and dst should be more than sz bytes before the end of
memory, that the first sz bytes of memory after src and dst should not overlap,
and that there has to be a block bs of bytes of size sz such that the first sz bytes
in memory after src are equal to bs.

This Hoare triple only has one postcondition, like all Hoare triples on the
concrete side; this is due to the fact that in the C state, there is no general way
to indicate an error condition as there was on the abstract side.

theorem memcpy_wp:
fixes src :: "unit ptr"

and dst :: "unit ptr"
shows "{|λs. c_guard src ∧ c_guard dst ∧

no_wrap src (unat sz) ∧ no_wrap dst (unat sz) ∧ no_overlap src dst (unat sz) ∧
(∃ bs.

sz = of_nat (length bs) ∧ bytes_at s src bs ∧
Q dst (update_bytes s dst bs))|}

memcpy_fv’ dst src sz
Q !"

Fig. 10. Hoare triple for memcpy fv

In a heap-abstracted keystore function, memcpy fv is used as follows:
memcpy_fv(key_store ->element_store[result.index].key.name , key ->name , KEY_NAME_SIZE)}

memcpy_fv(key_store ->element_store[result.index].key.data , key ->data , KEY_DATA_SIZE)}

The AutoCorres translation of this C code is:
p <- gets (λs. PTR(unit) &(PTR(int_key_record_C)

(&s[key_store]→element_store +p

uint (index_C result)→[’’key_C ’’])→[’’name_C ’ ’]));
r <- exec_concrete lift_global_heap (memcpy_fv ’ p

(PTR(unit) &(key→[’’name_C ’’])) 0x20);
p <- gets (λs. PTR(unit) &(PTR(int_key_record_C)

(&s[key_store]→element_store +p

uint (index_C result)→[’’key_C ’’])→[’’data_C ’ ’]));
r <- exec_concrete lift_global_heap (memcpy_fv ’ p

(PTR(unit) &(key→[’’data_C ’’])) 0x400);

AutoCorres detects the presence of a non-heap-abstracted version of
memcpy fv and uses the exec concrete and lift global heap functions to lift
this so that it can be called from the heap-abstracted key store add function.

We will now need to define two Hoare triples, one for each invocation of
memcpy fv. One of these is shown in Fig. 11. The other is identical except for
the fact that every instance of name is replaced by data. The two Hoare triples

Formal Verification of a Keystore 61

are similar to memcpy wp, though the different pointer validity preconditions
have been replaced by one heap-abstracted predicate per type (the is valid
predicates). The proofs of these heap-abstracted Hoare triples use the proof of
the earlier non-heap-abstracted Hoare triple for memcpy fv. The proofs are rather
cumbersome and technical, but they are also very similar and it is very likely
that they can be automatically generated to a large extent. We will discuss this
further in Sect. 4.

lemma memcpy_key_name_C_name_C [simplified]: "
{| λs. is_valid_KeystoreRamFV_ElementRecord_C s (e s) ∧

e’ = (PTR(unit) &(PTR(KeystoreRamFV_KeyRecord_C) &(e s [’’key_C’’]) [’’name_C’’])) ∧
is_valid_KeystoreRamFV_KeyRecord_C s k ∧
(Q (PTR(unit) &(PTR(KeystoreRamFV_KeyRecord_C) &(e s [’’key_C’’]) [’’name_C’’]))

(verification_code.update_KeystoreRamFV_ElementRecord_key s (e s)
(name_C_update (λ_. name_C (heap_KeystoreRamFV_KeyRecord_C s k))
(key_C (heap_KeystoreRamFV_ElementRecord_C s (e s)))))) |}

exec_concrete lift_global_heap
(memcpy_fv’ e’ (PTR(unit) &(k [’’name_C’’])) (of_nat LENGTH(KEY_NAME_SIZE)))
Q !"

Fig. 11. Heap-abstracted Hoare triple for memcpy fv with the name field

4 Discussion

In this section, we will reflect on the verification process and identify research
directions that could make this kind of verification effort easier in the future.

4.1 Verification

Let us first have a look at the size of the proof effort, both in lines of code and in
terms of effort spent. The final, integrated version of the verified code consists of
353 lines of C; Fig. 12 shows the size and effort involved in creating the several
proofs – for the keystore as well as for the standard library.

If we combine the figures from Fig. 12, it emerges that we have spent 1.4
person-years per kLOC of C code in verification of the keystore; this is only
slightly less than the 1.5 py/kLOC spent in the seL4 proof effort.

Task Lines of Isabelle Effort [person days]

Standard library (51 lines of C):
verification 2489 30 pd
connector 1479 15 pd

Keystore (353 lines of C):
abstract specification 679 8 pd
refinement proofs 2926 79 pd
simulation 364 20 pd

Fig. 12. Size and effort of verification tasks

62 J. Boender and G. Badevic

A more significant gain could have been expected because of the use of Auto-
Corres, which reduced the proof effort necessary (basically, it provided the exe-
cutable specification for free).

Part of this discrepancy can be explained by the time spent familiarising
ourselves with new technologies (this was our first large project using Isabelle and
AutoCorres). This had an impact on the cost of the refinement proofs especially.

4.2 Lessons Learned

Looking back on the verification process, the main lesson is that we should have
integrated the code into TRENTOS at the beginning of the verification effort
rather than at the end. The changes introduced by verification (once the use
of standard library functions was decided on) were minor and could have been
integrated in TRENTOS relatively easily, while integrating the changes required
for integration post-facto took much more time.

We should also have written the abstract specification before the C imple-
mentation. This is the proper order, so that the abstract specification can guide
the implementation in C; for the keystore, we first agreed on an informal spec-
ification and then implemented this directly. Since the keystore is a relatively
simple piece of software, this reversed order did not cause problems, but for more
complex developments, it might result in dissociation between the different spec-
ifications.

Especially during the latter phases, we spent a lot of time adjusting the
statements of the different proofs (most notably refinement and simulation) to
fit everything together (there were several instances of refinement preconditions
not quite matching up across functions, for example). It would be beneficial to
write the proof statements first, without actually proving them, and making
sure that everything fits together before starting the proofs; this saves effort in
reworking the proofs later.

A basic step-by-step plan to verify a TRENTOS component (or any other
piece of software) would then be:

0. Agree on an informal specification;
1. Write an abstract specification for the component to be verified;
2. Prove weakest-precondition style Hoare triples for the functions in this spec-

ification;
3. Prove specific properties of this specification we are interested in (including

invariants);
4. Implement the specification in C;
5. Specify a state relation and return relations for the separate functions;
6. Write proof skeletons for refinement and simulation;
7. Prove weakest-precondition style Hoare triples for the C functions;
8. Prove invariants over the C specification;
9. Prove refinement between the abstract functions and their C equivalents;

10. Specify the abstract and C state machine;
11. Prove simulation between the abstract state machine and the C state

machine.

Formal Verification of a Keystore 63

This process can not be completely sequential, since there will still be some
need to revise earlier steps in light of results in later steps (for example adjusting
the abstract specification if needed to conform to the concrete implementation).

The weakest-precondition style Hoare triples in steps 2 and 7 are meant to
avoid duplication of effort. We have noticed that there were a lot of common-
alities between the proofs in steps 8 and 9; we suspect that if we first prove a
Hoare triple that very strictly specifies the behaviour of each function, we can
use these later on, both for proving invariants and for proving refinement. In
essence, we will be using these Hoare triples to factor out the common elements
between the invariant proofs and the refinement proofs.

4.3 Future Research

The basic techniques used for verifying these components can be refined,
extended and integrated. In this subsection, we will offer suggestions for future
improvements and research.

At current, the proofs of the lemmas that connect the standard library to
the keystore are written by hand, which is a very cumbersome process. As these
proofs resemble each other to a large extent, it should be possible to generate
these proofs based on the datatype descriptions. We have already started work
on this for the simplest of the connecting lemmas, but much more can be done
here.

Another avenue of improvement would be permanent storage: at the moment,
the keystore stores its contents only in memory, without having recourse to a
file system or other type of permanent storage. Having a formally verified file
system (that can be adapted to fit to the keystore proofs) would greatly improve
the usability of the keystore.

4.4 Conclusion

In this paper, we have presented the formal verification of a keystore component
from our TRENTOS operating system. We have shown the process used, and
presented a way to use functions that do not use AutoCorres’ heap abstraction
with functions that do. And finally, we have identified possible improvements to
the process and suggested avenues for future research.

We have verified the safety properties of the keystore; for security properties
we rely on the trusted code base of the seL4 kernel, the CAmkES system and the
crypto server (the latter two as yet unverified). Even though the process is very
labour-intensive, it is worth the time and effort because the properties proven
are very extensive; other methods may be quicker, but are less complete.

Our experience shows that the methodology used to verify seL4 transfers to
other software projects. It shows that using formal verification in an industrial
setting is possible, if the code to be verified is critical enough and resources are
available. With enough automation and further integration, it is foreseeable that
formal verification can be a part of the software engineer’s standard toolkit for
writing critical software.

64 J. Boender and G. Badevic

References

1. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71067-7 16

2. Constable, S., Sutton, R., Sahebolamri, A., Chapin, S.: Formal Verification of a
Modern Boot Loader. Electrical Engineering and Computer Science - Technical
Reports, August 2018. https://surface.syr.edu/eecs techreports/183

3. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
formal verification of C code without the pain. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2014, Edinburgh, UK, pp. 429–439. ACM Press (2013). https://doi.org/10.
1145/2594291.2594296

4. Klein, G., Derrin, P., Elphinstone, K.: Experience report: seL4: formally verifying a
high-performance microkernel. In: Proceedings of the 14th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2009, Edinburgh, Scotland,
p. 91. ACM Press (2009). https://doi.org/10.1145/1596550.1596566

5. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, Big
Sky, Montana, USA, pp. 207–220. Association for Computing Machinery, October
2009. https://doi.org/10.1145/1629575.1629596

6. Kuz, I., Liu, Y., Gorton, I., Heiser, G.: CAmkES: a component model for
secure microkernel-based embedded systems. J. Syst. Softw. 80(5), 687–699
(2007). https://doi.org/10.1016/j.jss.2006.08.039. https://www.sciencedirect.com/
science/article/pii/016412120600224X. Component-Based Software Engineering of
Trustworthy Embedded Systems

7. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

8. Sahebolamri, A., Constable, S., Chapin, S.: A Formally Verified Heap Allocator.
Electrical Engineering and Computer Science - Technical Reports, January 2018.
https://surface.syr.edu/eecs techreports/182

9. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Dissertation, Technische Universität München, München (2006)

10. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2013, Seattle, Washington, USA, p.
471. ACM Press (2013). https://doi.org/10.1145/2491956.2462183

11. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,
M., Felleisen, M. (eds.) ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Nice, France, pp. 97–108. ACM, January 2007

https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-540-71067-7_16
https://surface.syr.edu/eecs_techreports/183
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/1596550.1596566
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1016/j.jss.2006.08.039
https://www.sciencedirect.com/science/article/pii/016412120600224X
https://www.sciencedirect.com/science/article/pii/016412120600224X
https://doi.org/10.1145/1538788.1538814
https://surface.syr.edu/eecs_techreports/182
https://doi.org/10.1145/2491956.2462183

A Case Study in the Automated
Translation of BSV Hardware to PVS

Formal Logic with Subsequent
Verification

Nicholas Moore(B) and Mark Lawford

McMaster Centre for Software Certification, McMaster University,
Hamilton, ON, Canada

{moorenc,lawford}@mcmaster.ca

Abstract. We previously developed a method of formal hardware ver-
ification that automatically translates hardware descriptions encoded in
Bluespec SystemVerilog (BSV) into the formal logic of Prototype Ver-
ification System (PVS) to allow verification of system properties. This
paper reports on an extension of our translation tool, BAPIP, that refines
the semantic model to cover more Bluespec language constructs and
optimizes the translation to PVS to address scalability to allow applica-
bility of the method to real-world hardware examples as demonstrated
by a case study of the Shakti RISC-V project’s implementation of the
RapidIO data packet passing communication protocol. In particular we
verify the encoding of byte masks in outgoing memory read requests.

1 Introduction

HDLs are similar to software languages, in that they offer the hardware designer
modularizing abstractions that improve productivity, reliability, and manage-
ability of large designs. This paper presents a novel translation algorithm which
embeds an expanded subset of the HDL Bluespec SystemVerilog (BSV) in the
higher order logic of Prototype Verification System (PVS). We then use PVS’s
theorem prover to prove formal properties. While originally based on work by
Richards and Lester [14], most of this work has been superseded. Our method-
ology, which previously automated the above work with some extensions, has
been further extended to handle some real-world hardware designs. In partic-
ular, this is the first algorithm embedding of the full clock cycle semantics of
BSV in a formal logical system. Whereas in [9] the case studies we presented
were toy examples, the case study presented here was derived from a RISC-V
processor design. We also present some optimizations addressing the scalability
of our technique which may be of more general interest.

Our proof methodology is a general-purpose mechanism for encoding BSV
designs in PVS, and is outlined in Fig. 1.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 65–72, 2022.
https://doi.org/10.1007/978-3-031-10363-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_5

66 N. Moore and M. Lawford

Specification
Document

BSV Hard-
ware Descrip-
tion (*.bsv)

PVS Encoding
(*.pvs)

Formal
Tabular

Specifications
(*.pvs)

Proof of
Correctness

(*.prf)

Implementation Translation Deduction

Formalization
Utilization

Legend
File

Not Automated Semi Automated Full Automation

Fig. 1. BAPIP - BSV2PVS mode tool chain

In Sect. 2, we discuss the languages used in the translation process, and pro-
vide an overview of the source of our case study. In Sect. 3 we discuss our seman-
tic model of BSV. Section 4 discusses optimization techniques employed by the
translator. Our case study is presented in Sect. 5, followed by related works in
Sect. 6 and our conclusion in Sect. 7.

2 Preliminaries

Bluespec System Verilog. Bluespec SystemVerilog originated as a library of
the functional programming language Haskell [10] as a high-level alternative to
Verilog, SystemVerilog and VHDL. Bluespec Inc., was founded in 2003 by Dr.
Arvind of MIT. Bluespec Inc. has itself recently pivoted towards being a supplier
of RISC-V technologies [1].

A Bluespec design is a hierarchical collection of hardware modules. Blue-
spec designs are analogous to state machines, where state is held by the cir-
cuit’s sequential components (registers, flip-flops, etc.), and is transformed via
guarded actions. These atomically executed actions are comprised of a Boolean
guard expression, and a set of register writes and submodule method invoca-
tions. Actions can either be rules, which are considered for execution each clock
cycle, or methods, which must be invoked by the supermodule. Input and out-
put occurs via method calls.

Each clock cycle, those actions which are permitted to execute, or “fire”, must
be arbitrated to prevent race conditions, as actions may write to non-disjoint
sets of memory. Conflicts are resolved via scheduling, and the use of implicit
and explicit precedence ordering, as discussed in Sect. 3. In BSV, if conflicts
go unresolved, the hardware scheduler makes a “arbitrary but deterministic”
decision as to which actions fire [3]. Our translation will fail on such cases to avoid
reverse-engineering this arbitrary algorithm, and because designs with conflicts
are generally bad practice.

Prototype Verification System. The Prototype Verification System (PVS)
is an interactive specification and proof environment, providing a high degree

A Case Study in the Automated Translation of BSV Hardware 67

of mechanization and the expressive power of higher order logic [11]. This free
tool, developed by SRI International, receives specifications encoded in the PVS
specification language, and provides an interactive proof environment in which
the user may apply proof tactics to theorems in an effort to prove them. In the
past, PVS has been used to successfully verify safety critical embedded systems,
such as the shutdown systems for the Darlington nuclear power plant [15].

RISC-V, Shakti and RapidIO. RISC-V is an open-source specification for
the design of computer processors [12]. RISC stands for Reduced Instruction Set
Computer, and RISC-V is an open-source hardware initiative led by the RISC-V
foundation [2]. The Shakti project is a family of implementations of RISC-V by
[7], and the RISE group at IIT Madras. The Shakti family of processors have
been designed and implemented in Bluespec SystemVerilog, citing a higher level
of abstraction, “superior behavioural semantics,” architectural transparency and
parameterizability as justification. The complexity and open source nature of
the Shakti processor [8], and the RapidIO specification [13] make it an ideal case
study.

3 Computational Model

Two actions must write to at least one common state element, and have non-
disjoint guard expressions in order to be in conflict. Our translation tool uses
SMT (Satisfiability Modulo Theory) analysis, via Haskell’s SBV library [6] and
Yices [5] to evaluate the disjointness of guard expressions. A conflict relation
from actions to actions is thereby derived.

To resolve conflicts, actions of higher priority are permitted to pre-empt those
of lower priority. Priority is established by explicit declaration, or by implicit
language semantics. Methods are prioritized over rules, and actions which write
to “wires” (state elements which permit inter-action communication within a
single clock cycle) are given precedence over those which read from the same.
This applies two partial orders over the set of actions. If any conflict exists which
has no priority ordering to resolve it, the translation fails.

The goal of arbitration is to construct a binary decision tree which describes
all valid action execution sequences. The decisions of this decision tree are
whether or not the guard condition of the action is true, and the action there-
fore fires. Actions are scheduled in order of maximality with respect to the pri-
ority poset. If multiple actions are maximal, an arbitrary decision selects one
of them. There is no loss of semantic integrity here, as such actions cannot
conflict, or else a priority ordering must exist between them at this stage. In
hardware, these actions would execute concurrently. If, along the decision tree,
some action is selected to fire which conflicts with others, the actions conflicted
with are removed from further consideration along that branch.

Once the universal schedule has been created, a decision tree for each state
element must be extracted through traversal. Only those statements which write

68 N. Moore and M. Lawford

to the indicated state element, and guard expressions, are retained in the state-
specific tree. Subsequently, these state-specific trees generate branching if con-
ditionals, which are inserted to a record update predicate in PVS which encodes
state transition for each state element.

4 Optimizations Addressing Scalability

One of the largest problems with the algorithm above is the generation of at
most two subtrees (true and false) at each node of the universal scheduling tree.
This yields an algorithmic complexity of O(2d), where d is the depth of the tree
(maximally the number of actions to be scheduled). To address these limitations,
several algorithmic techniques were applied.

Universal and Specific Tree Pruning. Consider the following simple sub-
stitutions.

if True then p else q �→ p if False then p else q �→ q

if b then p else p �→ p

When translating the entire RapidIO library, generated files had hundreds of
thousands of lines of code prior to these substitutions. These files were so large
PVS could not load them. These optimizations reduced the size of the generated
files by two orders of magnitude.

Module Hierarchy Action Set Refinement. As the designs being trans-
lated grew, so too did their module hierarchy. We observe, however, that the
state elements of any particular module may only be written to by the mod-
ule itself (through statements), or by any of the module’s supermodules (via
method calls). As such, a state specific schedule in any particular module need
only concern itself with the actions in the above specified modules. Essentially,
sibling modules can be safely ignored. Each module, therefore, may have it’s
own schedule, which takes only itself and supermodules into account, and state-
specific trees are calculated from the scheduling tree specific to their module of
residence.

Over the whole Shakti RapidIO implementation, this observation reduced
maximum scheduling tree depth from 84 to 42 actions. The effect was maximized
on those areas of RapidIO with a wide and shallow module hierarchy.

Action Merger via Schedule Independence Checking. Consider a set of
actions with identical guard expressions, which take priority over, and are of
lower priority than the same sets of other actions (excluding themselves). Such
actions would be adjacent in the universal scheduling, yet the order of their

A Case Study in the Automated Translation of BSV Hardware 69

execution is immaterial. Such actions may be safely merged to form one “super-
action”, with no loss of semantic integrity.

By only processing composed actions with unique scheduling properties, we
tie run-time complexity to the path complexity of the state element calculations,
rather than to the modularization of the designer. This optimization, combined
with those listed above, reduced the universal scheduling tree depth to 9 nodes.

5 Case Study: RapidIO Encoder

The objective of this case study is to verify the output values of the Sha-
kti RapidIO implementation module RapidIO InitEncoder WdPtr Size.bsv,
specifically reg Size and reg WdPointer. Behaviour of these outputs is given in
[13] in tabular format. Table 1 gives an excerpt. In RapidIO, memory is addressed
in 64 bit words, but smaller contiguous chunks are accessible via byte masking,
written “byte lanes” below. These byte lanes are encoded in data packets using
the wdptr and rdsize fields. In operations on up to 8 bytes, wdptr and rdsize are
uniquely determined by the byte lane pattern. This format also supports multi-
word operations, where the “number of bytes” field alone determines wdptr and
rdsize.

Table 1. Excerpt of Table 4-3 from [13]

Number of bytes Byte lanes wdptr rdsize

2 0b00110000 0b0 0b0110

5 0b11111000 0b0 0b0111

2 0b00001100 0b1 0b0100

...
...

...
...

This table is disjoint, in that each row represents unique, non-overlapping
inputs, but not complete, as not all combinations of input values are represented.
In hardware design, such cases are commonly labelled “don’t care” or “reserved”
values. Since a default value is not specified, a predicate is used to constrain the
inputs during proof construction. We specify that Byte Lanes, for example, may
only have those values specified in the table.

The following theorem verifies wdptr functionality. This theorem states that,
if we take our generated transition predicate, as well as our input constraint
predicates as premises, this should imply that the output of our requirements
table (req word pointer) should equal the output as received via the module’s
access method (outputs WdPointer).

70 N. Moore and M. Lawford

�

1 correctness_1 : theorem

2 forall(x1 : ByteEn , x2 : ByteCount , x3 : bool) :

3 x3 = True

4 and valid_bytemask(x1)

5 and valid_bytecount(x2)

6 and transition(1, s(0),s(1), x1 , x2 , x3)

7 implies req_word_pointer (x1 , x2) = outputs_WdPointer_ (1,s(1),s(1),

x1 ,x2 ,x3)
�

In the above, s is our module’s state record. Antecedents include both our
input validity predicates and our transition predicate. Since this module arrives
at its output in one clock cycle, only one transition predicate is necessary. As
consequent, we call the appropriate output method and test its return value
against the output of the requirements table.

Proving the Sequent. The following methodology was used to discharge all
proof obligations in PVS.

1. At the top-level, our overall correctness theorem is the conjunction of the
correctness theorems addressing for the word pointer and read size registers
(correctness 1 and correctness 2 respectively). The proof is immediately
divided into two sub-proofs for these two sub-theorems using (split). The
following steps apply to both.

2. The theorem is expanded using (expand correctness 1) or (expand
correctness 2)

3. Skolemization is performed over the universal quantifier, using (skolem!).
4. The top level implication and conjunctions are applied as antecedents and

consequents using (flatten).
5. The definition of the valid bytemask predicate is expanded using (expand

valid bytemask)
6. The proof is then split into 25 sub-proofs (for correctness 1), along the

disjunctions of the newly expanded predicate using (split).
7. The general-purpose strategy (grind) is applied to each sub-proof, discharg-

ing of all proof obligations.

Using the above strategy, the proof of correctness total is discharged with
an average execution time of 40.546s. The module under test is in compliance
with revision 4.1 of the RapidIO Interconnect Specification [13].

6 Related Work

Similarly to BAPIP and the original work of Richards and Lester [14], Kami [4]
models individual action semantics, but stops short of action arbitration. The
expected workflow in Kami starts with composing the hardware design inside
of Kami (and therefore COQ), where individual rules can have their behaviour
verified. From there, Kami code is de-sugared into Bluespec code.

A Case Study in the Automated Translation of BSV Hardware 71

Many of the issues with the Richards and Lester embedding in PVS recur
in Kami. While certain classes of properties can be demonstrated via proof
over individual actions, more complex, multi-action behaviours require action
scheduling to be modelled. In addition, the only way to verify timing require-
ments is tying actions to real-world time via whole clock cycles. Kami also explic-
itly does not a address “constructs that violate one-rule-at-a-time semantics [...]
namely “wires,” whose behaviour depends on the schedule” [4]. It is only possi-
ble to simulate wires in the context of whole clock cycle semantics, so this is an
understandable omission in Kami, but not one that is shared by BAPIP.

7 Conclusion

It is our hope that this technique may be used and adapted in further verification
projects, so that the immense barrier between formal verification and common
practice may be lessened. As future work, the bsv2pvs translation algorithm
could be expanded to cover all BSV language constructs.

References

1. Open Source RISC-V Cores and Tools. Bluespec Inc. (2019). https://bluespec.
com/. Accessed 29 Mar 2022

2. RISC-V Foundation—Instruction Set Architecture (ISA) (2020). https://riscv.
org/. Accessed 29 Mar 2022

3. Bluespec Inc.: BluespecTMSystemVerilog Reference Guide (2012). http://csg.
csail.mit.edu/6.S078/6 S078 2012 www/resources/reference-guide.pdf. Accessed
29 Mar 2022

4. Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., et al.: Kami: a platform
for high-level parametric hardware specification and its modular verification. In:
Proceedings of the ACM on Programming Languages, vol. 1(ICFP), p. 24 (2017).
https://dspace.mit.edu/handle/1721.1/134865. Accessed 30 Mar 2022

5. Dutertre, B., De Moura, L.: The Yices SMT Solver (2006). http://yices.csl.sri.
com/tool-paper.pdf. Accessed 29 Mar 2022

6. Erkok, L.: SBV: SMT Based Verification: Symbolic Haskell Theorem Prover Using
SMT Solving (2019). https://hackage.haskell.org/package/sbv. Accessed 29 Mar
2022

7. George, P., Sahoo, A., Menon, A., Kamakoti, V.: SHAKTI: An Open-Source
Processor Ecosystem. Advanced Computing and Communications (2018). https://
www.researchgate.net/profile/Neel-Gala-2/publication/330577797 SHAKTI
An Open-Source Processor Ecosystem/data/5c4969e092851c22a38c2c24/ACCS-
SHAKTI-PAPER.pdf. Accessed 30 Mar 2022

8. Madhusudan, G.S.: casl/rapidio/old src /Logical Transport/BSV - Bitbucket
(2018). https://bitbucket.org/casl/rapidio/src/master/old src/Logical Transport/
BSV/. Accessed 29 Mar 2022

9. Moore, N., Lawford, M.: Correct safety critical hardware descriptions via static
analysis and theorem proving. In: 2017 IEEE/ACM 5th International FME Work-
shop on Formal Methods in Software Engineering (FormaliSE), pp. 58–64. IEEE
(2017). https://ieeexplore.ieee.org/abstract/document/7967994. Accessed 30 Mar
2022

https://bluespec.com/
https://bluespec.com/
https://riscv.org/
https://riscv.org/
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf
https://dspace.mit.edu/handle/1721.1/134865
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
https://hackage.haskell.org/package/sbv
https://www.researchgate.net/profile/Neel-Gala-2/publication/330577797_SHAKTI_An_Open-Source_Processor_Ecosystem/data/5c4969e092851c22a38c2c24/ACCS-SHAKTI-PAPER.pdf
https://www.researchgate.net/profile/Neel-Gala-2/publication/330577797_SHAKTI_An_Open-Source_Processor_Ecosystem/data/5c4969e092851c22a38c2c24/ACCS-SHAKTI-PAPER.pdf
https://www.researchgate.net/profile/Neel-Gala-2/publication/330577797_SHAKTI_An_Open-Source_Processor_Ecosystem/data/5c4969e092851c22a38c2c24/ACCS-SHAKTI-PAPER.pdf
https://www.researchgate.net/profile/Neel-Gala-2/publication/330577797_SHAKTI_An_Open-Source_Processor_Ecosystem/data/5c4969e092851c22a38c2c24/ACCS-SHAKTI-PAPER.pdf
https://bitbucket.org/casl/rapidio/src/master/old_src/Logical_Transport/BSV/
https://bitbucket.org/casl/rapidio/src/master/old_src/Logical_Transport/BSV/
https://ieeexplore.ieee.org/abstract/document/7967994

72 N. Moore and M. Lawford

10. Nikhil, R.: Bluespec System Verilog: efficient, correct RTL from high level speci-
fications. In: Proceedings of the Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, pp. 69–70. IEEE (2004). https://
ieeexplore.ieee.org/abstract/document/1459818. Accessed 30 Mar 2022

11. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217. Accessed 30 Mar 2022

12. Porter, H.H., III.: RISC-V: An Overview of the Instruction Set Architecture (2018).
https://web.cecs.pdx.edu/∼harry/riscv/RISCV-Summary.pdf. Accessed 29 Mar
2022

13. RapidIO.org: RapidIO TM Interconnect Specification - Part 1: Input/Output
Logical Specification, 4.1 edn., June 2017. https://rapidio.org/files/IO logical.pdf.
Accessed 30 Mar 2022

14. Richards, D., Lester, D.: A monadic approach to automated reasoning for Bluespec
System Verilog. Innov. Syst. Softw. Eng. 7(2), 85–95 (2011). https://doi.org/10.
1007/s11334-011-0149-0. Accessed 30 Mar 2022

15. Wassyng, A., Lawford, M.S., Maibaum, T.S.: Software certification experience in
the Canadian nuclear industry: lessons for the future. In: Proceedings of the Ninth
ACM International Conference on Embedded Software, pp. 219–226. ACM (2011).
https://dl.acm.org/doi/abs/10.1145/2038642.2038676. Accessed 30 Mar 2022

https://ieeexplore.ieee.org/abstract/document/1459818
https://ieeexplore.ieee.org/abstract/document/1459818
https://doi.org/10.1007/3-540-55602-8_217
https://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf
https://rapidio.org/files/IO_logical.pdf
https://doi.org/10.1007/s11334-011-0149-0
https://doi.org/10.1007/s11334-011-0149-0
https://dl.acm.org/doi/abs/10.1145/2038642.2038676

Sound Static Analysis of Regular
Expressions for Vulnerabilities to Denial

of Service Attacks

Francesco Parolini(B) and Antoine Miné

Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{francesco.parolini,antoine.mine}@lip6.fr

Abstract. Modern programming languages often provide functions to
manipulate regular expressions in standard libraries. If they offer support
for advanced features, the matching algorithm has an exponential worst-
case time complexity: for some so-called vulnerable regular expressions,
an attacker can craft ad hoc strings to force the matcher to exhibit an
exponential behaviour and perform a Regular Expression Denial of Ser-
vice (ReDoS) attack. In this paper, we introduce a framework based on
a tree semantics to statically identify ReDoS vulnerabilities. In partic-
ular, we put forward an algorithm to extract an overapproximation of
the set of words that are dangerous for a regular expression, effectively
catching all possible attacks. We have implemented the analysis in a tool
called rat, and testing it on a dataset of 74,670 regular expressions, we
observed that in 99.47% of the instances the analysis terminates in less
than one second. We compared rat to four other ReDoS detectors, and
we found that our tool is faster, often by orders of magnitude, than most
other tools. While raising a low number of false positives, rat is the only
ReDoS detector that does not report false negatives.

Keywords: Regular expressions · Denial of Service · Algorithmic
complexity attacks · Static analysis · Security and privacy

1 Introduction

Regular expressions (regexes) are often used to verify that strings in programs
match a given pattern. Modern programming languages offer support to regexes
in standard libraries, and this encourages programmers to take advantage of
them. However, matching engines of languages such as Python, JavaScript, and
Java employ algorithms with exponential worst-case time complexity in the
length of the string. This is because advanced features such as backreferences
extend the expressiveness of regular expressions. This comes at the cost of expo-
nential matching in the worst case, even for regexes that do not exploit such
features. An attacker can craft a string to force the matcher to exhibit the expo-
nential behaviour to perform a Regular Expression Denial of Service (ReDoS)
attack, a particular type of algorithmic complexity attack [13].
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 73–91, 2022.
https://doi.org/10.1007/978-3-031-10363-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_6&domain=pdf
http://orcid.org/0000-0002-1077-7812
http://orcid.org/0000-0002-6375-3179
https://doi.org/10.1007/978-3-031-10363-6_6

74 F. Parolini and A. Miné

ReDoS attacks are vastly underestimated Denial of Service (DoS) attacks.
In a recent study of regexes usage, in nearly 4,000 Python projects on Github,
the authors find that over 42% of them contain regexes [11], while in [30] the
authors found that 10% of the Node.js-based web services they examined are
vulnerable to ReDoS. In this already harsh scenario, in [18] the authors find
that only 38% of the developers that they surveyed knew about the existence of
ReDoS attacks. Many well-known platforms observed such vulnerabilities in their
systems: among them, we find Stack Overflow [3], Cloudflare [4], and iCloud [5].
Since it is difficult to detect ReDoS vulnerabilities with manual inspection, it
is necessary to automate this critical process. However, for now, there is no
practical and widely adopted solution to detect ReDoS vulnerabilities.

There are many different approaches to static semantics-based ReDoS detec-
tion [19,28,32,33], and they are all based on automata frameworks. Due to the
difficulties to precisely model matching engines with automata, static analyz-
ers often report both false positives and false negatives. In contrast, dynamic
approaches to ReDoS detection [29] can hardly be used in practice, since per-
forming dynamic testing on exponential algorithms can be excessively costly.

In this paper, we put forward a novel approach to statically detect ReDoS
vulnerabilities. We get rid of the complexities to represent the behaviour of
matching engines with automata by defining a tree semantics of the matching
process. Next, we leverage it to introduce an analysis that determines whether
a regex may be vulnerable or not. In particular, the analysis returns an over-
approximation of the language of words that can cause exponential matching,
being effectively sound but not complete. Nevertheless, our experiments show
that our approach reports a low number of false positives.

In this work, we focus on the most dangerous type of ReDoS vulnerability,
namely when the matching is exponential. To successfully perform an attack
that exploits superlinear but non-exponential matching, a malicious user must be
allowed to insert very large strings. Such attacks are considerably less dangerous
than the case that we consider.

Our approach not only eliminates the complexities related to using automata,
but also opens the possibility to easily introduce optimizations. We implemented
our algorithm in a tool called rat [25], and we found it to be on average one to
two orders of magnitude faster than most existing detectors, while being proved
to be sound and raising only 50 false alarms over 74,670 regexes. Furthermore,
rat can extract the language of possibly dangerous words, being strictly more
expressive than most other tools. This expressiveness can be useful in different
scenarios: for example, existing matching engines can use our algorithm to filter-
out dangerous input strings. It is also possible to use the language of dangerous
words by combining our framework with a string analysis in order to prove the
absence of ReDoS vulnerabilities in real-world applications.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 75

1 import re

2 email_regex = r’^([0-9a-zA-Z]([-.\w]*[0 -9a-zA-Z])*@(([0-9

a-zA-Z]) +([-\w]*[0-9a-zA-Z])*\.) +[a-zA-Z]{2 ,9}) $’

3 attack = ’a’ * 50

4 re.match(email_regex , attack)

Fig. 1. Python program that matches a dangerous string against a vulnerable regex

2 Background

2.1 ReDoS Vulnerabilities

The majority of programming languages that offer support for regexes in stan-
dard libraries are vulnerable to ReDoS attacks. Among them, we find Python,
Java, JavaScript, PHP, and Ruby. Figure 1 shows an example of a Python
program that matches a string with a vulnerable regex that validates email
addresses. The regex is taken from the Regexlib [2] database, and possibly many
programmers used it. Executing the program on a modern computer with a
4GHz Intel Core i7-4790K CPU takes more than 24 h. In Sect. 4, we give in-
depth description of ReDoS vulnerabilities, but here we informally introduce
why this behaviour arises. Consider the input string a50 and the subexpression
([-.\w]*[0-9a-zA-Z])*: a can be matched in [-.\w]* or in [0-9a-zA-Z]. This
implies that in ([-.\w]*[0-9a-zA-Z])* there are four paths to match aa, eight
for aaa and in general 2n for an. Normally, the matching engine accepts the first
match, but here, as @ does not appear in the string, it exhaustively explores all
250 paths before concluding that no match is possible for a50 in the full regex.

Usually programming languages employ matching engines with exponential
worst-time complexity to support advanced features such as backreferences and
lookarounds [16,22]. We, like most other analyzers, do not support such features.
Nevertheless, our approach is sufficient to analyze the great majority of regexes
in real-world applications: in [11] the authors found that in nearly 4000 Python
projects, only 4% of the regexes use lookarounds and up to 0.4% use backref-
erences. Yet, recent surveys determined that up to the 10% of the web services
they considered present ReDoS vulnerabilities [30]. This highlights how program-
mers use vulnerable matching engines while only occasionally taking advantage
of advanced features, and motivates the need for a sound ReDoS analyzer even
limited to regular constructs.

2.2 ReDoS Detection

There are two main approaches to ReDoS detection:

1. Semantics-based static detection. There are many different approaches to
semantics-based static ReDoS detection [19,27,28,32,33], and they all rely on
automata. In those frameworks, regexes are first transformed into automata,
which are then analyzed to determine whether they are vulnerable or not.

76 F. Parolini and A. Miné

The main problem is that transforming regexes to automata can remove or
inject vulnerabilities. This is often a source of both false positives and false
negatives. We discuss semantics-based static analyzers based on automata in
detail in Sect. 6, and we compare them to our approach that is also semantics-
based, but operates on regexes instead of automata.

2. Dynamic detection. A dynamic analyzer generates strings that are fed to the
matching engine. Then, the tool measures the time for the matching and
determines whether a regex is vulnerable or not. These tools are sensibly
slower than static analyzers, because performing testing on exponential algo-
rithms can be excessively time-consuming. While it is possible to configure
generic fuzzers, such as SlowFuzz [26], to detect ReDoS vulnerabilities, in [29]
the authors present ReScue: a more precise gray-box approach which leverages
a genetic algorithm to efficiently generate input strings.

2.3 Regexes Basics

We now define the regexes that we use for the rest of the paper. Let Σ =
{ a1, a2, . . . , an } be a finite set of symbols. A word is an element of Σ˚, while a
language is a set of words. We denote the empty word as ε and the concatenation
of two languages L1, L2 as L1L2. Let a P Σ.

R P R Regexes
R – ε | a | R1|R2 | R1·R2 (or R1R2) | R∗

1

We assume that regexes automatically remove ε in the concatenation (this is
known as a smart-constructor [23]), so that R·ε and ε·R are always simplified
to R. This allows representing regexes as they are implemented in programming
languages, where ε cannot be inserted by the user in the concatenation. We
define two functions to deconstruct the concatenation of a regex R.

hd(R) fi

{
hd(R1) if R = R1R2

R otherwise
tl(R) fi

{
tl(R1)·R2 if R = R1R2

ε otherwise

Observe that since we assume that the concatenation simplifies ε, if hd(R) = ε,
then tl(R) = ε. We extend the regexes with the possibility to recognize the empty
language, namely the empty set of words, as follows.

R P RK Empty Regexes
R – ε | a | R1|R2 | R1·R2 | R∗

1 | K
Observe that R Ă RK. Let a P Σ. The language recognized by a regex R P RK is
defined as follows.

L(K) fi H L(a) fi {a} L(R1R2) fi L(R1)L(R2)

L(ε) fi {ε} L(R1|R2) fi L(R1) Y L(R2) L(R∗
1) fi

⋃
iě0

L(R1)i

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 77

Algorithm 1: Matching algorithm pseudocode
1 fun Match (R : R, w : Σ˚, C : ℘(R)) Ñ bool
2 if R P C then
3 return false
4 switch 〈hd(R), tl(R)〉 do
5 case 〈ε, ε〉 do
6 return w = ε
7 case 〈a,R1〉 do
8 if w = aw1 then return Match(R1, w1, H)
9 else return false

10 case 〈R1|R2,R3〉 do
11 return Match(R1R3, w, C) _ Match(R2R3, w, C)
12 case 〈R∗

1,R2〉 do
13 return Match(R1R

∗
1R2, w, C Y {R∗

1R2}) _ Match(R2, w, C)

If L(R1) = L(R2) we write R1 =L R2. Furthermore, the union, intersection
and complement operations on regexes have respectively type RK ˆ RK Ñ RK,
RK ˆ RK Ñ RK and RK Ñ RK. We denote them by R1 Yr R2, R1 Xr R2 and R1

r
.

Observe that if R1,R2 P R, then R1 Yr R2 P R.

2.4 Regex Matching

In this section, we provide the pseudocode of the matching procedure. While
it is simple and concise, it models the concrete behaviour of realistic matching
engines. The pseudocode ignores details specific to a particular implementation,
giving a high-level description of the procedure. Our algorithm is a trivial adap-
tation of the one presented in [9], which models Java’s matching engine. Classic
textbooks about regexes confirm that matching engines in standard libraries
employ a trivial backtracking procedure for the matching [16,22].

In Algorithm 1, we present the matching procedure. The logic operators are
short-circuit: as soon as the input word is matched, the unexplored branches of
the regex are not considered. The behaviour of function Match depends on the
first constructor in the concatenation of the regex, and the remaining portion
can possibly be ε. The algorithm is rather trivial, but it models two important
aspects of matching engines. First, it implements a prioritization mechanism
that: (1) tries to expand the left branch before the right branch in alternatives;
(2) tries to match as many characters as possible in the body of the stars.
Second, the algorithm prevents infinite ε-matching loops. Consider (ε|a)∗: if we
remove line 3, the procedure keeps expanding the body of the star forever, never
consuming any character of the input string. To prevent this, when a star is
expanded, it is inserted in C, that is the set of stars that cannot be expanded
again. Initially, C must be instantiated to the empty set. The stars are removed
from C only when at least one character is matched. Observe that usually in
matching engines the match is successful even if just a prefix of the word matches
the regex: we can model this behaviour by appending Σ∗ at the end of regexes.

78 F. Parolini and A. Miné

3 Semantics

In this section, we first define a small-step operational semantics as a transition
relation between the configurations of the matching engine. We then use it to put
forward a tree semantics that precisely describes the steps performed during the
matching. Lastly, we use the semantics to formally define ReDoS vulnerabilities.

We extend R to represent when a star has been expanded and not a single
character has been matched yet. The syntax of a regex R P RT is given by the
following grammar.

R P RT Transitional Regexes

R – ε | a | R1|R2 | R1·R2 | R∗
1 | R∗

1

It differs from traditional regexes for the closed star, namely R∗. It is a star that
cannot be expanded again in order to prevent infinite ε-matching loops. We will
formalize this concept with the transition relation. The closed stars avoid the
necessity to keep a separate set of expressions (C in Algorithm 1) during the
matching: the information is implicitly included in the regex.

We call a pair in RT ˆ Σ˚ fi S a state, and it describes the configuration
of the matching engine. The first component is the regex that the matcher is
expanding, and the second is the suffix of the input word that still has to be
matched. We define the function r : RT Ñ R to transform the closed stars back
into regular stars as follows.

r(ε) fi ε r(R1|R2) fi r(R1)|r(R2) r(R∗
1) fi r(R1)∗

r(a) fi a r(R1R2) fi r(R1)r(R2) r(R∗
1) fi r(R1)∗

We then define the set of actions as A fi { h, i,�, l }Y{ oa | a P Σ }. Let a P Σ
and w P Σ˚. We can finally define the transition relation between states. It is
not deterministic, but sequences of actions will be ordered later in this section.

〈a, aw〉 oaÑ́〈ε, w〉 〈aR1, aw〉 oaÑ́〈r(R1), w〉
〈R1|R2, w〉 h́Ñ〈R1, w〉 〈(R1|R2)R3, w〉 h́Ñ〈R1R3, w〉
〈R1|R2, w〉 íÑ〈R2, w〉 〈(R1|R2)R3, w〉 íÑ〈R2R3, w〉

〈R∗
1, w〉 �́Ñ〈R1R

∗
1, w〉 〈R∗

1R2, w〉 �́Ñ〈R1R
∗
1R2, w〉

〈R∗
1, w〉 ĺÑ〈ε, w〉 〈R∗

1R2, w〉 ĺÑ〈R2, w〉
The transition relation describes all possible choices of the matching engine
according to the state. Observe that with the � action the star becomes ∗, and
it cannot be expanded again until a character is matched. In fact, the transition
relation is not defined for R∗. After consuming a character of the input word,
we apply the function r to mark all stars as expandable.

We now leverage the transition relation to define a tree semantics for the
matching procedure. Figure 2(a) to 2(d) represent the steps to obtain the seman-
tic matching tree that we define in this section for the initial state 〈a∗, a〉. We

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 79

begin by defining the set of execution traces for 〈R0, w0〉 P S.

T(〈R0, w0〉) fi { 〈R0, w0〉 A1Ñ́〈R1, w1〉 A2Ñ́ · · · AnÑ́〈Rn, wn〉 |
∀i P [0, n ´ 1] : Ai P A and 〈Ri, wi〉Ai`1Ñ́〈Ri`1, wi`1〉 }

Fig. 2. Intermediate steps to obtain the matching tree semantics

We denote the last state of a trace t as �(t) and we define the set of com-
plete execution traces as Tc(〈R, w〉) fi { t P T(〈R, w〉) | �(t)Û }. Observe that
Tc(〈R, w〉) represents all possible executions of the matching engine from 〈R, w〉
up to a state in which it is not possible to continue. We say that two traces are
part of the same matching run if they have the same initial state. To build the
matching tree, we need to order the traces from the first that will be explored
to the last. Let t1, t2 be two complete execution traces in the same matching
run, and let 〈R1, w1〉 be the last state in the longest common prefix between t1
and t2. We impose a lexical order Ď such that t1 Ď t2 iff the action chosen by t1
after 〈R1, w1〉 is either h or �. This order assigns higher priority to the traces
that choose to expand the left branch of the alternative or to expand the body
of the star, which is the standard behaviour of matching engines. Let T be a set
of complete execution traces such that all of them are part of the same matching
run. We denote with OĎ(T) the sequence of traces in T ordered by Ď.

Observe that (OĎ ◦ Tc)(〈R, w〉) corresponds to the ordered sequence of all
complete execution traces. During the concrete execution, some of them will
never be explored, because as soon as the state 〈ε, ε〉 is found, the procedure
terminates. We want to remove from (OĎ ◦ Tc)(〈R, w〉) those traces that appear
after 〈ε, ε〉. Let S = t1, t2, . . . , tn be a sequence of complete execution traces.
We denote by Fε(S) the sequence t1, t2, . . . , tk such that tk is the first trace for

80 F. Parolini and A. Miné

which it holds that �(tk) = 〈ε, ε〉. If there is no such trace, then k = n (i.e., there
is an exhaustive exploration of all traces before failing).

Let S be a sequence of complete execution traces such that all of them are
part of the same matching run. We denote by � (S) the tree obtained by merging
the common prefixes in S.

Fig. 3. Representation of �a∗�(a)

Definition 1 (Matching Tree Semantics). Let R P RT and w P Σ˚. The
matching tree semantics of R with respect to w is given by the following tree.

�R�(w) fi (� ◦Fε ◦ OĎ ◦ Tc)(〈R, w〉)
Figure 3 represents �a∗�(a). One can reconstruct the steps carried out by the
matching engine by doing a depth-first left-to-right traversal of the semantic
tree. We denote the number of nodes in a tree t with |t| and its set of leaves as
lvs(t). We define the language recognized by R P RT as L(R) fi {w P Σ˚ | 〈ε, ε〉 P
lvs(�R�(w)) }. We now give the definition of ReDoS vulnerability, using the one
that firstly appeared in [32], but adapted to our semantics.

Definition 2 (ReDoS Vulnerability). Let R P R and n P N. We define
MR(n) fi max{ |�R�(w)| | w P Σ˚, |w| ď n }. We say that R has a ReDoS
vulnerability iff MR P Ω(2n).

4 Detection of ReDoS Vulnerabilities

In this section, we describe a framework to statically detect exponential ReDoS
vulnerabilities. The analysis we propose derives from a regex an overapproxi-
mation of the set of dangerous words, namely those that can possibly cause an
exponential ReDoS attack. The analysis is sound but not complete: any true vul-
nerability will be reported, but the algorithm can occasionally raise false positives
(i.e., harmless regexes can be considered dangerous). Nevertheless, as discussed
in Sect. 5, our experiments show that in practice our approach is precise and
reports only 50 false positives over 74,670 regexes.

Intuitively, there is an exponential ReDoS vulnerability in a star if it is pos-
sible to match a word with at least two different traces. Consider (a|a)∗: a is
matched in two traces by expanding the left or the right branch of the alterna-
tive. This implies that there are four traces to match aa, eight for aaa and in

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 81

Algorithm 2: Compute M2(R)

1 fun M2(R : R) Ñ RK

2 return M2-rec(R, H)

3 fun M2-rec(R : RT, E : ℘(RT)) Ñ RK

4 if R P E then
5 return K
6 switch 〈hd(R), tl(R)〉 do

7 case 〈ε, ε〉 _ 〈R∗
1,R2〉 do

8 return K
9 case 〈a,R1〉 do

10 return a· M2-rec(r(R1), E)
11 case 〈R1|R2,R3〉 do
12 inter ← R1R3 Xr

�ε
R2R3

13 l ← M2-rec(R1R3, E)
14 r ← M2-rec(R2R3, E)
15 return inter Yr l Yr r

16 case 〈R∗
1,R2〉 do

17 inter ← R1R
∗
1R2 Xr

�ε
R2

18 l ← M2-rec(R1R
∗
1R2, E Y {R})

19 r ← R∗
1· M2-rec(R2, E)

20 return inter Yr l Yr r

Algorithm 3: Remove ε from
L(R)

1 fun �ε(R : RT) Ñ RK

2 switch 〈hd(R), tl(R)〉 do

3 case 〈ε, ε〉 _ 〈R∗
1,R2〉 do

4 return K
5 case 〈a,R1〉 do
6 return a·(r(R1))
7 case 〈R1|R2,R3〉 do
8 return �ε(R1R3) Yr

�ε(R2R3)
9 case 〈R∗

1,R2〉 do

10 return �ε(R1R
∗
1R2) Yr

�ε(R2)

general 2n for an. Nevertheless, �(a|a)∗�(an) is not an exponential tree, because
the match succeeds after expanding the left branch of the alternative n times.
By appending a character that makes the match fail after an, an attacker can
force the matching engine to explore all traces, effectively performing a ReDoS
attack. This is the reason why |�(a|a)∗�(anb)| = Θ(2n).

First, we define a function M2 to extract the set of words that are matched
in at least two traces in a regex R.

M2(R) fi {w P Σ` | Dt1, t2 P Tc(〈R, w〉) : t1 �= t2 and �(t1) = �(t2) = 〈ε, ε〉 }

In the analysis, we use M2, and since it is a possibly infinite language we need
an algorithm to compute a finite representation of it. The function M2 in Algo-
rithm2 returns a regular expression R1 P RK such that L(R1) = M2(R). In
Algorithm 2, we compute the intersection of two regexes R1,R2 P RT that does
not include ε, and we denote it by R1Xr

�ε
R2. It can be computed as �ε(R1)Xr

�ε(R2),
where �ε : RT Ñ RK removes ε from the language of input regexes. The procedure
is depicted in Algorithm 3.

The intuition behind M2 is that a word is matched in two different traces if
the two branches of a choice1 recognize some common words, that is, they have
a nonempty intersection. Algorithm2 recursively explores all regexes that can

1 By choice we mean taking the left/right branch of an alternative or expanding/not
expanding a star.

82 F. Parolini and A. Miné

be reached from the initial one with the transition relation. When it encounters
a choice, it returns the intersection of the two possible branches: the words in it
are those that are matched in two different traces. Observe that since the words
in M2(R) are nonempty, we compute the intersections with Xr

�ε
.

To ensure termination, we keep track of which stars have already been
expanded with the parameter E. When a regex in which the first construct is a
star is encountered for the second time, the function returns K. This guarantees
that any star will be expanded exactly once. Observe that the closed stars and
the parameter E serve different purposes: the first guarantees termination during
the concrete execution to avoid infinite ε-matching loops; the second guarantees
termination of the M2-rec function.

Example 1. Consider M2((a|a)∗), that initially invokes M2-rec((a|a)∗, H). First,
(a|a)(a|a)∗ Xr

�ε
ε =L K is returned; then, the recursive call M2-rec(ε, H) imme-

diately terminates and returns K as well. The most interesting recursive call
is M2-rec((a|a)(a|a)∗, {(a|a)∗}), where the first construct in the concatenation
is an alternative. The function computes and returns the nonempty intersection
a(a|a)∗ Xr

�ε
a(a|a)∗ =L a`. Next, the algorithm invokes M2-rec(a(a|a)∗, {(a|a)∗}),

which then calls M2-rec(r((a|a)∗), {(a|a)∗}). Since r((a|a)∗) = (a|a)∗ and (a|a)∗

is in E, the algorithm terminates at line 5. To summarize, M2((a|a)∗) recognizes
the language a`, which is exactly M2((a|a)∗).

To understand how we take advantage of M2, consider a regex R∗ such that
M2(R∗) �=L H. In this case, the set of words that are matched with at least
two traces in R∗ is not empty. Let w P L(M2(R∗)). Since from R∗ there are two
traces to match w, then there are four traces to match w2, eight for w3, and in
general 2n for wn. Furthermore, for all n ě 1, wn P L(M2(R∗)). This implies
that the words in M2(R∗) are possibly matched in an exponential number of
traces. To have an exponential matching tree, all of them must be explored. Let
S P R, and consider the case in which wn is matched with R∗S. By concatenating
wn with a suffix s that causes the match to fail, it is possible to force the pro-
cedure to exhaustively explore all traces, effectively resulting in an exponential
matching tree. The language of suffixes that make the match fail is the language
of words not accepted by R∗S, namely R∗S

r
. This is the key insight of our anal-

ysis, namely that M2(R∗)·R∗S
r

accepts an overapproximation of the language
of words dangerous for R∗S that can cause exponential matching in R∗.

With this intuition, we define the analysis E : R ˆ R ˆ R Ñ RK such that
E(R,P, S) recognizes an overapproximation of the set of words dangerous for the
regex P·R·S that can cause exponential matching in R.

E(R,P, S) fi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K if R = ε or R = a

E(R1,P, S) Yr E(R2,P, S) if R = R1|R2

E(R1,P,R2·S) Yr E(R2,P·R1, S) if R = R1R2

P·R∗
1· M2(R∗

1)·R∗
1·S

r Yr E(R1,P·R∗
1,R

∗
1·S) if R = R∗

1

Initially, the analysis must be invoked as E(R, ε, ε). It recursively explores R,
accumulating the prefixes and the suffixes of the portion that it is considering in

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 83

P and S. When E encounters a star, in addition to calling E recursively on the
regex under the star, it also returns P·R∗

1· M2(R∗
1)·R∗

1S
r
. As discussed previously,

M2(R∗
1)R∗

1S
r

recognizes an overapproximation of the language of words danger-
ous for R∗

1S that can cause exponential matching in R∗
1. The first construct P·R∗

1

in the expression accepts the language of words that the analysis determined to
be a prefix of R∗

1S. Later in this section, we prove that the words in E(R, ε, ε)
are a sound overapproximation of the words that are dangerous for R, and we
also provide an example where the analysis loses precision.

We can perform an emptiness check on E(R, ε, ε) to determine if there are
dangerous words. If the language is empty, then R is not vulnerable; otherwise,
we have a sound overapproximation of the words that can lead to ReDoS attacks.

Example 2. Consider E((a|a)∗, ε, ε).

E((a|a)∗, ε, ε) = (a|a)∗· M2((a|a)∗)·(a|a)∗r Yr E(a|a, (a|a)∗, (a|a)∗)

=L (a|a)∗a`(a|a)∗r Yr K
=L a`·a∗r

In this case, the analysis determined that (a|a)∗ is vulnerable to arbitrary large
sequences of as that are followed by any nonempty word not composed of as
only. Observe that, effectively, |�(a|a)∗�(anb)| = Θ(2n).

The following soundness theorem provides a strong guarantee that if the
analysis of R returns an empty regex, then the size of any matching tree is at
most polynomial in the length of the input word.

Theorem 1 (Soundness). Let R P R.

E(R, ε, ε) =L K =⇒ Dk P N : ∀w P Σ˚ : |�R�(w)| = O(|w|k)

Some patterns in regexes can cause a loss of precision in the analysis. Consider
as example Σ∗|(a|a)∗ and observe how the matching procedure never explores
the right (dangerous) branch of the outermost alternative. However, since the
analysis does not consider the order in which the branches are explored (they
are merged with Yr), E(Σ∗|(a|a)∗, ε, ε) returns the language a`a∗r. While our
analysis is not complete, our experiments show that over 74,670 regexes taken
from real-world use cases, this happens only in 50 instances. This shows that
patterns that can make our analysis lose precision rarely occur in practice.

The fact that the analysis returns the language of dangerous words can be
useful in different scenarios. For example, it is possible to use our algorithm in a
matching engine that tries to match a word only if it is not in the attack language
of the input regex. The analysis we put forward can also be integrated with a
static analyzer for high-level programming languages: by paring our framework
with a sound string analysis, it should be possible to prove the absence of ReDoS
vulnerabilities in real-world applications. This is left as future work.

Observe that even though we do not directly support lookaround assertions,
it is possible to run the analysis multiple times on each assertion in a regex.

84 F. Parolini and A. Miné

In fact, if none of them is dangerous (i.e., they have empty attack languages),
then the initial regex is safe. We also believe that it is possible to automatically
overapproximate regexes with backreferences in a sound way (for instance, sub-
stituting (a)*\1 with a*a*) to analyze them with our framework, and we would
like to explore such extensions in future work.

Table 1. Attributes of the detectors

Type Sound Complete Language Deterministic

rat static ✓ ✗ ✓ ✓

ReScue [29] dynamic ✗ ✓ ✗ ✗

rexploiter [33] static ✗ ✗ ✓ ✓

rsa [32] static ✓ ✗ ✗ ✓

rsa-full [32] static ✓ ✓ ✗ ✓

rxxr2 [28] static ✗ ✗ ✗ ✓

5 Experimental Evaluation

To assess the usefulness of the analysis we put forward, we implemented it in the
rat [25] tool (ReDoS Abstract Tester) in less than 5000 lines of OCaml code, and
we compared it to four other detectors. In our experiments, we wanted to evaluate
how rat behaves in terms of precision and performance compared to others. We
ran our experiments on a server with 128GB of RAM, with 48 Intel Xeon CPUs
E5-2650 v4 @ 2.20GHz and Ubuntu 18.04.5 LTS. We considered the dataset
used in [29], composed of: (1) 2,992 patterns from the Regexlib platform [2];
(2) 12,499 patterns from the Snort platform [6]; (3) 13,597 patterns extracted
from 3,898 Python projects on Github in [11]. To them, we added 63,352 regexes
extracted from modules in the pypi package manager [1] by Davis et al. [15].
From the dataset, we removed the regexes that were not properly sanitized (e.g.,
that contained non-printable characters) and we removed duplicates, obtaining
74,670 regexes. To the best of our knowledge, it is the first time that such a
large dataset of regexes taken from real-world programs is used to compare the
precision and performance of ReDoS-detection tools.

In what follows, we say that a detector is sound if it identifies as vulnerable
all the truly vulnerable regexes, and we say that it is complete if all the regexes
it identifies as vulnerable are truly vulnerable. Sound detectors forbid false neg-
atives and complete detectors forbid false positives. The tools we compared rat
to are ReScue [29], rexploiter [33], rsa [32] and rxxr2 [28]. In particular, rsa
allows the user to improve the precision of the analysis (at the cost of sacrific-
ing some performance) with the “full” mode, that makes it the only sound and
complete tool. The only dynamic detector we compare to is ReScue that, due
to its nature, never raises false positives. On the other hand, since it relies on a
genetic algorithm that generates the input strings with random mutations, the
analysis is not deterministic. In Sect. 6, we discuss the details of each approach,

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 85

and in Table 1 we summarize the characteristics of the tools. While attributes
reported in Table 1 summarize the expected behaviour, we found that in practice
some detectors do not match the underlying theoretical results. If a detector can
extract the language of dangerous words (opposed to a single exploit string) we
mark the Language column with ✓.

Table 2. Evaluation results

OK FP FN OOT RTE SKIP TIME

rat 67,049 50 0 181 0 7,390 1:58:29

ReScue 33,541 0 43 32,200 0 8,886 325:54:19

rsa 57,243 190 1 817 242 16,177 19:58:32

rsa-full 54,823 134 1 3,174 399 16,139 39:11:21

rexploiter 53,929 31 180 327 0 20,203 9:42:47

rxxr2 60,792 94 7 11 0 13,766 0:09:37

Precision Comparison. We use the evaluation technique used in [29], which,
to the best of our knowledge, is the only article that compares the precision of
ReDoS detectors. We analyze each regex with the detectors setting an individual
timeout of 30 s, and then we compare the results. If any tool can craft an exploit
string of length lesser or equal to 128 characters that makes the Java 8 matching
engine perform more than 1010 matching steps, we consider the regex to be
vulnerable. During our tests, we observed that for the specific matching engine we
consider, for strings of length at most 128 characters, 1010 matching steps are a
sound threshold to clearly distinguish between exponential and non-exponential
matching. We cross-reference the results of five different tools (some of which
are, at least theoretically, sound) by concretely testing exploit strings on a real-
world matching engine, so that we infer with high confidence the number of false
positives and false negatives. We classified as vulnerable 313 regexes.

In Table 2, we report the results. The columns correspond to: number of
correctly classified regexes (OK); false positives (FP); false negatives (FN); out
of time (OOT); runtime errors (RTE); skipped (SKIP) (i.e., not parsed); total
runtime displayed as H:MM:SS (TIME).

Compared to other static analyzers, rat reports a relatively low number
of false positives: 50 over the 67,280 regexes that it parses. The only static
analyzer that reports fewer false positives than rat is rexploiter, that on the
other hand reports 180 false negatives and skips 20,203 regexes. Interestingly,
we observed that in practice rat is the only detector that does not report false
negatives. This matches our theoretical results, and it gives empirical evidence
that our framework performs a sound analysis. We also observe that rat is the
detector that parses the highest number of regexes: even more than ReScue,
which indeed supports advanced features. This is due to the fact that ReScue
does not support some regular patterns such as named capturing groups with
the syntax (?P<name>pattern), that indeed rat can analyze.

86 F. Parolini and A. Miné

Fig. 4. Survival plot with a logarithmic y axis and linear x axis

Performance Comparison. In case a detector runs out of time for a few
regexes, the total runtime in Table 2 grows sharply, not representing precisely
the average performance of the tool. For this reason, we use survival plots to
compare more faithfully the performance of the detectors. On such plot, the
y-axis represents the time in milliseconds, and the x-axis is the number of regexes
such that each one can be analyzed under the specified time, while the remaining
regexes either take longer to analyze or cannot be analyzed by the corresponding
detector. No plot for x-axis and detector d means that for 74, 670´x regexes d
did not successfully complete the analysis (i.e., it either ran out of time or it
had a parse/runtime error). The plot highlights the relative performance of each
tool and how many regexes can be individually analyzed under a time threshold.
The survival plot of our experiments is depicted in Fig. 4.

Our experiments showed that rat is able to analyze 66,924 regexes over
the 67,280 that it parses in less than one second each („99.47%). As expected,
ReScue is, due to its dynamic nature, significantly slower than static analyzers.
After it, we find the cluster composed of rsa, rsa-full and rexploiter. Our
detector is on average one to two orders of magnitude faster than them for
corresponding points on abscissa x. While rxxr2 is generally faster than rat, we
remark that rat is performing a strictly more expressive analysis by returning
the language of dangerous words. Furthermore, according to Table 2, rxxr2 is
not performing a sound analysis either. We also remark that rat analyzes 6,376
more regexes than rxxr2.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 87

Discussion. We observed that in practice rat is one to two orders of magnitude
faster than most detectors, raises a relatively low number of false positives, and
it is the only analyzer that does not report false negatives. The approach based
on semantic trees significantly improved the analysis’ design and the easiness to
reason about ReDoS vulnerabilities. It also allowed us to ignore the complexities
related to transforming regexes into automata, that for some tools are sources of
unsoundness and incompleteness. To the best of our knowledge, our analysis for
ReDoS vulnerabilities is the first that operates directly on regexes without having
to resort to automata. Regexes also make it easy to implement many performance
optimizations. We integrated in rat two major performance improvements.

– Character Classes Representation. Character classes are features commonly
used by programmers. For example, \d is a shortcut for 0|1| . . . |9. We extend
the regexes to recognize sets of characters instead of simple characters. With a
slight adjustment to our implementation, regexes containing character classes
considerably decreased their size. For example, 0| . . . |9 has 19 constructs,
while { 0, . . . , 9 } is a regex with a single character set construct.

– Symbolic Operations. In our analysis, we perform a large number of intersec-
tion and complement operations. Instead of running the algorithm to compute
them, we extend again the regexes to support symbolic intersection and sym-
bolic complement. When a complement or an intersection must be computed,
we simply add its symbolic representation to the result.

6 Related Work

Wüstholz et al. [33] put forward an analysis based on automata to detect ReDoS
vulnerabilities, and they implement it the rexploiter tool. Their approach is
the closest to ours, since they can as well extract the language of dangerous
words. However, the analysis is not sound nor complete, because transforming a
regex into an automaton can introduce or remove vulnerabilities. For example,
applying Glushkov’s construction [17] to the vulnerable regex (a∗)∗ we obtain
a non-vulnerable automaton (with respect to [33, Defn. 3]). Since they do not
define an algorithm to transform regexes into automata that preserves vulnera-
bilities, the analysis can report both false positives and false negatives, and our
experiments confirmed this.

The rxxr2 tool is a static analyzer for exponential ReDoS vulnerabilities
that infers exploit strings [28]. It is the successor of rxxr [19], that turned out
to be unsound. Introducing a novel approach based on NFAs with prioritized
transitions, rxxr2 infers strings that can be pumped and lead to exponential
matching. While the algorithm is sound and complete with respect to automata,
transforming regexes to automata can introduce or remove vulnerabilities. Sim-
ilarly to rexploiter, they assume that the input regex has been converted into
an automaton following one of the standard constructions, so that the analysis
is actually neither sound nor complete.

The framework of prioritized NFAs (pNFAs) [9,10] has been leveraged by
Weideman et al. [32] to build the rsa (RegexStaticAnalysis) static analyzer.

88 F. Parolini and A. Miné

The authors introduce an algorithm to translate regexes into automata that pre-
serves the ReDoS vulnearbilities. The automata are analyzed with the framework
described in [7] to determine the degree of ambiguity [31], which allows inferring
whether there are ReDoS vulnerabilities or not. The full mode performs a sound
and complete analysis, while the simple mode is only sound, but it usually runs
faster. We observe that while the analysis is complete, it is strictly less expres-
sive than ours. In fact, their framework cannot be used to extract the attack
language for a regular expression, but only a finite number of exploit strings.
For this reason, the two approaches are suitable for different uses: tools that
need the specification of dangerous words, such as static analyzers, cannot rely
on rsa to extract it. Furthermore, our algorithm performs a single emptyness
check of the attack language, while their analysis performs a universality check
for each state of the automaton, resulting in a strictly higher complexity. Our
experiments confirm that our analysis has a substantial performance advantage
over the one proposed in [32].

A radically different approach to ReDoS detection is dynamic analysis. The
ReScue tool [29] leverages a genetic algorithm to efficiently generate potentially
dangerous words, that are then matched by the Java matching engine to deter-
mine if they are truly dangerous. For this reason, the tool cannot report false
positives. On the other hand, there is no guarantee about the absence of false
negatives. The gray-box approach makes it easy to support a wide variety of
advanced features, but it has the disadvantage to be several orders of magnitude
slower than static analyzers. The analysis is not deterministic, and due to its
dynamic nature it is not expressive enough to compute the attack language.

Recently, many techniques have been proposed to mitigate ReDoS attacks.
Cody-Kenny et al. [12] use genetic programming to substitute vulnerable regexes
with safe ones. Li et al. [20] and Pan et al. [24] put forward techniques for auto-
matic regex repair based on examples. In [14] the authors introduce a matching
algorithm that leverages selective memoization to mitigate ReDoS attacks while
supporting advanced regex features. Sophisticated techniques based on GPU
matching [21,34] and state-merging algorithms [8] have also been proposed to
speedup the matching.

7 Conclusions

In this paper, we defined a tree semantics for regular expression matching, which
we leveraged to design a sound static analysis that detects ReDoS vulnerabilities.
To the best of our knowledge, our ReDoS detection framework is the first one that
operates directly on regexes without having to resort to automata. This allowed
us to easily reason about the concrete behaviour of complex matching engines,
and it opened the possibility to integrate significant performance optimizations.

We implemented our analysis in the rat tool, and to assess the effectiveness
of our technique, we compared it to four other detectors. We found rat to be
on average one to two orders of magnitude faster than most tools, while giving
strong guarantees about the soundness of the analysis. While raising a relatively

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 89

low the number of false positives, rat is the only ReDoS detector that did not
report false negatives.

In future work, would we would like to extend our analysis to support
advanced features such as backreferences and lookarounds. We believe that it
is possible to automatically overapproximate those features with regular con-
structs in a sound way. Another interesting extension of this paper would be
to integrate our framework in a static analyzer for high-level languages such as
Python. We believe that by pairing rat with a string analysis, it is possible to
prove the absence of ReDoS vulnerabilities in real-world applications.

References

1. The PyPI packet manager. https://pypi.org/. Accessed 09 May 2022
2. Regexlib database. https://regexlib.com/. Accessed 09 May 2022
3. Stack overflow outage postmortem (2016). https://stackstatus.net/post/147710624

694/outage-postmortem-july-20-2016. Accessed 09 May 2022
4. Cloudflare’s outage postmortem (2019). https://blog.cloudflare.com/details-of-the-

cloudflare-outage-on-july-2-2019/. Accessed 09 May 2022
5. National vulnerability database: CVE-2020-3899 (2020). https://nvd.nist.gov/

vuln/detail/CVE-2020-3899. Accessed 09 May 2022
6. The snort database (2020). http://www.snort.org/. Accessed 09 May 2022
7. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambi-

guity of finite automata and the double-tape ambiguity of finite-state transduc-
ers. Int. J. Found. Comput. Sci. 22(04), 883–904 (2011). https://doi.org/10.1142/
s0129054111008477

8. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state
merging. In: Joint Conference of the IEEE Computer and Communications Soci-
eties, INFOCOM, pp. 1064–1072 (2007). https://doi.org/10.1109/INFCOM.2007.
128

9. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtrack-
ing behavior in practical regular expression matching. In: Automata and Formal
Languages, AFL. EPTCS, vol. 151, pp. 109–123 (2014). https://doi.org/10.4204/
EPTCS.151.7

10. Berglund, M., van der Merwe, B.: On the semantics of regular expression parsing
in the wild. Theor. Comput. Sci. 679, 69–82 (2017). https://doi.org/10.1016/j.tcs.
2016.09.006

11. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: International Symposium on Software Testing and Analysis, ISSTA,
pp. 282–293. ACM (2016). https://doi.org/10.1145/2931037.2931073

12. Cody-Kenny, B., Fenton, M., Ronayne, A., Considine, E., McGuire, T., O’Neill,
M.: A search for improved performance in regular expressions. In: Genetic and
Evolutionary Computation Conference, GECCO, pp. 1280–1287 (2017). https://
doi.org/10.1145/3071178.3071196

13. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: USENIX Security Symposium. USENIX Association (2003). https://doi.org/
10.1007/11506881 10

14. Davis, J.C., Servant, F., Lee, D.: Using selective memoization to defeat regular
expression denial of service (ReDoS). In: IEEE Symposium on Security and Pri-
vacy, SP, pp. 543–559. IEEE Computer Society (2021). https://doi.org/10.1109/
SP40001.2021.00032

https://pypi.org/
https://regexlib.com/
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://nvd.nist.gov/vuln/detail/CVE-2020-3899
https://nvd.nist.gov/vuln/detail/CVE-2020-3899
http://www.snort.org/
https://doi.org/10.1142/s0129054111008477
https://doi.org/10.1142/s0129054111008477
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/3071178.3071196
https://doi.org/10.1145/3071178.3071196
https://doi.org/10.1007/11506881_10
https://doi.org/10.1007/11506881_10
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032

90 F. Parolini and A. Miné

15. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE, pp. 246–256.
ACM (2018). https://doi.org/10.1145/3236024.3236027

16. Friedl, J.E.F.: Mastering Regular Expressions - Understand Your Data and
Be More Productive: For Perl, PHP, Java,NET, Ruby, and More, 3rd
edn. O’Reilly (2006). https://www.oreilly.com/library/view/mastering-regular-
expressions/0596528124/

17. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1
(1961)

18. Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
decision-making, difficulties, and risks in programming regular expressions. In:
International Conference on Automated Software Engineering, ASE, pp. 415–426.
IEEE (2019). https://doi.org/10.1109/ASE.2019.00047

19. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression
denial-of-service attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013.
LNCS, vol. 7873, pp. 135–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38631-2 11

20. Li, Y., et al.: FlashRegex: deducing anti-redos regexes from examples. In: Inter-
national Conference on Automated Software Engineering, ASE 2020, pp. 659–671
(2020). https://doi.org/10.1145/3324884.3416556

21. Lin, C., Liu, C., Chang, S.: Accelerating regular expression matching using hierar-
chical parallel machines on GPU. In: Global Communications Conference, GLOBE-
COM, pp. 1–5 (2011). https://doi.org/10.1109/GLOCOM.2011.6133663

22. López, F., Romero, V.: Mastering Python Regular Expressions. Packt Publish-
ing Ltd. (2014). https://www.packtpub.com/product/mastering-python-regular-
expressions/9781783283156

23. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined.
J. Funct. Program. 19(2), 173–190 (2009). https://doi.org/10.1017/
s0956796808007090

24. Pan, R., Hu, Q., Xu, G., D’Antoni, L.: Automatic repair of regular expressions.
Proc. ACM Program. Lang. 3(OOPSLA), 139:1–139:29 (2019). https://doi.org/
10.1145/3360565

25. Parolini, F., Miné, A.: RAT - ReDoS Abstract Tester (2022). https://github.com/
parof/rat

26. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: SlowFuzz: automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Conference
on Computer and Communications Security, CCS, pp. 2155–2168. ACM (2017).
https://doi.org/10.1145/3133956.3134073

27. Rathnayake, A.: Semantics, analysis and security of backtracking regular expres-
sion matchers. Ph.D. thesis, University of Birmingham, UK (2015). http://etheses.
bham.ac.uk/6011/

28. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. CoRR abs/1405.7058 (2014)

29. Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X., Lu, J.: ReScue: crafting regular expres-
sion DoS attacks. In: International Conference on Automated Software Engineer-
ing, ASE, pp. 225–235. ACM (2018). https://doi.org/10.1145/3238147.3238159

30. Staicu, C., Pradel, M.: Freezing the web: a study of ReDoS vulnerabilities in
JavaScript-based web servers. In: USENIX Security Symposium, pp. 361–376.
USENIX Association (2018)

https://doi.org/10.1145/3236024.3236027
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1007/978-3-642-38631-2_11
https://doi.org/10.1007/978-3-642-38631-2_11
https://doi.org/10.1145/3324884.3416556
https://doi.org/10.1109/GLOCOM.2011.6133663
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://doi.org/10.1017/s0956796808007090
https://doi.org/10.1017/s0956796808007090
https://doi.org/10.1145/3360565
https://doi.org/10.1145/3360565
https://github.com/parof/rat
https://github.com/parof/rat
https://doi.org/10.1145/3133956.3134073
http://etheses.bham.ac.uk/6011/
http://etheses.bham.ac.uk/6011/
https://doi.org/10.1145/3238147.3238159

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 91

31. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991). https://doi.org/10.1016/0304-3975(91)90381-B

32. Weideman, N., van der Merwe, B., Berglund, M., Watson, B.: Analyzing matching
time behavior of backtracking regular expression matchers by using ambiguity of
NFA. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 322–334.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 27

33. Wüstholz, V., Olivo, O., Heule, M.J.H., Dillig, I.: Static detection of DoS vulnera-
bilities in programs that use regular expressions. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 3–20. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 1

34. Yu, X., Becchi, M.: GPU acceleration of regular expression matching for large
datasets: exploring the implementation space. In: Computing Frontiers Conference,
CF, pp. 18:1–18:10 (2013). https://doi.org/10.1145/2482767.2482791

https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1007/978-3-319-40946-7_27
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1145/2482767.2482791

On Verification of Smart Contracts via
Model Checking

Yulong Bao1,2, Xue-Yang Zhu1,2(B), Wenhui Zhang1,2, Wuwei Shen3,
Pengfei Sun1,2, and Yingqi Zhao1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{baoyl,zxy,zwh,sunpf,zhaoyq}@ios.ac.cn
2 University of the Chinese Academy of Sciences, Beijing, China

3 Department of Computer Science, Western Michigan University,
Kalamazoo, MI, USA
wuwei.shen@wmich.edu

Abstract. Combined with smart contracts, the application of
blockchain techniques has grown faster and broader. However, it is very
difficult to write secure and functionally correct smart contracts because
of the openness of blockchain platforms. Formal verification, such as
model checking, has been proven to be an effective way of guaranteeing
security and correctness of systems. In this paper, we propose a novel
model checking based framework, called mcVer, to support the verifica-
tion of smart contracts written in Solidity. Built on model checking tool
VERDS, the mcVer framework is able to verify not only safety properties
but also liveness properties of smart contracts. For the properties that are
not satisfied, mcVer produces a counter example by showing a sequence
of statements in the original Solidity program as a hint for fault local-
ization. We implemented the automatic transformation from a subset of
the Solidity language to the modeling language of VERDS, that there-
fore provides automatic verification for smart contracts. Experiments are
carried out on various cases, including checking contracts for finding typ-
ical security vulnerabilities and verifying properties of an access control
smart contract. The experimental results demonstrate the flexibility and
efficiency of mcVer.

1 Introduction

Since Bitcoin was first introduced in 2009 [32], the blockchain has been regarded
as a promising but yet challenging technology. According to a recent study by
Garther [16], the market value for the blockchain-based technology can exceed
$3.1 trillion by 2030. Many cloud platform giants such as Microsoft, IBM, Ama-
zon, Oracle have proposed Blockchain-as-a-Service (BaaS) solutions to support
various enterprise scenarios such as financial services and supply chains. These

This work is partially supported by the National Natural Science Foundation of China
(No. 62072443).
c© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 92–112, 2022.
https://doi.org/10.1007/978-3-031-10363-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_7

On Verification of Smart Contracts via Model Checking 93

solutions are based on programs called smart contracts [40]. However, due to the
openness of blockchain platforms, people have suffered some devastating conse-
quence caused by the errors in smart contracts. For instance, the infamous The
DAO exploit [4] resulted in the loss of almost $60 million worth of Ether, and the
Parity Wallet error caused $169 million worth of Ether to be locked forever [41].
Obviously, unsafe smart contracts not only result in huge financial loss but also
seriously undermine the confidence about the development of blockchain-based
technologies.

Realizing the importance of safe and secure smart contracts, researchers have
conducted various types of studies [25,27,44] to reveal the nature of unsafe smart
contracts as well as to detect such problems. As reported, many common vul-
nerabilities in the blockchain domain are related to nondeterminism [46], which
is actually caused by concurrent calls. Model checking [17] has been success-
fully applied in the verification for many modern software systems with the
concurrency feature. Generally, model checking techniques can be used to check
various properties expressed by temporal logics [28], including safety properties
and liveness properties. A safety property specifies that something bad never
happens, while a liveness property specifies that something good will eventually
happen, playing an important role in the correctness of smart contracts. Security
requirements are usually a kind of safety properties.

While model checking techniques are promising for reducing the potential
threats and errors of smart contracts, they currently require the skill of writing
formal models and logic formulas, which is challenging for engineers who do not
have solid mathematical background. Learning how to write formal models and
specifications increases the learning curve and thus reduces the applicability of
these techniques. We propose in this paper a novel framework mcVer to ease
the difficulty of using model checking techniques and deal with the diversity of
smart contract properties.

Our framework mcVer uses model checking tool VERDS [50] as the foun-
dation to support the verification of smart contracts written in Solidity, which
is a smart contract language of Ethereum [47]. The contributions of this paper
are summarized as follows.

1. The mcVer framework is able to verify not only safety properties but also
liveness properties of smart contracts. For the properties that are not satisfied,
mcVer produces a counter example by showing a sequence of statements in
the original Solidity program as a hint for fault localization.

2. We provide automatic verification for smart contracts by means of the auto-
matic transformation from a subset of the Solidity language to the modeling
language of VERDS.

3. We implement the framework and apply it to several case studies, includ-
ing checking some typical security vulnerabilities and verifying properties,
including liveness properties, of an access control smart contract [51].

The remainder of this paper is organized as follows. Related work is reviewed
in Sect. 2. Solidity and VERDS are introduced in Sect. 3. We present the general
idea of mcVer framework in Sect. 4 and illustrate the technical details in Sects. 5,

94 Y. Bao et al.

6 and 7. Case studies and experiments are shown in Sect. 8. Section 9 concludes
and discusses limitations of mcVer and the future work.

2 Related Work

Luu Loi [27] and Atzei [9] summarized several types of common security vul-
nerabilities, such as Transaction-Ordering Dependency (TOD) and Reentrancy
Vulnerability. Based on these types of common security vulnerabilities, a num-
ber of research efforts have been made to ensure the safety and security for
smart contracts. The most explored are testing based techniques [21,48] and
static analysis-based techniques, usually based on the symbolic execution, includ-
ing Oyente [27], Securify [45], Slither [18], ETHBMC [20], Mythril [42], Sol-
Met [22], SmartCheck [43], Ethainter [12], Manticore [30], VeriSmart [38] and
FAIRCON [26]. However, these approaches heavily depend on known security
patterns to detect errors and cannot guarantee the functional correctness in
blockchain-based applications.

To overcome the limitation of above-mentioned approaches, formal verifi-
cation techniques [15] have been proposed to verify the correctness of smart
contracts. Research on formal verification of smart contracts starts with theo-
rem proving based approaches. Hirai [24] uses theorem prover Isabelle [35] to
verify smart contracts [23] and uses the Lem [31] to define a formal model for
the Ethereum virtual machine (EVM). Bhargavan et al. [11] convert Solidity
and EVM bytecode contracts into functional programming language F* [39].
Nehai et al. [34] translate smart contracts into models of Why3 [19]. The verifi-
cation procedures in this kind of approaches generally require user’s interaction
and are difficult to deal with liveness properties. The verification procedure of
mcVer is automatic and not only safety properties but also liveness properties
can be verified in mcVer.

Model checking based techniques are also studied by many researchers. Albert
et al. [7] use existing verification engines developed for C programs [10] to ver-
ify safety properties of low-level EVM code. Sukrit Kalra et al. [25] present
ZEUS, which uses bounded model checking techniques to verify safety proper-
ties of smart contracts. Anton Permenev et al. [36] present VerX, which combines
reduction of temporal safety verification to reachability checking, with symbolic
execution and delayed abstraction. Mavridou [29], Nehai [33] and Abdellatif [8]
present their work based on the model checking tool NuSMV [14]. A model-
based framework VeriSolid is proposed in [29], which focuses more on the code
generation procedure rather than verifying Solidity source code. Authors of [33]
and [8] present work that verifies particular smart contracts. The former focuses
on the contracts in the energy market field and the latter tries to verify a supply
chain management smart contract. The NuSMV based methods are possible to
deal with more properties, but existing work does not provide methodological
techniques to support the verification of commonly developed contracts. Our
framework mcVer is able not only to verify various properties but also imple-
ments the related tool to smooth the verification procedure that starts directly

On Verification of Smart Contracts via Model Checking 95

from the Solidity source code. The tool may return a counter example when a
property is not satisfied, providing a further help for debugging. To the best
of our knowledge, none of the formal method based work for the verification of
smart contracts is able to provide such a functionality.

3 Solidity and VERDS

3.1 Solidity

1 pragma solidity ^0.4.22;
2 contract Auction{
3 address public bene;
4 address public hBidder;
5 uint public hBid;
6 bool ended;
7 constructor(address _beneficiary)

public {
8 bene = _beneficiary;
9 }

10 function bid() public payable{
11 require (! ended);
12 require(msg.value > hBid);
13 if (hBid !=0) {
14 require(hBidder.send(hBid)

);
15 }
16 hBidder = msg.sender;
17 hBid = msg.value;
18 }
19 function aucEnd () public{
20 require (! ended);
21 ended = true;
22 bene.send(hBid);
23 }
24 }

Fig. 1. aucSC, a smart contract for auction.

Solidity is a programming lan-
guage developed to write smart
contracts that run on the EVM.
A Solidity smart contract mainly
consists of two parts, the variable
declaration and the function def-
inition. The former defines state
variables used by the contract and
the latter specifies the potential
behavior of the contract. Figure 1,
for example, shows partial code
of our running example, aucSC, a
simple auction contract modified
from [1].

State variables of a smart con-
tract are variables whose values
are permanently stored in the
blockchain and each has a type.
For example, variables bene and
hBidder, indicate addresses of the

beneficiary and the current highest bidder of the auction, respectively. Variable
hBid denotes the current highest bid and variable ended indicates whether an
auction is ended or not.

Besides global state variables, there are implicit global variables that are
defined by the EVM, including related accounts and balances. Once an account
is created on the blockchain, it has an address as its identification and a variable
to record the changes of its balance. When an account uses a smart contract,
its address is the value of msg.sender, which is used but not defined in the
contract. See aucSC for example. Accounts related to a smart contract include
the account that deploys it (its owner), the accounts that use it (its users), and
some accounts specified by the contract, e.g. the address of the beneficiary in
sucSC. The balances related include its own balance and balances of the related
accounts.

A function consists local variable declaration and statements. Functions can
receive data via parameters, perform computation, manipulate state variables,
and interact with other accounts. Functions are defined to operate on the states
of the contract. The constructor() is a special function that is executed only

96 Y. Bao et al.

once when the contract is deployed on the blockchain. The account who calls
constructor() is the owner of the contract. Other functions can be called and
executed many times during the lifecycle of the contract. For example, function
bid(), which defines the bidding behavior, can be executed by arbitrary number
of users before aucEnd(), which sets variable ended to be true. A function may
also operate on the implicit global variables. An execution of a function may
receive msg.value amount of money from its trigger msg.sender, and change the
balances of related accounts.

We consider a subset of Solidity language that are sufficient to express most
contracts. The supported subset is summarized in Fig. 2.

type ::= address|bool|uint|mapping|enum|array|struct
operator ::= +| − | ∗ |/| + +| − −|+ = |− = |∗ = |/ =
logic op ::= || | && | > | < | >= | <= | !

statement ::= assignment | condition statement
| for statement | while statement
| continue | break | return | throw | require

Fig. 2. Subset of Solidity language mcVer supports

A call to a function of a contract activates an execution. The execution
terminates after successfully updating the state of blockchain, or aborting and
rolling back to the state before the call. While smart contracts allow the concur-
rent calls, the executions of concurrent calls are sequential due to the execution
model of EVM [37]. We take this into account when formalize smart contracts.

3.2 Model Checking Tool VERDS

Model checking is considered one of the most practical applications of theoret-
ical computer science in the verification of concurrent systems. The basic idea
of model checking is to use the state transition system (S) to represent the
behavior of the system, and the modal formula (F) to describe the properties
of the system. In this way, the question of whether the system has the desired
properties can be transformed into a question of whether S satisfies F. For finite
state systems, this problem is algorithmically decidable. We use VERDS as the
verification engine. VERDS is a model checking tool that has been applied in
many aspects, such as the verification of SystemC design [49] and the verification
of multi-agent systems [13]. The input to a model checking tool usually includes
a system model and a specification. The modeling language of VERDS is called
VERDS modeling language (VML). A verification model specified in VML is
called a VERDS verification model (VVM), including a system model defined
by the guarded command transition systems and specifications expressed by the
computation tree logic (CTL).

Suppose p is any propositional atom, then CTL has the syntax given as
follows.

Φ ::=p|¬Φ|Φ ∧ Φ|Φ ∨ Φ|AΨ |EΨ
Ψ ::=XΦ|FΦ|GΦ|(ΦUΦ)

On Verification of Smart Contracts via Model Checking 97

Among them, Φ is the CTL formula and Ψ is the auxiliary path formula. The
set of operators of CTL formula is divided into path operators and temporal
operators. There are two kinds of path operators: AΨ indicates that on all paths
Ψ should be true, and EΨ indicates that Ψ should be true on at least one path.
The temporal operators are X,F,G,U . Two kinds of temporal operators are
used in this paper: FΦ indicates that Φ will eventually be true on a certain state
on a path; GΦ indicates that Φ should be satisfied for all the states on a path.
Properties to be checked on guarded transition system can be of various kinds:

– safety: ‘something bad never happens’ is usually expressed in CTL as AG(¬p);
– liveness: ‘something good will eventually happen’ is usually expressed in CTL as AF (p).

Each VVM consists of six parts: global alias definition, global variable dec-
laration, initialization, module definition, process instantiation, and property
specification. These six parts are distinguished by keywords DEFINE, VAR,
INIT, MODULE, PROC and SPEC, respectively. Variables should be bounded.

A module in VVM is a template of a transition system, defined under key-
word MODULE. Each module consists of four parts: module identifier and list
of parameters, local variables declaration (VAR), local variables initialization
(INIT), and collection of transitions (TRANS). A transition consists of two
parts: logical expressions (guard) and assignments (command). When the log-
ical expression is true, the assignment statement will be executed atomically.
When logical expressions in different transitions are true at the same time, a
random one of them will be executed. A process in PROC part is an instance of
a module; a local variable x in a process p0 can be accessed using the form p0.x.
Properties under verification are specified in SPEC part. If a property does not
hold, a counterexample can be found in the CEX file returned by VERDS.

4 Overview of mcVer Framework

Smart Contract
Modeling

Formulation
VERDS

Holds?VVM File

Smart
Contract

Counter
Example

Scenerio Scenario

 Counter Example
Extraction

CEX File

Property

mcVer

Fig. 3. Overall framework of mcVer .

The framework of mcVer is
shown in Fig. 3, in which
our main contributions are
in boxes with purple bor-
der. The smart contract
under verification are either
entirely or partly translated
into the VAR, INIT, and
MODULE parts of a VVM;
the scenario corresponds to
the PROC part, and the
specification is formulated
as CTL formulas in the

SPEC part. The model checker VERDS is then used to verify whether the
smart contract satisfies required properties. If a property is not satisfied,

98 Y. Bao et al.

VERDS returns the trace indicating the problematic behavior in a CEX file.
A counter example on the Solidity level is then extracted from it.

We present Smart contract modeling in the next section, Scenario Configura-
tion and Specification Formulation in Sect. 6, and Counter Example Extraction
in Sect. 7. Smart contract aucSC (Fig. 1) will be used as running example to
help illustrating our ideas. Part of its corresponding VVM, aucVVM, is shown
in Fig. 4. Details will be explained in the later sections.

Fig. 4. aucVVM, the corresponding VVM of aucSC.

5 Smart Contract Modeling

The behavior of smart contracts is defined by the guarded command transition
system. To be intuitive, we describe the semantics of smart contracts directly
with the VML. We discuss key points of mapping behavior of the EVM, variables,
functions and function call in smart contracts to VVMs in this section.

Behavior of EVM. Due to the execution model of EVM, transactions are exe-
cuted in a single-threaded manner. A boolean variable pCtrl is declared to con-
trol the execution of processes and is false by default. Only when pCtrl is true,
a process except for that of constructor can move to the next step. When a
process ends its execution, it releases the control by setting pCtrl to be true.
Function constructor executes only once before all other functions. It needs not
to check pCtrl to go. For example, a process instantiated from module bid in
Fig. 4 is waiting until the control variable pCtrl becoming true (Line 38) to start

On Verification of Smart Contracts via Model Checking 99

its execution and change pCtrl to be false to block other process. It sets pCtrl
to be true at the end of its execution (Line 51).

Related balances are explicitly defined as a global array balance in VVM.
They are defined at Line 5 and initialized at Line 13 in Fig. 4, for example. The
trigger address msg.sender and the amount of money msg.value are modeled as
two parameters of each module in the VVM. See Line 34 in Fig. 4 for example.
Changes of balances of related accounts are coded in the last transition of the
module of each function.

State Variables. State variables of smart contracts are accordingly defined as
bounded integer (in the VAR part) and initialized (in the INIT part) in the
VVM. For readability, we use characters to represent the values of variables with
address type. The address of contract under verification is set to be ‘Z’ by default.
For example, Lines 3–4 and 11–12 in Fig. 4 are definition and initialization of
state variables of aucSC in aucVVM. Constants is defined in the DEFINE part.

Functions. A function in a contract is modeled by a module in VVM, which
is a guarded command transition system. By this we in fact define a transition
system semantics for the behavior of contracts. Let S be the set of statements in
a function and Ps be the label of statement s. Each statement in S is modeled
as one or multiple transitions in VVM. Each module in VVM has an extra local
variable pc to model the change of Ps. The mapping of statements in the subset
of Solidity (Fig. 2) to VML is shown in Table. 1. The module in VVM of bid()
in aucSC (Fig. 1) is shown in Fig. 4 (Lines 34–51). Line 34 declares the module
identifier.

Table 1. Statements mapping

statement solidity VML

assignment Ps1 y = e; pc = Ps1 : y = e &pc = Ps2;
Ps2 ...

condition

Ps1 if (cond) {
Ps2 ... pc = Ps1 &cond : pc = Ps2;

}else{ pc = Ps1 &!cond : pc = Ps3;
Ps3 ...}

while

Ps1 while(cond){ pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps4;
Ps3 } pc = Ps3 : pc = Ps1;
Ps4 ...

for

Ps1 for(i = 0; cond; st){ pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps4;
Ps3 } pc = Ps3 : st &pc = Ps1;
Ps4 ...

break

while(cond1){
if(cond2){

Ps1 break; } pc = Ps1 : pc = Ps2;
...}

Ps2 ...

continue

Ps1 while(cond1){
if(cond2){ pc = Ps2 : pc = Ps1;

Ps2 continue; }
...}

retrun

function foo(){
throw if(cond){

Ps1 throw; } pc = Ps1 : pc = Ps2;
...

Ps2 }

require

function foo(){
Ps1 require(cond); pc = Ps1 &cond : pc = Ps2;
Ps2 ... pc = Ps1 &!cond : pc = Ps3;
Ps3 }

100 Y. Bao et al.

Fig. 5. Illustration of function call.

Function Call. We use shared
variables to handle calls between
functions, which may be in the
same contract or not. The caller
and callee can execute in parallel,
with the blocking feature. Once
one function is active, the other
one is blocked. Some callees may
return uncertain values because
they are defined outside and con-

trolled by the environment, such as functions transfer() and send(). We model
this uncertainty by using non-deterministic choice of transitions in a module.

A module to model function send() called in bid() in aucSC is shown in Lines
52–60 in Fig. 4, for example. Auxiliary variables sta, rtv, rcv and amount are
defined as global variables (Lines 8–9) to model starting or ending the process,
returned value, the address of the sender and the amount of money sent, respec-
tively. A process of module send() starts when sta = 1 and sets sta to 0 and
returns rtv when it finishes. At Lines 57 and 58, VERDS randomly chooses one
transition to execute and so is the value of rtv. This makes the returned value
non-deterministic. When bid() is trying to call send() (Line 42), it sets sta to
1 and then the execution does not resume until sta becomes 0. The interaction
between the caller and the callee in a function call is depicted in Fig. 5.

6 Scenario Configuration and Specification Formulation

6.1 Scenario Configuration

A scenario defines how a contract is used. Since smart contracts are deployed on
the blockchain, which is an open environment, the order of calls to its functions
are not deterministic. This uncertainty is modeled as concurrency in mcVer.
In some cases, e.g. sequential transactions submitted by the same account, the
corresponding functions, i.e. callees, should be scheduled to execute sequentially.

We propose a scenario definition language (SDL), which is simple but capable
of expressing both sequential and concurrent executions of function. Sequential
execution of functions is separated by line shift and concurrent execution of
functions is separated by symbol ‘|’. For example, in contract aucSC shown in
Fig. 1, users can only call function bid() after the contract has been deployed.
After its deployment (constructor()); there may be multiple users bidding at
the same time; the owner may call function aucEnd() to end it. Suppose the
owner is A and there are three bidders B, C and D bidding with amount 2, 3,
4, respectively. After the owner has deployed the contract on the blockchain,
the three bidders can bid in any order. Then the owner ends the auction. The
scenario, named aucSNR, is formulated in SDL as:

On Verification of Smart Contracts via Model Checking 101

p0 : constructor(A, 0, A)
p1 : bid(B, 2) | p2 : bid(C, 3) | p3 : bid(D, 4)
p4 : aucEnd(A, 0)

This scenario is then translated into the PROC part of the VVM (Lines
18–23 in Fig. 4). The three biddings can be executed in any order, but can
only be executed sequentially due to the execution model of the EVM. The
execution order is controlled by variable order. The variable leveli indicates how
many processes have been executed so far under order = i. Intuitively, variable
order controls line execution, while leveli controls the execution of processes
in the same line. For scenario aucSNR, for example, we have level0 ∈ [0, 1] and
level1 ∈ [1, 3] because only one process p0 is executed under order = 0 but three
concurrent processes p1, p2, p3 are executed under order = 1. A process control
module porderctrl() is used to help execution order (Lines 27–33 in Fig. 4).

6.2 Specification

Specifications of smart contracts are defined under scenarios. For example there
are some basic requirements for the aucSC contract:

1. Eventually there is a bidder win (liveness property);
2. The winner is always the bidder with the highest bid (safety property).

The requirements demand that after the auction is ended, 1) there is a winner
and the winner must be one of the bidders, and 2) the winner must be the bidder
with highest bid. Consider above mentioned scenario. There are three bidders.
One of them will win. That is, hBidder = B, C or D. The bidder D pays
the highest bid. When the value of the order reaches the maximum, 3 in this
scenario, all processes are executed and the scenario finishes. We use a keyword
End to indicate that the involved scenario is ended. Therefore, the requirements
formulated under aucSNR are expressed by the following CTL formulas:

1. aucPr1: AF ((End)&((hBidder = B)|(hBidder = C)|(hBidder = D)));
2. aucPr2: AG(!(End)|(hBidder = D)).

Where !p|q is equivalent to p implies q. The specifications written in CTL
formulas are used in the SPEC part of the VVM, shown in Fig. 4 (Lines 25–26).

102 Y. Bao et al.

7 Verification and Counter Example Extraction

The generated VVM is then verified by VERDS. If a property is satisfied, we
can guarantee that the contract meets the corresponding requirement under the
given scenario. Otherwise, VERDS may return a CEX file that records the trace
of a counter example. A trace is a sequence of states generated by an execution of
the contract. The procedure of counter example extraction starts from the trace.
By the values of variables in states, we find the corresponding transitions in the
VVM. Then according to Table 1, a reverted procedure of contract modeling is
used to map the transitions to the Solidity contract. As such we have a counter
example on the Solidity level. Below we illustrate the procedure by an example.

 require failed

bid(B,2)

send()

if

aucEnd(A,0)

send()
failed(rtv=0)

S0
bene=X hBidder=X
hBid=0 p0.pc=0
p1.pc=0 p2.pc=0

S4
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=0 p2.pc=0

S7
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=3 p2.pc=0

S16
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=5

S20
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=6

S21
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S33
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S39
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

S8
bene=A hBidder=X
hBid=0 p0.pc=3
p1.pc=7 p2.pc=0

S15
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=4

S10
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=0

bid(C,3)

bid(D,4)

S22
bene=A hBidder=B
hBid=2 p0.pc=3
p1.pc=9 p2.pc=9

Fig. 6. A trace returned by VERDS.

By manually checking the aucSC contract (Fig. 1), it seems that it meets
the second requirement (aucPr2). The result of the verification under scenario
aucSNR, however, shows otherwise. That is, aucSC does not always choose the
bidder with the highest bid as a winner. The trace returned by VERDS is shown
in Fig. 6. The trace shows that when the three bidders bid sequentially in the
order of bidder B, bidder C and then bidder D, the winner is bidder B. The
corresponding order of calls on aucSC is shown in Fig. 7. Statements with process
identifiers, i.e., p0, ..., p3 and p4, on the left are executed but the gray statements
are not in a trace for a counter example.

On Verification of Smart Contracts via Model Checking 103

p0 constructor(address _beneficiary)
public {

p0 bene = _beneficiary;
p0 }
p1 call bid() public payable{
p1 require (!ended);
p1 require(msg.value > hBid);
p1 if (hBid !=0) {

require(hBidder.send(hBid));
p1 }
p1 hBidder = msg.sender;
p1 hBid = msg.value;
p1 }
p2 call bid() public payable{
p2 require (!ended);
p2 require(msg.value > hBid);
p2 if (hBid !=0) {
p2 require(hBidder.send(hBid));

}
hBidder = msg.sender;
hBid = msg.value;

p2 }
p3 call bid() public payable{
p3 require (!ended);
p3 require(msg.value > hBid);
p3 if (hBid !=0) {
p3 require(hBidder.send(hBid));

}
hBidder = msg.sender;
hBid = msg.value;

p3 }
p4 call aucEnd () public{
p4 require (!ended);
p4 ended = true;
p4 bene.transfer(hBid);
p4 }

Fig. 7. A counter example of aucSC.

When bidder B bids, p1 :
bid(B, 2) is called. At state S7,
where p1.pc = 3 and hBid = 0,
the condition of transition at Line
45 of aucVVM (Fig. 4) is satisfied,
then p1.pc is changed to 7, corre-
sponding to the transition of Line
46 of aucVVM. By the information
of the transitions in aucVVM, we
then can find that after Line 13 of
aucSC (Fig. 1), the execution go to
Line 16, skipping Line 14, where is
the gray line in Fig. 7.

The execution trace of bid(C, 3)
and bid(D, 4) from the states shown
in Fig. 6 to the execution path
shown in Fig. 7 can be similarly
explained.

In the counter example, after
the first bidder, say, with bid 2,
other higher biddings 3 and 4 may
be aborted because the send oper-
ation fails. Recall that the return
value of send() depends on what
happens outside the contract and

may return true or false nondeterministically. The subtle potential error is
revealed by the counter example.

8 Case Studies and Experiments

We implemented mcVer and applied it to several case studies, including some
reported contracts with typical security vulnerabilities [2,3,6] and an access con-
trol smart contract [51]. Our experiments are carried out on a machine with 3.10
GHz CPU, 512 GB RAM. The dataset is available on [5].

8.1 Security Vulnerabilities Checking

We show in this section some examples to illustrate how vulnerabilities such
as Transaction-Ordering Dependency (TOD) and Reentrancy Vulnerability are
revealed in mcVer.

Transaction-Ordering Dependency. Assume two transactions invoke a con-
tract at the same time. If a final state depends on the order of these transactions,
then a TOD vulnerability may exist. An attacker can enforce a specific execution
order to make profit [27].

104 Y. Bao et al.

1 pragma solidity ^0.4.16;
2 contract EthTxOrderDependenceMinimal{
3 address public owner;
4 bool public claimed;
5 uint public reward;
6 constructor () public{
7 owner = msg.sender;
8 }
9 function setReward () public payable{

10 require (! claimed);
11 require(msg.sender == owner);
12 owner.transfer(reward);
13 reward = msg.value;
14 }
15 function claimReward(uint256

submission) {
16 require (! claimed);
17 require(submission <10);
18 msg.sender.transfer(reward);
19 claimed = true;
20 }
21 }

Fig. 8. A contract with TOD [6], todSC

An example of a con-
tract with TOD vulnerabil-
ity [6] is shown in Fig. 8.
Suppose the reward is first
set to 3 by the owner A
after the contract is deployed.
Then user B sees the reward
and tries to claim, and at
the same time the owner
resets the reward to 1. These
two transactions may be exe-
cuted in any order. The con-
tract is first translated into a
VVM with a module setRe-
ward(msg_sender, msg_value)
to model function setReward(),

a module claimReward(msg_sender, msg_value, submission) to model func-
tion claimReward(uint submission) and a module to model the constructor. The
aforementioned scenario is configured as:

p0 : EthTxOrderDependenceMinimal(A, 0)
p1 : setReward(A, 3)
p2 : setReward(A, 1)|p3 : claimReward(B, 0, 3)

Suppose user B has a balance 5 before a transaction. After that, he should
expect a balance to be 8, since the reward is 3 when he submits the transaction.
Therefore, the property is denoted as follows.

AG(!(End)|(balance[B] = 8))

VERDS exhaustively explores the state space of the model and finds violation
of the property. Therefore, a trace where the user’s balance is only 6 at the end of
the scenario is returned by VERDS as a counter-example. The trace shows that
setReward() is executed before claimReward() and the reward is set to 1. Then,
should B always have balance of 6 after the scenario? Verification of the following
property shows otherwise, because claimReward() may also be executed first.

AG(!(End)|(balance[B] = 6))

The results show that a different execution order may lead to different balance
of B. The TOD vulnerability is detected.

Reentrancy Vulnerability. If a function of a contract is called again before
its previous invocations complete execution and the next call leads to incon-
sistency of balances of related accounts, a Reentrancy Vulnerability exists in

On Verification of Smart Contracts via Model Checking 105

the contract. The reason of TheDAO event is exactly that the Reentrancy Vul-
nerability in the DAO was exploited by attackers. A contract with Reentrancy
Vulnerability is shown in Fig. 9. When function withDraw() is called, the state-
ment msg.sender.call.value(amount)() in Line 8 will transfer some money to
another contract and trigger its fallback function. When there is a callback to
withDraw() in the fallback function, a reentrancy is formed and an attacker
may withdraw more amount of money than his balance in the contract.

1 pragma solidity ^0.4.19;
2 contract Victim{
3 mapping(address => uint) public

userBalance;
4 uint public amount =0;
5 function withDraw (){
6 uint amount = userBalance[msg.sender];
7 if(amount >0){
8 msg.sender.call.value(amount)();
9 userBalance[msg.sender] = 0;

10 }
11 }
12 function receiveEther () payable{
13 if(msg.value >0){
14 userBalance[msg.sender] += msg.

value;
15 }
16 }
17 }

Fig. 9. Contract with Reentrancy [3], reSC

The contract is translated
into a VVM with a set of
modules. We set the num-
ber of callbacks to 1, because
if there is a re-entry it will
be found in one callback. An
extra module fallback() is
used to model fallback func-
tion in the external contract
which is triggered automati-
cally by withDraw(), and a
module withDraw_back() is
used to model the re-invoked
withDraw() in fallback func-
tion. Suppose a user B first
deposits 2 wei (a unit of Ether)
into the contract by invoking

receiveEther() and then withdraws his money. The scenario is configured as fol-
lows.

p0 : receiveEther(B, 2)
p1 : withDraw(B, 0)

Suppose the initial balance of the user is 5, the required property is that his
balance after the execution of the scenario is still 5. This property is formulated
as follows.

AG(!(End)|(balance[B] = 5))

106 Y. Bao et al.

Checking this property with the above scenario, mcVer returns with false,
meaning that the balance of the user is inconsistent before and after the scenario.
The Re-entrancy Vulnerability is then detected.

Table 2. Checking time for security vulner-
abilities.
Contract Vul. Bound Execution Time (second)

MaxD MaxI Modeling Veri Counter Ex. Total

todSC TOD 2 8 0.071 3.41 0.003 3.484
reSC Reentrancy 2 8 0.051 4.099 0.002 4.152

Experimental Results. Table 2
shows the time required for mcVer to
detect the vulnerabilities contained
in the above four cases. The bound
of number of addresses, MaxD, and
the bound of integer, MaxI, are

shown in the third colomn. The procedures of model extraction and counter
example generation are very fast, and the times required for verification of them
are within several seconds.

8.2 Access Control Contract

The previously discussed properties related to security are all safety properties.
In this section we study an access control contract [51] to show that mcVer can
also deal with liveness properties.

Problem Description. The ubiquitous interconnection of physical objects has
significantly accelerated data collection, aggregation, and sharing, making Inter-
net of Things (IoT) one of the most basic architectures for applications in the
smart health-care, smart transportation, and home automation domains. How-
ever, such interconnection may also bring serious security problems to IoT sys-
tems. If a system does not have secure access control, through intrusion into the
system, unauthorized entities (attackers) can illegally access existing IoT devices
by simply deploying their own resources. Therefore, the access control issue of
the IoT has received extensive attention from academia and industry. The access
control system should satisfy the following four requirements:

PR1. Regardless of whether a user has rights or not, the system should return a result;
PR2. Users who have no right to access can’t get access rights;
PR3. Users with access rights can always obtain access rights;
PR4. Only specific users (such as administrators) can modify users’ access rights.

On Verification of Smart Contracts via Model Checking 107

1 contract AccessControlMethod{
2 address public owner;
3 address public subject;
4 address public object;
5 mapping(bytes32=>PolicyItem) policies;
6 mapping (bytes32 => BehaviorItem)

behaviors;
7
8 constructor (address _subject) public {}
9 function policyAdd(bytes32 _action , bool

_permission , uint minInterval , uint
_threshold) public {}

10 function policyUpdate(bytes32 _action ,
bool _newPermission) public {}

11 function accessControl(bytes32 _action ,
uint _time) public{uint err ;...}

12 }

Fig. 10. Access control contract [51].

We outline the contract and
show it in Fig. 10. There are five
global variables, among which
owner, subject and object indi-
cate the address who deployed
the contract, the address of the
accessing user and IoT device
bound to the contract, respec-
tively; the variables policies
with mapping type are used
to record the access policies.
There are also three main func-
tions in this contract. Function
AcessControlMethod() is the
constructor, initializing owner,
subject and object. Function
policyAdd() is used to add
new access policy. Function

policyUpdate() is used to update the access permissions in an access policy.
Function accessControl() is used to get access rights. There is a local variable
err in accessControl() representing whether a user can get access right. Dif-
ferent values of err represent different return results as shown in the following
list.

1. err = 0 means right is granted;
2. err = 1 means punishment isn’t ended and right is not granted;
3. err = 2 means user has no permission and right is not granted;
4. err = 3 means that although the user has the permission but he will be punished and right

isn’t granted, because he visits too frequently;
5. err = 4 means user has no permission and visit too frequently in the minimal interval, will

be punished, right isn’t granted;
6. err = 5 means the device that the user wants to visit is not current device and right isn’t

granted.

Modeling. For the verification of aforementioned four basic properties, we
design three different scenarios. The first scenario, denoted by SNR1, is defined
as:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, Y, 2, 2)
p2 : policyUpdate(A, 0, R, N)|p3 : accessControl(B, 0, R, 2)

In this scenario, administrator A deploys a contract for user B. He then sends
a transaction calling policyAdd to add a new policy which allows B to read (R)
the data on resource with identifier 3. This policy allows the user to visit the
resource twice in interval 2 units of time. Then B tries to get access right and A

108 Y. Bao et al.

tries to withdraw the permission for user B at the same time. Scenario SNR1 can
be used to check properties PR1 and PR3, which are concretized and specified
respectively by SNR1.pr1 and SNR1.pr2, shown as follows.

SNR1.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR1.pr2: AG(!(End)|(p3.err = 0))

The second scenario, SNR2, is defined as:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, Y, 2, 2)
p2 : policyUpdate(A, 0, R, N)
p3 : accessControl(B, 0, R, 2)

After policyAdd finishes, policyUpdate withdraws the permission of user B.
The B tries to access the resource. Scenario SNR2 can be used to check properties
PR1 and PR2, which are concretized and specified respectively by SNR2.pr1 and
SNR2.pr2, shown as follows.

SNR2.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR2.pr2: AG(!(End)|(p3.err = 2))

The last scenario, SNR3, describes the situation that a user B with no per-
mission tries to update his own permission and then tries to get access right:

p0 : constructor(A, 0, B)
p1 : policyAdd(A, 0, R, N, 2, 2)
p2 : policyUpdate(B, 0, R, Y)
p3 : accessControl(B, 0, R, 2)

Scenario SNR3 can be used to check properties PR1 and PR4, which are
concretized and specified respectively by SNR3.pr1 and SNR3.pr2, shown as
follows.

SNR3.pr1: AF ((End)&(p3.err = 0|p3.err = 1|p3.err = 2|p3.err = 3|p3.err = 4|p3.err = 5))
SNR3.pr2: AG(!(End)|(p3.err = 2))

The changes of permission can only be checked by the returned error code of
accessControl(), so in this scenarios p3 is added and the formula SNR3.pr2 is
the same as SNR2.pr2.

On Verification of Smart Contracts via Model Checking 109

Table 3. Verification results for
access control contract.
Requirements Properties Verification Results Time

(second)

PR1 SNR1.pr1 True True 17.155
SNR2.pr1 True 18.977
SNR3.pr1 True 22.329

PR2 SNR2.pr2 True True 17.367
PR3 SNR1.pr2 False False 21.201
PR4 SNR3.pr2 False False 19.019

Verification. After the contract, the sce-
narios and the property specification are
translated into VVM, we verified the VVM
using VERDS. The results are shown in
Table 3. The first column list the names of
requirements, the second column lists the
related CTL formula, the third and forth
columns are verification results, and the last

column shows verification time for each property. The result for PR1 is true
only when the verification results of SNR1.pr1, SNR2.pr1 and SNR3.pr1 are all
true. From the results, we know that the contract doesn’t meet PR3 and PR4.
And the counter-example returned when verifying SNR3.pr2 shows that user B,
who is not an administrator, successfully changes his own permission by calling
function policyUpdate(), and gets the access right which violates PR4. All six
properties are verified in about two minutes.

9 Conclusion and Future Work

In this paper, the model checking based framework, mcVer, has been proposed
to support the verification of smart contracts written in Solidity. mcVer is able
to verify a variety of properties of smart contracts. For the properties that are
not satisfied, mcVer produces a counter example by showing a sequence of
statements in the original Solidity program as a hint of where a faulty statement
may be located. We have implemented mcVer and applied it to automatically
checking various types of security vulnerabilities and properties of an access
control smart contract. The results show that the proposed framework is flexible
and efficient and can facilitate software development in the blockchain domain
in terms of the diversity of detecting software breaches.

The limitations of mcVer framework come from two folds. The first is from
the model checking technique itself, which can only deal with bounded systems
and may suffer from state explosion issue when the model scales up. The second
is that we have to configure the scenarios with particular values of parameters,
which confines the space to be explored and limits the ability of mcVer. In the
future, we will study the property-based contract modeling technique to reduce
the size of the model to be verified and consider a better way to model the
environment and user behaviors to broaden the scope of verification. Also, we
will consider the impact of gas limitation to the behavior of contracts.

References

1. https://solidity-cn.readthedocs.io/zh/develop/solidity-by-example.html
2. https://bitcoinist.com/smart-contract-bug-disable-icon-icx-transfers/
3. https://blog.csdn.net/programmer_cjc/article/details/85987234
4. Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/

analysis-of-the-dao-exploit/

https://solidity-cn.readthedocs.io/zh/develop/solidity-by-example.html
https://bitcoinist.com/smart-contract-bug-disable-icon-icx-transfers/
https://blog.csdn.net/programmer_cjc/article/details/85987234
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

110 Y. Bao et al.

5. Dataset for mcver. https://gitee.com/fmpa/dataset-for-mcVer
6. Transaction order dependence. https://swcregistry.io/docs/swc-114
7. Albert, E., Correas, J., Gordillo, P., Román-Díez, G., Rubio, A.: SAFEVM: a safety

verifier for Ethereum smart contracts. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 386–389 (2019)

8. Alqahtani, S., He, X., Gamble, R., Mauricio, P.: Formal verification of functional
requirements for smart contract compositions in supply chain management sys-
tems. In: Proceedings of the 53rd Hawaii International Conference on System Sci-
ences (2020)

9. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6_8

10. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

11. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96 (2016)

12. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
a smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 454–469 (2020)

13. Chen, R., Zhang, W.: Checking multi-agent systems against temporal-epistemic
specifications. In: the 24th International Conference on Engineering of Complex
Computer Systems, pp. 21–30. IEEE (2019)

14. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

15. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

16. Costello, K.: Gartner predicts 90% of current enterprise blockchain platform
implementations will require replacement by 2021 (2019). https://www.gartner.
com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-
enterprise-blockchain

17. Clarke Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing, 2nd edn. MIT Press, Cambridge (2018)

18. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB), pp. 8–15. IEEE (2019)

19. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

20. Frank, J., Aschermann, C., Holz, T.: ETHBMC: a bounded model checker for smart
contracts. In: 29th USENIX Security Symposium, pp. 2757–2774 (2020)

21. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,
and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 557–560 (2020)

22. Hegedűs, P.: Towards analyzing the complexity landscape of solidity based
ethereum smart contracts. Technologies 7(1), 6 (2019)

https://gitee.com/fmpa/dataset-for-mcVer
https://swcregistry.io/docs/swc-114
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://www.gartner.com/en/newsroom/press-releases/2019-07-03-gartner-predicts-90-of-current-enterprise-blockchain
https://doi.org/10.1007/978-3-642-37036-6_8

On Verification of Smart Contracts via Model Checking 111

23. Hirai, Y.: Formal verification of deed contract in ethereum name service, November
2016. https://yoichihirai.com/deed.pdf

24. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

25. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Network and Distributed Systems Security (NDSS) Symposium, pp.
1–12 (2018)

26. Liu, Y., Li, Y., Lin, S.W., Zhao, R.: Towards automated verification of smart
contract fairness. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 666–677 (2020)

27. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269 (2016)

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (2012). https://doi.org/10.1007/978-1-
4612-0931-7

29. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: VeriSolid: correct-by-design
smart contracts for ethereum. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 446–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32101-7_27

30. Mossberg, M., et al.: Manticore: a user-friendly symbolic execution framework for
binaries and smart contracts. In: 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1186–1189 (2019)

31. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. In: the 19th ACM SIGPLAN international confer-
ence on Functional programming, pp. 175–188 (2014)

32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report,
Manubot (2019)

33. Nehaï, Z., Piriou, P., Daumas, F.: Model-checking of smart contracts. In: IEEE
International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 980–987

34. Nehai, Z., Bobot, F.: Deductive proof of ethereum smart contracts using why3.
arXiv preprint arXiv:1904.11281 (2019)

35. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

36. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX:
safety verification of smart contracts. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 1661–1677 (2020)

37. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0_30

38. So, S., Lee, M., Park, J., Lee, H., Oh, H.: VeriSmart: a highly precise safety verifier
for ethereum smart contracts. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1678–1694 (2020)

39. Swamy, N., et al.: Dependent types and multi-monadic effects in F. In: Proceed-
ings of the 43rd annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 256–270 (2016)

https://yoichihirai.com/deed.pdf
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
http://arxiv.org/abs/1904.11281
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-70278-0_30

112 Y. Bao et al.

40. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). https://firstmonday.org/ojs/index.php/fm/article/view/548

41. Thomson, I.: Parity: the bug that put $169m of ethereum on ice? Yeah, it was on
the todo list for months (2017). https://www.theregister.com/2017/11/16/parity_
flaw_not_fixed/

42. Thomson, I.: Mythril classic: security analysis tool for ethereum smart contracts
(2018). https://github.com/ConsenSys/mythril

43. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: static analysis of ethereum smart contracts. In: Pro-
ceedings of the 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain, pp. 9–16 (2018)

44. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7), 1–38 (2022)

45. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82
(2018)

46. Wang, S., Zhang, C., Su, Z.: Detecting nondeterministic payment bugs in ethereum
smart contracts. Proc. ACM Program. Lang. 3, Article 189 (2019)

47. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

48. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1398–
1409 (2020)

49. Zeng, N., Zhang, W.: An executable semantics of SystemC transaction level mod-
els and its applications with VERDS. In: the 19th International Conference on
Engineering of Complex Computer Systems, pp. 198–201 (2014)

50. Zhang, W.: VERDS: verification of hierarchical discrete systems by symbolic tech-
niques. Manuscript (2013). http://lcs.ios.ac.cn/~zwh/verds

51. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2018)

https://firstmonday.org/ojs/index.php/fm/article/view/548
https://www.theregister.com/2017/11/16/parity_flaw_not_fixed/
https://www.theregister.com/2017/11/16/parity_flaw_not_fixed/
https://github.com/ConsenSys/mythril
http://lcs.ios.ac.cn/~zwh/verds

Equivalence of Denotational
and Operational Semantics for Interaction

Languages

Erwan Mahe1(B) , Christophe Gaston1 , and Pascale Le Gall2

1 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
erwan.mahe@cea.fr

2 Université Paris-Saclay, CentraleSupélec, 91192 Gif-sur-Yvette, France

Abstract. Message Sequence Charts (MSC) and Sequence Diagrams
(SD) are graphical models representing the behaviours of distributed
and concurrent systems via the scheduling of discrete emission and recep-
tion events. So as to exploit them in formal methods, a mathematical
semantics is required. In the literature, different kinds of semantics are
proposed: denotational semantics, well suited to reason about algebraic
properties and operational semantics, well suited to establish verification
algorithms. We define an algebraic language to specify so-called interac-
tions, similar to the MSC and SD models. It is equipped with a denota-
tional semantics associating sets of traces (sequences of observed events)
to interactions. We then define a structural operational semantics in the
style of process algebras and prove the equivalence of the two semantics.

Keywords: Interactions · Sequence diagrams · Distributed &
concurrent systems · Formal language · Denotational semantics ·
Operational semantics

1 Introduction

Modelling asynchronous communications between concurrent processes is possi-
ble under a variety of formalisms, such as process algebras [22], Petri Nets [4],
series-parallel languages [11], distributed automata [1], or formalisms derived
from Message Sequence Charts (MSC) [16]. MSCs are graphical models repre-
senting information exchanges between sub-systems. Various offshoots of MSCs,
including UML Sequence Diagrams (UML-SD) [18], have been proposed and we
call languages from that family “Interaction Languages” (IL). Interactions are
interesting due to their graphical nature and ease of understanding. IL make it
possible to describe scenarios using intuitions that are very easy to share: a) a
vertical line per sub-system, called a lifeline, which from top to bottom describes
the succession of events as perceived by the sub-system, b) exchanges of mes-
sages inducing causality relations between the lifelines, c) high-level operators
such as parallel composition to structure simple scenarios.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 113–130, 2022.
https://doi.org/10.1007/978-3-031-10363-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_8&domain=pdf
http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-8955-6835
https://doi.org/10.1007/978-3-031-10363-6_8

114 E. Mahe et al.

So as to use interactions in formal methods, they have to be fitted with for-
mal semantics. A major hurdle in defining those lies in the treatment of weak
sequencing. Weak sequencing allows events taking place on different lifelines to
occur in any order while strictly ordering those that take place on the same
lifeline. The survey [17] provides an overview of solutions found in the literature.
The most direct ones consist in defining semantics by translation: interactions
are translated into models of other formalisms provided with formal semantics.
Typical examples are Petri Nets [3], automata [10] or process algebra [8]. The
main advantage of such approaches is that those formalisms are equipped with
tools such as Model-Checker or Model-Based Testing tools. However, a notable
drawback is that the target formalisms are defined on concepts (states, transi-
tions, places...) that are quite different from the ones handled in ILs. Then it
is difficult to know whether or not the objects resulting from the translation
preserve the meaning associated to the original interaction. For example, in [8],
the authors propose to translate UML-SD into Communicating Sequential Pro-
cesses (CSP) [6]. UML-SD operators such as weak sequencing are encoded in a
non-trivial manner, using sequence, parallel composition etc. as CSP does not
introduce any similar operator, and as the translation is not presented exhaus-
tively, it is not clear if the asynchronous nature of executions of UML-SD is fully
reflected. Other approaches treat IL by equipping them with direct mathematical
semantics, either denotational or operational. Denotational semantics either rely
on partial order sets [15,23] or on algebraic operators [9]. Operational seman-
tics [16] are given in the form of production rules similar to process algebra.
Denotational semantics, based on sets of accepted execution traces, are close to
intuition. They are well adapted to reason on and prove various properties about
interactions. Operational semantics are closer to executable semantics and are
well suited to prove the correctness of algorithms realizing formal analysis.

In this paper we set the basis of a framework to deal with interactions via two
kinds of semantics (denotational and operational). While in [14,15] we formu-
lated semantics for interactions by identifying the positions of communication
actions using the Dewey notation, we now abstract away positions, to define a
denotational semantics in an algebraic style as in [9] and an operational seman-
tics in the style of Plotkin. Those new formulations enables us to prove the
equivalence of the semantics (with an automated Coq proof available in [13]).
To our knowledge, there are no similar equivalence results in the literature. In
particular, in [15], there were only some tooled experiments hinting towards their
equivalence. Our IL extends the one in [15] with additional loop mechanisms.
Our denotational semantics can be seen as an extension of the one in [9] with
repetition operators in the form of variants of the algebraic Kleene closure. We
define a structural operational semantics in the fashion of process algebras [2].
It adopts some of the ideas introduced in [16,21] but is closer to usual structural
operational semantics than the one in [16,21] which includes maps between sent
and received messages or negative application rule conditions.

This paper is organized as follows: Sect. 2 introduces the concepts of inter-
actions and traces. Section 3 presents the syntax of our IL and defines a trace

Equivalence of Denotational and Operational Semantics for Interaction 115

semantics in denotational-style. In Sect. 4 a structural operational semantics is
defined in the style of process calculi and we demonstrate its equivalence to the
former in Sect. 5. Finally, in Sects. 6 and 7 we discuss some related works and
we conclude. A formalisation using Coq of the main demonstrations is available
in [13].

2 Basic Interactions and Intuition of Their Meaning

Interactions describe the behavior of distributed and concurrent systems based
on their internal and external communications. They are defined over a signature
Ω = (L,M) where L is a set of lifelines and M is a set of messages.

2.1 Preliminaries

The executions of systems are characterized by sequences of events called com-
munication actions (actions for short) which are of two kinds: either the emission
of a message m ∈ M from a lifeline l ∈ L, denoted by l!m, or the reception of
m ∈ M by l ∈ L, denoted by l?m. AΩ denotes the set of actions over Ω. For any
such action a, θ(a) denotes the lifeline on which a occurs.

Sequences of actions, called traces, are words in A
∗
Ω , with “.” denoting the

concatenation operation and ε being the empty trace. We denote by TΩ = A
∗
Ω the

set of traces. Thus, for any two traces t1 and t2, t1.t2 is the trace composed of the
sequence of actions of t1 followed by the sequence of actions of t2. We introduce
operators to compose (sets of) traces, modeling different notions of scheduling:
the strict sequencing (;), the interleaving (||) and the weak sequencing (××).

The set t1; t2 of strict sequencing of traces t1 and t2 is defined as {t1.t2}.
By choosing “;” for denoting the extension of “.” to sets of traces, we adopt the
same notation as in [9] for the strict sequencing operator.

Interleaving allows elements of distinct traces to be reordered w.r.t. one
another while preserving the order that is specific to each trace. The set t1||t2
of interleavings of traces t1 and t2 is defined by:

ε||t2 = {t2} t1||ε = {t1}
(a1.t1)||(a2.t2) = {a1.t | t ∈ t1||(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)||t2}

By contrast, weak sequencing only allows such permutations when actions
do not occur on the same lifeline. We define a predicate t××l meaning that the
trace t contains an action on the lifeline l (we say t has conflicts w.r.t. l):

ε××l = ⊥ and (a.t)××l = (θ(a) = l) ∨ (t××l)

By overloading ××, the set t1××t2 of weak sequencing of t1 and t2 is defined by:

ε××t2 = {t2} t1××ε = {t1}
(a1.t1)××(a2.t2) = {a1.t | t ∈ t1××(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)××t2, ¬(a1.t1××θ(a2))}

116 E. Mahe et al.

When defining t′1××t′2, the order of the actions in each trace is preserved and
actions in t′2 can only precede those in t′1 that do not occur on the same lifeline.
This explains the two subsets constituting (a1.t1)××(a2.t2): the first one contains
all traces whose first action is a1 and tail belongs to t1××(a2.t2) and the second
one is empty if lifeline of a2 occurs in a1.t1 (i.e. ¬(a1.t1××θ(a2))), and contains
all traces whose first action is a2 and tail belongs to (a1.t1)××t2 otherwise.

The previous binary operators (“;”, “××” and “||”) defined on traces are canon-
ically extended to sets of traces as follows: with � ∈ {; , ××, ||}, T1�T2 is the union
of all the sets t1 � t2 with t1 ∈ T1 and t2 ∈ T2. The use of the strict sequencing
(“;”), weak sequencing (“××”) and interleaving (“||”) operators will be illustrated
with Fig. 1 in Sect. 2.2.

2.2 Basic Interactions

An example of interaction is given in the left of Fig. 1. Lifelines l1, l2 and l3 are
drawn as vertical lines. Emission and reception actions are drawn as horizontal
arrows carrying the transmitted messages m1, m2, m3 and m4 and which respec-
tively exit the emitting lifeline or point towards the receiving lifeline. When a
direct emission-reception causality occurs, we draw both actions as a single arrow
from the emitter towards the receiver.

=
(

({l1!m1}; {l3?m1})
××({l1!m2}; {l2?m2})

)
∪

(
({l1!m3}; {l2?m3})

||{l1!m4}
)

=
({l1!m1.l3?m1}

××{l1!m2.l2?m2}
)

∪
({l1!m3.l2?m3}

||{l1!m4}
)

=

⎧⎨
⎩

l1!m1.l3?m1.l1!m2.l2?m2,
l1!m1.l1!m2.l3?m1.l2?m2,
l1!m1.l1!m2.l2?m2.l3?m1

l1!m3.l2?m3.l1!m4,
l1!m3.l1!m4.l2?m3,
l1!m4.l1!m3.l2?m3

⎫⎬
⎭

Fig. 1. Example of a basic interaction & its trace semantics

The top to bottom direction relates to time passing. An action (arrow) drawn
above another one generally occurs beforehand. This scheduling of actions cor-
responds to the weak sequencing operator. By contrast, strict sequencing may
be used to enforce precedence relations between actions occurring on different
lifelines. These two scheduling operators will be respectively denoted by the key-
words seq and strict. Other keywords (alt, par, loop) will be also used for denot-
ing other scheduling mechanisms. In Fig. 1, the arrow carrying m1 and specifying
its passing between l1 and l3 is modelled by the interaction strict(l1!m1, l3?m1).
Using the strict operator here obliges l3?m1 to occur after l1!m1, which reflects
the causality of the passing of message m1 between l1 and l3. The fact that this

Equivalence of Denotational and Operational Semantics for Interaction 117

arrow stands above that carrying m2 can be modelled using the weak sequencing
operator: seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2)). Using seq here instead
of strict allows for instance l2?m2 to occur before l3?m1 even though the latter
is drawn above. However l1!m2 cannot occur before l1!m1 because they both
occur on l1. Note that, in contrast to strict, the seq operator has no graphical
representation in diagrams, as it corresponds to the default scheduling operator.

Parallel and alternative compositions can also be used. On Fig. 1, the passing
of m3 and the emission of m4 are scheduled using parallel composition. In the
diagram representation this corresponds to the box labelled with “par”, modelled
by the term par(strict(l1!m3, l2?m3), l1!m4). Actions scheduled with par can
occur in any order w.r.t. one another. Here, l1!m4 can occur before l1!m3, after
l2?m3 or in between those two actions. Alternative composition is an exclusive
non-deterministic choice between behaviors. Like par, alt is drawn as a box
labelled with “alt”. The global term describing the left of Fig. 1 is given by:

alt(seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2)), par(strict(l1!m3, l2?m3), l1!m4))

2.3 Repetition Operators on Sets of Traces

Scheduling operators define compositions of traces obtained from enabling or
forbidding the reordering of actions according to some scheduling policy. All
three are associative (in addition, || is commutative) and admit {ε} as a neutral
element. We define (Kleene) closures of those operators to specify repetitions1:

Definition 1 (Kleene closures). For any � ∈ {; , ××, ||} and any T ∈ P(TΩ),
the Kleene closure T �∗ of T is defined by: T �∗ =

⋃
j∈N

T �j with T �0 = {ε} and
T �j = T � T �(j−1) for j > 0.

{
l1!m1.l2!m2,
l2?m1

}××∗
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε,
l1!m1.l2!m2,
l2?m1,

l1!m1.l2!m2.l1!m1.l2!m2,
l1!m1.l1!m1.l2!m2.l2!m2,
l1!m1.l2!m2.l2?m1,
l2?m1.l2?m1,
l2?m1.l1!m1.l2!m2,
l1!m1.l2?m1.l2!m2,

· · ·

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Example illustrating the weak Kleene closure

The three Kleene closures ;∗, ××∗ and ||∗ are respectively called, strict,
weak and interleaving Kleene closures. Within the K-closure T �∗ we can find
traces obtained from the repetition (using � as a scheduler) of any number of
traces of T . In the example from Fig. 2 we consider a set T containing two traces
l1!m1.l2!m2 and l2?m1. The first 3 powersets of T (i.e. T

××0 ∪ T
××1 ∪ T

××2) are
1 For a set E, P(E) is the set of all subsets of E.

118 E. Mahe et al.

displayed, the rest of the weak K-closure of T (i.e. T
××∗) is represented by the

· · · .
We have the property T �T �∗ = T �∗, analogous to the one defining replication

!P (i.e. !P = P |!P) in the family of process calculi (e.g. see [19]), expressing
an unbounded number of copies of P along the parallel composition “|”. For
� ∈ {; , ××, ||} whenever a.t ∈ T1 � T2 (with a and t any action and trace and T1

and T2 any sets of traces), it may be so that action a is taken from a trace a.t′

that belongs to either T1 or T2. Definition 2 introduces restricted versions of the
scheduling operators so as to impose action a to be taken from T1.

Definition 2 (Restricted scheduling operators). For any � ∈ {; , ××, ||},
we define the operator �� such that for any sets of traces T1 and T2 we have:

T1 �� T2 =
{

t ∈ T1 � T2

∣
∣ (t = a.t′) ⇒ (∃ t1 ∈ TΩ , s.t. (a.t1 ∈ T1) ∧ (t′ ∈ {t1} � T2))

}

As an example, given T1 = {l1!m.l1?m} and T2 = {l2!m}, we have:

T1
××T2 =

⎧⎨
⎩

l1!m.l1?m.l2!m,
l1!m.l2!m.l1?m,
l2!m.l1!m.l1?m

⎫⎬
⎭ and T1

××�T2 =
{

l1!m.l1?m.l2!m,
l1!m.l2!m.l1?m

}

We now define Head-First closures (abbr. HF-closure) of scheduling
operators.

Definition 3 (Head-first closures). For any � ∈ {; , ××, ||}, we define the
Head-First closure of � as ��∗ i.e. the Kleene closure of the restricted �� operator.

In the following we will show that HF-closure and K-closure are equivalent
for ; and || but that this is not the case for ××.

Lemma 1. For any � ∈ {; , ||}, T ∈ P(TΩ), t in TΩ and a ∈ AΩ we have:

(a.t ∈ T �∗) ⇒ (∃ t′ ∈ TΩ s.t. (a.t′ ∈ T) ∧ (t ∈ {t′} � T �∗))

Proof. By induction on j given a.t ∈ T �j . For ||, we use its commutativity.
�

Lemma 2 (Equivalence of HF & K closures for ; & ||). For any set of
traces T , we have T ;�∗ = T ;∗ and T ||�∗ = T ||∗.

Proof. By induction on a member trace t.
�

Let us detail a counter example showing that the weak K-closure ××∗ and
the weak HF-closure ××�∗ are not equivalent. Given T = {l1!m1.l2?m1, l2!m2},
let us consider the powerset T

××2 of T . By definition, {l2!m2}××{l1!m1.l2?m1} ⊂
T

××2. Here we can choose to take l1!m1 as a first action and therefore t =
l1!m1.l2!m2.l2?m1 ∈ T

××2. However, t ∈ T××�T = T
××�2 and more generally, for

any j smaller or greater that 2, t ∈ T
××�j . Hence, T

××∗ ⊆ T
××�∗.

Equivalence of Denotational and Operational Semantics for Interaction 119

3 Syntax and Denotational Semantics

As noted earlier in Sect. 2.2, interactions terms are defined inductively. Basic
building blocks include the empty interaction ∅ which specifies the empty behav-
ior ε (observation of no action) and any atomic action a of AΩ , which specifies the
single-element trace a. More complex behavior can then be specified inductively
using the binary constructors strict, seq, par and alt and the unary construc-
tors loopS (strict loop), loopH (head loop up to ××), loopW (weak loop) and loopP

(parallel loop).

Definition 4 (Interaction Language). We denote by IΩ the set of terms
inductively defined by the set of operation symbols F = F0 ∪ F1 ∪ F2 s.t.:

– symbols or arity 0 (constants) are F0 = {∅} ∪ AΩ

– symbols of arity 1 are F1 = {loopS , loopH , loopW , loopP }
– symbols of arity 2 are F2 = {strict, seq, par, alt}

In Definition 4 we define our Interaction Language (IL) as a set of terms IΩ

inductively defined from the set of symbols F with arity in N. The set P(TΩ) of
sets of traces admits the structure of a F-algebra using operators introduced in
Sect. 2. The denotational semantics of interactions is then defined in Definition 5
using the initial homomorphism associated to this F-algebra.

Definition 5 (Denotational semantics). A = (P(TΩ), {fA | f ∈ F}) is the
F-algebra defined by the following interpretations of the operation symbols in F :

∅
A = {ε}

aA = {a}

strictA = ;
seqA = ××

parA = ||
altA = ∪

loopA
S = ;∗

loopA
H = ××�∗

loopA
W = ××∗

loopA
P = ||∗

The denotational semantics σd of IΩ is the unique F-homomorphism σd : IΩ →
P(TΩ) between the free term F-algebra2 TF and A.

The semantics of constants ∅ and a ∈ AΩ are sets containing a single ele-
ment being respectively {ε} and {a}. The strict, seq, par and alt symbols are
respectively associated to the ;, ××, || and union ∪ operators on sets of traces. The
use of the strict sequencing (“;”), weak sequencing (“××”) and interleaving (“||c)
operators is illustrated on the right of Fig. 1 so as to compute the semantics of
the interaction example given on the left of Fig. 1. For instance, from the second
line to the third line, using distinct colours to better visualise the differences
between scheduling operators, weak sequencing {l1!m1.l3?m1}××{l1!m2.l2?m2}
allows l1!m2 to be reordered before l3?m1 but not before l1!m1 while interleav-
ing {l1!m3.l2?m3}||{l1!m4} allows l1!m4 to be placed anywhere w.r.t. l1!m3 and
l2?m3. The resulting set of traces is given on the bottom right.

From a system designer perspective, using loopS , loopH , loopW or loopP is
motivated by different goals:
2 The free term F-algebra is defined by interpreting symbols of F as constructors of

new terms: for f ∈ F of arity j, for t1, . . . tj ∈ IΩ , f(t1, . . . tj) is interpreted as itself.

120 E. Mahe et al.

– With loopS(i), each instance of a repeatable behavior must be executed
entirely before any other can start. We can use loopS to specify some critical
repeatable behavior of which there can only exist one instance at a time.

– With loopP (i), all existing instances can be executed concurrently w.r.t. one
another, and, at any given moment, new instances can be created. loopP can
therefore be used to specify protocols in which any number of new sessions
can be created and run in parallel.

4 A Structural Operational Semantics

Now we present our structural operational semantics. It relies on the definition
(by structural induction) of two predicates: “i ↓” (the termination predicate)
indicates that the interaction i accepts the empty trace and “i

a−→ i′” (the execu-
tion relation) indicates that traces a.t such that t is accepted by i′ are accepted
by i. The relation → allows the determination, for any interaction i, of which
actions a can be immediately executed, and, of potential follow-up interactions
i′ which express continuations t of traces a.t accepted by i. Defining an execution
relation → is a staple of process calculus [2]. We will pay particular attention to
the weak sequencing operator in Sect. 4.2 before defining → in Sect. 4.3.

4.1 Termination

By reasoning on the structure of an interaction term i, we can determine whether
or not the empty trace ε belongs to its semantics. When this holds, we say that
i terminates and use the notation i ↓ as in [2,16].

Definition 6 (Termination). The predicate ↓⊂ IΩ is such that for any i1 and
i2 from IΩ, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P} we have:

∅ ↓
i1 ↓

alt(i1, i2) ↓
i2 ↓

alt(i1, i2) ↓
i1 ↓ i2 ↓
f(i1, i2) ↓ loopk(i1) ↓

All rules of Definition 6 are evident. The empty interaction ∅ only accepts ε,
and thus terminates. An interaction with a loop at its root terminates because
it is possible to repeat zero times its content. As alt(i1, i2) specifies a choice,
it terminates iff either i1 or i2 terminates. An interaction of the form f(i1, i2),
with f being a scheduling constructor, terminates iff both i1 and i2 terminate.
The rules are consistent with the denotational semantics:

Lemma 3 (Termination w.r.t. σd). For any i ∈ IΩ, (i ↓) ⇔ (ε ∈ σd(i))

Proof. By induction on the term structure of interactions.
�

In summary, i ↓ means that i may terminate immediately, but because of non-
determinism, depending on the nature of i, i may allow arbitrary long traces.

Equivalence of Denotational and Operational Semantics for Interaction 121

4.2 Dealing with Weak-Sequencing Using Evasion and Pruning

Weak sequencing only allows interleavings between actions that occur on dif-
ferent lifelines. As a result, within an interaction of the form i = seq(i1, i2),
some actions that can be executed in i2 (i.e. such that i2

a−→ i′2) may also be
executed in seq(i1, i2), i.e. such that seq(i1, i2)

a−→ i′. In other words, given a
trace a.t ∈ σd(i), action a might correspond to an action expressed by i2. This
is however conditioned by the ability of i1 to express traces that have no con-
flict w.r.t. a so that a may be placed in front of what is expressed by i1 when
recomposing a.t.

We define the evasion predicate as a weaker notion than the termination
predicate ↓. The evasion predicate “↓××” can be described as a form of local
termination. For a lifeline l, we say that i evades l, denoted by i ↓××

l if i accepts
at least one trace that does not contain actions occurring on l.

Definition 7 (Evasion). The predicate ↓××⊂ IΩ × L is such that for i1 and i2
in IΩ, l ∈ L, a ∈ AΩ, f ∈ {strict, seq, par} and k ∈ {S,H,W,P} we have:

∅ ↓××
l

θ(a) = l

a ↓××
l

i1 ↓××
l

alt(i1, i2) ↓××
l

i2 ↓××
l

alt(i1, i2) ↓××
l

i1 ↓××
l i2 ↓××

l

f(i1, i2) ↓××
l loopk(i1) ↓××

l

The empty interaction ∅ evades any lifeline as ε contains no action. An
interaction reduced to a single action a evades l iff a does not occur on l. As for
termination, an interaction with a loop at its root evades any lifeline because it
accepts ε. Choice and scheduling operators are also handled in the same manner
as for the termination predicate. Moreover, we consider the collision predicate
 ↓×× by considering dual structural rules w.r.t. those defining the evasion predicate
↓×× so that we have: i ↓××

l iff ¬(i ↓××
l)).

Lemma 4 (Evasion w.r.t. σd).
For any l ∈ L and i ∈ IΩ,(i ↓××

l) ⇔ (∃ t ∈ σd(i),¬(t××l))

Proof. By induction on the term structure of interaction.
�

Let us remark that, for any i ∈ IΩ , if i ↓ then ∀ l ∈ L, i ↓××
l. Indeed, ε

has no conflict w.r.t. any l. The opposite does not hold: it suffices to consider
i = alt(l1!m, l2!m) and observe that ∀ l ∈ {l1, l2}, i ↓××

l holds while i ↓ does not.

122 E. Mahe et al.

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

Fig. 3. Illustration of the evasion predicate (here w.r.t. lifeline l2)

The application of the evasion predicate (w.r.t. lifeline l2) is illustrated on
Fig. 3. On the right is represented the syntactic structure of an interaction i, and,
on the left, the corresponding drawing as a sequence diagram. On the syntax
tree, the nodes are decorated with symbols � (resp. �) to signify that the sub-
interaction underneath that node evades (resp. collides with) l2. Starting from
the leaves we can decorate all nodes and conclude once the root is reached. By
taking the right branch of the alternative and by choosing not to instantiate the
loop, we can see that i accepts some traces that have no conflict w.r.t. lifeline
l2 (in our case, only the trace l3!m2.l1?m2). As a result the interaction i verifies
i ↓××

l2. On the diagram representation, evasion can be illustrated by drawing a
line over l2 the lifeline of interest. This line can be decomposed into several areas
that are colored either in green or in red. The coloration depends on whether
the sub-interaction corresponding to the operand evades or collides with l2.

Provided that i1 ↓××
θ(a), an action a that is executable in i2 i.e. s.t. i2

a−→ i′2
is also executable in i = seq(i1, i2). However, this is not enough to define a rule
seq(i1, i2)

a−→ i′ compatible with the semantics σd. i′ must specify continuations
t s.t. a.t ∈ σd(i). Continuation traces t are built from traces t1 ∈ σd(i1) and t2
such that ¬(t1××θ(a)) and a.t2 ∈ σd(i2). By defining i′1 as the interaction which
expresses exactly traces t1 s.t. ¬(t1××θ(a)) we may produce a rule seq(i1, i2)

a−→
seq(i′1, i

′
2). The computation of i′1 is called pruning and is defined as an inductive

relation ××−→ s.t. i××l−→ i′ indicates that the pruning of i ∈ IΩ w.r.t. l ∈ L yields
i′ ∈ IΩ . Pruning is defined so that σd(i′) ⊆ σd(i) is the maximum subset of σd(i)
that contains no trace conflicting with l (see Lemma 6).

Definition 8 (Pruning). The pruning relation ××−→ ⊂ IΩ × L × IΩ is s.t. for
any l ∈ L, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P}:

Equivalence of Denotational and Operational Semantics for Interaction 123

∅××l−→ ∅

θ(a) = l
a××l−→ a

i1××l−→ i′1 i2××l−→ i′2

f(i1, i2)××
l−→ f(i′1, i

′
2)

i1××l−→ i′1 i2××l−→ i′2

alt(i1, i2)××
l−→ alt(i′1, i

′
2)

i1××l−→ i′1
i2 ↓××

l
alt(i1, i2)××

l−→ i′1

i2××l−→ i′2
i1 ↓××

l
alt(i1, i2)××

l−→ i′2

i1××l−→ i′1

loopk(i1)××
l−→ loopk(i′1)

i1 ↓××
l

loopk(i1)××
l−→ ∅

Evasion and pruning are intertwined notions. Indeed, as per Lemma 5 evasion
is equivalent to the existence and unicity of a pruned interaction.

Lemma 5 (Conditional existence & unicity for pruning).

For any i ∈ IΩ and any l ∈ L, (i ↓××
l) ⇔ (∃! i′ ∈ IΩ s.t. i××l−→ i′)

Proof. By induction on the term structure of interactions.
�

Let us comment on the rules defining the pruning relation. We have ∅××l−→ ∅

because the semantics of ∅ being {ε}, there are no conflicts w.r.t. l. Any action
a ∈ AΩ is prunable iff θ(a) = l. In such a case, a needs not be eliminated and thus
a××l−→ a. For i = alt(i1, i2) to be prunable we must have either or both of i1 ↓××

l
or i2 ↓××

l. If both branches evade l they can be pruned and kept as alternatives
in the new interaction term. If only a single one does, we only keep the pruned
version of this single branch. For any scheduling constructor f , if i = f(i1, i2),
in order to have i ↓××

l we must have both i1 ↓××
l and i2 ↓××

l. In that case the
unique interaction i′ such that i×× l−→ i′ is defined as the scheduling, using f , of
the pruned versions of i1 and i2. For loops i = loopk(i1) with k ∈ {S,H,W,P},
we distinguish two cases: (a) if i1 ↓××

l then any execution of i1 will yield a trace
conflicting l and repetitions should be forbidden; (b) if i1 ↓××

l repetitions are
kept, given that i1 can be pruned as i1××l−→ i′1. This being the modification which
preserves a maximum amount of traces, we have loopk(i1)××

l−→ loopk(i′1).

Fig. 4. Illustration of pruning

124 E. Mahe et al.

We have seen that the interaction i of Fig. 3 satisfies i ↓××
l2. Therefore

Lemma 5 implies the existence of a unique i′ s.t. i××
l2−→ i′. Figure 4 illustrates the

computation of i′. The blue lines represent the modifications in the syntax of i
that occur during its pruning into i′. On Fig. 3 we decorated sub-interactions of
i with � whenever they did not evade l2. During pruning, those sub-interactions
must be eliminated given that the resulting term must not express actions
occurring on l2. Hence, on Fig. 4, we have crossed in blue the problematic sub-
interactions. The root node is an alt. Let us note i = alt(i1, i2). On Fig. 3 we
have seen that we have i1 ↓××

l2 and i2 ↓××
l2. Therefore we have i××

l2−→ i′2 with i′2
being such that i2××l2−→ i′2. This selection of the right branch of the alt is illus-
trated on Fig. 4 by the curved arrow which “replaces” the alt by the seq on its
bottom right. There remains to determine i′2 s.t. i2××l2−→ i′2. At the root of i2 we
have a seq. Let us note i2 = seq(iA, iB). As per Fig. 3 we have both iA ↓××

l2

and iB ↓××
l2 and therefore i′2 = seq(i′A, i′B) such that iA××l2−→ i′A and iB××l2−→ i′B .

Underneath iA, no actions occur on l2 and hence i′A = iA. At the root of iB
we have a loopS . Let us note iB = loopS(iC). As per Fig. 3 we have iC ↓××

l2
and therefore i′B = ∅ which is illustrated on Fig. 4 by the ← ∅ in blue, which
“replaces” the loopS by ∅. Finally there remain i′ = seq(iA, ∅), which is drawn
on the right of Fig. 4.

Lemma 6 states that given i××l−→ i′, the pruned interaction i′ exactly specifies
all the executions of i that do not involve l.

Lemma 6 (Pruning w.r.t. σd). For any l ∈ L and any i and i′ from IΩ:

(i××l−→ i′) ⇒ (σd(i′) = {t ∈ σd(i) | ¬(t××l)})

Proof. By induction on the term structure of interactions.
�

4.3 Execution Relation and Operational Semantics

A structural operational semantic in the style of Plotkin [20] allows determining
traces t = a1. · · · .an through the assertion of a succession of predicates of the
form ij

aj−→ ij+1 representing the evolution of the system. By expressing action
aj , the system goes from being modelled by ij to being modelled by ij+1.

Definition 9 (Execution relation).
The execution relation →⊂ IΩ × AΩ × IΩ is s.t.:

a
a−→ ∅

i1
a−→ i′1

alt(i1, i2)
a−→ i′1

i2
a−→ i′2

alt(i1, i2)
a−→ i′2

i1
a−→ i′1

par(i1, i2)
a−→ par(i′1, i2)

i2
a−→ i′2

par(i1, i2)
a−→ par(i1, i′2)

i1
a−→ i′1

strict(i1, i2)
a−→ strict(i′1, i2)

i2
a−→ i′2 i1 ↓

strict(i1, i2)
a−→ i′2

Equivalence of Denotational and Operational Semantics for Interaction 125

i1
a−→ i′1

seq(i1, i2)
a−→ seq(i′1, i2)

i1××θ(a)−−→ i′1 i2
a−→ i′2

seq(i1, i2)
a−→ seq(i′1, i

′
2)

i1
a−→ i′1

loopS(i1)
a−→ strict(i′1, loopS(i1))

i1
a−→ i′1

loopH(i1)
a−→ seq(i′1, loopH(i1))

i1
a−→ i′1 loopW (i1)××

θ(a)−−→ i′

loopW (i1)
a−→ seq(i′, seq(i′1, loopW (i1)))

i1
a−→ i′1

loopP (i1)
a−→ par(i′1, loopP (i1))

Many of the rules are directly similar to those in use for process algebras. In
an interaction reduced to an action a, a may be executed with ∅ as remaining
interaction. If within i = alt(i1, i2), action a can be executed in either i1 or i2
with either i1

a−→ i′1 or i2
a−→ i′2 then it may be executed in i and the resulting

interaction is either i′1 or i′2. For i = par(i1, i2), if we have either i1
a−→ i′1 or

i2
a−→ i′2 then a may be executed in i and the resulting interaction naturally is

either par(i′1, i2) or par(i1, i′2). Executing actions on the left of either a strict or a
seq follows the same rule as in the case of a par because no precedence relations
are enforced on the left-hand side. However, an action a may be executed on
the right of i = strict(i1, i2) only if i1 terminates. Indeed, in that case i1 may
express the empty trace ε as per Lemma 3 and nothing prevents a to be the first
action to be executed. The resulting interaction is then i′2 given that we force i1
to express ε. Likewise, within i = seq(i1, i2) there is a condition for executing an
action a on the right. This condition is that i1 ↓××

θ(a), which, as per Lemma 5

is implied by the condition i1××θ(a)−−→ i′1. Finally, we obtain i
a−→ seq(i′1, i

′
2) given

that i2
a−→ i′2 and that the pruning of i1 up θ(a) yields i′1.

Let us look at rules for loop operators loopS , loopH and loopP which look
the same, i.e. loopk(i) a−→ f(i′, loopk(i)) under the condition i

a−→ i′ and using the
notation (k, �, f) ∈ {(S, ; , strict), (H, ××, seq), (P, ||, par)}.

Any t ∈ σd(f(i′, loopk(i))) verifies t ∈ {t1} � σd(loopk(i)) for a certain
t1 ∈ σd(i′). If action a comes from the first iteration of the loop i.e. a.t ∈
{a.t1}��σd(loopk(i)) ⊂ σd(i)��σd(loopk(i)), it coincides with using the restricted
operator �� as a scheduler. It turns out that loopH is explicitly associated to ××�∗

and thus the formulation of its rule is self-evident. In the case of loopS and
loopP it is the fact that the HF and K-closures of ; and || are equivalent (as per
Lemma 2) which enables their respective rules to be formulated in this manner.

The rule for loopW allows for the first action to be taken from a later iteration
of the loop. Let us consider i = loopW (i1) and a.t ∈ σd(i). The rule is formulated

such that t ∈ σd(seq(i′, seq(i′1, i))) with i××
θ(a)−−→ i′ and i1

a−→ i′1. Given that i is

a loop, it is always prunable (Lemma 5) so there exists i′ s.t. i××
θ(a)−−→ i′. The

fact that t ∈ σd(seq(i′, seq(i′1, i))) translates into having t ∈ σd(i′)××σd(i′1)×
×σd(i).

Then, if a is taken from the first iteration of the loop, then, given that ε ∈ σd(i′)
(Lemma 6) we have t ∈ {ε}××{t′1}××σd(i) with t1 = a.t′1 ∈ σd(i1). If a is taken from
the second iteration of the loop, let us consider t1 ∈ σd(i1) the first iteration and
t2 = a.t′2 ∈ σd(i1) the second one (from which a is taken and hence t′2 ∈ σd(i′1)).

126 E. Mahe et al.

We have t ∈ {t1}××{t′2}××σd(i) and the condition ¬(t1××θ(a)). This condition
implies, as per Lemma 6 that {t1} ⊂ σd(i′). The reasoning is the same when a is
taken from later instances. Let us consider a.t ∈ {t1}×× · · · ××{tn−1}××{t′n}××σd(i).
We then have {t1}×× · · · ××{tn−1} ⊂ σd(i′) because i′ is either a loop (and there-
fore absorbing) or ∅ (all the tj are then ε). Hence the rule indeed allows a to be
taken from any iteration.

The predicates ↓ and → ground the operational semantics σo given below:

Definition 10 (Operational semantics). σo : IΩ → P(TΩ) is s.t.:

i ↓
ε ∈ σo(i)

t ∈ σo(i′) i
a−→ i′

a.t ∈ σo(i)

4.4 Illustrative Example

On Fig. 5 we illustrate both the operational semantics and an example show-
casing the difference between loopH and loopW . Execution trees are drawn

Fig. 5. Illustration of the operational semantics & of the counter-example from Sect.
2.3

Equivalence of Denotational and Operational Semantics for Interaction 127

with the help of the HIBOU tool described in [14]. We consider repetitions of
i = alt(strict(l1!m1, l2?m1), l2!m2). On the first row, we illustrate the construc-
tion of a trace accepted by seq(i, i) where i is repeated twice using weak sequenc-
ing. Here, the second occurrence of action l1!m1 (at the bottom) is immediately
executable because, with pruning, we can force the choice of the right branch of
the first alternative which evades l1. At the end, the trace t = l1!m1.l2!m2.l2?m1

is expressed by seq(i, i). Now, if we consider loopH(i), we get what is illustrated
on the second row of Fig. 5. We can manage to execute the first action l1!m1 but
from that point, the second action of t which is l2!m2 is not executable. Indeed,
the presence of l2?m1 at the top of the diagram prevents it to be executed. As
loopH is associated to the weak HF-closure ××�∗ and not to the K-closure ××∗, it
is therefore expected that t could not be accepted by loopH(i) in this example.
However, on the third row of Fig. 5, loopW (i) can recognize t. The addition of the
pruned version of the loop allows one to delay the determination of the instance
as part of which the initial l1!m1 is executed.

5 Proving the Equivalence of both Semantics

In the following we prove the equivalence of σo and σd. A formalisation of the
proofs using Coq is available in [13].

Let us at first prove that for any interaction i we have σo(i) ⊆ σd(i). The
first step to do so is to characterize the execution relation “→” w.r.t. σd:

Lemma 7 (Property 1 of → w.r.t. σd). For any a ∈ AΩ, t ∈ TΩ and i and
i′ from IΩ,

(
(i a−→ i′) ∧ (t ∈ σd(i′))

)
⇒ (a.t ∈ σd(i))

Proof. By induction on cases that make i
a−→ i′ possible.
�

Lemma 7 and Lemma 3 state that the σd semantics accepts the same two
construction rules (that for the empty trace ε and that for non empty traces of
the form a.t) as those that define σo inductively. As a result any trace that is
accepted according to σo is also be accepted according to σd:

Theorem 1 (Inclusion of σo in σd). For any i ∈ IΩ we have σo(i) ⊆ σd(i)

Proof. By induction on a member trace t.
�
Let us now prove the reciprocate, i.e. that for any interaction i, σd(i) ⊆ σo(i).

We provide, with Lemma 8, a second characterization of “→” w.r.t. σd.

Lemma 8. (Property 2 of → w.r.t. σd). For any a ∈ AΩ, t ∈ TΩ and i ∈ IΩ,
(a.t ∈ σd(i)) ⇒

(
∃ i′ ∈ IΩ , (i a−→ i′) ∧ (t ∈ σd(i′))

)
Proof. By induction on the term structure of interactions.
�

Thanks to Lemma 8 and Lemma 3 we conclude with Theorem 2:

Theorem 2 (Inclusion of σd in σo). For any i ∈ IΩ we have σd(i) ⊆ σo(i)

Proof. By induction on a member trace t.
�
We have therefore proven both inclusion and can conclude that the opera-

tional semantics σo is indeed equivalent to the denotational-style semantics σd.

128 E. Mahe et al.

6 Related Works

Unlike some other works (e.g. [9]), we do not have a dedicated construction for
the passing of a message from a lifeline to another. We formulate this in the form
strict(a!m, b?m), expressing that the emission of message m on lifeline a precedes
its reception on b. In [17] a survey of formal semantics associated to UML-SDs is
proposed. It is notable that UML-SDs are described semi-formally in the norm
[18]. This allows for a rich language with operators such as assert or negate [5]
which are not covered in our IL. However a full formalisation proves difficult, as
explained in [5,17]. Most formal approaches rely on translations towards other
formalisms [3] or consist in denotational semantics [23] that are most often based
on partial order sets. The extent to which UML-SDs are formalised may vary
[17]: some works formalize loops [12], others do not [9], and some only allow
finitely many iterations [23]. In all cases where there are loops, only one loop
operator is proposed and may correspond to either loopH or loopW .

Our denotational semantics is inspired from [9]. We have completed their
definitions dealing with loop operators. [16] introduces an operational semantics
for MSC using a termination predicate and an execution relation. Similarities
between [16] and our work include the use of pruning which, in [16], relates to
a “permission relation”. In [16], loops are not handled and there is no strict
constructor: direct causal relations between actions occurring on different life-
lines (e.g. emission-reception of a message) are handled by maps, updated during
executions. Moreover, rules involve negative conditions such as i a−→ expressing
that it is not possible to find an interaction i′ verifying i

a−→ i′. This way of
doing reduces the set of rules to be considered, but does not give clear access to
reasoning about the rule system itself, in particular reasoning about semantics
equivalence. In [21], a loop construction for weak sequencing composition is con-
sidered in addition to the constructions discussed in [16]. Rules in [21] include
two rules similar to our rules for loopH and loopW so that the semantics includes
the two ways of dealing with composition according to the weak sequencing ××.

Earlier works of ours [14,15] focused on the static analysis of traces against
interactions. We have proposed an algorithmicised semantics allowing us, given
an interaction i and an action a, to compute the follow-up interaction i′ whose
traces are licit extensions of a with respect to i. This previous semantics was
defined in a functional style by identifying the actions likely to start a trace by
means of their position in the interaction term. The use of positions makes the
semantics less readable and understandable than a structural operational seman-
tics à la process algebra, and hampers reasoning about the semantics. Novel con-
tributions in this paper w.r.t. [14,15] consist in the distinction of loopW & loopH ,
the formulation of a denotational semantics in an algebraic style rather than
using precedence relations, the formulation of a structural operational semantics
and primarily, a proof of equivalence between both semantics.

Equivalence of Denotational and Operational Semantics for Interaction 129

7 Conclusion and Further Work

In this paper we define an IL including weak and strict sequencing, parallel and
alternative composition as well as four distinct loop operators to specify different
kinds of repetition. We formulate the semantics of this IL: (1) in denotational-
style, making use of composition & algebraic operators and (2) in operational-
style by reconstructing accepted traces via the succession of atomic executions.
The equivalence of both formulations is proven (Coq proof in [13]). We cur-
rently investigate how to enrich our language with some form of value passing
i.e. instead of exchanging abstract messages we may interpret them concretely
or symbolically with typed data. This last point is notably addressed in some
process calculi frameworks [7].

References

1. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
timed automata with independently evolving clocks. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85361-9 10

2. Baeten, J.: Process algebra with explicit termination. Computing science reports,
Technische Universiteit Eindhoven (2000)

3. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional
semantics for UML 2.0 sequence diagrams using petri nets. In: Prinz, A., Reed,
R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 133–148. Springer, Heidelberg
(2005). https://doi.org/10.1007/11506843 9

4. Haddad, S., Khmelnitsky, I.: Dynamic recursive petri nets. In: Janicki, R., Sidorova,
N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 345–366.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 17

5. Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML
sequence diagrams. Softw. Syst. Model. 7(2), 237–252 (2008)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

7. Ingólfsdóttir, A., Lin, H.: A symbolic approach to value-passing processes.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra,
pp. 427–478. Elsevier Science, Amsterdam (2001). https://doi.org/10.1016/B978-
044482830-9/50025-4

8. Jacobs, J., Simpson, A.: On a process algebraic representation of sequence dia-
grams. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 71–85.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 5

9. Knapp, A., Mossakowski, T.: UML interactions meet state machines - an insti-
tutional approach. In: 7th Conference on Algebra and Coalgebra in Computer
Science (CALCO). Leibniz International Proceedings in Informatics (LIPIcs), vol.
72 (2017)

10. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MODELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69489-2 6

11. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theor. Comput. Sci. 237(1–2), 347–380 (2000). https://doi.org/10.1016/S0304-
3975(00)00031-1

https://doi.org/10.1007/978-3-540-85361-9_10
https://doi.org/10.1007/11506843_9
https://doi.org/10.1007/978-3-030-51831-8_17
https://doi.org/10.1016/B978-044482830-9/50025-4
https://doi.org/10.1016/B978-044482830-9/50025-4
https://doi.org/10.1007/978-3-319-15201-1_5
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1016/S0304-3975(00)00031-1

130 E. Mahe et al.

12. Lu, L., Kim, D.K.: Required behavior of sequence diagrams: semantics and confor-
mance. ACM Trans. Softw. Eng. Methodol. 23(2), 1–28 (2014). https://doi.org/
10.1145/2523108

13. Mahe, E.: Coq proof for the equivalence of the semantics.
erwanm974.github.io/coq hibou label semantics equivalence/. Accessed 14
Oct 2021

14. Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: A small-step approach
to multi-trace checking against interactions. In: Proceedings of the 36th Annual
ACM Symposium on Applied Computing, SAC 2021, pp. 1815–1822. Association
for Computing Machinery, New York (2021). https://doi.org/10.1145/3412841.
3442054

15. Mahe, E., Gaston, C., Gall, P.L.: Revisiting semantics of interactions for trace
validity analysis. In: FASE 2020. LNCS, vol. 12076, pp. 482–501. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45234-6 24

16. Mauw, S., Reniers, M.A.: Operational semantics for MSC’96. Comput. Netw.
31(17), 1785–1799 (1999). https://doi.org/10.1016/S1389-1286(99)00060-2

17. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489–514 (2011)

18. OMG: Unified Modeling Language v2.5.1, December 2017.
omg.org/spec/UML/2.5.1/PDF

19. Parrow, J.: An introduction to the π-calculus. In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 479–543. Elsevier, North-Holland
(2001)

20. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebraic
Program. 60–61, 17–139 (2004). https://doi.org/10.1016/j.jlap.2004.05.001

21. Reniers, M.: Message sequence chart: syntax and semantics. Ph.D. thesis, Mathe-
matics and Computer Science (1999). https://doi.org/10.6100/IR524323

22. Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras.
In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 226–241.
Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 20

23. Störrle, H.: Semantics of interactions in UML 2.0. In: 2003 Proceedings of IEEE
Symposium on Human Centric Computing Languages and Environments, pp. 129–
136, October 2003. https://doi.org/10.1109/HCC.2003.1260216

https://doi.org/10.1145/2523108
https://doi.org/10.1145/2523108
https://erwanm974.github.io/coqhiboulabelsemanticsequivalence/
https://doi.org/10.1145/3412841.3442054
https://doi.org/10.1145/3412841.3442054
https://doi.org/10.1007/978-3-030-45234-6_24
https://doi.org/10.1016/S1389-1286(99)00060-2
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.6100/IR524323
https://doi.org/10.1007/978-3-540-48654-1_20
https://doi.org/10.1109/HCC.2003.1260216

Automatic Classification of Bug Reports Based
on Multiple Text Information and Reports’

Intention

Fanqi Meng, Xuesong Wang(B), Jingdong Wang(B), and Peifang Wang

School of Computer, Northeast Electric Power University, Jilin City, Jilin, China
{mengfanqi,wangjingdong}@neepu.edu.cn, wxs970705@163.com

Abstract. With the rapid growth of software scale and complexity, a large number
of bug reports are submitted to the bug tracking system. In order to speed up defect
repair, these reports need to be accurately classified so that they can be sent to the
appropriate developers. However, the existing classification methods only use the
text information of the bug report, which leads to their low performance. To solve
the above problems, this paper proposes a new automatic classification method of
bug reports. The innovation is that when categorizing bug reports, in addition to
using the text information of the report, the intention of the report (i.e. “suggestion”
or “explanation”) is also considered, thereby improving the performance of the
classification. First, we collect bug reports from four ecosystems (Apache, Eclipse,
Gentoo, Mozilla) and manually annotate them to construct an experimental data
set. Then, we use Natural Language Processing technology to preprocess the data.
On this basis, BERTandTF-IDF are used to extract the features of the intention and
the multiple text information. Finally, the features are used to train the classifiers.
The experimental result on five classifiers (including K-Nearest Neighbor, Naive
Bayes, Logistic Regression, Support Vector Machine and Random Forest) show
that our proposed method achieves better performance and its F-Measure achieves
from 87.3% to 95.5% .

Keywords: Automatic classification · Bug report · Defect repair · Report
intention

1 Introduction

Defect repair has an important impact on software quality assurance. It is the main
activity in the later maintenance phase of software engineering. In recent years, with the
vigorous development of the software engineering industry, the architecture complexity
and code capacity of software systems have reached a new level that makes it difficult
for developers to understand and manage [1]. This trend leads to a large number of bugs
inevitably generated in the development process of software systems. To fix these bugs,
developers must check the bug report [2]. The bug report describes the defects of the
software system in the form of text, which contains multiple tags such as ID, Reporter,
Summary, etc., as shown in Fig. 1. In the past, managers classified bug reports based on

© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 131–147, 2022.
https://doi.org/10.1007/978-3-031-10363-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_9

132 F. Meng et al.

tags so that they could assign the reports to appropriate developers to accomplish bug
fixes. However, this is a very time-consuming task as there are too many bug reports to
check manually. Moreover, due to the different experience and knowledge background
of the reporter, the report submitted in the Bug Tracking System may have incorrect
tags [3]. These wrong tags will cause the bug report to not be correctly assigned to the
appropriate developers, thereby increasing the difficulty of defect repair [4, 5]. In order
to reduce this impact and accelerate the speed of defect repair, the software engineering
industry needs accurate and automated classification methods for bug reports.

Fig. 1. Several examples of bug report from Bugzilla

In recent years, many researchers have explored the automatic classification of bug
reports.Among them,Antoniol et al. [6] classifiedbug reports via textmining technology.
It proved that automatically classify reports into bug and other types through training
models is effective and feasible. Zhou et al. [7] proposed a hybrid method combining
text mining and data mining techniques to determine whether a new bug report is a
real bug. This method also considers the structured information of the report on the
basis of purely mining text description [5] (Such as severity and priority). Lamkanfj
et al. [8] adopted machine learning technology to classify bug reports into severity
and non-severity. Similarly, Tian et al. [9] proposed a nearest neighbor solution based on
information retrieval to predict the severity of the bug report. They focused on predicting
the five severity levels of the report, namely: Blocker, Critical, Major, Minor and Trivial.
In addition, some scholars are concerned about the quality of bug reports [10] and the
imbalance of data sets [11, 12] and other issues.

Reporters submit reports with clear intentions. After reading the summary of a large
number of open source software bug reports, we found that the intention of the summary
text content can be classified into two types: explanation or suggestion. However, there
is no intention label in the Bug Tracking System. A large number of existing studies
fail to consider the intention of the report when classifying bug reports, which lead
to lower performance of their methods. Considering that these intentions will affect the
classification of reports, themethod in this paper incorporates the intentions of the report.
Among them, the explanation refers to the description of the defect, such as a problem
or the cause of the problem in a certain location, and the suggestion refers to a solution
to the defect, such as how to deal with a certain problem. Table 1 shows real examples
of software bug reports in four different ecosystems and their intention.

Automatic Classification of Bug Reports 133

Table 1. Bug reports with intention tags

Ecosystem Bug ID Summary Intention

Apache 63099 Regression in JMeter 5.0 due to fix of Bug 62478 Explanation

Eclipse 82281 logical structures table should sort on name Suggestion

Gentoo 76636 Kernel module dvb-ttpci does not find its firmware Explanation

Mozilla 277324 Copy XML doesn’t work on #document nodes Explanation

To sum up, the contributions of this paper are as follows:

(1) A new bug report classification method is proposed. Based on the text field clas-
sification, the intention of the report is additionally considered, and the report is
classified as bug and no-bug.

(2) An automatic classification model was constructed based on the proposed method,
and the classification performance of five classifiers (K-NN, NB, LR, SVM, RF)
was observed. To measure the performance, the Accuracy, Precision, Recall, and
F-measure are calculated.

(3) A dataset containing the intention and type of report that can be used by researchers
to further explore the automatic classification of bug reports.

The rest of this paper is as follows: The Sect. 2 introduces the related work of bug
report classification. The Sect. 3 introduces the proposed method. The Sect. 4 shows the
experiment. The Sect. 5 discusses the experiment. Finally, the Sect. 6 summarizes the
full text and puts forward insights on future work.

2 Related Work

Bug report classification helps developers understand and fix software defects. Due to the
skyrocketing number of bug reports, manual classification has become time-consuming
and laborious. For a long time, researchers have been exploring how to implement
automatic classification of bug reports [18]. This section will summarize some existing
research work.

The earliest bug classification method is Orthogonal Defect Classification (ODC)
proposed by IBM’s Chillarege et al. [19] in 1992. It is a method between qualitative
analysis and quantitative analysis, including 13 categories (such as functions, interfaces,
documents, etc.). In 2008,Antoniol et al. [6] proposed an automatic classificationmethod
for bug reports, using vector space technology to extract features, and training Decision
Trees (DT), NB and LR classifiers to judge whether the report is a bug. The results
show that the classification accuracy on Mozila, Eclipse and JBoss projects can reach
77% to 82%. In 2013, Pingclasai et al. [20] proposed a classification method to identify
the authenticity of bugs. They adopted the topic model of Latent Dirichlet Allocation
(LDA) combined with NB and Linear Logistic Regression (LLR) classifiers, and the
accuracy of the three projects of HTTP-Client, Jackrabbit and Lucene reached 66%

134 F. Meng et al.

to 76%, 65% to 77% and 71% to 82%. Similarly, kukkar et al. [13] applied a hybrid
method to identify whether the report is a bug or non-bug in 2019, which integrates
TM, NLP and ML technologies. They observed the performance of Term Frequency-
Inverse Document Frequency (TF-IDF) and feature selection and K-NN classifiers on
five different data sets (Mozilla, Eclipse, JBoss, Firefox, OpenFOAM). Experiments
show that the performance of the K-NN classifier varies with different data sets, and its
F-measure is 78% to 96%.

In addition, there are also researchers who classify the severity of bug reports. Men-
zies et al. [21] presented a new automated method called SERVERS in 2008. This
method uses TF-IDF, InfoGain and Rule Learning technology to divide the severity of
bug reports into 5 categories, from the most severe to the most insensitive. In 2011,
Sari et al. [22] applied the InfoGain method to filter out 5 valid attributes from the 14
attributes reported in the bug report for severe and non-serious classification. These 5
attributes are component, qa_contact, summary, cc_list, and product. Their combination
can achieve 99.83% accuracy on the SVM model. In 2016, Zhang et al. [23] improved
the REP (i.e. REP theme) and K-NN algorithm to search for historical bug reports simi-
lar to new bugs, further extracted their features to predict the severity, and classified the
bug reports into Blocker, Trivial, Critical, Minor, and Major. The results show that their
proposed method can effectively improve the accuracy of the prediction of the severity
of bug reports. In 2019, Kukkar et al. [24] believed that traditional Machine Learning
classifiers could not capture some potentially important features of bug reports, so they
proposed a classification method based on Deep Learning. The model uses the N-gram
algorithm and Convolutional Neural Network (CNN) and Random Forest with Boost-
ing to solve the multi-level severity prediction problem of bug reports. Their work has
achieved good results, with an average accuracy rate of 96.34% in the five open source
projects.

Not only limited to bug or severity, but also researchers have proposed different clas-
sification models from other perspectives. Du et al. [25] developed an automatic classifi-
cation framework based on word2vec in 2017, which classified bug reports into different
fault trigger categories from four granularities, including Bug/Non-Bug, BOH/MAN,
ARB/NAM, and NAM/ARB. In 2014, Tan et al. [26] believed that semantic, security
and concurrency problems are strongly related to software systems. Based on the above
assumptions, they studied the distribution of these three types in projects such asApache,
Mozilla and Linux, and automatically classified bug reports into the above three types
through machine learning technology. The average F-measure is about 70%. Recently,
Catolino et al. [27] defined a new bug report classification pattern in 2019, includ-
ing 9 defect types (Configuration issue, Network issue, Database-related issue, GUI-
related issue, Performance issue, Permission/deprecation issue, Security issue, Program
anomaly issue, Test code-related issue). Compared with Tan et al. [26], the method of
Catolino et al. can provide a clearer and comprehensive overview of the types of bug
reports. At the same time, the automaticmodel they built also achieved higher F-Measure
and AUC-ROC (64% and 74%).

It can be seen from related work that many researchers have achieved good results in
the automatic classification of bug reports. On the basis of existing research, the focus of
this article is to add a new factor, that is, the intention of the report, when implementing

Automatic Classification of Bug Reports 135

the automatic classification of bug reports. We believe that increasing this factor will
improve classification performance.

3 Methodology

This section details the proposed classificationmethod for bug reports. The framework is
shown in Fig. 2. First, we collect and manually mark bug reports in the open repository,
and then perform preprocessing steps on them. Then, we use BERT and TF-IDFmethods
to extract features.And the text feature and frequency feature aremerged and normalized.
Next, we input the extracted features into five classifiers (includingK-NN,NB, LR, SVM
and RF). Finally, we categorize bug reports into bug and non-bug.

Bug reports

ClassifierClassifier

SummarySummary

ProductProduct

ComponentComponent

ReporterReporter

SeveritySeverity

IntentionIntention

 Feature Extraction Feature Extraction

Generate
feature matrix

and
Normaliza�on

Generate
feature matrix

and
Normaliza�on

BERTBERT

TF-IDFTF-IDF

Normalization

TokenizationTokenization

Stop word removalStop word removal

StemmingStemming

PreprocessingPreprocessing
Training stageTraining stage

 Classification stage Classification stage

New bug reportNew bug report Classification
model

Classification
model

BugBug

Non-BugNon-Bug

Bugzilla repositoryBugzilla repository

Fig. 2. Framework of our approach

3.1 Preprocessing

This experiment usesmanuallymarked bug reports as the experimental data set. The data
is input in CSV file format, and text preprocessing steps are performed on the summary
field, including normalization, tokenization, stop word removal, and stemming.

(1) Normalization: Its task is to unify all words and letters in the data into lowercase.
(2) Tokenization: Its task is to delete numbers, symbols, and punctuation. In this

experiment, spaces are used to replace punctuation and numbers are deleted.
(3) Stop word removal: Its task is to delete common words that do not carry specific

context-related information, thereby improving the classification performance of
the model.

(4) Stemming: Its task is to remove the affixes of words and extract the main part to
reduce the redundancy of text data.

136 F. Meng et al.

3.2 Feature Extraction

After the preprocessing step, we use BERT to extract the text features of the summary
field. The BERT model is a pre-training model proposed by Google [28], which can
learn dynamic context word vectors and more comprehensively capture the features of
wordmeaning, word position and sentencemeaning. In this experiment, the output of the
penultimate layer of the BERTmodel is used as the feature score. For fields other than the
summary (i.e. product, component, reporter, severity, intention), the score is calculated
using the TF-IDF algorithm. The TF-IDF algorithm can indicate the importance of the
field in the document, which helps to increase the classification ability of the model.
Finally, the text feature scores and frequency feature scores are spliced and fused to
generate a feature matrix, and normalized. The steps are shown in Table 2.

Table 2. The steps of feature extraction

3.3 Classifier

In order to find themost suitable classifier for the proposedmethod,we input the extracted
features into five classifiers for training respectively, and observe the performance of each
classifier. These classifiers include K-NN, NB, LR, SVM and RF.

Automatic Classification of Bug Reports 137

3.3.1 K-Nearest Neighbor

K-Nearest Neighbor is a supervised classification algorithm based on distance, which is
often used in the field of data mining. The core idea is: if most of the k nearest neighbors
of a sample in the feature space belongs to a certain category, the sample also belongs to
this category and has the characteristics of the samples in this category. That is to say, for
a given test sample and a way based on a certain distance measurement, the classification
result of the current sample is predicted through the closest K training samples.

Suppose there is a training data set T = {(x1, y1), (x2, y2), …, (xN, yN)}, where xi
is the feature vector of the sample, and y = {C1, C2, …, Ck} is sample category, i = 1,
2, …, N. According to the selected distance metric, find the K nearest neighbors to x in
the training set T, covering the x neighborhood Nk(x) of these K points. According to
the index that measures the similarity between samples, the nearest K known samples
of each unknown category sample are searched out to form a cluster. The voting method
is used in the neighborhood to vote on the searched known samples, that is, the label
category with the most occurrences among the K samples is selected to determine the
category y of x:

y = argmax
∑

xi∈Ni(x)

I
(
yi = cj

)
(1)

In Eq. (1), i = 1, 2, …, N, j = 1, 2, …, K. Where I is an indicator function, and when
yi = cj, I is 1, otherwise it is 0.

3.3.2 Naive Bayes

Naive Bayes classifier is a classification technique based on Bayes’ theorem. It requires
that each feature used for classification is independent and does not affect each other.
The core idea is to calculate the category probability of each sample, and the category
with the largest probability value is used as the final classification of the sample. Suppose
there is a training data set, in order to calculate the probability that the sample y classified
as x. According to Bayes’ theorem:

p(xi|y1, y2, · · · , yn) = p(xi)

p(y1, y2, · · · yn)
n∏

k=1

p(yk |xi) (2)

where p(xi) and p(y) represent the a priori probabilities of category xi and sample y,
respectively. p(y| xi) represents the possibility that category xi is sample y, and p(xi|
y) represents the possibility that sample y is category xi. Usually, when we deal with
classification problems, the sample contains multiple features, which can be expressed
y = (y1, y2, …, yn). When each feature is independent of each other, it can be known
from (2):

p(xi|y1, y2, · · · , yn) = p(xi)

p(y1, y2, · · · yn)
n∏

k=1

p(yk |xi) (3)

138 F. Meng et al.

Regarding p(xi) and p(y1, y2, …, yn) as constants, after simplifying (3), we can get:

xc = argmax
n∏

k=1

p(yk |xi) (4)

where yi is the feature of the data, and xc is the classification result of the sample. In our
experiment, yi is the feature of the bug report represented by the vector, and the result
of xc has two types, including bug and non-bug.

3.3.3 Support Vector Machine

Support Vector Machine is a classifier based on statistical learning VC dimension and
structural risk minimum theory. It finds a balance between classification ability (no error
classification for any sample) andmodel complexity (classification accuracy of a specific
sample) based on limited information, with the purpose of making the classifier get the
best generalization ability. Suppose there is a linear sample set (xi, yi), i = 1, 2, …, n,
x ∈ R2, y is the category label and y ∈ {−1, 1}. The linear discriminant function in
d-dimensional space is:

g(x) = ω · x + b (5)

If the linear classification line can accurately separate the two types of samples, the
following conditions should be met:

yi = 1 ⇔ g(xi) = ω · xi + b ≥ 1 (6)

yi = −1 ⇔ g(xi) = ω · xi + b ≤ −1 (7)

Simplify (6) and (7) to get:

yi(ω · xi + b) ≥ 1 (8)

At this time, the classification interval is equal to 2/‖ω‖. When the condition yi(ω·xi
+ b) ≥ 1 is satisfied, the minimum value of φ(ω) = (ω·ω)/2 needs to be found. Apply
Lagrange multiplier and satisfy Kuhn-Tucker conditions:

αi
[
yi(ω · xi + b) − 1

] = 0 (9)

Finally, the optimal classification function is obtained:

f (x) = sgn
([

ω∗ · x) + b∗] = sgn

[
k∑

i=1

a∗
i yi(xi · x) + b∗

]
(10)

where αi*, b* is the parameter to determine the optimal hyperplane, and (xi·x) is the
inner product of the two vectors.

Automatic Classification of Bug Reports 139

3.3.4 Logistic Regression

Logistic Regression, also known as logistic regression analysis, is a generalized linear
regression classification model, which is often used in the field of data mining. Logistic
regression is essentially a binary classification problem, and its dependent variable Y
has two values {0, 1}. The formula of the multiple logistic regression classifier is as
follows:

π(X1,X2, . . . ,Xn) = eY0+Y1·X1+···+Yn·Xn
1 + eY0+Y1·X1+···+Yn·Xn (11)

where Xi is a vector describing the features of the data, and 1≥ π ≥ 0 is the value on the
logistic regression curve. In order to achieve classification, it is also necessary to set a
threshold. For example, the threshold value in the model is 0.5, and x represents the text
feature and frequency feature extracted from the bug report. When π > 0.5, the report
is classified as bug; when π < 0.5„ the report is classified as non-bug.

3.3.5 Random Forest

Random Forest is a classification algorithm based on ensemble learning method, and its
basic unit is decision tree. It includes “random” and “forest” parts. “Forest” means that
the classifier consists of many trees, and it is based on ensemble learning theory. Random
includes two aspects: one is for the training process. In order to ensure that all samples
have a chance to be drawn once, the classifier randomly selects a training sample set, and
the data used in each round of training is randomly selected from the original sample set
with replacement. The other is for feature selection. Assuming that the original data has
M features, S number of features are randomly selected from M features as candidate
features of the training tree. After the training samples and features are determined,
a decision tree is constructed on each training sample to get the prediction result. N
samples can get N prediction models, and then use the model to predict the test samples,
so that each sample can get N prediction results, and finally determine the final result
through a simple majority voting principle. The formula of the model is as follows:

H (S) = argMax
n∑

i

I(hi(Si) = Y) (12)

where hi(Si) is a single decision tree, Y is the prediction result, and I is an indicator
function.

4 Experiment

This experiment divides the training data and test data by 8:2, and extracts the features
of the report summary field, other fields (product, component, reporter, severity), and
intention, respectively. In order to find the most suitable classifier for the proposed
method, we superimpose and fuse these three features in turn, and input them into five
different machine learning classifiers (K-NN, NB, SVM, LR, RF) for experiments.

140 F. Meng et al.

The experiments solved the following research questions:
RQ.1 Does adding the intention of the report improve the accuracy of the automatic

classification for bug reports?
RQ.2 How about the performance of our proposed method on five different

classifiers?

4.1 Dataset

In this study, we collected 2,230 bug reports from four ecosystems in the Bugzilla
repository, respectively from Apache [14], Eclipse [15], Gentoo [16] and Mozilla [17].
Specifically, we select the reports whose status is “RESOLVED” or “VERIFIED” and
the resolution is “FIXED”. And extract their product, component, reporter, severity,
and summary tags. On this basis, we manually marked the types and intention of these
reports, and their type information statistics are shown in Table 3.

Table 3. Type statistics of our dataset

Ecosystem Total Bug Non-Bug

Apache 446 296 150

Eclipse 658 419 239

Gentoo 511 294 217

Mozilla 615 425 190

4.2 Evaluation Metrics

To measure the performance of classification, we use Accuracy, Precision, Recall and
F-Measure. Their definitions are as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(13)

Precision = TP

TP + FP
(14)

Recall = TP

TP + TN
(15)

F − measure = 2 × Precision × Recall

Precision + Recall
(16)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. In order to deal with
the randomness caused by different data splits, ten-fold cross-validation is used to obtain
the average value of evaluation metrics to measure the performance of classification.

Automatic Classification of Bug Reports 141

4.3 Results

RQ1. Does Adding the Intention of the Report Improve the Accuracy of the Auto-
matic Classification for Bug Reports?
We use three types of features that are sequentially fused and superimposed to train the
classifier, and the average accuracy of the ten-fold cross-validation is shown in Table 4.
Text represents the textual feature of the summary, Freq represents the word frequency
feature of other fields (product, component, reporter, severity), and Intention represents
the feature of the intention of the bug report. The unit of the values in the table is the
percentage system. Text+Freq+Intention is the method we put forward.

Table 4. Average accuracy of all datasets

Ecosystem Features Classifier

K-NN NB LR SVM RF

Apache Text 60.5 65.5 65.6 66.4 63.0

Text+Freq 70.6 80.0 70.9 70.9 85.7

Text+Freq+Intention 90.4 89.2 90.8 91.0 91.7

Eclipse Text 61.5 63.7 65.0 64.6 61.0

Text+Freq 66.4 66.1 65.2 64.4 73.1

Text+Freq+Intention 83.9 84.0 84.8 84.8 84.8

Gentoo Text 67.7 61.8 57.3 62.8 67.3

Text+Freq 83.2 73.6 71.2 72.8 87.3

Text+Freq+Intention 91.8 85.1 86.1 87.7 94.5

Mozilla Text 65.2 66.8 65.0 69.4 67.5

Text+Freq 75.3 70.4 72.0 72.3 78.2

Text+Freq+Intention 89.9 87.5 87.8 88.0 87.8

RQ2. How About the Performance of Our Proposed Method on Five Different
Classifiers?
The performance of our proposedmethod, which combines text, frequency and intention
features (Text+Freq+Intention), on the five classifiers is shown in Figs. 3, 4, 5, 6 and 7.
The x-axis represents the source of the data, and the y-axis represents the average value
of the ten-fold cross-validation.

142 F. Meng et al.

95.2

86.4
91.3 93.2

90.2 88.8

94.9
92.392.5

87.5

93 92.6

Apache Eclipse Gentoo Mozilla

Precision(%) Recall(%) F-Measure(%)

Fig. 3. The performance of all data on the K-NN classifier

95
88.5

83.2

93.3
88.9 86.4

93.2
88.3

91.7
87.3 87.8 90.6

Apache Eclipse Gentoo Mozilla

Precision(%) Recall(%) F-Measure(%)

Fig. 4. The performance of all data on the NB classifier

96.9

88.4
85.2

93.6
89.5 87.8

95.2
88.7

93
88 89.9 91

Apache Eclipse Gentoo Mozilla

Precision(%) Recall(%) F-Measure(%)

Fig. 5. The performance of all data on the SVM classifier

96.5
88.4

82.8
92.789.5 87.8

95.9
89.492.8

88 88.8 91

Apache Eclipse Gentoo Mozilla

Precision(%) Recall(%) F-Measure(%)

Fig. 6. The performance of all data on the LR classifier

Automatic Classification of Bug Reports 143

94.4

86.8

94.8 92.893.2
89.7

96.2

90.1
93.8

88.2

95.5
91

Apache Eclipse Gentoo Mozilla

Precision(%) Recall(%) F-Measure(%)

Fig. 7. The performance of all data on the RF classifier

5 Discussion

5.1 Experiment Analysis

Performance of our method: we combine the proposed approach with five different
machine learning classifiers, and conduct experiments on the datasets ofApache, Eclipse,
Gentoo, and Mozilla. Table 4 shows the average Accuracy of all data sets on different
classifiers. Among them, the Apache data set has a maximum of 91.7%, the Eclipse
data set has a maximum of 84.8%, the Gentoo data set has a maximum of 94.5%, and
the Mozilla data set has a maximum of 89.9%. As can be seen from Table 4, compared
with considering the text field of the report alone, after adding the intention factor of
the report we proposed, the accuracy of the data sets of the four ecosystems on the five
classifiers has been significantly improved. To explore why adding the binary feature
of reporting intention can improve classification performance, we made statistics on the
distribution of intention features and their correlation with labels (i.e. bug or non-bug)
in the experimental dataset. The results are shown in Table 5.

Table 5. Distribution statistics of intention features for all data

Ecosystem Type Intention distribution

Explanation Suggestion

Apache Bug 265 31

Non-bug 9 141

Eclipse Bug 368 51

Non-bug 49 190

Gentoo Bug 284 10

Non-bug 66 151

Mozilla Bug 373 52

Non-bug 23 167

From the above table, it can be concluded that there is an imbalance in the distribution
of intention features in the dataset. Across the four ecosystems, bug reports included

144 F. Meng et al.

more explanations than non-bug reports, and non-bug reports includedmore suggestions.
The imbalanced distribution of binary features can make the classifier more sensitive to
different labels during training. Therefore, adding a binary feature of reported intention
can improve classification performance.

In addition, in order to test the scalability of ourmethod and select a classifier suitable
for it, we also tested the performance of our approach on K-NN, NB, LF, SVM and RF
classifiers. Figures 3, 4, 5, 6 and 7 shows the evaluation index value of each classifier. The
results show that our proposedmethod has achieved good results in Precision, Recall and
F-measure on five classifiers. In all data sets, the Precision reached 82.8% to 96.9%, the
Recall reached 86.4% to 96.2%, and the F-measure reached 87.3% to 95.5%. Among the
five classifiers, the comprehensive performance of Random Forest is better than other
classifiers, and the performance of each classifier will change with the different data
sets. Although the performance of our method changes with the classifier, the overall
result is still a good level. This also means that when using our method to conduct a bug
report classification, you can adjust the classifier according to different ecosystems and
task requirements to achieve the best results. We believe our method is scalable.

Some of our thoughts:

(1) Bugs are harder to understand than non-bugs. Therefore, when faced with bug-
type defects, only a few reporters can provide solutions, and most reporters
can only describe the problem. This results in most reports where the intention
is “explanations” are bugs, and those where the intention is “suggestions” are
non-bugs.

(2) In the Bug Tracking System of open source software, the reporters are not only
software developers and testers, but also a large number of users. The reporters who
explain the defects are mostly users, and the reporters who can make suggestions
for the defects are mostly software developers and testers. Because developers
and testers have richer experience and knowledge than users, they have a better
understanding of the code and architecture of the program, and can give advice on
complex defects.

(3) The intention labels in this study are manually labeled, and this work seems to
increase the training time of the automatic classification model, but we are to verify
that the proposed method can improve the performance of automatic classification
of bug reports. We think it is possible to add the label of reporting intention to the
Bug Tracking System, so that reporters can explain their intentions when submit-
ting reports, which can greatly reduce the time for manual labeling during model
training. It is much easier for reporters to state their intentions than to judge whether
a report is a bug.

5.2 Threats to Validity

In this part, we identified the following threats that may exist in this study.
Internal threat: The bug report tags of most open repositories contain errors. In order

to avoid incorrect labeling to affect the performance of the model, the data set of this
experiment is constructed by our manual labeling based on the data in the Bugzilla
repository. Although we have flagged bugs or non-bugs in accordance with the rules

Automatic Classification of Bug Reports 145

proposed in the existing literature [29], due to differences in experience and knowledge
background, there may be flagging errors that affect the performance of the model.

External threat: This research focuses on the 2,230 bug reports of the four ecosys-
tems (Apache, Eclipse, Gentoo, Mozilla) to classify bugs or non-bugs. However, the
performance of our method on other ecosystems is unknown, that is, the performance of
our bug report classification model on data from other software systems may be higher
or lower than the results of our experiments.

6 Conclusion and Future Work

In this study, we propose a new automatic classification approach for bug reports, that
is, to increase the intention of the report based on the text information of the report. Our
approach combines Text Mining, Natural Language Processing and Machine Learning
technologies.Wefirst collected 2,230 reports from the four ecosystems (Apache, Eclipse,
Gentoo, Mozilla) in the bug repository, and manually marked their types and intention,
with the goal of constructing the data set required for the research. Then, we perform
preprocessing steps on the data, extract the text features of the report summary field
and the word frequency features of other fields, and add the intention features of the
report. Next, we superimpose these features and input them into five classifiers (K-NN,
NB, SVM, LF, RF). Finally, we classify bug reports into bugs and non-bugs. The results
show that, compared with simply extracting text information features for classification,
adding the intention features of the report we proposed can significantly improve the
performance of bug report classification. In the future, we will verify the proposed
approach on more open source ecosystems, and combine Deep Learning technology to
improve the performance of automatic classification of bug reports.

Acknowledgment. This work is supported by the Science and Technology Research Project of
the Jilin Provincial Department of Education, “Research on Overtime Risk Assessment and Early
Warning Technology of Industrial Control Code” (No. JJKH20210097KJ).

References

1. Meng, F., Cheng, W., Wang, J.: Semi-supervised software defect prediction model based on
tri-training. KSII Trans. Internet Inf. Syst. 15(11), 4028–4042 (2021)

2. Guo, S., Chen, R., Li, H.: Using knowledge transfer and rough set to predict the severity of
android test reports via text mining. Symmetry 9(8), 144–161 (2017)

3. Yang, G., Min, K., Lee, J.W.: Applying topic modeling and similarity for predicting bug
severity in cross projects. KSII Trans. Internet Inf. Syst. 13(3), 1583–1589 (2019)

4. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In: 2011 33rd
International Conference on Software Engineering (ICSE), pp. 481–490. ACM (2011)

5. Kochhar, P.S., Le, T.D.B., Lo, D.: Dealing with noise in defect prediction. In: 2014 11th
Working Conference on Mining Software Repositories (MSR), pp. 296–299. IEEE (2014)

6. Antoniol, G., Ayari, K., Di, P.M., Khomh, F., Guéhéneuc, Y.G.: Is it a bug or an enhancement?
A text-based approach to classify change requests. In: 2008 Conference of the Centre for
Advanced Studies on Collaborative Research: Meeting of Minds, pp. 304–318 (2008)

146 F. Meng et al.

7. Zhou, Y., Tong, Y., Gu, R., Gall, H.: Combining text mining and data mining for bug report
classification. J. Softw.: Evol. Process 28(3), 150–176 (2016)

8. Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a reported
bug. In: 2010 7th IEEE/ACMWorking Conference on Mining Software Repositories (MSR),
pp. 1–10. IEEE (2010)

9. Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classification for fine-
grained bug severity prediction. In: 2012 19th Working Conference on Reverse Engineering,
pp. 215–224 (2012)

10. Feng, Y., Chen, Z., Jones, J., Fang, C., Xu, B.: Test report prioritization to assist crowdsourced
testing. In: 2015 10th Joint Meeting on Foundations of Software Engineering, pp. 225–236
(2015)

11. Zhang, T., Chen, Y., Yang, X., Zhu, H.: Approach of bug reports classification based on cost
extreme learning machine. J. Softw. 30(5), 1386–1406 (2019)

12. Yang, X.L., Lo, D., Xia, X., Huang, Q., Sun, J.L.: High-impact bug report identification with
imbalanced learning strategies. J. Comput. Sci. Technol. 32(1), 181–198 (2017)

13. Kukkar, A., Mohana, R.: A supervised bug report classification with incorporate and textual
field knowledge. Proc. Comput. Sci. 132, 352–361 (2018)

14. http://bz.apache.org
15. http://bugs.eclipse.org
16. http://bugs.gentoo.org
17. http://bugzilla.mozilla.org
18. Zhang, T., Jiang, H., Luo, X., Chen, A.T.: A literature review of research in bug resolution:

tasks, challenges and future directions. Comput. J. 59(5), 741–773 (2016)
19. Chillarege, R., et al.: Orthogonal defect classification-a concept for in-process measurements.

IEEE Trans. Softw. Eng. 18(11), 943–956 (1992)
20. Pingclasai, N., Hata, H., Matsumoto, K.I.: Classifying bug reports to bugs and other requests

using topicmodelling. In: 201320thAsia-PacificSoftwareEngineeringConference (APSEC),
vol. 2, pp. 13–18 (2011)

21. Menzies, T., Marcus, A.: Automated severity assessment of software defect reports. In: 2008
IEEE International Conference on SoftwareMaintenance (ICSM), pp. 346–355. IEEE (2008)

22. Sari, G.I.P., Siahaan, D.O.: An attribute selection for severity level determination accord-
ing to the support vector machine classification result. In: 1st International Conference on
Information Systems for Business Competitiveness (ICISBC) (2012)

23. Zhang, T., Chen, J., Yang, G., Lee, B., Luo, X.: Towards more accurate severity prediction
and fixer recommendation of software bugs. J. Syst. Softw. 177(10), 166–184 (2016)

24. Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B.G., Chilamkurti, N.: A novel deep-
learning-based bug severity classification technique using convolutional neural networks and
random forest with boosting. Sensors 19(13), 2943–2964 (2019)

25. Du, X., Zheng, Z., Xiao, G., Yin, B.: The automatic classification of fault trigger based
bug report. In: 2017 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 259–265. IEEE (2017)

26. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open source
software. Empir. Softw. Eng. 19(6), 1665–1705 (2013). https://doi.org/10.1007/s10664-013-
9258-8

27. Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: Not all bugs are the same: understanding,
characterizing, and classifying bug types. J. Syst. Softw. 152(10), 165–181 (2019)

http://bz.apache.org
http://bugs.eclipse.org
http://bugs.gentoo.org
http://bugzilla.mozilla.org
https://doi.org/10.1007/s10664-013-9258-8

Automatic Classification of Bug Reports 147

28. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. arXiv:1810.04805 (2018)

29. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification impacts
bug prediction. In: 2013 35th International Conference on Software Engineering (ICSE),
pp. 392–401. ACM (2013)

http://arxiv.org/abs/1810.04805

Collaborative Verification
of Uninterpreted Programs

Yide Du1, Weijiang Hong1,2, Zhenbang Chen1(B), and Ji Wang1,2

1 College of Computer, National University of Defense Technology, Changsha, China
{dyd1024,hongweijiang17,zbchen,wj}@nudt.edu.cn

2 State Key Laboratory of High Performance Computing, National University of
Defense Technology, Changsha, China

Abstract. Given a set of uninterpreted programs to be verified, the
trace abstraction-based verification method can be used to solve them
once at a time. The verification of different programs is independent of
each other. However, the individual verification for each one is a waste
of resources if the programs behave similarly. In this work, we propose a
framework for the collaborative verification of a set of uninterpreted pro-
grams, which accumulates and reuses the abstract models of infeasible
traces to improve the verification’s efficiency. We have implemented the
collaborative verification framework and the preliminary result demon-
strate that our collaborative method is effective on the benchmark.

Keywords: Collaborative verification · Uninterpreted programs ·
CEGAR

1 Introduction

An uninterpreted program [11] is a program that works with arbitrary data
models and all of its functions have only a signature information and satisfy the
common property, i.e., same inputs produce same outputs. Given a program P
to be verified, we can over-approximate P by an uninterpreted version Pu and
do the verification. In most cases, the verification of Pu has a lower complexity.
However, even for uninterpreted programs, the verification problem is in general
undecidable [11]. Recently, a decidable class of uninterpreted programs called
coherent ones has been discovered [11]. Based on this result, a more effective trace
abstraction-based CEGAR-style [7] verification method for general uninterpreted
programs is proposed [8].

We notice that all this work are focus on the verification problem of a single
program, but there are many scenarios that a set of programs need to be ver-
ified. For example, the incremental verification plays an important role in the
area of regression verification as it can significantly improve the verification effi-
ciency. During software development, only part of the software be changed and
due to the high complexity of program verification, there is no need to verify the

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 148–154, 2022.
https://doi.org/10.1007/978-3-031-10363-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_10

Collaborative Verification of Uninterpreted Programs 149

changed version from scratch. There are similar behaviors between different pro-
grams. Exploiting the similarity between softwares and reusing the verification
results is an effective way to improve the efficiency of verification.

In this work, we propose a collaborative verification method to reuse the
abstract models of infeasible traces during the CEGAR-style verification across
different programs to improve the efficiency of verification.

The main contributions of this paper are as follows:

– We propose a framework for collaborative verification that can reuse the
abstract models of infeasible traces to improve the efficiency of verification.

– We have implemented our framework in a prototype for uninterpreted pro-
grams and the preliminary result demonstrate that our collaborative method
is effective on the benchmark.

Structure. The remainder of this paper is organized as follows. Section 2 gives
a motivation example. The collaborative verification framework will be given in
Sect. 3. Section 4 gives the preliminary evaluation results. Finally, Sect. 5 com-
pares the related work, Sect. 6 introduces the next steps, and Sect. 7 concludes
the paper.

2 Motivation

1 x := y;

2

3 if (z != n1){

4 x := g(x);

5 y := g(y);

6 } else {

7 x := f(x);

8 y := f(y);

9 }

10

11 assert(x = y);

(a) P0

1 x := y;

2

3 if (z != n1){

4 x := h(x);

5 y := h(y);

6 } else {

7 x := f(x);

8 y := f(y);

9 }

10

11 assert(x = y);

(b) P1

Fig. 1. The motivation example.

In Fig. 1 there are two uninterpreted programs in which P1 is obtained by mod-
ifying the program P0. Notice that all the traces of these two programs satisfy
the equality of x and y at beginning, then apply the same functions on both
x and y, so all of them satisfy the assertion in the end. If we use the CEGAR
method with the congruence-based abstraction in [8] to verify them, we need 2
iterations, respectively.

150 Y. Du et al.

We observe that P1 is the modified version of P0 and the false branch of them
are the same. Therefore, we can conclude that the false branch of P1 is correct
when P0 is verified to be correct, only the true branch of P1 need to be verified.
In the scenario of software development and evolution, most of the traces are the
same between two successive versions, it’s no need to verify them from scratch.
Based on these observations, we propose a collaborative verification method
that reuses the abstract model of infeasible traces to improve the verification’s
efficiency. Next, we demonstrate the process of our collaborative verification
method on this motivation example.

We use AC to represent the accumulated model of infeasible traces, and
L(AC) is empty at the beginning. First, P0 is verified to be correct by the
CEGAR method, and the abstract models of the infeasible traces in P0 are
merged with AC . When P1 is to be verified, its false branch can be removed by
performing AP1 = AP1\AC and the true branch can be verified by the CEGAR
method. It takes only 2 and 1 iterations of refinement to successfully verify P0

and P1 respectively. Intuitively, the closer the programs to be verified, the more
effective our collaborative verification method is.

3 Collaborative Verification Framework

We propose a collaborative verification framework based on the scheme of
CEGAR for trace abstraction, which accumulates the abstract models of infeasi-
ble traces during the verification procedure, and the accumulated abstract mod-
els are later reused to facilitate other program’s verification. The details can be
found in Fig. 2.

Program
Set S

AC

AP = AP \ AC

AP = AP ∩ A1 ∩ ... ∩ An

L(AP) = ∅?

Is t feasible?

P is
correct

P is
incorrect

abstractP ∈ S as AP

Yes

Yes

No,
get a trace
t ∈ AP

No,
An+1 = gen(t)

AC = AC ∪ A1 ∪ ... ∪ An

S = S \ P

Fig. 2. Collaborative verification framework.

Collaborative Verification of Uninterpreted Programs 151

Our collaborative verification framework introduces an initial empty automata
AC to accumulates the abstract models during the verification progress. When
verifying a set of programs S, we pick one program P from them and abstract it
to an FSA AP which include all the traces of P. Then we wipe off those infeasible
traces included in AC by AP = AP\AC . During the verification, we can conclude
that P is correct if L(AP) = ∅ holds, otherwise, a trace t can be extracted from
L(AP). If t is feasible, a real counter-example is found, and we can conclude that
P is incorrect. Otherwise, we can abstract an FSA An+1 from t which accept all
the infeasible traces that with the same reason with t. Then, AP can be refined by
An+1. The CEGAR process continues until a feasible counter-example is found or
P is concluded to be correct.

After the verification of each program is completed, the abstract models
obtained during the verification process can be merged with AC for reusing.
When a new program is to be verified, AC can be used to refine the program
abstraction. The infeasible traces included in AC can be removed directly with-
out the CEGAR process. Thus, our framework shares the abstract models of
infeasible traces within the programs in S to improve the verification’s efficiency.

4 Preliminary Result

We have implemented a prototype for our collaborative verification framework in
OCaml. We prepare to evaluate our collaborative verification framework on a set
of similar programs. In the scenario of regression verification, during the software
development and evolution, only part of the software be changed between two
successive software versions and most of the program behavior is similar. Based
on this scenario, we evaluate our collaborative method to answer the following
question.

Efficiency, i.e., how efficient is our collaborative verification method com-
pared to verifying each program individually when there are a set of unin-
terpreted programs to be verified?

Considering that there is no standard benchmark for similar programs, we
convert some real-world programs from SV-COMP [15] to uninterpreted pro-
grams. These programs can be used as original programs in regression verifica-
tion. To simulate the software evolution process, we randomly extract 10 correct
programs as the initial programs and mutate them. Therefore we have 10 groups
of similar programs that simulate software evolution.

All the experiments are carried out on a server with eight cores and 32G
memory. The operating system is Ubuntu 18.04. We use the average value of
three runs to eliminate the experimental errors.

The collaborative verification method is effective if the abstract models we
collected reduces the number of refinements and further reduces the time cost of
verification. We evaluate the collaborative verification method on the benchmark

152 Y. Du et al.

that simulates software evolution. Our preliminary results demonstrate that our
collaborative verification method is effective, for the average speedups of 2.70x
(1.11x–3.84x) on the benchmark.

5 Related Work

There are many existing works for collaborative verification. In some works [3–5],
different verification tools are collaborated in different ways to improve verifica-
tion efficiency and the ability to detect assertions. These methods have achieved
good results, but all of them focus on a single program, while our work consider a
set of similar programs. Such as the scenario of regression verification, the incre-
mental verification is an efficient way to improve the verification’s efficiency.
There are different approachs to implement collaborative verification in differ-
ent verification tools. For example, the function summaries [14], the abstraction
precisions [2], the procedure summaries the state-space modeled by automata
[1,10], and the loop summaries [6], the assertions in predicate analysis [16] and
the counter-example traces [3] are reused to improves the efficiency of regres-
sion verification. Our approach reuses the abstract models of infeasible traces to
improve the efficiency of verification.

Uninterpreted programs and their verification problems have been studied in
many works. A decidable class of uninterpreted programs was found by Mathur
et al. [11], based on this result, many decidable results [9,12,13] are proposed for
different types of programs. For the verification problem of general uninterpreted
program, CEGAR-based verification provide a general framework. A congruence-
based trace abstraction method for infeasible traces was proposed by Hong et al.
[8] and is more efficient than the interpolant-based trace abstraction method [7].
In this work, we implemented our collaborative verification framework based on
Hong et al. [8]’s work.

6 Next Steps

The abstract models of infeasible traces are critical for the verification’s effi-
ciency, the better the generalization of the trace abstract models are, the less
number of the program’s refinement need. We studied the existing trace abstrac-
tion method [8] and found that the method does not distinguish the different
reasons why a trace is infeasible. So we intend to propose a fine-grained gener-
alization method to improve the generalization’s ability.

Except for the scenario of regression validation, we are intend to consider
more scenarios in which our approach is applicable, such as the component-based
software development. In this scenario, programs are obtained by composing sev-
eral designed components, and their behavior are similar. In the later evaluation,
we are intend to explore the effect of different factors on the efficiency of our
collaborative verification method, such as the verification order of programs and
the different proportion of correct programs.

Furthermore, we plan to extend our collaborative verification framework to
more types of programs and different verification tools.

Collaborative Verification of Uninterpreted Programs 153

7 Conclusion

This paper propose a collaborative verification framework for a set of uninter-
preted programs. In some scenarios such as software development, there are simi-
lar traces between this set of uninterpreted programs. So we preserve the abstract
models of infeasible traces during the verification process, when a new program
is to be verified, the saved abstract models can be reused to do a refinement
on it, thereby speeding up the overall verification speed. We have implemented
our method and the preliminary results demonstrate that our method performs
better on the benchmark.

Acknowledgments. This research was supported by the NSFC Programs (No.
62172429 and 62032024).

References

1. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal
reachability analyses. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 472–491. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37036-6 26

2. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 389–399 (2013)

3. Beyer, D., Wendler, P.: Reuse of verification results. In: Bartocci, E., Ramakr-
ishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39176-7 1

4. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9 13

5. Csallner, C., Smaragdakis, Y.: Check ‘n’crash: combining static checking and test-
ing. In: Proceedings of the 27th International Conference on Software Engineering,
pp. 422–431 (2005)

6. He, F., Yu, Q., Cai, L.: Efficient summary reuse for software regression verification.
IEEE Trans. Softw. Eng. (2020)

7. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

8. Hong, W., Chen, Z., Du, Y., Wang, J.: Trace abstraction-based verification for
uninterpreted programs. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 545–562. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 29

9. La Torre, S., Parthasarathy, M.: Reachability in concurrent uninterpreted pro-
grams. In: 39th IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2019)

10. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: 2008 ACM/IEEE
30th International Conference on Software Engineering, pp. 291–300. IEEE (2008)

https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-030-90870-6_29
https://doi.org/10.1007/978-3-030-90870-6_29

154 Y. Du et al.

11. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of uninter-
preted programs. Proc. ACM Program. Lang. 3(POPL), 1–29 (2019)

12. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? In: TACAS 2020. LNCS, vol. 12079, pp. 158–177.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 10

13. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proc. ACM Pro-
gram. Lang. 4(POPL), 1–29 (2019)

14. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: 2012 Formal Methods in Computer-
Aided Design (FMCAD), pp. 114–121. IEEE (2012)

15. SV-benchmarks. https://github.com/sosy-lab/sv-benchmarks
16. Yu, Q., He, F., Wang, B.Y.: Incremental predicate analysis for regression verifica-

tion. Proc. ACM Program. Lang. 4(OOPSLA), 1–25 (2020)

https://doi.org/10.1007/978-3-030-45237-7_10
https://github.com/sosy-lab/sv-benchmarks

MSDetector: A Static PHP Webshell
Detection System Based on

Deep-Learning

Baijun Cheng1, Yanhui Guo1, Yan Ren2, Gang Yang3, and Guosheng Xu1(B)

1 School of Cyberspace Security, National Engineering Research Center of Mobile
Network Security, Beijing University of Posts and Telecommunications,

Beijing 100876, China
guoshengxu@bupt.edu.cn

2 QI-ANXIN Technology Group Inc., Beijing, China
3 School of Artificial Intelligence, Beijing University of Posts and

Telecommunications, Beijing 100876, China

Abstract. Webshell is a web script containing malicious code fragment,
which hackers could use to launch web attacks. Hence, it is of great sig-
nifiance to identify whether a web script contains malicious code frag-
ments in the aspect of web security. However, the flexibility of scripting
language such as PHP provides attackers the opportunities to obfuscate
scripts, making it challenging for traditional rule-based webshell detec-
tors to detect malicious code fragments. Deep learning brings new ideas
for webshell detection and improves the effect of detectors. However, the
effect of deep learning-based detectors depends on feature engineering and
deep learning models. The feature representations and models adopted by
existing methods fail to mine the syntactic and semantic features of web-
shell scripts. To tackle those problems, we design a new code represen-
tation called script sequence according to the characteristics of webshell
and also we introduce new pretrain task to enhance understanding of deep
learning model to syntax information of webshell code. This leads to the
design and implementation of Malicious Script Detector (MSDetector). In
order to evaluate MSDetector, we present a new PHP webshell dataset.
Experimental results prove that MSDetector can achieve higher F1 score
and accuracy than other approaches on the dataset.

Keywords: Webshell detection · Code representation · Deep learning

1 Introduction

In general, the web script which can be used to execute system commands, view
databases, or combine some common operations to achieve some advanced spying
behaviours is called Webshell, and it is a common web attack technology. Hacker
could implant a malicious script into web applications through web vulnerabil-
ities such as file upload or SQL injection. Webshell is often used for purposes

Supported by the National Natural Science Foundation of China (No.: 61873069).

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 155–172, 2022.
https://doi.org/10.1007/978-3-031-10363-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_11

156 B. Cheng et al.

such as permission maintenance and data theft. So it is of great significance to
detect webshells.

Note that webshell can be written in all kinds of script languages. In this
paper, we mainly focus on PHP scripts because it is the most widely used script
language around the world.

In order to detect webshells, there have already been many rule-based detec-
tors, such as NeoPI1 and Shell-Detector2. Those approaches have two major
drawbacks: they require experts to define rules and are prone to incur high false
negative rates because they can only detect known webshell patterns. Hence,
an ideal approach should effectively identify webshells with different kinds of
patterns while trying not to rely on experts.

Deep Learning has been successful in the domains of computer vision and
natural language processing. Recently, many researches [6,8,12,14,16,21,25,26]
apply deep learning techniques to webshell detection, which mitigates manual
labor to define rules and improves the performance of webshell detectors. How-
ever, there are still some problems to be solved. The effect of deep learning-based
webshell detectors depends on feature engineering. The existing approaches
mainly extract opcode sequence or text sequence from PHP code fragment as fea-
ture representation. The opcode sequence-based approaches abandon operands
of PHP bytecodes, which could contain critical information of webshell. The
text sequence-based approaches would lose syntactic information of PHP codes
because they simply regard PHP code as natural language texts and some lit-
erals in PHP codes are hard to process by models. So those methods could not
well mine syntactic and semantic information from PHP codes.

Our Solution. In this paper we present MSDetector, a new deep-learning based
PHP webshell detector. We first present script sequence, a new sequence rep-
resentation which is combined with lexical token sequence and string literal
sequence of a PHP script file, then we leverage recent transformer-based [23]
neural networks to embed script sequence into latent low-dimension vector space
and classify it with a linear layer added to the top of transformer model.

We implement a customized script parser to transform a script file into
script sequence, which is done by extracting lexical tokens and string literals
when traversing the abstract synax tree(AST) of a script file. The tokens and
string literals need symbolizing according to their types and contexts after being
extracted. Also, there are some statements that are not related to webshell, we
remove those statements when traversing AST. Token sequence and string literal
sequence would be spliced together and separated by a special separator.

However, script sequence does not contain any syntactic information of code,
directly using tree-structured neural network like TreeCNN [18] and TreeL-
STM [20] to process ASTs is time-consuming. L. Buratti et al. [3] have proved
that the structured information of code can be encoded by transformer-based
model and is helpful in downstream tasks like vulnerability identification in
source code, here we utilize CodeBert [7], which has already pre-trained on
1 https://github.com/CiscoCXSecurity/NeoPI.
2 http://www.shelldetector.com.

https://github.com/CiscoCXSecurity/NeoPI
http://www.shelldetector.com

MSDetector: A Static PHP Webshell Detection System 157

Masked Language Modeling (MLM) and Replaced Token Detection (RTD) for
six programming languages including PHP, to learn structured information of
PHP and detect webshell. We pre-train CodeBert on AST Node Tagging (ANT)
task to make the model learn to map a lexical token to its corresponding node
tag related to AST, here in pre-training stage, the script parser would not extract
string literal sequence but to extract lexical tokens and their corresponding AST
node types, and symbolize tokens. After pre-training, we fine-tune the model
on webshell detection task. We evaluate our approach on a manually crafted
dataset, experimental results prove that the fine-tunned model achieves better
results than state-of-art approaches on accuracy, precision, recall and F1 scores.

The contributions of this work are summarized as follows:

– we present a new code representation: script sequence, to extract key features
of webshell from PHP code.

– We pre-train transformer-based model on AST Node Tagging task to enhance
the understanding of model to syntactic information of PHP code. The exper-
imental results show that the enhanced transformer model is better than the
previous model in webshell detection task.

– We implement MSDetector, and evaluate its effectiveness through our col-
lected dataset. Experimental results show that MSDetector achieves higher
accuracy and F1 score than baseline methods. Our tool is available at github3.

2 Motivation

2.1 Framework Overview

Figure 1 shows the overall framework of MSDetector consisting of three phases:
a pre-training phase, a training-phases and a detecting phase.

For the pre-training phase, in (a.1), MSDetector first parse a PHP script into
its AST, and extract lexical tokens from terminal node, at the same time, the
node tags of tokens would be generated according to the context of the terminal
nodes. Also, lexicals tokens from AST terminal nodes would be symbolized after
extraction. Next in (a.2), MSDetector start pre-training transformer model on a
sequence tagging task called AST Node tagging with lexical token sequences as
input and node tag sequences as labels, to make the model grasp the structured
information of PHP code.

For the training phase, in (b.1), MSDetector extracts lexical token sequence
in the same way as in pre-training phase. The difference is that MSDetector
generates a string literal sequence instead of node tag sequence in this stage.
Specifically, for every string literal in source code, MSDetector parse it first
with a string parser and put the parsing result into string literal sequence. In
(b.2), MSDetector concatenate lexical token sequence and string literal sequence
into script sequence with a separator “[SEP]” separate them. The pre-trained
transformer model will be fine-tuned to detect webshell in detecting phase.

3 https://github.com/for-just-we/MSDetector.

https://github.com/for-just-we/MSDetector

158 B. Cheng et al.

Source Code (a) Generate AST (b) generate sequences

Remove unrelated
statements

Extract lexical tokens
and corresponding

Node Tag

Symbolize lexical
tokens

(a.1) Generate lexical tokens and labels

Transformer-model

(a.2) Pre-train transformer model

symbolized token sequence

t2 t3 t4 t5 t6

l1 l2 l3 l4 l5 l6

Corresponding label sequence

Pre-training

Source Code (a) Generate AST (b) generate sequences

Remove unrelated
statements

Extract lexical tokens
and string literals

Symbolize lexical tokens
and string literals

Training (b.1) Generate script sequence

Transformer-model

t1 t2 t3 SEP s1 s2

label 1 0

Script sequence

(b.2) Training transformer model

Detec�ng

Generate AST generate script sequence
Trained Transformer

model

predic�on
1 0

Linear Layer

Linear Layer

t1

Fig. 1. Overview of MSDetector.

Note that in all three phases, statements in code that are not strongly related
to webshell like “@set time limit(0);” will be ignored when MSDetector traverses
AST, this would help reduce the length of token sequence and the noise in scripts.

2.2 Motivating Example

Figure 2 presents an example of generating lexical token sequence and node tag
sequence in pre-training stage. Source code would be parsed into AST, the lexical
tokens would appear in the terminal nodes of AST. MSDetector extracts every
token in the terminal node except those nodes in ignored statements. Generally,
MSDetector would set the parent node type of a given token as its node tag. Also,
extracted tokens require symbolizing to construct a canonical form of the textual
representation, this would help reduce noise imposed by irregular user-defined
names. Here, we only consider symbolizing user-defined class names, function
names and variable names. In this example, function name “foo” is symbolized
to “func1”, variable name “$var”. is symbolized to “$var1”.

MSDetector: A Static PHP Webshell Detection System 159

Source Code

function foo(&$var){
$var=$var.'t';

}
$a="asser";
foo($a);

$a($_GET['cmd']);

Extract and
symbolize
sequences

Lexical token sequence

function func1 (& $var1) ...

Node tag

Function FuncName ParamSt quote ...

FuncDecl

Function:function ParamsLabel:foo

par1

...

()

Ampersand:& VarName:$var

AST corresponding to code function foo(&$var) …

Fig. 2. Illustration for the process of extracting node tag sequence and token sequence
from AST.

Figure 3 illustrates how MSDetector extract script sequence given the same
sample in Fig. 2. The code concatenate string literals “asser” and “t” into
“assert” and assign it to variable “$a”, then the script call function “assert”
through variable “$a”, with its parameter passed via get requests. Here, MSDe-
tector puts “t”, “asser” and “cmd” into string literal sequences.

3 MSDetector

3.1 Pre-training Transformer Model

Abstract syntax tree (AST) is an important structure produced by compiler.
Previous works [15,27] proved that it could be used to improve the perfor-
mance of code analysis tasks. But utilizing tree-structured neural networks to
process AST is often time-consuming. Nevertheless, learning AST features by
transformer-based language model has been proved to be feasible. Hence we uti-
lize AST node tagging (ANT) pre-training task proposed by L.Buratti [3], which
is a sequence labelling task for transformer model to capture the grammatical
roles of each component of the linearized AST.

160 B. Cheng et al.

Php Code

function foo(&$var){
$var=$var.'t';

}
$a="asser";

foo($a);

$a($_GET['cmd']);

Extract and
symbolize
sequences

Lexical token sequence

function func1 (& $var1

String literal sequence

t asser cmd
concat Script sequence

function func1 … [SEP] t asser cmd

Fig. 3. Illustration for the process of generating script sequence.

Here we choose the CodeBert [7] model which has already been pre-trained
on MLM and RTD tasks as our main transformer model. Our work is mainly
to fine-tuning the language model. For the source code, we represent it as a
sequence of lexical tokens. We implement a script parser based on ANTLR4,
which is used to extract the token sequence and the corresponding node tag as
corresponding label by traversing AST. Then we use the node tag sequence as
sequence label to train CodeBert model with the token sequence as input and
cross entropy as loss function.

Preprocessing. In this stage, we extract lexical token sequence and node tag
sequence for a given PHP script. Here we first parse PHP source code into AST
by ANTLR. Note that the AST generated by ANTLR is usually too large thus
hard to parse, we simplify the AST in the same way as ASTMiner5. Formally, a
simplified AST of a script is denoted as A = (N,T) where N = {nn1, ..., nnk}
is the non-terminal node set and T = {tn1, ..., tnl} is the terminal node set. Let
P (n) represent the parent node of node n and Type(n) represent the node type
of n. The script parser intializes a symbolic table ST first to store the identifiers
need mapping and their symbolic names. Then traversing A and generate token
sequence and tag sequence from terminal nodes in following rules:

– (a) For a terminal node tn whose node type Type(tn) is “Label”, script parser
will check the node type of its parent node Type(P (tn)) and generate corre-
sponding tag according to Type(P (tn)). At the same time, if the node token
is function name or class name, token generator will check whether the token
is in ST and add the token to ST if not, then replace original token with its
symbolic name in the lexical token sequence. The symbolic name is usually
a common identifier together with a separate index (i.e. func1, func2, class1,
class2).

– (b) For terminal node tn whose node type Type(tn) is “VarName”, script
parser will check whether its parent node type Type(P (tn)) is “FuncCall”
because calling a method by a variable name is allowed in PHP, and the node
tag would be “FuncCall” if so, otherwise “VarName”. Also, variable name
will be symbolized in the same way as in rule (a).

4 https://www.antlr.org/.
5 https://github.com/JetBrains-Research/astminer.

https://www.antlr.org/
https://github.com/JetBrains-Research/astminer

MSDetector: A Static PHP Webshell Detection System 161

function foo ...

AST

Label:foo

...

AST

Token sequence Tag sequence

function func1 ... Function FuncName ...

Symbolic Table

foo : func1

Source Code Source Code

 $a($b);

AST AST

Function:function

()

VarName:$a

VarName:$b

Token sequence

$var1 ($var2)

Tag sequence

FuncCall PramSt VarName ParamEd

Symbolic Table
$a : $var1

$b : $var2

(a) Generate tag for node type Label

(b) Generate tag for node type VarName

FuncDecl FuncCall

Param

Fig. 4. Examples illustrating our key ideas in generating tag sequences and lexical
token sequences.

– (c) For terminal node whose node type Type(tn) represent numerical value
such as “Decimal”, script parser will directly use the node type as tag and
the token will be replaced by symbolic name “number”.

– (d) For terminal node whose node type Type(tn) is “StringConstant”, script
parser will directly use “StringConstant” as tag and compute the symbolic
name of the string literal with a string parser.

– (e) For other type of terminal node, script parser will directly use node type
as tag and lexical token without any symbolization.

Figure 4 illustrates our key ideas in generating lexical token sequences and
corresponding node tag sequences. In (a), when visting the terminal node
“Label:foo”, script parser checks the parent node type of the terminal node is
“FuncDecl”, then it set the node tag to “FuncName” and add it to tag sequence,
meanwhile, it symbolizes “foo” into “func1”, and add “foo:func1” to the sym-
bolic table as a key value pair. In (b), the parent node type of “VarName:$a” is
FuncCall, hence the tag for $a is FuncCall while the tag is still “VarName” for
$b, those variable names are symbolized too after extracting tags.

Note that there are some statements not related to webshell in some scripts.
For example, “error reporting(0)”, “set time limit(0);”. We simply ignore those
statements when traversing ASTs to reduce noise imposed by unrelated state-
ments.

The string parser in above rule.(d) computes symbolic name of a string literal
in following steps:

162 B. Cheng et al.

"chmod 777 shbd"

"<form method='POST'>"

"YXNzZXJ0"

"cmd"

String Parser

HtmlString

NormalString

EncryptedString

CodeString

Fig. 5. Examples illustrating the parsing results of some string literals.

– (1) Check whether the string is HTML code by detecting whether there are
html keywords. If there are, set the symbolic name to “HtmlString” or go to
next step.

– (2) Check whether the string constant contains PHP code or symtem com-
mand by the matching of some keywords (function name, such as “system”.
If there are, set the symbolic name to “CodeString” or go to next step.

– (3) We calculate the information entropy of the string. If it exceeds a preset
threshold, we believe it is an encrypted string and set the corresponding
symbolic name to “EncryptedString”, or go to next step.

– (4) Otherwise, it is an ordinary string, the symbolic name is set to “Normal-
String”.

Figure 5 illustrates the parsing results of some string literals from scripts we
have so far collected, we define four kinds of string constant which commonly
show up in webshells.

Pre-train Transformer Model. After preprocessing, wo get lexical token
sequence C as input to CodeBert and corresponding node tag sequence L as the
label of C. Codebert tokenizer would add two special tokens [CLS] and [EOS]
to C at the start and end. Therefore, we need to add start and end special tokens
at the beginning and end of L.

CodeBert utilizes Bert architecture which is complicated transformer-based
model and views the source code as flattened text sequence. Like other
transformer-based models, CodeBert takes sequence of tokens as input and
return sequence of fine-tuned embedding vectors for each token respectively.
Formally, it can be denoted as:

H = [hcls, hc1 , hc2 , ..., hcm , heos] = f(X = [[CLS], c1, ..., cm, [EOS]]) (1)

MSDetector: A Static PHP Webshell Detection System 163

where f is the CodeBert model, X is the input token sequence, H ∈ RM×768

is the output of CodeBert model, hi ∈ R768 and M is length of input/output
sequence. When tokenizing the token in the sequence, following Feng Z [7], we
split each token into WordPieces [24], for example, token “$var1” will be split
into three subtokens “$”, “var”, “1”, hence we should align the length of the tags
to 3. Here we simply use BIO mode, for example, the tag “VarName” for “$var1”
will be transformed into tags “B-VarName”, “I-VarName” and “I-VarName”.

In this sequence labelling task, we add a linear layer Wast ∈ R768×|Vast|

followed by softmax. Vast stands for AST token kind set. The cross entropy loss
is used as the loss function.

The forward propagation process of a single sample is as follows:

pred = softmax(H.Wast) (2)

where pred ∈ RM×|Vast| is the pred sequence of the model output, predi ∈ R|Vast|

is the probability distribution of the i-th token in the output sequence.
The loss of a single sample is calculated as follows

loss = − 1
M

M∑

i=1

|Vast|∑

j=1

lij log(predij) (3)

predij is the probability of i-th token belonging to j-th label of the Vast.
li ∈ R|Vast| is the label of the i-th token, which is a one-hot vector.

3.2 Training Transformer Model and Detecting Webshell

Our goal is to statically identify whether a PHP script contains malicious frag-
ments without prior knowledge. We regard webshell detection as a binary clas-
sification problem.

As shown in Fig. 1. In training phase, for given PHP scripts, MSDetector
generates their corresponding script sequences after parsing it into ASTs, and
then feeds those script sequences to pre-trained CodeBert model to fine-tune it
on webshell detection task, then fine-tuned model can be used to detect whether a
script sequence corresponding to a PHP script contains malicious code fragments
in detecting phase.

Preprocessing. In this stage, MSDetector aim at generating script sequence for
a given PHP script. The process is similar to preprocessing stage in pre-training
stage (Sect. 3.1). The lexical token sequence of a PHP script is extracted in the
same among all the pre-training phase, training phase and detecting phase. The
difference between the two processes is that in training and detecting phase, the
script parser extracts string literal sequences rather than node tag sequences for
scripts when traversing ASTs. The string literal sequence of a script is initialized
with an empty list and the extraction of it is done by string parser used in
preprocessing stage of pre-training phase (Sect. 3.1). Here, a string literal would
be added to string literal sequence only if it is identified as “CodeString” or
“NormalString” by string parser.

164 B. Cheng et al.

Fine-Tuning Transformer Model and Detecting Webshell. In the last
stage, the script parser extracts script sequence X composed of lexical token
sequence C and string literal sequence W with a special separator between them.

– Where X
′
is the input to CodeBert, we denote it as:

X
′
= [[CLS], c

′
1, c

′
2, ..., c

′
m, [SEP], w

′
1, w

′
2, ..., w

′
n, [EOS]]

– The output H
′
of CodeBert can be denoted as:

H
′
= [h

′
cls, h

′
c1 , h

′
c2 , ..., h

′
cm , h

′
sep, h

′
w1

, h
′
w2

, ..., h
′
wn

, h
′
eos]

Webshell detection is a binary classification task. Input the sample PHP
code and output whether the sample belongs to Webshell. The final classification
result only depends on the h

′
cls vector output by CodeBert. We add a linear layer

W . We use cross entropy as loss function.
The forward propagation process of a single sample is as follows

p = sigmoid(h
′
cls.W) (4)

where p represents the probability that the sample belongs Webshell.
The loss of a single sample is calculated as follows

loss = −(y.log(p) + (1 − y).log(1 − p)) (5)

where y is the label of the sample.
In detecting phase, if p > 0.5, then MSDetector will take input as webshell

otherwise normal script.

4 Experiment and Evaluation

We seek to evaluate the benefits of MSDetector by answering the following ques-
tions:

– RQ1: Can representing PHP codes with script sequences achieve higher web-
shell detecting capability than text-based representation?

– RQ2: Can ANT pre-training task improve the webshell detecting capability
of MSDetector?

– RQ3: How does MSDetector perform compare to the other webshell detection
methods?

4.1 Experimental Configuration and Evaluation Criteria

The experimental platform includes Inter (R) Xeon (R) CPU e5-2603v4@1.70
GHz, 64 GB memory, NVIDIA geforce GTX Titan X. The operating system
used in the experiment is Ubuntu 20.04. The development environment includes
Java for source code analysis and python for vectorization. The development
tools include anaconda3.

The CodeBert model we use is the same as RoBERTa-base, The total number
of model parameters is 125M and already pre-trained by Feng Z [7]. We set

MSDetector: A Static PHP Webshell Detection System 165

maximum length of model input sequence to 512. We use SGD optimizer with
learning rate 0.01 and weight decay 0.0001, batch size is set to 64 and dropout
is used with rate 0.1 to avoid overfit. We randomly shuffle each dataset.

We evaluate MSDetector on four commonly used metrics: accuracy, precision,
recall and F1 score which are defined as follows.

– accuracy: ACC = TP+TN
TP+TN+FN+FP

– precision: P = TP
TP+FP

– recall rate: R = TP
TP+FN

– F1 score: F1 = 2×recall×prec
recall+prec .

Where TP is the number of true positive samples, FP is the number of false
positive samples, TN is the number of true negative samples and FN is the
number of false negative samples.

4.2 Datasets

In the pre-training phase, we utilizes CodeSearchNet corpus [10]. The dataset
covers six programming languages including Java, Python, PHP. We select the
PHP part as our pre-training corpus. Before pre-training, we restore each PHP
code in the corpus to a script file. Since all functions in the dataset are intercepted
from the internal functions of the user-defined class, with private, public, static
and other modifiers, ANTLR is likely to throw exceptions when parsing these
functions. Therefore these modifiers must be removed, then a PHP tag will be
added to the script file. However, code parsing errors still exist, we filter out
those codes with parsing errors. At last, there are about 524682 functions left in
the training set and 24523 functions left in the test set.

As for webshell datasets. We mainly download webshell and normal samples
from data sources listed in Table 1. Those data samples contain large amounts
of PHP files with more than 2000 lines of code, which is beyond the scope of
CodeBert model. Therefore we manually perform data clean operation to refine
our datasets, by manually splitting large PHP files into several small PHP files
while retaining the semantic information of webshell. Data clean took us about
480 h.

After that, we split the dataset into test set and training set. The training
set includes 3280 malicious scripts and 3226 normal scripts. The test set includes
930 malicious scripts and 987 normal scripts (dubbed “Testset-1”).

Also, in order to verify the effectiveness of MSdetector against some unknown
webshells, we manually inject some malicious code fragments into normal scripts
to get a new dataset (dubbed “Testset-2”), which includes 180 malicious scripts
and 184 normal scripts.

4.3 Experiments for Answering RQ1

In order to evaluate the advantages of script sequence representation over PHP
codes, we conduct experiments with the following two source code representa-
tions.

166 B. Cheng et al.

Table 1. Data sources

Url

Webshell samples https://github.com/tanjiti/WebshellSample

https://github.com/JohnTroony/PHP-Webshells

https://github.com/learnstartup/4tweb

Normal samples https://github.com/johnshen/PHPcms

https://github.com/WordPress

https://github.com/phpmyadmin/phpmyadmin

https://github.com/smarty-php/smarty

https://github.com/yiisoft/yii

– text-based representation: PHP scripts are simply treated as texts and tok-
enized into text sequences in the same way in natural language processing
(NLP).

– script sequence representation: PHP scripts are parsed into ASTs and the
ASTs would be simplified, and a sequence generator will traverse over ASTs
to extract lexical tokens and string literals for every script. Then, extracted
token sequence and string literal sequence will be spliced into script sequence.

Both text sequence and script sequence will be input to CodeBert model. We
fine-tune one CodeBert model for text-based representation and one for script
sequence. And test them on both Testset-1 and Testset-2. The comparison are
summarized in Table 2. We observe that script sequences lead to better result
than text sequences in both testsets, including a 4.3% improvement in accuracy,
a 4.4% improvement in precision, a 4.5% improvement in recall rate and a 4.5%
improvement in F1 score on Testset-1. The performance difference on Testset-2
is similar to that on Testset-1.

This can be attributed to the advantage of script sequence that it reduces
noise imposed by irregular literals and highlight the semantic features in web-
shells by analysing AST. This can be justified by the following example.

Figure 6 describes an webshell example. Consider those tokens marked yellow
or green are string literals or irregularly named variables or classes which are
hard to be vectorized because those tokens are usually out of the vocabulary
of embedding tools, meaning they could impose noise. Here the string literals
marked yellow are parsed by string parser into token “EncryptedString” indicat-
ing those are encrypted string literals that are not commonly shown in normal
PHP scripts, the user-defined variable and class names are symbolized to corre-
sponding symbolic names to lower distraction caused by personalized naming.
Also, some tokens marked red are not related to webshell, we simply ignore
them. Other string literals marked blue are extracted to string literal sequence
to preserve the features in string constants.

ANSWER: MSDetector utilizing script sequence representation is substan-
tially more effective than MSDetector using text-based representation, owing
to the aforementioned advantage of script sequence.

https://github.com/tanjiti/WebshellSample
https://github.com/JohnTroony/PHP-Webshells
https://github.com/learnstartup/4tweb
https://github.com/johnshen/PHPcms
https://github.com/WordPress
https://github.com/phpmyadmin/phpmyadmin
https://github.com/smarty-php/smarty
https://github.com/yiisoft/yii

MSDetector: A Static PHP Webshell Detection System 167

Table 2. Compare two different kinds of code representations.

Code representation Testset ACC (%) P (%) R (%) F1 (%)

text sequence Testset-1 94.6 94.7 94.1 94.4

Testset-2 91.3 92.3 90.0 91.1

script sequence Testset-1 98.9 99.1 98.6 98.9

Testset-2 95.1 95.5 94.4 95.0

class PNLK{

function __destruct(){

$FQHZ='xk%uoq'^"\x1b\x19\x40\x14\x1b\x14";

@$FQHZ=$FQHZ('',$this->PZAF);

return @$FQHZ();
}

text sequence

}

$pnlk=new PNLK();

@$pnlk->PZAF=&$_POST['test'];

class PNLK { function __destruct () { $FQHZ =
xk%uoq \x1b\x19\x40\x14\x1b\x14 @ $FQHZ = $FQHZ

 (, $this -> PZAF return @ $FQHZ () ; } }

$pnlk = new PNLK () ; @ $pnlk -> PZAF = &

script sequence

class class1 { function __destruct () { $var1

= EncryptedString EncryptedString a $var1 =

$var1 (, $this -> var2 return $var1) ; } }

$var3 = new class1 () ; $var3 -> var2 =

$_POST [test] ;

$_POST [] ; [SEP] test

Fig. 6. The comparison between text sequence and script sequence. (Color figure
online)

4.4 Experiments for Answering RQ2

In order to measure the contribution of AST Node Tagging task to MSDetector,
we conduct experiments to compare identification capability of CodeBert before
and after pre-training.

Table 3 presents the result. It indicates that, AST Node Tagging task
does some help with webshell detection task. Although the score is not much
improved, Only about 1% improvement in accuracy and F1 score on Testset-1
and 1.6% improvement in accuracy and F1 score on Testset-2, we can still learn
that the transformer-based model has the ability to learn the syntax information
of AST and perform better on downstream tasks like webshell detection.

ANSWER: MSDetector could learn syntax information of PHP through
ANT pre-training task and perform better on downstream tasks like detec-
tion.

4.5 Experiments for Answering RQ3

In order to evaluate the effectiveness and preciseness of MSdetector in identifying
webshells with known ground truth, we compare MSdetector and some state-of-
the-art webshell detectors in terms of their capabilities in identifying webshells
in target programs with known ground truth.

168 B. Cheng et al.

Table 3. Compare CodeBert before pre-training and that after pre-training.

CodeBert Testset ACC (%) P (%) R (%) F1 (%)

Before pre-training Testset-1 97.9 99.2 96.3 97.8

Testset-2 93.4 92.9 93.9 93.4

After pre-training Testset-1 98.9 99.1 98.6 98.9

Testset-2 95.1 95.5 94.4 95.0

For rule-based detectors, we consider Shell-Detector. For deep-learning based
detectors we consider the opcode-based methods including RF-opcode [6] which
vectorize opcode sequence with fasttext [1] then utilize random forest model [2]
to achieve a binary classifier and CNN-opcode [16] utilizing CNN to classify
opcode sequences of PHP scripts and text-based methods such as CNN-text [21]
and GRU-text [12] utilizing CNN [4] and GRU [5] with attention mechanism [17]
to classify text sequence of PHP scripts respectively. We choose these detectors
for comparison since they are the state-of-the-art.

Table 4 summarizes the comparison. We observe that:

– Rule-based detector Shell-detector achieves low scores on four metrics, this is
due to the inefficiency of manually writing rules.

– MSDetector outperforms other deep-learning based approaches on both of
the two datasets. This is because MSDetector makes full use of the syntactic
and semantic features of webshells by utilizing pre-trained transformer model
and script sequence.

ANSWER: MSDetector is more effective than the state-of-the-art rule-based
and deep-learning based webshell detectors in the field of webshell detection.

5 Limitations

This paper has several limitations. First, MSDetector focuses on detecting web-
shells in PHP program because many dynamic features of PHP facilitate obfus-
cation of malicious code. Extending MSDetector to accommodate other script
languages is an interesting future work. Second, MSDetector requires scripts
that can be parsed into ASTs by tools like ANTLR, so it does not work well
when a script cannot be parsed into AST. Third, the string parser used to parse
string literals is base on human-defined rules and could incur false parsing results
sometimes, it is interesting to parse string literals with machine learning tech-
niques in future work. Fourth, the transformer model learn syntax information
of PHP code by AST Node Tagging task, it is worth exploring other kinds of
pre-training task to make the model learn higher-level semantic information of
the code and apply pre-trained model to other kinds of downstream tasks.

MSDetector: A Static PHP Webshell Detection System 169

Table 4. Compare MSDetector with state-of-the-art webshell detectors.

Detector Testset ACC (%) P (%) R (%) F1 (%)

MSDetector Testset-1 98.9 99.1 98.6 98.9

Testset-2 95.1 95.5 94.4 95.0

PHP-Shell-Detector Testset-1 73.4 80.6 59.5 68.5

Testset-2 65.9 100 31.1 47.4

CNN-text Testset-1 86.2 82 91.6 86.5

Testset-2 83.8 87.1 78.9 82.8

GRU-text Testset-1 93.8 97.3 89.7 93.3

Testset-2 90.3 91.9 88.3 90.1

RF-opcode Testset-1 92.8 93.7 91.2 92.4

Testset-2 85.2 85 85 85

CNN-opcode Testset-1 89.6 91.2 86.9 89.0

Testset-2 78.5 92.5 61.7 74

6 Related Work

6.1 Static Webshell Detection

The identification of webshell can be divided into dynamic detection, log analysis
and static detection. Static detection aims directly to script files while dynamic
detection relies on runtime behaviour, log analysis is mainly used to check the
system errors after it is intruded. Hence static detection is faster than dynamic
analysis and log analysis, and it can detect problems before attackers execute
malicious code. Reference [22] proposed a method based on optimal threshold
to identify malicious code files in web applications. It uses statistical method
to count the frequency of malicious functions and command execution functions
in malicious script files, but they are easily bypassed by malicious scripts after
encryption. Y. Fang [6] uses fasttext and random forest algorithm classifier to
construct the webshell detecting system for PHP scripts. In [8,14,16,25,26],
PHP opcode sequence are used as code representation, combined with TF-
IDF, word2vec and multi-layer perceptron (MLP) neural network respectively to
detect Webshell. F. Tao [21] regarded PHP scripts as text sequences and classi-
fied it with deep learning model. T Li [12] regard PHP as two-dimensional text,
and use word2vec to pre-train a word embedding tool on PHP text sequences
first, and then use gated recurrent network and attention mechanism to generate
vector representation for a given PHP script and classify it with a dense layer.

6.2 Code Representation

In addition to the researches of webshell detection, the representation of source
code is also an important research. In [9,11,19], source codes are parsed into pro-
gramming token sequences as the input features to neural networks. TBCNN [15]

170 B. Cheng et al.

parses the source code into AST and transforms AST into binary tree, and then
calculates the vector representation of the whole binary AST with tree convo-
lutional neural network. ASTNN [27] splits each large AST into many state-
ment subtree sequence, encodes each single subtree with TreeLSTM [18], and
utilizes the bidirectional RNN model to calculate the vector representation of
whole sequence. Devign [28] uses code analysis tool Joern6 to extract the token
sequence, AST, CFG of C language source code, and creates DFG of source code
based on CFG, then creates joint graph representation of program based on these
four structures, and vectorizes joint graph with gated graph neural network [13].

6.3 Pre-trained Models for Programming Languages

With the successes of pre-training model in NLP, the pre-training model for
source code also gets rapid development, which promotes the development of
code intelligence. Microsoft research team released CodeBert [7] model, which is
a bi-modal pre-training language model for natural language and programming
language. The research team utilizes masked language modeling (MLM) and
replaced token detection (RTD) to pre-train CodeBert, and achieved good results
in downstream tasks such as code search and code document generation. L.
Buratti [3] proposed C-Bert, which uses AST Node Tagging task to pre-train
the model on C language corpus, and achieves good results on vulnerability
identification. Experiments show that this method is not inferior to the code
detection method based on graph representation.

7 Conclusions

We introduce a novel webshell detecting system MSDetector, which first parses
a PHP script into a joint sequence called script sequence composed of lexical
token sequence and string literal sequence of that script to preserve key features
of webshells, then utilizes a transformer model to determine whether this script
contains malicious code. For the purpose of letting the model learn the syntactic
information of PHP source codes and semantic information of webshells, we pre-
train transformer model on AST Node Tagging task on a large PHP corpus, then
we fine-tune the transformer model on a small-scaled webshell datasets. We have
applied MSDetector to a webshell dataset and demonstrate that MSDetector
outperforms other state-of-the-art methods.

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors
with subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017).
https://transacl.org/ojs/index.php/tacl/article/view/999

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

6 https://joern.readthedocs.io/en/latest/.

https://transacl.org/ojs/index.php/tacl/article/view/999
https://joern.readthedocs.io/en/latest/

MSDetector: A Static PHP Webshell Detection System 171

3. Buratti, L., et al.: Exploring software naturalness through neural language models.
CoRR abs/2006.12641 (2020). https://arxiv.org/abs/2006.12641

4. Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis,
University of Waterloo (2015)

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation, pp. 1724–1734 (2014). https://doi.org/10.3115/v1/
d14-1179

6. Fang, Y., Qiu, Y., Liu, L., Huang, C.: Detecting webshell based on random forest
with fasttext. In: Proceedings of the 2018 International Conference on Computing
and Artificial Intelligence, ICCAI 2018, Chengdu, China, 12–14 March 2018, pp.
52–56. ACM (2018). https://doi.org/10.1145/3194452.3194470

7. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. In: EMNLP 2020, pp. 1536–1547 (2020). https://doi.org/10.18653/v1/
2020.findings-emnlp.139

8. Guo, Y., Marco-Gisbert, H., Keir, P.: Mitigating webshell attacks through machine
learning techniques. Future Internet 12(1), 12 (2020). https://doi.org/10.3390/
fi12010012

9. Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing. arXiv preprint arXiv:1803.04497 (2018)

10. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: CodeSearch-
Net challenge: evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436 (2019)

11. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a
neural attention model. In: Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2016, 7–12 August 2016, Berlin, Germany,
Volume 1: Long Papers. The Association for Computer Linguistics (2016). https://
doi.org/10.18653/v1/p16-1195

12. Li, T., Ren, C., Fu, Y., Xu, J., Guo, J., Chen, X.: Webshell detection based on
the word attention mechanism. IEEE Access 7, 185140–185147 (2019). https://
doi.org/10.1109/ACCESS.2019.2959950

13. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks (2016). http://arxiv.org/abs/1511.05493

14. Lu, J., Tang, Z., Mao, J., Gu, Z., Zhang, J.: Mixed-models method based on
machine learning in detecting webshell attack. In: CIPAE 2020: 2020 Interna-
tional Conference on Computers, Information Processing and Advanced Education,
Ottawa, ON, Canada, 16–18 October 2020, pp. 251–259. ACM (2020). https://doi.
org/10.1145/3419635.3419716

15. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: Schuurmans, D., Well-
man, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 1287–1293. AAAI Press
(2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775

16. Nguyen, N., Le, V., Phung, V., Du, P.: Toward a deep learning approach for
detecting PHP webshell. In: Proceedings of the Tenth International Symposium
on Information and Communication Technology, Ha Noi, Ha Long Bay, Vietnam,
4–6 December 2019, pp. 514–521. ACM (2019). https://doi.org/10.1145/3368926.
3369733

17. Pappas, N., Popescu-Belis, A.: Multilingual hierarchical attention networks for
document classification, pp. 1015–1025 (2017). https://aclanthology.org/I17-1102/

https://arxiv.org/abs/2006.12641
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1145/3194452.3194470
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.3390/fi12010012
https://doi.org/10.3390/fi12010012
http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.1109/ACCESS.2019.2959950
https://doi.org/10.1109/ACCESS.2019.2959950
http://arxiv.org/abs/1511.05493
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1145/3419635.3419716
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
https://doi.org/10.1145/3368926.3369733
https://doi.org/10.1145/3368926.3369733
https://aclanthology.org/I17-1102/

172 B. Cheng et al.

18. Roy, D., Panda, P., Roy, K.: Tree-CNN: a hierarchical deep convolutional neural
network for incremental learning. Neural Netw. 121, 148–160 (2020). https://doi.
org/10.1016/j.neunet.2019.09.010

19. Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.: SourcererCC: scaling
code clone detection to big-code. In: Dillon, L.K., Visser, W., Williams, L.A. (eds.)
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, 14–22 May 2016, pp. 1157–1168. ACM (2016). https://
doi.org/10.1145/2884781.2884877

20. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks, pp. 1556–1566 (2015). https://
doi.org/10.3115/v1/p15-1150

21. Tao, F., Cao, C., Liu, Z.: Webshell detection model based on deep learning. In:
Sun, X., Pan, Z., Bertino, E. (eds.) ICAIS 2019. LNCS, vol. 11635, pp. 408–420.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24268-8 38

22. Tu, T.D., Guang, C., Xiaojun, G., Wubin, P.: Webshell detection techniques in web
applications. In: Fifth International Conference on Computing, Communications
and Networking Technologies (ICCCNT), pp. 1–7. IEEE (2014)

23. Vaswani, A., et al.: Attention is all you need, pp. 5998–6008 (2017). https://
proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html

24. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR abs/1609.08144 (2016). http://
arxiv.org/abs/1609.08144

25. Xiao-Bo, X.U., Nie, X.M.: A method of detecting webshell based on multi-layer
perception. Commun. Technol. 51, 895–900 (2018)

26. Zhang, H., Xue, Z., Shi, Y.: Improved method of detecting webshell based on
multi-layer perception. Commun. Technol. 52, 179–183 (2019)

27. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X.: A novel neural source
code representation based on abstract syntax tree. In: Atlee, J.M., Bultan, T.,
Whittle, J. (eds.) Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, 25–31 May 2019, pp. 783–794.
IEEE/ACM (2019). https://doi.org/10.1109/ICSE.2019.00086

28. Zhou, Y., Liu, S., Siow, J.K., Du, X., Liu, Y.: Devign: effective vulnerability
identification by learning comprehensive program semantics via graph neural net-
works, pp. 10197–10207 (2019). https://proceedings.neurips.cc/paper/2019/hash/
49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

https://doi.org/10.1016/j.neunet.2019.09.010
https://doi.org/10.1016/j.neunet.2019.09.010
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1007/978-3-030-24268-8_38
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/ICSE.2019.00086
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

Extending Process Algebra with an Undefined
Action

S. Arun-Kumar(B)

Department of Computer Science and Engineering, Indian Institute of Technology Delhi,
Hauz Khas, New Delhi 110 016, India

sak@cse.iitd.ac.in

Abstract. Extensional equivalences in process algebra have sometimes led
authors to conflate divergence with deadlock [8], divergence with livelock
[4,5,12] and deadlock with livelock [9] (e.g. T = τ.T ≈ 0 in CCS).

Following Scott [10,11] we take divergence to mean undefinedness and define
a basic extended process algebra (BXPA) to include “partially” defined pro-
cesses and their behaviours. We define a behavioural preorder, called lifted strong
bisimilarity and show that it is a precongruence on BXPA. Divergent processes
are the least elements in the preorder and lie below both deadlocks and livelocks
which are mutually incomparable.

We extend the notion of logical characterisations of behavioural equivalences
to that of behavioural preorders using a parameterised Hennessy-Milner Logic
(PHML) and prove the characterisation of the pre-bisimilarity using techniques
developed in [6,9] and [3].

Keywords: Concurrency · Process algebra · Hennessy-Milner logic ·
Bisimulation · Prebisimulations · Lifted strong bisimilarity

1 Motivation and Related Work

Divergence, Deadlock and Livelock in Process Algebra. In denotational semantics
[10,11], divergence is identified with undefinedness, i.e. the least solution of the equa-
tion X ⇐ X is the function that is undefined everywhere.

A blocked or deadlocked process is one that is incapable of engaging in any
action, while a livelocked process is one that may engage in infinite “internal chatter”
(T = τ.T) but is incapable of engaging with the environment1. A livelocked process
consumes computational cycles and energy. In the testing framework [4,5] and the pre-
bsimulation framework of Walker [12], both the equations X ⇐ X and X ⇐ τ. X have
the same least solution.

We take the view that both deadlock and livelock are well-defined and incomparable
with each other and from divergence. Further divergent processes are less defined than
any well-defined process.

Taking a line through denotational semantics we adjoin a special undefined action⊥
to the set of actions and use it to define partially defined processes. A divergent process

1 The CCS process R = (P|Q)\a ∼ τ.R, where P = a.P and Q = ā.Q is one such since R ∼ T.
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 173–179, 2022.
https://doi.org/10.1007/978-3-031-10363-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_12

174 S. Arun-Kumar

is one that cannot perform any other action. A partially defined process is one that may
evolve into a divergent one.

In this paper we attempt to formulate an expanded view of processes to include par-
tially defined processes in the above sense, and try to distinguish divergence, deadlock
and livelock from each other.

Organisation and Contribution. We start with some basic notions and notations of
labelled transition systems (LTS) in Sect. 2. In Sect. 3, we define a basic process algebra
(BXPA) to include partially defined processes, by expanding the action set to include
an undefined action. In Sect. 4 we define a strong pre-bisimulation relation on processes
which yields a preorder � that we call lifted strong bisimilarity and is a precongruence
on BXPA. BXPA/� yields a partial order on processes with a least element viz. the
totally undefined process Ω which is distinct from both deadlock and livelock. We also
define a parameterised Hennessy-Milner Logic [3] and prove a characterisation of lifted
strong bisimilarity. Section 5 is the conclusion.

In addition to the usual notions of theorem, proposition, lemma and corollary we
also have “fact(s)” which typically are either well-known or follow directly from defi-
nitions or some previous remarks.

2 Labelled Transition Systems: Basics

Definition 1. A labelled transition system (LTS) L[L] over a set of labels L is a tuple
L[L] = 〈S , L,−→〉, where S is a (possibly infinite) set of states and −→⊆ S × L × S is

the transition relation. (s, �, t) is written s
�−→ t; s is the source, � is the label and t is

the target of the transition. A rooted LTS is a LTS L[L] with a distinguished start state
s0 ∈ S and denoted 〈S , L,−→, s0〉. denotes a place-holder in the following.

– s
�−→ = {t ∈ S | s �−→ t} is the set of �-successors of s.

– L(s) = {� ∈ L | ∃t[s �−→ t]} is the set of labels from s.

– S ucc(s) =
⋃
�∈L s

�−→ = {t | ∃� ∈ L[s �−→ t]} is the set of successors of s
– Targets(−→) = {t ∈ S | ∃s ∈ S [t ∈ S ucc(s)]}.
– Der(s) = {s} ∪⋃t∈S ucc(s) Der(t) is the set of derivatives of s.

A sub-LTS of L[L] at a state s0 ∈ S is the rooted LTS 〈Der(s0), L,−→, s0〉. By conven-
tion s

ε−→ s and for any x = ay ∈ L+, s x−→ s′ if s
a−→ s′′

y−→ s′ for some s′′ ∈ S .
Definition 2. A binary relation R ⊆ S × T between (sub-)LTSs L[L] = 〈S , L,−→〉 and
M[L] = 〈T, L,−→〉 is a natural bisimulation if sRt implies for all labels � ∈ L, s

�−→
s′ ⇒ ∃t′ ∈ T [t

�−→ t′ ∧ s′Rt′] and t
�−→ t′′ ⇒ ∃s′′ ∈ S [s

�−→ s′′ ∧ s′′Rt′′]. s is said
to be naturally bisimilar to t (denoted s ∼ t) if sRt for some natural bisimulation R
(notation: R � s ∼ t).

Fact 1. Unions, relational converses and (relational) compositions of natural bisimu-
lations are also natural bisimulations. Natural bisimilarity (∼) is the largest natural
bisimulation and is an equivalence relation.

Extending Process Algebra with an Undefined Action 175

3 Basic Extended Process Algebra (BXPA)

Definition 3. Let A⊥ = A ∪ {⊥} be the set of all actions where A is a countable set of
(uninterpreted but) well-defined actions and ⊥ � A is a special undefined action with
⊥ < a for each a ∈ A.

Our notion of a process is a (sub-)LTS of L[A⊥] = 〈S , A⊥,−→〉. It is convenient for
us to introduce an undefined action ⊥ which is the only action that can be performed by
the totally undefined process Ω (to be defined below). This action is less defined than
any other action from the action set A. Once a process descends to a state that performs
⊥, it remains in that state and can perform only ⊥ then on and can never recover to a
well-defined state. The traces that we need to consider are therefore from A∗⊥∗. Since a
process may only perform sequences of actions of the form x⊥∗ for any x ∈ A∗ we find
it convenient to quotient out the set A∗⊥∗ by the equation x⊥⊥ = x⊥ to yield the set
of normal forms A∗⊥? = A∗ ∪ A∗⊥ of finite sequences of actions.

Notational Convention. x, y, z denote words from A∗ and u, v,w denote words from
A∗⊥?. In general any u ∈ A∗⊥ is of the form u = x⊥ where x ∈ A∗.
Definition 4. Let ≤ ⊆ A∗⊥? × A∗⊥? be the smallest relation such that for all x, y ∈ A∗,
x ≤ x and x⊥ ≤ xy⊥ ≤ xy. u < v if u ≤ v � u for all u, v ∈ A∗⊥?.
Fact 2

1. For all x, y ∈ A∗, x ≤ y iff x = y.
2. ⊥ < ε, where ε is the empty trace. and ⊥ < a for every a ∈ A2.
3. a⊥ < a = aε.
4. 〈A∗⊥?,≤〉 is a partial order.
5. 〈A⊥,≤〉 and 〈A⊥,ε ≤〉 are both flat complete partial orders (cpo), where A⊥,ε = A⊥ ∪
{ε}.

Definition 5 (Process). A (partial) process is a sub-LTS 〈Der(s0), A⊥,−→, s0〉 satisfy-
ing the irrecoverability constraint ∀s ∈ Der(s0)[s ⊥−→ s′ ⇒ A⊥(s′) = {⊥}] . The pro-
cess is total if s �⊥−→ s′ for all s, s′ ∈ Der(s0). If s0

u−→ t for t ∈ Der(s0) and u ∈ A∗⊥?,
then s0

u−→ t is a behaviour of the process.

Fact 3. If 〈S , A⊥,−→, s0〉 is a process then so is 〈Der(s), A⊥,−→, s〉 for any s ∈ S .

Notational Conventions and Terminology

1. Processes are identified with their start states (Fact 3) and all relations between pro-
cesses are also relations between their start states.

2. Upper-case latin letters P, Q, R etc. (possibly decorated) denote processes.
3. Lower-case initial latin letters a, b, c etc. (possibly decorated) denote individual

actions (including ⊥ and the empty trace ε).

2 In particular ⊥ < τ if τ ∈ A.

176 S. Arun-Kumar

In the sequel, we restrict ourselves to the set of (partial) processes P[A⊥] defined
below.

Definition 6. The structure P[A⊥] = 〈P[A⊥], Ω, 0, {a. | a ∈ A},∑〉 where

• Omega. Ω
d f
= 〈{s0}, A⊥, {s0 ⊥−→ s0}, s0〉 is the totally undefined process,

• Nil. 0
d f
= 〈{s0}, A⊥, ∅, s0〉 is the “terminated”, “blocked”, “deadlocked” or “stop”

process,

• Prefixing. a.P
d f
= 〈S ∪ {s′0}, A⊥,−→ ∪{s′0

a−→ s0}, s′0〉, for any P = 〈S , A⊥,−→, s0〉,
a ∈ A, and s′0 � S ,• Summation. For any sequence [Pi | i ∈ I, Pi = 〈S i, A⊥,−→i, si0〉] of processes indexed
by a set I, their sum is

∑
i∈I Pi

d f
= 〈S , A⊥,−→, s0〉 where s0 � ⋃i∈I S i and

– S = Der(s0) = {s0} ∪⊎i∈I Targets(−→i),
– s0

a−→ t if for some Pi, i ∈ I, si0
a−→i t ∈ S i,

– s
a−→ t if s

a−→i t for some i ∈ I, s, t ∈ Der(s0).
is called Basic Extended Process Algebra (BXPA).

P[A⊥] contains processes with infinite behaviours too. We do not allow prefixing
with the undefined action. In the case of summation, the root s0 is a new state repre-
senting the effect of coalescing all the start states si0, i ∈ I. However, whether an si0
belongs to S depends on whether it is a proper derivative of itself. For example, given

P = 〈{sP0 }, A⊥, {sP0
a−→ sP0 }, sP0 〉 and Q = 〈{sQ0 , tQ}, A⊥, {sQ0

b−→ tQ}, sQ0 〉 the set of states
in their sum (S = {s0, sP0 , tQ}) would include sP0 and tQ but would exclude sQ0 .

By convention
∑

i∈∅ Pi ≡ 0 and (by abuse of notation) Ω ≡ ⊥.Ω. When |I| = 2 we
use the binary infix symbol “+”, (e.g. P1 + P2) to denote their sum. Let [Pi | 1 ≤ i ≤ n]
be any finite sequence of processes. We write P1 + · · · + Pn to denote

∑
1≤i≤n Pi.

Proposition 1. P[A⊥] is an idempotent abelian monoid under + with 0 as identity. Fur-
ther

1. P
a−→ P′, a ∈ A implies P ∼ a.P′ + P.

2. P
⊥−→ P′ implies P′ ∼ Ω and hence P ∼ Ω + P.

3. (Canonical form upto ∼). P ∼ [Ω+]
∑

a∈A,P a−→Pa
a.Pa

3.

Parallel Composition. To ensure that the composition of two processes yields a pro-
cess (that satisfies the irrecoverability constraint of Definition 5) we impose a strict-

ness condition (P
⊥−→ ∨ Q

⊥−→) =⇒ ((P ⊗ Q
⊥−→ Ω) ∧ (Q ⊗ P

⊥−→ Ω)) that gua-
rantees that P[A⊥] is closed under ⊗. The expansion laws follow for the various com-
position operators akin to those defined in CSP, CCS and SCCS. We refer the reader to
the extended report for the details.

3 where “[Ω+]” indicates that Ω occurs only if P
⊥−→.

Extending Process Algebra with an Undefined Action 177

4 Lifted Strong Bisimulations and PHML

In [1] bisimulation was generalised to (ρ, σ)-bisimulation for binary relations ρ and σ
on the set of actions. Further in [2] many bisimilarities defined in the literature were
shown to inherit their nice algebraic and relational properties from the properties of the
underlying relations on actions.

Definition 7. A binary relation R on processes is a lifted strong bisimulation (LSB)

if for all states s, t, sRt implies for all a, b ∈ A⊥,ε , (1) s
a−→ s′ ⇒ ∃b, t′[a ≤ b ∧ t

b−→
t′ ∧ s′Rt′] and (2) t b−→ t′ ⇒ ∃a, s′[a ≤ b ∧ s

a−→ s′ ∧ s′Rt′]. s � t (equivalently t � s)
if there exists a LSB R such that sRt (we write R � s � t to denote this fact). s �� t if
s � t and s � t.

LSB is an instance of the more general (ρ, σ)-bisimulation [1] with ρ = σ = ≤. By
theorem 4.1 part 1 in [1], � is a preorder.

Example 1. Let P
d f
= a.b.0 and Q

d f
= a.b.Ω. Then Q � P. However P1

d f
= Ω + P � Q �

P1. Let P2
d f
= Ω + Q. Then we have P2 � Q � P2.

Theorem 4 (Precongruence). The operators of P[A⊥] are monotonic under � and the
relation � is a precongruence on P[A⊥].

In [9] Milner has defined what it means for a logic to characterise a behavioural
equivalence relation viz. that two processes are behaviourally equivalent if and only if
they satisfy the same set of logical properties. In [6] the definition was generalised to
the logical characterisation of behavioural preorders, in terms of containment of sets
of properties. We give a definition below that subsumes both Milner’s definition for
behavioural equivalences and the one in [6].

Definition 8. Let (L, |=X) be a logic consisting of a language L and a relation |=X⊆
P×L. (L, |=X) characterises a behavioural preorder � over P if for any P,Q ∈ P, P � Q
iff LX(P) ⊆ LX(Q), where LX(P) = {φ ∈ L | P |=X φ}. P ⊆X Q iff LX(P) ⊆ LX(Q).

In [3] the authors have generalised Hennessy-Milner Logic (HML) to a parame-
terised form called PHML corresponding to the parameterisation of bisimulations and
bisimilarities in [1]. In general however, PHML defined over a set of “observables”
(which may or may not be the set of “actions”) is not a modal logic unless certain
conditions are met. Rather, it is a negation-free logic which reduces to a modal logic
whenever the parameters ρ and σ are preorders satisfying the conditions (see theorem
4.1 in [1])

– ρ and σ are both equivalences and so �(ρ,σ) is an equivalence, or else
– the preorders ρ and σ are not equivalences and
• either ρ = σ in which case �(ρ,ρ) is a preorder,
• or ρ = σ−1 in which case �(ρ,σ) is an equivalence.

178 S. Arun-Kumar

We have � = �(≤,≤) since it is induced by the preorder (actually partial order)
≤ ⊆ A⊥,ε × A⊥,ε . Hence PHML [3] applied to our present context (ρ = ≤ = σ) directly
yields a modal logic.

Definition 9. φ :: = tt | ff | 〈a〉φ | [a]φ | ∧i∈I φi | ∨i∈I φi, where a ∈ A⊥,ε and I is
an indexing set, is the BNF of the language L(≤,≤)4.

∧
i∈∅ φi ≡ tt and

∨
i∈∅ φi ≡ ff by

convention.

Definition 10 (Satisfaction). |=S ⊆ P × L is the smallest (infix) relation defined by
induction on the structure of formulae for any process P and any action a ∈ A⊥,ε .

P |=S tt for each P ∈ P P |=S ff for no P ∈ P
P |=S 〈a〉φ iff P |=S [a]φ iff
∃b ∈ A⊥,ε : b ≥ a, P′ : ∀b ∈ A⊥,ε : b ≤ a, P′ :

[P
b−→ P′ ∧ P′ |=S φ] [P

b−→ P′ ⇒ P′ |=S φ]
P |=S ∧i∈I φi iff ∀i ∈ I[P |=S φi] P |=S ∨i∈I φi iff ∃i ∈ I[P |=S φi]

P satisfies φ if P |=S φ and LS (P) = {φ | P |=S φ}. P ⊆S Q if LS (P) ⊆ LS (Q) for
processes P, Q,

Theorem 5 then directly follows from definition 5 and theorem 3 of [3].

Theorem 5 (Logical characterisation of �). P � Q if and only if LS (P) ⊆ LS (Q).

By defining an affirmation relation (analogous to that in [7]) which omits the observ-
ability of ⊥ (i.e. omitting the modalities 〈⊥〉 and [⊥]) we may show that the discrimina-
tion power of the modal logic remains unchanged. Hence they may be dispensed with
altogether. We refer the reader to the extended report for the details.

5 Conclusion

We have expanded the notion of process to include agents which are capable of per-
forming an undefined action. By stipulating that it lies below all other actions, we have
been able to define a totally undefined processΩwhich lies below all other processes. In
particular, Ω � 0 � Ω. We may also include a distinguished silent action τ in the action
set A. Since all actions in A are mutually incomparable, deadlock (0) and livelock (T)
will not be equated by the relation �� .

We have not explicitly addressed the question of recursion. However, it is easy to
see that guarded recursion equations made up of only well-defined actions, will yield
unique fixpoints as solutions. It is also clear that if τ ∈ A, then the two equations X ⇐ X
and X ⇐ τ.X would yield different (least) solutions Ω and T respectively (upto �), with
Ω � T � Ω.

FutureWork. The relation � could be used as a refinement relation which allows a pro-
gression from a totally undefined process to one which satisfies a certain specification
(expressed in terms of the properties or the behaviours that need to be satisfied).

4 For the present, we are assuming that every action in A⊥,ε including the undefined action ⊥ is
observable; this may be relaxed.

Extending Process Algebra with an Undefined Action 179

The fact that the algebra is closed (upto ∼) under the various parallel composition
operators opens up the possibility that a formal specification language could poten-
tially use more than one parallel composition operator. The challenge in designing such
a language would then rest on defining a suitable syntax and a structural operational
semantics that is faithful to our model. We conjecture that it may be useful in hardware-
software codesign.

References

1. Arun-Kumar, S.: On bisimilarities induced by relations on actions. In: Proceedings 4th IEEE
International Conference on Software Engineering and Formal Methods, Pune, India. IEEE
Computer Society Press (2006)

2. Arun-Kumar, S., Bagga, D.: Parameterised bisimulations: some applications. In: Höfner, P.,
Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 208–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06251-8 13

3. Bagga, D., Arun-Kumar, S.: Logical characterization of parameterised bisimulations. In:
Hung, D., Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 51–69. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67729-3 4

4. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoret. Comput. Sci.
34, 83–133 (1983)

5. Hennessy, M.C.B.: Algebraic Theory of Processes. MIT Press, Boston (1988)
6. Korade, N., Arun-Kumar, S.: A logical characterization of efficiency preorders. In: Liu, Z.,

Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 99–112. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31862-0 9

7. Milner, R.: A modal characterisation of observable machine-behaviour. In: Astesiano, E.,
Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Heidelberg (1981).
https://doi.org/10.1007/3-540-10828-9 52

8. Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25, 267–310 (1983)
9. Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)
10. Scott, D.S.: Data types as lattices. SIAM J. Comput. 5(3), 522–587 (1976)
11. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M. (eds.)

ICALP 1982. LNCS, vol. 140, pp. 577–610. Springer, Heidelberg (1982). https://doi.org/
10.1007/BFb0012801

12. Walker, D.J.: Bisimulation and divergence in CCS. In: Third Annual Symposium on Logic
in Computer Science, pp. 186–192. IEEE Computer Society Press, Edinburgh, July 1988

https://doi.org/10.1007/978-3-319-06251-8_13
https://doi.org/10.1007/978-3-319-67729-3_4
https://doi.org/10.1007/978-3-540-31862-0_9
https://doi.org/10.1007/3-540-10828-9_52
https://doi.org/10.1007/BFb0012801
https://doi.org/10.1007/BFb0012801

Machine-Assisted Proofs for Institutions
in Coq

Conor Reynolds(B) and Rosemary Monahan

Maynooth University, Maynooth, Ireland
{conor.reynolds,rosemary.monahan}@mu.ie

Abstract. The theory of institutions provides an abstract mathemati-
cal framework for specifying logical systems and their semantic relation-
ships. Institutions are based on category theory and have deep roots
in a well-developed branch of algebraic specification. However, there
are no machine-assisted proofs of correctness for institution-theoretic
constructions—chiefly satisfaction conditions for institutions and their
(co)morphisms—making them difficult to incorporate into mainstream
formal methods. This paper therefore provides the details of our approach
to formalizing a fragment of the theory of institutions in the Coq proof
assistant. We instantiate this framework with the institutions FOPEQ
for first-order predicate logic and EVT for the Event-B specification lan-
guage, both of which will serve as an illustration and evaluation of the
overall approach.

1 Introduction

The theory of institutions dates to Joseph Goguen and Rod M. Burstall’s 1984
paper [7] and the subsequent more detailed analysis in 1992 [8]. An institution
is a mathematical realisation of the notion of “logical system” which does not
commit to any single concrete system. The key insight is that many general
results about logical systems do not depend in any interesting way on the details
of that system.

In her PhD thesis [6], Marie Farrell uses the theory of institutions to provide
a semantics for the Event-B formal modelling method with an eye to address-
ing some drawbacks of the Event-B language—namely the lack of standardised
modularisation constructs. EVT was shown by Farrell [6], on paper, to support
such constructs.

Indeed, the theory of institutions has been applied to a wide variety of lan-
guages and formal methods; CLEAR [2], CSP [15], and UML [10] have been
given an institution-theoretic semantics, to name but a few. The Hets tool for
heterogeneous specification [12] has the largest single repository of such insti-
tutions and their logical relationships, represented mainly by institution mor-
phisms and comorphisms; but as far as we know there are no machine-checked

Funded by the Irish Research Council (GOIPG/2019/4529).
c© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 180–196, 2022.
https://doi.org/10.1007/978-3-031-10363-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_13&domain=pdf
http://orcid.org/0000-0002-6598-5512
http://orcid.org/0000-0003-3886-4675
https://doi.org/10.1007/978-3-031-10363-6_13

Machine-Assisted Proofs for Institutions in Coq 181

proofs that these constructions are correct. Many of the requirements—checking
that categories are really categories, that functors are really functors, as well
as satisfaction conditions for institutions and for the (co)morphisms that relate
them—amount in some parts to simple bookkeeping, and in other parts to more
novel and interesting results.

We hence provide here a framework in the Coq proof assistant [5] for interac-
tive machine-assisted proofs for institutions and an instantiation of this frame-
work to two institutions: the institution FOPEQ for first-order predicate logic
and the institution EVT for Event-B. Coq has two properties desirable for this
work. First, it is based on a dependent type theory called the calculus of induc-
tive constructions (CIC) which makes the representation of mathematical objects
and the subtle constraints that they impose on one another easier than in a sys-
tem without dependent types. Second, it is an interactive proof assistant rather
than an automated proof assistant. The user can design automated tactics that
can discharge many simple goals, but crucially Coq allows the user to step in
and spell out the proofs in detail if necessary. Our framework is available on
GitHub at https://github.com/ConorReynolds/coq-institutions.

We build directly on the work done by Emmanuel Gunther, Alejandro Gadea,
and Miguel Pagano [9] formalizing multi-sorted universal algebra in Agda. We
also note some other work in this direction in Coq by Venanzio Capretta [3], and
by Gianluca Amato, Marco Maggesi and Maurizio Parton and Cosimo Perini
Brogi [1] which makes use of homotopy type theory—but none go quite as far as
defining institutions or instantiating first-order logic at the time of this writing.
This is the first such formalization of which we are aware.

We will begin by laying the basic mathematical groundwork for institution
theory, multi-sorted universal algebra, and first-order predicate logic, before
explaining how these concepts are defined in our Coq developments. First-order
logic is an extremely central institution, on which many others build (including
EVT) and provides an appropriate first example. We then provide the same
treatment for EVT as a further case study, and to provide a concrete example
of one institution building on another.

2 Mathematical Background

Institutions are based on category theory. A category consists of a collection of
objects, and a collection of arrows or morphisms between those objects, subject
to some straightforward laws. A functor is a map between categories which pre-
serves the categorical structure—more precisely, it preserves identity morphisms
and composition of morphisms. Definitions for these concepts can be found in
Emily Riehl’s freely available Category Theory in Context [14]. We only require
very light familiarity with categories and functors for this paper.

Definition 1. An institution [7] consists of

– a category Sig of signatures;
– a sentence functor Sen : Sig → Set;

https://github.com/ConorReynolds/coq-institutions

182 C. Reynolds and R. Monahan

– a model functor Mod : Sigop → Cat; and
– a semantic entailment relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for any signature morphism σ : Σ → Σ′, any sentence φ ∈ Sen(Σ),
and any model M ′ ∈ Mod(Σ′), the satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ

ensuring that a change in signature induces a consistent change in the satisfac-
tion of sentences by models.

The signatures contain non-logical symbols: data types, constants, functions,
and so on. The sentence functor explains how to build sentences over the non-
logical symbols. The model functor explains how to interpret the symbols in
any given signature. The semantic entailment relation explains how to decide
if a given sentence is true or false in a given model. The requirement that the
signatures form a category, and that the sentence and model constructors are
functors, is due to the central concept of a signature morphism, a mapping
between signatures—a “change in notation”. If the sentence construction is a
functor then we can be sure that signature translations preserve the sentence
structure.

The satisfaction condition explains how the components should interact with
one another, and in particular how they behave under a change in signature.
Without such a condition, the semantic entailment relation |= could behave just
as expected on one signature, but behave utterly erratically on another. But
we expect the entailment relation |= to change only so much with a change in
signature. The satisfaction condition ensures that satisfaction of sentences by
models is consistent under a change in signature.

2.1 First-Order Predicate Logic

We provide a brief account of multi-sorted universal algebra and first-order pred-
icate logic, in preparation for a formal encoding in Coq (Sect. 4); see Sannella
and Tarlecki’s Foundations of Algebraic Specification [17] for details.

Definition 2. An S-indexed set is a family of sets X = (Xs)s∈S.

Definition 3. A signature is a 3-tuple 〈S,F ,P〉 where S is a set of sorts, F
is a (List(S) × S)-indexed set of function symbols, and P is a List(S)-indexed
set of predicate symbols.

Here List(A) is just as expected: the set of all finite sequences of elements from
A. The idea is that a symbol F ∈ Fw,s has arity w and result sort s, and a
predicate symbol P ∈ Pw has arity w and no result sort (since it represents a
predicate). If the signature is clear from context, we instead write F :

∏
i wi � s

for function symbols, and P :
∏

i wi � Prop for predicate symbols. If a function
symbol C has arity nil and result sort s, then it is called a constant symbol and
we denote it C : s.

Machine-Assisted Proofs for Institutions in Coq 183

As a running example, let stackSig be a signature consisting of the symbols
required to describe a stack. It has two sorts elem and stack; some function
symbols empty : stack, push : elem × stack � stack, and pop : stack � stack; and
a predicate symbol isEmpty : stack � Prop.

Definition 4. Let Σ = 〈S,F ,P〉 and Σ′ = 〈S′,F ′,P ′〉 be two signatures. A
signature morphism σ : Σ → Σ′ consists of a function σsorts : S → S′, which
will usually be written σ, as well as a pair of functions

σfuncs :
∏

w,s

Fw,s → F ′
σ(w),σ(s)

σpreds :
∏

w

Pw → P ′
σ(w)

respectively mapping sorts, function symbols, and predicate symbols, in such a
way that the sorts are translated consistently with σsorts . We define σ(w) as the
action of σsorts on each of the sorts in w.

Definition 5. An algebra A for a signature Σ = 〈S,F ,P〉 consists of three
functions 〈Asorts , Afuncs , Apreds〉, all of which we denote by A, each respectively
interpreting the sorts, function symbols, and predicate symbols as sets, functions,
and predicates:

– for any sort s ∈ S, A(s) is a set, which we typically denote As;
– for any F ∈ Fw,s, we have A(F) : Aw1 × · · · × Awn

→ As; and
– for any P ∈ Pw, we have A(P) ⊆ Aw1 × · · · × Awn

.

Algebras give meaning to the symbols in a signature. Consider again our run-
ning example stackSig; we could interpret the sort elem as the set N of natural
numbers, and the sort stack as the set List(N) of lists of natural numbers; the
function symbols empty, push, and pop as nil ∈ List(N), cons : N × List(N) → N,
and tail : List(N) → N, respectively; and the predicate symbol isEmpty as the
predicate {s | s = nil} ⊆ List(N). We are by no means bound to this interpreta-
tion, of course.

Definition 6. Let Σ and Σ′ be signatures, let σ : Σ → Σ′ be a signature
morphism, and let A′ be a Σ′-algebra. The reduct algebra A′|σ is a Σ-algebra
defined at each component of the algebra to be A′ ◦ σ.

Algebras are best thought of (loosely) as functions providing a concrete denota-
tion for the symbols in a signature—functions from symbols to “real” mathemat-
ical objects. In the presence of a change in signature σ : Σ → Σ′, a Σ′-algebra
can interpret symbols in Σ by first applying σ and interpreting the resulting
Σ′-symbol; hence we “precompose” A′ by σ to obtain a Σ-algebra. Note that the
direction is reversed; we are taking Σ′-algebras to Σ-algebras using σ : Σ → Σ′.
Now is a good time to note the contravariance of the model functor in the defi-
nition of an institution: if σ : Σ → Σ′ then Mod(σ) : Mod(Σ′) → Mod(Σ).

The following pair of definitions explain how we may build more complex
expressions, which we will call terms, out of the basic symbols of a signature.

184 C. Reynolds and R. Monahan

Definition 7. A set of variables for a signature Σ = 〈S,F ,P〉 is an S-indexed
set.

Definition 8. A term over a signature Σ = 〈S,F ,P〉 with variables in X is
defined inductively as follows.

– A variable x ∈ Xs is a term of sort s.
– A constant symbol C ∈ Fnil,s is a term of sort s.
– If |w| = n > 0, then given terms t1 : w1, . . . , tn : wn and a function symbol

F ∈ Fw,s, the expression F (t1, . . . , tn) is a term of sort s.

Terms explain how sorted variables and symbols may be put together. For exam-
ple, let x : elem and s : stack be two variables; then push(x, s) : stack is a valid
term; as is push(x, push(x, s)). But, for example, pop(x) is not since x has the
wrong sort.

With terms and algebras defined, all that is left is to define first-order sen-
tences.

Definition 9. Let Σ = 〈S,F ,P〉 be a signature. The sentences of first-order
logic are built from the logical symbols =, →, ¬, ∧, ∨, ∀, ∃. The atomic sentences
are

– u = v for terms u and v with the same sort; and
– P (t1, . . . , tn) for any predicate symbol P ∈ Pw and terms ti.

The sentences in general are defined inductively as follows:

– Any atomic sentence φ is a sentence.
– The expressions ¬φ, φ → ψ, φ∧ψ, φ∨ψ, ∀x. φ and ∃x. φ, for any sentences

φ, ψ and variable x, are all sentences.

We can now write sentences like ∀x. ∀s. pop(push(x, s)) = s. The interpretation
of first-order sentences is defined by induction on the sentence structure. We will
give a more precise account in Sect. 4.

3 Institutions in Coq

Coq is an interactive proof assistant for higher-order logic based on a depen-
dent type theory called the calculus of inductive constructions (CIC). Dependent
type theories allow for extremely elegant representation of complex mathemati-
cal objects such as those found in category theory, institution theory, universal
algebra, etc. All of the work presented here is formalised fully in Coq.

We depend on a formalization of category theory by John Wiegley [20]. Mor-
phisms between objects and are denoted , and functors between cat-
egories and are denoted . The generic form of an institution can be
defined directly as a dependent record.

Machine-Assisted Proofs for Institutions in Coq 185

Here refers to the semantic entailment relation |= for an institution and
refers to the category of sets, which here just means the category of Coq

types and functions. The term is short for “functor map” and describes the
action of a functor on morphisms. For the purposes of this paper, we implement
so-called set/set institutions [11], in which the target of Mod is Set, the category
of sets, and not Cat, the category of all small categories.

Our focus for this paper is on an instantiation of this object to FOPEQ , the
institution for first-order predicate logic, and EVT , the institution for Event-B
defined in [6]. Since EVT builds on FOPEQ , we will begin with FOPEQ and
work up.

4 First-Order Logic in Coq

We partially build upon a formalization of multi-sorted universal algebra in
Agda [9], though we deviate in many of the details. As we define objects in Coq,
we will make reference back to their mathematical definitions from Sect. 2.1. We
do not show everything, only what we deem crucial to follow the basic idea of
the formalization.

4.1 Representing FOL

Signatures (cf. Definition 3) are represented by a dependent record, mirroring
the mathematical definition exactly.

An algebra (cf. Definition 5) for a signature needs to interpret sorts as Coq types
and the function and predicate symbols as Coq functions with the right type.

For this we use heterogeneous lists—henceforth h-lists—following Gunther
et al. [9]. A heterogeneous list can contain elements of different types, as distin-
guished from a homogeneous list which contains only elements of a single type.
Our definition of h-lists comes from Chlipala’s CPDT [4], where the reader can
find a more detailed description of the implementation details.

Let U be a universe of types. Given an index type I : U , a list w : List(I) and
a type family A : I → U which selects for each i : I a type Ai : U , we can build

186 C. Reynolds and R. Monahan

a h-list v : HList(A,w) which contains |w| elements and where the ith element
of v, denoted vi, has the type Awi

. For example, if w = [N, bool, string] and if A
is the identity, then 〈3, true, ‘hello’〉 would be a valid h-list of type HList(A,w).
Another example, more pertinent to our discussion: Consider again our running
example stackSig. Let I = {elem, stack}, let w = [elem, stack], and let A : I → U
be defined by elem �→ N and stack �→ List(N). Then 〈2, [3, 4]〉 would be a valid
term of type HList(A,w).

A h-list is a concrete implementation of a kind of dependent n-tuple; that is
to say, HList(A,w) is a concrete Coq encoding of the dependent sum

∑
i A(wi).

Now, let Σ = 〈S,F ,P〉 be a signature, let F ∈ Fw,s and let A be a Σ-algebra.
Since HList(A,w) → A(s) ∼= ∑

i A(wi) → A(s), we should interpret A(F) as a
function HList(A,w) → A(s).

We are so far no different from Gunther et al. [9]. Our first deviation is in the
definition of variables and terms (cf. Definition 8).

Variables (cf. Definition 7) are not represented here by members of an indexed
set; instead they are dependent de Bruijn indices—see CPDT chapter nine [4].
The member type is exactly as it appears there; a term i : member(s, Γ) can be
thought of as a constructive proof that s appears at index i in the list Γ . By
defining variables this way, we can quite easily define quantifiers which correctly
track the locations of free variables, as we will see.

Signature morphisms (cf. Definition 4) are the cornerstone of institution the-
ory; much of the implementation depends on this definition.

No surprises here, but note that we must translate the sorts in and
using . With this we can now define reduct algebras (cf. Defi-

nition 6).

Machine-Assisted Proofs for Institutions in Coq 187

Note that the function reindex is computationally the identity but converts
between the equivalent types HList(A ◦ f, w) and HList(A,map f w).

We can now start to build the syntactic and semantic structure of first-order
sentences. The syntax is as follows.

We omit the other connectives since their definitions are straightforward. Syntac-
tically, a quantifier accepts as argument a sentence in which at least one variable
appears free and binds it. If ψ is a sentence with context s ::Γ , then the sentence
Qs. ψ is a sentence with context Γ , where Q is either quantifier. Formally, we
have the following syntactic formation rule:

s :: Γ � φ

Γ � Qs. φ

To interpret a first-order sentence, we must decide what the logical symbols mean
and what values the free variables will get. If θ is an environment providing values
for the variables in Γ , then we denote the semantic interpretation of a sentence
φ with free variables from Γ by an algebra A with environment θ by A �θ φ.
Precisely, in the case of the quantifiers, we have

A �θ Foralls(ψ) iff for all x ∈ As we have A �x,θ ψ

A �θ Existss(ψ) iff there exists x ∈ As such that A �x,θ ψ

This setup makes the definition of the semantic entailment relation relatively
painless. (The triple-colon operator denotes the cons function for h-lists.)

The institution FOPEQ requires closed first-order sentences, i.e. sentences of the
form ψ : FOL(Σ, nil); hence A |= ψ will really mean interp_fol(A,ψ, hnil).

The relation above relies on two mutually-defined term evaluation functions,
for which we use the library [18].

188 C. Reynolds and R. Monahan

On variables, it looks up the right value in the environment. On terms, it inter-
prets the function symbol with the given algebra and calls itself on the function
symbol’s arguments. It is possible to write this function (and others) without

, but this gives the best computational behaviour and plays rela-
tively nicely with the proofs.

4.2 Proofs and Proof Strategy

There are some more definitions that are crucial for proving the satisfaction
condition for first-order predicate logic. The following mutually-defined functions
promote signature morphisms to term translations:

Applying a signature translation to a variable amounts only to a reindexing; all
the work is happening at the type level, but the underlying “number” i doesn’t
change. To apply a signature translation to a term, we just apply it to the
function symbol and then apply it to all its arguments. Promoting this a level
higher to first-order sentences is a simple matter, since the sentence structure
will be ignored by signature morphisms.

We will also need to define a custom induction principle for terms; the induc-
tion principle automatically generated by Coq is too weak because it is missing
a hypothesis in the case where the term has the form F (t1, . . . , tn); namely that
the predicate P :

∏
i Ai → Prop holds for all t1, . . . , tn. In Coq this is represented

by HForall P 〈t1, . . . , tn〉.

Machine-Assisted Proofs for Institutions in Coq 189

Proofs Involving Indexed Types. Consider how to define the composition of two
signature morphisms σ and τ . Doing so directly will result in a type-level mis-
match between map τ (map σ w) and map (τ ◦ σ) w. Of course, these terms are
propositionally equal via the proof p = map_map σ τ w; so we need to mention
this to Coq at the point of definition. As an example, here is the definition of the
composition of two first-order signature morphisms, simplified for readability.

Many definitions in our developments take a similar form. Proofs of most propo-
sitions involving such terms should follow by computation and induction on the
involved identity proofs—an identity proof being a proof of the form p : x = y.
We call upon a range of tactics and rewriting strategies for identity proofs, many
of which are defined in and some of which come from the homo-
topy type theory [19] Coq developments, specifically

Proofs about terms caused the most consternation. Using the following
lemma,

we can write map_on_terms in terms of hmap and on_terms; this exposes reindex,
which we may convert into using some combination of the following two
lemmas.

190 C. Reynolds and R. Monahan

This process pulls out the hidden identity proof such that it may be combined
with others. We then required the lemma

for converting the hypothesis generated by our custom induction principle for
terms into a useful rewrite rule.

There is one more trick we employ, and for which we must assume proof
irrelevance. Often the subject of an identity proof is of the form x :: xs, as in,
for example, p′ : map id (x :: xs) = x :: xs. If one has a proof p : map id xs = xs,
then in fact f_equal (cons x) p is also a proof that map id (x :: xs) = x :: xs.
By proof irrelevance, p′ and f_equal (cons x) p are themselves equal, but the
point is that the latter form has useful structure that we can exploit. This is
not always necessary—often the tactic is enough—but we found it
indispensable in proofs which required more careful rewriting of identity proofs.

The Proof of Satisfaction. Throughout the process, we identified at least one
non-obvious lemma required for the proof of satisfaction for first-order logic.

Lemma 1. Let σ : Σ1 → Σ2 be a signature morphism, let t1 be a Σ1-term with
Σ1-context Γ1, and let A2 be a Σ2-algebra. Let θ : HList(A2|σ, Γ1) be a valuation
of the variables in Γ1. Then

A
σ(θ)
2 (σ(t1)) = (A2|σ)θ(t1)

Since θ is a h-list, the action of σ on θ is just a reindexing; hence we obtain
σ(θ) : HList(A2,map σ Γ1). The specific requirement generated by the proof of
satisfaction, for one of the atomic sentences, t1 = t2, is

A′ |=σ(θ) (σ(t1 = t2)) iff (A′|σ) |=θ (t1 = t2)

Lemma 1 is a strict strengthening of this requirement, since it shows in fact that
the terms under analysis are equal. This lemma handles the atomic sentences;
the other cases follow without much trouble.

5 Formalizing EVT

Readers should consult the backmatter of [16] for a summary of the Event-B
language by Thai Son Hoang. Not much, if any, familiarity with the system will
be required beyond what we describe here. Event-B machines consist, at the

Machine-Assisted Proofs for Institutions in Coq 191

most basic level, of discrete state-transitions called events. Our approach is to
use first-order sentences to represent updates to the machine state; for example,
the variable-update statement is written as a first-order sentence
x′ = x+1. The unprimed variables represent the state of the machine before an
event, the primed variables represent the state of the machine after an event.

We will formally describe a more generic institution for Event-B than is pre-
sented in Farrell [6], dropping event names from the representation. We will
call this institution EVT where there is no room for confusion. We found that
defining EVT without event names results in simplified constructions and gives
us more room for defining potential extensions to EVT—but, crucially, with-
out changing the details of the proof of satisfaction. For a short account of a
formalization that matches Farrell’s more closely, see [13].

First, we’ll define signatures and signature morphisms for EVT .

Definition 10. An EVT -signature Σ̂ is a 3-tuple 〈Σ,X,X ′〉 where Σ is a first-
order signature and X and X ′ are Sorts(Σ)-indexed sets, such that (−)′ : X →
X ′ is an equivalence.

Definition 11. An EVT -signature morphism σ̂ : Σ̂1 → Σ̂2 consists of a first-
order signature morphism σ : Σ1 → Σ2 and two variable morphisms on_vars :
X1 → X2 and on_vars′ : X ′

1 → X ′
2 such that the following diagram commutes.

X1 X2

X ′
1 X ′

2

on_vars

(−)′ (−)′

on_vars′

In all cases where not otherwise specified, the EVT -signature Σ̂ is given by
〈Σ,X,X ′〉.

A standard construction in institution theory is the signature extension. We
add variables by adding them directly into the signature as constant function
symbols.

Definition 12. Let Σ = 〈S,F ,P〉 be a first-order signature and let X be an
S-indexed set. The expansion of Σ by X is a first-order signature Σ +X which
is equal to Σ everywhere except on the constant function symbols; Σ + X has
constant symbols Fnil,s + Xs, for each s ∈ S.

To model signatures of the form Σ +X, we need only expand a given Σ-algebra
by a valuation X → A.

Definition 13. Let Σ = 〈S,F ,P〉 be a first-order signature and let A be a Σ-
algebra. Let X be an S-indexed set of variables and let θ : X → A be a valuation
of variables. The expansion of A by θ is a (Σ + X)-algebra Aθ, which behaves
like A on symbols from Σ and takes variables x ∈ Xs to θ(x) ∈ As.

Definition 14. A Σ̂-model M is a 3-tuple 〈A, θ, θ′〉, where A is a Σ-algebra
and θ : X → A and θ′ : X → A are valuations of variables.

192 C. Reynolds and R. Monahan

To illustrate what we have so far, consider the following example. A model for
a (Σ + X + X ′)-sentence consists of a Σ-algebra A and two valuations of the
variables θ : X → A and θ′ : X ′ → A, usually referred to as a Σ-states—θ
is the pre-state and θ′ is the post-state. One possible model for the sentence
x′ = x + 1 consists of the usual algebra for natural numbers, a pre-state x �→ 2,
and a post-state x′ �→ 3. One possible model for the sentence s′ = push(x, s)
consists of an algebra for a stack of characters, a pre-state x �→ e, s �→ [v, t], and
a post-state s′ �→ [e, v, t]. Here, x′ can consistently be assigned anything. If we
wish to avoid this, we can assume that sentences ψ which don’t mention a given
primed variable x′ are really shorthand for ψ ∧ (x′ = x).

Let us formally define the sentences for EVT . Note that FOSen(Σ) denotes
the set of all first-order Σ-sentences.

Definition 15. Let Σ̂ be an EVT -signature. A Σ̂-sentence is either an initial-
ization sentence Init(φ) where φ ∈ FOSen(Σ+X ′), or an event sentence Event(φ)
where φ ∈ FOSen(Σ + X + X ′).

Initialization sentences constrain the range of possible initial states for a machine;
often only one such state is possible. There is no previous state yet, so any
initialization sentence is built over Σ + X ′. Event sentences explain how an
event updates the state, and therefore can access both pre- and post-variables;
thus event sentences are built over Σ + X + X ′.

Finally, let’s define the semantic entailment relation for EVT .

Definition 16. Let Σ̂ be an EVT -signature, M = 〈A, θ, θ′〉 a Σ̂-model, and ψ
an EVT -sentence. We define M |= ψ by induction on ψ: M |= Init(φ) if Aθ′ |= φ;
and M |= Event(φ) if Aθ+θ′ |= φ.

5.1 Representing EVT

We have a much easier job here than we did for first-order predicate logic since
EVT builds directly on FOPEQ . We rely on a couple of major first-order con-
structions. First, we will define signature extensions by a set of variables (cf.
Definition 12). Note that is the category of indexed types I → U .

The main part of an algebra expansion (cf. Definition 13) is given by the following
function; no other part of the algebra is changed.

Machine-Assisted Proofs for Institutions in Coq 193

EVT -signatures (cf. Definition 10) are represented exactly as they are given
mathematically.

Here is the proof that (−)′ : X → X ′ is an equivalence.
For EVT signature morphisms (cf. Definition 11), we simply define on_vars′

in terms of on_vars to simplify matters.

EVT -models (cf. Definition 14) and EVT -sentences (cf. Definition 15) also offer
no surprises.

Finally, the semantic entailment relation for EVT (cf. Definition 16) defers
directly to entailment for FOPEQ .

Here, stitches two valuations θ : X → M and θ′ : X ′ → M (with the
same target) into Θ : X + X ′ → M .

194 C. Reynolds and R. Monahan

5.2 Proofs and Proof Strategy

Most of the tricks we needed for first-order logic apply just as well here. The
main additional proof strategy emerged while proving equality for dependent
records.

As an example, let’s consider EVT signature morphisms. To prove that two
EVT signature morphisms are equal, we need to prove that they are equal
componentwise—the first-order signature morphisms have to agree everywhere,
as do the two variable morphisms. The proofs that the variable morphisms are
equal appear at first to depend on the proof that the base first-order signature
morphisms are equal. But actually, that’s not strictly the case; we only need to
know that the first-order signature morphisms agree on sorts to prove that the
two variable morphisms are equal.

We can write custom equality lemmas which state the dependencies between
proofs more precisely. Here is one such lemma for EVT signature morphisms.

Here we build a proof that two signature morphisms are equal from proofs that
they are equal at each of their components. Note that q depends on p′ only,
and not p. Normally the dependency is on p—but p′ is typically much simpler
than p and is all that is necessary. Often p′ is refl, meaning computes away,
simplifying the proofs considerably.

Most other constructions and proofs revolved around signature and model
extensions. The following was the main non-trivial lemma which we identified
while proving the satisfaction condition for EVT . Note that the following holds
for any indexed sets X1 and X2 and any function f : X1 → X2 ◦ σ.

Lemma 2. Let σ : Σ1 → Σ2 be a first-order signature morphism, let f : X1 →
X2 ◦ σ be a variable morphism, let A2 be a Σ2-algebra, and let θ2 : X2 → A2 be
a valuation of variables. Then

(A2|σ)θ2◦f = (Aθ2
2)|σ+f

We’re taking some liberties with the notation. Note that θ2 ◦ f is a shorthand
for λs, x. θ2(σ(s), f(s, x)) and σ+ f : Σ1+X1 → Σ2+X2 is a shorthand for the
extension of σ by f .

The proof of satisfaction itself proceeds by two cases, both of which are
essentially the same, and both of which rely on the satisfaction condition for
FOPEQ and Lemma 2, with f instantiated to different maps in each.

6 Conclusion

We have detailed the most important points of our formalisation of two insti-
tutions in Coq: the institution FOPEQ for first-order predicate logic, and the

Machine-Assisted Proofs for Institutions in Coq 195

institution EVT for Event-B. According to the tool1 we have over 3,000
significant lines of Coq developments, not including the many experimental or
variant implementation attempts. Initial progress was slow, but the overall app-
roach was successful; the satisfaction condition is fully formalized for both—with
some difficulty for FOPEQ , but with far greater ease for EVT . Furthermore,
both institutions have many reusable components which will aid in the construc-
tion of other concrete institutions and with proving their satisfaction conditions.
Proofs involving indexed types in Coq are notoriously difficult, but we suspect
for the purposes of our formalism that they are all difficult in the same way, so
that the lessons we learn here can be applied more generally.

Having a formal framework for defining institutions continues to be useful
in our own work. Indeed, we have already begun applying it to the problem of
integrating linear-time temporal logic with Event-B specifications. We have also
defined some institution-independent constructions not covered here, specifically
modal and linear-time temporal logics over an arbitrary institution.

We intend in the future to add more concrete institutions to this framework;
to show that both FOPEQ and EVT have the amalgamation property; to build
more institution-independent constructions; to improve proof automation for
institutions; and to define and verify some institution (co)morphisms. This work
could also, in time, become a fully formal basis for the work already done for
the Hets tool for heterogeneous specification.

References

1. Amato, G., Maggesi, M., Parton, M., Brogi, C.P.: Universal Algebra in UniMath
(2020). https://arxiv.org/abs/2007.04840

2. Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In:
Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5_41

3. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry,
L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3_10

4. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press (2013). http://adam.chlipala.net/
cpdt/

5. Coq Development Team: The Coq Proof Assistant. https://coq.inria.fr/
6. Farrell, M.: Event-B in the Institutional Framework: Defining a Semantics,

Modularisation Constructs and Interoperability for a Specification Language.
Ph.D. thesis, National University of Ireland Maynooth (2017). http://mural.
maynoothuniversity.ie/9911/

7. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D.
(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg
(1984). https://doi.org/10.1007/3-540-12896-4_366

8. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992). https://doi.org/10.1145/147508.
147524

1 https://github.com/AlDanial/cloc.

https://arxiv.org/abs/2007.04840
https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/3-540-48256-3_10
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
https://coq.inria.fr/
http://mural.maynoothuniversity.ie/9911/
http://mural.maynoothuniversity.ie/9911/
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1145/147508.147524
https://doi.org/10.1145/147508.147524
https://github.com/AlDanial/cloc

196 C. Reynolds and R. Monahan

9. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda.
Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018). https://doi.org/10.
1016/j.entcs.2018.10.010

10. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple
UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9_1

11. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In:
Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)

12. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40

13. Reynolds, C.: Formalizing the institution for Event-B in the coq proof assistant. In:
Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 162–166. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_17

14. Riehl, E.: Category Theory in Context. Dover Modern Math Originals, Dover Pub-
lications, Aurora (2017)

15. Roggenbach, M.: CSP-CASL—a new integration of process algebra and algebraic
specification. Theor. Comput. Sci. 354(1), 42–71 (2006). https://doi.org/10.1016/
j.tcs.2005.11.007

16. Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering
Methods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1

17. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Monographs in Theoretical Computer Science. An EATCS
Series, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

18. Sozeau, M.: Equations: a dependent pattern-matching compiler. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 419–434. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14052-5_29

19. Univalent Foundations Program: Homotopy Type Theory: Univalent Founda-
tions of Mathematics (2013). https://homotopytypetheory.org/book. Institute for
Advanced Study

20. Wiegley, J.: Category Theory in Coq. https://github.com/jwiegley/category-
theory

https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-030-77543-8_17
https://doi.org/10.1016/j.tcs.2005.11.007
https://doi.org/10.1016/j.tcs.2005.11.007
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1007/978-3-642-14052-5_29
https://homotopytypetheory.org/book
https://github.com/jwiegley/category-theory
https://github.com/jwiegley/category-theory

Optimizing Trans-Compilers in Runtime
Verification Makes Sense – Sometimes

Hannes Kallwies(B), Martin Leucker, Meiko Prilop, and Malte Schmitz

Institute for Software Engineering and Programming Languages, Universtity of Lübeck,
Lübeck, Germany

{kallwies,leucker,prilop,schmitz}@isp.uni-luebeck.de

Abstract. This paper considers two kinds of optimizations for a specification
language compiler for stream-based runtime verification: (i) the manual addition
of core functions with dedicated translation schemas and (ii) an improved ini-
tialization that simplifies subsequent constant propagation. We employ both opti-
mizations within the open source runtime verification framework TeSSLa, which
comes with a trans-compiler as synthesis tool which translates TeSSLa specifica-
tions to Scala code eventually running on the JVM. Our evaluation shows that the
first optimization improves the efficiency of the resulting monitor significantly
while the second gets lost within the variety of optimizations present for the back
end systems.

1 Introduction

Runtime verification is the discipline that checks whether a run of a system meets its
specification [1]. To this end, a specification is typically transformed into a monitor
that checks the run of the system and assigns a verdict assessing to which extend the
observation meets the specification. Central research questions in the field of runtime
verification are the development of specification languages and the synthesis of moni-
tors from such specifications especially for obtaining efficient monitors in terms of time
and memory.

While traditionally specifications are often formulated in temporal logics such as
LTL [2], a large number of extensions of specification languages have been proposed,
especially to cope with computations on data [3–5]. One branch of this line of research
emerged into the field of stream runtime verification (SRV) where observations of the
system are considered as streams and the specification as a stream transformation.
Prominent examples are Lola [6], RTLola [7], Striver [8], or TeSSLa [9]. Such lan-
guages have similarities with functional programming languages and can be considered
as data flow languages, in which the transformation of data is the primary goal [10].
However, the development of compilers synthesizing efficient monitors is still an active
research question. In this paper we study two aspects of building compilers for data
flow languages. As object of study, we take the language and tool set TeSSLa, which is
available as open source and can be used as a testing target for corresponding research
questions. When designing a language, it is desirable to restrict to few (core) operators
to limit the burden of analyzing the language from a formal perspective. Moreover pro-
viding support for a few core operators in a compiler seems to reduce the development
c© Springer Nature Switzerland AG 2022

Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 197–204, 2022.
https://doi.org/10.1007/978-3-031-10363-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_14

198 H. Kallwies et al.

effort. Though from a user’s perspective, it is desirable to have a large number of opera-
tors supporting the rapid development of specifications. A common approach to address
these two conflicting design goals is to provide a small number of core operators and a
large amount of syntactic sugar on top of the core language to define new functionality
within the language and provide standard libraries. Following this approach TeSSLa
comes with six operators but is enriched with a standard library providing a large num-
ber of extensions which are formulated in TeSSLa’s macro language. TeSSLa comes
with a reference implementation of a compiler, which supports TeSSLa’s core opera-
tors as well as the definition of functions and macro expansion. A TeSSLa specification
is translated into a Scala program which is then compiled using the Scala compiler and
eventually executed on the JVM [11].

However, many specifications result in long Scala programs and an important ques-
tion arises as our first question studied in this paper: Would it make sense to support
further, commonly used macros, directly by the TeSSLa compiler rather than unfold-
ing/compiling them during compilation time? In this paper we answer this question
positively. Note that the answer to this question is not obvious as one might hope that
optimizations during compilation of the resulting Scala program as well as the opti-
mizations typically performed by the Just-in-Time compiler on the JVM yield efficient
monitors already. We show that this is not the case.

Compiler optimization is an active research area since decades. A large number of
optimizations have been proposed in the literature. The area of runtime verification asks
for further, dedicated optimizations. In [12], several optimizations have been shown to
be useful for obtaining efficient monitors; leading us to our second research question:
Do standard optimizations for functional languages during the TeSSLa compilation pro-
cess yield more efficient monitors? As an example, we consider an optimization which
chooses a smart order for variable declarations to avoid dummy initialization and mark
variables as constants if possible. This optimization primarily reduces the length of the
generated code and improves readability, which in turn simplifies debugging of the com-
piler a lot. Furthermore, one may also expect this optimization to support the backend
compiler by showing opportunities for constant propagation. However, our experiment
shows that this kind of optimization does not improve the overall efficiency. In fact, espe-
cially the Just-in-Time compiler of the JVM already performs similar optimizations.

From a broader perspective, the first optimization can be considered a high-level
optimization while the second optimization is more a low level optimization. Very
vaguely and of course arguably, our findings support the rule of thumb that high-level
optimization are difficult to achieve automatically while low-level optimizations are
handled effectively by today’s compilers.

2 TeSSLa and Its Reference Compiler

TeSSLa is a stream tranformation language, i.e., a TeSSLa specification defines how
so-called input streams are tranferred into so-called output streams, potentially making
use of so-called intermediate streams. In our setting a stream is a function mapping
timestamps from a time domain (e.g. N or R) to values from the stream’s data domain
D or ⊥ if the stream has no event at the timestamp. Syntactically, a TeSSLa specification

Optimizing Trans-Compilers in Runtime Verification Makes Sense – Sometimes 199

is an equation system where each left hand side is a variable and each right-hand side
is a TeSSLa term. A TeSSLa term is built up from variables of the equation system and
the core operators described below. The semantics of a TeSSLa specification is then
the minimal fixpoint solution of the equation system, which is shown to exist [9]. The
core operators are: (i) nil is the empty stream, containing no events, (ii) unit is a stream
containing a single event at timestamp 0, (iii) time(s) is the stream that contains events
exactly at the same positions as s but with the timestamps of these events as values,
(iv) lift(f)(s1, . . . , sn) is the stream that contains events with the values f(v1, . . . , vn)
where v1, . . . , vn are the current values of s1, . . . , sn (or ⊥ in case they have no value
at the current timestamp). However lift only produces events if any of its input streams
has one. Hence one cannot generate an event with lift, if there is no other event at this
exact timestamp. (v) last(v, t) is the stream that contains the previous event of stream
v always when the so-called trigger stream t has an event. (vi) delay(d, r) is the stream
with events always t time units after the last reset (event of r or the stream itself), where
t is the value of d at the last reset. With delay events can be generated at timestamps
where no other stream has an event.

Every monotonous, continuous and future-independent stream transformation can
be expressed by these six operators [9]. However for a comfortable usage of such a
language it is crucial to have the possibility to define macros for common combinations
of such operators. This also sets the basis for the creation of a standard library as known
from other languages. Furthermore it is important to include a possibility to define
functions which can be lifted in the specification language. As such, TeSSLa comes with
the possibility to define functions on values (not streams). Both features are supported
by the open-source reference implementation of TeSSLa1 which we investigate in this
paper. The concrete usage can be seen in the example specification in Fig. 1.

1 de f one = 1
2 de f addOne (i : Op t ion [I n t]) : Op t ion [I n t] = Some (getSome (i) + one)
3 de f coun t [T] (x : Even t s [T]) : Even t s [I n t] = o where {
4 de f o : Even t s [I n t] = d e f a u l t (l i f t 1 (l a s t (o , x) , addOne) , 0) }
5 in x : Even t s [I n t]
6 de f o = coun t (x)
7 out o

Fig. 1. TeSSLa example specification

For the sake of the example, the specification defines a constant one and a function
addOne. The function takes an integer, wrapped into an option container, adds one, and
returns the result after wrapping it into a Some container again. Note that this function
operates on a plain value, not on streams, however the function is lifted to a stream in
line 4. As described above a function which is lifted has to be able to deal with the ⊥
value, this is why the function returns and receives values of type Option[...].

In lines 3 and 4 the specification contains the definition of the macro count. The
macro receives a stream x of generic type T whose events shall be counted and returns
an integer stream o. The stream o is defined in line 4 and results from lifting the function

1 https://www.tessla.io/.

https://www.tessla.io/

200 H. Kallwies et al.

addOne from line 2 to last(o, x), which reproduces the last value of o whenever x has
an event. The default around the lift initializes stream o with value 0.

Finally in lines 5 to 7 an input stream x of type integer is declared and an output
stream o is defined. Stream o results from applying the count macro on x.

3 The TeSSLa Compiler and Optimizations

In order to make a TeSSLa specification executable, a trans-compiler to the program-
ming language Scala has been developed. This way a monitor can be generated from a
TeSSLa specification and be run on the Java Virtual Machine (JVM). The compilation
procedure from TeSSLa to Scala consists of three steps (see Fig. 2): In the first step all
macros (like count in Fig. 1) are resolved. As result one gets an equivalent TeSSLa spec-
ification with no macros but only stream definitions using the six core stream operators
presented in Sect. 2 and definitions of constants (e.g. one from Fig. 1) and non-stream
functions (e.g. the functions addOne). This TeSSLa fragment is called TeSSLa Core.

Fig. 2. Phases of the TeSSLa to Scala compilation

In the second step TeSSLa Core is translated to a generic imperative language used
inside of the compiler, the Intermediate Code. Therefore the compiler follows the stan-
dard synchronous evaluation scheme which is also used for trans-compilation of similar
languages [13–16]: Every stream defined in the Core specification is represented by a
bunch of variables, indicating the stream’s current value, error state, if it has an event
at the current timestamp etc. Furthermore for every core operator in the Core speci-
fication there is an if block created in which the mentioned variables get actualized
values assigned if an event on the corresponding stream is triggered. These if blocks
are ordered to guarantee a correct evaluation of the specification and put into a while
loop which is iterated for every timestamp where any stream has an event in a strictly
ascending order. At the end of the while loop new input values are consumed and output
values are printed. The constants and non-stream functions from the TeSSLa Core are
straightforwardly translated to constants and imperative functions which are bound to
names and referenced from inside the if blocks.

Finally, the Intermediate Code is translated to a specific imperative language, in our
case Scala code, which can then be further compiled to an executable monitor.

3.1 Expansion of the Language Core and the DSL

The first optimization targets the translation of macros. As mentioned before, when
reducing a TeSSLa specification to the TeSSLa Core, all macros are replaced by an
equivalent nesting of the six core operators. The example of the count macro suggests
that such a nesting can be quite extensive, as several if blocks have to be included

Optimizing Trans-Compilers in Runtime Verification Makes Sense – Sometimes 201

(one for last, lift, ...). Also note that the default is not one of the core functions but
also a macro defined in the standard library and also consists of a nesting of unit and
lift. This shows how the use of macros quickly increases the number of involved core
operators.

Now the first optimization is to extend the set of core functions and to provide an
optimized translation schema for those, which is achieved by adding further macros
manually by means of an imperative-language-like domain specific language (DSL)
which describes the statements of the generated code. For example, via the DSL it
is possible to add a procedure for the direct translation of the count macro without
unrolling the macro to core functions: one if block is generated for each usage of count
in the specification and added to the while-loop. The guard evaluates this generated if
block to true if there is an event on the stream to be counted. The value variable of the
corresponding stream is then incremented by 1 within the body of the if.

For this kind of optimization it is necessary that the macro translation has been built
into the compiler manually, the advanced translation can hardly be directly inferred
from the macro definition. However, the TeSSLa implementation from this paper comes
with a rich standard library of macros which are vastly used in specifications and inde-
pendent from the concrete specification. We implemented a direct translation of ten of
these macros.

3.2 Usage of Smart Initializations Within the Monitors

The second optimization carried out relates to the translation of constants and func-
tions from TeSSLa specifications. The example from Fig. 1 requires a translation of the
constant one and the function addOne. Note that functions can principally be recur-
sive and also mutual recursive and thus must be declared before they are defined. A
straight-forward solution to this is first defining all constants and functions in the gen-
erated code and afterwards assigning their final values. However, in some imperative
languages, like Scala, a declaration without value assignment is not possible for non-
class variables. Hence this method requires dummy initializations:

1 var one : I n t = 0
2 var addOne : F u n c t i o n 1 [Opt ion [I n t] , Opt ion [I n t]] = n u l l
3 one = 1
4 addOne = (i : Opt ion [I n t]) => {Some (i . g e t + one)}

However, one can easily see that in this example the reassignments of zero and
addOne are not necessary, they could be initialized directly with their final value, as
long as one is defined before its usage inside of addOne. Note that if variables are
recursively dependent on each other this is not possible, then some must be a dummy-
initialized to break the chain of dependencies. We implemented a greedy algorithm to
optimize the initialization order of variables in the generated code and avoid dummy ini-
tializations. Foremost this optimization reduces the generated code and makes it better
readable. Furthermore it is also possible to mark the variables which are not reassigned
as constants (keyword val in Scala). This could aid the backend compiler during opti-
mizations like constant propagation. The resulting code would then only consist of line
3 and 4 with the val keyword prepended.

202 H. Kallwies et al.

0 : i c o n s t 0
1 : i s t o r e 3
2 : i c o n s t 1
3 : i s t o r e 3

0 : i c o n s t 1
1 : i s t o r e 3

In fact the optimization also has impact on the generated Java byte-
code. The unoptimized implementation first initializes the variable one
with 0 and then overwrites it with 1. The Java bytecode at the top right
results from this implementation, while the direct initialization of one
ultimately results in the bytecode at the bottom right. The val keyword
has no effect.

4 Evaluation

For the evaluation of the performance gain of the optimizations, the execution times
of six monitors with and without optimizations were measured and compared. Three of
these specifications consist of a single macro call (average, boolFilter, count) for which
a direct translation was implemented and three are complex specifications (accSum,
election, filterByTime) from practical scenarios. The generated monitors were tested
without any optimizations, with one of the two new optimizations and finally using both
optimizations. The generated Scala monitors are inevitably compiled to Java bytecode
by means of the Scala compiler and finally executed on a JVM. The Scala compiler sup-
ports optional optimizations for the entered Scala code. In order to discuss the impact
of the Scala optimizations, especially in correlation with our optimizations, we ran all
monitors with and without Scala optimizations enabled. To receive stable results the
measurements were repeated ten times and preceeded by a JIT warm-up.

Fig. 3. Measurement results: Without optimizations, extended Core optimization, no
TeSSLa but Scala optimizations, Both TeSSLa and Scala optimizations.

The JVM uses a so-called Just-in-Time (JiT) compiler to execute Java bytecode.
The code entered is first interpreted while individual program sections are compiled
at the same time [17]. Due to thread scheduling, garbage collection and side effects
of the underlying system, the process of JiT compilation is non-deterministic [18,19].
An advantage of compilation at runtime is that the entire context of the program to be
executed is also available to a JiT compiler. On the basis of this information, extensive
optimizations can be done on the bytecode to be executed [20].

Our measurement results are depicted in Fig. 3. The optimization around the exten-
sion of the language kernel is reflected in runtime improvements of up to 90% for the
simple examples and from 30% to about 65% for the complex ones (compare blue and
yellow bars). These optimizations are also not adopted by the Scala compiler or the JiT
compiler, as can be seen from the green bars in comparison to the yellow ones.

Optimizing Trans-Compilers in Runtime Verification Makes Sense – Sometimes 203

Improved initializations, on the other hand, did not lead to any improvement in the
runtime of the monitors (not shown). In fact, we recognized that it is possible for the
Scala compiler to remove unused variable assignments from the Java bytecode when
its optimizations are enabled. Even without our optimization the Scala compiler with
enabled optimization flag produces the same bytecode as presented for the optimized
case in Sect. 3.2. Furthermore, also the JiT Compiler is able to perform these optimiza-
tions and a subsequent constant propagation [21]. Hence the second optimization did
not show any speedups.

These results give a good idea of which optimizations make sense within a trans-
compiler. The ability of both, the Scala and JiT compilers, to distinguish between con-
stants and variables and to remove unused variable assignments [22] shows that espe-
cially small optimization possibilities are often already adopted at other points in the
compilation process. Optimizations that change the structure of the programs, on the
other hand, are quite useful and more often result in significant runtime improvements
than peephole optimizations.

5 Summary

In this paper we studied the effect of compiler optimization in the setting that a (spec-
ification) language is trans-compiled into a language for which powerful, optimizing
compilers and runtime environments exist. We studied two optimizations in the setting
of stream-runtime verification, more specifically for the language TeSSLa. Arguably
oversimplifying our experiments suggest that optimizations affecting significantly the
structure of the code are not well supported by the back-end compilers (and hence
improve the resulting code), while “simple” optimizations are already taken care of by
the backend compilers.

References

1. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebraic Pro-
gram. 78(5), 293–303 (2009)

2. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science (FOCS-77), IEEE Computer Society Press, Provi-
dence, Rhode Island, pp. 46–57 (1977)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-
fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24622-0 5

4. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
eagle to ruler. J. Log. Comput. 20(3), 675–706 (2010)

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9 9

6. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: TIME, IEEE
Computer Society, pp. 166–174 (2005)

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9

204 H. Kallwies et al.

7. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based moni-
toring. CoRR abs/1711.03829 (2017)

8. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-streams.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–298. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

9. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: TeSSLa:
temporal stream-based specification language. In: Massoni, T., Mousavi, M.R. (eds.) SBMF
2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03044-5 10

10. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming languages.
ACM Comput. Surv. 36(1), 1–34 (2004)

11. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. 2nd edn. Addison Wesley
(1999)

12. Baumeister, J., Finkbeiner, B., Kruse, M., Schwenger, M.: Automatic optimizations for
stream-based monitoring languages. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS,
vol. 12399, pp. 451–461. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-
7 25

13. Halbwachs, N., Raymond, P., Ratel, C.: Generating efficient code from data-flow programs.
In: Maluszyński, J., Wirsing, M. (eds.) PLILP 1991. LNCS, vol. 528, pp. 207–218. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54444-5 100

14. Amagbégnon, P., Besnard, L., Le Guernic, P.: Implementation of the data-flow synchronous
language SIGNAL. In: PLDI, ACM, pp. 163–173 (1995)

15. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified rust monitors for Lola spec-
ifications. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 431–450.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7 24

16. Kallwies, H., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: Aggregate update problem
for multi-clocked dataflow languages. In: CGO, IEEE, pp. 79–91 (2022)

17. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2), 97–113 (2003)
18. Barrett, E., Bolz, C.F., Killick, R., Mount, S., Tratt, L.: Virtual machine warmup blows hot

and cold. CoRR abs/1602.00602 (2016)
19. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation.

In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. OOPSLA 2007, New York, NY, USA,
Association for Computing Machinery, pp. 57–76 (2007)

20. Adl-Tabatabai, A.R., Cierniak, M., Lueh, G.Y., Parikh, V., Stichnoth, J.: Fast, effective code
generation in a just-in-time Java compiler. 33, 280–290 (1998)

21. Dragos, I.: Compiling Scala for Performance. PhD thesis, Ëcole Polytechnique Fédérale de
Lausanne (2010)

22. Ivanov, V.: JVM JIT-compiler overview. http://cr.openjdk.java.net/∼vlivanov/talks/2015 JIT
Overview.pdf at Oracle. Accessed 31 May 2021

https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/3-540-54444-5_100
https://doi.org/10.1007/978-3-030-60508-7_24
http://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf
http://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf

Testing Vehicle-Mounted Systems: A
Stepwise Symbolic Execution Approach

for OSEK/VDX Programs

Haitao Zhang(B) and Bowen Pu

School of Information Science and Engineering, Lanzhou University,
Lanzhou 730000, China

{htzhang,pubw20}@lzu.edu.cn

Abstract. OSEK/VDX is a standard for automotive embedded sys-
tems, and it has been widely adopted by many automotive companies
to develop a vehicle-mounted system. However, the ever increasing com-
plexity of developed OSEK/VDX multi-tasking programs has created
a challenge to ensure reliability. This paper presents an efficient app-
roach that applies a new variety of symbolic execution called stepwise
symbolic execution to explore paths included in an OSEK/VDX multi-
tasking program for checking its reliability. A series of experiments have
been carried out to investigate the performance of the approach based
on an implemented prototype tool. The experimental results indicate
that the proposed approach is capable of performing a much more wider
and deeper exploration on the OSEK/VDX programs compared with the
existing testing techniques.

Keywords: Symbolic execution · OSEK/VDX · Sequentialization

1 Introduction

With the development of automotive industry and electronic technology, vehicles
become more intelligent benefiting from the widespread usage of vehicle-mounted
software systems. Even so, the automotive intelligence is still in a primary level,
because manufacturers use different platforms and specifications in the devel-
opment. To reunify the development standard of vehicle-mounted software sys-
tems, European automobile manufacturer association issues a standard called
OSEK/VDX [1] since 1994. The OSEK/VDX is a set of standards for real-time
architecture of automotive embedded systems, as a fusion of the German Open
Systems and their Interfaces for the Electronics in Motor Vehicles (OSEK) stan-
dard and the French Vehicle Distributed eXecutive (VDX) standard. Currently,
it has gained widespread usage in automotive manufacturers such as BMW,
Audi, and Volkswagen, and research groups such as the Institut de Recherche
en Communications et Cybernetique de Nantes (IRCCyN) and Toyohashi Open
Platform for Embedded Real-time Systems (TOPPERS).
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 205–219, 2022.
https://doi.org/10.1007/978-3-031-10363-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_15

206 H. Zhang and B. Pu

Fig. 1. Architecture of OSEK/VDX vehicle-mounted system.

In general, a developed OSEK/VDX vehicle-mounted system includes two
important components, one is operating system (OS), and the other one is pro-
gram. As illustrated in Fig. 1, a developed OSEK/VDX program contains multiple
tasks. When the program is loaded to run, the OSEK/VDX OS manipulates tasks
to execute on a processor in concurrent mode, in which a deterministic scheduling
policy [2] called static priority policy is responsible for scheduling tasks—a ready
queue with different priorities is in charge of determining the scheduling order of
tasks with the different or the same priorities. In addition, tasks can invoke applica-
tion interfaces (APIs) for requesting OSEK/VDX OS to support various services,
such as activate a suspended task dynamically. As a result of the concurrency and
dynamic scheduling of tasks, developers face a challenge to evaluate the reliability
of a developed OSEK/VDX program because of the complex executions.

Random testing [3] is currently considered as an automatic and practical solu-
tion in the automotive industry to check a developed OSEK/VDX program. The
random testing runs a given program with a random input in practical way and is
usually scalable to perform a deep exploration in the examination process [4]. How-
ever, it is hard to complete the exploration of all paths included in an OSEK/VDX
program with low cost, i.e., the probability of selecting particular inputs that cause
buggy behavior may be astronomically small since the range of behaviors cov-
ered by random testing is often vanishingly small in comparison to all the pos-
sible behaviors of the program [5]. In order to obtain a high-coverage, this paper
presents an approach that can perform a wide exploration for the deterministic
scheduler based OSEK/VDX concurrent programs based on symbolic execution
technique [6].

As a matter of fact, symbolic execution technique has got great development
and already been applied to detect different types of programs with the increas-
ing computation power of computers as well as the advances in theorem proving
and constraint solving technologies. For example, R. Majumdar and K. Sen show
a hybrid concolic testing method [4] that interleaves random testing with concolic
execution [7] to obtain both a deep and a wide exploration for sequential pro-
grams. In addition, for concurrent programs with non-deterministic scheduling

Testing Vehicle-Mounted Systems 207

behaviors, many existing symbolic execution methods have also been proposed
such as [8]. Unfortunately, these existing works are not suitable to deal with a
given OSEK/VDX program because it is a deterministic scheduler based con-
current program.

In order to make symbolic execution suitable in dealing with the deterministic
scheduler based OSEK/VDX concurrent programs, the approach presented in
this paper first translates a given OSEK/VDX program into a sequential model
by means of the work presented in [2]. After that, a new exploring technique
named stepwise symbolic execution is proposed to desire a high-coverage by
inheriting advantages of the existing symbolic execution methods. The stepwise
symbolic execution is a new variety of hybrid concolic testing, that takes the
breadth-first search concolic testing [7] to achieve a wide coverage, and then a
constraint solver based random testing is started from a state to achieve a precise
deep coverage when the concolic testing generates a test input over a time budget
from the state. According to the proposed approach, a prototype tool has been
built on top of CUTE [7]. Based on the prototype tool, a series of experiments
are conducted to investigate the performance of the stepwise symbolic execution
approach. In the conducted experiments, benchmarks are selected from papers
[2,9,10] and the advanced hybrid concolic testing technique [4] is considered
as a comparison object. The experimental results indicate that the proposed
approach is capable of performing a much more wider and deeper exploration
on the OSEK/VDX programs in comparison to the existing testing techniques.

There are four primary contributions in this paper: (i) the approach shown in
this paper expands the application scope of symbolic execution in the determinis-
tic scheduler based concurrent programs; (ii) a new variety of symbolic execution
called stepwise symbolic execution is proposed in this paper, which can make
symbolic execution more powerful in performing a high-coverage exploration on
the deterministic scheduler based concurrent programs; and (iii) the approach
can be considered as a guideline to evaluate other deterministic scheduler based
concurrent programs by using symbolic execution, such as the round robin con-
current programs and AUTOSAR concurrent programs.

Fig. 2. Structure of the OSEK/VDX OS and corresponding APIs.

208 H. Zhang and B. Pu

2 OSEK/VDX Background and Motivating Example

2.1 Scheduler of OSEK/VDX OS

A program developed on OSEK/VDX OS consists of multiple tasks, especially
OSEK/VDX OS supports two types of tasks in the development, i.e., extended
tasks and basic tasks. Extended tasks are able to synchronously execute via
events while the basic tasks are unable. As shown in Fig. 2, the states of an
extended task are switched on running, suspended, ready and waiting. A basic
task absent the waiting state in comparison to the extended tasks. In the schedul-
ing process, a deterministic scheduler called static priority scheduling policy is
in charge of scheduling tasks to execute on one processor, which supports Mix-
preemptive strategy (Full- and Non-preemptive strategies) and a ready queue
is used to organize the execution order of tasks. In addition, four APIs (e.g.,
TerminateTask, ActivateTask, Schedule and ChainTask) are provided by the
OSEK/VDX scheduler module for dynamically switching the states of tasks.

2.2 Running Example

The OSEK/VDX standard does not allow developers to create tasks dynamically
in the development of a program, i.e., all tasks are static and must be declared in
advance. As shown in Fig. 3, an OSEK/VDX program includes two files: a source
file and a configuration file. The source file can be coded in C programming lan-
guage, used to present the concrete behaviors of a program. The configuration file
contains all configuration data of a program. In the configuration file, the type of a

Fig. 3. Running example.

Testing Vehicle-Mounted Systems 209

task is set by the attribute Type with the value Basic or Extended. The priority of
a task is assigned by the attribute Priority with a signless integer, and a higher
priority task holds a higher value. Schedule is in charge of determine whether a
lower priority task can be preempted by a higher priority task, where Full and
Non stand for such preemption is allowed and forbidden, respectively. Autostart
is used to configure the initial states of tasks and holds two values True and False.
If a task within an OSEK/VDX program is configured as True, the task locates at
ready state when the program is loaded to run; otherwise, it locates at suspended
state.

Figure 3 illustrates an OSEK/VDX program to reveal the execution charac-
teristics of OSEK/VDX programs. The program consists of three tasks: contask,
plustask and minustask. Two functions Getspeed() and Identify(speed) are
called by contask in the program, where the function Getspeed() is to get the cur-
rent speed of vehicle, and the function Identify(speed) is to identify whether
the speed of vehicle should be decreased according to the condition of road and
the current speed, i.e., the identification of road condition is based on the machine
learning algorithms [11]. When the program is loaded to run on the OSEK/VDX
OS, contask will be first dispatched to execute since the attribute Autostart of
contask is configured as True in contrast with the tasks plustask and minustask.
After the executions of functions Getspeed() and Identify(speed), the API
ActivateTask(plustask) or ActivateTask(minustask) is invoked by contask in if-
else branches. For example, assume that the API ActivateTask(minustask) is
invoked by contask. After that, the OSEK/VDX scheduler responses to this API
invocation and then activates minustask (i.e., the state of minustask will be
transferred from suspended state to ready state). When the program runs here,
minustask will preempt the execution of currently running contask because the
attribute Schedule of contask is set to Full and minustask holds a higher pri-
ority. In the next step, minustask gets processor to run until the API Terminate-
Task() is invoked (TerminateTask() is used to terminate the execution of a running
task and the state of the running task will be switched to suspended state). Once
minustask is terminated, theOSEK/VDXschedulerwill assign processor resource
to contask again from its preempted point. Similarly, in the another branch, when
contask invokes APIActivateTask(plustask), plustask will preempt the execution
of contask and terminate itself by invoking TerminateTask().

Execution Characteristics. Based on the running example, the execution
characteristics of the OSEK/VDX programs are summarized below.

1. Tasks within an OSEK/VDX program are concurrently executed under the
scheduling of OSEK/VDX OS, and the running task can be explicitly deter-
mined by the OSEK/VDX scheduler.

2. Tasks can invoke APIs to change their states, and the invoked APIs can
dynamically update the scheduling order of tasks.

Owing to the concurrency and dynamic scheduling of tasks, ensuring the
reliability of the developed OSEK/VDX programs has become a challenge in

210 H. Zhang and B. Pu

the automotive industry. Next section will present an approach called stepwise
symbolic execution to alleviate this challenge.

3 Symbolic Execution for OSEK/VDX Programs

3.1 Overview

The approach proposed in this paper allows the existing symbolic execution
methods to successfully test the OSEK/VDX programs. To realize this target,
the approach first translate a given OSEK/VDX program into a sequential model
by means of a sequentialization technique presented in [2]. After that, a new
variety of hybrid concolic testing approach named stepwise symbolic execution
is proposed for desiring both a wide and a deep exploration by inheriting advan-
tages of the existing symbolic execution methods. Compared with the existing
hybrid concolic testing, the proposed approach takes the breadth-first search
concolic testing to achieve a wide coverage, and then a constraint solver based
random testing is started from a state to achieve a precise deep coverage when
the concolic testing generates a test input over a time budget from the state.

3.2 Sequentialization of OSEK/VDX Programs

In order to successfully use symbolic execution techniques to generate a rich
testing inputs for a developed OSEK/VDX program, the program is translated
into an equivalent sequential model in the preliminary stage. In this paper, the
sequentialization technique [2] is adopted to perform a sequential process. After
that, as shown in Fig. 4, the running example can be translated into a sequential
model which contains all execution traces of the running program. Based on

Fig. 4. Sequential model for the running example.

Testing Vehicle-Mounted Systems 211

the sequential model, the existing symbolic execution techniques can directly
explore the OSEK/VDX program and then generate a wide input for testing the
OSEK/VDX program. Note that the mapped APIs in the sequential model are
only for sequentialization process, which are omitted in the test generation by
using symbolic execution.

3.3 Background of Symbolic Execution Techniques

If an OSEK/VDX program is translated into a sequential model, it can obtain
both a deep and a wide exploration of the state space with the help of the existing
symbolic execution techniques such as classic symbolic execution [12], concolic
testing technique [7] and hybrid testing technique [4]. In the classic symbolic
execution, a program is formally represented as a tree Λ, where a node n in the
program tree Λ consists of an assignment statement block of the program, and
condition statements in the program correspond to the branches of the program
tree Λ, especially each branch signifies a constraint that determines a path p
of the program tree Λ. The definition of a path p is shown in Definition 1. In
the exploration process, symbolic variables are employed to execute the program
instead of concrete values of inputs. The goal of the classic symbolic execution is
to systematically solve symbolic constraints along paths for generating different
concrete values for inputs so that as many different paths as possible would be
taken. The classic symbolic execution can effectively handle a simple program
with high-coverage. Unfortunately, for large or complex programs, it is compu-
tationally intractable to precisely maintain and solve the constraints required
for test generation caused by the complex data structures and undecidable con-
straints.

Recently, a technique named concolic testing technique has been proposed as
a variant of symbolic execution. In contrast with the classic symbolic execution,
this technique is to simultaneously search a program with both concrete values
and symbolic variables in order to simplify the symbolic constraints generated
along a path by using the corresponding concrete execution. Even though the
technique can deal with the complex data structures as well as the constraints
that go beyond the solving ability of constraint solver, it is commonly limited
to small units of code and path lengths of at most about fifty thousand basic
blocks as a result of the capacity limitation of constraint solver [13].

Definition 1. A path p in a program tree Λ is an execution sequence p : n0
c1−→

n1
c2−→ · · · , ni−1

ci−→ni, · · · cp−→ np, where ni ∈ Λ is a state of path p consisting of
an assignment statement block, ci is a branch statement, n0 is the initial state,
np is the terminal or halt state, and p is the length of p.

Hybrid concolic testing technique is developed based on an interleaving explo-
ration between the traditional random testing and the concolic testing in order
to make symbolic execution more powerful. Compared with the concolic testing
technique, it starts exploration by performing the traditional random testing
and then the concolic testing is switched to carry out an exhaustive bounded

212 H. Zhang and B. Pu

depth search when the random testing is not capable of covering a new state of
a program. The hybrid testing technique substantially wants to take both deep
capability of the random testing and wide capability of the concolic testing to
achieve a high-coverage. However, the technique may miss the wide capability
when the random testing is hard to achieve a high-coverage and meanwhile the
concolic testing is invalid for solving the constraints along an uncovered path.

3.4 Stepwise Symbolic Execution

In this paper, a new symbolic execution technique named stepwise symbolic exe-
cution is developed for exploring large-scale OSEK/VDX programs by inheriting
the advantages of the existing symbolic execution techniques.

3.4.1 Exploration Mode
The stepwise symbolic execution explores a program by using both the concolic
testing and a special random testing in an interactive way. In the exploration
process, the breadth first search (BFS) based concolic testing is first started
to achieve a wide coverage, where the amount of constraints to be solved by
constraint solver is increased in a gradual manner along the states of paths. If
the concolic testing generates a test input from a state ni over a time budget
ξ, a restricted random testing is then started from the state ni to desire a deep
coverage by using a number of random inputs——the constraint solver is called
to generate λ random inputs under the constraints from the initial state n0 to
the state ni. Note that the time budget ξ is a threshold for limiting the running
time of constraint solver in each exploration, that should be smaller than the
disabled time of constraint solver.

Fig. 5. A simple program tree.

3.4.2 Detail Explanation with an Example
Figure 5 shows a simple program tree that consists of four paths: p1, p2, p3 and
p4. Since the BFS based concolic testing is first used to perform exploration in
the stepwise symbolic execution technique, one of concrete input values is first
employed to execute the program tree. Here, assume that the path p2 is taken
under the concrete input values. Then, the negative branch ¬c1 is considered as

Testing Vehicle-Mounted Systems 213

a constraint to generate new concrete values for input by means of constraint
solver, where suppose that the new concrete values trigger the path p4. In the
next round, the branch c2 is taken and used to construct a constraint formula
(c1 ∧ c2) for generating concrete input values for trigging the path p1 according
to the concrete execution of path p2. After that, the constraint formula (¬c1∧c3)
is constructed and used to feed constraint solver for making the path p3 being
tested.

Unfortunately, in contrast with the simple example shown in Fig. 5, a practi-
cal program is usually complex and large which would result in constraint solver
expensive in dealing with a constraint formula corresponding to a long path
under a short time. For example, assume that the used constraint solver is fast
to deal with one constraint but is expensive to handle more constraints, obvious
that the BFS based concolic testing is impossible to perform a full-coverage for
the example shown in Fig. 5 within a short time. To overcome this problem, the
restricted random testing is then launched to continue exploration.

The quintessence of restricted random testing is to generate some explicit
concrete values for input so that as many different paths as possible would be
saturated. For achieving this target, the constraint solver as a random gener-
ator is repeatedly called to produce a number of concrete input values with a
constraint formula until an uncovered path is taken or the number of produced
inputs is over a set random times λ, where the constraint formula is a conjunc-
tive form consisting of a sub-path and a negative constraints with regard to each
generated concrete values.

Compared with the traditional random testing, the restricted random testing
may need more time to complete random process, but it is more precise in
coverage process because its random process is under constraint restrictions.
For instance, assume that the shown example holds one input variable x and
the paths p2 and p4 are taken with the concrete input values {x = 3} and
{x = 6} respectively after first round of the BFS based concolic testing, i.e.,
the constraints corresponding to branches c1 and ¬c1 were solved to generate
concrete input values for variable x. If the restricted random testing is considered
to cover path p1 in the next step, the constraint formula (c1 ∧ (x �= 3)) is then
passed to constraint solver.

Here, suppose that the constraint solver specifies {x = 2} but the concrete
input value of variable x is still not able to trigger the path p1. For this situation,
the constraint solver will be called again to generate a new input value for
variable x with the constraint formula (c1 ∧ (x �= 3) ∧ (x �= 2)). Obviously, the
restricted random testing is possible to trigger the path p1 by repeatedly calling
constraint solver to generate a different concrete input for variable x.

3.4.3 Algorithm of Stepwise Symbolic Execution
Once a given OSEK/VDX program is translated into a sequential model, it
is possible to convert the sequential model into a program tree by unfolding
loops as κ branches. After that, the stepwise symbolic execution is started to
generate enough test suite for the given OSEK/VDX program. The key process

214 H. Zhang and B. Pu

of the stepwise symbolic execution has been abstracted as a formal algorithm
which is shown in Algorithm 1. The algorithm holds four parameters Λ, ξ, λ,Ψ as
input and returns an output Γ, where Λ is program tree of a given OSEK/VDX
program, ξ and λ are the limitations for the running time of concolic testing
and the times of restricted random testing in each exploration respectively, Ψ
is the given limitation used to terminate the algorithm such as the amount of
running time and coverage rate, Γ = {(τ1, p1), (τ2, p2), · · · , (τi, pi)} is a set used
to record the generated test input τi and its covered path pi. In the algorithm,
the function Execute(Λ, τi) executes a program tree Λ with the input τi and

Algorithm 1. Key processes of stepwise symbolic execution
Require: Λ ξ λ Ψ
Ensure: Γ
1: declare a variable c := 0, a variable i = 0 and a set P := {}, where c is used to

count running time, P is in charge of recording execution path p, i is index;
2: generate a concrete values for input τi by using random testing
3: pi := Execute(Λ, τi);
4: P := P ∪ {pi}, Γ := Γ + {(τi, pi)};
5: Δ := Explore(Λ, n0), where n0 is the root node of program tree Λ;
6: initialize a queue Q, Q.Enqueue(Δ), n := Q.Dequeue();
7: while Q.isEmpty() �= false and Ψ is true do
8: if c < ξ then
9: i++;

10: ψ := Formula(P, n);
11: τi := Solver(ψ);
12: c := SolveT ime(ψ);
13: pi := Execute(Λ, τi);
14: if P ∩ {pi} = � then
15: P := P ∪ {pi}, Γ := Γ + {(τi, pi)};
16: end if
17: Δ := Explore(Λ, n), Q.Enqueue(Δ);
18: n := Q.Dequeue(), Δ := Explore(Λ, n)
19: Q.Enqueue(Δ);
20: n := Q.Dequeue();
21: else

c := 0, j := 0;
22: while j < λ do
23: τi := Solver(ψ), pi := Execute(Λ, τi);
24: if P ∩ {pi} = � then
25: P := P ∪ {pi}, Γ := Γ + {(τi, pi)}, i++;
26: end if
27: ψ := Restrict(ψ, τi);
28: j++
29: end while
30: end if
31: end while
32: return Γ;

Testing Vehicle-Mounted Systems 215

returns an executed path pi from program tree Λ. Δ is a set with order used
to record nodes of Λ that is returned by function Explore(Λ, n), where the
executed node is in front of the unexecuted node, and returned nodes by function
Explore(Λ, n) are the children nodes of node n. The function Formula(P, n)
is used to extract the sub-path (n0, · · · ,n) from the executed path set P and
to translate the extracted sub-path into constraint formula ψ. The function
Solver(ψ) is in charge of negating the last condition of ψ and calling constraint
solver to return a concrete values for input τi. The function SolveT ime(ψ) is
used to count the solving time of constraint solver in order to realize the switch
from concolic testing to restricted random testing. The function Restrict(ψ, τi)
is to construct the conjunction constraint formula ψ with τi for supporting the
restricted random testing.

4 Experiment and Evaluation

4.1 Experiments and Benchmarks

According to the presented approach, a prototype toolkit is implemented based
on the Visual Studio 2015 with about 7600 lines of C++ code. A series of exper-
iments are conducted to evaluate the efficiency and capability of the proposed
approach by using the implemented toolkit. The used ten benchmarks are ran-
domly selected from the sixty OSEK/VDX programs that are shown the papers
[2,9,10] in order to desire a relatively fair evaluation. In addition, the pure ran-
dom testing technique and hybrid concolic testing technique is considered as a
comparison object.

Based on the selected benchmarks, two types of experiments are carried out
to investigate the proposed approach on ability of path coverage and consump-
tion of time. In the first type of experiments, the path coverage percentage is
fixed to 80% and then the consumption on time is set as an investigated point.
Compared with the first experiments, the time budget is fixed to 2000 seconds
in the second type of experiments, but the path coverage rate is investigated.
All of the experiments are conducted on the Intel i7-3770 CPU with 4G RAM.
The experimental results for the first experiments and the second experiments
are listed in Table 1 and Table 2, respectively. In the tables, #v is the number
of symbolic variables, #b is the number of branches, and #l is the number of
loops. “memory” and “time” are the memory consumption and time consump-
tion measured in MByte and seconds (s), respectively. “coverage” is a percentage
of the number of covered paths to the amount of paths included in a program.
“PRT”, “HCT” and “SSE” stand for the pure random testing (PRT), hybrid
concolic testing (HTC) and stepwise symbolic execution (SSE). Furthermore,
in the conducted experiments, the loop bound κ is set to 10, the time budget ξ
and random times λ in the stepwise symbolic execution approach are set to 2s
and 20, respectively.

216 H. Zhang and B. Pu

4.2 Experimental Results

The experimental results shown in Table 1 indicate that the pure random testing
is almost impossible to achieve the fixed path coverage (80%) within 3000 s. In
comparison to the pure random testing, the hybrid concolic testing technique
and the stepwise symbolic execution approach are both capable of achieving a
high-coverage (80%) within a short time (<300 s) when the explored benchmarks
hold a few of symbolic variables and branches such as the benchmarks 1 and 2
shown in Table 1. The high-coverage benefits from the concolic testing, i.e., the
explored benchmarks are not complex that allows constraint solver to quickly
generate a precise value for input. However, alongside the increasing number
of symbolic variables, branches as well as loops, the compared hybrid concolic
testing technique takes a long time (>2000 s or >3000 s) to complete the fixed
path coverage rate such as the benchmarks 4 and 5 shown in Table 1. Compared
with this technique, the stepwise symbolic execution is a cost-effective technique,
that can successfully active the goal within a short time (< 2000 s) except the
benchmark 5 shown in Table 1. This is because, the compared hybrid testing
technique uses the traditional random testing to explore the benchmarks, which
is expensive to achieve a wide exploration since the random inputs usually result
in the same paths being taken. In contrast, the stepwise symbolic execution takes
the constraint solver based random testing to produce a number of concrete
input values when the concolic testing runs out of the time budget, that is more
cost-efficient owning to the precise search.

As shown in Table 2, the pure random testing is almost impracticable to com-
plete the exploration of all paths within 2000 s. In contrast with the pure random

Table 1. Comparison: PRT, SSE and HCT under the fixed coverage (80%)

Sequentialization PRT HCT SSE

No. #v #b #l Time (s) Memory (Mb) Time (s) Time (s) Time (s)

1 14 28 0 0.2 3.9 >3000 570 500

2 16 49 0 0.7 5.1 >3000 980 843

3 24 10 4 1.1 6.2 >3000 1897 1732

4 13 32 7 1.4 7.7 >3000 >2000 1984

l5 12 12 9 2.1 8.2 >3000 >3000 >2000

Table 2. Comparison: PRT, SSE and HCT under the fixed time (2000 s)

Sequentialization PRT HCT SSE

No. #v #b #l Time (s) Memory (Mb) Cov. (%)a Cov. (%) Cov. (%)

1 8 21 0 0.8 3.1 16.4 100 100

2 24 17 1 1.3 3.8 14.3 72.4 86.4

3 13 19 4 1.4 4.4 10.2 64.1 74.1

4 18 20 5 1.7 4.7 9.1 56.6 63.9

5 19 18 7 2.4 4.9 7.4 47.8 58.4
acov. stands for coverage

Testing Vehicle-Mounted Systems 217

testing, the hybrid concolic testing technique as well as the stepwise symbolic
execution have the ability to obtain a full-coverage (100%) under 2000 s if the
explored benchmarks are not large such as the benchmark 1. The outstanding
ability is performed by the concolic testing, since the explored benchmarks just
contain a few of symbolic variables, branches and loops which are not beyond the
capability of the concolic testing. However, the compared hybrid concolic testing
technique will perform a low-coverage when the benchmarks hold more symbolic
variables, branches and loops, especially the coverage rate drops quickly. Com-
pared with this technique, the coverage rate of the stepwise symbolic execution
approach is also dropped with the growth of complexity of benchmarks, but the
coverage rate is greater than the hybrid concolic testing, which benefits from the
constraint solver based random testing.

Overall, it is easy to find that the stepwise symbolic execution is an efficient
technique that is capable of performing both a wide and a deep exploration for
large-scale OSEK/VDX programs compared with the pure random testing and
the hybrid concolic testing technique.

5 Related Work

With the development of constraint solver [14,15], symbolic execution has won
much attention as an effective technique benefiting from its high-coverage in
test suite generation. Currently, many advanced methods have already been
proposed for making symbolic execution more practical in the software testing.
For example, in the scope of solving constraints, the automatic tools CUTE [7]
and KLEE [16] use an optimization strategy to avoid the similar constraints to
be repeatedly solved by constraint solver. The optimization strategy is based
on the characteristic that many paths usually hold the same constraints which
will lead to the similar inputs to be generated by constraint solver. Therefore,
by using this characteristic, the input results generated by the previous same
constraints can be reused to improve the speed of constraint solving in the next
solving process. Compared with these existing works, this paper presents a new
testing approach which is a new variety of symbolic execution techniques.

Systematically explore a complex program that hold a large number of
branches and loops is a challenge in symbolic execution, since these branches
and loops will make the path space in exponential growth. To overcome this
challenge, some advanced techniques have been proposed based on the heuristic
techniques and sound program analysis techniques. For example, the paper [17]
shows a heuristic technique that takes the static CFG of a given program to
guide the exploration toward the path closest from an uncovered instruction.
In the technique, exploration process favors the visited statements that were
run the fewest times in previous. In contrast with the heuristic techniques, a
technique [18] for reducing the number of paths is proposed based on the sound
program analysis techniques. In the technique, the select expression is used to
combine branches. Furthermore, a counter-example guided refinement [19] based
lazy test generation technique is presented in paper [20]. The technique employs

218 H. Zhang and B. Pu

the concolic symbolic execution to explore a program, but a trustworthy function
called in the program such as a STL function is abstracted as an unconstrained
formula in order to reduce the paths from the function to be explored. Currently,
these advanced techniques are not taken into account in this paper. In the future,
these advanced techniques will be applied in the stepwise symbolic execution for
implementing a more efficient tool. Besides the shown existing works, there have
been many methods that apply formal method such as model checking to ver-
ify the developed OSEK/VDX OS and programs such as [21,22]. These existing
works are different from this paper, because this paper focuses on the generation
of testing inputs rather than model checking.

6 Conclusion and Future Work

This paper presents a new stepwise symbolic execution approach that is in a
position to perform both a wide and a deep exploration for the determinis-
tic scheduler based OSEK/VDX multi-tasking programs. In the future, a more
complete tool will be developed based on current prototype tool.

References

1. Lemieux, J.: Programming in the OSEK/VDX Environment. CMP, Suite 200
Lawrence, KS 66046, USA (2001)

2. Zhang, H., Cheng, Z., Li, G., Liu, S.: autoC: an efficient translator for model
checking deterministic scheduler based OSEK/VDX applications. Sci. China Inf.
Sci. 61(5), 1–15 (2017). https://doi.org/10.1007/s11432-016-9039-4

3. Zamli, K.Z., Din, F., Kendall, G., Ahmed, B.S.: An experimental study of hyper-
heuristic selection and acceptance mechanism for combinatorial t-way test suite
generation. Inf. Sci. 399, 121–153 (2017)

4. Majumdar, R., Sen, K.: Hybrid concolic testing. In: International Conference on
Software Engineering (ICSE), pp. 416–426 (2007)

5. Offutt, A.J., Hayes, J.H.: A semantic model of program faults. ACM SIGSOFT
Softw. Eng. Notes 21(3), 195–200 (1996)

6. Cadar, C., et al.: Symbolic execution for software testing in practice-preliminary
assessment. In: International Conference on Software Engineering (ICSE), pp.
1066–1071 (2011)

7. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
The Joint 10th European Software Engineering Conference (ESEC) and 13th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-13), pp.
263–272 (2005)

8. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for auto-
mated real-world software testing. In: European Conference on European Confer-
ence on Computer Systems, pp. 183–198 (2011)

9. Zhang, H., Li, G., Sun, D., Lu, Y., Hsu, C.: Verifying cooperative software: a
SMT-based bounded model checking approach for deterministic scheduler. J. Syst.
Architect. 81, 7–16 (2017)

10. Zhang, H., Li, G., Cheng, Z., Xue, J.: Verifying OSEK/VDX automotive appli-
cations: a Spin-based model checking approach. Softw. Test. Verification Reliab.
28(3), 1662 (2018)

https://doi.org/10.1007/s11432-016-9039-4

Testing Vehicle-Mounted Systems 219

11. Gass, S.I., Fu, M.C.: Machine learning. Encyclopedia of Operations Research and
Management Science, Springer, Boston, MA (2013)

12. Khurshid, S., PĂsĂreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

13. Jhala, R., Majumdar, R.: Path slicing. In: Programming Language Design and
Implementation, pp. 38–47 (2003)

14. De Moura, L., Bjorner, N.: Satisfiability Modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

15. Ábrahám, E., Kremer, G.: Satisfiability checking: theory and applications. In: De
Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 9–23. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41591-8 2

16. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Conference on
Operating Systems Design & Implementation, pp. 209–224 (2009)

17. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In:
IEEE/ACM International Conference on Automated Software Engineering, pp.
443–446 (2008)

18. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic crosschecking of floating-
point and SIMD code. In: Conference on Computer Systems, pp. 315–328 (2011)

19. Segelken, M.: Abstraction and Counterexample-Guided Construction of ω-
Automata for Model Checking of Step-Discrete Linear Hybrid Models. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 46

20. Majumdar, R., Sen, K.: LATEST: lazy dynamic test input generation. In: Technical
Report UCB/EECS-2007-36, EECS Department, University of California (2007)

21. Deifel, H., Göttlinger, M., Milius, S., Schröder, L., Dietrich, C., Löhmann, D.:
Automatic verification of application-tailored OSEK kernels. In: Formal Methods
in Computer Aided Design, pp. 196–203 (2017)

22. Waszniowski, L., Jan, K., Zdenek, H.: Case study on distributed and fault tolerant
system modeling based on timed automata. J. Syst. Softw. 82(10), 1678–1694
(2009)

https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/978-3-319-41591-8_2
https://doi.org/10.1007/978-3-540-73368-3_46

Dynamic Specification Mining Based
on Transformer

Ying Gao1, Meng Wang1(B), and Bin Yu2

1 Cyberspace Security and Computer College, Hebei University,
Baoding 071000, China
wangmnxd@163.com

2 Institute of Computing Theory and Technology,

Xidian University, Xi’an 710071, China

Abstract. Software specifications play an important role in improv-
ing the quality of software. In order to mine software specifications,
many automated technologies have been proposed based on finite-state
automaton (FSA). Among these technologies, the representative one is
the Deep Specification Miner (DSM) using deep learning to conduct spec-
ification mining. However, the quality of the mining specifications is not
very accurate due to the long-term dependence and other inherent defects
of the Recurrent Neural Networks (RNNs) used in DSM.

In this paper, we propose a dynamic specification mining approach
based on the Transformer framework to improve accuracy. With this app-
roach, we improve DSM by using the Transformer framework instead of
RNNs to capture global dependencies between input and output. Specifi-
cally, taking execution traces of software systems as input, a Transformer
model can be constructed. Meanwhile, a heuristic algorithm is used to
find a subset of traces that can represent all traces. Further, feature val-
ues of trace prefixes of each trace in the trace subset are calculated by
the Transformer model, and then they are input into clustering algo-
rithms. Finally, some finite-state automata (FSAs) can be obtained by
the clustering algorithms, and according to the F1-measure of each FSA,
an FSA with the best index can be regarded as the final model. The
proposed approach has been implemented in a tool named DSM-T and
experiments include 11 target classes that have been conducted to evalu-
ate the effectiveness of the approach. Experiments show that the average
F1-measure of our method reaches 93.13%, which is 21.16% higher than
DSM.

Keywords: Transformer · Specification mining · Finite-state
machine · Attention mechanism · Formal method

1 Introduction

Software specifications are of great importance in the software development life
cycle (SDLC). They can help to improve the efficiency of software development,
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 220–237, 2022.
https://doi.org/10.1007/978-3-031-10363-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_16

Dynamic Specification Mining Based on Transformer 221

ensure software quality, and guide the use of a software system. Especially, for
large-scale software systems, the role of complete specifications is more obvious.

However, software specifications are usually ignored by designers due to hard
deadlines and ‘short-time-to-market’ requirements. This results in the lack of
software specifications. Moreover, software specifications are usually not updated
by developers as software evolution, which leads to the inconsistency between
a software system and its software specifications. In these cases, the quality of
requirement specifications is generally poor.

In order to verify software systems using formal methods such as model check-
ing and theorem proving, software specifications should be specified in a formal
way. Furthermore, it is very time-consuming and difficult to manually write for-
mal specifications since this work requires developers to have the requisite skills
and experience. Thus, it is necessary to mine formal specifications automatically.

Nowadays many techniques have been proposed for automatically mining
interesting specifications in software systems. These techniques can be roughly
classified into two categories: static specification mining [21,22] and dynamic
specification mining [2,6]. The former mines software specifications directly from
the source code of software systems without executing these systems, but it
cannot deal with large-scale systems well. Whereas the latter mines software
specifications from execution traces of systems, where the mined specifications
are usually expressed in temporal logic formulas [9], or finite-state automaton
(FSA) [1,8]. However, the quality of mined specifications is not perfect yet.

In 2018, Tien-Duy et al. [17,18] proposed Deep Specification Miner (DSM)
based on deep learning in order to mine high-quality FSA-based specifications.
In DSM, a rich set of execution traces is used to train a language model based
on Recurrent Neural Networks (RNNLM). However, the RNNLM has its inher-
ent defects. On the one hand, it cannot be calculated in parallel because the
calculation of the hidden layer state at time t depends not only on the sentence
input word Xt at time t, but also on the hidden layer state S(t−1) at time t − 1.
However, the latter can only be sequentially transmitted through the informa-
tion transmission channel. On the other hand, it cannot solve the long-term
dependence problem. After many stages of propagation, the gradient disappears
or explodes.

In this paper, we improve the DSM and propose a dynamic specification
mining approach using Transformer technology [23]. Here we apply Transformer
to the field of specification mining and use it to capture temporal relationships
among methods in execution traces of a program. First, we need to input the
target software into the test case generation tool to generate test cases that
cover as many paths as possible in the software. Then, we execute test cases and
get rich execution traces. The Transformer model is trained by execution traces.
At the same time, in order to improve mining efficiency, we extract a subset of
traces that can cover all adjacent method pairs of execution traces. Next, we
input the trace subset into the Transformer model, obtaining the feature values
of trace prefixes of each trace in the trace subset, and then the feature values are
input into the k-means, hierarchical, and dbscan clustering algorithms to obtain

222 Y. Gao et al.

multiple FSAs. We choose one FSA that best expresses software behavior as the
final model.

The main contributions of our work are four-fold.

(1) An approach for applying Transformer technology in the field of Natural
Language Processing (NLP) to dynamic specification mining is proposed.

(2) We extend clustering algorithms used in DSM with the dbscan clustering
algorithm which does not need to enter the number of clusters in advance.

(3) We have implemented our approach in a tool DSM-T1.
(4) We evaluate our approach on 11 target library classes presented in [17]. The

experimental results show the effectiveness of our approach. The average F1-
measure of the results reaches 93.13%, which is superior to the most related
tools: k-tail [1], SEKT [15], CONTRACTOR++ [15], TEMI [15], and DSM
[17].

The remainder of the paper is organized as follows. Section 2 introduces the
preliminary knowledge of this work. Section 3 presents our dynamic specification
mining approach. We evaluate our approach in Sect. 4. Section 5 presents the
related work and Sect. 6 concludes the paper.

2 Preliminary

2.1 Seq2seq Model

Seq2seq is a model that transforms one sequence into another, and it is widely
used in the NLP field. Figure 1 is the most abstract representation of a common
seq2seq model using two RNNs.

Fig. 1. Seq2seq model with RNNs

It can be seen the seq2seq model is composed of the encoder-decoder architec-
ture. The encoder converts the input sequence X = 〈x1, x2〉 into an intermediate
semantic vector C through the hidden layer state hi at each moment, that is,

1 https://github.com/gaoying11/Dynamic-Specification-Mining-based-on-
Transformer.

https://github.com/gaoying11/Dynamic-Specification-Mining-based-on-Transformer
https://github.com/gaoying11/Dynamic-Specification-Mining-based-on-Transformer

Dynamic Specification Mining Based on Transformer 223

C = q(h1, h2), where q represents some kind of nonlinear neural network. The
decoder generates the output of the current moment according to the semantic
vector C, the state and the output of the hidden layer at the previous moment,
that is, yj = g(yj−1,Hj−1, C), where g is a nonlinear multi-layer neural network.

Since the encoder stores all the input sequence information into a fixed
semantic vector C, the information which is previously entered will be covered by
the information entered later. Thus, C may not completely represent the infor-
mation of the whole sequence. Besides, the encoder-decoder framework considers
each word in the input sequence with the same weight, and the importance of
different inputs is not reflected. Take the machine translation task as an exam-
ple. If we want to translate German “guten morgen” to English “good morning”.
When translating the target sequence word “good”, the word “guten” has the
greatest impact and the impact of other words should be very small.

2.2 Attention Mechanism

Because of the limitation of the encoder-decoder, an attention mechanism is
proposed [4]. The core of the attention mechanism is the ability to selectively
focus on useful parts of the input sequence.

Fig. 2. Seq2Seq model with attention mechanism

The encoder-decoder model with an attention mechanism can learn the
importance of each element from the sequence, and then combine the elements
according to their importance. This indicates that the encoder will obtain mul-
tiple semantic vectors, and different semantic vectors are composed of differ-
ent sequence elements combined with different weight parameters. As shown in
Fig. 2, αij can be regarded as a probability, reflecting the importance of hj . The
higher the value of αij , the greater the impact of the hidden layer hj on the
output results. In this way, the semantic vector C is obtained by the weighted
summation of each element according to its importance.

224 Y. Gao et al.

2.3 Transformer Model

The Transformer was proposed by Google in [23] for machine translation tasks in
2017. Since then, the remarkable effect of the Transformer in many specific tasks
has caused considerable repercussions. The Transformer is also composed of an
encoder and a decoder. However, it abandons the commonly used RNNs in the
traditional encoder-decoder framework and adopts a full attention structure.
In this way, it not only solves the long-term dependency problem caused by
the traditional encoder-decoder framework during encoding, but also avoids the
sequential structure of RNNs to achieve parallel computing.

3 Dynamic Specification Mining Based on Transformer

In this section, we present an approach based on Transformer to dynamically
mining specifications expressed in FSA.

Fig. 3. Overview of our approach

As shown in Fig. 3, the core of our approach includes six steps: trace generat-
ing, Transformer model learning, trace sampling, feature extraction, clustering
analysis and model selection. The details of the specification mining approach
are explained in the following subsections.

3.1 Trace Generating

As in [17], we use the test cases generated by Randoop, a test case generation
tool. Randoop is a unit test generator for Java. The tool generates test cases
through random tests. We collect rich execution traces by executing test cases,
that is, obtaining the calling sequence between methods. A trace tr can be
expressed as tr = 〈f1, f2, ..., fn〉, where fi (1 ≤ i ≤ n) is a method call.

Dynamic Specification Mining Based on Transformer 225

Fig. 4. Top-level view of the Transformer

3.2 Transformer Model Learning

In general, we want to use the Transformer to achieve the purpose of using the
current method prefix to predict the next method in the trace.

As shown in Fig. 4, taking an execution trace 〈〈START 〉, StackAr,makeE
mpty, push, top, 〈END〉〉 as an example, where 〈START 〉 and 〈END〉 represent
the start and end marks of the trace respectively. If the current is the start flag,
then the next method we want to predict is StackAr. If the current method
prefix is 〈StackAr〉, then the next predicted method should be makeEmpty. By
analogy, it can be found that the output sequence is the result of shifting the
input sequence to the left by one bit. Until 〈END〉 is predicted.

Trace Preprocessing. In order to train the Transformer model, it is neces-
sary to preprocess all execution traces. First, a method dictionary MI is built
to map each method mh appearing in the input trace set to a method index i
where i ∈ N . That is, MI[mh] = i. Accordingly, each trace can be converted
into a sequence of method indexes. The Transformer model we want to train
only considers execution traces of a fixed length. It is assumed that the fixed
length is N . Then, for a trace longer than N , we only take the first N method
indexes in the trace index sequence as training data. For a trace shorter than
N , we use 0 to fill the trace index sequence to the specified length N . As shown
in Fig. 5, we suppose the trace set we deal with is TR = {tr1, tr2, tr3}, where
tr1 = 〈〈START 〉, StackAr, top,mE, tAP, top,mE, 〈END〉〉, tr2 = 〈〈START 〉,
StackAr,mE, push, tAP, top, push, top, 〈END〉〉 and tr3 = 〈〈START 〉,
StackAr,mE, push, top, 〈END〉〉. Among them, mE means method
makeEmpty, tAP means method topAndPop. A method dictionary MI is
created which maps methods 〈START 〉, StackAr, top, mE, tAP , 〈END〉
and push to method indexes from 1 to 7, respectively. Thus, tr1, tr2 and
tr3 can be converted into method index sequence tri1 = 〈1, 2, 3, 4, 5, 3, 4, 6〉,
tri2 = 〈1, 2, 4, 7, 5, 3, 7, 3, 6〉 and tri3 = 〈1, 2, 4, 7, 3, 6〉. We assume the fixed
length N of a trace we are processing is 8. Then tri2 is truncated into sequence
〈1, 2, 4, 7, 5, 3, 7, 3〉 and tri3 becomes 〈1, 2, 4, 7, 3, 6, 0, 0〉 by filling 0 in the rest of
positions.

Training the Transformer Model. The framework of the Transformer model
is shown in Fig. 6. It contains Embedding Layer, Positional Embedding, Encoder
component, Decoder component and Softmax Layer. By taking a preprocessed
trace tri = 〈f1, f2, ..., fn〉 in the trace set and a predicted trace prefix trio =

226 Y. Gao et al.

Fig. 5. Data processing.

〈f ′
1, f

′
2, ..., f

′
i〉 as input, the Transformer model predicts the next called method

after trio. In practice, the model calculates a vector Ptrio
= 〈Pm1 , Pm2 , ..., Pmk

〉,
where m1, m2, ..., mk are all methods appearing in the trace set, and Pmj

(1 ≤ j ≤ k) represents the probability of occurrence of method mj after trio. Then
the index of method mh i.e., MI[mh] with the highest probability Pmh

is chosen
and added to the predicted trace prefix, i.e. tri+1

o = 〈f ′
1, f

′
2, ..., f

′
i ,MI[mh]〉. The

framework is explained in the following.

Fig. 6. The framework of the Transformer model

Embedding Layer. For a method index sequence generated by trace preprocess-
ing, a word vector with dimension d is generated for each method in the sequence
using the word embedding algorithm. Thus, all word vectors for methods in the
trace form a matrix Words with dimension N × d, where N is the fixed length
of a trace in the Transformer model process.

Dynamic Specification Mining Based on Transformer 227

Positional Embedding. Since the Transformer relies solely on the attention mech-
anism, no positional information is included in the model. We adopt the formula
proposed in [23] that can calculate the position information in the sequence.
And the word order information is combined with the word vector to achieve
the purpose of enhancing the input, so that the model has the position informa-
tion. Moreover, the formula can be applied to sequences of arbitrary length.

For a method at position pos (0 ≤ pos < N) in the trace, a positional
embedding vector PE with dimension d which is the same as the dimension of
the word vector can be calculated using the following formula:

PE(pos,2i) = sin
pos

1000
2i
d

,

PE(pos,2i+1) = cos
pos

1000
2i
d

.
(1)

where i (0 ≤ i < d/2) is an integer, PE(pos,2i) and PE(pos,2i+1) calculate the
value at 2i (even-numbered dimension) and 2i + 1 (odd-numbered dimension)
when the vector PE is at position pos. Positions of all methods in a trace also
form a matrix PES with dimension N × d. Then we obtain the true matrix
representation of a trace by adding matrix Words and PES.

Encoder Component. It is composed of multiple encoders, and each encoder
contains a multi-head self-attention layer and feed forward layer. The multi-
head self-attention layer contains multiple self-attention heads. When encoding
a specific method in the input trace, a single self-attention head can help to view
and calculate the degree of correlation with other methods in the trace. Multiple
self-attention heads allow the model to focus on different aspects of information.
By integrating all aspects of information obtained from all self-attention heads,
more abundant information can be captured. The feed forward layer is mainly
used for non-linear transformation.

Decoder Component. It is composed of multiple decoders. In addition to the
multi-head self-attention layer and feed forward layer, there is a multi-head
attention layer in each decoder. The attention layer associates a source trace
with a target trace and calculates the correlation of each method in the tar-
get trace to each method in the source trace, where a source trace is an input
sequence after being processed by the Encoder component, and a target trace is
an output sequence composed of methods with the highest probability of occur-
rence in each prediction before.

Softmax Layer. The final output of the decoder component will be projected
into a logits vector. Here, our model has learned N different methods from the
trace set, so the logits vector is a vector of length N . Each cell corresponds to
the score of a method. The softmax function turns the score into a probability.
The cell with the highest probability is selected, and its corresponding method
is used as the output of the round.

228 Y. Gao et al.

3.3 Trace Sampling

In order to improve the efficiency and reduce the cost of specification mining,
we select a subset of traces that can represent the set of all traces. Intuitively,
we look for the smallest trace subset which can cover all adjacent method pairs
appearing in the set of all traces. For a trace tr = 〈f1, f2, ..., fn〉, we call (fi, fi+1)
(1 ≤ i < n) as the pair of methods appearing in trace tr.

Fig. 7. (a) Set TR of three traces (b) Set TR′ of two traces

Example 1. As shown in Fig. 7(a), there are 12 method pairs in set TR of three
traces, namely {(〈START 〉, StackAr), (StackAr,mE), (mE, push), (push, tA
P), (tAP, top), (top, 〈END〉), (StackAr, top), (top,mE), (mE, tAP), (mE, 〈E
ND〉), (top, push), (push, top)}. Actually, set TR′ of two traces in Fig. 7(b)
contains the same method pairs as in Fig. 7(a). Therefore, we can reduce the
three traces in Fig. 7(a) to the two traces in Fig. 7(b).

We use the same sampling strategy as DSM. To obtain a subset from all
traces, we record the method pairs that appear in the set of all traces and the
number of traces in which the method pair appears. From them, we select the
method pair with the least number of traces and select the shortest one of the
traces in which the method pair appears to be added to the subset of traces. Next,
the method pair that does not exist in the trace subset and has the least number
of traces appearing in the trace set is selected for a new round of sampling. Until
the trace subset contains all method pairs in the execution trace.

Through the experiment, we found that the quality of the final model
obtained by using all traces to extract feature values compared to using a subset
of traces is very close, so a subset of traces can be extracted by considering the
adjacency pairs.

Dynamic Specification Mining Based on Transformer 229

3.4 Feature Extraction

In order to provide more information to the clustering algorithms, we take a
combination of values of two types as the feature value. In this step, we take
the trace subset obtained in Subsect. 3.3 and the Transformer model obtained
in Subsect. 3.2 as input. First, each trace in the trace subset is preprocessed
to an index sequence with a fixed length N . Then taking the index sequence
and a predicted trace prefix trio = 〈f ′

1, f
′
2, ..., f

′
i〉 as input of the Transformer

model, a vector Ptrio
= 〈Pm1 , Pm2 , ..., Pmk

〉 containing the probability of each
method mr (1 ≤ r ≤ k) appearing in the trace set being called after trio can
be calculated. Further, logarithm processing is performed on each probability
value in the vector to obtain the value of the first type log(Ptrio

) as shown in
Table 1. The value of the second type Ftrio

= 〈Fm1 , Fm2 , ..., Fmk
〉 is determined

by the position where each method mr (1 ≤ r ≤ k) appears in trio. If method
mr appears just one time at position j in trio, the value is j (Fmr

= j); and
if method mr appears multiple times in trio, the average value of the multiple
positions is chosen; otherwise, if method mr does not appear in trio, the value is
0 (Fmr

= 0).

Table 1. Feature values

Feature Value

log(Ptrio
) 〈log(Pm1), log(Pm2), ..., log(Pmk)〉,

where m1, m2, ..., mk are all methods
appearing in the trace set and
Pmr (1 ≤ r ≤ k) is the probability that
mr is called after trio.

Ftrio
〈Fm1 , Fm2 , ..., Fmk〉,
where Fmr (1 ≤ r ≤ k) is the position
at which method f ′

i appears in trio.

Example 2. We perform feature extraction on the first trace shown in Fig. 7(b).
If the predicted trace prefix is tr5o = 〈〈START 〉, StackAr, top,mE, tAP 〉, the
probability of each method being called after tr5o can be calculated using the
trained Transformer model. Then by performing a logarithmic operation on
the resulting probability, we can obtain the feature value of the first type.
That is, log(P〈START 〉) = −2.0458, log(PStackAr) = −1.0236, log(Ptop) =
−0.5237, log(PmE) = −0.5557, log(PtAP) = −1.8996, log(Ppush) = −1.1884,
log(P〈END〉) = −1.0809.

Further, we calculate the feature value of the second type. According to the
position of each method, and then obtain F〈START 〉 = 1, FStackAr = 2, Ftop =
3, FmE = 4, FtAP = 5, Fpush = F〈END〉 = 0. Therefore, the feature value of
the current predicted trace prefix tr5o is 〈−2.0458,−1.0236,−0.5237,−0.5557,
−1.8996,−1.1884,−1.0809, 1, 2, 3, 4, 5, 0, 0〉.

230 Y. Gao et al.

3.5 Cluster Analysis

In DSM, the authors use k-means and hierarchical clustering algorithms, but
they need to determine a reasonable number of clusters k in advance. In addition,
the random selection of k initial cluster center points in k-means also has a
great impact on the clustering results. Therefore, in our work, we incorporate
the dbscan clustering algorithm, which does not need to know the number of
clusters. Moreover, dbscan can handle clusters of different sizes or shapes and is
less susceptible to noise and outliers.

We cluster feature values obtained in Subsect. 3.4 by k-means, hierarchical
and dbscan clustering algorithms and obtain 2 ∗ (max clusters − 1) + 1 FSAs,
where max clusters represents the maximum number of clusters that we set
in advance. Both the k-means and hierarchical clustering algorithms generate
max clusters−1 FSAs, while the dbscan clustering algorithm generates 1 FSA.
Figure 8 shows one FSA we obtained through a hierarchical clustering algorithm.

Fig. 8. An FSA obtained by hierarchical clustering algorithm

3.6 Model Selection

Precision and Recall are usually used to evaluate FSA and they can be defined
as follows:

Precision(F) def=
| MPTR |

| MPTR ∪ fsa pairs(F) | (2)

where F is the evaluated FSA, MPTR represents all method pairs appearing in
the input trace set TR, and fsa pairs(F) represents method pairs appearing in
F . Note that we call a method pair (x, y) appears in F if x and y are labeled at
two adjacent edges in F , respectively.

Recall
def=

| accepted traces |
| TR | (3)

where | accepted traces | represents the number of traces that the generated
FSA can accept, and | TR | represents the number of all execution traces. Using
just one of Precision or Recall to evaluate FSA cannot comprehensively evaluate
the advantages and disadvantages of FSA. Higher Precision means an FSA can
accept fewer traces that should not be accepted, while higher Recall means an

Dynamic Specification Mining Based on Transformer 231

FSA can accept more traces that should be accepted. Thus, we combine Precision
and Recall to obtain F1-measure as the actual scoring criteria of FSA.

F1
def= 2 × Precision × Recall

Precision + Recall
(4)

4 Experiment

We have implemented the proposed approach in a tool named DSM-T and eval-
uated our approach to answer the following questions.

(1) How effective is DSM-T?
(2) How does DSM-T compare to existing specification mining algorithms?

4.1 DataSet

We use 11 target library classes to evaluate the effectiveness of DSM-T. These
target classes have been studied in previous work [15–17].

Table 2. Target library classes

Target library
class

M Recorded method
calls

ArrayList 18 22,996

LinkedList 7 4,847

HashSet 8 257,428

HashMap 11 67,942

Hashtable 8 89,811

Signature 5 205,386

Socket 21 130,876

ZipOutputStream 5 43,626

StringTokenizer 5 336,924

StackAr 7 132,826

NFST 5 95,149

Table 2 shows the information of all target library classes. Column “Target
Library Class” lists the names of all target library classes. Column “M” rep-
resents the number of methods defined in the target class. Column “Recorded
Method Calls” presents the number of recorded method calls in all execution
traces of the target class.

In this benchmark, ArrayList is the implementation of a variable-size array
of list interfaces. LinkedList is mainly used to create the data structure of the

232 Y. Gao et al.

linked list. HashSet implements the set interface, which does not allow dupli-
cate elements and does not guarantee the order of elements. HashMap is a hash
table, which stores key-value mapping, and has fast access speed. Hashtable is a
part of the original java.util, which is a concrete implementation of a dictionary.
The Signature class is used in Java to provide a digital signature algorithm for
applications. Socket class provides a rich set of network communication meth-
ods and properties. Zipoutputstream can write the content directly to the zip
package. Stringtokenizer class implements iterator and enumeration interface.
The above nine target class libraries are all from the Java development kit. In
addition, there are two other class libraries, StackAr from the Daikon project
and NFST which is short for NumberFormatStringTokenizer from Apache
Xalan.

4.2 Experience Setting

Table 3. F1-measure (%): “CON++” is CONTRACTOR++, “SEKT 1” is State-
Enhanced 1-tail, “SEKT 2” is State-Enhanced 2-tail, “NFST” is NumberFormatString-
Tokenizer, “–” means that the result is not available.

Class Tools

1-tail 2-tail SEKT 1 SEKT 2 CON++ TEMI DSM DSM-T

ArrayList 13.96 13.13 36.03 13.86 13.07 16.87 22.21 78.63

LinkedList 27.15 25.72 86.02 26.67 24.52 7.51 30.98 88.66

HashSet 20.88 21.27 52.22 20.88 21.27 23.34 76.84 94.66

HashMap 25.41 8.71 68.94 – – – 86.71 98.49

Hashtable 42.39 33.58 92.78 – – – 79.92 96.11

Signature 61.54 64.25 66.88 62.05 63.98 39.06 100.00 100.00

Socket 35.89 31.52 55.15 34.73 28.37 – 54.24 93.01

ZipOutputStream 46.36 47.42 62.80 47.91 – – 88.82 95.07

StringTokenizer 52.88 52.97 21.30 52.15 – – 100.00 96.55

StackAr 16.54 16.54 34.91 16.54 16.54 – 74.38 94.19

NFST 24.57 25.52 30.40 24.56 25.78 11.80 77.52 89.09

Average 33.42 30.97 55.22 33.26 27.65 19.72 71.97 93.13

The experiments have been carried out on a 64-bit Ubuntu 18.04 LTS with a
3.20 GHz Intel(R) Core(TM) i7-8700 processor and 8 GB memory.

Transformer Model Constructs. We build the Transformer model in Ten-
sorFlow 1.15. For each target library class, we repeat the training 5 times, and
take the average of the 5 results as the final result. The encoder component and
the decoder component are composed of 8 encoders and 8 decoders, respectively.
The multi-head self-attention layer has 8 self-attention heads, and the multi-
head attention layer also has 8 attention heads. In the process of training the

Dynamic Specification Mining Based on Transformer 233

model, we use dropout [13] to alleviate the occurrence of over-fitting, which has
a regularization effect to a certain extent.

Clustering. In our tool DSM-T, we use clustering methods KMeans,
AgglomerativeClustering and DBSCAN in the sklearn.cluster module of
python to perform the clustering of feature values. In the experiments, we
set the maximum number max clusters of clusters to 20, and generate 2 ∗
(max clusters − 1) + 1 = 39 FSAs. In other words, for hierarchical cluster-
ing and k-means clustering algorithms, 19 FSAs are generated respectively, and
the number of clusters ranges from 2 to 20.

4.3 Experiment Results and Analyses

We compare our tool DSM-T with DSM in [17] and four dynamic FSA inference
techniques including k-tail [1], CONTRACTOR++ [15], SEKT [15] and TEMI
[15]. K-tail (k = 1, 2) represents traces-only strategy, which means that the
model is only inferred from execution traces; CONTRACTOR++ stands for
invariants-only strategy, indicating that it only infers the model from invariants;
SEKT (k = 1, 2) infers the model from execution traces and then uses invariants
to enhance it; TEMI infers the model from invariants and then enhances it by
execution traces.

Table 3 gives the experimental results on the benchmark. Column “Class”
lists the names of all target library classes. Columns “1-tail”, “2-tail”, “SEKT 1”,
“SEKT 2”, “CON++”, “TEMI”, “DSM” and “DSM-T” show the F1-measure of
the final FSA generated by each tool. The results show that for all library classes,
1-tail, 2-tail, SEKT 1, DSM and DSM-T can output the final FSAs, and SEKT
2, CON++ and TEMI fail on 2, 4 and 6 classes. On an average, our F1-measure
of the final FSAs can reach 93.13%, which improved by 21.16 % compared with
the best performing tool DSM in the other 7 tools.

5 Related Work

In recent years, specification mining has received extensive attention. Some tem-
poral specification mining techniques have been proposed, which can roughly be
classified into two categories. One takes execution traces and predefined prop-
erty templates [10–12,19,24–26] expressed in the temporal logic formula as input,
and outputs properties that meet all execution traces. The other is to generate
FSA-like models [5,14,15,17], which can describe dynamic behaviors of entire
systems.

5.1 Mining Properties Expressed in Temporal Logic Formulas

In the work of this category, every event type appearing in the property tem-
plate is replaced by an event instance in execution traces to obtain a property

234 Y. Gao et al.

instance, then it is checked whether all traces satisfy this property. If so, this
property instance is output as the final property. Property templates are usually
expressed in regular expressions, Linear Temporal Logic (LTL) [19], Proposi-
tional Projection Temporal Logic (PPTL) [26,27], and other custom formats.

Texada [19] can be used to extract specifications of arbitrary length and com-
plexity in LTL. Texada takes the user-defined LTL property template and execu-
tion traces as input, and outputs a set of property instances. At the same time,
Texada also supports properties with imperfect confidence. To do that, Tex-
ada provides two controls: confidence threshold and support threshold. Between
them, the confidence threshold refers to the minimum proportion of the number
of traces that satisfy the property instance to the total number of traces, and
the support threshold refers to the minimum number of traces that satisfy the
property instance.

Most of the existing research focuses on the specification of event sequences.
Few technologies consider the actual duration between events, which is crucial in
real-time systems. Eugene Asarin et al. [3] proposed a technique to mine property
instances of execution traces that satisfy the given timed regular expressions
(TRE) template, where TRE extends regular expressions by providing additional
operators to specify timing constraints between events. At the same time, a
timing automaton is synthesized for a given TRE. The timed automaton is then
used as a checker to verify whether the traces meet the corresponding TRE.

5.2 Mining Properties Expressed in FSA-Like Model

The specification mining work of this category generates a model similar to
FSA. Usually, an initial model is generated from execution traces. The initial
model is then refined according to various methods to obtain the final model.
Existing approaches often refine the initial model by the k-tail algorithm [20],
the Contractor [7], or adding various restrictions to it [5,15].

The k-tail algorithm [1] was proposed in 1972 by A.W. Biermann and J.A.
Feldman for automatic mining of software specifications from execution traces,
and it is the basis for many techniques for mining FSA-based specifications. The
existing k-tail algorithm merges each pair of states with the sequence of the next
k identical calls (hence the term “k-tail”).

Contractor [7] is an FSA-based model for describing software behavior based
on program invariants, but it requires manually specified invariants. In order to
be able to handle dynamically inferred invariants, Krka et al. improved it and
built a new tool Contractor++ [15] which can process invariants inferred by
Daikon and filter out invariants that are not meaningful.

Krka et al. [15] measured the impact of different types of input data on the
quality of inferred FSA-based specification models and proposed four strategies
for dynamically inferring FSA models. For the proposed strategy, new reason-
ing techniques SEKT and TEMI are implemented, so that different techniques
correspond to different reasoning strategies and the experimental results of each
technique are analyzed. Their experimental results show that although the pre-
cision of the generative model is higher, the recall is still at a lower level.

Dynamic Specification Mining Based on Transformer 235

6 Conclusion

In this work, we improve Deep Specification Miner (DSM) and employ Trans-
former technology which is widely used in the NLP field to mine FSA-based
specifications. We have evaluated our approach by conducting experiments on
11 target library classes and proven the effectiveness of our approach.

The biggest difference between our work and DSM is the use of the Trans-
former as a feature extractor for execution traces. The Transformer not only
avoids the long-term dependency problem of the original work, but also enables
to obtain the target region that needs to be focused on, and invest more resources
in this region to obtain more details about the target that needs to be focused on.
In addition, we use the location of the current method as a class of feature values
in the feature extraction step, which not only distinguishes whether the current
method has appeared in the method prefix, but also provides information about
the location of the method. More information is provided for the subsequent
steps. Then, in the clustering analysis stage, the clustering algorithms taken in
the original paper need to determine the number of clusters in advance, and the
optimal number of clusters is not the same for different data sets, so we added
the dbscan clustering algorithm to use density as a criterion for clustering as
well.

In the future, we plan to add likely invariant information to the specification
model to further improve the accuracy of the model.

Acknowledgments. This research is supported by Hebei Natural Science Foundation
under grant No. F2020201018, Science and Technology Research Project of Higher Edu-
cation in Hebei Province under grant No. QN2021020 and Advanced Talents Incubation
Program of the Hebei University under grant No. 521000981346.

References

1. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972). https://
doi.org/10.1109/TC.1972.5009015

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. ACM SIGPLAN Not.
37(1), 4–16 (2002). https://doi.org/10.1145/565816.503275

3. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002). https://doi.org/10.1145/506147.506151

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Comput. Sci. (2014)

5. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.: Leveraging exist-
ing instrumentation to automatically infer invariant-constrained models. In: SIG-
SOFT/FSE 2011; ACM SIGSOFT Symposium on Foundations of Software Engi-
neering (2012). https://doi.org/10.1145/2025113.2025151

6. Bonato, M., Guglielmo, G.D., Fujita, M., Fummi, F., Pravadelli, G.: Dynamic
property mining for embedded software. In: Jerraya, A., Carloni, L.P., Chang,
N., Fummi, F. (eds.) Proceedings of the 10th International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS 2012, Part of

https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/565816.503275
https://doi.org/10.1145/506147.506151
https://doi.org/10.1145/2025113.2025151

236 Y. Gao et al.

ESWeek 2012 Eighth Embedded Systems Week, Tampere, Finland, 7–12 October
2012, pp. 187–196. ACM (2012). https://doi.org/10.1145/2380445.2380479

7. Caso, G.D., Braberman, V., Garbervetsky, D., Uchitel, S.: Automated abstractions
for contract validation. IEEE Trans. Softw. Eng. 38(1), 141–162 (2012)

8. Cicchello, O., Kremer, S.C.: Inducing grammars from sparse data sets: a survey
of algorithms and results. J. Mach. Learn. Res. 4(4), 603–632 (2003). https://doi.
org/10.1162/153244304773936063

9. Ernst, M., Cockrell, J., Griswold, W.G., Member, IEEE: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 99–123 (2002). https://doi.org/10.1109/32.908957

10. Gabel, M.: Fully automatic mining of general temporal properties from dynamic
traces. Proc. Fse (2008)

11. Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - vol. 1, ICSE 2010, Cape Town, South Africa, 1–8 May 2010 (2010).
https://doi.org/10.1145/1806799.1806806

12. Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ACM/IEEE
International Conference on Software Engineering (2008). https://doi.org/10.1145/
1368088.1368096

13. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. Com-
put. Sci. 3(4), 212–223 (2012). https://doi.org/10.9774/GLEAF.978-1-909493-38-
4 2

14. Jian-Guang, F.U., Shengqi, L.I.: Mining program workflow from interleaved logs.
research.microsoft.com (2010). https://doi.org/10.1145/1835804.1835883

15. Krka, I., Brun, Y., Medvidovic, N.: Automatically mining specifications from
invocation traces and method invariants. ACM (2013). https://doi.org/10.1145/
2635868.2635890

16. Le, T., Le, X., Lo, D., Beschastnikh, I.: Synergizing specification miners through
model fissions and fusions (T). In: IEEE/ACM International Conference on Auto-
mated Software Engineering (2015). https://doi.org/10.1109/ASE.2015.83

17. Le, T., Lo, D.: Deep specification mining. ACM, pp. 106–117 (2018). https://doi.
org/10.1145/3213846.3213876

18. Le, T.B., Bao, L., Lo, D.: DSM: a specification mining tool using recurrent neu-
ral network based language model. In: Leavens, G.T., Garcia, A., Pasareanu, C.S.
(eds.) Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, 04–09 November 2018,
pp. 896–899. ACM (2018). https://doi.org/10.1145/3236024.3264597

19. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T). In:
IEEE/ACM International Conference on Automated Software Engineering (2016).
https://doi.org/10.1109/ASE.2015.71

20. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: ACM/IEEE International Conference on Software Engineering (2008).
https://doi.org/10.1145/1368088.1368157

21. Peleg, H., Shoham, S., Yahav, E., Yang, H.: Symbolic automata for static specifi-
cation mining. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 63–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 6

https://doi.org/10.1145/2380445.2380479
https://doi.org/10.1162/153244304773936063
https://doi.org/10.1162/153244304773936063
https://doi.org/10.1109/32.908957
https://doi.org/10.1145/1806799.1806806
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.9774/GLEAF.978-1-909493-38-4_2
https://doi.org/10.9774/GLEAF.978-1-909493-38-4_2
https://doi.org/10.1145/1835804.1835883
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1109/ASE.2015.83
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3236024.3264597
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1145/1368088.1368157
https://doi.org/10.1007/978-3-642-38856-9_6
https://doi.org/10.1007/978-3-642-38856-9_6

Dynamic Specification Mining Based on Transformer 237

22. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using
automata-based abstractions. IEEE Trans. Softw. Eng. 34(5), 651–666 (2008).
https://doi.org/10.1109/TSE.2008.63

23. Vaswani, A., et al.: Attention is all you need (2017). https://doi.org/10.5555/
3295222.3295349

24. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 30

25. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: ICSE (2006). https://doi.org/10.1145/
1134285.1134325

26. Zhang, N., Yuan, X., Duan, Z.: Propositional projection temporal logic specifica-
tion mining. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS, vol. 12577, pp.
289–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64843-5 20

27. Zhang, N., Yu, B., Tian, C., Duan, Z., Yuan, X.: Temporal logic specification
mining of programs. Theor. Comput. Sci. 857, 29–42 (2021). https://doi.org/10.
1016/j.tcs.2020.12.032

https://doi.org/10.1109/TSE.2008.63
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1007/978-3-030-64843-5_20
https://doi.org/10.1016/j.tcs.2020.12.032
https://doi.org/10.1016/j.tcs.2020.12.032

Dynamic Environment Simulation
for Database Performance Evaluation

Chunxi Zhang1(B), Rong Zhang2, and Kai Liu1

1 Shanghai Stock Exchange, Shanghai 200000, China
{chxzhang,kliu}@sse.com.cn

2 East China Normal University, Shanghai 200000, China
rzhang@dase.ecnu.edu.cn

Abstract. The wide popularity and the maturity of cloud platform pro-
mote the development of Cloud Native database systems. On-demand
resource configuration or application is an attractive feature of cloud
platforms, but its complexity in resource management challenges the
benchmarking of database performance, which is no longer in a stand-
alone test environment. Sharing or contending of resources aggravates
the dynamics of environment, which can influence database perfor-
mance much. In order to expose the real performance in production
environment, environment simulation is prerequisite for benchmarking
databases. Although Docker Containers have been promoted to isolate
resources, we still cannot achieve the true resource isolation. In this
paper, we first define four kinds of workload generators corresponding
to the key environmental dimensions, then builds a multi-factor lin-
ear regression model to calculate the correlation among workloads, and
finally designs an algorithm to simulate the dynamical changes of envi-
ronment. It is the first work to provide a complete and dynamic simu-
lation to environment. We conduct comprehensive experiments on the
open source DBMSs by running the standard benchmarks to verify the
effectiveness of our work.

Keywords: Simulation · Environment · Evaluation

1 Introduction

The wide popularity and the maturity of cloud platforms promote the devel-
opment of Cloud Native software systems, since cloud has the advantages of
manageability, scalability and elasticity. In the latest work [4,9], it has been men-
tioned that there are more and more businesses migrating from the private envi-
ronment to the public cloud. Execution or processing of businesses/workloads
can be deployed on the same cloud for parallel executions. Cloud providers charge
users based on the on-demand resources. Though it is an attractive feature to
service providers, it brings new challgenges for software evaluations, because of
its sharing or contending of resources among different softwares. Addtionally, in
order to make full use of the cloud resources, resource providers usually sell more

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 238–255, 2022.
https://doi.org/10.1007/978-3-031-10363-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_17

Dynamic Environment Simulation for Database Performance Evaluation 239

quotients for larger profits, with the assumption that the intensity of workloads
is usually lighter than the expectation. It then aggravates resource snatch and
generates performance vibration.

In such a case, resource isolation is prerequisite to guarantee stable service
quality, which is usually achieved by Virtual Machines (abbr. VMs) and Docker
Containers (abbr. DCs) [3]. For each VM, resources are assigned in advance,
while DCs compete for shared resources at runtime. VMs have higher startup
overhead with all VMs launched at the beginning but DCs are lightweight with-
out guest OS, which are launched when needed. Compared to VMs, DCs are
more portable and efficient. But DCs can only provide the ability to package
and run an application in a loose isolated environment, which is not a through
solution due to the following reasons:

– Public resources, e.g., memory, processing unit or page cache, are shared
among all DCs. Contention for resources and interference of actions become
severer when using DCs by different applications.

– DCs are usually deployed on distributed nodes. Besides the resource con-
sumed by each DC itself, distributed communication costs much more sharing
bandwidth.

We run the standard YCSB workloads [6] on TiDB1 on a four-node UCloud
cluster2, each of which is configured with 32 GB CPU cores, 128 GB Mem-
ory and 1 TB Disk. We set concurrency 100. When CPU is occupied more by
TiDB, the throughputs increase obviously, shown in Fig. 1(a); when we set up
more TiDB dockers, either the performance of the whole cluster All TPS or the
performance of each TiDB instance has become lower, shown in Fig. 1(b). So
along with the development of cloud native softwares, tranditional evaluation
methods are challenged for its static or exclusive test environment requirement
and the provided performance may deviate obviously from the results under
in-production environment.

Fig. 1. Database performance vs. Resources

1 TiDB: https://pingcap.com/en/.
2 UCloud: https://www.ucloud.cn/.

https://pingcap.com/en/
https://www.ucloud.cn/

240 C. Zhang et al.

In production environment, resource consumption status (or environment
status) is generated mainly by the following elements:

– Coexistence of different applications causes varied resource occupations,
which can change dynamically.

– Complete isolation between applications is impossible. Snatch of Resource is
violent, especially for intensive read or write workloads.

– Complex influence among different workloads makes it tough to simply count
the resource requirement of an application.

How to model and simulate the open and dynamic production environment is
useful for both cloud service providers and software developers, e.g. DB suppliers.
For cloud service providers, they can optimize cloud resource configuration more
reasonable considering both profit and service quality; for software developers,
they can evaluate their products authenticity and support their resource appli-
cation on the cloud platform. In this paper, we propose a workload generator
for dynamic environment simulation. Firstly, we analyze and define four kinds of
workload generators for four dimensions of resources, i.e., CPU, Memory, Disk
IO and Network. Secondly, considering the resource consumption by each work-
load generator itself, we define a multi-order polynomial linear regression model
to quantify the input of each workload. Then, we model the bi-impact between
workloads. Finally, a dynamic environment status generation algorithm is pro-
posed based on a multi-factor regression model. Comprehensive experiments are
launched to demonstrate the effectiveness of our model.

The paper is organized as followings. In Sect. 2, we summarize the related
work. In Sect. 3, we define four workload generators for environment. In Sect. 4,
we design the workload association model and the dynamic environment simu-
lation algorithm. In Sect. 5, we demonstrate the validity of our design through
experiments and conclusions are made in Sect. 6.

2 Related Work

Migrating production environments from corporate-owned data centers to cloud-
based services is becoming popular [4]. Traditional performance engineering
methods of the development and delivery of software systems are challenged
by the non-deterministic characteristics of cloud platform. In such an environ-
ment, the form and/or parameters of the target deployment environment cannot
be controlled in advance. It brings the difficulty to diagnose the causes of per-
formance issues during testing. It may be severe when highly variable workloads
run on the target platform competing with each other for resources. Addtionally,
to explore the cost-benefits of cloud services adequately, the execution perfor-
mance of their applications should be reliably exploited. So it is mentioned that
the credible peformance tuning should be launched in production environment.
However, the black box nature of public clouds and the cloud usage costs has
become a barricade along the way of performance evaluation for cloud applica-
tion [7,9], which also leads to expensive parameter optimization [1]. And it is

Dynamic Environment Simulation for Database Performance Evaluation 241

usually not a possible way to do performance testing on production platform.
Specifically, in the domain of database performance debugging, slow queries are
sensitive to the fluctuation of production environment [15]. It is obvious that
simulation of production environment is critical to promote software systems to
the cloud platform.

Environment simulation is to run a set of generated workloads to replicate the
environment status, which is necessary for performance evaluation [13,14,16,17].
There are two ways to generate workloads [2]. One is defining an analytic app-
roach, such as mathematical models, which can be parameterized to simulate
the behaviors of users or the characteristics of specific workloads. The other one
is to collecting the running traces and generate workloads according the run-
ning status. Currently, most of the simulation is based on the first way, i.e., to
define an analytic task. In work [2], it proposes a workload generator which helps
to benchmark database systems in an environment similar to the real world in
terms of resource status. It creates Memory-bound, CPU-bound, and I/O-bound
workloads seperately, which will be used to create a composite workload sim-
ilar to real jobs running in practice. In ProWGen [5], it defines a workload
generator by using mathematical models to simulate the feature of web page
references for evaluating web proxy caches. Gismo [11] creates scalable request
streams for benchmarking web streaming media delivery techniques. Consider-
ing the real workload characteristics, file access behaviours are modeled based
on a user-oriented synthetic workload generator [12]. In [10], though it proposes
to evaluate a DBMS by simulating its running environment, it does not con-
sider the network resource or the bi-impact between resources. All these work
simplifies the simulation to a single dimension, e.g., CPU, or a particular appli-
cation. The simulation method cannot simulate the dynamicity of environment.
Previous work usually define one kind of workload to control the consumption of
system resources, which can not fully simulate the dynamicity and capture the
complex intercorrelation of real application environment, i.e., resource status, by
mathematical models. And the dynamic changes of resource status have not been
captured yet. So in this paper, we provide an effective workload generator for
dynamic resource status simulation, which can improve performance evaluation,
help performance optimization and configure resource requirement.

3 Workload Generator Definition

First of all, we define four types of fundamenal workload generators correspond-
ing to CPU, Memory, Disk IO and Bandwidth, shown in Table 1. These defined
generators have the property of parameter sensitivity, and we can easily con-
struct adpative workload composition model for simulating environment status.
We define and implement the resource consumption workloads in different ways
shown in Table 1.

There are two ways to generate the simulation workloads. One is to call the
kernel operations in Operation System (OS), and the other one is to consume
resources by means of software coding. We have found that both methods are

242 C. Zhang et al.

almost equally effective as shown in Fig. 2. We generate workloads to occupy
8% CPU, Memory and Disk resources respectively in different ways, i.e., Linux
kernel function and software program. We demonstrate the performance discrep-
ancy of MySQL by running the standard YCSB benchmark with R:W=1:1 and
concurrency 60. Since there is no Linux kernel functions to control the usage
of Network, so we do not compare the generation effect of Network here. We
can see there are only slender performance difference in TPS (transactions per
second) by taking two different ways to generate resource consumption. So in
our design, considering the implementation simplicity, we define and implement
the resource consumption workloads in different ways shown in Table 1.

Fig. 2. Resource consumption with different simulation methods

Table 1. Simulation workloads

Category Workload type Method Sensitive resource

CPU-bound Java program Multi-thread Π Calculation CPU, Memory

Memory-bound C++ program Multi-thread string srray
creation

Memory, CPU

IO-bound Shell Script Multi-thread file write Disk IO, CPU

Network-bound Java program Netty Bandwidth, CPU,
Memory

In order to control the resource status in fine granularity, simulation work-
loads are defined from two dimensions. The first is the semantic dimension cor-
responding to the four categories shown in Table 1, i.e., CPU, Memory, Disk
IO and Bandwidth. The second is the quantification dimension for subtle status
simulation, which is realized by adjusting the parameters in workload generation
functions.

Dynamic Environment Simulation for Database Performance Evaluation 243

3.1 Workload Generator Definition

CPU-Bound Workload: We define a computation intensive workload for
CPU, i.e., Π calculation in Eq. 1. The intensity is controled by Gregory-Leibniz
series based on n and the number of threads tn in calculation. The larger n or
the bigger tn consumes more CPU resource. It is implemented by Java, which
will consume memory to launch Java program.

Π

4
=

∞∑

n=0

(−1)n

2 · n + 1
(1)

Fig. 3. Memory workload generation Fig. 4. Network workload generation

Memory-Bound Workload: We define a multi-thread array space applying
function by new() in C++ program to control memory consumption as shown
in Fig. 3. There is no contention for memory applying among threads T so as to
avoid additional CPU resource consumption for space lock management. Consid-
ering the expect memory consumption m for a time period s, threads communi-
cate with Linux signal function Sigaction to coordinate the execution time period
set by Setitimer. Since this kind of software-based resource occupation also con-
sumes CPU resource, each thread applies m/‖T‖ memory initially, which will
be adjusted according to the global resource status considering the interaction
among workloads.

IO-Bound Workload: We take Linux disk operation command dd for multi-
thread disk IO operation, and the amount of IO, i.e., io = ‖T‖·bs·k, is controlled
by the number of threads ‖T‖, the quantity bs = size of each write and the
total round of writing count = k of each thread. We write default ‘0’ to a file,
e.g., filei, by /dev/zero. At the end of test, we erase the file filei by writing
/dev/urandom. Even though we call the kernel function for IO consumption, it
has a positive impact to CPU for the involved calculation operation.

Write file : # dd if = /dev/zero
of = filei bs = size count = k;

Erase file : # dd if = /dev/urandom of = filei

244 C. Zhang et al.

Network-Bound Workload: Netty software3 is programmed to generate
network-bound workload as shown in Fig. 4. We first set the percentage of band-
width usage, i.e., size; then we pack a string for each TaskQueue in Task Manager
considering about the capacity (iops=Input/Output Operations Per Second) of
each queue, and stream it to Channel continuously. Netty connects to the target
server(s) in an non-blocking way to simulate data dispatch/receive actions. Java
code is implemented to call Netty and calculate the size of data for transferring,
so network-bound workload has impact on both CPU and Memory.

These workload generators do not exist isolatedly, and they may have impacts
on each other as we have explained. For each generator, we list the affected
resources in Table 1. These impaction will be catched and used to adjust the
inputs (requirements) to our generators, which will be modeled in next section.

4 Environment Simulation

Even though we define workloads Ψ on four semantic dimensions, i.e., environ-
ment space E, we cannot easily produce the resource status isolatedly because
they have interactive impacts on each other as shown in Table 1. For example, if
we execute Πcalculation to consume CPU , it can not guarantee no consumption
for other resources, e.g., memory, for even java program itself takes up memory.
So directly assigning expect values, e.g. CPU usage, to generators can not gen-
erate the ideal environment status in a high probability. It may produce an envi-
ronment deviation defined in Definition 1 between the expected value and the
generated value considering the mutual influence among simulation functions.
Our purpose is to minimize the devs along all dimensions.

Definition 1 For an environment variable ei ∈ E, given the expected value
xi and the generated value yi by the generation function Ψi ∈ Ψ , Environment
Deviation devi is defined as the deviation between xi and yi, i.e. devi =
‖xi−yi‖

xi
with yi = Ψi(xi).

4.1 Workload Modeling on Each Individual Dimension

For a single dimension ei ∈ E, considering its generation function Ψi, we for-
malize the environment status simulation as a multi-order polynomial linear
regression problem defined by Eq. 2, with xi, yi as the observed and generated
value for ei, and αj as the model parameter.

{
ŷi = Ψi(xi) = α0 +

∑n
j=1 αjx

j
i

yi = ŷi + εi

(2)

The generation problem can be achieved by minimizing εi, that is

arg min
α

devi(xi) = arg min
α

‖yi − ŷi‖

3 Netty: https://netty.io/.

https://netty.io/

Dynamic Environment Simulation for Database Performance Evaluation 245

Supposing x0 = 1, we then have XT · X · α = XT · Y where x[k] and y[k] are
the kth pair of training data on ei.

X =

⎛

⎜⎜⎝

1 x[1] ... xn[1]
1 x[2] ... xn[2]
...
1 x[m] ... xn[m]

⎞

⎟⎟⎠ , α =

⎛

⎜⎜⎝

α0

α1

...
αm

⎞

⎟⎟⎠ , Y =

⎛

⎜⎜⎝

y[1]
y[2]
...

y[m]

⎞

⎟⎟⎠

Then for each environment dimension, we have its own multi-order regression
function formulated by α, which does not care about the mutual influence among
generators.

4.2 Modeling Environment by Learning Workload Interaction
Among Dimensions

Bi-Impact Modeling Between Dimensions. In Eq. 2, it aims to simulate
the resource consumption on an individual dimension. As we have explained
that the four dimensions of environment status may have impacts on each other,
represented by z. We then formulate this kind of impact from dimension ei to
the other one ej by �j(yi) and the total impact for ej is zj defined in Eq. 3 with
n as the order which is usually small and set by experiment.

ẑj(i) = �j(yi) = β0 +
n∑

k=1

βk · yk
i ; ẑj =

4∑

i=1∧i�=j

(zj(i)); (3)

Considering the impact between the simulation workloads, we can learn all β
parameter by solving arg

β
min devi(x) = arg

β
min ‖ẑj(i) − zj(i)‖.

Environment Status Generation Model. For simulating resource consump-
tion status xi on dimension ei by our generator, considering the mutual influence
of generators, i.e. Ψ , we get the expect input, i.e., y′

i, usually y′
i < xi. We can

formalize the impact from dimensions other than ei by:

Ψ̃i(xi) = Ψi(xi − zi) = y′
i, (4)

where zi is the impact function from other dimensions. Given the resource status
xi on dimension ei, we can calculate the corresponding input requirement y′

i by
Eq. 4. But the formulation here is still based on the impacts from any two signle
dimensions, which is not general enough to catch the complex interaction among
dimensions.

246 C. Zhang et al.

Based the bi-impact mode in Eq. 4, we define the final environment simula-
tion model catching the mutual impacts among different dimensions by defining
a multi-factor linear regression model in Eq. 5. It guarantees to generate a con-
sistent status on any dimension ei considering the existence of all other three
dimensions.

Γi,θ(y′) = θ0 +
4∑

i=1

θi · y′
i (5)

For dimension ei, we have the observed value xi corresponding to input y′
i. In

order to have a good fitting function, we optimize and minimize the cost function
J(θ) as shown in Eq. 6.

arg min
θ

J(θ) = arg min
θ

1
2p

p∑

k=1

(Γi,θ(y′[k]) − xi[k])2, (6)

p is the training data size, and y′[k] ∈ Y ′ and xi[k] ∈ Xi are the kth pair of
training data instances in Y ′ and Xi.

We take the stochastic gradient descent algorithm to resolve the parameters
θ for each dimension as shown in Eq. 7.

θi := θi − ω · ∂J(θ)
∂θi

, with i = 0...k.

:= θi − ω ·
∂ 1

2p

∑p
k=1(Γi,θ(y′[k]) − xi[k])2

∂θi

:= θi − ω
1
p

p∑

k=1

·(Γi,θ(y′[k]) − xi[k]) · y′
i[k] (7)

The iterative parameter generation algorithm is shown in Algorithm 1, which
is controlled by θ and can stop early if the cost Jold is less than predefined value τ
(line 21–24). θ is initialized to 1 on each dimension in line 3, which is calculated
and updated by stochastic gradient descent algorithm in line 14–20. For each
round of θ assignment, we can get the cost Jold. The algorithm will stop if it
reaches the maximum number of iteration iterNum or the cost is small enough
compared to τ in line 22. In this algorithm, the time complexity is determined
by the number of samples and the rounds of iterations, i.e. O(p ∗ iterNum).

Dynamic Environment Simulation for Database Performance Evaluation 247

4.3 Dynamic Environment Simulation

Environment may keep changing along the time. In Algorithm 2, we show the
simulation of dynamic environment changing. Inputs X,Y and Z are four dimen-
sional arrays with each dimension corresponding to one type of resource, e.g., ed.
A, B and Θ are metrices sized 4× (n+1) with n as the parameter size and each
row, e.g., Ad, corresponds to the model paramters for environment dimension ed,
i.e., αd, βd, and θd in learnParameter (line 14–18) with ‖αd‖ = n, ‖βd‖ = n and
‖θd‖ = n. Supposing we have a list of environment changing time points in T̂ ,
between which are the stable time periods for the environment status, we have
the simulation targets O. For each time period t̂ ∈ T̂ , according to the target
resource comsumption od ∈ O, i.e., x in Eq. 4, it simulates the input yd, i.e., y′

in Eq. 4, for our generator, which is put into Ŷd (line 4–9). Our final generator
inputs are stored in Ŷ .

248 C. Zhang et al.

5 Experiment Results

Experimental Setting: Our experiments are conducted on 4 nodes configured
in RAID-5 on CentOS v.6.5. Each node is equipped with 2 Intel Xeon E5-2620
@ 2.13 GHz CPUs, 130GB memory and 3 TB HDD disk. Nodes are connected
using 1 Gigabit Ethernet. We deploy a centralized DB, i.e., MySQL (v.5.6.28)
and a distributed DB, TiDB (v.4.0.0) on different environment status which are
simulated by different workloads to verify the effectiveness of our work.

Baseline: We take Jeong [10] as the comparison baseline. It simulates CPU,
Memory, and Disk I/O consumptions without Network. Jeong defines a compu-
tation intensive task to simulate CPU usage define as the number of CPU ×
CPU Clock Speed (MHz) × System Clock Speed (MHz) × Correction Factor.
Correction Factor is used to adjust CPU consumption considering the possible
interaction from other computer actions, if any. It occupies memory by using a
multithread data reading from disk into memory with the number of threads set
to 5. For Disk IO simulation, it assigns a branch of threads to write the queued
small files to disk parallelly.

Workloads: In different environment, we run two representative workloads
shown in Table 2 on MySQL and collect the real performance. By simulating
the running environment, we also collect the simulated performance data from
MySQL, which is compared with the real performance. According to TPC-C
requirement, we set the number of warehouses is equal to the execution thread
numbers. The threshold for cost is τ = 1e − 6.

Dynamic Environment Simulation for Database Performance Evaluation 249

Table 2. Benchmark workloads

Database Workload Transaction ratio Concurrecy

MySQL TPC-C New-Order: Payment: Order-Status: Delivery:
Stock-Level = 45:43:4:4:4

20

60

YCSB Write:Read=1:1 30

60

120

5.1 Environment Workload Demonstration

We first demonstrate the effectiveness of workload generators for environment
simulation on each dimension. When we simulate one dimension, we clear all
operations on other dimensions. For each dimension ei, we randomly generated
1K groups of workloads, i.e. yi, and executed to get the real workload , i.e. xi,
and the impact on other dimension zi, which are used to learn the parameters
α, β and θ.

Fig. 5. CPU consumption generation

CPU-Bound Workload. Supposing we have the target CPU consumption
set to 30%, 50% and 80%, by controling the complexity, i.e., n, Π calculation
can reach to our targets by 20s shown in Fig. 5. The deviations between the
simulations and the targets are small, among which the biggest is less than
1%. In our experiment, we find that Π calculation has no requirement to Disk
or Network Bandwidth but has a little requirement to Memory, less than 1%.
Though Jeong can have almost the result as we do by taking almost 2× more
time, its generation is adjusted by Correction Factor which has lower adjustion
efficiency than our model.

Memory-Bound Workload. We keep applying space for an array to consume
Memory. The array can be filled by a multi-thead mode. Supposing we have

250 C. Zhang et al.

the target memory consumption set to 30%, 50% and 80%. For 80% memory
consumption, we take both the two-thread generation mode, i.e., Memory 2 80%
and the single-thread generation mode, i.e., Memory 1 80%. It is easy to see
that the small memory required, the faster to reach the target Fig. 6(a). For
30% and 50% memory consumption requirements, it needs only less than 5s to
reach the targets in a single-thread mode. For 80% memory consumption, though
Memory 2 80% is 2× faster than Memory 1 80% to occupy memory, its CPU
consumption is 2× higher as shown in Fig. 6(b). By running our workload to
generate memory environment, CPU is also comsumed, usually less than 6% in
total by the single thread mode as shown in Fig. 6(b). Jeong reads data from
disk is slower than our method to generate the same size of memory consumption
and also costs much more CPU resources shown in Fig. 6.

Fig. 6. Memory consumption

Fig. 7. Disk IO consumption

IO-Bound Workload. We keep writing data to Disk by using a Linux disk
operation command dd in a multi-thread mode, and CPU is used to calculate
for adusting writing speed. Supposing IO consumptions are set to 30%, 50% and
80%. As shown in Fig. 7(a), we can see that both our method and Jeong can
reach the target setting very soon, around 1s, but the CPU consumption by our

Dynamic Environment Simulation for Database Performance Evaluation 251

generator is much smaller than that by Jeong. Jeong takes the software program
method to simuate disk consumption in a multi-thread mode and each thread
shall maintain a queue for managing the writing files, which costs additional
more CPU resources. Our method can write the required size of data directly
without managing any files in advance. Jeong then has 2× higher CPU usages
than our multi-thread generation mode, i.e., Disk 2 80%. Our additional CPU
consumption is bound by 10% in a single-thread mode as shown in Fig. 7(b).
Since we do not keep any data in memory, the additional memory consumption
is only about 0.1%, which is insignificant in simulation.

Network-Bound Workload. Bandwidth consumption is simulated by Netty.
We control the bandwidth consumption by adjusting the number of transmission
per second, i.e., iops and the data size for transmission. Supposing we have the
bandwidth occupation set to 30%, 50% and 80% as shown in Fig. 8, it is easy
to reach our target environment by around 1s as shown in Fig. 8(a). Since it has
high uncertainty on cluster network, the adjustion calculation costs more CPU
than the other workloads, which is between 7% − 15% as shown in Fig. 8(b).

Summarization. According to these experiments, we can see that 1) worload
generator usually has an interaction with each other; 2) our simulation method
is more efficient than Jeong which does not provide simulation to Network.

Fig. 8. Bandwidth consumption

5.2 Environment Simulation

Based on the bi-impact between workloads, we bulid the final simulation model
in Eq. 5. We compare the simulated environment, i.e., GeneV alue with the real
environment, i.e., RealV alue, by deviation defined in Eq. 8 on the four dimen-
sions with 100 groups of test data. The deviations for CPU, Memory, Disk IO
and Network are 3.78%, 1.46%, 3.73% and 2.96%, respectively. It means that
our model is effective in environment simulation.

deviation =
|RealV alue − GeneV alue|

RealV alue
(8)

252 C. Zhang et al.

Fig. 9. Fitting lines for dynamic environment simulation

Dynamic Simulation of Environment. We generate 5 groups of resource
consumption requirements randomly, and each group of resouce status will last
for 60s. So we have 300s running environment status in total as shown in Table 3.
Our model can simulate each group of resource consumption very well bound
by 5% deviation. In Fig. 9, it shows the effectiveness of our workload generation
model considering the dynamic changes at the time points of 60s, 120s, 180s and
240s segmented by the dashed red lines. We can see that our model can reach
the simulation targets, i.e. corresponding to the changes, in 10s.

Table 3. Deviation for dynamic environment simulation

Period(s) CPU Memory Disk IO Network

0–60 Target 5.35% 58.91% 64.34% 45.69%

SimulatedValue 5.41% 59.56% 65.17% 46.64%

deviation 1.1% 1.1% 1.3% 2.1%

60–120 Target 22.74% 30.69% 55.07% 8.94%

SimulatedValue 23.02% 31.08% 55.63% 9.18%

deviation 1.24% 1.27% 1.1% 2.72%

120–180 Target 34.44% 74.68% 24.15% 6.15%

SimulatedValue 34.87% 75.6% 24.95% 6.31%

deviation 1.27% 1.22% 3.3% 2.5%

180–240 Target 17.85% 59.7% 13.65% 19.55%

SimulatedValue 17.37% 60.32% 13.81% 19.93%

deviation −2.6% 1.03% 1.18% 1.98%

240–300 Target 67.62% 26.3% 22.21% 24.64%

SimulatedValue 68.41% 26.62% 22.69% 25.13%

deviation 1.16% 1.22% 2.17% 2.01%

Environment Simulation Based on Real Applications. We launch YCSB
and TPC-C workloads generated by OLTP-Bench [8] on MySQL by varying
access thread sizes (60 and 120 for YCSB, 20 and 60 for TPC-C) and collect four

Dynamic Environment Simulation for Database Performance Evaluation 253

groups of resource consumption status by nmon4. Since environment is not stable
along with the running of benchmark workloads, for each benchark, we monitor
and collect its resource consumption every 2s, and calculate the average resouce
status for simulation. The simulation deviation is shown in Table 4, among which
the deviation between GeneV alue and RealV alue is bound by 5%.

Table 4. Environment simulation on real applications

No. Workload CPU Memory Disk IO Network

G1 Y CSB60 Target 62.51% 4.16% 19.68% 5.4%

SimulatedValue 63.92% 4.21% 20.35% 5.51%

deviation 2.25% 1.2% 3.4% 5.51%

G2 Y CSB120 Target 71.65% 4.34% 18.98% 9.6%

SimulatedValue 72.92% 4.38% 19.53% 9.15%

deviation 1.7% 1% 2.89% −4.6%

G3 TPC-C20 Target 23.95% 5.34% 31.28% 3.1%

SimulatedValue 24.52% 5.40% 32.85% 3.21%

deviation 2.37% 1.12% 5.0% 3.5%

G4 TPC-C60 Target 27.83% 9.61% 32.54% 3.56%

SimulatedValue 29.03% 9.87% 31.03% 3.61%

deviation 4.31% 2.7% −4.6% 1.4%

5.3 Evaluation on Database

In order to demonstrate the effectiveness of our simulation model, we run two
database services on YCSB and TPC-C benchmarks concurrently shown in
Table 5. We have four groups of experiments, i.e., G1−G4. In each group, the two
sets of experiments are launched on Y CSB and TPC-C acting as an environ-
ment generator and a service provider mutually. And the IdeaV alue is generated
by running workloads exclusively on our cluster. For example, in G1, when we
launch 30 threads to run Y CSB, i.e., Y CSB30, it consumes resources on our
cluster; when we run TPC-C by 20 threads simultaneously, i.e., TPC-C20, the
impact from Y CSB30 makes TPC-C20 low down its performance from its ideal
TPS=1342 to 881. If we take our simulation model to simulate the resource
consumed by Y CSB30, the TPS for TPC-C20 is 816 with the deviation=7.37%
compared to the target 881. Similarly, if TPC-C20 acts as an environment gen-
erator, Y CSB30 lowers down its performance from ideal TPS=39428 to 28778;
and if we simulate the environment from TPC-C20, the performance of Y CSB30

lows down by 7.03% to 26754. In Table 6, we run TPC-C30 on distibuted TiDB
deployed on four nodes. On each node we run the YCSB workloads with dif-
ferent concurrency, i.e., 10-40 to generate the running environment for TiDB.

4 nmon: http://nmon.sourceforge.net/pmwiki.php?n=Main.HomePage.

http://nmon.sourceforge.net/pmwiki.php?n=Main.HomePage

254 C. Zhang et al.

We take the environment simulation model to simulate the resource consump-
tion by YCSB on MySQL and then run TPC-C30 on TiDB again. We can find
the the performance deviation for TiDB is only 5.34%. So our simulation model
can simulate the environment well for the applications which may coexist with
others.

Table 5. Performance deviation for benchmark workloads on MySQL

No. Workload IdeaValue TPS Workload IdeaValue TPS

G1 Y CSB30 39482 Target 28778 TPC-C20 1342 Target 881

GeneValue 26754 GeneValue 816

deviation 7.03% deviation 7.37%

G2 Y CSB30 39482 Target 24856 TPC-C60 1546 Target 965

GeneValue 23595 GeneValue 917

deviation 5.07% deviation 4.97%

G3 Y CSB60 52254 Target 37788 TPC-C20 1342 Target 652

GeneValue 36094 GeneValue 616

deviation 4.48% deviation 5.52%

G4 Y CSB60 52254 Target 32546 TPC-C60 1546 Target 765

GeneValue 30557 GeneValue 716

deviation 6.11% deviation 6.41%

Table 6. Performance deviation for benchmark workloads on TiDB

Environment generator Workload Test DB Workload Performance (TPS)

MySQLN1 Y CSB10 TiDB TPC-C30 target = 712

MySQLN2 Y CSB20 GeneValue = 674

MySQLN3 Y CSB30 deviation = 5.34%

MySQLN4 Y CSB40

6 Conclusion

In our work, we present a workload generator for environment simulation. We
define a multi-order polynomial linear regression model for each resource, and
consider the influence of workload of each resource on resources. Then, we design
a multi-factor linear regression model to reflect the impaction among workload
generators. We launch a comprehensive set of experiments to verify the effec-
tiveness of the model based on micro and macro evaluations.

References

1. Bao, L., Liu, X., Wang, F., Fang, B.: ACTGAN: automatic configuration tuning
for software systems with generative adversarial networks. In: Proceedings of the
ASE, pp. 465–476. IEEE (2019)

Dynamic Environment Simulation for Database Performance Evaluation 255

2. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: Proceedings of the ACM SIGMETRICS,
pp. 151–160 (1998)

3. Bhimani, J., et al.: Docker container scheduler for I/O intensive applications run-
ning on NVMe SSDs. IEEE Trans. Multi-Scale Comput. Syst. 4(3), 313–326 (2018)

4. Bondi, A.B.: Challenges with applying performance testing methods for systems
deployed on shared environments with indeterminate competing workloads: posi-
tion paper. In: Proceedings of the ACM/SPEC, pp. 41–44 (2016)

5. Busari, M., Williamson, C.: ProWGen: a synthetic workload generation tool for
simulation evaluation of web proxy caches. Comput. Netw. 38(6), 779–794 (2002)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the ACM SoCC, pp. 143–154
(2010)

7. Diamantopoulos, D., Hagleitner, C.: HelmGemm: managing GPUs and FPGAs for
transprecision GEMM workloads in containerized environments. In: Proceedings
of the ASAP, vol. 2160, pp. 71–74. IEEE (2019)

8. Difallah, D.E., Pavlo, A., Curino, C.: OLTP-Bench: an extensible testbed for bench-
marking relational databases. Proc. VLDB Endow. 7(4), 277–288 (2013)

9. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., Soffa, M.L.: A statistics-
based performance testing methodology for cloud applications. In: Proceedings of
the ESEC and SFSE, pp. 188–199 (2019)

10. Jeong, H.J., Lee, S.H.: A workload generator for database system benchmarks. In:
Proceedings of the iiWAS, pp. 813–822. Citeseer (2005)

11. Jin, S., Bestavros, A.: GISMO: a generator of internet streaming media objects
and workloads. ACM SIGMETRICS Perform. Eval. Rev. 29(3), 2–10 (2001)

12. Kao, W.-I., Iyer, R.K.: A user-oriented synthetic workload generator. In: Proceed-
ings of the ICDCS, pp. 270–271. IEEE Computer Society (1992)

13. Kerr, J., Reddy, P., Kosti, S., Izzetoglu, K.: UAS operator workload assessment
during search and surveillance tasks through simulated fluctuations in environ-
mental visibility. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) HCII 2019. LNCS
(LNAI), vol. 11580, pp. 394–406. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22419-6 28

14. Li, Y., Zhang, R., Yang, X., Zhang, Z., Zhou, A.: Touchstone: generating enormous
query-aware test databases. In: Proceedings of the USENIX ATC, pp. 575–586
(2018)

15. Ma, M., et al.: Diagnosing root causes of intermittent slow queries in cloud
databases. Proc. VLDB Endow. 13(8), 1176–1189 (2020)

16. Schäfer, D., Edinger, J., Breitbach, M., Becker, C.: Workload partitioning and task
migration to reduce response times in heterogeneous computing environments. In:
Proceedings of the ICCCN, pp. 1–11. IEEE (2018)

17. Tabebordbar, A., Beheshti, A., Benatallah, B., Barukh, M.C.: Feature-based and
adaptive rule adaptation in dynamic environments. Data Science and Engineering
5(3), 207–223 (2020). https://doi.org/10.1007/s41019-020-00130-4

https://doi.org/10.1007/978-3-030-22419-6_28
https://doi.org/10.1007/978-3-030-22419-6_28
https://doi.org/10.1007/s41019-020-00130-4

Extending SYSML with Refinement
and Decomposition Mechanisms

to Generate EVENT-B Specifications

Racem Bougacha1, Régine Laleau2(B) , Simon Collart-Dutilleul3,
and Rahma Ben Ayed1

1 Institut de Recherche Technologique Railenium, 59300 Famars, France
{racem.bougacha,rahma.ben-ayed}@railenium.eu

2 Univ Paris Est Creteil, LACL, 94010 Creteil, France
laleau@u-pec.fr

3 COSYS-ESTAS, Univ Gustave Eiffel, 59650 Villeneuve d’Ascq, France
simon.collart-dutilleul@univ-eiffel.fr

Abstract. SysML, dedicated to system design, provides graphical mod-
els. One of the strengths of these graphical models is that they can be
validated by domain experts. However, the semantics of SysML is given
in natural language, which does not allow formal and rigorous reasoning
necessary for critical systems for which safety and security are major
concerns. Our project aims at modeling and verifying high-level archi-
tectures of critical complex systems, in particular railways systems, that
must be validated by domain experts. For that, we propose to com-
bine SysML and the Event-B formal method. To master the complex-
ity of such systems, Event-B provides refinement and decomposition
mechanisms that allow a step-by-step design and make proofs easier
to discharge. This paper proposes to extend SysML with safety rele-
vant Event-B mechanisms that enable an automatic translation from
SysML diagrams to Event-B specifications. We focus on diagrams that
facilitate high-level architecture design, namely package, block-definition,
state-transition and sequence diagrams.

Keywords: SysML · Formal specification · Event-B method ·
High-level architecture · Model transformation

1 Introduction

Complex systems such as information technology systems, railways systems, air
traffic control, and other cyber-physical systems, are composed of a set of sub-
systems. They generally are heterogeneous in that they integrate various kinds of
components as mechanical, electronic, or software components. Therefore their
design requires the collaboration of domain experts and the use of a common
language to communicate with each other to build a consistent model. Moreover

c© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 256–273, 2022.
https://doi.org/10.1007/978-3-031-10363-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_18&domain=pdf
http://orcid.org/0000-0002-2019-4936
https://doi.org/10.1007/978-3-031-10363-6_18

Extending SysML to Generate Event-B Specifications 257

their design depends on solutions that can address interplay between their sub-
systems. Then complex systems should be represented as a layered hierarchy of
sub-systems and a model of high-level architectures supporting a layered hier-
archy is needed. Such a high-level architecture must enable the specification of
the main functional elements of a system, together with its interfaces and inter-
actions. It constitutes a framework common to all the domain experts involved
in the design of the system.

Our work is part of the the Autonomous Freight Train (AFT) project under
the Autonomous Train program [2]. A recent study of technological efforts con-
cerning the use of formal methods in railways performed in 2017 [3] concludes
by claiming: “This analysis has shown a dominance of the UML modeling lan-
guage for high-level representation of system models ...”. However, the semantics
of UML is given in natural language, which does not allow formal and rigorous
reasoning necessary for critical systems for which safety and security are major
concerns. The use of formal methods is thus recommended and the study also
claims that “this analysis has shown a large variety of formal tools used, with a
dominance of the tools associated to the B family”. This is reaffirmed in [11].

Our work aims at modeling and verifying High-Level Architectures (HLA)
of critical complex systems, in particular railways systems, that must be val-
idated by domain experts. For that, we propose to combine SysML [22] and
the Event-B [5] formal method. We prefer using SysML rather than UML
since SysML offers a set of concepts more relevant to model systems and is
recommended by the AFT project partners. Indeed, the AFT project reuses
the RailTopoModel1 that contains a SysML-based functional ontology of a rail-
way infrastructure. Moreover, the European initiative EULYNX2 has defined a
standard SysML-based model of railways signalling system components.

To master the complexity of such systems, Event-B provides refinement and
decomposition mechanisms that allow a step-by-step design and make proofs
easier to discharge. This paper proposes to extend SysML with safety rele-
vant Event-B mechanisms that enable an automatic translation from SysML
diagrams to Event-B specifications. We focus on diagrams that facilitate high-
level architecture design, namely package, block-definition, state-transition and
sequence diagrams.

The remainder of the paper is organized as follows. Section 2 briefly describes
SysML and Event-B. This is followed by a presentation of the proposed
SysML extensions in Sect. 3. Section 4 presents an illustration of the SysML
extensions on a case study. Section 5 describes a set of rules that allows to
automatically generate Event-B specifications from the SysML extensions.
Section 6 discusses the related work. Finally, Sect. 7 reports our conclusions and
presents future work.

1 http://www.railtopomodel.org/en/. It is a standard for the representation of railway
infrastructure-related data.

2 https://www.eulynx.eu/.

http://www.railtopomodel.org/en/
https://www.eulynx.eu/.

258 R. Bougacha et al.

2 Background

2.1 SYSML

Systems Modeling Language (SysML) [15,22] is a modeling language for systems
engineering applications. SysML, a UML profile, is used in system engineering
whereas UML is more appropriated to software engineering. SysML is composed
of nine types of diagrams. Over these diagrams, in HLA graphical modeling, we
are interested in package, block definition, state machine and sequence diagrams.
In the following we give the SysML concepts of these diagrams that we need to
model HLAs.

Package diagram is a static structural diagram that shows the relation-
ships among packages and their contents. It allows to group the structures of
a model and defines high level relationships between these groupings. This dia-
gram encompasses two main elements: “Package” representing a graphical node
and “Dependency” representing a graphical path that links different packages
and how they depend on each other. Note that the semantics of “Dependency”
is very informal and can be adapted for particular needs. A “Package" element
is made up of a number of “Packageable elements”. In SysML, almost any ele-
ment can be enclosed within a package. In HLA modeling, we are interested
in “Block”, “State-machine”, “Sequence diagram” packageable elements and in
“Package” itself which is also a packageable element and thus can contain other
packages.

A Block Definition Diagram (BDD) is a structural diagram. As HLA is rep-
resented as a set of system/sub-systems layered hierarchy we are only interested
in basic modeling elements of this diagram. These two basic elements are “Block”
and “Relationship”. A “Block” defines a collection of features used to describe
a system, sub-system, component or other system elements. A “Relationship”
relates together one or more blocks. It participates in describing the structure of
a system, sub-system or component. In SysML block relationships encompass
many types of links. To model HLAs, we are interested in two types of relation-
ships: “Association” and “Composition”. These concepts come from UML class
diagrams, with the same semantics. The extract of BDD meta-model, used for
HLA modeling, is presented in Fig. 1.

To model the behavior of a block, a state machine diagram is used. Such a
diagram is composed of two basic elements: states and transitions. It describes
the state changes of a block instance during its life cycle. These changes are trig-
gered by events associated to the transitions of the diagram. We have extracted
all the concepts of SysML state-machine diagrams that we need to model HLAs.
They are presented in the meta-model of Fig. 2.

To display the interactions between users, objects, systems and entities within
the system, a sequence diagram is used. We will detail this diagram in Sect. 3.2.

2.2 Event-B

Event-B [5] is a formal method to specify discrete systems based on mathemat-
ical notations, predicate logic and set theory. An Event-B specification is com-

Extending SysML to Generate Event-B Specifications 259

Fig. 1. SysML BDD meta-model

Fig. 2. SysML state-machine diagram meta-model

posed of two main elements which are “Machines” and “Contexts”. A “Machine”
represents the dynamic part of the model and it specifies the behavioral proper-
ties of the system by variables and a set of events composed of guards and actions.
The possible values that the variables hold are restricted using an invariant . The
guard of an event is a condition that must be satisfied for the event to be trig-
gered and the action describes the update of state variables. Proof obligations
are generated to verify that the execution of each event maintains the invari-
ant. A “Context” contains the static part of the model and it can be seen by
machines. Event-B is based on two main mechanisms to master the complexity
of a system which are refinement and model decomposition.

Refinement is a process that allows to gradually introduce the different parts
that constitute the system starting from an abstract model to a more concrete
one. It is applied to enrich or modify a model in order to augment its function-
alities. A machine refinement consists in adding new variables and/or replacing
existing variables by new ones. Events can be refined and new ones can be intro-
duced. The refinement of an event has to verify that the guard of the refined
event should be stronger than the guard of the abstract one and the effect of the
refined action should be stronger than the effect of the abstract one. A context

260 R. Bougacha et al.

can also be extended with other contexts by adding new modeling elements (sets,
constants and axioms).

Event-B model decomposition is a powerful mechanism to scale the com-
plexity of the design of large and complex systems. An Event-B model can be
decomposed into several simple sub-components which can be refined separately
and more comfortably than the whole. Many approaches allow to decompose
an Event-B model, particularly, the shared-variable decomposition [4] and the
shared-event decomposition [13]. Shared-variable decomposition is suitable for
shared memory parallel systems, whereas shared-event decomposition is more
suitable for distributed system development. The shared-variable decomposi-
tion approach consists in distributing the events of a model over the selected
sub-components. It allows the introduction of shared variables and external
events. These ensure that the behavior of shared variables is preserved in all
sub-components. After that, further refinements then concentrate on how each
sub-component processes shared state variables. The shared-event decomposition
is a set of events that are synchronized and shared by sub-components. This app-
roach defines a partial version of a global event in each sub-machine, when the
variables of a global event are distributed between separate sub-machines. This
is to simulate the action of the global event on the considered variables. The
recomposition of the refined sub-components gives rise to a component which
should refine the initial abstract component. This is the shared-event decompo-
sition that we have adopted for HLA modeling as we can consider that a system
composed of sub-systems acts as a distributed system.

Fig. 3. Event-B meta-model

Figure 3 shows a proposed meta-model of the Event-B restricted to the
presented concepts that are relevant to our use.

Event-B method is supported by several industrial tools, such as AtelierB
[7], Rodin [6] and ProB [23]. These tools allow to generate proof obligations
and to automatically and/or interactively discharge them. Animation, model-
checking are also possible. In our project we use AtelierB. Its formal language is
BSystem, an Event-B syntactic variant.

Extending SysML to Generate Event-B Specifications 261

3 SYSML Extensions with Refinement and Decomposition
Mechanisms

The aim of our approach is to provide an automatic translation from SysML dia-
grams to Event-B specifications. Two interesting characteristics of Event-B
are the refinement and decomposition mechanisms that facilitate a step-by-step
design and make proofs easier to discharge. This allows to master the complex-
ity of complex systems. Therefore, we propose to extend SysML with these
Event-B mechanisms to enable an automatic translation. These extensions are
applied on two SysML diagrams, the package and sequence diagrams.

3.1 SYSML Package Diagram Extensions

To model a system HLA in a layered hierarchy of sub-systems, we have chosen
to create a package diagram, each package corresponding to a system of these
hierarchy. Such a package contains a BDD, the associated state machines and
a sequence diagram that defines the interactions between the blocks. To rep-
resent the links between these packages, two kinds of relationships have been
introduced. The first one is inspired from the refinement link of Event-B and
is called “HLA_refines”. It is defined between two packages and is used to detail
the behavior of the parent package. For this, new blocks and a new sequence dia-
gram are introduced in the child package. This new sequence diagram describes
the interactions between blocks to satisfy the parent behavior.

The second relationship, called “HLA_decompose”, comes from the fact that
some blocks of a package can be considered as sub-systems because they have
their own life and can exist independently of the other blocks. In this case, they
become new packages and the link with the parent package is “HLA_decompose”
link. This concept corresponds to the decomposition mechanism of Event-B,
more precisely the shared-event decomposition since the systems/sub-systems
we consider behave as distributed systems.

To represent these system/sub-systems relationships, the SysML package
diagram meta-model is extended by introducing new meta-classes, as described
by the grey boxes in Fig. 4 “HLA_refines” and “HLA_decompose”, as sub-classes
of the meta-class “Dependency”.

3.2 SYSML Sequence Diagram Extension

To display the interactions between users, objects, systems and entities within
a system, a sequence diagram is used. This diagram represents the sending and
receiving of messages between the interacting entities called lifelines. The inter-
section of a message arrow and a lifeline is represented by the element “Message
Occurrence”. We have adapted the sequence diagram meta-model of SysML to
our approach. Figure 5 shows our meta-model. First, we impose that each mes-
sage corresponds to a transition in the state machine of the block associated to
the target lifeline. Second, as we have introduced a refinement link between pack-
ages, we need to specify that a message of the refining package is a refinement

262 R. Bougacha et al.

Fig. 4. SysML extended package diagram meta-model

of a message of the refined package. This is achieved by adding a new meta-
class in the meta-model, called “Refines_Message”, sub-class of the meta-class
“Message”.

Fig. 5. Extract of SysML extended sequence diagram meta-model

4 Illustration of the SYSML Extensions

Our work is part of the the Autonomous Freight Train (AFT) project under the
Autonomous Train program [2]. As AFT data and case studies are of high level
of confidentiality, to describe the SysML extensions, we use in this paper an
extract of the Landing Gear System case study [10].

Extending SysML to Generate Event-B Specifications 263

We start our modeling by creating a new package diagram. It contains the
package “LandingGearSystemL0” that describes the main system. There is a
unique block called “Landing Gear System”, its state-machine diagram and a
sequence diagram that show the main functionalities and the behavior of a land-
ing gear system, that is to extend and retract a landing gear (Fig. 6).

Fig. 6. Main system package

The Landing Gear System is composed of three sub-systems (“Pilote Sub-
System”, “Digital SubSystem” and “Mechanical SubSystem”) and a “Pilot” to
command the extension and retraction of the gear. Therefore, the behavior of
the main system is satisfied by the result of the behavior describing these entities
interplay. Following the description presented in Subsect. 3.1, we create a second
package “LandingGearSystemL1” which encompasses the different entities and
the composition relationship with their parent system.

Fig. 7. Sub-systems package “LandingGearSystemL1” block diagram

The package “LandingGearSystemL1” contains the BDD describing the sub-
systems (see Fig. 7), the state-machine diagrams for all the sub-systems (Fig. 8
shows this of the “Mechanical SubSystem”) and the sequence diagram, an extract

264 R. Bougacha et al.

Fig. 8. State diagram of the mechanical SubSystem

Fig. 9. Extract of the “LandingGearSystemL1” sequence diagram

Fig. 10. Packages refinement Fig. 11. Packages decomposition

of it is shown in Fig. 9, defining the Pilot/sub-systems process which refines the
main system process.

We use the “HLA_refines” link between “LandingGearSystemL0” and “Land-
ingGearSystemL1” to express that “LandingGearSystemL1” refines “Land-
ingGearSystemL0” (see Fig. 10). More precisely, in the “LandingGearSystemL1”
sequence diagram, the message “ExtendsLG” allows the extension of the “Land-
ing Gear System” by the sub-systems processes interplay. It is a refinement of the
message “ExtendsLGS” of the sequence diagram of the “LandingGearSystemL0”,
which is specified by the “Refines_Message” stereotype (see Fig. 9).

Now, we want to describe more precisely the behavior and the structure of
the three sub-systems “Pilote SubSystem”, “Digital SubSystem” and “Mechani-
cal SubSystem”. This is achieved by creating a new package for each of them.
Therefore the package “LandingGearSystemL1” is decomposed into the three
newly created packages using the “HLA_decompose” link (see Fig. 11). Each of
the packages can then be described by a BDD, representing its structure and in

Extending SysML to Generate Event-B Specifications 265

particular its possible sub-systems, the state machines associated to some blocks
and a sequence diagram.

The process of refinement/decomposition can be applied again. The full spec-
ification of the HLA modeling of the case study can be found in [12].

5 SYSML to EVENT-B Translation

In this section, we first present the rules that allow to obtain an Event-B
specification from a SysML model. Then the implementation of the translation
rules is described and a discussion ends the section.

5.1 Translation Rules

Three sets of rules have been defined. The first one considers elements related to
a package. The second one deals with the SysML refinement extensions and the
last one with SysML decomposition extension. These rules take meta-models
as input and output. The source meta-models are the SysML meta-models
described in Figs. 1, 2, 4, 5 and the target meta-model is the Event-B meta-
model of Fig. 3.

Translation of Package Elements. The rules of Table 1 allow to translate
a package diagram, that gives an Event-B project, and a package, that must
not be a decomposed package, inside a package diagram. Each package gives an
Event-B machine and an Event-B context.

It should be noted that in Tables 1 and 2, E_X designates the result of the
translation of X.

Table 1. Translation rules for a package diagram

SysML concepts Event-B concepts

Rule Translation of Element Constraint Element Constraint

1 Package diagram PD PD is a Package diagram E_PD E_PD ∈ EventB_Spec

2 Package that is
not a decomposed
package

P P ∈ SysML _Package
P /∈ ran(HLA_decompose)

E_P_M
E_P_CONT

E_P_M ∈ MACHINE
E_P_CONT ∈ CONTEXT
E_P_M SEES E_P_CONT

The rules of Table 2 are applied for the elements of a given package. Note that
we have deliberately omitted to present the translation rules of some elements
of the BDD meta-model of Fig. 1, in particular “Composition”, “Association”,
“AssociationEnd” and “Characteristic” since these rules are the same as those
used for translating the equivalent concepts in class diagrams [16]. Furthermore
they are not used in this paper.

The first three rules in Table 2 are rather straightforward. Rule 6 expresses
that a lifeline L of a block B is translated by a constant E_LC, instance of the

266 R. Bougacha et al.

abstract set E_B_S associated to B, and a variable E_LV that represents the
current state of E_LC in the state machine associated to B.

Figure 12 shows the Event-B specification obtained from the block “Mechan-
icalSubSystem” and its linked lifeline “mss” of the sequence diagram (see Figs. 7,
8, 9).

Table 2. Translation rules for elements of a package

SysML concepts Event-B concepts

Rule Translation of Element Constraint Element Constraint
3 Block B B ∈ SysML _Block E_B_S E_B_S ∈ SETS
4 State-machine of a

block
SM, B SM ∈ SysML _State-

machine
SM is associated to B

E_SM E_SM ∈ SETS

5 State-machine
states

S1,S2,
. . . Sn

SM

Si ∈ SysML _States
SM ∈ SysML _State-
machine
Si is a state of SM

E_S1,E_S2,
. . . E_Sn

E_Si ∈ CONSTANTS
E_SM={E_S1,E_S2,. . . E_Sn}

6 Lifeline of a
sequence diagram
associated to a
block

L,B, SM L ∈ SysML _Lifeline
L is an instance of block
B,
SM is the state diagram
associated to B
B and SM have already
been translated

E_LC, E_LV E_LC ∈ CONSTANTS
E_LC ∈ E_B_S
E_LV ∈ VARIABLES
(E_LV ∈ {E_LC} → E_SM) ∈
INVARIANTS
(E_LV :∈ {E_LC} → E_SM)
∈ INITIALISATION

7 Sequence diagram
message that is not
a refined message

M M ∈ SysML _Message E_M E_M ∈ EVENTS

Rule 7 needs to be more precisely defined. An Event-B event E_M obtained
from the translation of a message M is of the form SELECT G_M THEN
A_M END where G_M are the guards and A_M are the actions. G_M and
A_M are obtained as follows.

Let SQ be a sequence diagram. A message M is defined between two lifelines
L1, its origin, and L2, its destination (L1 and L2 are not necessary different). L1

(L2, resp.) is associated to block B1 (B2, resp.). Let SM1 (SM2, resp.) be the
state machine associated to B1 (B2, resp.). M is associated to a transition T of
SM2. Let SS2 be the source state of T and TS2 be the target state of T .

Note that Rule 5 gives E_SSi (E_TSi, resp.) as the Event-B elements
associated to SSi (TSi, resp.). Rule 6 gives E_LiC and E_LiV as the Event-B
elements associated to Li.

– Calculation of A_M
A_M � E_L2V (E_L2C) := E_TS2

The current state of E_L2C corresponding to the lifeline L2 is the target
state of the transition T .

– Calculation of G_M

Extending SysML to Generate Event-B Specifications 267

Fig. 12. Application of rules 3, 4, 5, 6 on block MechanicalSubSystem

• If M is the first message of SQ and SQ has a guard called G_SQ (defined
as an Interaction Constraint in the sequence diagram meta-model) then
G_M � G_SQ∧ E_L2V (E_L2C) = E_SS2

• Else, let Prev_M be the message of SQ that precedes M . Its lifeline
destination is necessary L1 and Prev_M corresponds to a transition T ′

of SM1 whose source state is SS1 and target state TS1.
G_M � E_L1V (E_L1C) = E_TS1∧ E_L2V (E_L2C) = E_SS2

This means that M is triggered after Prev_M (i.e. the current state of
E_L1C is the target state of the transition T ′ and the current state of
E_L2C is the source state of T).

Let us take the example of the message “commandsMechanicalSSForExten-
sion". The previous message in the sequence diagram of Fig. 9 is “commandsDig-
italSSForExtension”.

commandsMechanicalSSForExtension �
SELECT dssState(dss) = orderForExtensionDigitalSS ∧
mssState(mss) = orderedForRetractionMechanicalSS
THEN mssState(mss) := orderedForExtensionMechanicalSS
END

268 R. Bougacha et al.

Translating. SysML refinement extension to Event-B. Two rules are
defined to translate the two SysML package and sequence diagram refinement
extensions.

– Machine Refinement Rule is defined as follows:
Let P1 and P2 two SysML packages such that P2 “HLA_refines” P1. P1 and
P2 are translated into Event-B according to Rule 2 and give E_P1_M and
E_P2_M machines.
In E_P2_M, two clauses are added to express the SysML package refine-
ment:

• E_P2_M REFINES E_P1_M
• E_P2_M SEES E_P1_CONT

– Event Refinement Rule is defined as follows:
Let P1 and P2 two SysML packages such that P2 “HLA_refines” P1. P1 and
P2 are translated into Event-B according to Rule 2 and Machine Refine-
ment Rule. This gives E_P1_M and E_P2_M machines such that E_P2_M
refines E_P1_M.
Let M1 (M2, resp.) a SysML message of the sequence diagram of P1 (2, resp.)
such that M2 “Refines_Message” M1. M1 is translated according to Rule 7:
E_M1 � SELECT G_M1 THEN A_M1 END

Then M2 is translated by:
E_M2 ref E_M1 � SELECT G_M1∧ E_LVM2(E_LCM2) = E_SSM2

THEN A_M1 ‖ E_LVM2(E_LCM2) := E_TSM2 END

Translating. SysML decomposition extension to Event-B. As already
stated, we use the shared-event decomposition approach [13] of Event-B to
translate the SysML package decomposition extension. First all the variables of
the machine to be decomposed are assigned to one of the decomposed machines
called “Interface”. Then the elements linked to a variable are assigned in the
relevant decomposed machine.

The Machine Decomposition Rule is defined as follows.
Let P, P1 and P2 three SysML packages such that P is “HLA_decompose”

into P1 and P2. Recall that it means that P1 and P2 are sub-systems of P and
then corresponds to the blocks B1 and B2 in P. P is translated into Event-B
according to Rule 2 and give E_P_M machine.

– E_P_M machine is shared-event decomposed into two machines called
E_P1_Interface and E_P2_Interface that correspond to P1 and P2. Each
E_Pi_Interface contains the elements of E_P_M linked to the Bi block:
SEES clause, variables, invariant and the events that read or modify these
variables.

– E_Pi_Interface is refined by a machine called E_Pi_M that contains the
translation of the elements of Pi (blocks, sequence diagram, state machines).

Figure 13 shows the “MechanicalSubSystem_Interface” machine obtained
after decomposing the “LandingGearSystem1” machine (see Fig. 11).

Extending SysML to Generate Event-B Specifications 269

Fig. 13. MechanicalSubSystem_Interface

5.2 Implementation

SysML to Event-B translation is performed in two phases. The first phase is
a model-to-model transformation which implements the above rules. The sec-
ond phase is a model-to-text transformation which allows to generate textual
formal specifications in order to be integrated in AtelierB for formal verification
purposes.

Model-to-Model Translation. The rules have been implemented using Query
View Transformation (QVT) language. QVT is a defacto standard specification
for model transformation standard published by the Object Management Group
(OMG) [8]. Particularly, we focus on QVT-Operational (QVTo), introduced as
part of the MOF (Meta Object Facility) standard (OMG, 2011). Although other
known transformation languages could be used to implement this transformation
such as ATL [18], they are not standards of the OMG. A set of 35 rules have
been implemented with around 700 lines of code spread over four modules which
concern contexts, machines, decomposition and a main module to synchronize
the first three modules.

Model-to-Text Translation. This step generates automatically an Event-B
textual specification from the resulting Event-B models of the previous step

270 R. Bougacha et al.

using Acceleo [21]. Acceleo is a template based technology allowing to auto-
matically produce any kind of source code from any data source available in
EMF format. This textual specification could be introduced into provers such
as AtelierB [7], model-checkers and animators such as ProB [23] to verify the
consistency of the modeled system.

5.3 Discussion

As a consistent way to validate the application of the proposed translation rules
in order to verify the correctness of the generated results, we have applied these
rules on a set of case studies, i.e. railways system case studies and the landing gear
system case study [10] used in Sect. 4. The full Event-B specification resulted
from applying the proposed transformation on the HLA models of the landing
gear system case study is presented in [12].

After that, the generated specification is introduced in AtelierB to be for-
mally verified and in ProB to animate the execution scenarios. This verifica-
tion generates automatically a set of proof obligations corresponding to the
modeled functional properties without any non-functional properties integra-
tion, and proof obligations from the application of model decomposition. These
proofs are of type invariant preservation, non-deterministic action feasibility and
well-definedness. For the landing gear system case study, the verification of the
generated Event-B specification required to discharge 136 proof obligations,
all automatically discharged using AtelierB. The table summarizing the proof
activity of the landing gear system can be found in [12].

6 Related Work

Automatic transformation of SysML/UML models into formal specifications was
the subject of several research work e.g. [16,19,24] and [25]. However, the aim of
our work is the modeling of HLA for complex systems, particularly railways sys-
tems, and their system/subsystems hierarchy. That is why we focus the section
on works dealing with HLA modeling and verification, or system/subsystems
refinement and decomposition relationships.

Papers [14] and [18] present the CHESS Toolset, a tooled MDE approach
for cross-domain modeling of industrial complex systems. These works are based
on an extension of UML, SysML and MARTE modeling languages and separa-
tion of concerns achieved through the specification of well-defined design views,
each of which addresses a particular aspect of the problem. The CHESS toolset
allows code generation toward multiple language targets and property descrip-
tion, verification, preservation and dependability through a dedicated UML pro-
file. FUML [1] is a subset of the standard Unified Modeling Language (UML).
This subset is limited to the structural modeling of UML, such as classes, asso-
ciations and behavior modeling using UML activities. A model constructed in
FUML is therefore executable in exactly the same sense as a program in a tradi-
tional programming language, but it is written with the level of abstraction and

Extending SysML to Generate Event-B Specifications 271

richness of expression of a modeling language. Despite these approaches support
HLA models based on SysML or UML and allow formal verification and property
preserving, however, they do not allow to model decomposition and refinement
mechanisms which are particularly well suited to HLA modeling.

SysML extensions and its alignment with formal method concepts have been
the subject of numerous works. Papers [17] and [20] propose SysML exten-
sions based on SysML diagrams refinement to enable reasoning. They define a
semantics for refinement and for a representative collection of elements from the
UML4SysML profile (blocks, state machines, activities, and interactions) used
in combination. The semantics is defined in CML (COMPASS Modelling Lan-
guage), a formal language based on VDM (Vienna Development Method) and
CSP (Communicating Sequential Processes). However they do not support model
decomposition which is an important mechanism to design complex systems.

Paper [9] provides the reasoning and the rationale for designing the formal
methods demonstrator in Railway Environment. The design concerns the use-
fulness of formal methods from the point of view of the infrastructure managers
and the adoption of a semi-formal SysML notation within formal methods, such
as Event-B demonstrator process.

7 Conclusion

This paper proposes SysML extensions to be aligned with Event-B refine-
ment and decomposition mechanisms in order to automatically translate SysML
models of HLA to Event-B specifications. These extensions are applied on two
SysML parts. The first part is about package diagrams which are customized to
represent the decomposition of system/sub-systems hierarchies and the refine-
ment of a system by its sub-systems interplay. The second part consists in extend-
ing sequence diagrams with stereotypes applied on messages to refine the parent
system task by the collaboration of its sub-systems processes. A set of rules
are defined to translate SysML models into Event-B specifications in order to
formally verify them using AtelierB.

Work in progress aims at enriching SysML models with non-functional prop-
erties such as security and safety. Bidirectional transformation for traceability
of Event-B specifications to identify errors on the original SysML models is
also required. Furthermore, we are aware that the correctness of the proposed
translation rules should be addressed.

Acknowledgements. This research work contributes to the french collaborative
project AFT (Autonomous Freight Train), with SNCF, Alstom Transport, Hitachi
Rail STS, Capgemini Engineering and Apsys. It was carried out in the framework of
IRT Railenium, Valenciennes, France, and therefore was granted public funds within
the scope of the French Program “Investissements d’Avenir”.

272 R. Bougacha et al.

References

1. Object Management Group, Semantics of a Foundational Subset for Executable
UML Models (FUML). https://www.omg.org/spec/FUML/1.5/About-FUML/

2. The autonomous train program. https://railenium.eu/train-autonome/
3. ASTRAIL European project D4.1 - report on analysis and on ranking of formal

methods (2017). http://www.astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-
9018-cc6e7d91e2c2

4. Abrial, J.R.: Event model decomposition. Technical report/[ETH, Department of
Computer Science 626 (2009)

5. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

6. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

7. Atelier, B.: Atelier B tool. https://www.atelierb.eu/en/atelier-b-tools/
8. Barendrecht, P.J.: Modeling transformations using QVT operational mappings.

Eindhoven University of Technology Department of Mechanical Engineering Sys-
tems Engineering Group, Research project report, Eindhoven (2010)

9. Basile, D., et al.: Designing a demonstrator of formal methods for railways infras-
tructure managers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 467–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6_30

10. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9_1

11. Bonvoisin, D.: 25 years of formal methods at RATP. In: International Railway
Safety Council (IRSC2016) (2016). https://international-railway-safety-council.
com/wp-content/uploads/2017/09/bonvoisin-25-years-of-formal-methods-at-
ratp.pdf

12. Bougacha, R.: The landing gear system case study. https://github.com/
RacemBougacha/Landing-Gear-System.git

13. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7_2

14. Cicchetti, A., et al.: CHESS: a model-driven engineering tool environment for aid-
ing the development of complex industrial systems. In: Goedicke, M., Menzies,
T., Saeki, M. (eds.) IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, Essen, Germany, 3–7 Sep 2012, pp. 362–365. ACM (2012).
https://doi.org/10.1145/2351676.2351748

15. Holt, J., Perry, S.: SysML for Systems Engineering, vol. 7. IET, Stevenage (2008)
16. Laleau, R., Mammar, A.: An overview of a method and its support tool for gener-

ating B specifications from UML notations. In: The Fifteenth IEEE International
Conference on Automated Software Engineering, ASE 2000, Grenoble, France, 11–
15 Sep 2000, pp. 269–272. IEEE Computer Society (2000). https://doi.org/10.
1109/ASE.2000.873675

17. Lima, L., et al.: An integrated semantics for reasoning about SysML design models
using refinement. Softw. Syst. Model. 16(3), 875–902 (2015). https://doi.org/10.
1007/s10270-015-0492-y

https://www.omg.org/spec/FUML/1.5/About-FUML/
https://railenium.eu/train-autonome/
http://www.astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
http://www.astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
https://doi.org/10.1007/s10009-010-0145-y
https://www.atelierb.eu/en/atelier-b-tools/
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-319-07512-9_1
https://international-railway-safety-council.com/wp-content/uploads/2017/09/bonvoisin-25-years-of-formal-methods-at-ratp.pdf
https://international-railway-safety-council.com/wp-content/uploads/2017/09/bonvoisin-25-years-of-formal-methods-at-ratp.pdf
https://international-railway-safety-council.com/wp-content/uploads/2017/09/bonvoisin-25-years-of-formal-methods-at-ratp.pdf
https://github.com/RacemBougacha/Landing-Gear-System.git
https://github.com/RacemBougacha/Landing-Gear-System.git
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1145/2351676.2351748
https://doi.org/10.1109/ASE.2000.873675
https://doi.org/10.1109/ASE.2000.873675
https://doi.org/10.1007/s10270-015-0492-y
https://doi.org/10.1007/s10270-015-0492-y

Extending SysML to Generate Event-B Specifications 273

18. Mazzini, S., Favaro, J.M., Puri, S., Baracchi, L.: CHESS: an open source methodol-
ogy and toolset for the development of critical systems. In: Bordeleau, F., Bruel, J.,
Dingel, J., Gérard, S., Muccini, H., Mussbacher, G., Voss, S. (eds.) Joint Proceed-
ings of the 12th Educators Symposium (EduSymp 2016) and 3rd International
Workshop on Open Source Software for Model Driven Engineering (OSS4MDE
2016) co-located with the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2016), Saint Malo, France,
3 Oct 2016. CEUR Workshop Proceedings, vol. 1835, pp. 59–66. CEUR-WS.org
(2016). http://ceur-ws.org/Vol-1835/paper09.pdf

19. Mentré, D.: SysML2B: automatic tool for B project graphical architecture design
using SysML. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 308–311. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8_26

20. Miyazawa, A., Cavalcanti, A.: Formal refinement in SysML. In: Albert, E., Sek-
erinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 155–170. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10181-1_10

21. Musset, J., et al.: Acceleo user guide, vol. 2 (2006). http://acceleo.org/doc/obeo/
en/acceleo-2.6-user-guide

22. OMG: OMG systems modeling language, version 1.3. http://www.omgsysml.org/
(2012)

23. ProB: The ProB animator and model checker. https://prob.hhu.de/
24. Salunkhe, S., Berglehner, R., Rasheeq, A.: Automatic transformation of SysML

model to Event-B model for railway CCS application. In: Raschke, A., Méry, D.
(eds.) ABZ 2021. LNCS, vol. 12709, pp. 143–149. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77543-8_14

25. Snook, C., Butler, M.: UML-b: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

http://ceur-ws.org/Vol-1835/paper09.pdf
https://doi.org/10.1007/978-3-319-33600-8_26
https://doi.org/10.1007/978-3-319-33600-8_26
https://doi.org/10.1007/978-3-319-10181-1_10
http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide
http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide
http://www.omgsysml.org/
https://prob.hhu.de/
https://doi.org/10.1007/978-3-030-77543-8_14
https://doi.org/10.1007/978-3-030-77543-8_14

Development of Monitoring Systems
for Anomaly Detection Using ASTD

Specifications

El Jabri Chaymae1(B), Frappier Marc1, Ecarot Thibaud1,
and Tardif Pierre-Martin2

1 Computer Science Department at Université de Sherbrooke,
GRIF, Québec, Canada

{chaymae.el.jabri,marc.frappier,thibaud.ecarot}@usherbooke.ca
2 Management School at Université de Sherbrooke, Québec, Canada

pierre-martin.tardif@usherbrooke.ca

Abstract. Anomaly-based intrusion detection systems are essential
defenses against cybersecurity threats because they can identify anoma-
lies in current activities. However, these systems have difficulties provid-
ing entity processing independence through a programming language. In
addition, a degradation of the detection process is caused by the complex-
ity of scheduling the training and detection processes, which are required
to keep the anomaly detection system continuously updated. This paper
shows how to use the algebraic state-transition diagram (ASTD) lan-
guage to develop flexible anomaly detection systems. This paper pro-
vides a model for detecting point anomalies using the unsupervised non-
parametric technique Kernel Density Estimation to estimate the proba-
bility density of event occurrence. The proposed model caters for both
the training and the detection phase continuously. The ASTD language
streamlines the modeling of detection systems thanks to its process alge-
braic operators that provide a solution to overcome these challenges. By
delegating the combination of anomaly-based detection processes to the
ASTD language, the effort and complexity are reduced during detection
models development. Finally, using a qualitative evaluation, this study
demonstrates that the algebraic operators in the ASTD specification lan-
guage overcome these challenges.

Keywords: Intrusion detection system · Anomaly detection ·
Specification language · Formalization · Algebra operators

1 Introduction

Critical systems and sensitive infrastructure are increasingly subject to an inten-
sification of cyberattacks, the complexity of which increases throughout multi-
ple offensives. To adequately counter the risks that are not always identified
and known, these systems must have a defense with the main characteristic of
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 274–289, 2022.
https://doi.org/10.1007/978-3-031-10363-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_19

Development of Monitoring Systems for Anomaly Detection 275

quickly and effectively detecting a threat or abnormal behavior. These threats,
which are often composed of a variety of combined tactics and techniques that
adversaries may employ to achieve their objectives, are increasingly challenging
to detect due to their inherent heterogeneity and complexity [26].

Detecting these threats is challenging because of detecting heterogeneous
attacks with various variants, the need to quickly obtain a representative and
up-to-date dataset for the training phase, and the management of internal pro-
cesses and alarm handling of an intrusion detection system (IDS). Indeed, IDSs
must detect a wide range of attacks whose nature can vary within a given system
substrate [8,19]. In addition, the management of the processes running within
the detection systems is of great complexity, mainly due to the number of enti-
ties present in the ever-growing infrastructures, whose topology is constantly
changing and which are deployed on a large scale [22]. It is also about get-
ting representative datasets of these changes faster and processing a massive
amount of generated alerts to reduce the number of false positives, or irrelevant
alerts [10,25]. These various challenges have highlighted the difficulty of adapt-
ing IDSs to changes. These difficulties impact IDS based on dynamic signatures
and anomaly detection.

To answer these difficulties of adaptation, particular works of [2,30] have
examined several approaches, such as the combination of different learning tech-
niques or the use of a better classification using labeling before the training
phase. However, specific challenges persist with these works, particularly the
lack of flexibility due to the process scheduling during the training and detec-
tion phases executed in parallel [12] and the entity profiles independence to be
monitored [13]. More specifically, process scheduling is a persistent issue dur-
ing IDS’ development. Indeed, programming languages do not have predefined
formal operations ensuring the interaction between the multiple processes, com-
plicating continuous improvement and reducing reusability. The next challenge
is the unique treatment of the entities of a system to be monitored. Indeed, the
processing is unique for all the characteristics of the entities. It is impossible to
differentiate the entities because the training and detection model parameters
are specified a priori. A final issue is the interruption of detection when renewing
training data because the feedback loop is not continuous or automated.

In order to answer appropriately to these functional issues, it was hypoth-
esized that the use of the algebraic state transition diagrams (ASTDs) formal-
ization language [4] would make it possible to meet effectively to these chal-
lenges. ASTD is an executable, modular and graphical notation that allows for
the composition of hierarchical state machines using process algebra operators
such as flow, sequence, quantified interleaving, and parallel synchronization [27].
Indeed, using algebra operators specific to the IDS’ development coming from
this language should improve the reliability and flexibility of these systems. The
research work presented in this article aims to formalize the development of
intrusion detection systems and to achieve three objectives:

276 E. J. Chaymae et al.

– Separate the coordination of the processes from the actions constituting the
model;

– Provide independent processing of each entity that constitutes the system to
be monitored;

– Ensure continuous processing of events between the training and detection
phase.

This paper is structured as follows. Section 2 first explores the existing
anomaly detection tools by selecting those that allow continuous event flow man-
agement and those that offer heterogeneous processing of the system substrate
profiles. Then, in Sect. 3 a new methodology for detecting point anomalies is pre-
sented based on the graphical specification of the detection model. The method-
ology is illustrated through a case study in the Microsoft365 environment. The
different actions that make up the model and the execution steps of this new
specification will be described. Finally, in Sect. 4 a qualitative evaluation is pro-
posed to show that using ASTD meets formalization, reusability, and modular-
ity objectives that next-generation IDSs need to counter increasingly complex
attacks and motley.

2 Related Work

In the literature, some tools offer the possibility of detecting anomalies in a data
set, each using a different methodology. There are those specific to anomaly
detection, others more related to the processing and analysis of event logs, and
others that present advanced functionalities in the statistical processing of data.

Several industrial approaches exist to perform anomaly detection by sig-
nature or behavior. The first approach is carried out with the Snort tool.
Snort [20] provides a low-level signature language to express and detect multi-
stage Advanced Persistent Threats (APT) attacks. However, Snort is a stateless
language that offers minimal event correlation capabilities. This limitation has
the effect of triggering more redundant true positives and false positives. Suri-
cata [1] is based on the same inference mechanism as Snort, so it is very complex
to make combinations to detect complex attacks. Zeek [18] was proposed to over-
come some limitations of Snort by providing an event-driven scripting language
to precisely specify and identify APT. The writing of Zeek scripts is essen-
tially programming using functions and global variables. However, Zeek being
a scripting language, is less abstract than approaches based on process algebra
composition operators. Zeek functions are monolithic; that is, there is a single
function for each event, and this function must address all cases of occurrence
of this event, making it complex to deal with state-dependent reactions for this
event.

BeepBeep 3 [5] is mainly a data stream query engine. It provides processors
and functions that define recurrent operations on event logs. BeepBeep 3 aims
to present reusable, tested, and general toolkits that reduce the development
effort of continuous event processing and express this processing in a more read-
able way and with a higher level of abstraction. BeepBeep 3 does not present

Development of Monitoring Systems for Anomaly Detection 277

predefined processors for anomaly detection, although such extensions exist [21].
BeepBeep forms more complex computations on the data by composing (or pip-
ing) processors between them, which is achieved by letting the output of one
processor be the input of another. It does not present a large selection of rela-
tionships that can be established between different processors. The specification
of anomaly detection is more representative and simpler by ASTDs than with
BeepBeep 3. This argument means that modularity is not present with BeepBeep
compared to methods based on process algebra.

Palisade [9] is an anomaly detection framework. It is motivated by the need
to remotely detect anomalies and combine a set of detectors with improving the
detection system’s accuracy. Palisade ensures that the different detectors can
operate in parallel on the same data set thanks to its architecture composed of
nodes that communicate via Redis, a distributed data streaming architecture.
Palisade does not handle anomaly detection in interleaved events as it is intended
for embedded systems. The detection is performed on the entity’s data to which
the framework is connected. Palisade does not present a graphical representation
or an additional level of abstraction to develop an intrusion detection system.
However, it is necessary to browse its source code to extend or reuse systems
based on Palisade, making it less flexible than ASTD.

Project-R is one of the oldest tools for statistical data processing and sta-
tistical calculations. It is a GNU project developed by the R programming lan-
guage [7]. It has advanced features like time series analysis, clustering, classifica-
tion, etc. Thus it can be used in anomaly detection according to machine learn-
ing techniques [3,24], especially at the stage of establishing the model describing
the system’s normal behavior. R does not offer the possibility of combining sta-
tistical processing, which causes a considerable loss of time during execution.
PqR [15] improves R, whose main objective is the acceleration of calculations.
PqR structure calculations as tasks by adding the possibility of parallelizing,
pipelining, and merging tasks when certain conditions are met. The modularity
and reusability of an IDS made with R depends on the developer.

The management of Interleaved Event Inputs in [17] raises the need to sepa-
rate interleaved events produced by different users or for other purposes during
intrusion detection. It allows distinguishing between data elements representing
different behaviors and locating where the intrusion is. Research works in [14,23]
indicate that the detection of anomalies in data streams and environments that
dynamically change properties requires the updating of training data to preserve
the accuracy of the detection system.

The ASTD specification language, through its compiler cASTD [16], allows
continuous data stream processing and combines the processes constituting the
detection system through algebraic operators. In the following, a case study will
be presented that demonstrates how to process coordination, entity processing
independence, and automation of training data update can be provided by the
ASTD specification of the detection system.

278 E. J. Chaymae et al.

3 Case Study

The case study detects unexpected events in end-user activity data streams from
various Microsoft online services such as Exchange, Azure AD, and SharePoint.
They are collected in real-time using a Microsoft365 API. Unexpected events
occur at times of the day when the user is not usually active. Data streams are
made up of events representing activities performed by various users. Among the
attributes associated with an activity are:

– ID : uniquely identifies each event
– CreationTime: determines the date and time in Coordinated Universal Time

(UTC) that the user performed the activity. It has the following format
YYYY-mm-ddTHH:MM:ssZ.

– UserId : the user who performed the action

The events are interleaved: they contain events from different users not recog-
nized (identified) a priori (i.e., the IDS does not have access to a database of
existing/registered users; it discovers them on the fly). Events are not always
received in the chronological order of their realization, and some events are
received very late.

Anomaly detection proceeds according to the following steps:

– We establish a model describing a user’s activity during the day. This model
estimates the probability density of a user’s activity during the 1440 min of
the day using the non-parametric technique kernel density estimation (KDE).

– A minimum threshold is set that defines the lowest probability density to
classify an event as expected.

– The new events are compared with the learned reference model. If the event
has occurred for a minute for which the probability density is below the
threshold, the event is considered to be an anomaly.

KDE has been used in unexpected event detection in an application estab-
lished in collaboration with the company Sherweb [11]. The experiments per-
formed demonstrated that the model meets its statistical function by modeling
the active hours of a user even when ignoring the exact values of the model
parameters. In addition, it turns out that the reported events are abnormal
in terms of user behavior and not necessarily performed by an attacker. The
model’s threshold is chosen considering that a significant threshold value will
classify more events as abnormal, which requires more investigation by the com-
pany security analyst.

The update of the training data is done by implementing a sliding win-
dow.The events are grouped by week by assigning them a week number cal-
culated from the DateCreation attribute, which we call henceforth a period.
A period is defined as YYYYWW, where YYYY denotes the year and WW
denotes the week’s number. Two types of periods are needed: UsedPeriods and
AccumulatedPeriods. UsedPeriods are used to calculate the current KDE model,
and AccumulatedPeriods are the periods received after the computation of the
current KDE, and that will be used to compute the next KDE. To update the
training data two conditions must be satisfied:

Development of Monitoring Systems for Anomaly Detection 279

– The accumulation of at least n period
– Obtaining at least k events in the accumulated periods

These conditions were put in place to ensure that the sample of data used for
training was representative and that the profile learned by KDE was reliable.

Figure 1 represents the data renewal process.

Fig. 1. Methodology for updating training data.

Having accumulated at least n periods in UsedPeriods and obtained k events
associated with these periods, we launch the computation of the KDE, then we
remove the first period from UsedPeriods and we add the periods of Accumulat-
edPeriods to UsedPeriods. Finally, we empty the list AccumulatedPeriods, and
we continuously repeat this process.

In what follows, we present the graphical specification of the detection system
by highlighting the process algebra operators used and their functionalities. Then
we define the different actions governing the specification of the detection system
and the methodology for updating the training data.

3.1 Graphical Specification of the IDS

ASTD specifications are created using the eASTD editor. The specification is
built using state-transition machines, which are combined using process alge-
bra operators, called ASTD types. Thus, an ASTD of a given type contains an
operator, attributes (i.e., state variables), and an executable code (action) which

280 E. J. Chaymae et al.

is executed every time the ASTD is executed. Each ASTD type has a specific
graphical representation.

Figure 2 provides the graphical representation of the ASTD specification
of our model. Its top-level operator is a quantified interleave, denoted by �
in the top-left tab; it is a unary operator, thus it applies to its sub-ASTD
Detect Anomalous Event T imes. It declares a quantified variable userid of type
int. ASTD was initially intended for information system (IS) modeling. The
quantified interleave operator, taken from the CSP [6] language, gave ASTD an
advantageous property not present in other modeling languages such as UML,
which consists in the possibility of representing multiple instances of the same
entity in an explicit and concise way [4]. In our context, the quantified inter-
leave operator allows one to treat each user independently by associating an
instance of its sub-ASTD Detect Anomalous Event T imes to each user. Thus,
each user has its own copy of this sub-ASTD, and it can store the specific infor-
mation related to a user. It is important to note that the quantification variable
userid has an unbounded domain which allows the ASTD to treat all the users
without the need to recognize them before.

ASTD Detect Anomalous Event T imes is of type flow, denoted by ⫛; it
is a binary operator similar to AND-state in Statecharts. The flow operator
was added to the ASTD language in [29], because often the same event is part
of several attacks, and flow allows this event to be executed on each attack
specification that can execute it. It allows for executing the same input event on
both the training and detection processes.

ASTD Detect Anomalous Event Times has the following attributes:

– EventsByWeek : map⟨int, vector⟨double⟩⟩ ; it contains the period as a key,
and a list of event minutes.

– n : int ; the minimum number of periods to accumulate to launch the calcu-
lation of the KDE

– k : int ; defines the number of events that a user should have in n periods, in
order to compute the KDE and build his profile.

– threshold : double; defines the lowest probability to classify an event as
expected

– UsedPeriods : vector⟨int⟩ ; it contains the indices of the periods in EventsBy-
Week which will provide the calculation of the KDE after having accumulated
a minimum of K events for these periods.

– AccumulatedPeriods : vector⟨int⟩ ; it is used to renew the data used for the
calculation KDE.

– startKDE : bool ; is used to launch the KDE calculation when it is true.
– UserKDE : vector⟨double⟩ ; it contains the current KDE calculated.
– Alerts : vector⟨string⟩ ; it contains the ID of the suspicious events.

Detect Anomalous Event Times contains two sub-ASTDs: Computation and
Alerting, which in turn have access to the previous attributes. The event e is
executed by each sub-ASTD which can execute it.

The ASTD Computation is of type Automaton. It has as an action
KDE Computation which takes as parameters the following variables and

Development of Monitoring Systems for Anomaly Detection 281

Fig. 2. ASTD graphical specification.

attributes: userId, EventsByWeek, userkde, UsedPeriods, AccumulatedPeriods,
startkde; it is responsible for the KDE computation after checking the value
of startKDE. ASTD Computation is a state machine that contains a single
state with a loop transition labeled with event e and it has an action addE-
vent(userId, CreationTime, EventsByWeek, UsedPeriods, AccumulatedPeriods,
startkde, k, n), which adds the events received to the map EventsByWeek and
manages the periods. The execution of actions occurs in a bottom-up way, which
means that transition actions are executed first, followed by ASTD actions. Thus,
action addEvent is executed before action KDE Computation. ASTD Computa-
tion manages the attribute EventsByWeek and the computation of the KDE
profile when it is possible.

The ASTD Alerting is also a state machine. It contains only one state with
a loop transition also labeled with e, and it has an action alert(userkde, userId,
CreationDate, ID, alerts, threshold), which is in charge of checking if the prob-
ability of occurrence of the received event is lower than the threshold. In that
case, the event is reported by adding its ID to the vector of alerts. The tran-
sition is guarded with condition g3 = userkde. size()!=0, which ensures that the
userkde is not empty.

3.2 Action Definitions

First of all we define the three main actions (addEvent,Computation KDE, alert),
then we introduce some methods responsible for partial calculations.

Action addEvent (see Algorithm 1) updates the training data structure
(EventsByWeek) and triggers the KDE computation. For each event received,

282 E. J. Chaymae et al.

Algorithm 1. addEvent
Input:userId, CreationDate, EventsByWeek, UsedPeriods, AccumulatedPeriods,

startKDE, n, k
Output: EventsByWeek, UsedPeriods, AccumulatedPeriods, startKDE updated

1: period← Compute period(CreationDate)
2: value← Compute minute(CreationDate)
3: EventsByWeek[period].append(value)
4: if UsedPeriods.size()! = 0 then
5: last used period←UsedPeriods[UsedPeriods.size() − 1]

6: if calculNbrEvents(EventsByWeek,UsedPeriods) ≤ k or UsedPeriods.size() ≤
n or diffnext(last used period, period) > 0 then

7: if period not in UsedPeriods then
8: insert(UsedPeriods, period)

9: else if period not in UsedPeriods then
10: if AccumulatedPeriods.size() == 0 then
11: startKDE ← true
12: if period not in AccumulatedPeriods then
13: insert(AccumulatedPeriods, period)

14: NewPeriods←UsedPeriods[2 :] +AccumulatedPeriods
15: if calculNbrEvents(EventsByWeek,NewPeriods) ≥

k and calculNbrEvents(EventsByWeek,AccumulatedPeriods) ≥

2 and UsedPeriods.size() ≥ n then
16: EventsByWeek.erase(UsedPeriods[1])
17: UsedPeriods←NewPeriods
18: AccumulatedPeriods← []
19: NewPeriods← []

we calculate the minute of the day and the period in which it occurred from
the CreationDate by the Compute minute and Compute period methods, respec-
tively. The minute obtained is then added to the EventsByWeek map according
to its period. The condition of line 6 allows to build the list UsedPeriods and to
ensure the continuity of the order between UsedPeriods and AccumulatedPeriods
by verifying that the inserted period is less than the last period of UsedPeriods.
If this condition (in line 6) is not satisfied, it means that the computation of the
KDE from the data associated with UsedPeriods is possible. To ensure that we
have received enough or all events from the last UsedPeriods period, we check-in
line 10 that we have not yet received an event from a brand new period that
does not exist in UsedPeriods. The condition in line 12 ensures that the Accu-
mulatedPeriods list is built until the conditions for updating the training data
are satisfied.

Then we create the NewPeriods list by taking the UsedPeriods list deprived
of its first period and the periods of AccumulatedPeriods. The condition in line
15 checks if NewPeriods can be the new UsedPeriods that will be used for the
computation of the new profile and that there are at least two events associated
with the AccumulatedPeriods; this is to ensure that the first period of Used-

Development of Monitoring Systems for Anomaly Detection 283

Periods is not deleted before being included in the KDE calculation because
the first event of the AccumulatedPeriods is responsible for starting the KDE
computation.

Algorithm 2. Computation KDE
Input: EventsByWeek, UsedPeriods, AccumulatedPeriods, startKDE, userKDE
Output: userKDE updated

1: if startKDE then
2: userKDE.clear() � reset userKDE
3: for key in EventsByWeek.keys() do
4: if key not in UsedPeriods and key not in AccumulatedPeriods then
5: EventsByWeek.erase(key)

6: fusion(EventsByWeek, UsedPeriods, fusiondata)
7: userKDE ← computationoftheKDE
8: startKDE ← false

Action Computation KDE (See algorithm 2) computes the KDE after veri-
fying the value of startKDE. In this case, it resets the userKDE, cleans up
the map EventsByWeek by deleting the periods not existing in UsedPeriods and
AccumulatedPeriods, merges the data in EventByWeek from the UsedPeriods
into a single list and starts the KDE computation.

Algorithm 3. alert
Input: userKDE, ID, CreationDate, alerts, threshold
Output: alerts updated

1: value← Compute minute(CreationDate)
2: if userKDE[value] ≤ threshold then
3: add ID to alerts

Action Alert (see Algorithm 3) compares the probability of occurrence of the
event and the threshold. It computes the minute of occurrence of the received
event. It retrieves the probability of occurrence of events at this minute using
userKDE, compares the probability to a threshold. If the probability is less
than the threshold, ID is added to the alerts list.

The numweek method receives as input the day, month and year. It returns
the number of the week associated with this date. The calculNbrEvents method
receives as input a map of event data and a list of periods. It returns the number
of values (events) for those periods in the map. The diffnext⟨period1, period2⟩
method calculates the difference between two periods, assuming that period2 >
period1.

The insert method (See Algorithm 4) inserts the periods in the lists
UsedPeriods and AccumulatedPeriods. The insertion of the periods in the two

284 E. J. Chaymae et al.

lists is done while keeping an ascending order. This order in the lists is created
to ensure the order of the events and identify the events received late: It some-
times happens that there are events that are received after one month of their
occurrence. Therefore, it would be relevant to delete them when calculating the
current KDE profile. These events can be determined because they belong to a
period very far from the first period of the current period list (a difference of
more than three periods between the old period and the first period of the list).
If we receive an event corresponding to an old period, this period will not be
inserted into the list.

Algorithm 4. insert
Input: vec, period
Output: vec updated

1: it← upper bound(vec.begin(), vec.end(), period) �
upper bound return an iterator pointing to the first period in the

range [vec.begin(),vec.end()) which compares greater than period

2: if it = =vec.begin() and it! = vec.end() then � if vec is not empty and period

should be inserted at the beginning of vec

3: diff ← diffnext(value at it, period)
4: if diff ≤ 3 then
5: insert period at the position pointed by it

6: else
7: insert period at the position pointed by it

3.3 IDS Code Generation

The generation of the IDS source code is done by compiling the ASTD specifica-
tion by the cASTD compiler [28]. The latter produces code in C++ programming
language from an ASTD specification in JSON. The compilation takes place in
the following four steps :

– Parsing the ASTD specification in JSON and producing an ASTD object
model by the ASTD Parser.

– Translation from ASTD to an intermediate model (IM) using the ASTD Com-
piler.

– Translation from IM to a programming language like C++ using the IM
Translator.

– Code optimization by removing redundant calculations

The specification is first modeled using the eASTD editor, which generates
the specification in JSON. This specification and the code defining the set of
operations required for the training and detection processes are passed as input
to the cASTD. It generates as output the source code in the C++ programming
language and the associated program (monitor) that will be executed on the data
streams (see Fig. 3). The source code is composed of the helper file, which calls

Development of Monitoring Systems for Anomaly Detection 285

the constructors associated with given string types; the logger file, which allows
debugging of the generated program; the IDS source code file, which contains
the translated code of the ASTD specifications; and the makefile for linking
and compilation. This makefile calls the native compiler corresponding to the
C++ language and is automatically executed by cASTD to produce the IDS
executable.

Fig. 3. IDS code generation.

3.4 Example of Specification Execution

To clarify the period management methodology, we proceed with an explicit
example. It is assumed that a user’s events are received with the following
sequence of periods: [202225, 202225, 202225, 202221, 202227, 202227, 202227,
202228, 202228, 202228,202228 , 202229, 202229, 202226]. We take k = 10, n = 3
and threshold = 0.001.

When the first three events are received, the lists of periods are as follows:
UsedPeriods=[202225 (3 events)], AccumulatedPeriods=[] and NewPeriods=[],
according to the condition in line 6 of the addEvent method

We receive the event of period 202221, which is supposed to be inserted
in the first position in UsedPeriods, in order to keep the list in ascending
order. However when we compute the difference between the first period of
UsedPeriods 202224 and 202221, we obtain 4 which is greater than 3 so the

286 E. J. Chaymae et al.

period 202221 will not be inserted in UsedPeriods according to the method
insert (Algorithm 4). The lists of periods remains unchanged: UsedPeriods =
[202225(3events)], AccumulatedPeriods = [] and NewPeriods = [].

The following seven events [202227, 202227, 202227, 202228, 202228, 202228,
202228] will be inserted in UsedPeriods according to the method addEvent (Algo-
rithm 1). The lists of periods will have the following content: UsedPeriods =
[202225 (3 events), 202227 (3 events), 202228 (4 events)], AccumulatedPeriods
= [] and NewPeriods = [202227 (3 events), 202228 (3 events)].

We receive the event of the period 202229, UsedPeriods contains more than
n periods, the number of events associated to it is equal to k, the last period
of UsedPeriods 202228 is less than 202229, which means that period 202228 is
finished, and AccumulatedPeriods is empty. So all the conditions are satisfied
to launch the computation of the KDE : startKDE receives true. According to
the condition in line 11 of addEvent, we add 202229 to AccumulatedPeriods.
The period lists are as follows: UsedPeriods = [202225 (3 events), 202227 (3
events), 202228 (4 events)], AccumulatedPeriods = [202229(1event)] and New-
Periods = [202227 (3 events), 202228 (3 events), 202229 (1 event)]. Then the
Computation KDE method is executed to compute the user profile that will be
stored in UserKDE.

We receive another event of the period 202229. The content of the periods
is as follows: UsedPeriods = [202225 (3 events), 202227 (3 events), 202228 (4
events)], AccumulatedPeriods = [202229 (2 event)] and NewPeriods = [202227
(3 events), 202228 (3 events), 202229 (2 event)]. The condition in the line 15 of
addEvent is satisfied, we renew the list of periods to have the following: UsedPe-
riods = [202227 (3 events), 202228 (3 events), 202229 (2 event)], Accumulated-
Periods = [] and NewPeriods = []. The condition g3 is satisfied which allows to
execute the Alert method which classifies the event as being normal or abnormal.

Finally we receive the event of the period 202226, which, as the condition of
the line 6 of addEvent, is inserted in UsedPeriods, to obtain the following lists:
UsedPeriods = [202226 (1 event), 202227 (3 events), 202228 (3 events), 202229 (2
events), 202229 (2 events)], AccumulatedPeriods = [] and NewPeriods = [202227
(3 events), 202228 (3 events), 202229 (2 events), 202229 (2 events)]. This event
also passes through the detection process as g3 is satisfied.

4 Evaluation and Discussion

The flow operator coordinated the two sub-ASTDs of the training and detection
processes. A received event is added to the training data structure and evaluated
against the learned model if already computed. This means that the training
data is fed simultaneously as the detection is maintained. The fact that the two
sub-ASTDs share the attributes inherited from the parent ASTD reinforces this
coordination, as the model computed by the first sub-ASTD is used to perform
the detection at the second sub-ASTD.

The quantified interleave operator creates the sub-ASTD for each entity pro-
cessed, which means that there are as many independent IDS as there are entities.

Development of Monitoring Systems for Anomaly Detection 287

The advantage of the processing independence of the different users in the devel-
oped case study is that the update of the training data is done depending on
the user’s activity, not blindly at the same time for all entities. Each entity has
its own attributes, and in the ASTD language, an attribute can be initialized
by the value returned by a method. The initialization can also be dependent on
the properties of the entity.

The automation of the training data update has been implemented accord-
ing to if-else instructions; this is possible thanks to continuous data process-
ing. The reference profile is renewed when a new training data set meets
defined conditions. This was achieved in the case study by the executable code
Computation KDE, responsible for recalculating the KDE profile according to
the value of the boolean startKDE, which is executed directly after the execu-
tion of the action addEvent that checks the value of startKDE.

The ASTD language formalized the scheduling and coordination of the var-
ious IDS processes, which reduces the mental load and the effort required for
the development. The modeling of the specification in a graphical representation
facilitates modifying or extending the specification. The cASTD tool with its IDS
source code generation methodology ensures the modularity and reusability of
the IDS specification. Modularity results from the separation of the reading of
the data flows, the operations composing the system, and the coordination of the
different processes. Reusability is due to the fact that the IDS code generated
by cASTD can be compiled and executed in any environment.

The IDS specification was executed on a dataset containing 3,827,551 events
of 10 distinct users collected over 10 weeks from one of our industrial collabo-
rators operating a Microsoft365 SAS, using an Intel Core i7 processor machine
with frequency 3 GHz × 8 and 32 GB of RAM. The execution took 1 h:34 min:13
s (wall clock time) and 138 MB of RAM, which represents an average execution
time of 1.476 ms by event. This Microsoft365 site collects around 40 million
events per week, so our generated code can clearly cope with this workload.
In [28] a comparison was made between cASTD and other event processing tools
(BeepBeep v3, MonPoly, iASTD); it turned out that cASTD is the fastest among
them.

5 Conclusion

A study on the use of ASTDs in the context of intrusion detection systems
is presented in this paper. This study demonstrates the simplicity of allowing
data updates without interrupting the detection process and the creation of
modularity at the level of each user that can be treated independently. The
ASTD language made it possible to coordinate the anomaly detection model’s
different processes by using the algebra operators. Evaluation conducted in this
paper shows that ASTD specification language can be used to develop anomaly-
based detection systems. The cASTD tool that has been used to compile the
specifications has shown to be efficient in terms of execution time.

The anomaly detection application presented in the case study is of point type
detection. Future works will be carried out to develop other types of anomaly

288 E. J. Chaymae et al.

detection that are contextual or collective. A new evaluation will present the
advantages of the ASTD specification language in terms of flexibility to apply
other estimation calculation methods. The hope founded by this formalization
work can allow greater resilience of detection systems in the face of new modern
threats. Moreover, the work carried out in this study shows that this could be a
probable solution to the current detection problems.

References

1. Home (2022). http://suricata-ids.org/
2. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of sup-

port vector machine, random forest, and extreme learning machine for intrusion
detection. IEEE Access 6, 33789–33795 (2018). https://doi.org/10.1109/ACCESS.
2018.2841987

3. Bauder, R., Khoshgoftaar, T.: Multivariate anomaly detection in medicare using
model residuals and probabilistic programming (2017). https://aaai.org/ocs/index.
php/FLAIRS/FLAIRS17/paper/view/15429

4. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending state-
charts with process algebra operators. Innovations Syst. Softw. Eng. 4, 285–292
(2008). https://doi.org/10.1007/s11334-008-0064-1

5. Hallé, S.: Event Stream Processing with BeepBeep 3: Log Crunching and Analysis
Made Easy (2018)

6. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

7. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.
Graph. Stat. 5(3), 299–314 (1996). http://www.jstor.org/stable/1390807

8. Kasinathan, P., Pastrone, C., Spirito, M.A., Vinkovits, M.: Denial-of-service detec-
tion in 6lowpan based internet of things. In: 2013 IEEE 9th International Con-
ference on Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 600–607 (2013)

9. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.:
Palisade: a framework for anomaly detection in embedded systems. J. Syst. Archi-
tect. 113, 101876 (2021)

10. Khakurel, N., Bhagat, N.: Advanced engineering and ICT-convergence 2019
(ICAEIC-2019), p. 22 (2019)

11. Létourneau, L.S., El Jabri, C., Frappier, M., Tardif, P.M., Lépine, G., Boisvert, G.:
Statistical approach for cloud security: Microsoft office 365 audit logs case study.
In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), pp. 15–18. IEEE (2021)

12. Lifandali, O., Abghour, N.: Deep learning methods applied to intrusion detection:
survey, taxonomy and challenges. In: 2021 International Conference on Decision
Aid Sciences and Application (DASA), pp. 1035–1044 (2021). https://doi.org/10.
1109/DASA53625.2021.9682357

13. Liu, G., Yi, Z., Yang, S.: Letters: a hierarchical intrusion detection model based on
the pca neural networks. Neurocomput. 70(7–9), 1561–1568 (2007). https://doi.
org/10.1016/j.neucom.2006.10.146

14. Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., Kato, N.: A dynamic
anomaly detection scheme for aodv-based mobile ad hoc networks. IEEE Trans.
Veh. Technol. 58(5), 2471–2481 (2008)

http://suricata-ids.org/
https://doi.org/10.1109/ACCESS.2018.2841987
https://doi.org/10.1109/ACCESS.2018.2841987
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15429
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15429
https://doi.org/10.1007/s11334-008-0064-1
http://www.jstor.org/stable/1390807
https://doi.org/10.1109/DASA53625.2021.9682357
https://doi.org/10.1109/DASA53625.2021.9682357
https://doi.org/10.1016/j.neucom.2006.10.146
https://doi.org/10.1016/j.neucom.2006.10.146

Development of Monitoring Systems for Anomaly Detection 289

15. Neal, R.M.: Speed improvements in pqr: current status and future plans
16. Nganyewou Tidjon, L.: Modélisation formelle des systèmes de détection

d’intrusions. Ph.D. thesis, Institut polytechnique de Paris (2020)
17. Pao, H.K., Lee, F.R., Lee, Y.J.: Dealing with interleaved event inputs for intrusion

detection. J. Inf. Sci. Eng. 35(1), 223–242 (2019)
18. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Pro-

ceedings of the 7th Conference on USENIX Security Symposium - volume 7, p. 3.
SSYM 1998, USENIX Association, USA (1998)

19. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in
the internet of things. Ad Hoc Netw. 11(8), 2661–2674 (2013). https://doi.
org/10.1016/j.adhoc.2013.04.014. https://www.sciencedirect.com/science/article/
pii/S1570870513001005

20. Roesch, M.: Snort: lightweight intrusion detection for networks. In: LISA (1999)
21. Roudjane, M., Rebäıne, D., Khoury, R., Hallé, S.: Real-time data mining for event

streams. In: 2018 IEEE 22nd International Enterprise Distributed Object Com-
puting Conference (EDOC), pp. 123–134. IEEE (2018)

22. Sanchez, L. et al.: Smartsantander: the meeting point between future internet
research and experimentation and the smart cities. In: 2011 Future Network &
Mobile Summit, pp. 1–8. IEEE (2011)

23. Sun, R., Zhang, S., Yin, C., Wang, J., Min, S.: Strategies for data stream mining
method applied in anomaly detection. Cluster Comput. 22(2), 399–408 (2018).
https://doi.org/10.1007/s10586-018-2835-2

24. Szmit, M., Adamus, S., Szmit, A., Buga�la, S.: Implementation of Brutlag’s algo-
rithm in Anomaly detection 3.0. In: 2012 Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS), pp. 685–691 (2012)

25. Thakkar, A., Lohiya, R.: A review of the advancement in intrusion detection
datasets. Procedia Comput. Sci. 167, 636–645 (2020)

26. Thakkar, A., Lohiya, R.: A review on machine learning and deep learning perspec-
tives of ids for iot: recent updates, security issues, and challenges. Arch. Comput.
Meth. Eng. 28(4), 3211–3243 (2021). https://doi.org/10.1007/s11831-020-09496-0

27. Tidjon, L.N., Frappier, M., Mammar, A.: Intrusion detection using ASTDs. In:
Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020.
AISC, vol. 1151, pp. 1397–1411. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44041-1 118

28. Tidjon, L.N.: Formal modeling of intrusion detection systems. Ph.D. thesis, Institut
Polytechnique de Paris; Université de Sherbrooke (Québec, Canada) (2020)

29. Tidjon, L.N., Frappier, M., Leuschel, M., Mammar, A.: Extended algebraic state-
transition diagrams. In: 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 146–155. IEEE (2018)

30. Zhang, F., Kodituwakku, H.A.D.E., Hines, J.W., Coble, J.B.: Multilayer data-
driven cyber-attack detection system for industrial control systems based on net-
work, system, and process data. IEEE Trans. Ind. Inf. 15, 4362–4369 (2019)

https://doi.org/10.1016/j.adhoc.2013.04.014
https://doi.org/10.1016/j.adhoc.2013.04.014
https://www.sciencedirect.com/science/article/pii/S1570870513001005
https://www.sciencedirect.com/science/article/pii/S1570870513001005
https://doi.org/10.1007/s10586-018-2835-2
https://doi.org/10.1007/s11831-020-09496-0
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118

A Language-Based Causal Model for
Safety

Marcello Bonsangue1, Georgiana Caltais2(B), Hui Feng1,
and Hünkar Can Tunç3

1 Leiden University, Leiden, Netherlands
{m.m.bonsangue,h.feng}@liacs.leidenuniv.nl

2 University of Twente, Enschede, Twente, Netherlands
g.g.c.caltais@utwente.nl

3 Aarhus University, Aarhus, Denmark
tunc@cs.au.dk

Abstract. Inspired by the seminal works on causal analysis by Halpern
andPearl, in this paperwe introduce a causalmodel based on counterfactu-
als, adapted to finite automata models and with safety properties defined
by regular expressions. The latter encode undesired execution traces. We
devise a framework that computes actual causes, or minimal traces that
lead to states enabling hazardous behaviours. Furthermore, our frame-
work exploits counterfactual information and identifies modalites to steer
causal executions towards alternative safe ones. This can provide systems
engineers with valuable data for actual debugging and fixing erroneous
behaviours. Our framework employs standard algorithms from automata
theory, thus paving the way to further generalizations from finite automata
to richer structures like probabilistic or KAT automata.

Keywords: Causal models · Counterfactuals · Regular languages ·
Automata · Safety

1 Introduction

Causal models and associated causal inference machineries are precious tools for
the interpretation and explanation of systems failures. Current testing and ver-
ification frameworks such as equivalence checking, for instance, assess whether
or not systems comply to their specifications, and at most will produce a coun-
terexample in case the system fails. Causal analysis, instead, plays an important
role in explaining complex phenomena that are actual sources of hazards by
adding, for example, additional information to counterexamples on how to avoid
the hazard.

A notion of causality often embraced and adopted by computer scientists
was introduced by Halpern and Pearl in their seminal works [9,10]. Their causal
model encodes complex logical structures of multiple events that contribute to
undesired effects, or hazards. In essence, the model is based on the the so-called
alternative worlds, originally proposed by Lewis [17]. In short, Lewis assumes
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 290–307, 2022.
https://doi.org/10.1007/978-3-031-10363-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_20

A Language-Based Causal Model for Safety 291

the existence of worlds satisfying a sufficiency condition, where both the cause
and the effect occur, and other worlds satisfying a necessity condition, in which
neither the cause nor the effect occur. This enables formulating the counterfac-
tual argument, which defines a first condition to be satisfied by a cause, namely:
when the presumed cause does not occur, the effect will not occur either. More
complex aspects such as redundancy and preemption are also captured by the
causal model in [9,10]. For an intuition, redundancy refers to simultaneous events
that play the same role in enabling an undesired effect. Orthogonally, preemp-
tion refers to subsequent events that have the same power to enable the effect.
In both cases, the counterfactual test alone cannot determine the actual cause.
Last, but not least, causes in the spirit of [9] comply to a minimality requirement
which guarantees that only the relevant set of causal events is identified.

Related Work. Along time, several notions of causality have been proposed,
each of which tailored to the type of the system under analysis, and associated
correctness specifications. Of particular interest for this paper are the works in [4,
5,15]. The aforementioned results propose trace-based adoptions of causality á la
Halpern and Pearl, applicable to automata models. These, in combination with
model checking-based methodologies, enabled computing causes for the violation
of safety and liveness properties in Kripke structures and labelled transition
systems, for instance.

Our work is closely related to the contribution in [5]. Given an automa-
ton model, the naive goal is to identify the shortest sequence of actions that
enable the effect, i.e., that can bring the system into a hazardous state. These
are called “causal traces”. Note that, in contrast with the often tedious coun-
terexamples identified by model-checkers, the minimality of causal traces implies
concise descriptions of systems faults. Thus, causal traces encode essential infor-
mation for systems engineers, for instance, and they can serve as a debugging
aid. As previously stated, in the spirit of Halpern and Pearl, our definition of
causality imposes a sufficiency condition: namely, whenever a causal trace is exe-
cuted, the effect is reached as well. However, important information on how to
actually avoid/fix hazardous behaivours can be extracted based on the afore-
mentioned set of alternative worlds (or traces in our model), that do not lead
to an undesired effect. Hence, we designed our causal model in the spirit of the
counterfactual criterion of Lewis and identified modalities to avoid hazardous
scenarios. Similarly to [4,5,15], we call these escape options – “events causal
by their non-occurrence”. This information can be exploited in order to steer
an execution towards an alternative safe one, with immediate applicability in
synthesizing schedulers, for instance.

A rich body of work successfully exploited the counterfactual argument for
fault analysis and debugging techniques. Examples related to counterexample
explanation in model checking are the works in [7,8,21], for instance. In [7] the
authors propose a framework for understanding errors in ANSI C programs,
based on distance metrics for program executions. In [8] the cause describing
the error includes the identification of source code fragments crucial to distin-
guishing success from failure, and differences in invariants between failing and
non-failing runs. Distance criteria have also been exploited in [21], in combi-

292 M. Bonsangue et al.

nation with the so-called nearest neighbor queries to perform fault localization.
The why-because-analysis in [14] was used to reason about aviation accidents, in
a framework where Lamport’s Temporal Logic of Actions (TLA) described both
the behavior of a system, the (history of) hazards and the sequence of the states
leading to an accident. The work in [23] provides a comprehensive approach to
systematic debugging including, among others, delta debugging – a technique
for isolating minimal input to reproduce an error.

For finer notions of causal dependencies that distinguish between interleaving
and true concurrency, for instance, we refer to event structures [2,20]. Neverthe-
less, in our work, we adhere to the approaches in [4,5,15], and do not take into
consideration the order of events along execution traces.

Our Contributions. We propose a shifting bisimulation setting presented in [5]
to a trace based setting in the context of regular languages and automata the-
ory. The benefits are multifold. For instance, the paradigm change facilitates the
application of more standard algorithms from automata theory, in contrast with
the rather ad-hoc procedures in [4,5,15]. Furthermore, the current framework
enables using an expressive logic for defining safety properties in terms of reg-
ular expressions (or automata), instead of the ordinary Hennessy-Milner logic.
The language based approach to causality enables representing both hazards
and causal explanations in terms of automata – a format better accepted by
engineers. In addition, in this paper, we use regular languages (or full regular
expressions including Kleene-star) to encode non-occurrence of events. Previous
related works such as [4,5,15] can only provide finite sets of runs steering an
execution towards an alternative safe one. Orthogonal to the aforementioned
results, the current approach entails a “may” semantics of causality, instead of
“must”; nevertheless, we believe that the approach can be easily modified to
cater for the “must” version. Besides, in contrast with the results in [5], steering
executions are guaranteed not to jump over hazardous states by simply con-
catenating sequences causal by their non-occurrence and the causal trace. The
ultimate goal of the current work is to generalize from finite automata to richer
structures like probabilistic automata and NetKAT automata [1,6].

Structure of Paper. In Sect. 2 we provide an overview of regular languages and
associated automata theory aspects. A running example is introduced in Sect. 3.
Section 4 defines the language-based model of causality, whereas in Sect. 5 we
show how to compute actual causes and safe computations. In Sect. 6 we provide
an experimental evaluation of our method and in Sect. 7 we discuss how our
model can be extended with tests and assignments. Section 8 concludes our work.

2 Preliminaries

In this section we recall few basic facts about regular languages, finite automata,
and regular expressions [18].

Let A be a finite set of actions that we refer to as an alphabet. A word or
string over A is a finite sequence a1 . . . an of elements from A. We denote by ε

A Language-Based Causal Model for Safety 293

the empty word, i.e. the sequence of length 0, and write A∗ to denote the set of
(possibly empty) words over A. A language L is just a subset of words, that is
L ⊆ A∗. We call a word w′ to be a prefix of a word w whenever w = w′w′′. A
word w′ is said to be a sub-word of a word w, if w′ is obtained by deleting one or
more elements of A at some not necessarily adjacent positions in w. We denote
by sub(w) the set of all sub-words of w. Note that sub(ε) = ∅. Also, ε ∈ sub(w)
but w �∈ sub(w) for every non empty word w.

A finite automaton (FA) is a 5-tuple M = (S,A, i,−→, F), where S is a finite
set of states, i ∈ S is the initial state, F ⊆ S is the set of accepting states and
−→⊆ S×A×S is the transition relation. For simplicity, we write s

a−→ t whenever
(s, a, t) ∈−→. A transition relation is called deterministic if for all s ∈ S and
a ∈ A if s

a−→ t1 and s
a−→ t2 then t1 = t2.

A string w ∈ A∗ is accepted by an automaton M from a state s if either
(1) w = ε and s ∈ F , or (2) w = aw′ and there exists s

a−→ t such that w′ is
accepted by M from the state t. The language accepted by a FA M is the set
L(M) = {w ∈ A∗ | M accepts w from i}. Since for every FA M we can build a
FA N with a deterministic transition relation such that L(M) = L(N), without
loss of generality we will consider only finite automata with a deterministic
transition relation.

A language L over the alphabet A is said to be regular if there exists a
finite automaton M accepting it, that is L(M) = L. The class of all regular
languages is closed under union, intersection, concatenation, complement and
Kleene star. Here language union and intersections are the usual set theoretic
operations, whereas concatenation of two languages L1 and L2 is given by the
set L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}. Finally, for a language L, its Kleene
star closure is defined by L∗ =

⋃
n∈N

Ln where L0 = {ε} and Ln+1 = L · Ln

for all n ∈ N, thus denoting the concatenation of a language with itself a finite
number of time.

In this paper, we are interested in system communicating by message pass-
ing, and thus we will always assume that the alphabet A is partitioned in three
disjoint subsets AI , AO, and AP of input, output and private actions, respec-
tively. Notationally, for a ∈ A we write a? if a is an input action in AI and a! if
a is an output action in AO, and use no markings for private actions in AP . We
use σ to denote an action that can be either input, output or private.

Let A and B be two alphabets with disjoint private actions, and assume
the set P is disjoint from Q. Given two finite automata M = (P,A, i,−→M , E)
and N = (Q,B, j,−→N , F) their parallel composition is defined by the finite
automaton M || N = (P × Q,Σ,< i, j >,−→, E × F) where ΣI = (AI\BO) ∪
(BI\AO), ΣO = (AO\BI) ∪ (BO\AI), ΣP = (AP ∪ BP)∪(AI∩BO) ∪ (AO ∩ BI),
and −→ is the least transition relation such that

p
σ−→M p′ σ �∈ B

〈p, q〉 σ−→ 〈p′, q〉
q

σ−→N q′ σ �∈ A

〈p, q〉 σ−→ 〈p, q′〉
p

a?−→M p′ q
a!−→N q′

〈p, q〉 a−→ 〈p′, q′〉
p

a!−→M p′ q
a?−→N q′

〈p, q〉 a−→ 〈p′, q′〉

294 M. Bonsangue et al.

The topmost rules are about either private actions that are not affected by
the other automaton or communication actions that do not involve the other
automaton. The two rules at the bottom are about complementary communica-
tion actions a! and a? that are synchronized resulting in the private action a.
Note that when A = B with AI = BO, AO = BI and AP = BP = ∅ then parallel
composition reduces to the product automata where all actions synchronize. In
the case A is completely disjoint from B then parallel composition results in the
so-called shuffle product. Other variation of synchronization product could be
defined in a similar way, including multi-process synchronization, hiding of suc-
cessful communication, value passing synchronization (for a finite value domain)
and synchronization parameterized by a finite subset of actions.

For the characterization of the parallel composition of two languages we need
first to introduce the projection function. Given two alphabets A1 and A2 we
define the projection πi : (A1 ∪A2)∗ → A∗

i by πi(ε) = ε, and πi(σ ·w) = σ ·πi(x)
if σ ∈ Ai, and πi(w) otherwise. Because projections are surjective functions
they have inverse π−1

i returning the set of strings that are projected into a
given one. More precisely, we define the inverse projection by π−1

i (w) = {x ∈
(A1 ∪ A2)∗ | πi(x) = w} for every w ∈ A∗

i . Projections and their inverses can
extended to languages by applying them to all the strings in the language. In
general we have that πi(π−1

i (L)) = L but for the converse it only holds that
L ⊆ π−1

i (πi(L)). Note that if two alphabets A1 and A2 have disjoint private
actions and we partition A1 ∪ A2 as in the alphabet of the parallel composition
of two automata, then projections will assign private actions of A1 ∪ A2 to
either private, input or output actions in Ai unambiguously. Similarly, inverse
projections assign private actions to private actions, but may assign input and
output actions to private ones.

The parallel composition of two languages L1 ⊆ A∗
1 and L2 ⊆ A∗

2 is the lan-
guage L1 || L2 on the alphabet A1 ∪A2 defined as π−1

1 (L1)∩π−1
2 (L2). Basically,

the intersection takes care that dual communication actions will be synchronized,
and that disjoint private events will be shuffled with the others. As expected, we
have that L(M1 || M2) = L(M1) || L(M2), implying that regular languages are
closed under parallel composition [22].

We conclude this section by introducing extended regular expressions, that
we may use as alternative syntax to FAs in order to reason about causality in
complex systems composed of several components potentially communicating
with each other.

Given an alphabet A including communication actions, extended regular
expressions are given by the following grammar:

e ::= 0 | 1 | a | a? | a! | e ; e | e + e | e || e | e∗, (1)

where a ∈ AP , a? implies a ∈ AI , and a! implies a ∈ AO. In process theo-
retic terms, 0 denotes no behavior, 1 denotes a terminating process. The further
building blocks of processes are (communication) actions. Processes can be com-
posed sequentially, non-deterministically, in parallel, or can loop a finite number
of times. Communication between process terms is performed based on syn-
chronizations between opposite communication actions, that play thus a sender,

A Language-Based Causal Model for Safety 295

respectively, receiver role. In the sequel we often use A as shorthand for the
regular expression obtained by the finite set of every action in A, and ¬a as a
shorthand for the set of every action in A except a. Note that in general we
could extend negation to all regular expression, as regular languages are closed
under complement.

Ordinary regular expressions are expressions without any parallel compo-
sition. Except for the parallel composition we assume that an action cannot
be used as input and output in the same ‘sequential’ expression, i.e., regular
expression with no occurrence of the || operator. With this mild restriction we
can associate to each regular expressions e a language L(e) inductively as follows:

L(0) = ∅
L(1) = {ε}
L(a) = {a}

L(e1 ; e2) = L(e1) · L(e2)
L(e1 + e2) = L(e1) ∪ L(e2)
L(e1 || e2) = L(e1) || L(e2)

L(e∗) = L(e)∗

It is well known [11] that the language of an ordinary regular expression is
regular. The same holds for our extended regular expressions, as we have seen
that regular languages are closed under parallel composition. This implies that
for every (extended) regular expression e there exists an automaton M such
that L(e) = L(M). We will not describe the construction here as it is outside
the scope of this paper.

3 A Railway Crossing Example

In this section we recall the railway crossing example from [5], and adapt it
to our present setting. The example consists of a car, a train, and a gate of a
crossing that communicates with the train. The gate can communicate its the
status of being closed (Gc!) or open (Go!). The status changes to closed only
after the gate receives a message from the train that is approaching the crossing
(Ta?), and it can change to open only after it receives the message that the train
leaves the crossing (T l?). The behavior of the gate is described by the following
regular expression:

G = (Go!∗ ; (1 + Ta? ; Gc!∗ ; T l?))∗.

When a train is approaching the crossing, it sends a message (Ta!). After that,
it will actually enter the crossing (Tc) and then send a message informing its
departure from the crossing (T l!). This behavior is described by the following
regular expression:

T = Ta! ; Tc ; T l!.

Finally, a car can approach the crossing (Ca), wait as long as the gate is closed
(Gc?), eventually observe the gate being open (Go?), and only then it may enter
the crossing (Cc) and leave the crossing afterwards (Cl). The regular expression
encoding this is given by:

C = Ca ; Gc?∗ ; Go? ; Cc ; Cl.

296 M. Bonsangue et al.

The FAs corresponding to the above three regular expression are illustrated in
Fig. 1. Note that the car can enter the crossing only after the gate is open,
whereas the gate enters the state of being open only after a train signals its
departure.

Fig. 1. The car, train and gate as FAs Fig. 2. The railway system as a FA

In Fig. 2 we see the automaton describing the railway system that results by
the parallel composition of the three regular expressions: C || T || G where, for
simplicity, we renamed the states. For example, the initial state 1© corresponds
to the state 〈1, 1, 1〉 and the only accepting state is 8© corresponding to 〈5, 4, 1〉.
The red states 3© and 4© will be used in the next section as examples of states
leading to a hazard situation: a car entering the crossing and not leaving it before
the train enters the crossing too.

4 A Language-Based Causal Model

In this section we introduce a notion of causality with respect to a so-called
hazard, or effect expressed in terms of regular expressions. The current causal
framework is inspired from the model introduced in [5] and massaged into the
setting of FAs with the goal to use trace semantics instead of bisimulation,
and define different system properties in terms of regular expressions (such as
reachability) instead of the ordinary Hennessy-Milner logic.

In short, a hazard is a regular language specified by a regular expression e
(or the corresponding automaton). It is said to occur in a FA M representing
our model whenever there is a finite (and possibly empty) string c = a0 . . . an

in M such that after c we may observe the hazard, that is, L(c ; e) ∩ L(M) �= ∅.
In this case, we say that c may enable the hazard e in M . Additional conditions
that have to be satisfied by c, such as minimality and non-occurrence of events,
are formalized in Definition 1.

For an intuition, consider the railway crossing example of the previous
section. A hazardous situation can happen whenever both the train and the
car enter the crossing, and none of them leaves the crossing before the other one
enters it. The regular expression encoding this hazard is:

e = (Cc ; (¬Cl)∗ ; Tc + Tc ; (¬T l)∗ ; Cc) ; A∗ (2)

A Language-Based Causal Model for Safety 297

Note that the hazard situation can terminate with any string in A∗. This is
to guarantee that after a trace c enables e, their concatenation will contain
behaviors accepted by the automaton, and thus the hazard is observed. It is
straightforward to see that in the FA in Fig. 1 it is possible to reach the above
hazard with the string c1 = CaGo leading to the state 3©, but also with the
string c2 = CaGo Ta leading to the state 4©. In fact, the intersection of the
language of the hazard e with that of the automaton M starting from either
state 3© or 4© instead of 1© is non-empty. Furthermore, state 3© and 4© are both
reachable from the initial state 1©.

We may say that c1 does a better job at describing the relevant sequence
of actions that, if triggered, lead to a hazard because it is a minimal sequence
enabling it. Moreover, we see that it is possible to avoid the hazard by “deco-
rating” the string c1 with the strings Ta, Tc T l and, respectively, CcCl. This
can result, for instance, in the string w = TaCa Tc T l Go CcCl which does not
lead to a hazard. Sequences such as Ta, Tc T l and CcCl are called causal by
non-occurrence in works such as [4,5]. Non-occurrence is essential for describing
how certain dangerous situations, if controllable, can be avoided within a system.
This concept plays an important role in our definition of causality.

As formalized in Definition 1, non-occurrence of events is captured in terms
of the so-called computations [5]. The latter are strings in a regular language,
typically denoted by π, built on top of a string c = a0 . . . an, and “decorated”
with strings di

0, . . . , d
i
n+1, with i ∈ I, where I is a finite set of integers, such that:

w ∈ π ⇒ w = di
0a0d

i
1 · · · andi

n+1.

Intuitively, given a trace c that enables a hazard, strings in π describe all the
alternative runs (such as w above) that execute all actions in c and avoid the
hazard. The only requirement is that all strings specified by π are observable
executions of M ; i.e., for a given FA M , π ⊆ L(M). Notice that π being a
regular language means that it can be expressed as a regular expression r, and
because all strings in π contain c as subword, we have r = Σj,krj

k with rj
k =

rj
0; a0; rj

1; . . . ak; rj
k+1 for some finite indexes j and k and regular expressions

rj
k+1. For simplicity, we sometimes write r in lieu of π.

The next definition formally introduces decorated causes for a FA M with
respect to a hazard e.

Definition 1 (Causality for FAs). Let M = (S,A, s0,→, F) be a FA, e be
a regular expression over A, denoting a hazard, and c ∈ A∗. We say that the
computation π built on top of c, with π ⊆ L(M), is a decorated cause of the
hazard e if

AAC1: The string c may enable e – L(c ; e) ∩ L(M) �= ∅
AAC2.1: If the effect e is not observed then it has not been caused by c –

∀w ∈ L(M)\L(A∗ ; e) : (L(w ; e) ∩ L(M) = ∅) ⇒ (c �∈ sub(w) ∨ w ∈ π).
AAC2.2: Strings of π are safe, i.e., they do not cause the effect e –

∀w ∈ π : w �∈ L(A∗ ; e) ∧ (L(w ; e) ∩ L(M) = ∅)

298 M. Bonsangue et al.

AAC3: Minimality –
for all c′ ∈ sub(c) there is no computation π′ built on top of c′ with π′ ⊆
L(M), that satisfies AAC1–AAC2.2 with respect to the string c′ and the
hazard e.

We call c as above a causal trace, and sometimes write Causec(e,M) to
denote the corresponding decorated cause π. We let Causes(e,M) be the union
of all Causec(e,M).

Intuitively, AAC1 identifies a scenario where the string c enables the hazard
e in M . Note that AAC1 entails a “may” semantics of causality, instead of
“must”, as c does not always have to lead to e. Catering for the “must” version
requires modifying AAC1 to L(c ; e) ⊆ L(M). AAC2.1 is a necessity condition
according to which, if a word w cannot enable e, then either w does not contain
the causal trace c (meaning it is an execution bringing not to the hazard), or it
has been decorated with events that eliminate the possibility of executing the
hazard. Note that AAC2.1 can be equivalently expressed (by modus tollens)
as a sufficiency condition stating that a string w enables the hazard e whenever
the causal trace is contained in w but it is not decorated with elements causal
by their non-occurrence that would avoid the execution of the hazard:

∀w ∈ L(M)\L(A∗ ; e) : (c ∈ sub(w) ∧ w �∈ π) ⇒ (L(w ; e) ∩ L(M) �= ∅)

AAC2.2 requires causal traces decorated with events causal by their non-
occurrence to avoid the hazard. Furthermore, note that c itself cannot be a
safe computation in π, because otherwise AAC2.2 would contradict AAC1.
Observe that AAC2.2 is reminiscent of the traditional counterfactual criterion
of Lewis, as it allows to test the dependence of e on c under certain contingencies
encoded, in our case, in terms of non-occurrence of events. We refer to [10] for
more insight on the so-called structural contingencies. AAC3 is the minimal-
ity condition that requires to consider decorated causes entailed by the shortest
causal traces c satisfying AAC1–AAC2.2.

We conclude the section with a few examples intended to clarify certain
aspects of the above definition and the differences with the work [5]. To begin
with, we illustrate the role played by loops in the decorations of computations.

Example 1. Consider the automaton M1 in Fig. 3 and let the hazard be expressed
by the regular expression e = c ; A∗, meaning that we have to avoid executing
action c.

Clearly, the string a b is a possible cause for the hazard. Hence,
Causeab(e,M1) for this example can be encoded via the regular expression:
a ; f ; h∗ ; b ; g. Note that as a result of considering the decorations as regular
expressions, all finite repetitions of the loop are conveniently represented with
the Kleene star operator. The work in [5] handles loops in the decorations by
unfolding the loop only a finite number of times specified a-priori, hence, only
the string afhnbg would be describing hazard avoidance, for all n ≤ k and some
fixed k.

In the second example, we consider the case when there are no possible
decorations to steer a causal trace away from its hazard.

A Language-Based Causal Model for Safety 299

Fig. 3. Automaton M1 Fig. 4. Automaton M2

Example 2. Consider the automaton M2 in Fig. 4 and let the hazard be as before
expressed by the regular expression e = c ; A∗.

In this example, there are two possible causal traces, namely, a and b. There
are no possible decorations for the causal trace a to make it avoid the hazard,
whereas, there exists a decoration for the causal trace b with Causeb(e,M2) =
d ; b ; f . Whenever there are no computations π satisfying Definition 1 for e in
M w.r.t. a trace c, we say that the hazard e, if enabled by c, is unavoidable in
M .

In the above two examples there was no actual difference if we would have
used c as hazard instead of the regular expression c ; A∗. In the next example
we show a FA where the two expressions entail different decorated causes.

Example 3. Consider the automaton M3 in Fig. 5 and the hazards e = c ; A∗

and e′ = c.

Fig. 5. Example 3

For both hazards, ab is the causal trace, but

Causeab(e,M3) = a ; f ; b ; g
Causeab(e′,M3) = a ; f ; b ; g + a ; b ; c ; d

Observe that the string abcd is considered safe (i.e., avoids the hazard) according
to Causeab(e′,M3) but is not considered safe in Causesab(e,M3), wheres the
string afbg is considered safe in both cases. This is different than the usual
notion of safety (modeled as in e and thus forbidding any possible continuation

300 M. Bonsangue et al.

after the hazard) as e′ allow to overpass the hazard if the system does not stop
there. In fact, the expression e′ asserts that the trace cannot halt with the action
c. Accordingly, both abcd and afbg are valid strings that satisfy this condition
and thus avoid the hazard e′. On the other hand, the expression e asserts that
the action c followed by any possible sequence of actions (i.e., in A∗) constitutes
a violation, hence, the action c cannot be observed at any point in an execution.
Therefore, only afbg is a valid execution that will avoid the hazard e. It is
essentially not possible to define properties similar to e with the approach in [5],
as they allow jumping over a hazardous state while executing strings in π.

5 Computing Causes

Given a FA M = (S,A, i,−→, F) and an effect specified by a regular expression e
on A, we show an algorithm for computing the set Causes(e,M) using standard
operations on automata and graphs. The algorithm first computes the set of
loop-free traces that lead to the hazard e. Then, for each one of them, it deter-
mines the associated computation satisfying conditions AAC2.1–AAC2.2 in
Definition 1. The union of all such computations will give a first approximation
of the set Causes(e,M). We will then show below how to obtain precisely the
set Causes(e,M) by requiring the minimality condition AAC3 in Definition 1.

Algorithm 1: Computing Causes
Input: A FA M = (S,A, i,−→, F), an effect e.
Output: The set of decorated causes Causes(e, M).

(1) Compute the set of traces that lead to e by following the steps:
(1.1) For all s ∈ S, construct the FA Ps = (S, A, s, −→, F) and compute the

following intersection:
L(P ′

s) = L(Ps) ∩ L(e).
(1.2) Construct the automaton P = (S,A, i,−→, F ′) where F ′ = {s |L(P ′

s) �= ∅}.
(1.3) Compute all simple paths from the intial states i and a final state f ∈ F

in P .
(1.4) Let CausalTraces be the set of all strings in L(P) labeling the paths

computed in (1.3).
(2) For all c = a0 . . . an ∈ CausalTraces, compute Causec(e, M) by :

(L(A∗; a0;A
∗; . . . ;A∗; an;A∗) \ {c}) ∩ (L(M) \ (L(A∗; e) ∪ L(P)))

(3) Return the union of all the languages computed in step (2) as Causes(e, M).

Next, we discuss the underlying ideas behind the certain steps of Algorithm 1
and then provide a proof of correctness for the algorithm. We first compute all
traces that enable e by constructing in steps (1.1) and (1.2) the automaton P that
accepts exactly all traces in M possibly causing the effect e. The only difference

A Language-Based Causal Model for Safety 301

between the automata P and M is their set of final states. The procedure for
constructing P first involves constructing a set of automata Ps, for all the states
s of the automaton M , such that s is the initial state in Ps and accepts strings of
the language of the hazard e. If the intersection of L(Ps) with L(e) is non-empty,
then the corresponding state is considered as a final state in the automaton P
(step (1.2)). As a result, the strings in L(P) are exactly those strings bringing
M to a state of where the hazard is activated. For our railway crossing example
in Sect. 3 with the hazard given by the regular expression in (2), the automaton
P would be the one in Fig. 2 with states 3© and 4© as the only final states.

In step (1.3) we compute CausalTraces as the subset of strings accepted by
P via a simple path starting from the initial state and ending in a final state.
These paths correspond to the set of loop-free traces that lead to the hazard
e. While this condition does not guarantee minimality (see discussion below) it
already reduces the set of possibly causal traces to a finite set. In general, L(P)
will be infinite, if it involves a loop in the automaton.

For each of the above finitely many causal traces, in step (2), we compute
the set of associated computations. For a given possibly causal trace c, this is
done by subtracting all the traces which enable the effect (i.e., L(P)) and all
the traces which observe the effect (i.e., L(A∗; e)) from L(M) and then take the
intersection of the resulting language with the language resulted from c decorated
with non-occurrence in all possible ways. Note that the intersection computed in
step (2) may be empty, meaning that the hazard e is unavoidable when executing
the actions of c. For our running example in Sect. 3, the possibly causal traces
computed by the algorithm are CaGo and CaGoTa. Examples of strings in the
associated computations are CaGoTaCcClTcT l and CaGoCcClTaTcT l. Note
that the first string avoids the hazard for both possibly causal traces, while the
latter is a string that avoids the hazard for CaGo.

Finally, the union of the resulting languages in the step (2) of Algorithm 1
is returned as a first approximation of the set of all decorated causes of M
for the hazard e. For this set, the following theorem guarantees that conditions
AAC1–AAC2.2 hold. However, condition AAC3 may fail to hold.

Theorem 1. The computations in Causes(e,M) returned by Algorithm 1 sat-
isfy conditions AAC1–AAC2.2 by construction.

Proof. The set Causes(e,M) returned by Algorithm 1 is obtained as the union of
all Causesc(e,M) for all c ∈ CausalTraces. Elements in this sets are obtained in
step (1.4). These strings are computed based on the language that the automaton
P (constructed in step (1.2)) recognizes. By construction, x ∈ L(P) implies
there is y ∈ L(e) such that xy ∈ L(M). Hence L(x ; e) ∩ L(M) �= ∅. Since
CausalTraces ⊆ L(P), condition AAC1 holds.

In order to show that AAC2.1 holds for some c ∈ CausalTraces, take a
string x accepted by M that is not in L(A∗ ; e). Assume that L(x ; e)∩L(M) = ∅.
Then x �∈ L(P) because otherwise, as we have just seen above, there would
exist y ∈ L(e) such that xy ∈ L(M). Therefore, x ∈ L(M)\(L(A∗; e) ∪ L(P)).
Because CausalTraces ⊆ L(P), it follows that x �= c for any possibly causal

302 M. Bonsangue et al.

trace c. We have now two cases: for every c ∈ CausalTraces either c ∈ sub(x)
or not. In the latter case AAC2.1 holds. In the other case c ∈ sub(x) and thus
x ∈ L(A∗; a0;A∗; . . . ;A∗; an;A∗), from which it follows based on step (2) that
x ∈ Causesc(e,M), and thus AAC2.1 holds.

It remains to show that AAC2.2. For some possibly causal trace c ∈
CausalTrace let x ∈ Causec(e,M). We must show that x �∈ A∗e and that
L(x; e) ∩ L(M) = ∅. The first part of the conjunction in AAC2.2 holds
because by the construction in step (2) Causec(e,M) cannot contain strings
from L(A∗; e). Similarly, the second part of the conjunction holds because L(P)
is subtracted from L(M) in the same step.

Condition AAC3 does not necessarily hold for Causec(e,M) used by the
Algorithm 1. In fact, for possibly causal traces x, y ∈ CausalTraces, if x ∈
sub(y) then any sub-string of x is also a sub-string of y. In other words, for
a0 · · · an = x �= y = b0 · · · bm we have

L(A∗; a0;A∗; . . . ;A∗; an;A∗) ⊆ L(A∗; b0;A∗; . . . ;A∗; bm;A∗) (3)

By step (2) of Algorithm 1 we thus have that Causesx(e,M) ⊆ Causesy(e,M).
Note that it must be the case that m > n for x ∈ sub(y). We can there-
fore easily compute the smallest sets of safe computations by removing from
the set CausalTraces all strings y that have another possibly causal trace
x ∈ CausalTraces of smaller length as sub-word. In our running example, the
trace CaGo is clearly a sub-word of the other one CaGoTa, and indeed, the com-
putation for CaGoTa is included in the computation for CaGo as well. Hence,
only the causal trace CaGo satisfies the minimality condition AAC3 .

6 Experimental Evaluation

In this section, we provide an experimental evaluation and assess the applicability
of our method. We developed a tool prototype implementing our approach and
evaluated the time performance by computing the decorated causes on randomly
generated FAs with growing size. The implementation is based on Python and
closely follows Algorithm 1. The inputs to our tool are a FA and a regular
expression which describes the effect on the given FA. The output of our tool is
an automaton which characterizes the set of all decorated causes with respect
to the given inputs. In our implementation we utilized the BRICS automaton
library [19] for performing standard automaton operations.

We evaluated our tool in the following experimental setting: we generated
random FAs by using the libalf [3] framework. In the process of generating FAs
we fixed the size of the alphabet to 5. We then generated over 1000 FAs with
increasing number of states and achieved a maximum of 300 states. Figure 6
shows an example of a FA with 5 states that was generated randomly by libalf.
For each generated FA we also randomly computed an effect for which the dec-
orated causes are determined. We fixed the size of the effect length to 3. All the
experiments were conducted on a computer running Ubuntu 20.04.3 with 8 core
1.8GHz Intel i7-10510U processor and 16 GB RAM.

A Language-Based Causal Model for Safety 303

Fig. 6. Randomly generated FA with 5
states.

Fig. 7. Experimental results

The results of our experiments are displayed in Fig. 7. We group the randomly
generated FAs by their number of states and report the average running times in
each group. We only report the times of the experiments in which the decorated
causes were not empty. The results indicate that for relatively small FAs with
less than 100 states, a result is obtained within 10 s. For larger FAs with 250
to 300 states, a result is obtained in 3 min on average and within 15 min at
maximum. We remark that these results are obtained without any attempts to
tailor the standard automaton operations to our setting.

Table 1. Average size of obtained decorated causes.

Number of states in the input FA

1–49 50–99 100–149 150–199 200–249 250–300

States 71 185 266 422 484 560

Transitions 236 654 997 1565 1862 2177

Potential Causes 81 328 10476 21932 44750 73318

(Minimal) Causes 3 8 10 18 10 22

In Table 1 we summarize some information on the automata that recognize
the decorated causes returned by the algorithm. Depending on the number of
states of the automata given as input, we report the average number of states
and transitions of the returned automata, the average number of causes and the
average number of minimal causes obtained. As to be expected, the size of the
automata of the output increased linearly with that of the input. However, the
number of potential causal traces computed increases exponentially. That is not
the case for the number of minimal causal traces, as it increases only marginally
when the size of the input increases. In fact, in the majority of the cases, the
number of minimal causes is less than 5, regardless of the size of the given input
automaton.

304 M. Bonsangue et al.

7 Extensions

To illustrate the generality of our causal model we briefly discuss possible exten-
sions so to consider addition of tests and assignments.

Adding Tests: KAT. The set of regular expressions we considered in (1) can
be extended with a set B of Boolean tests that we assume generated from a finite
set At of atoms, meaning that every b ∈ B is equivalent modulo the equations
of the Boolean algebra to a finite disjunction of atoms in At. This way one can
model basic programming constructs, like conditionals, loops, guarded actions,
and assertions using tests in B and actions in A.

Kozen [12] showed that the above extensions of regular expressions, called
KAT (Kleene algebra with tests) expressions, plays the same role with regular
sets of guarded strings as ordinary regular languages play for regular expressions.
Here a guarded string is an ordinary string over the alphabet A ∪ At, such that
the symbols in A alternate with the atoms At. Formally, a guarded language is
a subset of (At × A)∗ × At.

A deterministic KAT automaton recognizing guarded strings [13] is just a
deterministic finite automaton (S,Σ, i,−→, F) with Σ = At×A and F ⊆ S×At.
The only differences are thus the transition relations that is now labeled by
guarded actions (α, a), and the accepting states, that are now labeled with atoms
marking the end of an accepted string. The idea is that an action a is executed
only when its guard α (pre-condition) is true, and a string is accepted only
in states where the post-condition holds. We say that a guarded string w ∈
(At × A)∗ × At is accepted by a KAT automaton M from a state s if either (1)
w = α and (s, α) ∈ F , or (2) w = (α, a)w′ and there exists s

α,a−−→ t such that w′

is accepted by M from the state t. The language accepted by a KAT automaton
M is the set L(M) = {w ∈ (At × A)∗ × At | M accepts w from i}.

Our causal model for automata extends naturally to KAT automata by con-
sidering hazards e as KAT-expressions and causes c as strings in (At×A)∗. Safe
computations in M for the hazard e with respect to c are non-empty strings
of L(M) satisfying AAC1 as in Definition 1 but with respect to the alphabet
(At × A) instead of A only. Also the algorithm for computing causes needs basi-
cally no adjustment, but for the way how operations on automata are computed.

Adding Assignments: NetKAT. NetKAT [1] is a network programming
model, which is used for specifying and verifying the packet-processing behav-
ior of software-defined networks. In a nutshell, it is a variation on KAT that
considers actions not as abstract elements of an alphabet A but rather as state
transformers, like assignments, that are executed when a precondition α is sat-
isfied and modify it into a post-condition β.

For a given set of atoms At of a Boolean algebra B, a deterministic NetKAT
automaton [6] is a deterministic FA M = (S,Σ, i,−→, F) such that σ = At×At
and F ⊆ S × (At × At). The transition relation −→ is thus labeled by pairs of
atoms (α, β) and so are the accepting states. The interpretation of these pair
of atoms is that they represent pre-conditions and post-conditions of one-step
executions.

A Language-Based Causal Model for Safety 305

A string w ∈ At×At×At∗ is accepted by M from a state s only when post-
conditions match the subsequent pre-condition, meaning that either (1) w = αβ

and (s, α, β) ∈ F , or (2) w = (αβ)w′ and there exists s
α,β−−→ t such that βw′ is

accepted by M from the state t. Note that in the last condition is crucial that
w′ is not the empty string. The language accepted by a NetKAT automaton M
is the set L(M) = {w ∈ At × A × At∗ | M accepts w from i}.

As for KAT automata, our causal model for automata extends naturally
to NetKAT automata too, with hazard represented by NetKat expressions [6],
causes as strings in At∗, and safe computations as strings in L(M) that can
be projected into a cause by deleting some atoms and satisfying the rest of the
conditions of Definition 1.

8 Conclusions

In this paper we moved the causal model proposed in [5] from labeled transition
systems to finite automata in order to obtain a language-based causal model for
safety. The model is in-line with the notion of causality described in a logical
context in [9] in the sense that a hazard may be observed if and only if it
has been caused. Analogously to the alternative worlds of Lewis [16], we also
considered decorated causes as alternative to causes in the sense that they allow
executing all actions of a cause interleaved with other actions that guarantee
hazard avoidance.

We treated only the case when causes may enable a hazard while strings of the
decorated causes must avoid it. While it can be interesting to consider a stronger
notion of causes as strings c that bring the automaton M to states where the
hazard e is inevitable for any of its possible extensions (i.e., by changing AAC1
to L(c ; e) ⊆ L(M)), such a change would imply that there would be no causes
in our railway system example.

We have also presented an algorithm to compute decorated causes, relying
only on basic automata theoretic operations. The algorithms could be improved,
using model checking techniques for marking those states in which a hazard is
enabled, and search techniques to find the decorated causes avoiding marked
states. Also, it would be interesting to move from automata back to labeled
transition systems but remaining into a trace setting, with hazard specified as
LTL-properties.

Finally, we briefly discussed extensions of our work to KAT and NetKAT
automata. Clearly, more work needs to be done here, both to precisely set the
definitions and to show the applicability of the method to, for example, find
causes of a hazard in a software defined network.

Acknowledgments. The work of Georgiana Caltais and Hünkar Can Tunç was sup-
ported by the DFG project “CRENKAT”, no. 398056821.

306 M. Bonsangue et al.

References

1. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. In: The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 113–126 (2014).
https://doi.org/10.1145/2535838.2535862

2. Arbach, Y., Karcher, D.S., Peters, K., Nestmann, U.: Dynamic causality in event
structures. Logical Methods Comput. Sci. 14(1) (2018). https://doi.org/10.23638/
LMCS-14(1:17)2018

3. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 32

4. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable Proper-
ties. In: Finkbeiner, B., Kleinberg, S. (eds.) Proceedings 3rd Workshop on formal
reasoning about Causation, Responsibility, and Explanations in Science and Tech-
nology, CREST@ETAPS 018, Thessaloniki, Greece, 21 April 2018. EPTCS, vol.
286, pp. 1–15 (2018). https://doi.org/10.4204/EPTCS.286.1

5. Caltais, G., Mousavi, M.R., Singh, H.: Causal reasoning for safety in Hennessy
Milner logic. Fund. Inform. 173, 217–251 (2020). https://doi.org/10.3233/FI-2020-
1922

6. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic deci-
sion procedure for NetKAT. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mum-
bai, India, 15–17 January 2015, pp. 343–355 (2015). https://doi.org/10.1145/
2676726.2677011

7. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. (STTT) 8(3), 229–247 (2006)

8. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

9. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Yang,
Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31
July 2015, pp. 3022–3033. AAAI Press (2015). http://ijcai.org/Abstract/15/427

10. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model app-
roach: part 1: causes. In: Breese, J.S., Koller, D. (eds.) UAI 2001: Proceed-
ings of the 17th Conference in Uncertainty in Artificial Intelligence, Univer-
sity of Washington, Seattle, Washington, USA, 2–5 August 2001, pp. 194–
202. Morgan Kaufmann (2001). https://dslpitt.org/uai/displayArticleDetails.jsp?
mmnu=1&smnu=2&article id=100&proceeding id=17

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. Autom.
Stud. 34, 3–42 (1956)

12. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

13. Kozen, D.: Automata on guarded strings and applications. Mat. Contemp. 24,
117–139 (2003)

14. Ladkin, P., Loer, K.: Analysing aviation accidents using WB-analysis - an applica-
tion of multimodal reasoning. In: AAAI Spring Symposium. AAAI (1998). https://
www.aaai.org/Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.3233/FI-2020-1922
https://doi.org/10.3233/FI-2020-1922
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/3-540-44829-2_8
http://ijcai.org/Abstract/15/427
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=100&proceeding_id=17
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=100&proceeding_id=17
https://www.aaai.org/Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf
https://www.aaai.org/Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf

A Language-Based Causal Model for Safety 307

15. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 16

16. Lewis, D.: Causation. J. Philos. 70, 556–567 (1973)
17. Lewis, D.: Counterfactuals. Blackwell Publishers, Hoboken (1973)
18. Martin, J.C.: Introduction to Languages and the Theory of Computation, vol. 4.

McGraw-Hill, New York (1991)
19. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for

Java (2021). http://www.brics.dk/automaton/
20. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,

part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

21. Renieris, M., Reiss, S.: Fault localization with nearest neighbor queries. In: 18th
International Conference on Automated Software Engineering (2003)

22. Shabana, H., Volkov, M.V.: Optimal synchronization of partial deterministic finite
automata. CoRR abs/2002.01045 (2020). https://arxiv.org/abs/2002.01045

23. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier, Ams-
terdam (2009)

https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
http://www.brics.dk/automaton/
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://arxiv.org/abs/2002.01045

Consistency of Heterogeneously Typed
Behavioural Models: A Coalgebraic

Approach

Harald König1,2 and Uwe Wolter3(B)

1 University of Applied Sciences, FHDW, Hanover, Germany
harald.koenig@fhdw.de

2 Høgskulen p̊a Vestlandet, Bergen, Norway
3 University of Bergen, Bergen, Norway

uwe.wolter@uib.no

Abstract. Systematic and formally underpinned consistency checking
of heterogeneously typed interdependent behavioural models requires a
common metamodel, into which the involved models can be translated.
And, if additional system properties are imposed on the behavioural
models by modal logic formulae, the question arises, whether these for-
mulae are faithfully translated, as well.

In this paper, we propose a formal methodology based on natural
transformations between coalgebraic specifications, which enables state-
space preserving translations into a category of homogeneously typed
systems, and we determine mild assumptions for the transformations to
guarantee preservation and reflection of truth of translated formulae.

Keywords: Heterogeneous behavioural models · Coalgebra · Reactive
system · Modal logic · Category Theory

1 Introduction and Motivation

In model-based software projects, heterogenous (ly structured) but interdepen-
dent behavioural models can occur. These models may, however, prescribe the
same (or overlapping parts of the same) real-world behaviour: A class diagram
may prescribe domain services, a BPMN1 diagram may model a process, in
which these services are invoked (in a certain sequence). Although the behaviour
of these systems is based on states and state changes, the concrete stimuli and
effects of state changes are different. Beside the above example, there are labelled
transition systems with or without output (per state or per transition), deter-
ministic or non-deterministic, possibly timed or probabilistic.

Model checking is an automated technique that, given a finite-state model
of a system and a formal property, systematically checks whether this property

1 https://www.omg.org/spec/BPMN/2.0/PDF.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 308–325, 2022.
https://doi.org/10.1007/978-3-031-10363-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_21&domain=pdf
http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0002-7553-9858
https://www.omg.org/spec/BPMN/2.0/PDF
https://doi.org/10.1007/978-3-031-10363-6_21

Consistency of Behavioural Models 309

holds for (a given state or computation path in) that model. Usually, the prop-
erty is given in terms of a formula in modal logic. Automatic verification of
this formula is carried out on a homogeneously structured transition structure,
which is derived from the behavioural structure of a system, usually a Kripke
Frame. To consequently model check a complete ensemble of interacting, but
heterogeneously structured artefacts, formulas of modal logic can only formally
be imposed on them, if the different involved types of transition structures are
translated into a homogeneous transition structure. We call a formula, which
spreads over different systems an inter-model constraint. In the sequel, we will
consider such an ensemble of heterogeneously typed transition structures. For-
mulas can be imposed on single local components or they are global inter-model
constraints.

In this paper, we propose a formalism for the translation of components’
shapes into a common transition structure, enabling uniform formal reasoning
about their interaction. The translation will not alter the state space, but only
the transition structure. When translating local components’ behaviour into a
common formalism, formulas imposed on the local component, e.g. liveness or
termination properties, must also be translated. Moreover, these local constraints
interact with the global inter-model constraints: They might contradict each
other or the former is a logical consequnce of the latter, etc. Thus, the following
research questions arise:

1. How can we formally define the translation into a common type of transition
structure?

2. Can we expect preservation (and reflection) of formula validity during a trans-
lation? If not, which requirements must the translation fulfill for formula
validity invariance?

We will use coalgebras for the all-embracing metamodel of reactive systems.
We think that this is the consequent continuation of the theory of institutions
[19], where algebraic specifications (understood as endofunctors F), specifica-
tion morphisms (natural transformations between functors), and logical formu-
las enable a comprehensive view on heterogeneous data structures. It is an old
insight [18] that dualisation of the structure maps of algebras enables an elegant
description of behavioural systems instead of data structures and that logical
formulas in the algebraic settings are replaced by formulas of a modal logic.
Finally, coalgebras enable a comprehensive view on heterogeneous behavioural
structures.

In this paper, we present the following novelties:

– We show how to synchronize reactive systems of different behavioural specifi-
cations in general. For this, we use coalgebras and corresponding specification
morphisms.

– We provide a criterion characterizing preservation and reflection of validity
of modal logic formulas during translation along specification morphisms.

The investigated temporal operators are based on predicates imposed on
state spaces, i.e. we emphasize more the branching-time perspective of CTL

310 H. König and U. Wolter

(Computation Tree Logic) than the linear-time perspective of LTL (Linear Tem-
poral Logic). For a comparison of these two logics, see [1].

Section 2 presents a practical problem, which has already been elaborated in
a similar form in [11] and which is picked up in the paper each time a theoretical
result must be illustrated. Section 3 reports on the necessary background and
Sect. 4 presents the main results (Proposition 1 and 2) and applies them to the
running example. Sections 5 and 6 conclude the paper.

2 Running Example

The process of fixing bugs, which have been reported as tickets by users of
a software application, may be captured in a BPMN diagram, which models
the ticket handling workflow. Automatic activities in this workflow rely on the
existence of services provided by a backend system, seeing Activity “Analyse
Ticket Database” in Fig. 1.

Fig. 1. BPMN model with different decision points

Abstraction in BPMN Models: For the sake of simplicity we assume that
each service task requests exactly one method of the backend system and that
the output of the method call does not directly influence the process instance’s
state, e.g. the (business rule) task “Classify Ticket” is always the successor of
“Analyse Ticket Database” independent of the output of the invoked method in
the latter task.

The further activities in Fig. 1 are as follows:

– The automatic activity “Analyse Ticket Database” invokes a method in the
backend system, which exploits a knowledge database, in order to provide
(semi-)automatically a solution for the current ticket. Depending on this data

Consistency of Behavioural Models 311

and the ticket classification, evaluation of Condition A decides, which of the
following two branches is chosen.

– In the upper branch, a user activity enhances possibly missing information in
the ticket. In the lower branch, more information is received by an interme-
diate catching event.

– Evaluation of Condition B and Condition C depend on this additional data
and trigger one of the four activities {AB,AB,AC,A C}, which may or may
not be automatic tasks and which may update the backend system with new
information.

Consequently, the state of the data in the backend system influences state
changes of the process instance and vice versa, thus:

The behaviours of the backend system and the workflow management system
mutually depend on each other.

The software application may be run by customers of a software company, who
sells this software, or it may as well be a ready-to-use solution built by a company
on its own. In either case, service-level agreements (SLA) are offered in order
to ensure the quality of bug fixing for the users. A typical agreement prescribes
solutions to be provided as a software patch, which automatically updates the
current software version and removes the reported bug (high-quality solution).
In contrast, a low-quality solution is a temporary workaround being carried out
by the user, for example, a change in the configuration of the application.

Often these promises are subject to certain preconditions: A software patch
will be provided, only if the user’s software runs in a certain mature version
(and not in a recently offered “Alpha”-version). This information may or may
not be present prior to process start: If the information is not already stored in
the backend system, it has to be retrieved by further inquiries, e.g. “Enhance
Ticket Data”, in Fig. 1.

Let us assume that a high-quality solution like the patch provisioning is
present, if one of the actions AB or AC has terminated, two crowns at state
1 and 4 in Fig. 1 (a single crown indicates low-quality solutions). It is then a
goal for the software provider to guarantee his promise by using a formal model
checking procedure. For this, a predicate V is defined which holds in a certain
state, if the given software Version of the ticket reporter is some mature version.
Furthermore, one can define a predicate H, which can be imposed on states of
BPMN processes indicating the possibility to provide a High-Quality Solution.
Since the process is not yet finished in states 1 to 4, predicate H could be
invalidated due to other activities or events, hence we formulate the SLA by

“Inter-Model Constraint” ϕ: If the system is in a state with property V , then
for each computation path, we eventually reach a state, from which henceforth

property H holds.

Of course, this formula interacts with already given formulas on the local systems
for example termination or liveness requirements of the BPMN-workflow. If ψ is
such a formula, one has to ensure for instance, that ϕ and ψ are not contradictory.

312 H. König and U. Wolter

Moreover, if ψ is a logical consequence of ϕ, it is not required to be checked, but
can be considered to be fulfilled, if ϕ holds.

The goal is now to use established model checkers to prove validity of the
involved temporal formulas. In order to check validity of inter-model-constraints,
one has to define a comprehensive state space of Backend System and BPMN
process models especially taking into account their interactions (see above). We
face two problems:

1. How can we formally define this comprehensive state space?
2. Shall validity of a local constraint ψ be checked on the local state space or

on the comprehensive state space? Can we expect to obtain the same result?

A challenge is to cope with private and common features of these two transition
structures: A feature is private, if it is known only to one of the structures and
not known to the other, e.g. the backend system knows nothing about incoming
events and roles (not shown in Fig. 1) of the BPMN process, the BPMN process
does not consider outputs of the backend system’s methods. An exception is
the output of a condition’s evaluation, which we can, however, interpret as an
event, which lets an event-based gateway decide the alternative. Finally, common
behaviour of both systems are states and method-call-triggered state changes
(requests in the BPMN tasks and invocations of methods in the backend system).

In the next sections, we show how to translate different types of transition
structures into an appropriate common transition structure. We illustrate our
general approach by encoding (1) stateful backend systems and (2) BPMN pro-
cess models as coalgebras.

3 Background

3.1 Notation

Fig. 2. Naturality square

We use the following notations: SET is the category
of sets and total mappings. For two sets X and Y we
write Y X for the set of all total maps from X to Y .
Special sets are 1 = {∗} (any singleton set) and 2 =
{true, false}. Instead of the set of all partial maps

A
f−⇀ B between two sets A, B we consider the set of

all total maps A
f
�� 1 + B , i.e. f(x) is undefined if

and only f(x) = ∗. Both sets are isomorphic in SET .
For functors between different categories we will

use calligraphic letters like F , G, or H. ID is the
identity functor on SET . Application of a functor
F : C → D will always be written without parentheses, e.g. FX (for objects)
and Ff (for morphisms). The power set functor is ℘ : SET → SET . ℘fin :
SET → SET will denote the functor assigning to a set the set of its finite

subsets. For X
f

�� Y and a subset A ⊆ X, defined by a condition φ, we
write

f(A) := {f(x) ∈ Y | φ(x)} if A = {x ∈ X | φ(x)},

Consistency of Behavioural Models 313

which is the application of ℘f to A. To distinguish f from this counterpart, we
often write f() for ℘f and likewise for ℘finf .

Diagrams always depict commutative diagrams, e.g. the square in Fig. 2 is
automatically assumed to be commutative, specifying the condition for a natural
transformation η : F ⇒ G, i.e. a family (ηX)X∈|C| : FX → GX of D morphisms
indexed by C’s object collection (which we denote by |C|) if F ,G : C → D.

3.2 Coalgebras

The investigation of heterogenous (ly typed) reactive systems requires a meta-
model, which captures as many behavioural specifications as possible. A
behavioural “specification” describes the way a system interacts with the envi-
ronment. For deterministic labeled transition systems (DLTS) over an alpha-
bet A, this specification is the set (1 + X)A, because for each system state
a partial map assigns to an event a ∈ A (from the environment) at most one
follow-up state. In contrast to that, non-deterministic finitely-branching systems
(NLTS) are based on an assignment x �→ c(x) ∈ ℘fin(A × X) for all states x, i.e.
(a, y) ∈ c(x) means that in state x the event a may cause a state change from x
to y. 2

We obtain a common template for encoding different types of transition struc-
tures: They can formally be described by an assignment F : |SET | → |SET |, e.g.
X �→ (1 + X)A for DLTS or X �→ ℘fin(A × X) for NLTS. Analogously, one can
find similar assignments for all other types of transition structures. Moreover, in
all cases, cf. [18], these assignments extend to functors F : SET → SET .

Example 1 (LTS). The functor

G :

{ SET −→ SET

X
f

�� Y �→ (1 + X)A
(id1+f)◦

�� (1 + Y)A

encodes DLTS and NLTS are specified by the functor

℘fin(A ×) :

⎧⎨
⎩

SET −→ SET

X
f

�� Y �→ ℘fin(A × X)
(idA×f)()

�� ℘fin(A × Y)

Example 2 (Modules of Object-Oriented Programs, [9,17]). A package
or a module of classes in an object-oriented environment with n visible methods
(mj(x : Ij) : Oj)j=1..n in its facade can be encoded as a coalgebra for the functor
F1, which maps a set X to the Cartesian product of the family ((Oj ×X)Ij)j=1..n

of sets of maps

F1X =
n∏

j=1

(Oj × X)Ij .

2 Other examples of reactive systems are finite or infinite streams, automata with out-
put (i.e. UML state charts), activity diagrams or BPMN diagrams (with or without
guard conditions) and probablistic or timed automata [18].

314 H. König and U. Wolter

An F1-system c : X → F1X represents a tuple (m1, ...,mn) of maps, in which
mj(x) is the application of method mj for input i ∈ Ij. Depending on state x, it
produces an output o ∈ Oj and a new state x′ ∈ X.

Generalizing Example 1 and 2, we define

Definition 1 (F-Coalgebra). Let F : SET → SET be a functor. An F-
coalgebra (X, c) or F-system is a map X

c �� FX .
In the context of coalgebras, F is called a (specification of a) transition struc-

ture and c is the (transition) structure map.

Furthermore, F-coalgebras constitute themselves a category: A homomor-
phism between F-coalgebras (X, c) and (Y, d) is a map h : X → Y , for which

d ◦ h = Fh ◦ c.

Note that homomorphisms not only preserve, but also reflect the transition struc-
ture: The graph {(x, h(x)) | x ∈ X)} of h yields a bisimilarity on X × Y [18].

It is then easy to see that we can give the following definition, see also [18].

Definition 2 (Category of F-Coalgebras). The category F-Coalg has
objects F-coalgebras, see Definition 1, and morphisms the F-coalgebra homo-
morphisms. Identities are identical maps idX and composition is composition of
set maps.

The existence of initial objects in categories of algebras yields many impor-
tant insights such as the principle of induction, initial semantics and term gener-
ation [22]. Dually, it is important that categories of F-coalgebras possess a final
object.3 Corresponding resulting aspects are the principles of final semantics:
The unique arrow from a coalgebra into the final object usually assigns to each
state its behavioural semantics w.r.t. bisimilarity [10], for coalgebras with no
proper quotient one obtains the principle of coinduction, which is a template for
recursive implementations of algorithms e.g. on streams [18] etc.

Not every functor F yields reasonable coalgebras, especially for practical
purposes in computer science, because there may not be a final object in F-Coalg.
A prominent example is the power set functor X �→ ℘(X). Using Lambek’s
Theorem (“If F-Coalg possesses a final object (Z, ζ), then ζ is a bijection.”, see
[10], Lemma 2.3.3.) and Cantor’s diagonal argument (X 	∼= ℘(X) for all sets X),
it is clear that there is no final object in ℘-Coalg. It is, however, possible to show
that this deficit vanishes, if one restricts to the functor ℘fin(), see Sect. 3.1.

Because of these natural restrictions, we will consider the following restricted
collection of SET -endofunctors, whose respective category of coalgebras can be
shown to possess a final object [18], and which are sufficient to deal with all
important types of transition structures in computer science:

3 An initial/a final object in a category C is an object 0/1, for which there is exactly
one morphism 0 → X/exactly one morphism X → 1 for all X ∈ |C|.

Consistency of Behavioural Models 315

Definition 3 (Kripke Polynomial Functors - KPF , [10]). The collection
KPF of SET -endofunctors is defined inductively as follows:

(1) ID is in KPF
(2) The functor ConstA defined by ConstA(X

f
�� Y) = A

idA �� A is in
KPF for each set A.

(3) If F1,F2 ∈ KPF , so is the functor F1 × F2 defined by

(F1 × F2)(X
f

�� Y) = F1X × F2X
F1f×F2f

�� F1Y × F2Y .

(4) If I is an index set and in an I-indexed collection (Fi)i∈I , all Fi are in
KPF , then so is the functor

∐
i∈I Fi defined by 4

(
∐

i∈I Fi)(X
f

�� Y) =
∐

i FiX

∐
i Fif

��
∐

i FiY .

(5) If A is a set and F ∈ KPF , then so is the functor FA defined by

FA(X
f

�� Y) = (FX)A Ff◦
�� (FY)A .

(6) If F ∈ KPF , then so is the functor ℘fin(F) defined by

(℘fin(F))(X
f

�� Y) = ℘fin(FX)
(Ff)()

�� ℘fin(FY) .

It can be shown that automata with output (Moore and Mealy Machines) as
well as automata with final states can be encoded using KPF ’s, the latter by
Const2 × F for an arbitrary F in KPF .

From now on, we always assume the involved functors to be contained in
KPF . Moreover, we use the following shorthand notation for an F-coalgebra:
For any x ∈ X and y ∈ c(x), we write x ��� � � y to indicate the possibility for
x to transition to y due to structure map c. If an alphabet A is involved, this
can be extended to

x
a ��� � � y ,

for a ∈ A, for instance for F = ℘fin(A ×) and an F-coalgebra (X, c) with
(a, y) ∈ c(x).

3.3 Signature Morphisms

The example in Sect. 2 deals with two different behavioural systems: BPMN dia-
grams and class diagrams (for which behaviour is described by specifying, how
a method application changes the object structure at runtime). In the literature
the two different metamodels are also called signatures. In universal algebra,
4 For a family (Ai)i∈I of sets the coproduct (sum)

∐
i∈I Ai denotes the disjoint union

of all the sets Ai, i ∈ I.

316 H. König and U. Wolter

signature morphisms are the tool of choice to relate algebras of different signa-
tures. It is an old observation, that (unsorted) signatures can also be encoded
with SET -endofunctors T , where algebras are maps α : T X → X, and if cate-
gories of algebras are defined in such a way, then it is easy to see that signature
morphisms can be encoded as natural transformations between the respective
specifying functors [3]. Moreover, these transformations yield - by precompo-
sition - a “forgetful” functor in the opposite direction between the respective
categories of algebras.

For coalgebras, we use the dual approach: Given a natural transformation
η : F ⇒ G, an F-system (X, c) can be translated by postcomposition

X

ηX◦c

c �� FX

ηX �� GX

into a G-system (X, ηX ◦ c). For F-Coalg-homomorphism h : (X, c) → (Y, d),
we obtain Gh ◦ (ηX ◦ c) = (ηY ◦ d) ◦ h by naturality, thus:

Lemma 1 (Co-Forgetful Functor). Let η : F ⇒ G be a natural transfor-
mation between two set-endofunctors. The assignment c �→ ηX ◦ c extends to a
functor

Uη :

{
F-Coalg −→ G-Coalg

(X, c) h �� (Y, d) �→ (X, ηX ◦ c) h �� (Y, ηY ◦ d)

Example 3 (Translation of Backend Behaviour to DLTS). In our run-
ning example of Sect. 2, we can now translate transition structures of the backend
system to DLTS. For this we use functor F1 from Example 2 to encode the avail-
able services m1, ...,mn (methods) of the backend as an F1-system. Note that all
methods decompose into two projections: mj = (mj,1,mj,2) : Ij → Oj ×X. Since
we want the DLTS to be prepared for additional events, we choose for the functor
G of Example 1

A := I +
n∐

j=1

Ij

as its input alphabet, where I is an arbitrary set of additional input stimuli. The
translation is given by the following family of mappings indexed over X ∈ |SET |:

ηX :

⎧⎨
⎩

∏n
j=1(Oj × X)Ij → (1 + X)A

(m1, ...,mn) �→ λi.

{
mj,2(i) , if i ∈ Ij for some j

∗ , if i ∈ I

where we denoted the result of ηX by a λ-expression. We omit the easy proof of
naturality of η : F1 ⇒ G but emphasize that the translation along η forgets out-
puts and enables the behaviour embedding of the backend system in a transition
structure with extended input options.

Consistency of Behavioural Models 317

3.4 Predicate Lifting

The heart in the description of temporal operators in the next Sect. 3.5 is the
transformation of truth of a property from one state to its sucessor state(s) by a
structure map c in an F-coalgebra (X, c). Truth, however, is based on predicates.
If a predicate P like “Eventually a state is reached, which guarantees a high-
quality solution.” is true on a state x, we write P (x), and we can equivalently
describe P as a subset of the state set, namely those states where P holds. That
is, the notations

P (x), x ∈ P and x |= P

for P ⊆ X (or equivalently P ↪−→ X) will synonymously be used. If x satisfies a
predicate, we want to reason whether c(x) satisfies this predicate, too. However,
c(x) ∈ FX is not a single state, but - according to F - a more complex entity
depending on the type of transition structure F .

Hence it is necessary to transform (lift) predicates that are imposed on ele-
ments of a fixed set X to predicates on FX. We recall inductively defined pred-
icate lifting from Chapter 6 of [10] for KPF ’s: The operator

Pred(F) : ℘(X) → ℘(FX)

is defined on KPF ’s as follows: For P ⊆ X

(1) Pred(ID)(P) = P
(2) Pred(ConstA)(P) = A
(3) Pred(F1 × F2)(P) = Pred(F1)(P) × Pred(F2)(P)
(4) Pred(

∐
i∈I Fi)(P) =

∐
i∈I Pred(Fi)(P)

(5) Pred(FA)(P) = {f : A → FX | ∀a ∈ A : f(a) ∈ Pred(F)(P)}
(6) Pred(℘fin(F))(P) = {U ⊆ FX | U ⊆ Pred(F)(P)}
We illustrate this definition for DLTS: Let FX = (1+X)A, then we calculate the
lift of predicate P ⊆ X along the syntactical structure of F : Pred(1 +)(P) =
Pred(Const1)(P) + Pred(ID)(P) = 1 + P and with that

Pred(F)(P) = {f : A → 1 + X | ∀a ∈ A : f(a) ∈ 1 + P}
i.e. the lifted predicate is true for f ∈ (1 + X)A, if all f(a) ∈ P or f(a) = ∗,
i.e. for each a ∈ A all successor states, if any, must fulfill the predicate. This
can also be expressed by saying that Pred(F)(P) contains exactly those f , for
which f(A) ⊆ 1 + P = Pred(1 +)(P), thus, in this example, Pred(F)(P) =
(1 + P)A = FP . Indeed, this observation is always true, cf. [10], Lemma 6.1.6.:

Lemma 2 (Predicate Lifting). Let F be a KPF , X ∈ |SET |, then for each
predicate P

m
↪−→ X

Pred(F)(P)
Fm

↪−−→ FX

is the inclusion arrow of the lift, i.e., especially, Pred(F)(P) = FP . �
By structural induction along the definition of Pred(F) one can also prove:

Lemma 3 (Predicate Lifting is monotone). In the above setting

P1 ⊆ P2 ⇒ Pred(F)(P1) ⊆ Pred(F)(P2)

318 H. König and U. Wolter

3.5 Temporal Operators

The basic temporal operator is the “next time”-Operator ©. All other operators
can be derived from it (of course by using the basic logical operators ¬ (negation)
and ∧ (conjunction)). A temporal operator depends on a given F-system (X, c)
and is usually determined by an operation on subsets P (predicates) of X: If
P ⊆ X, we denote with ©P the subset of FX, which contains those states,
which reach states in P after a single application of structure map c.

Note that © usually depicts a path operator, i.e. ©P holds for a computation
path, if P holds on the second state. Our approach is more general in that it
defines this operator for arbitrary transition structures. We will work with the
following formal definition:

Definition 4 (Next Time Operator). Let F be a KPF and (X, c) be an
F-system. We call

©F,c :
{

℘(X) → ℘(X)
P �→ c−1(Pred(F)(P))

the Next Time-Operator. For x ∈ X we write x |=F,c ©P , if x ∈ ©F,cP ,
equivalently, if c(x) ∈ Pred(F)(P), or short

x |= ©P

if F and c are clear from the context.

E.g., for DLTS: x |= ©P ⇐⇒ ∀a ∈ A, x′ ∈ X : (x
a ��� � � x′ ⇒ x′ |= P).

In the sequel, fixed points of operators on power sets are important. Clearly,
a fixed point of an operator op : ℘(X) → ℘(X) is a subset Q of X, for which
op(Q) = Q. They are of major importance, if one considers monotone operators
(i.e. P ⊆ Q ⇒ op(P) ⊆ op(Q)) on the boolean algebra (℘(X),⊆), because a
consequence of the Theorem of Knaster and Tarski [20] yields

Lemma 4 (Fixed Points). A monotone operator op : ℘(X) → ℘(X) possesses
a least and a greatest fixed point written μS.op(S), νS.op(S), resp. Furthermore,
if X is a finite set, there is n0 ∈ N, such that

μS.op(S) =
n0⋃

k=0

opk(∅) and νS.op(S) =
n0⋂

k=0

opk(X).

Remark 1 (Finiteness). We do not formulate the Knaster-Tarski Theorem in
its full generality for arbitrary (infinite) sets, because we do not want to deal with
the intricacies of approximants in the modal μ-calculus [4].

©F,c is a monotone operator by Lemma 3, and so is the operator ¬ ©F,c ¬S
where ¬S denotes set complementation. Hence - from Lemma 4 - we can intro-
duce the following existential path operators: For a fixed F-system (X, c) and
subsets P and Q of X

Consistency of Behavioural Models 319

– ∃�P := νS.(P ∩ ¬ © ¬S) (henceforth)
– ∃P U Q := μS.(Q ∪ (P ∩ ¬ © ¬S)) (until)

In words: x |= ∃�P , if there is a computation path starting at state x, on which
P holds forever, x |= ∃P U Q, if on a path from x, P holds for a while (maybe
never) until Q holds once.

It is well-known [1] that all important temporal operators (e.g. of CTL) can
be derived from these two operators, e.g. the constant true (intersection of an
empty collection of sets) and further operators like ∃♦P = ∃trueU P and with
that

∀�P := ¬∃♦¬P

denoting that henceforth on all paths property P holds. Similarly

∀♦P := ¬∃�¬P

means, that for all computation paths, P holds eventually. We write ΩF,c for
any such temporal operator Ω, if the dependency from F and c is important.

The goal of the next section is to give an answer to both research questions
on page 2: We define an appropriate common type of transition structure in
order to formally define the inter-model constraint

ϕ := (V ⇒ ∀♦(∀�P))

on page 4 in Sect. 2 and show that checking local formulas is independent of the
underlying transition structure.

4 Formula Translation

4.1 Truth Preservation

Fig. 3. Naturality square
for predicate inclusion

In this section, we investigate how truth can be trans-
lated from F-Coalg to G-Coalg with the co-forgetful
functor Uη : F-Coalg → G-Coalg from Lemma 1 based
on a natural transformation η : F ⇒ G for two KPF ’s
F and G. The results are important fundaments for
the question, how formulas of temporal logic in dif-
ferent reactive systems interact with each other in a
heterogeneous modeling environment. In this context,
the following definition is important:

Definition 5 (Cartesian along Inclusions).
A natural transformation η : F ⇒ G between functors F ,G : SET → SET is
said to be Cartesian along inclusions, if we have in the naturality square in Fig. 3
that5

η−1
X (Pred(G)(P)) ⊆ Pred(F)(P).

5 Equivalently: The square in Fig. 3 is a pullback square.

320 H. König and U. Wolter

Our first result is

Proposition 1 (Compatibility of Next Time Operator). Let η : F ⇒ G
for two KPF ’s F and G and Uη : F-Coalg → G-Coalg the emerging co-forgetful
functor from Lemma 1. Let (X, c) be an F-system and P a predicate, then the
next time operator is compatible with transformations:

∀x ∈ X : x |=F,c ©P ⇒ x |=G,Uηc ©P (1)

If furthermore η is Cartesian along inclusions, implication (1) is an equivalence.

Proof. Note that (by the definition of Pred()) for any structure map d:

x |= ,d ©P ⇐⇒ d(x) ∈ Pred()(P).

Fix a set X. The assumption of (1) is c(x) ∈ Pred(F)(P). From Lemma 2,
we know that the square in Fig. 3 commutes. Thus by the Def. of Uη

(Uηc)(x) = ηX(c(x)) = Gm(ηP (x)) = ηP (x) ∈ Pred(G)(P),

i.e. x |=G,Uηc ©P . Cartesian along inclusions yields c(x) ∈ Pred(F)(P), if
ηX(c(x)) = (Uηc)(x) ∈ Pred(G)(P). �

The following example shows that we cannot expect translation to always reflect
truth, i.e. the precondition in the second part of Proposition 1 is necessary. For
F = ()A and G = 1 + . We consider the natural transformation

ηX :
{

XA → 1 + X
f �→ ∗

which intuitively removes all transitions from an F-system. Now consider the
property P = false, i.e. P = ∅. Obviously for an F-system (X, c), x |=G,Uηc ©∅
for all x ∈ X, because for d := Uηc we obtain

©G,dP = d−1(Pred(G)(∅)) = d−1(1 + ∅) = d−1(1) = X

since d(x) = ∗ for all x ∈ X. This is also intuitively clear, because a property
holds in all successor states, if there are no such states. However, x 	|=F,c ©∅
for all x ∈ X, because all x possess transitions in an F-system. And η is not
Cartesian along inclusions: η−1

X (1 + P) = XA 	⊆ ∅ = ∅A.
The following result delineates conditions for preservation and reflection of

truth w.r.t. all temporal operators. We formulate it for finite state sets X, see
Remark 1, which is sufficient for practical applications in software engineering.

Proposition 2 (Truth Preservation and Reflection). Let η : F ⇒ G for
two KPF ’s F and G, which is Cartesian along inclusions, and Uη : F-Coalg
→ G-Coalg the emerging co-forgetful functor from Lemma 1. Let (X, c) be an
F-system with finite state set X and Ω any of the above mentioned temporal
operators, then:

∀x ∈ X : x |=F,c Ω P ⇐⇒ x |=G,Uηc Ω P (2)

Consistency of Behavioural Models 321

Proof. For the two elementary operators ∃� and ∃ U , this follows from Lemma
4 and Proposition 1 by simple induction, because X is a finite set. The result
then easily propagates to all derived operators, like ∀� and ∀♦, and furthermore
to all nested formulas. �

This result causes truth preservation and reflection along specification mor-
phisms η : F ⇒ G of all temporal formulas, thus enabling validity checks being
independent of whether they are carried out in the category of F-systems or in
the category of G-systems, respectively.

4.2 The Case Study Revisited

Examples 1, 2, and 3 showed how to encode the backend system and the common
platform and provided the translation of the former to the latter. Our goal is
now to provide a corresponding translation of a BPMN process model to the
common platform. We assume the state space of a BPMN diagram to be a set
of possible token distributions in the diagram, cf. [21], equivalently it can be
seen as the set of enabled tasks and events, cf. [8]. Hence, we can encode BPMN
models as coalgebras for the functor

F2 = (1 +)n × (1 +)E × ((1 +) × R)T .

Here E is the set of catch events in the process model, e.g. “Additional Infor-
mation Received” in Fig. 1, T is the set of non-automatic tasks, e.g. “Enhance
Ticket Data” or (the business rule task) “Classify Ticket” and R is set of roles in
the process model assigned to user tasks, e.g. “IT-Staff” for the above user task.
For the sake of simplicity, we assume that each automatic task calls exactly one
method in the backend system.

Then the transition structure is given by assigning to a state x ∈ X a triple
c(x) = (h1, h2, h3) of maps. The function application h1(j) specifies, whether in
state x an automatic task is ready to request method mj with successor state
x′ (if h1(j) = x′ 	= ∗) or whether this is not the case (h1(j) = ∗), i.e., the
successor state is independent of input and output of the called method, cf.
remark on abstraction in BPMN models in Sect. 2. Similarly, h2(e) specifies,
whether in state x, the process is ready to receive event e ∈ E or not, and
h3(t) = (h3,1(t), h3,2(t)) indicates whether a user task t ∈ T with role assignment
h3,2(t) ∈ R produces successor state h3,1(t) (or is disabled, if h3,1(t) = ∗). The
next goal is to find a natural transformation η′ in

F1
η �� G F2

η′

In order to translate input-independent part h1 to LTS where the alphabet
distinguishes between all elements i ∈ Ij , the map h1(j) : Ij → X is a constant
map. Furthermore, we have to bear in mind that process instances evolve due
to events and user activities. Hence we allow these ingredients in the common
platform and choose for the functor G : SET → SET in Example 1 and 3:

322 H. König and U. Wolter

A := I +
n∐

j=1

Ij with I := E + T.

Then the transformation

η′
Y :

⎧⎪⎪⎨
⎪⎪⎩

(1 + Y)n × (1 + Y)E × ((1 + Y) × R)T → (1 + Y)A

(h1, h2, h3) �→ λz.

⎧⎨
⎩

h1(j) , if z = i ∈ Ij

h2(e) , if z = e ∈ E
h3,1(t) , if z = t ∈ T

additionally forgets role assignments and thus faithfully translates the BPMN
model into a DLTS.

4.3 Handshaking

Let (X, c) be a backend system (F1-system) and (Y, d) be a BPMN model (F2-
system), then the two translated systems Uηc and Uη′d can be synchronized over
a set of common communication channels, in our case the touch points are the
methods {m1, . . . ,mn} together with their inputs, i.e. it is the set

H :=
n∐

j=1

Ij .

The resulting system s := Uηc ||H Uη′d, is the parallel composition whose compo-
nents communicate synchronously (handshake) over channels H and all actions
outside H are independent and therefore can be executed autonomously in an
interleaved manner [1].

Furthermore formula ϕ can now be formulated based on the specification G
of the common transition structures. Model checking means then to ask whether
in a certain state (x, y) ∈ X × Y of the composed G-system formula ϕ holds:

(x, y)
?

|=G,s ϕ

Assume now, an additional formula ψ has been imposed on (X, c) or (Y, d),
then the question is, how ϕ and ψ interact: Are they contradictory? Does one
of them logically imply the other? Is a syntactical combination, e.g. ψ ⇒ ϕ,
valid? etc. . . . Because ϕ only lives on our LTS-platform (G-systems) and ψ lives
either in F1- or in F2-systems, it is desirable, to know whether x |= ψ is true
independent of whether we check in G or in F1/2.

It follows now immediately from the definition of η (Example 1) and η′ (see
above in the present section), that both natural transformations are Cartesian
along inclusion: Whenever P ⊆ X, then for any map m (or h) in the domain of ηX

(or η′
X), such that its ηX -image maps into P , whenever the values shall be in X,

we immediately see, that this is also the case for m, i.e. η−1
X ((1+P)A) ⊆ F1/2P .

Hence Proposition 2 guarantees this independence and all model checks can
be carried out on the common platform.

Consistency of Behavioural Models 323

5 Related Work

Practical Approaches: The general idea of transforming different behavioural
formalisms to a single semantic domain to reason about crosscutting concerns
is nothing new [7]. [14] developed consistency checking for sequence diagrams
and statecharts based on CSP, while Petri nets were used for the same scenario
in [24]. Nevertheless, all approaches utilize fixed types of transition systems
and no common framework, which can capture all possible types of transition
structures. [6] tackles the problem of dealing with relationships between het-
erogeneous behavioural models. They coordinate the different models using a
dedicated coordination language, which we formalize using morphisms between
behavioural specifications.

Theoretical Approaches: Reasoning about heterogenously typed transition
structures leads to the general theory of (co-)institutions, in which the same
functor Uη as above is used to build the covariant model functor. In addition
to our approach, a concrete (contravariant) functor for formula translation (of
modal logics) is used: [5] defines (many-sorted) specification morphisms F → G
as natural transformations from G to F and shows that formulae are preserved
and reflected, if the negation operator is omitted (positive logic), see also [2]. [16]
proves three different types of logics for coalgebras to be institutions. Another
approach are parametrized endofunctors as comprehensive behavioural specifi-
cations, where the overall structure can be studied in terms of cofibrations [13].
[23] investigates co-institutions purely dual to classical institutions [19]. Finally,
a good overview over the connection between coalgebars and modal logic is [12].

6 Future Work

More General Translations: We plan to use more general natural transfor-
mations to relate specifications F and G. An established possibility [18] is to
investigate translation properties, when using

η : HF ⇒ GH
for some reasonably chosen functor H : SET → SET . This yields the translation
of an F-system (X, c) to the G-system (HX, ηX ◦Hc) and thus enables transfor-
mation of the state space, too. The question is, whether we can expect similar
results as above for this kind of translations.

Refined Formulas: Formulas of modal logic can be refined w.r.t. to input
symbols, e.g. you want to express that property P holds after a transition with
structure map c only if there was a certain input/event. A formalisation of this is
described in [10], Chapter 6.5., which enables defining formulas as in Hennessy-
Milner-Logic [15].

Evaluation and Implementation: Finally, we want to investigate, how appli-
cation (framework)s for checking behavioural consistency in heterogeneous mod-
eling scenarios can be implemented based on the insights of the present paper.
It is a goal to formally underpin already existing work [11].

324 H. König and U. Wolter

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Balan, A., Kurz, A., Velebil, J.: An institutional approach to positive coalgebraic
logic. J. Log. Comput. 27(6), 1799–1824 (2017)

3. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall, Hobo-
ken (1990)

4. Bradfield, J.C., Stirling, C.: Modal logics and mu-calculi: an introduction. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Alge-
bra, pp. 293–330. North-Holland/Elsevier (2001). https://doi.org/10.1016/b978-
044482830-9/50022-9

5. Cırstea, C.: An institution of modal logics for coalgebras. J. Log. Algebraic Pro-
gram. 67(1–2), 87–113 (2006)

6. Deantoni, J.: Modeling the behavioral semantics of heterogeneous languages and
their coordination. In: 2016 Architecture-Centric Virtual Integration (ACVI), pp.
12–18. IEEE (2016)

7. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specify-
ing and analyzing consistency of object-oriented behavioral models. In: Tjoa, A.M.,
Gruhn, V. (eds.) Proceedings of the 8th European Software Engineering Conference
Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, 10–14 September 2001, pp. 186–195.
ACM (2001). https://doi.org/10.1145/503209.503235

8. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005).
https://doi.org/10.1007/b138249

9. Jacobs, B.: Objects and classes, co-algebraically. In: Freitag, B., Jones, C.B.,
Lengauer, C., Schek, H. (eds.) Object Orientation with Parallelism and Persis-
tence (The Book Grow Out of a Dagstuhl Seminar in April 1995), pp. 83–103.
Kluwer Academic Publishers (1995)

10. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316823187

11. Kräuter, T.: Towards behavioral consistency in heterogeneous modeling scenar-
ios. In: ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems Companion, MODELS 2021 Companion, Fukuoka, Japan, 10–
15 October 2021, pp. 666–671. IEEE (2021). https://doi.org/10.1109/MODELS-
C53483.2021.00107

12. Kurz, A.: Coalgebras and modal logic. Course Notes for ESSLLI 2001 (2001)
13. Kurz, A., Pattinson, D.: Coalgebras and Modal Logic for Parameterised Endofunc-

tors. Centrum voor Wiskunde en Informatica (2000)
14. Küster, J.M.: Towards inconsistency handling of object-oriented behavioral models.

Electron. Notes Theor. Comput. Sci. 109, 57–69 (2004). https://doi.org/10.1016/
j.entcs.2004.02.056

15. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, Englewood
Cliffs (1989)

16. Pattinson, D.: Translating logics for coalgebras. In: Wirsing, M., Pattinson, D.,
Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 393–408. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-40020-2 23

17. Reichel, H.: An approach to object semantics based on terminal co-algebras.
Math. Struct. Comput. Sci. 5(2), 129–152 (1995). https://doi.org/10.1017/
S0960129500000694

https://doi.org/10.1016/b978-044482830-9/50022-9
https://doi.org/10.1016/b978-044482830-9/50022-9
https://doi.org/10.1145/503209.503235
https://doi.org/10.1007/b138249
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1109/MODELS-C53483.2021.00107
https://doi.org/10.1109/MODELS-C53483.2021.00107
https://doi.org/10.1016/j.entcs.2004.02.056
https://doi.org/10.1016/j.entcs.2004.02.056
https://doi.org/10.1007/978-3-540-40020-2_23
https://doi.org/10.1017/S0960129500000694
https://doi.org/10.1017/S0960129500000694

Consistency of Behavioural Models 325

18. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

19. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-17336-3

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5, 285–309 (1955)

21. Van Gorp, P., Dijkman, R.: A visual token-based formalization of BPMN 2.0 based
on in-place transformations. Inf. Softw. Technol. 55(2), 365–394 (2013). https://
doi.org/10.1016/j.infsof.2012.08.014. Special Section: Component-Based Software
Engineering (CBSE), 2011

22. Wechler, W.: Universal Algebra for Computer Scientists. Springer, Heidelberg
(1992). https://doi.org/10.1007/978-3-642-76771-5

23. Wolter, U.: (Co)institutions for coalgebras. Reports in informatics 415 (2016)
24. Yao, S., Shatz, S.M.: Consistency checking of UML dynamic models based on Petri

net techniques. In: 2006 15th International Conference on Computing, pp. 289–297.
IEEE (2006)

https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1007/978-3-642-76771-5

Improving Adversarial Robustness of Deep
Neural Networks via Linear Programming

Xiaochao Tang1, Zhengfeng Yang1(B), Xuanming Fu1, Jianlin Wang2,
and Zhenbing Zeng3

1 Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai, China

{xctang,xmfu}@stu.ecnu.edu.cn, zfyang@sei.ecnu.edu.cn
2 School of Computer and Information Engineering, Henan University, Kaifeng, China

jlwang@henu.edu.cn
3 Department of Mathematics, Shanghai University, Shanghai, China

zbzeng@shu.edu.cn

Abstract. Adversarial training provides an effective means to improve the
robustness of neural networks against adversarial attacks. The nonlinear feature
of neural networks makes it difficult to find good adversarial examples where
project gradient descent (PGD) based training is reported to perform best. In
this paper, we build an iterative training framework to implement effective robust
training. It introduces the Least-Squares based linearization to build a set of affine
functions to approximate the nonlinear functions calculating the difference of dis-
criminant values between a specific class and the correct class and solves it using
LP solvers by simplex methods. The solutions found by LP solvers turn out to
be very close to the real optimum so that our method outperforms PGD based
adversarial training, as is shown by extensive experiments on the MNIST and
CIFAR-10 datasets. Especially, our methods can provide considerable robust net-
works on CIFAR-10 against the strong strength attacks, where the other methods
get stuck and do not converge.

Keywords: Linear programming · PGD · Robust training · Adversarial training

1 Introduction

Deep neural networks have shown remarkable performance in various applications,
ranging from speech recognition [17], natural language processing [2] and games play-
ing [18,35] to medical diagnosis [1] and vehicle control [5] where they achieve human-
level intelligence.

However, it has been discovered by researchers [4,38] that neural networks suf-
fer from heavy robustness issues, that is modern neural network classifiers are able
to achieve very high accuracy on image classification tasks but are sensitive to small,
adversarially chosen perturbations to the inputs.

Given an image x that is correctly classified by a neural network, a malicious
attacker may find a small adversarial perturbation δ such that the perturbed image x+δ,

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 326–343, 2022.
https://doi.org/10.1007/978-3-031-10363-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_22

Improving Adversarial Robustness of Deep Neural Networks 327

though visually indistinguishable from the original image, is assigned to a wrong class
with high confidence by the network. As their integration into the safety-critical sys-
tems continues to grow, there is a great need in training robust neural networks against
such perturbations.

Researchers have proposed a variety of defense methods to improve the robust-
ness of neural networks, which are not only accurate on the data, but also immune to
attacks using adversarial examples. Most of the existing defenses are based on adver-
sarial training [3,12,15,19,27]. The rationale of these approaches is to find worst-case
examples and feed them to the model during training or constraining the output not to
change significantly under small perturbations. Adversarial training can be formulated
as a robust optimization problem which takes the form of a non-convex min-max prob-
lem. It treats the adversarial training as a procedure, that is, maximizes the loss function
caused by the adversarial example crafted from the input x within the ε−ball and then
tries to minimize the maximal value of the loss by regulating model parameters. Due
to the non-convex activation functions in DNNs, the problem for pursuiting the opti-
mal adversarial examples is NP-hard [21]. Thus adversarial training can only rely on
approximate methods to solve the inner maximization problem.

Multiple attempts have been made the inner maximization problem tractable. They
have focused on effective first-order attack methods to generate adversarial examples.
For instance, Fast Gradient Sign Method (FGSM) was introduced in [15] to gener-
ate adversarial examples based on computing the gradient of the loss function for the
current value of the model parameters. The recent study [28] has shown that first-
order methods can reliably solve the problem where the Projected Gradient Descent
(PGD) method could find a better solution than any other first-order methods as it is
the strongest attack that utilizes the local first-order information about the network. It
is now widely believed that models adversarially trained via the PGD attack are robust
since small adversarially trained networks can be formally verified [8,39,43], and larger
models could not be broken on public challenges [28,47].

The first-order adversarial attack methods are directly based on gradient informa-
tion, i.e., by calculating the partial derivatives of the target loss function to the ele-
ment of adjacency matrix [6,10]. In this manner, the generated adversarial network
may easily drop into poor local maxima and thus overfit the model, leading to lower
transferability across models. In this paper, we introduce EMRobust, an adversarial
training method to improve the robustness of DNNs via Easily-Misclassified examples.
Unlike many existing and contemporaneous methods which rely on gradient computa-
tion to find a solution, we build a linear programming (LP) by approximating the inner
maximization problem and efficiently solve it by calling LP solvers. The solution to
the linear program is supposed to be very close to the optimal solution of the inner
maximization problem. In other words, the solution to the associated LP problem may
bring big losses, and thus is called an easily-misclassified example. To build the lin-
ear programming problem, Least-Squares-based linearization helps to obtain a set of
affine functions to approximate the nonlinear classifier functions which calculates the
difference of discriminant values between a specific label and the correct label. Com-
pared to the popular PGD-based method for the success attack rate against the model,
our LP-based method can find stronger adversarial examples than PGD attacks (see

328 X. Tang et al.

Table 1 and Table 2). Furthermore, through a lot of experiments we show empirically
that our method, based on easily-misclassified examples pursuit, is numerically stable
and accounts for both classification accuracy and robustness.

To summarize, the contributions of this paper are:

– We construct a relaxed linear programming problem for approximating the non-
convex inner maximization problem, and then call LP solver to obtain an easily-
misclassified example.

– An adversarial training method based on easily-misclassified examples generation
is proposed to improve the robustness of DNNs.

– We empirically evaluate our method on six different networks trained on the MNIST
and CIFAR-10 datasets, demonstrating the advantage of our method in the form of
high robustness to PGD attacks. Our EMRobust can surpass the results of the other
adversarial training methods [24,27].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief back-
ground on deep neural networks and adversarial robustness. In Sect. 3, we describe our
adversarial training method. Then, in Sect. 4 we show the experiments on benchmarks,
illustrating the effectiveness of our algorithm. In Sect. 5 we discuss related work, and
conclude in Sect. 6.

2 Preliminaries

In this section, we provide the background on deep neural networks (DNNs) and
describe the adversarial robustness of DNNs.

2.1 Deep Neural Networks

A deep neural network N is a tuple 〈X , T , Φ〉, where X = {x[0], . . . , x[k]} is a
set of layers, T = {T1, . . . , Tk} consists of affine functions between layers, and
Φ = {φ1, . . . , φk} is a set of activation functions. More specifically, x[0] is the input
layer, x[k] is the output layer, and x[1], . . . , x[k−1] are called hidden layers. Each layer
x[i], 0 ≤ i ≤ k is associated to an s�-dimensional vector space, in which each dimen-
sion corresponds to a neuron. For each 1 ≤ i ≤ k, the affine function is written as
Ti(x[i−1]) = W [i] x[i−1] + b[i], where W [i] and b[i] are called the weight matrix
and the bias vector, respectively. Furthermore, for each layer x[i], the value of each
neuron in the hidden layer is assigned by the affine function Ti using the values
of neurons in the previous layer, and then applying the activation function φi, i.e.,
x[i] = φi(W [i] x[i−1] + b[i]), with the activation function φi being applied element-
wise.

There are some typical activation functions, such as the rectified linear unit (ReLU),
sigmoid, softmax and tanh function [14]. And the commonly used ReLU is defined as
ReLU(x) = max(0, x). Given a vector x ∈ R

n, the definition of φ(x) is extended to
apply component-wise to x, i.e.,

φ(x) = [φ(x1), . . . , φ(xn)]T .

Improving Adversarial Robustness of Deep Neural Networks 329

From the mapping point of view, the i-th layer can be seen as the mapping image of
the (i − 1)-th layer. For each non-input layer x[i], 1 ≤ i ≤ k, we can define a function
f [i] : Rsi−1 → R

si , with

f [i](x) = φ[i](W [i]x + b[i]), 1 ≤ i ≤ k. (1)

Therefore, a DNN N is expressed as the composition function f : Rs0 → R
sk , such

that
f(x) = f [k](f [k−1](· · · (f [1](x)))). (2)

Given an input x[0], the DNN N assigns the label selected with the largest logit of the
output layer x[k]:

� = argmax(f(x[0])) = argmax
1≤j≤sk

(x[k]
j). (3)

In this paper, we focus on one of the most common architectures feed-forward DNN
classifiers with ReLU activation functions.

2.2 Adversarial Robustness

We begin with formally defining the notion of robustness, and introducing the adversar-
ial training of DNNs.

Given a DNN N with its associated function f and an input point x0, we now define
ε-robustness for a DNN N on x0. Let Bε(x0) be the �∞-ball of radius ε ∈ R>0 around
the point x, i.e.,

Bε(x0) = {x | ‖x − x0‖∞ ≤ ε}.

We say that an input region Bε(x0) has the same label if any input x chosen from
Bε(x0) has the same label as x0 has. This property that the ε-ball around the point hav-
ing the same label is called as ε−robustness. Formally, we have the following definition.
mon definition for robustness.

Definition 1 (ε−Robustness). Given a DNN with its associated function f , and an
input point x0. The ε-robustness of f at point x0 holds if and only if N assigns the same
label to all inputs within Bε(x0), i.e.,

argmax(f(x)) = argmax(f(x0)), ∀x ∈ Bε(x0). (4)

We say that N on x0 is ε-robust.

Given a DNN N and its associated function f : R
s0 → R

sk , fi denotes the
function of the i−th element of f . Suppose N assigns the label � to x0, that is,
� = argmaxf(x0). Accordingly, the target of ε−robustness verification with respect to
x0 is to determine whether any input selected randomly from Bε(x0), satisfies

∀x ∈ Bε(x0) ∀�̃ 	= � : f�(x) > f�̃(x). (5)

On the contrary, for an input x0 with the correct label �, we say that N w.r.t. x0

is ε-unrobust if there exists an input x ∈ Bε(x0) such that argmax(f(x)) 	= � is
satisfied. In other words, x is misclassified if the logit of some incorrect label �̃ is larger

330 X. Tang et al.

than the logit of � on x. Therefore, the existence of a misclassification x ∈ Bε(x0) is
equivalent to x0 ε-unrobust. Moreover, the problem of finding a misclassified example
within Bε(x0) can be written as the following optimization problem:

p = max
x∈Bε(x0)

{max{f�̃(x) − f�(x), �̃ 	= �} }. (6)

It is seen that the network N on x0 is ε-roubst if and only if the objective of the opti-
mization problem (6) is negative, i.e., p < 0. Alternatively, once the optimum p > 0,
the corresponding optimizer, denoted by x∗, is a misclassified example. Moreover, the
optimization problem is to find an example x∗ within Bε(x0) such that the logit of some
incorrect label subtracting the logit of the correct label is maximized.

The following concept of robust accuracy, adapted from [44], is used to measure the
robustness of the given DNN.

Robust Accuracy. Given a DNN N with a test set of labeled inputs {(xi, yi)}n
i=1, the

robust accuracy is the percentage of test samples for which the model N is ε−robust.
The optimization problem (6) for proving the ε−robustness on the given input

can be written as the corresponding mixed integer linear programming. Due to the
high computational complexity, the relaxed certification methods, such as abstraction-
refinement and convex optimization, are able to yield lower bounds for robust accuracy.
On the other hand, the first-order adversarial attacks, such as projected gradient descent
(PGD) [24] or Deepfool [30], provide upper bounds for robust accuracy. In this paper,
we will employ the popular adversarial attack PGDmethod, to measure the robust accu-
racy of the given DNN N .

3 Training for Adversarial Robustness

A common method for adversarial training usually focuses on searching adversarial
examples into the training set, and then training the DNN model with the updated train-
ing set to improve its robustness. Given a training dataset D, the regular training is to
obtain network weights θ by minimizing the following loss function, i.e.,

minE(x,y)∼D(L(θ, x, y)). (7)

For a given ε-ball, the robust training is to obtain the network weights by minimizing
the following loss function, i.e.,

minE(x,y)∼D max
x̃∈Bε(x)

(L(θ, x̃, y)). (8)

As stated in prior work [21], the above min-max problem (8) is NP-hard. Therefore,
generating adversarial examples approaches, based on adversarial attack techniques
such as projected gradient descent(PGD), are applied to yield the approximate solutions
of the inner maximization problem in (8). Instead of injecting adversarial examples,
in this work we adopt linear programming to generate easily-misclassified examples.
Specifically, we build an iterative training framework, wherein each iteration proceeds
in two stages:

Improving Adversarial Robustness of Deep Neural Networks 331

Compute Easily-Misclassified Examples. Given some inputs chosen randomly from
the training set, for each input we apply a linear approximation and linear program-
ming solving method for computing the associated easily-misclassified example with
respect to the current DNN model. Precisely, given a DNN N and an input x0, the task
of inspecting an adversarial example with Bε(x0) can be equivalently expressed as a
nonlinear optimization problem. To speedup the solving process, a surrogate is to relax
the derived non-linear optimization as a linear programming problem to generate an
easily-misclassified example (See Sect. 3.1).

Train the Model by Using Easily-Classified Examples. We construct the new loss
function composing of normal examples and easily-misclassified ones obtained from
the above step, and then run the training step to update the network (See Sect. 3.2).

3.1 Generating Easily-Misclassified Examples

Given a DNN N : 〈X , T , Φ〉, and an input point x0 with its label �, recall that
ε−robustness of x0 is to verify whether any input x ∈ Bε(x0) satisfies the condition
(5). In other words, N on x0 is ε−unrobust if and only if

max
x∈Bε(x0)

{max{f�̃(x) − f�(x), �̃ 	= �} } > 0. (9)

Accordingly, to inject an adversarial example in Bε(x0), one can construct the fol-
lowing nonlinear optimization problem:

p= max{ max{ f�̃(x) − f�(x), �̃ 	= � }}
s.t. ‖x − x0‖∞ ≤ ε,

}
(10)

whose objective function is piece-wise. By introducing an auxiliary variable t, it can be
transformed to an equivalent optimization problem by forming the epigraph problem,

p= min t
s.t. max

�̃�=�
f�̃(x) − f�(x) ≤ t,

‖x − x0‖∞ ≤ ε.

⎫⎪⎬
⎪⎭ (11)

The constraint max�̃�=� f�̃(x) − f�(x) ≤ t in (11) can then be expressed as a set of
separate ones, i.e.,

f�̃(x) − f�(x) ≤ t, �̃ 	= �.

By doing so, the optimization problem (10) is equivalently written as the following one,

p= min t

s.t. f�̃(x) − f�(x) ≤ t, �̃ 	= �,
‖x − x0‖∞ ≤ ε,

⎫⎬
⎭ (12)

with variables t and x.

332 X. Tang et al.

Remark 1. Depending the equivalence between (10) and (12), consequently, capturing
an adversarial example in the ε-ball of x0 is equivalent to solve the nonlinear optimiza-
tion problem (12). Precisely, the positivity of the optimum p for (12) is equivalent to
the ε-unrobustness of x0. Furthermore, the corresponding optimizer x∗ of (12) is an
adversarial example in Bε(x0).

Linear Approximation. Observing (12), we can find that the third constraints are lin-
ear, whereas the second ones are nonlinear, which are arising from the activation func-
tions in the given DNN. As we know, the optimization problem (12) may be intractable.
To make it tractable, one may compute the linear approximations for the nonlinear
constraints in (12), thus can derive a linear programming problem. Instead of attack-
ing the nonlinear optimization problem, the above linear encoding is able to seize
a relaxed solution of (12), which can be regarded as an easily-misclassified example
within Bε(x0).

Now let us explain how to apply the Least-Squares based linearization procedure to
approximate the nonlinear constraints in (12). Specifically, given a DNNN : 〈X , T , Φ〉,
with the associated function f : Rs0 → R

sk and the input point x0. We first construct
a rectangular mesh M in Bε(x0) with a mesh spacing s ∈ R+ and the corresponding
mesh point set {x1, . . . , xt}. For each nonlinear function f�̃(x) − f�(x), �̃ 	= �, we
construct a point set S�̃ = {(x1, y�̃,1), . . . , (xt, y�̃,t)}, where y�̃,j , 1 ≤ j ≤ t are the
evaluations of the function f�̃ − f� at the points xj ,

y�̃,j = f�̃(xj) − f�(xj).

For each point set S�̃, one can easily use the Least-Squares method to obtain an affine
function, denoted by h�(x), to approximate the nonlinear function f�̃ − f�, i.e.,

h�̃(x) ≈ f�̃(x) − f�(x), �̃ 	= �. (13)

Figure 1 illustrates the Least-Squares based on linearlization procedure to deal with
a binary case. Figure 1(a) depicts a nonlinear binary classifier [f1(x), f2(x)] within an
interval [−0.3, 0.3], where f1(x) and f2(x) respectively represent the probability of
each category. As shown in Fig. 1(b), we construct the point set including the evalua-
tions of f2(x)−f1(x), and apply the Least-Squares method to obtain the linear approx-
imate function h2(x) plotted with the red dashed line. Meanwhile, for the classifiers
f1(x) and f2(x), one can also use the first-order linearization around x0 = 0 to get the
approximate linear classifiers, denoted by g1(x) and g2(x):

gj(x) = fj(0) + ∇fj(0)T (x), j = 1, 2. (14)

The associated first-order linearization approximation is g2(x)−g1(x), plotted with the
green dashed line in Fig. 1(b). In comparison with the method based on the first-order
linearization approximation, our Least-Squares based method is able to yield the tight
linear approximation. The reason is that the least-squares based method can minimize
the mean square error, but first-order linearization approximation method may not.

Based on the above linearization procedure, the optimization problem (12) for gen-
erating easily-misclassified example within Bε(x0) can be relaxed into the following
optimization problem:

Improving Adversarial Robustness of Deep Neural Networks 333

p∗= min t

s.t. h�̃(x) ≤ t, �̃ 	= �,
‖x − x0‖∞ ≤ ε,

⎫⎬
⎭ (15)

where h�̃(x) are the corresponding affine approximations of f�̃ − f� as in (14). To
summarize, the LP solver can be applied to solve the above optimization problem (15),
whose optimizer is an easily-misclassified example within Bε(x0).

Fig. 1. Illustration of the linearization for nonlinear constraints.

3.2 Improving Adversarial Robustness with Easily-Misclassified Examples

Recall that our aim is to solve the min-max optimization problem (8) for improving
adversarial robustness. Given a data set X = {(xi, yi), i = 1, . . . , N}, the min-max
optimization problem in (8) can be formulated as follow:

1
N

min
N∑

i=1

max
x̃i∈Bε(xi)

(L(θ, x̃i, y)). (16)

As proposed in [24], a hyperparameter in a loss function is introduced to control the
relative weight of adversarial examples. In this manner, training this new loss function
can increase both the test accuracy and the robustness. On the other hand, following the
idea shown in [24,33], batch normalization can also be deployed during the training.
Therefore, suppose the current minibatch is B = {x1, . . . , xm}, we can formulate the
training loss function as following:

(1 − α)
1
m

m∑
i=1

L(θ, xi, yi) + α
1
m

m∑
i=1

max
x̃i∈Bε(xi)

L(θ, x̃i, yi), (17)

where α is a hyperparameter that governs the relative weight of the regular loss and the
robust loss. Notes that α ∈ [0, 1]. And if α = 0, (17) is equivalent to a standard training
loss.

As stated in Sect. 3.1, here we use the linear relaxation technique to seek an easily-
misclassified example. Concretely, during the training process, it trains the model to
obtain the current network N with its associated function fθ̂(x) parameterized by θ̂. In

334 X. Tang et al.

this stage, for each sample xi, 1 ≤ i ≤ m in the minibatch B, we solve the correspond-
ing linear programming problem (15) with fθ̂(x) and obtain its optimizer, denoted by
x̂i. Having such easily-misclassified examples x̂1, . . . , x̂m, we can build the new loss
function:

Loss = (1 − α)
1
m

m∑
i=1

L(θ, xi, yi) + α
1
m

m∑
i=1

L(θ, x̂i, yi). (18)

Training Procedure. Given a training data set X and a network structure, we provide a
method to train the adversarial robust network model, which is performed by an iterative
scheme. More precisely, suppose fθ(t)(x) is a DNN parameterized by θ(t), which are
obtained from iteration t. At iteration t+1, we first read minibatch B = {x1, . . . , xm}.
For each sample xi in B, one can easily establish the linear programing problem
based on the current network fθ(t)(x), and further obtain the corresponding easily-
misclassified example, denoted by x̂i. The loss function as in (18) is constructed
by using the normal examples xi and easily-misclassified ones x̂i. Afterwards we
update θ by minimizing the new loss function. Detailed procedures are summarized in
Algorithm 1.

Algorithm 1: RobustTrain (Robust Training of network via Easily-misclassified
Examples)
Input: Network fθ(x) parameterized by θ;

Training set X; minibatch size m;
Perturbation radius ε;
Hyperparameter α ∈ [0, 1].

Output: Robust network fθ(x) with θ.
1 Initialize parameter θ selected randomly;
2 while stopping criterion not met do
3 Sample a minibatch B = {(x1, y1), . . . , (xm, ym)} from the training set X .
4 for j = 1, 2, · · · , m do
5 Establish the optimization problem (15) from θ and xj ;
6 Call an LP solver to obtain its optimizer x̂j ;

7 Make a new minibatch Badv = {(x̂1, y1) . . . , (x̂m, ym)};
8 Construct Loss as in (18) from B and Badv .
9 Minimize Loss to obtain its optimizer θ∗;

10 Apply update: θ ← θ∗;

11 return θ and the robust network fθ(x).

4 Experiments

In this section, we evaluate the performance of our tool: EMRobust against two state-
of-the-art methods proposed by Madry et al. [27] and Kurakin et al. [24] respectively,
based on two benchmark datasets in the literate: MNIST [25] and CIFAR-10 [22] are

Improving Adversarial Robustness of Deep Neural Networks 335

used. Here, how does the configuration of parameters: the number of epochs and the
hyperparameter α affect the performance of training is studied at first, and performance
comparison on adversarial example generation and adversarial robustness training are
made using the good parameter configuration. All the experiments are run on an Ubuntu
18.04.3 LTS server with a 2.7GHz Intel Core i7 CPU with 64 GB RAM, and a NVIDIA
GTX 2080Ti GPU.

MNIST. The networks MNIST Small, MNIST Large [42] and MNIST Chall [27] used
in experiments, are all ConvNet architectures. These models are trained by the Adam
optimizer with a fixed learning rate of 10−4, a batch size of 32 on MNIST dataset. For
adversarial training, we perform a 40 steps PGD attack with the step size of 0.01 and use
a uniform random initialization within the L∞-ball of radius εtrain for all adversarial
training methods.

CIFAR-10. Two ConvNet architectures CIFAR Small and CIFAR Large [42] and one
ResNet networkCIFAR Chall [27] are chosen for generating models. Models are trained
on CIFAR-10 dataset with a batch size of 32, using the Adam optimizer with a fixed
learning rate of 10−4. All adversarial training is based on PGD attacks with 40 iterations
with the step size 2/255 and random start points.

Fig. 2. Test accuracies of EMRobust with different epochs on MNIST (a) and CIFAR-10 (b).

4.1 Effect of Parameters

We first investigate how does the number of epochs affect the training results. To iden-
tify the number of epochs adequate for EMRobust training method, we train several
models with different epochs over a range of maximum epochs K, and then plot the
final test accuracy of each trained model in Fig. 2. The overall trend of accuracy keeps
increasing with the increase of training epochs, but its increasement slows down as the
epoch becomes larger. For example, as shown in Fig. 2(a) and Fig. 2(b), the test accu-
racies of all networks becomes almost stable when the epoch goes from 16 to 20, and

336 X. Tang et al.

after that we could not achieve notable improvement on performance by increasing the
epoch. Based on this result, we fix the training epoch to 20 in the following experiments.

The hyperparameter α in (17) is used to tune the balance between the regular loss
and the robust loss. To evaluate its impact on MNIST Small model and CIFAR Small,
we start EMRobust with different fixed values of α in the range {0.1, 0.2, . . . , 0.9, 1}.
The results on MNIST Small model and CIFAR Small model are reported in Fig. 3. It is
shown that the test accuracy ofMNIST Small remains steady at around 1.0, whereas that
of CIFAR Small network is about 0.8. As for the robust accuracies, they rise gradually
within α = 0.9 and the optimum values are within [0.9, 1.0]. In Fig. 3(a), the robust
accuracy reaches the optimal at the point α = 0.9. In Fig. 3(b), the optimal α for the
robust accuracy is in the range [0.9, 1]. To find the optimal α, we tune α from 0.9 to 1.0
with a step-size of 0.05. The procedure turns out that the robust accuracy reaches to the
optimal at the point α = 0.95.

Fig. 3. The effects of hyper-parameterα on the training accuracy on clean and adversarial samples
for (a) MNIST Small model with ε= 0.3 and (b) CIFAR Small model with ε= 8/255, under the
L∞-norm PGD-40 attack.

4.2 Performance on Adversarial Examples Generation

We compare the performance on generating adversarial examples against the PGD
attacks with different steps on the L∞-norm. In Table 1 and Table 2 show the results,
where PGD-N denotes PGD with N steps. The performance is compared using adver-
sarial success rate, that is, the attack success rate of adversarial examples generated
by PGD-5, 10, 20, 40 and our LP strategy at different ε. Table 1 shows the results on
three standard networks trained on MNIST. The performance of PGD attacks increases
significantly with the number of iterations. It is observed that the LP based approach
achieves the same level of success in standard PGD-40 attack, but consistently superior
to other attacks. It is also seen that in the PGD attack algorithm where the number of
iterations gets larger than 10 and our LP method, the perturbation radius matters a lot.
For example, when the attack radius increases from 0.1 to 0.3, the strength of LP based
adversarial examples are improved by 46.75%. As Table 2, similar results are obtained
when experiments are implemented on the CIFAR-10 dataset.

Improving Adversarial Robustness of Deep Neural Networks 337

4.3 Performance on Robust Training

To demonstrate the effectiveness of EMRobust, we conduct experiments on different
networks and datasets. We compare the performance against two existing state-of-the-
art robust training schemes: [27] and [24]. In [27], the adversarial robustness of neural
networks is studied through the lens of robust optimization, while in [24], adversarial
training is scaled to large models and datasets. We train robust networks of three differ-
ent architectures under the L∞-norm PGD-40 attacks of various perturbations ε. The
performance on robustness is measured by clean accuracy and adversarial accuracy.

Table 1. Adversarial examples on MNIST

Model ε PGD-5 PGD-10 PGD-20 PGD-40 LP

MNIST Small 0.1 15.54 59.98 63.43 64.18 67.91

0.2 15.54 59.98 97.81 98.51 98.75

0.3 15.54 59.98 97.81 99.99 99.95

MNIST Large 0.1 16.18 51.91 52.83 52.91 53.14

0.2 16.23 53.97 94.62 96.73 96.10

0.3 16.21 52.95 98.73 99.83 99.89

MNIST Chall 0.1 7.70 30.90 32.80 33.60 34.13

0.2 7.70 30.90 93.20 94.40 95.60

0.3 7.70 30.90 93.20 99.80 99.31

Table 2. Adversarial examples on CIFAR-10

Model ε PGD-5 PGD-10 PGD-20 PGD-40 LP

CIFAR Small 2/255 90.23 90.41 90.46 90.47 91.13

4/255 98.07 98.21 98.24 98.24 93.11

8/255 99.96 99.98 99.98 99.98 99.81

16/255 100 100 100 100 100

CIFAR Large 2/255 82.12 82.50 81.69 83.71 73.91

4/255 95.12 94.51 94.87 95.64 91.9

8/255 98.92 99.01 99.13 99.14 99.32

16/255 99.12 99.13 99.25 99.45 99.80

Results on MNIST. Table 3 presents the evaluation results of the three techniques
under the attack of ε = 0.1 and 0.3 on MNIST models, where the best result are put in
bold fonts.

For the three MNIST networks, each of which is attacked by adversarial examples
yielded from the two perturbations: 0.1 and 0.3, there should be twelve best results on
the two index: ACCURACY and ADVERSARIAL ACCURACY. Clearly, our EMRo-
bust produces ten of them.

338 X. Tang et al.

As for the average values, for the three models that against the adversarial exam-
ples with the perturbation 0.1, the ACCURACY of the model towards clean examples,
produced by Madry’s method, Goodfellow’s method and our EMRobust, are 99.16%,
99.21% and 99.72%, respectively. The ADVERSARIAL ACCURACY towards adver-
sarial examples, produced by the three methods, are 96.02%, 95.81% and 97.74%,
respectively. Meanwhile, for the three models against the perturbation 0.3, the ACCU-
RACY of the model, trained by the three methods, are 97.99%, 98.66% and 99.06%,
respectively. The ADVERSARIAL ACCURACY of the three models are 90.47%,
85.09% and 91.54%, respectively. Our EMRobust produces the best average results
of all the indexes.

When the perturbation is strengthened from 0.1 to 0.3, both the ACCURACY and
ADVERSARIAL ACCURACY of the models drops. However, our EMRobust stably
provides the best results.

Table 3. Performance on adversarial robustness training

Network ε Madry et al. Goodfellow et al. EMRobust

ACCURACY ADV. ACCURACY ACCURACY ADV. ACCURACY ACCURACY ADV. ACCURACY

MNIST Small 0.1 98.95 94.84 98.98 93.99 99.71 98.21

0.3 96.31 85.23 97.90 84.96 99.61 87.34

MNIST Large 0.1 99.23 97.56 99.24 97.31 99.83 98.51

0.3 99.26 95.16 99.24 95.80 99.22 96.13

MNIST Chall 0.1 99.40 95.67 99.41 96.12 99.63 96.51

0.3 98.42 91.04 98.83 74.52 98.35 91.15

CIFAR Small 4/255 67.23 62.74 78.23 60.23 83.48 63.54

8/255 - - - - 75.61 57.34

CIFAR Large 4/255 81.23 65.12 74.23 67.23 82.65 68.23

8/255 - - - - 83.32 65.17

CIFAR Chall 4/255 87.67 61.27 90.21 63.12 91.23 64.37

8/255 82.34 48.49 86.13 42.77 89.12 49.21

Results on CIFAR-10. In Table 3, we compare the performance of EMRobust to the
other two methods on CIFAR-10 for ε of 4/255 and 8/255. Furthermore, show the
result accompanied with the increase of the perturbation, Fig. 4 plots the performance
on CIFAR Small networks trained by three adversarial training methods under the per-
turbations with ε = 2/255, 4/255, 6/255 and 8/255.

There should be six best results for the three networks with two perturbations each.
Our EMRobust gives all the six best results. Consider the average values, for the mod-
els against the perturbation 0.1, their ACCURACY and ADVERSARIAL ACCURACY
are 78.71%, 80.89%, 85.79% and 63.04%, 63.53%, 65.38%, respectively. Again, for
the successful models against to the perturbation 0.3, their ACCURACY and ADVER-
SARIAL ACCURACY are 82.34%, 86.13%, 89.12% and 48.49%, 42.77%, 49.21%,
respectively. Our EMRobust improves the models on all the two aspects.

Figure 4 shows that our EMRobust reliably outperforms the other two methods when
the perturbations gets larger and larger. When ε is set to 2/255, that is, a relatively small
strength of attack, the performance of EMRobust trained model is comparable with the
other types of models. As the perturbation bound gets larger, EMRobust’s clean and

Improving Adversarial Robustness of Deep Neural Networks 339

adversarial accuracy degrades gracefully, while when ε is set to 6/255 or lager, both
of Madry’s and Goodfellow’s methods get stuck after many iterations and thus fail
to converge to a usable model. The same similar situation happens in CIFAR Large
network. For all the cases, our EMRobust does not get stuck and successfully return
models with acceptable accuracy.

Fig. 4. Accuracy and robustness of CIFAR Small network trained with three methods against
attacks of different strengths. The attack strengths are ε ∈ {2/255, 4/255, 6/255, 8/255}. The
same color denotes the models are trained by the same method while the shade of square columns
denotes the level of robustness of the networks under different perturbation bounds. The notation
“−” indicates the training method does not converge under a given attack.

Table 3 shows that EMRobust can yield models achieving both high robustness and
high clean accuracy in all cases, which demonstrates the most important advantage of
EMRobust. On the one hand, it is well-known that robustness training usually sacrifices
the accuracy of the model on clean samples. Our EMRobust training can provide better
robustness against adversarial examples than the state-of-the-art adversarial training
methods on adversarial examples while retaining the highest accuracy on the original
examples. On the other hand, our EMRobust shows its potential to producing robust
models against strong adversarial attacks, where stats-of-the-art training methods fail
to converge.

5 Related Work

Adversarial Attacks. The existence of adversarial examples was firstly reported by
Szegedy et al. [38] where adversarial perturbations were found by box-constrained
L-BFGS optimization. After that, Goodfellow et al. presented the Fast Gradient Sign
Method (FGSM) to generate adversarial examples in one iteration [15] in which the
sign of gradient gives the direction of perturbations. Later, many variants of FGSM

340 X. Tang et al.

were developed. R+FGSM proposed by Tramèr et al. [41] enhanced the classical FGSM
with a randomization step. Kurakin et al. [23] extended the FGSM by applying it mul-
tiple times with a small step size to find better adversarial examples, called the Basic
Iterative Method. The iterative FGSM attack was further improved by adding multiple
random restarts or introducing random initialization points [43]. The projected gradient
descent (PGD) attack is a kind of iterative attack which integrates multiple iterations
with the projection on the ε−ball. The study on PGD [28] gives strong evidences on
supporting it to be the strongest first-order attack. Since then, the PGD attack has been
enhanced by various techniques, such as using momentum to boosting [13] and gener-
alizing to multiple types of adversarial attacks [29,40]. [16] improves transferability of
adversarial examples by linear backpropagating using off-the-shelf attacks that exploit
gradients. Carlini et al. [9] formulated adversarial attacks as optimization instances and
solved them using stochastic gradient descent. Like us, Moosavi-Dezfooli et al. [31]
proposed an iterative LP based attack called Deepfool. However, it linearized the net-
work as a hyperplane and seeked the smallest perturbation as the distance from the
input to the hyperplane in an iterative manner while our method linearize the difference
of discriminant functions and can find the adversarial input without iteration.

Adversarial Training. The robustness gained from adversarial training heavily
depends on the quality of the adversarial examples used. Training on examples from
non-iterative attacks such as FGSM only improve robustness against non-iterative
attacks, and not against iterative attacks like PGD attacks. As a result, to defend
strong adversarial attacks, many research has built defenses on PGD adversarial train-
ing or embedded PGD attacks into the training. Representative works include Super-
vised Sparse Coding [37], matrix estimation [46], logit pairing [32], Feature Denoising
[45], Defensive Quantization [26], Thermometer Encoding [7], PixelDefend [36], L2-
nonexpansive nets [34], Jacobian Regularization [20] and Stochastic Activation Pruning
[11]. All these works utilize the classic PGD attacks different from EMRobust proposed
in the paper.

6 Conclusion

In this paper, we have presented a new adversarial training method called EMRobust,
which raises the robustness of neural networks using easily misclassified examples. A
linear program is constructed to approximate the optimal problem that finds the adver-
sarial examples inducing the maximum loss within the allowed perturbation. LP solvers
turn out to find solutions very near to the optimum which enable EMRobust to pro-
duce robust neural networks readily. The evaluation on MNIST and CIFAR-10 datasets
demonstrates that EMRobust brings more robustness improvement for those networks
than the PGD based method does even under strong strength attacks.

Acknowledgment. This research is supported by the National Natural Science Foundation of
China under Grant 12171159 and Shanghai Trusted Industry Internet Software Collaborative
Innovation Center.

Improving Adversarial Robustness of Deep Neural Networks 341

References

1. Amato, F., Lopez, A., Pena-Mendez, E.M., Vanhara, P., Hampl, A., Havel, J.: Artificial neural
networks in medical diagnosis. J. Appl. Biomed. 11(2), 47–58 (2013)

2. Andor, D., et al.: Globally normalized transition-based neural networks. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
Berlin, Germany, 7–12 August 2016, Volume 1: Long Papers (2016)

3. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of security:
circumventing defenses to adversarial examples. In: Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018, pp. 274–283 (2018)

4. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H.,
Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190,
pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3 25

5. Bojarski, M., et al: Efficient visualization of CNNs for autonomous driving. In: 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, pp. 1–8 (2018)

6. Bojchevski, A., Günnemann, S.: Adversarial attacks on node embeddings (2018)
7. Buckman, J., Roy, A., Raffel, C., Goodfellow, I.J.: Thermometer encoding: one hot way to

resist adversarial examples. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings
(2018)

8. Carlini, N., Katz, G., Barrett, C., Dill, D.L.: Provably minimally-distorted adversarial exam-
ples. arXiv preprint arXiv:1709.10207 (2017)

9. Carlini, N., Wagner, D.A.: Adversarial examples are not easily detected: bypassing ten detec-
tion methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14 (2017)

10. Chen, J., Wu, Y., Xu, X., Chen, Y., Zheng, H., Xuan, Q.: Fast gradient attack on network
embedding. arXiv preprint arXiv:1809.02797 (2018)

11. Dhillon, G.S., et al.: Stochastic activation pruning for robust adversarial defense. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
30 April–3 May 2018, Conference Track Proceedings (2018)

12. Ding, G.W., Sharma, Y., Lui, K.Y.C., Huang, R.: Max-margin adversarial (MMA) train-
ing: direct input space margin maximization through adversarial training. arXiv preprint
arXiv:1812.02637 (2018)

13. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22
June 2018, pp. 9185–9193 (2018)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, 7–9 May 2015, Conference Track Proceedings (2015)

16. Guo, Y., Li, Q., Chen, H.: Backpropagating linearly improves transferability of adversarial
examples. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances
in Neural Information Processing Systems, vol. 33, pp. 85–95. Curran Associates Inc., New
York (2020)

17. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the
shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

18. Hosu, I., Rebedea, T.: Playing atari games with deep reinforcement learning and human
checkpoint replay. CoRR abs/1607.05077 (2016)

https://doi.org/10.1007/978-3-642-40994-3_25
http://arxiv.org/abs/1709.10207
http://arxiv.org/abs/1809.02797
http://arxiv.org/abs/1812.02637

342 X. Tang et al.

19. Huang, R., Xu, B., Schuurmans, D., Szepesvári, C.: Learning with a strong adversary. arXiv
preprint arXiv:1511.03034 (2015)

20. Jakubovitz, D., Giryes, R.: Improving DNN robustness to adversarial attacks using jacobian
regularization. In: Computer Vision - ECCV 2018–15th European Conference, Munich, Ger-
many, 8–14 September 2018, Proceedings, Part XII, pp. 525–541 (2018)

21. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 5

22. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset home page (2009). https://www.
cs.toronto.edu/∼kriz/cifar.html

23. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26
April 2017, Workshop Track Proceedings (2017)

24. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: Pro-
ceedings International Conference on Learning Representations (ICLR), pp. 1–17 (2017)

25. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits home page
(1998). http://yann.lecun.com/exdb/mnist/

26. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
6–9 May 2019 (2019)

27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

28. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Pro-
ceedings (2018)

29. Maini, P., Wong, E., Kolter, J.Z.: Adversarial robustness against the union of multiple per-
turbation models. CoRR abs/1909.04068 (2019)

30. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to
fool deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion(CVPR), pp. 2574–2582 (2016)

31. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method
to fool deep neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2574–2582 (2016)

32. Mosbach, M., Andriushchenko, M., Trost, T.A., Hein, M., Klakow, D.: Logit pairing methods
can fool gradient-based attacks. CoRR abs/1810.12042 (2018)

33. Na, T., Ko, J.H., Mukhopadhyay, S.: Cascade adversarial machine learning regularized with
a unified embedding. In: Proceedings International Conference on Learning Representations
(ICLR) (2018)

34. Qian, H., Wegman, M.N.: L2-nonexpansive neural networks. In: 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019
(2019)

35. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016)

36. Song, Y., Kim, T., Nowozin, S., Ermon, S., Kushman, N.: PixelDefend: leveraging gener-
ative models to understand and defend against adversarial examples. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3
May 2018, Conference Track Proceedings (2018)

http://arxiv.org/abs/1511.03034
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1706.06083

Improving Adversarial Robustness of Deep Neural Networks 343

37. Sulam, J., Muthukumar, R., Arora, R.: Adversarial robustness of supervised sparse coding.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, pp. 2110–2121. Curran Associates, Inc., New York
(2020)

38. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR 2014) (2014)

39. Tjeng, V., Tedrake, R.: Verifying neural networks with mixed integer programming. CoRR
abs/1711.07356 (2017)

40. Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In:
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 Decem-
ber 2019, pp. 5858–5868 (2019)

41. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel, P.D.: Ensem-
ble adversarial training: attacks and defenses. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May, 2018, Conference
Track Proceedings (2018)

42. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer
adversarial polytope, vol. 12, Stockholm, Sweden, pp. 8405–8423 (2018)

43. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial training. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
26–30 April 2020 (2020)

44. Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversarial robust-
ness verification via inducing reLU stability. In: International Conference on Learning Rep-
resentations (2019)

45. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving
adversarial robustness. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 501–509 (2019)

46. Yang, Y., Zhang, G., Xu, Z., Katabi, D.: ME-Net: towards effective adversarial robustness
with matrix estimation. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019, pp. 7025–7034
(2019)

47. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled
trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573 (2019)

http://arxiv.org/abs/1901.08573

AllSynth: Transiently Correct Network
Update Synthesis Accounting

for Operator Preferences

Kim Guldstrand Larsen1, Anders Mariegaard1, Stefan Schmid2,3,
and Jǐŕı Srba1(B)

1 Aalborg University, Aalborg, Denmark
{kgl,am,srba}@cs.aau.dk

2 TU Berlin, Berlin, Germany
3 University of Vienna, Vienna, Austria

stefan schmid@univie.ac.at

Abstract. The increasingly stringent dependability requirements on
communication networks as well as the need to render these networks
more adaptive to improve performance, demand for more automated
approaches to operate networks. We present AllSynth, a symbolic syn-
thesis tool for updating communication networks in a provably correct
and efficient manner. AllSynth automatically synthesizes network update
schedules which transiently ensure a wide range of policy properties
(expressed in the LTL logic), also during the reconfiguration process.
In particular, in contrast to existing approaches, AllSynth symbolically
computes and compactly represents all feasible solutions. At its heart,
AllSynth relies on a novel, two-level and parameterized use of BDDs
which greatly improves performance. Indeed, AllSynth not only provides
formal correctness guarantees and outperforms existing state-of-the-art
tools in terms of generality, but often also in terms of runtime as docu-
mented by experiments on a benchmark of real-world network topologies.

1 Introduction

A more automated operation of communication networks is considered one of the
most important research problems in networking today, for two main reasons.
First, communication networks and their configurations are highly complex, forc-
ing operators to become “masters of complexity” [24]; many major Internet out-
ages over the last years were caused by human errors [5,12,15]. Today’s manual
approach hence stands in stark contrast to the increasingly stringent dependabil-
ity requirements on communication networks, which are a critical infrastructure
of our digital society. Second, network traffic is not only growing explosively but
also features much temporal and spatial structure [4,6,48]; this introduces a sig-
nificant potential to improve operational efficiency by rendering networks more
adaptive towards the actual traffic patterns they serve.

Motivated by the vision of more automated networks [17], over the last years,
great efforts were made in laying the foundations for automated network verifi-
cation, and in designing synthesis tools [3,16,27,42,45]. Furthermore, motivated
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 344–362, 2022.
https://doi.org/10.1007/978-3-031-10363-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_23

AllSynth: Transiently Correct Network Update Synthesis 345

by the benefits of more adaptive network operations, e.g., to improve availabil-
ity and performance [28], automated tools for consistently updating network
configurations have been developed [11,23,38,43,46] which overcome the lim-
itations of existing hand-crafted algorithms [2,34,37]. However, the computa-
tion of provably consistent network update schedules remains challenging, due
to the required performance and expressiveness. The performance requirements
are multidimensional: network update schedules should not only be quickly com-
putable but also account for operator preferences, like requiring that certain
switches or routers are updated first. However, existing approaches only provide
one update sequence that may not be preferred by the network operator.

Our Contributions. We present an automated network update synthesis tool,
AllSynth, that computes and represents in a compact BDD form all correct
update sequences that respect various logical properties expressible in linear
temporal logic (LTL) [41] like reachability, waypointing and service chaining.
AllSynth comes with formal correctness guarantees and for situations in which
provably no simple update schedule exists, it can make suggestions for alternative
solutions (where the same switch is updated multiple times).

Despite being more general, AllSynth significantly outperforms state-of-the-
art tools in terms of runtime on all non-trivial real-world networks from the
standard Topology Zoo benchmark [29]. The update synthesis problem solved
by AllSynth is NP-hard, even if restricted to preserving the basic loop-freedom
and waypointing properties [34]. To combat the complexity of the problem, All-
Synth exploits a novel two-level use of binary decision diagrams (BDDs) [32] to
compactly encode not only the network topology and policy invariant, but also
the set of all correct update sequences.

The fact that AllSynth computes all feasible update sequences enables future
use cases for the tool, such as finding an optimal schedule, providing multiple
alternative solutions and filtering based on operator requirements (e.g. some
switches must be updated before the rest or in a certain order). The source code
of AllSynth and all our experimental artefacts are available at [31].

Related Work. Motivated by the benefits of adaptive and software-defined (i.e.,
programmable) communication networks [30], as well as the increasingly strin-
gent dependability requirements, the question of how to correctly update network
configurations has received much attention over the last years. A recent survey
summarizes over one hundred approaches [19].

In their seminal work, Reitblatt et al. [43] showed that a strong per-
packet consistency can be achieved using packet versioning during reconfigu-
rations. Their approach, which was subsequently studied intensively in the lit-
erature [8,10,20,25,26,33,40], has the drawback that it requires packet header
modifications and additional memory at the nodes: switches and routers need to
store forwarding rules for each version.

A clever alternative approach, introduced by Mahajan and Wattenhofer [37],
schedules batches of updates over time, where the set of updates within a batch
can take effect in any order without harming consistency. This approach has
also been explored extensively already [2,14,21,34–36,47], however, it can only

346 K. G. Larsen et al.

be used to provide a subset of the consistency properties of [43]. This in turn
motivated hybrid approaches such as FLIP [46]. Interestingly, similar to All-
Synth, FLIP also supports alternative solutions in case a simple update cannot
be found. However, in contrast to FLIP which relies on a heuristic algorithm,
AllSynth only presents alternative solutions in case a simple solution provably
does not exist. Furthermore, while FLIP resorts to a packet tagging alternative
(which consumes header space and switch memory), AllSynth is light-weight and
fully symbolic approach aiming at updating nodes multiple times.

The need for supporting more general or even customizable consistency prop-
erties [49] as well as more automated synthesis approaches [18,23,39] has already
received attention in the literature as well. However, our approach is the first one
that is using the BDD-based technology for the synthesis and representation of
all correct network updates. The competing tool NetSynth [38] for update syn-
thesis is relying on an incremental enumeration of candidates of update sequences
that are then verified by external model checkers, like NuSMV [13], and the tool
terminates as soon as the first correct update sequence is found.

2 A Model for Update Synthesis

Before we formally define our problem, we shall provide an intuitive motiva-
tion for the update synthesis problem. In Fig. 1 we see a simple network with
four nodes (routers). Packets from the source node s are forwarded to the des-
tination node d along the solid edges (links) that represent the initial routing
configuration. The network operator aims to change this routing to an alterna-
tive one represented by the dashed edges. The task is to schedule the order of
node updates (changing the forwarding function at the updated node from the
solid edge to the dashed one) so that in every intermediate routing configuration
we preserve the reachability between s and d and at the same time always visit
the waypoint node v1 (representing for example a firewall).

s v1 v2 d

Fig. 1. Update synthesis problem

If the node s is updated first, the
new routing will follow the path s, v2, d
which preserves the reachability prop-
erty but not the waypointing. On the
other hand, if we first update the
node v2, we create an undesirable for-
warding loop s, v2, v1, v2, v1, . . . which
breaks the reachability property. Hence the only option is to update first the
node v1, after which we have a correct forwarding path s, v1, d satisfying both
reachability and waypointing. After this we can update the node v2 because this
update does not change the forwarding path and lastly, we update the node s
that completes the update sequence from the initial to the final routing. We are
now ready to provide the formalization of the update synthesis problem.

We model the network as a multigraph, allowing us to describe multiple con-
nections between nodes (i.e., switches or routers, which are treated as synonyms
in the following); these connections can have different quantitative attributes

AllSynth: Transiently Correct Network Update Synthesis 347

(e.g. latency). Henceforth, we adopt graph-theory terminology and refer to such
connections or links as edges.

Definition 1 (Network Topology). A network topology is a directed multi-
graph G = (V,E, src, tgt) where V is the set of nodes, E is the set of edges and
src, tgt : E → V are respectively the source and target functions.

In order to route traffic from a node v0 to a node v′, each node v has a
forwarding rule that specifies an appropriate outgoing edge e such that src(e) =
v. This rule can be per-flow or apply to multiple flows; in the following, we do
not explicitly distinguish between the two scenarios. Not all nodes need to have
defined their forwarding edge (e.g. the target node v′ or the nodes that are not
involved in packet forwarding from v0 to v′). We capture this formally by the
notion of a routing configuration.

Definition 2 (Routing Configuration). A routing configuration, or routing
for short, in a network topology G = (V,E, src, tgt) is a partial function ρ : V ⇀
E such that src(ρ(v)) = v for all v ∈ V where ρ(v) is defined.

For a given network topology G = (V,E, src, tgt) with the source node v0 ∈ V ,
a routing configuration ρ defines a unique sequence of edges (a path) that is finite
if the routing is loop free; otherwise it is infinite. In the finite case, the path is
given by π = e0e1 · · · en such that ρ(tgt(ei−1)) = ei for all i, 0 ≤ i ≤ n, where by
convention tgt(e−1) = v0 and where ρ(tgt(en)) is undefined. The corresponding
sequence of traversed nodes is then π = src(e0)src(e1) · · · src(en)tgt(en). In the
infinite case, the path is given by π = e0e1 · · · such that ρ(tgt(ei−1)) = ei for all
i ≥ 0 where as before tgt(e−1) = v0. The sequence of traversed nodes is given by
the infinite sequence π = src(e0)src(e1) · · · . If π = v0v1 . . . is a (finite or infinite)
sequence of nodes then we refer to its suffix vivi+1 . . . by πi and to the initial
node v0 by π[0]. For a node v0 ∈ V and routing ρ, we let πρ(v0) denote the
unique (finite or infinite) path induced by ρ from the source node v0 and let
πρ(v0) be the corresponding sequence of traversed nodes.

2.1 Routing Policies

We shall now define an LTL-based logic [41] that allows us to describe the policy
of acceptable routings (both statically and transiently).

Definition 3 (Policy Syntax). For a network topology G = (V,E, src, tgt),
a policy ϕ is constructed according to the following LTL-based abstract syntax,
where v ∈ V :

ϕ ::= true | v | ¬ϕ | ϕ ∧ ϕ | NoLoop | X ϕ | ϕU ϕ .

In addition to the classical LTL operators, our logic includes a loop freedom
predicate. We now give the formal semantics of our logic, interpreted both on
infinite and finite paths [22].

348 K. G. Larsen et al.

Reach(d) ≡ trueU d

Waypoint(v, d) ≡ ¬Reach(d) ∨ (¬d U v ∧ Reach(d))

MultiWaypoint(W, d) ≡
∨

v∈W

Waypoint(v, d)

Service(ω, d) ≡

⎧
⎪⎨true if |ω| = 0

¬Reach(d)∨
v′ ω′ v′ d U (v Service(ω′, d))

if ω = v ◦ ω′

where v V

Fig. 2. Encoding of standard policies where v, d ∈ V , ∅ �= W ⊆ V and ω ∈ V ∗

Definition 4 (Policy Semantics). For a network topology G = (V,E, src, tgt),
satisfaction of a policy ϕ by a path π ∈ E∗ ∪ Eω, written π |= ϕ, holds iff the
corresponding sequence of traversed nodes π satisfies π |= ϕ, defined inductively
on the structure of ϕ as follows:

π |= true always π |= v iff π[0] = v

π |= ¬ϕ iff π �|= ϕ π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= NoLoop iff π is finite π |= X ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff ∃j∀i < j.πj |= ϕ2 and πi |= ϕ1.

We now formulate some standard routing policies as presented in Fig. 2. The sim-
plest policy, Reach(d), specifies that the destination node d must eventually be
reached while Waypoint(v, d) asks that any path reaching the destination d must
necessarily pass through waypoint node v. For multiple alternative waypoints,
MultiWaypoint(W,d) specifies that any path reaching destination d must neces-
sarily pass through either of the waypoints in W . Finally, Service(ω, d) ensures
that the sequence of waypoints in ω is visited in this fixed order.

2.2 Update Synthesis

In the following we assume a fixed network topology G = (V,E, src, tgt). An
update u ∈ E ∪ V on G under a current routing configuration ρ specifies that
the source node of edge u (if u ∈ E) must now forward its traffic along u or that
the routing for the node u (if u ∈ V) is set to undefined. We write ρu for the
new routing configuration, defined for any v ∈ V as

ρu(v) =

⎧
⎪⎨

⎪⎩

u if u ∈ E and v = src(u)
undefined if u = v

ρ(v) otherwise.

We inductively extend this notation to sequences of updates by letting ρε = ρ
and ρwu = (ρw)u for any w ∈ (E ∪V)∗ and u ∈ E ∪V . An update sequence may

AllSynth: Transiently Correct Network Update Synthesis 349

in general contain an arbitrary number of updates that change multiple times the
routing of the same node, however an important set of update sequences is the
class of simple update sequences, meaning that each update changes the routing
for a given node v from its initial routing ρi(v) directly to its final routing ρf (v).

Definition 5 (Simple Updates). Let ρf be the final routing. An update u is
simple if ρf (src(u)) = u whenever u ∈ E and ρf (src(u)) is undefined whenever
u ∈ V . A simple update sequence is then a sequence of simple updates, where
each update appears at most once.

A basic property of simple update sequences is that any reordering results
in the same final routing configuration i.e., if w is a simple update sequence and
w′ is any permutation of w, then ρw = ρw′

for any routing ρ.
Although any reordering of a simple update sequence yields the same final

routing configuration, the intermediate routing configurations induced by each
update may not respect a given policy invariant. This is also the case for general
update sequences. We therefore say that an update sequence is correct with
respect to a policy ϕ and a node v, if the unique path from v induced by any
intermediate routing configuration satisfies ϕ.

Definition 6 (Update Correctness). An update sequence w ∈ (E ∪ V)∗ on
network topology G with initial routing configuration ρ is correct with respect to
source node v0 and a policy ϕ, if πρw′ (v0) |= ϕ for any prefix w′ of w.

The network update synthesis problem is thus the problem of constructing a
correct update sequence that updates an initial routing to a desired final routing.

Definition 7 ((Simple) Update Synthesis Problem). Given a topology G,
an initial routing configuration ρi, a final routing configuration ρf , source node
v0 ∈ V and a policy ϕ, the simple update synthesis problem asks to construct a
simple update sequence w that is correct with respect to v0 and ϕ such that ρw

i =
ρf . The update synthesis problem omits the requirement that the constructed
update sequence is simple.

In the following, we let P = (G, ρi, ρf , v0, ϕ) denote a (simple) update synthesis
problem and say that a constructed update sequence w that satisfies the condi-
tions above is a solution. For any simple update synthesis problem P , the set of
solutions is always finite. This is not the case for the general problem as there
may be infinitely many (longer and longer) solutions.

While much prior work focused on simple update problems, there are exam-
ples which are only solvable with a general solution (as supported by our app-
roach). To see this, consider the network topology in Fig. 3a with initial and
final routings visualised respectively as solid and dashed lines in Fig. 3b. We fix
the source node s and the policy ϕ = Waypoint(v2, d)∧Reach(d) requiring that
waypoint v2 must be visited before reaching d. An update of any node v from the
initial to the final routing violates ϕ—either by introducing a loop or it bypasses
the waypoint. Hence there is no correct simple update sequence. However, the
update sequence that first updates s to route to v2, followed by the update of

350 K. G. Larsen et al.

s v1 v2 v3 d

(a) Network topology

s v1 v2 v3 d

(b) Initial (solid) and final (dashed) routings

Fig. 3. Update synthesis problem with only a general solution

the nodes v1, v2 and v3 and finally updating s again to route to v3 is a correct
update sequence.

2.3 Simple Update Sequence Reordering

In case of simple update sequences, we shall now argue that for routing policies
that (i) include the preservation of reachability between the source and a target,
and (ii) for which it holds that once a packet is delivered, no further routing is
defined from the target node, we can reorder certain updates in the sequence
without invalidating the correctness of the sequence. More specifically, we shall
show that if a node routing is to be changed from undefined to some concrete
edge, we can safely schedule such updates (in any order) to the very beginning of
the update sequence. Similarly, all nodes that change their current routing into
undefined can be scheduled (again in arbitrary order) at the end of the update
sequence.

Lemma 1. Let w be a solution to a simple update synthesis problem P =
(G, ρi, ρf , v0, ϕ) where ϕ = Reach(d) ∧ ϕ′ for any policy ϕ′ and where ρi(d)
and ρf (d) are undefined.

1. If w = w1 ◦ u ◦ w2 where u ∈ E is an update s.t. ρi(src(u)) is undefined then
u ◦ w1 ◦ w2 is a solution to P .

2. If w = w1 ◦ u ◦ w2 where u ∈ V updates the routing in u to undefined then
w1 ◦ w2 ◦ u is a solution to P .

s
v1

v2

d
e1

e2
e3

e4

Fig. 4. Counter example for Waypoint(v2, d);
initial/final routing is in solid/dashed lines

Lemma 1 can be used to iden-
tify all nodes that have an unde-
fined forwarding function in ρi

and schedule them to the begin-
ning of the update sequence.
Symmetrically, all updates that
change a node forwarding to an
undefined value (in the routing
ρf), can be placed at the end of
the update sequence. This may simplify the synthesis of the update sequence by
analysing only the nodes that have a defined forwarding function both in the
initial and final routing.

AllSynth: Transiently Correct Network Update Synthesis 351

Inputs OutputsAllSynth

Network
topology

Policy
formula ϕ and
initial node v0

Initial/final routing

BDD T (x, z,y) of
parameterized transitions

BDD B∗
ϕ(z) of all

routings satisfying ϕ

BDD U
(s)
ϕ (z, zz) of all

correct updates

Correct update sequences
S

(s)
ϕ (z0, . . . , zN)

Size of solution space

Fig. 5. AllSynth workflow

The requirement in Lemma 1 that the policy must enforce at least the reach-
ability of d is essential, as illustrated in Fig. 4 where e2◦e3◦e4 is a correct update
sequence preserving Waypoint(v2, d). This is because until the last update, the
destination d is not reachable and hence the waypointing policy trivially holds.
However, even though the routing of v1 is undefined in the initial routing, mov-
ing the update e4 to the beginning of the update sequence creates a transient
forwarding following the path e1e4 and violates Waypoint(v2, d).

3 The AllSynth Tool and the Synthesis Algorithm

The diagram in Fig. 5 illustrates the main components of AllSynth. The inputs
to AllSynth are the network topology G, a policy of interest ϕ, as well as the
initial routing ρi and final routing ρf from the node v0.

From the input network topology G, a BDD representation of the edges
in G is combined with the input policy ϕ and a source node v0 to produce a
BDD representing all routing configurations ρ where the unique path πρ(v0)
satisfies ϕ. This BDD is then in turn combined with the initial and final routing
configurations ρi and ρf , to construct a BDD representation of all correct update
sequences.

We shall now present our algorithmic solution to the update synthesis prob-
lem, based on a symbolic encoding of routing configurations using BDDs. This
encoding allows for an efficient fixed-point computation of those routing config-
urations that satisfy a given routing policy, and subsequently to find a correct
update sequence solving the synthesis problem.

Boolean decision diagrams [32] are data structures for the compact represen-
tation of a Boolean function. A BDD is a rooted directed acyclic graph (DAG),
with nonleaf nodes labeled by Boolean variables, and leaf nodes labeled with 0
(false) or 1 (true). Each node that is labelled by a variable has two outgoing
edges, a solid one representing the true assignment to the variable and a dotted

352 K. G. Larsen et al.

v0

v1

v2

v3

(a) Running example with initial (solid
line) and final (dashed line) routings

(b) T as ROBDD

(¬x1 ∧ ¬x2 ∧ z1 ∧ ¬y1 ∧ y2) ∨
(¬x1 ∧ ¬x2 ∧ ¬z1 ∧ y1 ∧ ¬y2) ∨

(¬x1 ∧ x2 ∧ z2 ∧ y1 ∧ y2) ∨
(¬x1 ∧ x2 ∧ ¬z2 ∧ y1 ∧ ¬y2) ∨
(x1 ∧ ¬x2 ∧ z3 ∧ y1 ∧ y2) ∨
(x1 ∧ ¬x2 ∧ ¬z3 ∧ ¬y1 ∧ y2)

(c) Expression T

Fig. 6. Running example and encoding of the transition function

one for the false assignment. By following the paths from the root to the leaf
labelled with 1, we obtain all satisfying Boolean assignments. BDDs were intro-
duced by Lee [32] and later Bryant [9] presented their reduced ordered version
(ROBDD), where the ordering between the Boolean variables are fixed along
each path from the root to a leaf, and isomorphic parts are combined. We show
how to exploit ROBDDs for solving the update synthesis problem.

First, let us recall how to encode subsets of a finite set S using Boolean
expressions—hence ROBDDs. The encoding is relative to a given enumeration
s0, s1, s2, . . . s|S|−1 of S and it is based on n = 	log(|S|)
 Boolean variables
x = x1, x2, . . . , xn. Now, any truth assignment μ to x may be seen as a binary
encoding of a natural number n(μ) ∈ N and hence an encoding of the n(μ)’th
element sn(μ) ∈ S. We shall use the short notation s(μ) for the element sn(μ)

as well as the notation x(s) to denote a Boolean expression over x encoding
the singleton-set {s}. Now any Boolean expression t(x) over x may be seen as
encoding the subset [[t(x)]] = { sn(μ) |μ satisfies t(x) } ⊆ S.

Example 1. Consider the network topology in Fig. 6a with the nodes V =
{v0, v1, v2, v3} enumerated by the given indices. We encode any subset of V by a
Boolean expression over two Boolean variables x1, x2—note that the encoding of
e.g. {v1} is x(v1) = ¬x1 ∧ x2 as the binary encoding of v1 is 01. Conversely, the
subset identified by the Boolean expression t ≡ ¬x1 ∨¬x2 is [[t]] = {v0, v1, v2} as
the binary encoding of v0, v1, v2 are 00, 01, 10, respectively.

BDD Encoding of Routing Configurations. Let G = (V,E, src, tgt) be a network
topology and let v ∈ V . We denote by Ev the set of edges having v as a source-
node, i.e. Ev = {e ∈ E | src(e) = v}. Now, a routing configuration ρ : V ⇀ E

AllSynth: Transiently Correct Network Update Synthesis 353

is isomorphic to indicating for each node v whether ρ(v) is defined and if so to
identify an element from Ev. For the Boolean encoding of (sets of) elements from
Ev we use, as described above, 	log(|Ev|)
 Boolean variables zv. To indicate
the definedness of ρ(v), we use an additional Boolean variable zd

v . To encode
the possible transitions between nodes v and v′ enabled by a given routing
configuration ρ, we use Boolean variables x for encoding the source node v and
equally many Boolean variables y for encoding the target node v′. The following
Boolean expression T encodes the possible transitions:

T (x, zv0 , . . . , zvk
, zd

v0
, . . . , zd

vk
,y) =

∨

v∈V

∨

e∈Ev

(
x(v) ∧ zv(e) ∧ zd

v ∧ y(tgt(e))
)

where V = {v0, . . . , vk}.

Example 2. Reconsidering the network topology from Fig. 6a, we shall use three
Boolean variables z1, z2, z3 for encoding routing configurations in terms of their
choice of successor-node from v0, v1 and v2

1. Using the encoding of nodes from
Example 1, the possible transitions between nodes are given by the Boolean
expression T in Fig. 6c. The resulting unique ROBDD in Fig. 6b with only 11
non-leaf nodes illustrates the compactness of the ROBDD data structure (the
missing edges lead to 0). The highlighted path encodes the transition (routing)
from v0 to v1 under the initial routing. Here the chosen ordering of the Boolean
variables is crucial. Alternative orderings, e.g. with the z variables being tested
first respectively last results in ROBDDs with 25 respectively 17 non-leaf nodes.

BDD Encoding of Routing Policies. Now let G = (V,E, src, tgt) be a network
topology and let ϕ be a routing policy expressed in the LTL logic of Defini-
tion 3. Using Boolean variables x for encoding nodes and Boolean variables z for
encoding routing configurations2, we shall construct an ROBDD Bϕ(x, z) such
that: (v, ρ) ∈ [[Bϕ(x, z)]] if and only if πρ(v) |= ϕ where πρ(v) is the unique path
starting in the node v following the the routing configuration ρ.

Definition 8. Let G = (V,E, src, tgt) be a network topology and ϕ a routing
policy. We define the ROBDD Bϕ(x, z) inductively on ϕ as follows:

Btrue(x, z) = 1
Bv(x, z) = x(v)

B¬ϕ(x, z) = ¬Bϕ(x, z)
Bϕ1∧ϕ1(x, z) = Bϕ1(x, z) ∧ Bϕ2(x, z)

BNoLoop(x, z) min= ∀y.(T (x, z,y) → BNoLoop(y, z))

BXϕ(x, z) = ∃y.
(
T (x, z,y) ∧ Bϕ(y, z)

)

Bϕ1Uϕ2(x, z) min= Bϕ2(x, z) ∨ (
Bϕ1(x, z) ∧ ∃y.

(
T (x, z,y) ∧ Bϕ1Uϕ2(y, z)

))

1 In this running example, we shall for simplicity assume that routing configurations
are total functions, e.g. that the variables zd

v are true.
2 Recall that z consists of variables zv1 , . . . , zvk and zd

v1 , . . . , zd
vk .

354 K. G. Larsen et al.

(a) B2
Reach(v3)

(b) B3
Reach(v3)

(c) B4
Reach(v3)

Fig. 7. Increasing approximants Bn
Reach(v3)

In the above definition we exploit that ROBDDs are closed under Boolean
operations as well as Boolean quantification. In the cases NoLoop and ϕ1 U ϕ2,
the changes of Boolean variables used in the parameter lists in the right-hand
sides are obtained by simple substitution of variables, an operation that may
efficiently be performed on ROBDDs. Finally, note that the definitions of BNoLoop

and Bϕ1 U ϕ2 are given as minimal fixed points. These fixed points, e.g. BNoLoop,
are obtained after a finite number of applications of the corresponding right-
hand sides on increasing approximations Bn

NoLoop, starting with B0
NoLoop = 0,

and terminating when Bn+1
NoLoop = Bn

NoLoop.

Lemma 2. We have (v, ρ) ∈ [[Bϕ(x, z)]] if and only if πρ(v) |= ϕ.

Example 3. Consider the network topology from Fig. 6a with the routing policy
Reach(v3). Given the LTL-definition of Reach(v3), the ROBDD BReach(v3) is given
by the limit of the following inductively defined sequence: Bn+1

Reach(v3)
(x, z) =

x(v3) ∨ ∃.y.
(
T (x, z,y) ∧ Bn

Reach(v3)
(y, z)

)
with B0

Reach(v3)
= 0. Figure 7 provides

some of the approximants with B4
Reach(v3)

found to be the least fixed point.

We shall denote by B∗
ϕ(z) the ROBDD ∃x.Bϕ(x, z) ∧ x(v0), where v0 ∈ V

is the source node. Rather than using BDDs for model-checking that individual
routing configurations satisfy a given policy ϕ one by one, B∗

ϕ(z) characterizes
exactly in one single ROBDD the full set of routing configurations satisfying ϕ.

Example 4. Recall the network topology from Fig. 6a and the Boolean encoding
of routing configurations and nodes from Example 2. Now consider the routing
policies W = Waypoint(v2, v3) and R = Reach(v3). The resulting ROBDDs for
B∗

R, B∗
W and B∗

W∧R are given in Fig. 8. It can be concluded that there are 6,
6 respectively 4 routing configurations satisfying the policies R, W respectively
R ∧ W . Moreover, both ρi and ρf satisfy all three policies.

AllSynth: Transiently Correct Network Update Synthesis 355

(a) R (b) W (c) W R

Fig. 8. Encoding of different routing policies

BDD Encoding of Update Sequences. Again let G = (V,E, src, tgt) be a net-
work topology and let ϕ be a routing policy, with ρi respectively ρf being initial
respectively final routing configuration. We shall show how to symbolically syn-
thesize correct (simple) update sequences using BDD encodings. The basis of
the synthesis is the ROBDD B∗

ϕ(z) encoding all routing configurations that are
correct with respect to ϕ using Boolean variables z = zv0 . . . zvk

, zd
v0

, . . . , zd
vk

. For
simple updates it suffices to use single Boolean variables zvj

, with zvj
encoding

ρi(vj) and ¬zvj
encoding ρf (vj), i.e. in case ρf (vj) �= ρi(vj). To encode a sim-

ple update between configurations ρ and ρ′ we shall use Boolean variables z for
encoding ρ and a corresponding (distinct) sequence of Boolean variables zz for
encoding ρ′. The following Boolean expression Us

ϕ encodes the set of possible
simple updates that preserve correctness with respect to ϕ.

Us
ϕ(z, zz) = B∗

ϕ(z) ∧ B∗
ϕ(zz) ∧ ∃i.

[
zvi

∧ ¬zzvi
∧

∧

j �=i

zvj
= zzvj

]

Note that in this simple update the routing configuration changes for exactly
one node vi from the setting in the initial configuration ρi, encoded as zvi

, to
the setting in final configuration ρf , encoded as ¬zzvi

. In the general case, the
update can change the setting of any node arbitrarily, as given by the following
Boolean expression Uϕ.

Uϕ(z, zz) = B∗
ϕ(z) ∧ B∗

ϕ(zz) ∧ ∃i.
[
zvi

�= zzvi
∧

∧

j �=i

zvj
= zzvj

]

Lemma 3. We have (ρ, ρ′) ∈ [[Uϕ(z, zz)]] (resp. [[Us
ϕ(z, zz)]]) iff ρ �= ρ′ and

there exists an update (resp. simple update) u such that ρu = ρ′, πρ(v0) |= ϕ and
πρ′(v0) |= ϕ, where v0 is the given source node.

To enable synthesis of correct (simple) update sequences, the following recur-
sively defined ROBDD is key.

Rs
ϕ(z, zz) min= z(ρf) ∨ ∃zzz.(Us

ϕ(z, zz) ∧ Rs
ϕ(zz, zzz)

)
(1)

356 K. G. Larsen et al.

(a) W (b) R (c) W R (d) UUS

Fig. 9. Encoding of all correct simple update-steps (a–c); unique update sequence
(UUS) for W ∧ R (d)

The expression encodes the set of simple updates that preserve correctness
with respect to ϕ while ensuring reachability of the final routing configuration.

Lemma 4. We have (ρ, ρ′) ∈ [[Rs
ϕ(z, zz)]] iff there exists a correct simple update

sequence w = u0u1 · · · uk with respect to ρ and ϕ such that ρ′ = ρu0 and ρw = ρf .

All correct, simple update sequences of length N may now be characterized
by the following Boolean expression, where zi are (distinct) Boolean variables
encoding the routing configuration after i updates:

Ss
ϕ(z0, . . . , zN) = z0(ρi) ∧ zN (ρf) ∧

N−1∧

i=0

Rs
ϕ(zi, zi+1) (2)

Theorem 1. We have (ρ0, ρ1, . . . , ρN) ∈ [[Ss
ϕ(z0, . . . , zN)]] iff there exists a sim-

ple correct update sequence w = u0u1 · · · uN−1 with respect to ϕ and ρ0 such that
ρk+1 = ρuk

k for all k with 0 ≤ k < N , ρ0 = ρi and ρN = ρf .

For the synthesis in the general case: simply replace Us
ϕ in (1) with Uϕ to

get a ROBDD Rϕ characterizing (general) update sequences leading to ρf . Now,
replace Rs

ϕ with Rϕ in (2) to get a characterization of all correct (general) update
sequences of length N .

Example 5. Consider again the network topology from Fig. 6a and the routing
policies W = Waypoint(v2, v3) and R = Reach(v3). The full sets of correct simple
update-steps with respect to W,R and W ∧R are given by the ROBDDs Rs

W , Rs
R

and Rs
W∧R given in Fig. 9(a–c). Instantiating Eq. (2) with these ROBDDs reveals

AllSynth: Transiently Correct Network Update Synthesis 357

that there are 3, 3 respectively 1 correct simple update sequences of length 3
with respect to the routing policies W,R respectively W ∧ R.

The unique simple update sequence for W ∧ R (ignoring the initial and final
routing configurations) is given by the ROBDD in Fig. 9(d)3. Here the values
suggested for the first three Boolean variables z11 , z

1
2 , z

1
3 indicate that the routing

configuration after the first update is given by the edges (v0, v2), (v1, v2), (v2, v3).
Similarly, the values of the last three Boolean variables z21 , z

2
2 , z

2
3 indicate the

edges (v0, v2), (v1, v3), (v2, v3) as the configuration after the second update. Note,
that in case there is no correct (simple) update sequence the resulting ROBDD
becomes empty (just consisting of the node false).

4 Implementation and Evaluation

Our tool AllSynth is implemented in Python and relies on a Cython wrapper [1]
of the CUDD [44] package for manipulation of ROBDD. From a given network
topology with the initial and final routing, the tool produces either a simple
or general update sequence satisfying a given policy, as well as the information
about the number of possible solutions. As all such correct solutions are sym-
bolically represented in a compact way as an ROBDD, it is possible to generate
alternative solutions without any additional computational effort.

We evaluate AllSynth against two state-of-the-art update synthesis tools,
NetSynth [38] and FLIP [46]. NetSynth can compute only a simple update
sequence or inform the user that there is no solution; the synthesis of gen-
eral update sequences is not supported. FLIP can synthesise sequences of steps
(groups of switches or routers) in which order the network can be updated,
however, if such a sequence does not exist, the tool may introduce additional
forwarding rules and use tagging of packets. As NetSynth and FLIP do not
support general update sequences, compare the running times only for simple
updates.

All experiments are executed on Ubuntu 14.04 cluster with 2.3 GHz AMD
Opteron 6376 processors with 2 h timeout and 14 GB memory limit. A repro-
ducibility package is available in [31].

We consider a scalable synthetic topology and the standard benchmark of
261 real-world network topologies from the Topology Zoo dataset [29]. The class
of synthetic topologies, referred to as diamond topologies, are overtaken from the
NetSynth evaluation benchmark [38] and are formed by disjoint initial and final
routing paths that only share the initial and final node. The size of the problem
is defined to be the sum of the lengths of the two paths—we include instances of
sizes up to 2000. The Topology Zoo instances are five times sequentially concate-
nated in order to obtain larger topologies where the size of the update problems
ranges from 20 to 679. We display the 50 most difficult instances of the problem.

We consider three classes of update policies: Reach(d), MultiWaypoint(W,d)
and Service(ω, d). For MultiWaypoint(W,d), we let every 5th node on both the

3 Note that zij in the figure is to be read as the variable zj
i .

358 K. G. Larsen et al.

(a) Zoo reachability and service chaining (b) Zoo multiple waypoints

(c) Diamond reachability (d) Diamond multiple waypoints

Fig. 10. Experimental results

initial and final path be included in W . For Service(ω, d), the sequence ω is gen-
erated by including every 5th node that is traversed by both the initial and final
path. Because the diamond update problem consists of two disjoint paths, the
service chaining policy is not considered here. The policy language of NetSynth is
identical to our LTL-based specifications and hence it is able to directly express
all these properties. On the other hand, the policy input to FLIP enumerates all
admissible subpaths that are considered, in logical disjunction. The encoding of
the service chaining policy then entails an exhaustive enumeration of all paths
that satisfy the service chaining policy and we therefore do not include FLIP in
our service chaining experiments.

Results. The experiments are summarized in a number of so-called cactus
plots [7] in Fig. 10, where for each method all instances of the problem are
independently sorted from the fastest to the slowest one and plotted on the x-
axis, and the y-axis (note the logarithmic scale) shows the increasing running
time. If some curve does not reach to the right end of the plot, this means that
the corresponding tool is not able to solve the remaining instances within the
given timeout and memory limit. While cactus plots do not provide instance-to-
instance runtime comparison, they provide an overall performance evaluation of
the different tools.

For the experiments on the collection of real networks from the Topology Zoo
presented in Figs. 10a and 10b, we notice that none of the tools has difficulty

AllSynth: Transiently Correct Network Update Synthesis 359

solving the synthesis of the plain reachability policy and it takes less than 10 s
for all instances—here our approach has a slight margin. For waypointing, while
FLIP is performing well on small instances, it shows a noticeable penalty once it
reaches the most difficult problems where its running time quickly deteriorates
and it is as the only tool not able to solve some of the largest instances. We
maintain about one order of magnitude advantage over NetSynth (NS), which
is the case also for service chaining.

Results for diamond topologies are given in Figs. 10c and 10d. We observe
that for reachability our computation of all solutions is almost one order of mag-
nitude faster than FLIP and several orders of magnitude faster than NetSynth
(both tools terminate as soon as they find the first correct update sequence).
For waypointing, we still significantly outperform NetSynth and we are almost
comparable with FLIP which shows better performance at the largest instances.

In conclusion, our experiments demonstrate that AllSynth, based on the sym-
bolic BDD technology, not only significantly outperforms state-of-the-art tools
on all non-trivial real-world networks, but also provides higher generality. Indeed,
AllSynth computes all solutions, compared to only one solution returned by Net-
Synth or a more general sequence of update steps generated by FLIP. This aspect
is important for the practical usage by network operators as it allows them to
iteratively choose the most suitable update sequence.

5 Conclusion

We presented an efficient approach for synthesizing correct update sequences for
software-defined networks. In contrast to existing tools, our approach is fully
symbolic and relies on BDD technology. As a result, we are able to represent all
solutions to the update synthesis problem in a succinct binary tree, preserving
generic routing policies (e.g., service chaining) that can be described in the LTL
logic. Our prototype implementation of AllSynth outperforms the state-of-the-
art tools NetSynth and FLIP in many scenarios (e.g., on the real-world Internet
topologies), while at the same time extending the generality.

Our experiments focused on the generation of simple update sequences (at
most one update per flow per switch), similar to the methodology used in Net-
Synth and FLIP. AllSynth however also supports a novel generalization where a
switch can be updated several times. This is particularly useful for the instances
of the update synthesis problem that do not have any simple solution. In this
case, NetSynth does not provide any alternative (and in fact does not terminate
even on relatively small negative instances); FLIP may degrade to a two-phase
commit strategy that is less preferable as it requires the duplication of forward-
ing rules as well as additional packet header space. AllSynth instead tries to
suggest a general update sequence that does not require packet tagging.

Acknowledgements. The research is partly funded by the Vienna Science and Tech-
nology Fund (WWTF), project WHATIF (ICT19-045), the ERC Advanced Grant
LASSO, the Villum Investigator Grant S4OS, DFF project QASNET as well as DIREC:
Digital Research Centre Denmark.

360 K. G. Larsen et al.

References

1. dd python package (2021). https://github.com/tulip-control/dd
2. Akhoondian Amiri, S., Dudycz, S., Schmid, S., Wiederrecht, S.: Congestion-free

rerouting of flows on DAGs. In: 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), vol. 107, pp. 143:1–143:13. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018)

3. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. ACM SIG-
PLAN Notices 49(1), 113–126 (2014)

4. Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic traces
and implications. In: Proceedings of the ACM SIGMETRICS (2020)

5. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Don’t mind the gap:
bridging network-wide objectives and device-level configurations. In: Proceedings
of the 2016 ACM SIGCOMM Conference, pp. 328–341 (2016)

6. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 267–280 (2010)

7. Brain, M.N., Davenport, J.H., Griggio, A.: Benchmarking solvers, SAT-style. In:
Proceedings of the 2nd International Workshop on Satisfiability Checking and Sym-
bolic Computation co-located with the 42nd International Symposium on Symbolic
and Algebraic Computation (ISSAC 2017). CEUR, vol. 1974, pp. 1–15. CEUR-
WS.org (2017)

8. Brandt, S., Förster, K.T., Wattenhofer, R.: On consistent migration of flows in
SDNs. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications, pp. 1–9. IEEE (2016)

9. Bryant: Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput. C3-5(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

10. Canini, M., Kuznetsov, P., Levin, D., Schmid, S.: A distributed and robust SDN
control plane for transactional network updates. In: 2015 IEEE Conference on
Computer Communications (INFOCOM), pp. 190–198. IEEE (2015)

11. Černý, P., Foster, N., Jagnik, N., McClurg, J.: Optimal consistent network updates
in polynomial time. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol.
9888, pp. 114–128. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53426-7 9

12. Chirgwin, R.: Google routing blunder sent Japan’s internet dark on fri-
day (2017). https://www.theregister.co.uk/2017/08/27/google routing blunder
sent japans internet dark/

13. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000). https://
doi.org/10.1007/s100090050046

14. Dudycz, S., Ludwig, A., Schmid, S.: Can’t touch this: consistent network updates
for multiple policies. In: 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 133–143. IEEE (2016)

15. Duluth News Tribune: Human error to blame in minnesota 911 outage (2018).
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-
in-Minn-911-outage/

16. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Netcomplete: practical
network-wide configuration synthesis with autocompletion. In: 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 2018),
pp. 579–594 (2018)

https://github.com/tulip-control/dd
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-662-53426-7_9
https://doi.org/10.1007/978-3-662-53426-7_9
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/

AllSynth: Transiently Correct Network Update Synthesis 361

17. Feamster, N., Rexford, J.: Why (and how) networks should run themselves. arXiv
report (2017)

18. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.R.: Model check-
ing data flows in concurrent network updates (full version). arXiv preprint
arXiv:1907.11061 (2019)

19. Foerster, K., Schmid, S., Vissicchio, S.: Survey of consistent software-defined net-
work updates. IEEE Commun. Surv. Tutor. 21(2), 1435–1461 (2019)

20. Foerster, K.T.: On the consistent migration of unsplittable flows: upper and lower
complexity bounds. In: 2017 IEEE 16th International Symposium on Network
Computing and Applications (NCA), pp. 1–4. IEEE (2017)

21. Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached:(a) cyclicity, reachability, loop free updates in SDNs. Theoret. Comput.
Sci. 709, 48–63 (2018)

22. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pp. 854–860. AAAI Press (2013)

23. Glavind, M., Christensen, N., Srba, J., Schmid, S.: Latte: improving the latency of
transiently consistent network update schedules. In: Proceedings of 38th Interna-
tional Symposium on Computer Performance, Modeling, Measurements and Eval-
uation (PERFORMANCE) (2020)

24. Heller, B., et al.: Leveraging SDN layering to systematically troubleshoot networks.
In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking, pp. 37–42 (2013)

25. Jin, X., et al.: Dynamic scheduling of network updates. In: ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 539–550. ACM (2014)

26. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: Presented as part of
the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2013), pp. 99–111 (2013)

27. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 2012), pp. 113–126 (2012)

28. Kellerer, W., Kalmbach, P., Blenk, A., Basta, A., Reisslein, M., Schmid, S.: Adapt-
able and data-driven softwarized networks: review, opportunities, and challenges.
In: Proceedings of the IEEE (PIEEE) (2019)

29. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.
org/10.1109/JSAC.2011.111002

30. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2014)

31. Larsen, K., Mariegaard, A., Schmid, S., Srba, J.: Reproducibility package for: the
hazard value: a quantitative network connectivy measure accounting for failures,
March 2022. https://doi.org/10.5281/zenodo.6534948

32. Lee, C.Y.: Representation of switching circuits by binary-decision programs. The
Bell Syst. Tech. J. 38(4), 985–999 (1959). https://doi.org/10.1002/j.1538-7305.
1959.tb01585.x

33. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.: zUpdate:
updating data center networks with zero loss. In: ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 411–422. ACM (2013)

http://arxiv.org/abs/1907.11061
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.5281/zenodo.6534948
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x

362 K. G. Larsen et al.

34. Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates.
ACM SIGMETRICS Perform. Eval. Rev. 44(1), 273–284 (2016)

35. Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free network updates:
it’s good to relax! In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, pp. 13–22. ACM (2015)

36. Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates for bad
packets: waypoint enforcement beyond destination-based routing policies. In: Pro-
ceedings of 13th ACM Workshop on Hot Topics in Networks (HotNets), p. 15.
ACM (2014)

37. Mahajan, R., Wattenhofer, R.: On consistent updates in software defined networks.
In: Proceedings of 12th ACM Workshop on Hot Topics in Networks (HotNets), p.
20. ACM (2013)

38. McClurg, J., Hojjat, H., Cerný, P., Foster, N.: Efficient synthesis of network
updates. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp.
196–207 (2015). https://doi.org/10.1145/2737924.2737980

39. McClurg, J., Hojjat, H., Černỳ, P., Foster, N.: Efficient synthesis of network
updates. In: ACM SIGPLAN Notices, vol. 50, no. 6, pp. 196–207. ACM (2015)

40. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software
defined networks. In: 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2013), pp. 1–13 (2013)

41. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

42. Prabhu, S., Chou, K.Y., Kheradmand, A., Godfrey, B., Caesar, M.: Plankton: scal-
able network configuration verification through model checking. In: 17th USENIX
Symposium on Networked Systems Design and Implementation ({NSDI} 2020),
pp. 953–967 (2020)

43. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. ACM SIGCOMM Comput. Commun. Rev. 42(4), 323–334 (2012)

44. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0. University of
Colorado at Boulder (2015). http://vlsi.colorado.edu/∼fabio/CUDD/

45. Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., Vechev, M.: Probabilistic verifi-
cation of network configurations. In: Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, pp. 750–764
(2020)

46. Vissicchio, S., Cittadini, L.: FLIP the (flow) table: fast lightweight policy-
preserving SDN updates. In: 35th Annual IEEE International Conference on Com-
puter Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April
2016, pp. 1–9 (2016). https://doi.org/10.1109/INFOCOM.2016.7524419

47. Zerwas, J., et al.: AHAB: data-driven virtual cluster hunting. In: Proceedings of
IFIP Networking (2018)

48. Zhang, Q., Liu, V., Zeng, H., Krishnamurthy, A.: High-resolution measurement
of data center microbursts. In: Proceedings of the 2017 Internet Measurement
Conference, pp. 78–85 (2017)

49. Zhou, W., Jin, D., Croft, J., Caesar, M., Godfrey, P.B.: Enforcing customizable con-
sistency properties in software-defined networks. In: Proceedings of 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2015), pp.
73–85 (2015)

https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://vlsi.colorado.edu/~fabio/CUDD/
https://doi.org/10.1109/INFOCOM.2016.7524419

End-to-End Heat-Pump Control Using
Continuous Time Stochastic Modelling

and Uppaal Stratego

Imran Riaz Hasrat, Peter Gjøl Jensen(B), Kim Guldstrand Larsen,
and Jǐŕı Srba

Department of Computer Science, Aalborg University, Aalborg, Denmark
{imranh,pgj,kgl,srba}@cs.aau.dk

Abstract. Heatpump-based floor-heating systems for domestic heating
offer flexibility in energy-consumption patterns, which can be utilized for
reducing heating costs—in particular when considering hour-based elec-
tricity prices. Such flexibility is hard to exploit via classical Model Predic-
tive Control (MPC), and in addition, MPC requires a priori calibration
(i.e. model identification) which is often costly and becomes outdated as
the dynamics and use of a building change. We solve these shortcomings
by combining recent advancements in stochastic model identification and
automatic (near-)optimal controller synthesis. Our method suggests an
adaptive model-identification using the tool CTSM-R, and an efficient
control synthesis based on Q-learning for Euclidean Markov Decision
Processes via Uppaal Stratego. On a virtual Danish family-house from
the OpSys project, we demonstrate up to 33% reduction in heating cost
while retaining comparable comfort to a standard bang-bang controller.
Furthermore, we show the flexibility of our method by computing the
Pareto-frontier that visualizes the cost/comfort tradeoff.

Keywords: Model identification · Strategy syntheses · Heat-pump
control · Floor heating

1 Introduction

Space heating is the primary source of energy consumption in residential and
commercial buildings, consuming more than 40% of the energy delivered to such
facilities [8]. Intelligent control of heating systems promises to reduce this energy
use, thereby countering global warming effects and CO2 emissions.

Model Predictive Controllers (MPCs) have been demonstrated as an effi-
cient method for control of domestic heating systems with the potential for
both energy and cost reductions [1,18,26]. In the classical setting of MPC, an
approximate system model under control is constructed before application and
paired with a control objective. In the setting of a domestic heating system,
such a model describes heat dynamics of the house and external effects that
may impact the temperature of the house, for instance, residential behaviour,
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 363–380, 2022.
https://doi.org/10.1007/978-3-031-10363-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_24

364 I. R. Hasrat et al.

outdoor temperature or solar radiation contributing to the temperature of the
rooms. This model also defines the possible actions of the controller along with
the impact of these control-actions on the behaviour of the system. When the
given model is paired with a control objective (e.g. minimize cost and maximize
comfort), (model, objective)-pairing induces an optimization-problem. Depend-
ing on the formalism used to describe the model and control objective, different
solvers can be used to obtain the next optimal control action to use. As a result,
one can apply the MPC-controller in a tight and periodic loop of “observe, solve,
act” to control the system.

This paper targets a floor-heating heat-pump control problem for a standard
family house. In the case of domestic heating systems, three significant challenges
appear in the classical MPC application:

– the heating dynamics of a house is not known a priori,
– the behaviour and dynamics of a house change over the lifetime of the house,
– the design, tuning and deployment of MPC for learning near-optimal control

strategies to minimize a desired objective function is not straightforward.

To address these issues, we propose a framework for model-identification for
use with the tool UPPAAL Stratego extending on the concept presented by
Larsen et al. [18]. In particular, we introduce the model estimation into the
loop of the regular MPC-control. We employ the tool CTSM-R (continues time
stochastic modelling in R) [17] to identify the house model by utilizing the
historical data of the house. We further propose an online strategy synthesis
approach where the controller periodically predicts the control decisions with
the current room temperatures and weather forecast knowledge. The controller
explores partial state space and learns near-optimal strategies within the given
price budget based on the selected learning method. Under the learned strategies,
the controller optimizes and computes every decision ahead of time to make it
ready to be applied for the next time interval. The main contributions of the
method are as follows.

1. Developing data-driven thermal dynamics and constant coefficient estima-
tions using CTSM-R.

2. Modelling a case-house in Stratego using the estimated heat transfer coef-
ficients and thermal dynamics.

3. Employing Stratego MPC to learn near-optimal control strategies for oper-
ating the heat-pump.

4. Analysing the efficiency of the Stratego controller to handle the trade-off
between heating cost and user comfort.

Related Work: Several domestic heating systems have been discussed in the
literature. Vogler-Finck et al. [26] study the house dynamics where the control
objective is given in the restricted form of linear equations. They apply grey-box
modelling facility from MATLAB System Identification toolbox [20] to identify a
model for predictive control. They examine three family houses of different ages
and the results witness reduced carbon footprint of heating by MPC optimization

End-to-End Heat-Pump Control Using Uppaal Stratego 365

based on energy and CO2. However, they use a simple deterministic model for
MPC whereas we apply a stochastic model for MPC with an online strategy
synthesis approach. An alternative approach is adopted by Larsen et al. [18]
who utilize the tool Stratego [6,7] to obtain near-optimal control-optimization
for switch-controlled hybrid stochastic systems. The authors suggest an online
and compositional synthesis approach for a family-house floor heating system,
focusing purely on maximizing comfort and disregarding energy consumption.
In our work, we instead optimize for multiple objectives (comfort and cost) and
introduce a model identification approach into the loop of an MPC control.

For large and complex systems, model identification becomes an important
aspect of MPC control to identify a relatively simple and reduced-order model to
make it practically controllable in real-time. However, Pŕıvara et al. [22] describe
that model identification is one of the main practical obstacles for large scale
use of MPC. The grey-box modelling is one of the commonly used approaches
that require a small data-set for model identification. Ferracuti et al. [9] and
Fonti et al. [10] utilise low-order grey-box models to detect short-term (15 min,
1 h and 3 h horizons) thermal behaviour of a real building while Reynders et al.
[23] used grey-box approach to identify reduced-order energy building models.
However, these works do not offer a controller synthesis for the identified models.
We create a specialised model for a fully automatic heat-pump case where we
first identify the model and then use it for strategy synthesis and evaluation.

Vinther et al. [25] propose black-box approach to estimate MPC models from
multiple Artificial Neural Network (ANN) techniques with a Genetic Algorithm
(GA) to predict the future set-points (for room temperatures) in an existing
floor heating system. Furthermore, Nassif et al. [21] also use ANN with GA for
optimisation of a HVAC system. Harasty et al. [11] apply a differential evolution
(DE) algorithm with ANN for MPC control and optimisation of room temper-
ature for the conservation of cultural heritage. These approaches are based on
offline learning, but we offer an online learning approach where the control deci-
sions are predicted periodically for the near future by considering the real-time,
making them applicable in practice even for long-lasting horizons.

2 Usecase and Method

We demonstrate our approach on a 150m2 experimental family house sketched in
Fig. 1. The house consists of four rooms of different sizes and material properties:
Room 1 is the designated living room with a build-in kitchen, Room 2 and
Room 4 are bedrooms, and Room 3 serves as the bathroom with a light concrete
floor as opposed to the light wooden floors of the other rooms. The system
uses hot water as a means of heat distribution. The house in question has a
high-fidelity Dymola model, which has been constructed and compared to a
physical model through the OpSys project [15]. As it is standard for existing
houses, the heating system has two layers of control: room thermostats (with a
fixed mechanical bang/bang controller), and a heat-pump (for which we derive a
controller). The model reflects a realistic scenario where an existing building is

366 I. R. Hasrat et al.

Fig. 1. An Overview of the four-rooms family house equipped with floor-heating.

retrofitted with an intelligent heat-pump. Notice here that each room thermostat
acts independently of the heat-pump and the other thermostats; it is simply
concerned with opening the flow of hot water when the room temperature drops
below a certain set point (fixed to 22◦ in our experiments). This implies that the
only control-point of concern is the intensity of the heat-pump.

The system is designed as a closed-loop system with a fixed distribution-
key. This means that the ingoing massflow of water (Mf) must be distributed
to the rooms via the manifold. Conventionally the manifold is calibrated s.t.
a fixed proportion of water is designated to each room. This distribution-key
we denote Mf

Rx for a room x. The individual room thermostats regulate the
binary valves vx. This implies that the massflow is re-distributed (proportionally)
to the remaining open valves if certain valves are shut. Furthermore, we denote
by T forward and T return the forward and return water temperature.

The main purpose of the heat-pump is to balance the difference between the
room temperatures T̃ x

r and a given set point Tg with the cost of heating cost(τ) =
priceτ ·wτ , which is a time-dependent function of the energy consumption of the
heat-pump wτ (determined directly by the controller) and the market electricity
price (priceτ) which varies on an hourly basis and is known 24 h in advance.

Naturally, a consumer wishes to weight comfort against cost, and we can
thus state the optimization criteria and introduce the 0 ≤ Wcomf ≤ 1 weighting
factor that allows for such tuning. This allows us to derive the following (Wcomf -
parameterized) fitness function for our controllers for a period τ0 to τn given that
the heat-pump settings, energy prices and room temperatures (denoted T̃ i

r(τ))
are known for the duration for k rooms as:

F (τ0, τn) =
∫ τn

τ0

⎛
⎝((1 − Wcomf) · cost(x)) + Wcomf ·

√√√√ k∑
i

(Tg − T̃ i
r(x))2

⎞
⎠ dx

(1)

Notice that this function penalizes more significant deviations of temperatures
in a squared fashion while the cost increase has a linear impact on fitness.

2.1 Methodological Overview

While a high-fidelity model for Dymola is provided, this model is infeasible
for practical experiments both due to its high computational effort caused by

End-to-End Heat-Pump Control Using Uppaal Stratego 367

Fig. 2. Estimation and control process using observed data

the high fidelity and due to licensing issues making massive parallel experiments
unfeasible. The overview of our suggested approach can be seen in Fig. 2. We
initially derive a low-fidelity model of the thermal dynamics of the building
via a data-driven grey-box model estimation using the CTSM-R software [16].
The CTSM-R library allows finding best-fit parameters for a stochastic model
based on samples of a (virtual) house. The specific grey-box formulation is given
in Sect. 3 along with an evaluation of its performance. Notice that the model-
identification problem is constructed s.t. the estimation can be computed in
a decomposed manner, i.e. a model is computed individually for each room,
and the set of models is later recomposed. We do so to avoid an explosion in
computational effort from a large set of variables to estimate. While this grey-
box model yields us the internal heat coefficients (how the energy dissipates
between rooms or a heater), it does not capture the heat transfer from the hot
water flowing through the pipes. Therefore, we derive a model capturing the
relationship between internal temperature changes and the drop in the heat-
carrying water, yielding us the return water temperature (T return).

Given these two thermal models, we can instantiate a Euclidean Markov
Decision Process (EMDP) [13] from which Stratego MDP model can learn
near-optimal control strategies. This model simulates both the behaviour of the
house but also contains models of the expected weather and the future energy
price prediction. We use this model for both evaluation and predictive control in
our experimental setup, including an experiment with varying degrees of noise
in the model used for predictive control. For instance, we replay a historical
weather scenario during the evaluation while the predictive controller only has
access to an approximate weather forecast.

3 Thermal Model Identification

The CTSM-R software[17] allows for continuous-time grey-box model identifi-
cation. The general method of CTSM-R is based around maximum likelihood
estimation and a gradient-decent approach for convergence. It identifies Continu-
ous Time Stochastic Model and estimates the embedded parameters. CTSM-R
has been successfully applied for the identification and estimation of physical
system models, e.g., heat thermodynamics of buildings and walls, thermostats
and radiators, and more [5,24,27].

368 I. R. Hasrat et al.

Data Description

T̃ i
r room i air temp.[C]

M i room i water mass flow [kg/s]

Tf water temp. exiting heat-pump [C]

Ṫa outside temp. [C]

T i
return water temp. exiting room i [C]

Ṡi solar heat to room i [Watt]

(a) Measured data

Constant Description
αi
h floor to room air

αi
e envelope to room

αi
s solar radiation to room

αi
w pipes to floor

αi
a envelope to outdoors

αi
n room i to room n

βi
h floor heat capacity

βe
h envelope heat capacity

(b) Heat exchange coefficients

dT̃ i
r

dt
=αi

h(T̃ i
h − T̃ i

r) + αi
e(T̃

i
e − T̃ i

r) + αi
s · Ṡi (2)

dT̃ i
h

dt
=

αi
h

βi
h

(T̃ i
r − T̃ i

h) + αi
w · M i(Tf − T̃ i

h)3()

dT̃ i
e

dt
=

αi
e

βi
e

(T̃ i
r − T̃ i

e) + αi
a(Ṫa − T̃ i

e) +
N∑

n=1
n�=i

αi
n(T̂n

r − T̃ i
e) (4)

(c) Proposed three state energy model

Fig. 3. The thermodynamics system with the input data and the heat transfer coeffi-
cients where i ∈ {1, 2, 3, 4} and, (α), (β) are “resistance” and “capacity”

We model the thermal dynamics of the house as presented in Eqs. (2)–(4)
from Fig. 3. For readability, we annotate the system in the following way: pre-
dicted state-variables by a tilde, e.g. T̃ i

r , inputs directly affected by the two levels
of controls (i.e. the heat-pump or the room thermostat) with an overline, e.g. M i,
impact of nature with a dot, e.g. Ṫa, and constants (to be estimated) are left
without decoration.

The thermal dynamics model follows a classical three-state framework con-
sisting of room temperature (T̃ i

r), heater temperature (T̃ i
h) and envelope tem-

perature (T̃ i
e). This approach is similar to what was presented in [16]; however,

we here consider the rooms as individual model identification problems to over-
come instability in the model identification when the number of coefficients to
be estimated grows. Here the room temperature (T̃ i

r) is directly affected by the
heater (relative to the coefficient αi

h), the envelope (relative to the coefficient
αi

e) and the direct solar radiation of the room (Ṡi relative to the coefficient αi
s).

The room temperature directly impacts the heater temperature (T̃ i
h), but also

receives energy from the in-flowing hot water which is proportional to the flow-
rate M i and the relative difference to the forward temperature of the water (Tf).
The envelope (T̃ i

h) models the energy transfer through the walls surrounding the
room. The envelope thus exchanges energy with the room itself (T̃ i

r), the outside
world Ṫa (proportional to the coefficient αi

a) and with the other rooms of the
house (the last sum term of Eq. (4)).

End-to-End Heat-Pump Control Using Uppaal Stratego 369

0 2000 4000 6000
Time (minutes)

16

18

20

22
T

em
pe

ra
tu

re
(°

C
)

measured
estimated

(a) Room 4

0 2000 4000 6000
Time(minutes)

-2

0

2

4

D
ev

ia
tio

n(
°C

)

room1
room2

room3
room4

(b) Deviations for each room

Fig. 4. Predicted and measured indoor temperatures

A legend of the variables used can be seen in Fig. 3a for data-variables and
Fig. 3b for the transfer coefficients. Given a time-series of historical data of the
variables presented in Fig. 3a (excluding T̃ i

h and T̃ i
e), the CTSM-R software can

estimate the heat transfer coefficients presented in Fig. 3b. The model is esti-
mated s.t. the suggested coefficients allow us to predict T̃ i

r with a high accuracy
given known values for the massflow and temperature of the feed-in water and
the environmental influences such as sun and outdoor temperature.

Decomposed Grey-Box Modelling. Notice here that the presented model only
considers a single room. This implies that the identification can be done on a
room-to-room basis without the explosion in the coefficients to be estimated. In
general, this allows us for faster model identification. This implies repeating the
same model-identification scheme four times but with different indexing. As we
shall see later, four such identified models can be recomposed to form a complete
model with high predictive power.

Evaluation of the Estimations. We shall now assess the quality of our proposed
model-identification. The model is identified on a time-series consisting of data
generated by the high-fidelity Dymola model using historical weather input
from February 05, 2009, from Aalborg, Denmark and five days forward at a
sample rate of 60 s. We note that the model estimation for the values is com-
pleted in less than 7 min for each room. Remark here that the data used for the
estimation contains some effects not captured by Eqs. (2)–(4); notably occupants
and cooking activities, contributing to significant noise in the system.

To estimate the quality of the model, we compute a 6000 min time-series in
Dymola and compare the predicted room temperatures of each of the identified
room-models to the reference computed by Dymola. In Fig. 4a we see a head-
to-head comparison for Room 4 where we can observe that the identified model
demonstrates good predictive power. In particular, we note that no divergent
behaviour is observed. The deviation of each room from measured data can be
seen in Fig. 4b. Excluding Room 1, the largest average deviation observed for
all rooms is less than 1 C◦, and in general, kept below 0.5 C◦ of difference.

370 I. R. Hasrat et al.

However, in Room 1 in the following intervals 1000–1400, 2400–2900, 3800–
4300, 4700–5400 min, significant deviation occurs, which is traced back to the
unaccounted contribution of heat from cooking activities which are expected
to be unobservable in a real application—and not captured during the model
identification.

Estimating Return-Water Temperatures. The model created so far is only con-
cerned with the internal transfer of energy in the house; however, in Fig. 1 we
can see that the return-water of the rooms is given as input to the heat-pump.
We thus need to estimate a second model for predicting the return-water tem-
perature. We here again adopt a data-driven approach and derive a model of this
temperature-drop directly from data. We here assume a simple linear model; the
increase in temperature of a room is assumed to be primarily due to energy dis-
sipation from the heater. While this assumption is true in a closed system (due
to the principle of conservation of energy), we here know that the assumption is
incorrect: external influences occur, such as loss and gain of energy from neigh-
boring rooms. This assumption allows us to establish the relationship described
in Eqs. (5)–(6), and using historical data for T forward , T̃ i

h and T̃ i
r we can estimate

the coefficients α, β and intercept γ. Again, these coefficients allow us to later
predict the value of T returni for use in our full predictive model. Notice that prior
to model-identification, we filter out data points where the water is not flowing
(i.e. the local thermostat has shut off the supply). It is observed that while the
return temperatures are all above 32 C◦, the absolute mean error in estimating
them is for all the rooms between 0.74 C◦ and 0.95 C◦.

Energy i
loss = T forward − T̃ i

h (5)

Energy i
gain = T̃ i

h − T̃ i
r (6)

T forward − T returni ≈ α · Energyi
loss + β · Energyi

gain + γ (7)

4 Modelling in Uppaal Stratego

We can create a complete predictive model given the two identified thermal
models. For doing so, we use the Uppaal tool suit [2–4,19] which has been
successfully applied in many industrial projects for verification, performance
analysis, and strategy synthesis. Uppaal Stratego [7] is a branch of the tool
that provides machine learning-based techniques for strategy synthesis and cost
optimization of different controllers from Priced Timed MDPs. It has a rich mod-
elling formalism for stochastic and hybrid games and control synthesis exploit-
ing efficient reinforcement learning facilities. In Uppaal systems are modelled
as networks of finite-state automata processes. The processes communicate with
each other through channels or shared variables, and real-valued clocks facility
is available in the tool to capture critical timing aspects of a system. In addi-
tion, Stratego provides C-library support [14] which offers a convenient way
to construct complex interactions with other libraries and historical data, for
instance, Stratego itself.

End-to-End Heat-Pump Control Using Uppaal Stratego 371

Fig. 5. Overall system composition

The overall composition of the system as a model in Stratego can be seen in
Fig. 5. We design sub-parts of the system as separate templates (parameterizable
automata). The dashed-line areas in Fig. 5 represent that the model has four
templates: Room, HeatPumpController, DataReader and ObjectiveFunction. In
the Room template, we express the continuous variables T̃ i

r , T̃ i
h and T̃ i

e (developed
in Eqs. 2–4) as real-time clocks which evolve with time, but with rate-expressions
matching the identified models. The DataReader template reads the weather and
day-ahead electricity price information from the data file into the model. The
ObjectiveFunction template implements the fitness/optimization function (see
Eq. 1). The HeatPumpController template implements the control mechanism of
the controller where choices for using different energy levels for heat-pump are
made.

Stratego handles this heating problem as a stochastic hybrid game. In this
model, solid edges indicate controllable actions, and dashed lines indicate uncon-
trollable (controlled by the environment) actions. Circles are denoted locations,
and the double-circle indicate the initial location of automata and arrows are
called edges. An (instantiated) set of templates constitute a Network of (Hybrid
Stochastic) Timed Game Automata (which semantically gives us an EMDP)
where a state is given by a location vector (one for each template instance) and
an assignment of concrete values to any variable. The system may then evolve
by respecting guards and invariants – in particular, those that restrict the

372 I. R. Hasrat et al.

continuous development of clocks wrt our house dynamics. The initial location
is committed (marked by a C in the locations) forcing the model to initially call
the init() function, initializing the weather, electricity price and solar radia-
tions values. At the following location, the controller may take any of the two
edges depending on the amount of energy it decides to operate the heat-pump
in an interval; in the lower transition, the heat-pump is shut off while in the
upper uses the select statement to compactly implement 10 different intensity
levels of the controller (encoded in the type intensity_t). I.e. the controller
assigns the temporary variable i a discrete value from intensity (range between
0 and 10) to reflect different intensity level choices to operate the heat-pump.
The function roomControl() implements the bang/bang controllers of the room
thermostats, which decides whether to periodically open or close the valves lead-
ing to each room, this directly gives a way to compute the distribution of the
ongoing flow by the setMassFlow() function. The variable consumed_power con-
tains the amount of electricity selected by the controller for each intermediate
interval during strategy synthesis while heat_produced is the produced heat for
every interval. The function calculate_cop() calculates the Coefficient of Per-
formance (COP) value used to measure the produced heat. Notice that the COP
value, for a given return-water temperature and outdoor temperature, provides a
gearing of input to output energy; i.e. at a COP value of 2, a single kWh of power
yields 2kWh of energy. Such gearing is normally found in the technical speci-
fications of a heat-pump. This gearing, along with the pump intensity-setting,
massflow and the return-water temperature, allows for the computation of the
forward temperature and using the equations for return-water temperature. The
return-water temperature is computed based on the previous time-step, and the
relative changes in the indoor temperatures allow us to predict this value using
the developed equations from Sect. 3. At the wait location, the invariant x<=
interval bounds the system to stay there until the value of clock x (local clock)
reaches interval i.e. 15-min. The constant interval is the control frequency of
the heat-pump. The guard x>=interval prevents the system from making this
transition before spending 15 min at the wait location, after which the clock x
is reset to zero, allowing for timing a new interval.

Evaluation Using Stratego: We use the provided model for both learning and
evaluation in our experiments. However, in the evaluation phase, the control
choices of the Stratego controller template are restricted to follow those sug-
gested by a call to an external library, implying that the controller is invoked
for every simulated 15 min. When we evaluate the system under the control of a
bang-bang controller, this call returns either full intensity or the 0 intensity value.
When the Stratego itself is used as a controller instead, the call instantiates
the above templates—but instead of evaluating, it will synthesize a controller by
repeated sampling.

4.1 Learning by Stratego

To attain a predictive controller, Stratego trains on the instantiated model,
using the initial state estimate by exploiting repeated sampling and Q-learning.

End-to-End Heat-Pump Control Using Uppaal Stratego 373

This allows the tool to factor in temporal changes such as weather and price
changes of the near future. However, four problems arise:

1. not all variables are observable, specifically only the room-temperatures (T̃ i
r),

the weather forecast and the price projection can be observed,
2. controllers take time to compute, leading to a delay from observation to reac-

tion,
3. the development of the real world (or evaluation model) can deviate over

time, and
4. both weather forecasts and prices have a limited horizon.

The latter points we shall discuss in Sect. 4.2, and let us instead here address
the first issue.

Initial State Estimation: In our three-state thermodynamics model, the changes
in room temperature (T̃ i

r) are directly dependent on two hidden states, i.e., floor
temperature (T̃ i

h) and envelope temperature (T̃ i
e). The states are unobservable

and they intuitively track the abstract value of “energy stored in the heater”
and “energy stored in the wall” respectively. This implies that the tool works
on a partially observable model. To attain reasonable estimates, we can predict
these hidden variables—and similarly the future value of observable values to
accommodate for the observational delay. Assuming that a full state is known
at τt and that a control choice has already been made, then the state at τt+15

can be captured by forward simulation of the model. Experiments show that this
method of approximating the hidden variables T̃ i

e and T̃ i
h allowed a drift of no

more than 0.1 C◦ between the repeated estimates of the variables in the model
used for learning and the model used for evaluation.

4.2 Online Synthesis

Given that energy costs are only known 24 h in advance and that weather fore-
casts are known to have degrading predictive power the further into the future
they look, we utilize an online synthesis procedure. At the same time, as our
model used for controller synthesis has hidden variables, a rapid recomputation
of a strategy allows us to adjust for errors made in the initial state-estimation
and potential discrepancies with the real house (or evaluation model in our case).

We thus propose a method where at each 15-min interval, the volatile vari-
ables (energy price, weather and measurable variables of the house) are moni-
tored and transferred to the controller. This allows the controller to instantiate
the method of Sect. 4.1 with the most recent measurements. We can then let
Stratego synthesize a controller on. An overview of this flow is given in Fig. 6.
Each day has four 6-h periods, and each period has 24 of 15-min intervals. The
reuse interval (k) is 24, which means a single strategy is used for k intervals. In
the first interval, Stratego gets the current room temperatures, weather fore-
cast and day-ahead electricity price, estimates the initial state and synthesizes
a strategy that minimizes the fitness function F by sampling 12-h (learning
horizon) ahead in future. The controller saves the first strategy (S1). The heat-
pump uses S1 during intervals 2–25 and makes another strategy during interval
25, which is then used for the next 24 intervals (i.e. from 26–49).

374 I. R. Hasrat et al.

Fig. 6. Online synthesis approach shown on a two day period.

Notice here that it is assumed that the synthesis procedure is not instan-
taneous, implying that a synthesized controller can only be applied in the sub-
subsequent interval. To overcome this issue, we apply the initial state-estimation
as described in Sect. 4.1 to estimate the house state at a time-point τ + 15 from
measurements obtained at τ . We set the training horizon of the method to be
12 h, implying that the learning method will only sample the system up to a hori-
zon of 12 h from the starting measurement. This can aptly be done in Stratego
using the query presented in Eq. 8. We here see that the controller is trained to
only react on the observable variables minute_clock (tracking real-time), Ti[i]
(tracking indoor room temperatures) and Toutdoor_forecast (tracking weather
forecast). The result of the synthesis procedure is a reactive strategy that for an
assignment of the input variables yields a (near-)optimal action to take [6,13,18]

strategy S = minE (F) [minute_clock <= 12∗60)] (8)
{} -> {minute_clock, Ti[0], Ti[1], Ti[2], Ti[3],

Toutdoor_forecast}: <> minute_clock==(12∗60)
Notice also that Eq. 8 defines a feature vector (observable variables of the

state-space) to be only directly measurable variables of the original system. This
makes the strategy directly applicable for several intervals (up to the learning
horizon) in the actual system under control. We can exploit this to lower the
overall computational effort of deploying our approach, which directly impacts
the overall energy impact of running the smart heating system. Essentially, by
re-using a strategy for several intervals, a single server can act as a controller for
a group of houses, i.e. if a strategy only needs to be computed every six intervals,
six houses can share the computational resource.

5 Evaluation

To validate our approach, we experiment with controlling the OpSys house for
a week with weather conditions matching February 4–10, 2018. As a reference,

End-to-End Heat-Pump Control Using Uppaal Stratego 375

we use the estimated model presented in Sect. 4. The goal of any controller
is to minimize the parameterized cost-criteria defined in Eq. 1 for the period
under control. In all experiments, we compare different variations of the online
Stratego-based controller against a standard bang-bang (BB) controller.

We conduct three series of experiments:

1. a series under realistic assumptions on observability and time,
2. a study of sensitivity to various degrees of measurement noise, and
3. a study of impact of changes in the learning parameters of Stratego.

All experiments are conducted on AMD EPYC 7551 limited a single core
and 2 GB of memory1. We limit the controller to 15-min control intervals which
is sufficient for systems with as slow dynamic as floor-heating. For each reported
configuration, the experiment is repeated 10 times and the mean value is reported
with standard deviation intervals reported in bar-charts. A reproducibility pack-
age is available in [12].

In all series, we observe changes to the results when the weights of comfort
(0 ≤ Wcomf ≤ 1) changes; we modify these values in steps of 0.1. To make
this weighting independent of the given week and to allow for this proportional
weighting between two units (kWh and squared degrees Celsius), we compute a
normalization-factor norm based on the BB controller. This normalization-factor
is computed by estimating the performance of the BB controller on the week
leading up to February 4–10 in terms of cost and comfort . The normalization-
factor is then given directly by norm = comfort

cost .
In our plots we report relative performance to that of the BB controller; we

do so as the behaviour of the BB controller in the model (when replayed with
historical weather) is deterministic. We omit to report values for a pure emphasis
on cost as this leads the controller to (as expected) turn off all heat.

Realistic Evaluation: In this series, we emulate a realistic setup; this implies
that hidden variables are estimated, the weather forecast is stochastic, and the
controller only can be applied with a 15 min delay from the variable observation-
time, as described in Sect. 4.

We experiment with two configurations and compare them with the standard
BB controller. In one, we fix the learning parameters s.t. the wall-clock com-
putation time is not exceeding 15 min on given hardware; namely 600 samples
(depicted blue in Fig. 7), and a re-use interval of 24 (6 h) limiting the compu-
tation effort—denoted the realistic configuration. In a more hypothetical appli-
cation, we double the training budget to 1200 samples (leading to an approx
30 min computation time) and reduce the re-use interval to 6 (depicted orange
in Fig. 7)—named the best configuration.

We see that the BB controller is dominated in all ways by any of the two
Stratego controllers. In particular we see that at Wcomf = 0.4 either Strat-
ego controller achieves comparable comfort to the BB controller (Fig. 7b), but
at a 33–34% reduction in cost (Fig. 7c). In Fig. 7a, we observe for any setting of

1 Actual memory usage expected to be significantly lower, but not recorded.

376 I. R. Hasrat et al.

(a) Relative fitness (b) Relative discomfort (c) Relative cost

(d) The cost/comfort tradeoff with different Wcomf settings (red line separates the
points on its left side where Stratego is outperforming BB w.r.t both comfort and
cost)

Fig. 7. February week control under partial observability with 24 reuse intervals and
600 training samples (blue) and 6 reuse intervals and 1200 training samples.

the parameters the Stratego-based controllers are dominating in the distance
measure and more so with an increased comfort weight. In Fig. 7d we have also
annotated the average temperature experienced throughout the week for the
realistic controller to provide a tangible perspective on the discomfort measure.
With a less than 0.16C◦ deviation in the average temperature from the setpoint
with Wcomf ≥ 0.4, again resulting in a 33% reduction in cost.

As the BB controller is incapable of adjusting to the time-varying cost func-
tion, it is expected that the Stratego controller can outperform it with a focus
on cost. More interesting, the benefit of using Stratego grows with an increased
focus on comfort. Notice that Eq. 1 penalizes overshooting. We hypothesize that
the binary mode of the BB entails periods of large overshooting of the target
temperature and others with undershooting due to the 15-min control interval2.
The Stratego controllers can instead compensate gradually and react more
subtly.

While the realistic controller in general trails the best controller, find it to
be well-performing in general, trailing with no more than 4% points in comfort
for settings with Wcomf ≥ 0.4 and a loss in comfort of no more than 13% points
in the same range.

2 Due to wear and tear on heat-pumps it is undesirable to change states too often.

End-to-End Heat-Pump Control Using Uppaal Stratego 377

Fig. 8. February week control under different observability situations with 24 reuse
intervals and 600 learning runs

Sensitivity Analysis of Impact of Measurement Noise: As our experimental setup
is virtual, we can study the impact of stochastic weather-prediction, hidden
variables and delayed controller response; this comparison is seen in Fig. 8. The
experimental setup is similar to the Realistic series apart from the specified
changes. We experiment with four configurations: 1. Full observability, allowing
for delayed controller response, perfect weather-prediction and direct observation
of hidden variables (i.e. an ideal scenario), 2. Predicted T̃ i

e and T̃ i
h, otherwise as

full observability, 3. Noisy weather, otherwise as full observability, and 4. Partial
observability, exactly the same setup as in the Realistic Evaluation series. In
Fig. 8, we observe that while a high emphasis on cost (which is a fully observable
variable), the impact of noisy weather prediction and predicted unobservable
variables has only a modest effect (2–3%), however with a ≥ 0.8 focus on comfort,
we see the uncertainty of the weather significantly impacting the performance (up
to 8%), indicating a sensitivity of the controller towards accurate forecasts. We
observe an anomaly with a 0.1 emphasis on comfort where the full observability
configuration is significantly worse than the predicted scenario.

While the discrepancy appears to be within measurement noise, it still war-
rants further investigation. We hypothesize that the squaring of the difference
of the target and the actual temperature in Eq. 1 leads to rare spikes in the
response affecting the partition-refinement scheme deployed of Stratego.

Sensitivity Analysis of Learning Parameters: Stratego is a sampling-based
tool, and the performance (in terms of quality of the controller synthesized)
is dependent on the number of samples provided. This is given directly in the
number of runs (simulations) the engine is allowed to conduct.

In Fig. 9b we see that an increase in the number of runs (in general) improves
the performance. However, with a doubled effort of 1200 runs (approx 30 min
of computation pr. strategy), the performance in general improved by 2% and
in a rare case by 3%. We can see a similar improvement in performance with
an increase from 300 to 600 runs. However, a similar anomaly is observed with
an 0.1 emphasis on comfort as was found in the Measurement Noise-series of
experiments. We conjecture that this effect manifests to a higher degree with an
increased learning effort.

378 I. R. Hasrat et al.

(a) February week with different reuse intervals and 600 learning runs

(b) February week with different number of runs with 24 reuse intervals

Fig. 9. Effect of choosing different sets of reuse intervals and number of runs

We here also experiment with reducing the overall computational effort
needed for control. In Sect. 4.2 we introduced the reuse interval which allows for
applying a given control strategy for an extended period. In Fig. 9a we observe
that a tighter re-computation cycle of 6 intervals (every 11

2 h) allows us to
gain 3% performance compared to our Realistic series of experiments. Towards
a reuse of 24 periods, we observe a drop in performance when the reuse interval
is extended.

6 Conclusion

We presented a tool-chain for controlling a heat-pump system in a floor heat-
ing case study. The tool-chain offers an end-to-end solution for floor heating
applications by establishing an automatic procedure for the identification of
house thermodynamics and designing Uppaal Stratego controller. We com-
pare the performance of Stratego controller against the traditionally used
bang-bang controller. Experimental results show that our controller offers sig-
nificant improvements in both user comfort as well as energy cost, even when
realistic limitations on computation effort are taken into account. In particular,
Stratego saves 33% energy while preserving the same comfort as the stan-
dard bang-bang controller. We also analyse the cost-comfort trade-off paradigm,

End-to-End Heat-Pump Control Using Uppaal Stratego 379

which shows that we can save energy costs by slightly compromising the com-
fort. We believe that the results can be further improved by introducing a heat
buffer and that the computational effort can be reduced by techniques such as
ensemble learning.

Acknowledgements. We would like to thank Simon Thorsteinsson for his extensive
help with Dymola and acquiring base data for model identification. This research is
partly funded by the ERC Advanced Grant LASSO, the Villum Investigator Grant
S4OS as well as DIREC: Digital Research Centre Denmark.

References

1. Agesen, M.K., et al.: Toolchain for user-centered intelligent floor heating control.
In: IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Soci-
ety, pp. 5296–5301 (2016). https://doi.org/10.1109/IECON.2016.7794040

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3 14

3. Behrmann, G., et al.: UPPAAL 4.0. IEEE Computer Society (2006)
4. Bulychev, P., et al.: UPPAAL-SMC: statistical model checking for priced timed

automata. arXiv preprint arXiv:1207.1272 (2012)
5. Carrascal, E., Garrido, I., Garrido, A.J., Sala, J.M.: Optimization of the heating

system use in aged public buildings via model predictive control. Energies 9(4),
251 (2016)

6. David, A., et al.: On time with minimal expected cost! In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6 10

7. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

8. Dixit, M.K., Fernández-Soĺıs, J.L., Lavy, S., Culp, C.H.: Identification of parame-
ters for embodied energy measurement: a literature review. Energy Build. 42(8),
1238–1247 (2010)

9. Ferracuti, F., et al.: Data-driven models for short-term thermal behaviour predic-
tion in real buildings. Appl. Energy 204, 1375–1387 (2017)

10. Fonti, A., Comodi, G., Pizzuti, S., Arteconi, A., Helsen, L.: Low order grey-box
models for short-term thermal behavior prediction in buildings. Energy Procedia
105, 2107–2112 (2017)

11. Harasty, S., Lambeck, S., Cavaterra, A.: Model predictive control for preventive
conservation using artificial neural networks. In: 12th REHVA World Congress,
Aalborg, Denmark (2016)

12. Hasrat, I., Jensen, P., Larsen, K., Srba, J.: Reproducibility package for: end-to-end
heat-pump control using continuous time stochastic modelling and uppaal stratego
(2022)

13. Jaeger, M., Bacci, G., Bacci, G., Larsen, K.G., Jensen, P.G.: Approximating
euclidean by imprecise Markov decision processes. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2020. LNCS, vol. 12476, pp. 275–289. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-61362-4 15

https://doi.org/10.1109/IECON.2016.7794040
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
http://arxiv.org/abs/1207.1272
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-030-61362-4_15
https://doi.org/10.1007/978-3-030-61362-4_15

380 I. R. Hasrat et al.

14. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U.: Integrating tools: co-simulation
in UPPAAL using FMI-FMU. In: 2017 22nd International Conference on Engi-
neering of Complex Computer Systems (ICECCS), pp. 11–19. IEEE (2017)

15. Østergaard Jensen, S.: OPSYS tools for investigating energy flexibility in houses
with heat pumps (2018). https://www.annex67.org/media/1838/report-opsys-
flexibilitet.pdf

16. Juhl, R., Kristensen, N.R., Bacher, P., Kloppenborg, J., Madsen, H.: Grey-box
modeling of the heat dynamics of a building with CTSM-R (2017). http://ctsm.
info/pdfs/examples/building2.pdf

17. Juhl, R., Møller, J.K., Madsen, H.: CTSMR - Continuous Time Stochastic Mod-
eling in R. arXiv (2016). https://doi.org/10.48550/ARXIV.1606.00242

18. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and
compositional learning of controllers with application to floor heating. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 14

19. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

20. Ljung, L.: MATLAB system identification toolbox-getting started guide r2016a.
Mathworks, Ed., Mathworks (2016)

21. Nassif, N.: Modeling and optimization of HVAC systems using artificial neural
network and genetic algorithm. Build. Simul. 7(3), 237–245 (2013). https://doi.
org/10.1007/s12273-013-0138-3

22. Privara, S., Cigler, J., Váňa, Z., Oldewurtel, F., Sagerschnig, C., Žáčeková, E.:
Building modeling as a crucial part for building predictive control. Energy Build.
56, 8–22 (2013)

23. Reynders, G., Diriken, J., Saelens, D.: Quality of grey-box models and identified
parameters as function of the accuracy of input and observation signals. Energy
Build. 82, 263–274 (2014)

24. Thilker, C.A., Bergsteinsson, H.G., Bacher, P., Madsen, H., Cal̀ı, D., Junker, R.G.:
Non-linear model predictive control for smart heating of buildings. In: E3S Web of
Conferences, vol. 246, p. 09005. EDP Sciences (2021)

25. Vinther, K., Green, T., Jensen, S.Ø., Bendtsen, J.D.: Predictive control of
hydronic floor heating systems using neural networks and genetic algorithms. IFAC-
PapersOnLine 50(1), 7381–7388 (2017)

26. Vogler-Finck, P., Wisniewski, R., Popovski, P.: Reducing the carbon footprint of
house heating through model predictive control - a simulation study in Danish con-
ditions. Sustain. Cities Soc. 42, 558–573 (2018). http://www.sciencedirect.com/
science/article/pii/S2210670718301173

27. Yu, X., You, S., Cai, H., Georges, L., Bacher, P.: Data-driven modelling and optimal
control of domestic electric water heaters for demand response. In: Wang, Z., Zhu,
Y., Wang, F., Wang, P., Shen, C., Liu, J. (eds.) ISHVAC 2019. ESE, pp. 77–86.
Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9528-4 9

https://www.annex67.org/media/1838/report-opsys-flexibilitet.pdf
https://www.annex67.org/media/1838/report-opsys-flexibilitet.pdf
http://ctsm.info/pdfs/examples/building2.pdf
http://ctsm.info/pdfs/examples/building2.pdf
https://doi.org/10.48550/ARXIV.1606.00242
https://doi.org/10.1007/978-3-662-49674-9_14
https://doi.org/10.1007/s12273-013-0138-3
https://doi.org/10.1007/s12273-013-0138-3
http://www.sciencedirect.com/science/article/pii/S2210670718301173
http://www.sciencedirect.com/science/article/pii/S2210670718301173
https://doi.org/10.1007/978-981-13-9528-4_9

Security Vulnerabilities Detection
Through Assertion-Based Approach

Salim Yahia Kissi1(B) , Rabéa Ameur-Boulifa2(B) ,
and Yassamin Seladji1(B)

1 LRIT, University of Abou Bekr Belkaid, Tlemcen, Algeria
{salimyahia.kissi,yassamine.seladji}@univ-tlemcen.dz

2 LTCI, Télécom ParisTech, Institut Polytechnique de Paris, Palaiseau, France
Rabea.Ameur-Boulifa@telecom-paris.fr

Abstract. Organizations and companies develop very complex software
today. Errors and flaws can be introduced at different phases of the
software development life cycle and can lead to exploitable vulnerabili-
ties. Furthermore, considering that most systems are exposed to multiple
users and environments, such flaws can lead to attacks (or actions) with
unpredictable consequences in terms of damage and costs.

Most research that deals with security-related issues of software
focuses their efforts on coding errors and flaws, regardless of the infras-
tructure and platforms that run the software applications. Often, such
analyses of software applications vulnerabilities may lack sufficient spec-
ification details, thus possibly miss larger systematic flaws, and conse-
quently obscure the existence of serious vulnerabilities. Our research aims
at developing a technique capable of discovering the security weaknesses,
specifically buffer overflow vulnerabilities in C/C++ programs, through
the analysis of source code combined with architecture specifications.
The proposed approach relies on the notion of platform assertions that
is, a collection of logical relationships used to characterize a platform
(execution environment). In this paper, we focus on such assertions and
show how vulnerabilities analysis of software applications can be per-
formed with our assertion-based approach. Furthermore, the generation
of assertion specifications as well as the construction of an assertion
library including various platforms are explored.

Keywords: Assertions · Formal analysis · Vulnerabilities detection ·
Execution environment

1 Introduction

It is well known that integer errors in software applications, including arithmetic
overflow and wraparound can be exploited by malicious actors. Recently, integer
errors are classified as one of the most dangerous software weaknesses [5]. One of
the reasons is that programmers are not always fully aware about the semantics
of integer operations and machine integer types [6].
c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 381–387, 2022.
https://doi.org/10.1007/978-3-031-10363-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_25&domain=pdf
http://orcid.org/0000-0002-9222-0291
http://orcid.org/0000-0002-2471-8012
http://orcid.org/0000-0003-2778-7555
https://doi.org/10.1007/978-3-031-10363-6_25

382 S. Y. Kissi et al.

In our work, we are interested in detecting vulnerabilities resulting from
potential flaws in C programs, particularly those related to arithmetic opera-
tions. Our focus in this paper is on undefined evaluation within the C stan-
dard. To illustrate the problem consider the natural and small C program given
in Listing 1.1. We compiled it on different platforms: - X86_64 under ubuntu
18.04 64-bit using gcc7.5.0 compiler; - and X86_64 under windows 64-bit
using gcc10.2.0 compiler, without optimization options in both cases. We have
noticed that the results of its execution are different. Indeed, we observe that on
the windows platform, the read and write service access instruction (line 7) is
executed while uid_sid �= 0. This is due to the sign-magnitude representation
of the binary format of uid_sid, the first platform uses 64 bits while the second
uses 32 bits.

Listing 1.1. A small program that grants access to services

1 void foo(char username[], char password []){

2 int userId= getUserId(username ,password);

3 int serviceId; // 0 <= userId <= 150*10^6

4 read(serviceId); // 1 <= serviceId <= 64

5 long int uid_sid =(long)userId*serviceId;

6 if (uid_sid ==0){

7 readAndWriteService (uid_sid ,serviceId);

8 }else{

9 readOnlyService(uid_sid ,serviceId);

10 }

11 return ;}

This situation is not a merely a fringe case, but commonly known. It is specified
in the C standard [7] as undefined behaviour: the semantics of the C language
does not describe exactly what should happen, but leaves crucial decisions to
the implementing compiler and/or the runtime environment. In practice, this
usually translates to a wrap of the value, and a change of the sign and value
that makes the program produce incorrect results, behave in an unexpected way,
or crash. This effect is further amplified from a security perspective, this common
software coding mistakes can be used to subvert security services.

We propose an approach that can help programmers prevent such weak-
nesses, i.e. software vulnerabilities. The advocated approach reduces software
vulnerabilities detection to satisfiability problems over logical formulas [10]. The
relevance of our approach lies in the fact that it is based on hardware/software
co-analysis. We provided a uniform method for software analysis, considering
the specifications of its execution environment (CPUs, compilers, operating sys-
tems). The main idea is to build a formula based on the path condition of a
given target location in conjunction with the formula (assertions) specifying the
environment of its execution, and asking an SMT solver for a satisfying solution,
to find out whether the unintended solution is possible. Formally speaking, we
use symbolic execution to generate program constraint (PC), and get security
constraint (SC) from predefined security requirements. In addition, based on a
precise knowledge on the execution context of the analysed program (EC), we

Security Vulnerabilities Detection Through Assertion-Based Approach 383

propose to solve the statement: EC � PC ∧ ¬SC we seek to find out if there
is an assignment of values to program inputs - executed in a certain context -
which could satisfy PC but violates SC.

In this paper, we present how we proceed to define the execution context
specification, that can be used to uncover and effectively combat possible vul-
nerabilities. While our motivation for this work is to identify and address security
vulnerabilities in a software code, the result can be used to look for any misbe-
haviour in the code that would be caused by the execution environment.

Related Works. Although integers overflow are a known source of vulnerabilities
[6], their systematic detection remains a problem as “they are perfectly legal in
C/C++” and “not all overflows are bugs” [11]. Several works have addressed the
issue of integer overflow vulnerability. However, for the analysis most of them
focus on either the binary code [1], or on the software code without taking into
account the execution environment [9,12]. Nevertheless, there are a number of
approaches and tools that explore code paths to track (un)feasible paths via
constraint solving, such as klee [2] and prefix+z3. They are dedicated mainly
to find integer errors. Others dedicated to static analysis such as Frama-C [3,4]
that is well-known toolkit for analysis of C programs can catch integer overflow,
but it accepts only a restrictive subset of C. These tools perform analysis by
adding pre and post-conditions as safety properties assertions. Compared to our
approach, these assertions doesn’t take into account the execution environment.

2 Assertion Construction

Given a programming language, we propose a formalization of the semantics data
types through different platforms. The choice of the predicate logic formalism
is mainly guided by the tool used for the analysis (we use SMT-z3 solver). We
will show how assertions that reflects a calculation can produce an overflow or
wraparound. Because of space limitations, we restrict ourselves to arithmetic
operations on signed integer.

Integer Arithmetic in C. The C language (as many other languages) provides
several standard data types. They consist of basic types (char, int, float and
double) attached to modifiers (signed, unsigned, short, and long). We know
that computers store data in memory using binary representation; each data
type requires different amounts of memory; and operands of different data types
can be combined in a single operation. C language provides rules conversion
to perform mixed-mode operations on different data types. Such rules refer to
the implicit or explicit change of a value from one data type storage format to
another e.g. from 16-bit integer to a 32-bit integer. For this, it provides a hier-
archy between types that governs the conversion. For the integer data type, is
divided into short, int, and long data types that takes different bytes of storage
space. The compiler performs always type conversions between any two arith-
metic types wherever necessary, without regard to space issue. The conversion
preserves the value of an expression if the new type is capable of representing it.

384 S. Y. Kissi et al.

All integer conversion rules are informally defined in C standards [8]. These rules,
that determine how compilers handle conversions, include integer promotions,
integer conversion rank and the usual arithmetic conversions. Their description
relies basically on the range of the types, thus on the execution platform.

Although the problems with type conversions and their unpredictable
behaviour are well known, in particular the signed overflow problem and the
wrap around behaviour [6], developers don’t really know how to detect them due
to the semantic subtleties of the language. A precise knowledge of the seman-
tics of arithmetic conversions and their impact on data types through different
platforms will doubtlessly enable to predict the behaviour of programs. In the
following, we present the formalisation that we propose to model the semantics
of data types cross different computer models. To do this, we created a database
in which we collected the different known execution platforms identified by their
CPU and operating systems associated with the sizes of the supported types
(across compilers). An extract of the database is given in Table 1 that yields the
size of type long int through a variety of platforms. With all types, the database
can reach up to 2,000 different sizes by considering the 40 known machines.

Table 1. Size of long int across different execution environment

Target platform OS, Compiler Compiler options Size

X86 or X86 64 win10 32, MSVC No argument 32 bits

win10 32, gcc

ubuntu 14.04 32, gcc

ubuntu 14.04 32, Clang

X86 64 win10 64, MSVC

win10 64, gcc

ubuntu 18.04 64, gcc -m32

ubuntu 18.04 64, Clang

ubuntu 18.04 64, gcc No argument 64 bits

ubuntu 18.04 64, Clang

Formalisation. Almost all modern computers use two’s complement signed
arithmetic that is well-defined to wrap around. As known the n-bit two’s com-
plement notation of an integer belongs to the range −2n−1, ..., 2n−1−1, all values
in this interval have a unique representation. If an arithmetic operation produces
a result an integer larger than 2n−1−1 an overflow will occur because of the lim-
ited space. Consequently, a part will be stored in the available range, while the
rest will be stored outside. The result will then be incorrect: it ”wraps around”
subtracting 2n from, or adding 2n to, the correct result. Given a signed integer x,
let us denote by x̄ the value of its two’s complement representation. We propose
the following equality that gives the direct relation between the two:

x = 2n × k + x̄

Security Vulnerabilities Detection Through Assertion-Based Approach 385

such that k is a natural number and n a natural number encoding a bitwidth,
i.e. belonging to {8, 16, 32, 64} (the set of size-bit types). This equation reveals
that the value of x can result from several different representations. The base
case, when k = 0, corresponds to the correct result, while the others correspond
to incorrect results. This parameterized formula defines a set assertions that can
be used to analyse arithmetic expressions in a program.

To examine the possibility of an overflow of an arithmetic operation, we
separate the case where the result of the operation is saved from the case where
it is not. Before giving the two cases, let us define a function named size_max_-
rank (resp. size_min_rank), for which the type profile is: string → string
→ ?(’a list → int) → size-bit. This function takes as parameters the type
of two operands and an optional arithmetic operation (prefixed by ? in the
function type), returns the largest (resp. smallest) value of their size. The size
that depends on the computer model will be retrieved from the database.

– Arithmetic operation. Given a binary operation on two signed integers
s1 � s2. Let us denote by v the result of its evaluation, i.e. v = �s1 � s2�. The
result v satisfies the following formula:

(v = 2n × k + v̄) ∧ (k �= 0)

where n = λ p.size_max_rank(type(s1), type(s2), �, p) and p is a set of basic
parameters of a computer model on which the operation is compiled and will
be executed. We derived this formula from the “usual arithmetic conversions”
rule. In particular, from the type promotion rule stating that whenever two
operands of different data types are involved in an operation, the operand of
lower rank will be converted to a data type of higher rank. And from the
rule stating that arithmetic operators do not accept types smaller than int as
arguments.

– Arithmetic operation with assignment. Given an update statement in
the form x = exp and denote by v the result of the evaluation of exp, i.e.
v = �exp�. The variable x satisfies the formula:

(x = 2n × k + x̄) ∧ (k �= 0)

where n = λ p.size_min_rank(type(x), type(v), p). This second formula is
derived from the rule stating that if the right-hand operand is of lower rank
then it will be promoted to the rank of the left operand. Note in this case, n is
calculated from the type of the result of the expression and the type of the
assigned variable.

Illustration. We underline the usefulness of these assertions using our exam-
ple (given in Listing 1.1). The security requirement is violated when a non-
administrator user (userId �= 0) accesses privileged services. Thus, the security
requirement is defined as ¬SC � (userId �= 0) ∧ (uid sid = 0). The value of
uid_sid is obtained by calculating an operation with assignment, we will then
use for the analysis of this code the formula of the second case. According to the

386 S. Y. Kissi et al.

information from the execution platform stating that the code is compiled by
gcc7.5.0 without option and will be run on a x86 64-bit windows. We will
then get: EC � (uid_sid = 232 × k + 0) ∧ (k > 0). Indeed, as stated in the
code type(uid_sid)= long int and type(�userId ∗ serviceId�)=long. And
the calculation of size_min_rank(long int, long, {x86 64-bit,gcc7.5.0})
returns the value 32 (after fetching the size of each type from Table 1).

Listing 1.2. Our security problem encoded in Z3-SMT

1 ;variables declaration

2 (declare-fun userId () Int)

3 (declare-fun serviceId () Int)

4 (declare-fun uid_sid () Int)

5 (declare-fun k () Int)

6 ;execution context

7 (assert (= (* serviceId userId) (+ (* (^ 2 32) k) 0)))

8 (assert (distinct k 0))

9 (assert (and (>= serviceId 1) (<= serviceId 64)))

10 (assert (and (>= userId 0) (<= userId 150000000)))

11 ;condition path

12 (assert (= uid_sid 0))

13 ;security constraint

14 (assert (and (distinct userId 0) (= uid_sid 0)))

To analyse our security problem, we used SMT-Z3 solver developed by
Microsoft Research (see Listing 1.2). In particular, we see the different formulas
involved in our approach, EC (line 7–10) defined by the formula given above that
we have completed with the program (user) requirements, PC � uid sid = 0
(line 10) and SC (line 14). The verification of the satisfiability of this logical
code, outputs several models:

sat [serviceId=32, userId=134217728, k=1]
sat [serviceId=64, userId=67108864, k=1]
sat [serviceId=64, userId=134217728, k=2]

meaning that running our program on this platform may violate the security
requirement in certain situations. An example, if the user numbered (userId)
134217728 requests the services numbered (serviceId) 32 or 64, he can get it.
This user may then take the role administrator.

3 Conclusion

The buffer overflow can widely affects the security vulnerability of programs.
The static analysis of source code aims at automatically detect such bugs but
still limited. A lot of studies show that the execution platforms can be a source of
bug, in particular for integer overflow. The proposed co-analysis method extends
existing methods by exploiting the knowledge about the execution platform spec-
ification. A symbolic execution is performed to construct a path execution of a

Security Vulnerabilities Detection Through Assertion-Based Approach 387

target instruction combined with assertions modelling the execution environ-
ment. The proposed assertions are logical formulas that express specification
constraints on types and operations. In our current work, we are developing
the tool that supports our approach. In parallel, we are extending the assertion
library to catch other kind of errors, such as pointers and exception handling.

References

1. Bornebusch, F., Lüth, C., Wille, R., Drechsler, R.: Integer overflow detection in
hardware designs at the specification level. In: Proceedings of the 8th Interna-
tional Conference on Model-Driven Engineering and Software Development - MOD-
ELSWARD, pp. 41–48. INSTICC, SciTePress (2020). https://doi.org/10.5220/
0008960200410048

2. Cadar, C., Nowack, M.: KLEE symbolic execution engine in 2019. Int. J. Softw.
Tools Technol. Transf. 23(6), 867–870 (2021). https://doi.org/10.1007/s10009-020-
00570-3

3. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: 2009 Ninth
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pp. 123–124 (2009). https://doi.org/10.1109/SCAM.2009.22

4. Correnson, L.: Qed. Computing what remains to be proved. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 215–229. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06200-6 17

5. CWE: Common weakness enumeration (2021). https://cwe.mitre.org/top25/
archive/2021/2021 cwe top25.html

6. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C++.
ACM Trans. Softw. Eng. Methodol. 25(1), 1–29 (2015). https://doi.org/10.1145/
2743019

7. ISO: ISO C Standard 1999. Technical report (1999). http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n1124.pdf. iSO/IEC 9899:1999 draft

8. ISO: ISO/IEC 9899:2011 Information technology – Programming languages
– C. International Organization for Standardization, Geneva, Switzerland,
December 2011. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue
detail.htm?csnumber=57853

9. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: a
software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015). https://
doi.org/10.1007/s00165-014-0326-7

10. Kissi, S., Seladji, Y., Ameur-Boulifa, R.: Detection of security vulnerabilities
induced by integer errors. In: Proceedings of the 16th International Conference
on Software Technologies - ICSOFT, pp. 177–184. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010551301770184

11. Moy, Y., Bjørner, N., Sielaff, D.: Modular bug-finding for integer overflows in the
large: sound, efficient, bit-precise static analysis. Technical report, MSR-TR-2009-
57, May 2009. https://www.microsoft.com/en-us/research/publication/modular-
bug-finding-for-integer-overflows-in-the-large-sound-efficient-bit-precise-static-
analysis/

12. Muntean, P., Monperrus, M., Sun, H., Grossklags, J., Eckert, C.: IntRepair:
informed repairing of integer overflows. IEEE Trans. Software Eng. 47(10), 2225–
2241 (2021). https://doi.org/10.1109/TSE.2019.2946148

https://doi.org/10.5220/0008960200410048
https://doi.org/10.5220/0008960200410048
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1109/SCAM.2009.22
https://doi.org/10.1007/978-3-319-06200-6_17
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://doi.org/10.1145/2743019
https://doi.org/10.1145/2743019
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.5220/0010551301770184
https://www.microsoft.com/en-us/research/publication/modular-bug-finding-for-integer-overflows-in-the-large-sound-efficient-bit-precise-static-analysis/
https://www.microsoft.com/en-us/research/publication/modular-bug-finding-for-integer-overflows-in-the-large-sound-efficient-bit-precise-static-analysis/
https://www.microsoft.com/en-us/research/publication/modular-bug-finding-for-integer-overflows-in-the-large-sound-efficient-bit-precise-static-analysis/
https://doi.org/10.1109/TSE.2019.2946148

The Complexity of Evaluating Nfer

Sean Kauffman(B) and Martin Zimmermann

Aalborg University, Aalborg, Denmark
{seank,mzi}@cs.aau.dk

Abstract. Nfer is a rule-based language for abstracting event streams
into a hierarchy of intervals with data. Nfer has multiple implementa-
tions and has been applied in the analysis of spacecraft telemetry and
autonomous vehicle logs. This work provides the first complexity analysis
of nfer evaluation, i.e., the problem of deciding whether a given interval
is generated by applying rules.

We show that the full nfer language is undecidable and that this
depends on both recursion in the rules and an infinite data domain. By
restricting either or both of those capabilities, we obtain tight decidabil-
ity results. We also examine the impact on complexity of exclusive rules
and minimality. For the most practical case, which is minimality with
finite data, we provide a polynomial time algorithm.

Keywords: Interval logic · Complexity · Runtime verification

1 Introduction

Nfer is a rule-based language and tool for event streamanalysis, developedwith sci-
entists fromNationalAeronautics andSpaceAdministration (NASA)’s JetPropul-
sionLaboratory (JPL) to analyze telemetry from spacecraft [18–20]. Nfer rules cal-
culate data over periods of time called intervals. Nfer compares and combines these
intervals to form a hierarchy of abstractions that is easier for humans and machines
to comprehend than a trace of discrete events. This differs from traditional Run-
time Verification (RV) which computes language inclusion and returns verdicts.
The equivalent problem for nfer, called the evaluation problem, is to determine if
an interval will be present in nfer’s output given a list of rules and an input trace.

The nfer syntax is based on Allen’s Temporal Logic (ATL) [2] and is designed
for simplicity and brevity in many contexts. When it was originally introduced,
nfer was used to find false positives among warning messages from the Mars
Science Laboratory (MSL), i.e., the Curiosity rover, at JPL [18]. Researchers
found the language to be much more concise than the ad hoc Python scripts
in common use. Nfer has also been deployed to capture disagreements between
parallel Proportional-Integral-Derivative (PID) controllers in an embedded sys-
tem ionizing radiation experiment [19,26] and to locate unstable gear shifts in
an autonomous vehicle [17].

This research was partly funded by the ERC Advanced Grant LASSO, the Villum
Investigator Grant S4OS and DIREC, Digital Research Center Denmark.

c© Springer Nature Switzerland AG 2022
Y. Aı̈t-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 388–405, 2022.
https://doi.org/10.1007/978-3-031-10363-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_26

The Complexity of Evaluating Nfer 389

Nfer is expressive enough for many applications and termination of the nfer
monitoring algorithm has been conjectured to be undecidable [15]. The intuition
for nfer undecidability is that recursion in its rules is possible and the intervals
nfer computes may carry data from an infinite domain.

Despite this expressiveness, nfer’s implementations have been demonstrated
to be fast in practice. Both the C [16] and Scala [11] versions have been com-
pared against tools such as LogFire and Prolog [19], Siddhi [17], MonAmi and
DejaVu [12], and TeSSLa [14] and in every case found to be faster than the alter-
natives performing the same analysis. The question remains if nfer evaluation
is indeed undecidable and, if so, if there are useful fragments of nfer with a
tractable evaluation problem.

Our Contribution. In this work, we determine the complexity of evaluating dif-
ferent fragments of nfer. We find that any one of several restrictions on the
language permit decidable evaluation and we prove tight bounds for most of
these fragments.

We begin by defining a natural syntactic fragment of nfer using only inclu-
sive rules called inc-nfer. Full nfer supports a form of negation using what are
called exclusive rules, but we show that these are unnecessary to obtain unde-
cidability. The result relies, instead, on recursion between rules and on intervals
carrying data from an infinite domain. Thus, we then examine language frag-
ments where either or both of these capabilities are restricted. We prove that,
without recursion, inc-nfer evaluation is NExpTime-complete, without infinite
data it is ExpTime-complete, and without either it is PSpace-complete.

We then introduce exclusive rules and examine the full nfer language. It
has been openly questioned what effect negation has on the expressiveness of
nfer [12]. Of note is that recursion in rules must be prohibited when exclusive
rules are used. We prove that, without infinite data, adding exclusive rules has
no effect and nfer evaluation remains PSpace-complete. With infinite data,
however, we prove the problem is in AExpTime(poly).

Finally, we examine the effect of minimality on the complexity of nfer evalu-
ation. Minimality is a so-called meta-constraint on the results of nfer that was a
primary motivator of nfer’s development, since it was discovered existing tools
like Prolog struggled with such meta-constraints [19]. We show that minimality
has a substantial effect on the complexity of nfer evaluation. With infinite data,
we prove the problem is in ExpTime. The most common method of using nfer
is with minimality and finite data, however, and we prove evaluation for this
configuration is in PTime.

All proofs omitted due to space restrictions can be found in the full ver-
sion [21].

Related Work. Nfer is closely related to other classes of declarative programming
systems but it differs from them all in several ways. For example, a rule-based
programming system modifies a database of facts [4,10]. Unlike these systems,
however, nfer is monotonic and can only add intervals, not remove them. Nfer
also resembles Complex Event Processing (CEP) systems where declarative rules
are applied to compute information from a trace of events [5,22,28]. CEP systems

390 S. Kauffman and M. Zimmermann

do not usually include explicit notions of time or temporal relationships, though,
which are central to nfer. In this way, nfer more closely resembles stream-RV
systems [6–8]. Still, nfer is differentiated from these systems by its emphasis on
temporal intervals and its ATL-based syntax.

Some research has examined the complexity of logics based on ATL, specifically
Halpern and Shoham’s modal logic of intervals (HS) [9]. Montanari et al. showed
that the satisfiability problem for the subset of HS consisting of only begins/begun
by and meets is ExpSpace-complete over the natural numbers [25]. Later, they
showed that adding the met by operator increases the complexity such that the
language is only decidable over finite total orders [24]. Aceto et al. identified the
expressive power of all fragments of HS over total orders as well as only dense total
orders [1]. Nfer is not a modal logic, however, and these complexity results are not
relevant to its evaluation problem.

2 The Inclusive Nfer Language

The nfer language supports two types of rules: inclusive rules and exclusive rules.
This section describes the inclusive-nfer formalism, subsequently abbreviated
inc-nfer, that supports only inclusive rules. Inc-nfer is sufficiently expressive
to obtain an undecidability result and we find that initially omitting exclusive
rules simplifies our presentation. Inc-nfer is also a natural subset of nfer that
was first introduced in [18]. It supports many use cases, including the MSL case-
study described above. The implementation of nfer written in Scala at JPL [11,
19] also supports only inclusive rules. We expand our analysis to include exclusive
rules in Sect. 4 while Sect. 5 addresses minimality, an important extension of nfer
semantics. Note that, to improve comprehensibility and simplify later proofs, the
semantics presented here differs slightly from prior work but these changes do
not affect the language capabilities.

Preliminary Notation. We denote the set of nonnegative integers as N. The set
of Booleans is given as B = {true, false}. We fix a finite set I of identifiers. M is
the type of maps, where a map M ∈ M is a partial function M : I �→ N ∪ B.

An event represents a named state change in an observed system. An event
is a triple (η, t,M) where η ∈ I is its identifier, t ∈ N is the timestamp when
it occurred, and M ∈ M is its map of data. The type of an event is given by
E = I × N × M. A sequence of events τ ∈ E

∗ is called a trace.
Intervals represent a named period of state in an observed system. An interval

is a 4-tuple (η, s, e,M) where η ∈ I is its identifier, s, e ∈ N are the starting and
ending timestamps where s ≤ e, and M ∈ M is its map of data. The type of
intervals with data is I = I × N × N × M. A set of intervals is called a pool and
its type is given by P = 2I. We say that an interval i = (η, s, e,M) is labeled by
η. We define the functions id(i) = η, start(i) = s, end(i) = e, and map(i) = M .

Syntax. Inclusive rules test for the existence of two intervals matching con-
straints. When such a pair is found, a new interval is produced with an identifier
specified by the rule. The new interval has timestamps and a map derived by

The Complexity of Evaluating Nfer 391

applying functions, specified in the rule, to the matched pair of intervals. We
define the syntax of these rules, including mathematical functions to simplify
the presentation, as follows:

η ← η1 ⊕ η2 where Φ map Ψ

where, η, η1, η2 ∈ I are identifiers, ⊕ ∈ {before,meet,during, coincide, start,
finish,overlap, slice} is a clock predicate on three intervals (one for each of
η, η1, and η2), Φ : M×M → B is a map predicate taking two maps and returning
a Boolean representing satisfaction of a constraint, and Ψ : M × M → M is a
map update taking two maps and returning a map.

We omit the precise syntax for specifying map predicates and updates, but
we require that these functions are limited to only simple arithmetic operations.
This matches what is possible using the C nfer tool [14]. Specifically, map pred-
icates and map updates must be expressible using the standard mathematical
operations: addition, subtraction, multiplication, division, modulo, and the com-
parisons: <,≤, >,≥,= on natural numbers, and the Boolean operators: ∧,∨,¬.
This limitation excludes exponentiation and any form of recursion in the func-
tions. Since we do not support real numbers in the theory, division is limited to
integer quotients. These decisions are discussed in Sect. 6.

Semantics. Inc-nfer defines how rules are interpreted to generate pools of
intervals from inputs. The semantics utilizes functions, referenced by the rule
syntax, that specify the temporal and data relationships between intervals. The
semantics of the nfer language is defined in three steps: the semantics R of
individual rules on pools, the semantics S of a specification (a list of rules) on
pools, and finally the semantics T of a specification on traces of events.

We first define the semantics of inclusive rules with the interpretation func-
tion R. Let Δ be the type of rules. Semantic functions are defined using the
brackets [[]] around syntax being given semantics.

R [[]] : Δ → P → P

R [[η ← η1 ⊕ η2 where Φ mapΨ]] π
= { i ∈ I : i1,i2 ∈ π .

id(i) = η ∧ id(i1) = η1 ∧ id(i2) = η2
∧ ⊕(i ,i1,i2) ∧ Φ (map(i1),map(i2))
∧ map(i) = Ψ(map(i1),map(i2)) }

In the definition, a new interval i is produced when two existing intervals in
π match the identifiers η1 and η2, the temporal constraint ⊕, and the map
constraint Φ. ⊕ defines the start and end timestamps of i and Ψ defines its map.

The possibilities referenced by ⊕ are shown in Fig. 1. These clock predicates
are based on ATL and described formally in previous definitions of nfer [18,19].
They relate two intervals using the familiar ATL temporal operators and also
specify the start and end timestamps of the produced intervals. In the figure, the
two matched intervals are shown as dark-gray boxes where time flows from left to
right and the light-gray box is the produced interval. For example, given intervals
i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C, A ← B meet C holds when
end(i1) = start(i2), start(i) = start(i1), and end(i) = end(i2).

392 S. Kauffman and M. Zimmermann

A B before C A B meet C A B during C A B coincide C

A B start C A B finish C A B overlap C A B slice C

Fig. 1. nfer clock predicates for inclusive rules

The following one-step interpretation function S defines the semantics of a
finite list of rules, also called a specification. Given a specification δ1 · · · δn ∈ Δ∗

and a pool π ∈ P, S[[]] returns a new pool obtained by recursively applying R[[]]
to every rule in δ1 · · · δn in order, where each is called using the union of π with
the new intervals returned thus far.

S [[]] : Δ∗ → P → P

S [[δ1 · · · δn]] π =

{
S [[δ2 · · · δn]] (π ∪ R [[δ1]] π) if n > 0
π otherwise

Inc-nfer specifications may contain recursion in the rules, so one application
of the specification may not be sufficient to produce all of the intervals. The
interpretation function Tinc[[]] for inclusive nfer defines the semantics of a spec-
ification on a pool by applying S until the inflationary fixed point is reached.

Tinc[[]] : Δ∗→ P → P

Tinc[[δ1 · · · δn]] π =
⋃

i>0 πi . π1 = π ∧ πi+1 = S [[δ1 · · · δn]] (πi)
To maintain consistency with prior work and simplify our presentation, we also
overload Tinc[[]] to operate on a trace of events τ ∈ E

∗ by first converting τ to
the pool {init(e) : e is an element of τ} where init(η, t,M) = (η, t, t,M).

Example 1. Here, we present an example of an inc-nfer specification with rules
useful for our complexity analysis. Fix I = {ηj : 0 ≤ j ≤ n} ∪ {d} and consider
the specification Dn = δ1 · · · δn where δj is the rule

ηj+1 ← ηj coincide ηj where m1,m2 �→ m1= m2 map m1,m2 �→{d �→ m1(d)2}.

Here, m1 and m2 denote the maps of the intervals matched by the left and right
side of the coincide operator and d represents the only element in their domain.

When applying this specification to the trace τ = (η0, 0, {d �→ 2}) we obtain

Tinc[[Dn]] τ = {(η0, 0, 0, {d �→ 2}), (η1, 0, 0, {d �→ 4}), . . . , (ηn, 0, 0, {d �→ 22
n})}.

The Complexity of Evaluating Nfer 393

Remark 1. In many of our lower bound proofs, the timestamps of intervals are
irrelevant. For the sake of readability, we will therefore often disregard the times-
tamps and denote intervals by (η, y0, . . . , yk) where {y0, . . . , yk} is the image of
the map function of the interval. Here, we assume a fixed order of the map
domain that will be clear from context.

Also, note that the rules δj in Example 1 produce an interval i′ labeled by
ηj+1 from an interval i such that i and i′ have the same timestamps and the map
value of i′ is obtained by squaring the map value of i. Many of the rules we use
in our lower bounds proofs have this format. Again, for the sake of readability,
we will not spell out those rules but instead say that the rule produces the
interval (ηj+1, y

2) from an interval of the form (ηj , y).
We are interested in the nfer evaluation problem: Given a specification D,

a trace τ of events, and a target identifier ηT , is there an ηT -labeled interval in
Tinc[[D]]τ? Here, we measure the size of a single rule in D by the sum of the length
of its map predicate and map update measured in their number of arithmetic
and logical operators, with numbers encoded in binary. The size of an event
is the sum of the binary encodings of its timestamps and its map values. We
disregard the identifiers, as their number is bounded by the number of events in
the input trace and the number of rules.

3 Complexity Results for Inclusive Nfer

In this section, we determine the complexity of the inc-nfer evaluation problem.
In its most general form it is shown to be undecidable, but we show decidability
for three natural fragments.

The undecidability result relies on the recursive nature of inc-nfer, i.e., an
η-labeled interval can be (directly or indirectly) produced from an another η-
labeled interval, and on the fact that the map functions range over the natural
numbers, i.e., we have access to an infinite data domain.

Theorem 1. The evaluation problem for inc-nfer is undecidable.

Proof. We show how to simulate a two-counter Minsky machine [23] with
inc-nfer rules so that the machine terminates iff an interval with a given target
identifier can be generated by the rules.

Formally, a two-counter Minsky machine is a sequence

(0 : I0)(1 : I1) · · · (k − 2 : Ik−2)(k − 1 : STOP),

of pairs (: I�) where 	 is a line number and I� for 0 ≤ 	 < k − 1 is one of
INC(Xi), DEC(Xi), or IF Xi=0 GOTO 	′ with i ∈ {0, 1} and 	′ ∈ {0, · · · , k − 1}.

A configuration of the machine is a triple (, c0, c1) consisting of a line num-
ber 	 and the contents ci ∈ N of counter i. The semantics is defined as expected
with the convention that a decrement of a zero counter has no effect. The prob-
lem of deciding whether the unique run of a given two-counter Minsky machine
starting in the initial configuration (0, 0, 0) reaches a stopping configuration (i.e.,
one of the form (k − 1, c0, c1)) is undecidable [23].

394 S. Kauffman and M. Zimmermann

This problem is captured with inc-nfer as follows: We encode a configura-
tion (, c0, c1) by an interval with identifier 	 and two map values c0, c1. These
intervals use the same timestamps so we drop them from our notation and also
write (, c0, c1) for the interval encoding that configuration.

For every line number 0 ≤ 	 < k−1 we have one or two rules that are defined
as follows (here, we only consider i = 0, the rules for i = 1 are analogous):

– I� = INC(X0): We have a rule producing the interval (+ 1, c0 + 1, c1) from
an interval of the form (, c0, c1).

– I� = DEC(X0): We have two rules, one producing the interval (+1, c0 −1, c1)
from an interval of the form (, c0, c1) with c0 > 0, and one producing the
interval (+ 1, c0, c1) from an interval of the form (, c0, c1) with c0 = 0.

– I� = IF X0=0 GOTO 	′: We have two rules, one producing the inter-
val (′, c0, c1) from an interval of the form (, c0, c1) with c0 = 0, and one
producing the interval (+ 1, c0, c1) from an interval of the form (, c0, c1)
with c0 > 0.

Then, we have an interval labeled by k − 1 in the fixed point iff the machine
reaches a stopping configuration. �

As already discussed, the undecidability relies both on recursion in the rules
and on the map functions having an infinite range. In the following, we show
that restricting one of these two aspects allows us to recover decidability. In
fact, we give tight complexity bounds for all three fragments. We continue by
introducing some necessary notation to formalize these two restrictions.

First, recall that a map of an interval is a partial function from I to N ∪ B,
i.e., it has an infinite range. We will consider the evaluation problem restricted
to intervals with maps that are partial functions from I to {0, 1, . . . , k − 1} ∪ B

with a bound k given in binary and all arithmetic operations performed modulo
k. We denote the fixed point resulting from these semantics by T

k
inc[[]].

Second, for a rule η ← η1 ⊕ η2 where Φ map Ψ we say that η appears
on the left-hand side and the ηi appear on the right-hand side. An inc-nfer
specification D ∈ Δ∗ forms a directed graph G(D) over the rules in D such
that there is an edge from δ to δ′ iff there is an identifier η that appears on the
left-hand side of δ and the right-hand side of δ′. We say that D contains a cycle
if G(D) contains one; otherwise D is cycle-free.

We begin our study of decidable fragments of inc-nfer by considering both
restrictions at the same time.

Theorem 2. The cycle-free inc-nfer evaluation problem with finite data is
PSpace-complete.

Proof. We only prove the lower bound here, the upper bound is shown for full
nfer in Theorem 5. We proceed by a reduction from TQBF, the problem of
determining whether a formula of quantified propositional logic evaluates to
true (see, e.g., [3] for a detailed definition), which is PSpace-hard. So, fix such a
formula ϕ. Let πj for j ≥ 1 denote the j-th prime number. We assume without

The Complexity of Evaluating Nfer 395

loss of generality that ϕ = Q2x2Q3x3 · · · Qπn
xπn

∧m
i=1(i,1 ∨ 	i,2 ∨ 	i,3) where

each Qπj
is in {∃,∀}, and each 	i,i′ is either xπj

or ¬xπj
for some j. As we

label variables by prime numbers, we can uniquely identify a variable valua-
tion V ⊆ {xπj

: 1 ≤ j ≤ n} by the number
∏

xπj
∈V πj . As the map values we will

consider only have to encode valuations, and are therefore bounded by
∏

j≤n πj ,
we can use the bound 1 +

∏
j≤n πj on the map values we consider.

We present three types of rules:

1. Rules to generate every possible variable valuation (encoded by an interval
whose map contains the number representing the valuation).

2. A rule to check whether a valuation satisfies
∧n

i=1(i,1 ∨ 	i,2 ∨ 	i,3).
3. Rules to simulate the quantifier prefix to check whether the full formula eval-

uates to true.

Let us explain all steps in detail. As all intervals in this proof will have the
same timestamps, we will drop those to simplify our notation. Furthermore, the
map of an interval will contain a single integer value. For these reasons, we
denote intervals by (η, s) where η is an identifier and s is the map value.

To generate the valuations, we start with the trace containing only a sin-
gle fixed event that yields the interval (G0, 1). Further, for 1 ≤ j ≤ n we have
rules producing the intervals (Gj , s · πj) and (Gj , s) from an interval of the
form (Gj−1, s) for some s. The fixed point reached by applying these rules con-
tains the 2n intervals of the form (Gn, s) where s encodes a variable valuation.

In the valuation encoded by some s, a variable xπj
evaluates to true if s mod

πj = 0 and evaluates to false if s mod πj �= 0. Hence, to check whether the
valuation encoded by some s satisfies

∧m
i=1(i,1 ∨ 	i,2 ∨ 	i,3) we have a rule that

produces the interval (Ck, s) from an interval of the form (Gk, s) for some s such
that

∧m
i=1(ψi,1∨ψi,2∨ψi,3) evaluates to true, where ψi,i′ is equal to s mod πj = 0

if 	i,i′ = xπj
, and where ψi,i′ is equal to s mod πj > 0 if 	i,i′ = ¬xπj

.
We now simulate the quantifier prefix. Intuitively, we check whether partial

variable valuations cause the formula to hold. We do so by the following rules:
If the variable xπj

is existentially quantified, we have a rule producing the inter-
val (Cj−1, s) from an interval of the form (Cj , s) with s mod πj > 0, and a rule
producing the interval (Cj−1, s/πj) from an interval of the form (Cj , s) with
s mod πj = 0. So, to generate an interval labeled by Cj−1 at least one interval
labeled by Cj has to exist, and their maps must be compatible.

Finally, if the variable xπj
is universally quantified, we have a rule producing

the interval (Cj−1, s) from two intervals of the form (Cj , s) and (Cj , s·πj) (which
can be done using a coincide-rule). Thus, to obtain an interval labeled by Cj−1

both intervals labeled by Cj with corresponding map values have to exist.
An induction shows that a partial valuation V ⊆ {xπj

: 1 ≤ j ≤ n′} for
some 0 ≤ n′ ≤ n satisfies Qπn′+1

xπn′+1
· · · Qπn

xπn

∧m
i=1(i,1 ∨ 	i,2 ∨ 	i,3) iff the

interval (Cn′ ,
∏

xπj
∈V πj) is generated by applying these rules. So, for n′ = 0

we obtain the correctness of our reduction: The formula ϕ evaluates to true iff
(C0, 1) is in the fixed point induced by the rules above.

Furthermore, the rules above are cycle-free, there are linearly many rules in
the number n of variables and each rule is of polynomial size in the size of ϕ.

396 S. Kauffman and M. Zimmermann

Finally, as πj ≤ j(ln j + ln ln j) for all j ≥ 6 [27], all numbers appearing in the
maps of the intervals are bounded by∏n

j=1
πj ≤ c ·

∏n

j=1
j(ln j + ln ln j) ≤ c · (n(ln n + ln lnn))n

whose binary representation is polynomial in the size of ϕ. Here, c is some
constant that is independent of n. �

Now, we turn our attention to the remaining two fragments obtained by
considering finite-data with cycles and cycle-free specifications with infinite data.
In both cases, we again prove tight complexity bounds. For both upper bounds,
we rely on algorithms searching for witnesses for the existence of an interval in
the fixed point. As these arguments are used in multiple proofs, we introduce
them first in a general format. So, fix some specification D and some trace τ of
events. If i is an interval in Tinc[[D]] τ , then either there is an event e in τ such
that init(e) = i (we say that i is initial in this case) or there are intervals i1, i2
in Tinc[[D]] τ and a rule δ ∈ D such that i is obtained by applying δ to i1 and i2.
So, for every interval i0 in Tinc[[D]] τ there is a binary (witness) tree whose nodes
are labeled by intervals in Tinc[[D]] τ , whose root is labeled by i0, whose leaves
are labeled by initial intervals, and where the children of a node labeled by i are
labeled by i1 and i2 such that there is a rule δ so that i is obtained by applying
δ to i1 and i2. Further, we can assume without loss of generality that each path
in the tree does not contain a repetition of an interval (if it does we can just
remove the part of the tree between the repetitions). Hence, the height of the
tree is bounded by the number of intervals. Furthermore, if D is cycle-free then
the height of a witness tree is also bounded by the number of rules in D. Note
that the same arguments also apply to T

k
inc[[D]] τ in case we deal with finite data.

Proposition 1. An interval is in Tinc[[D]] τ (T k
inc[[D]] τ) iff it has a witness tree.

We continue by settling the case of specifications with cycles, but restricted
to finite data.

Theorem 3. The inc-nfer evaluation problem with finite data is ExpTime-
complete.

Proof. We first prove the lower bound by reducing from the word problem for
alternating polynomial space Turing machines (see, e.g., [3] for detailed defini-
tions). As ExpTime = APSpace, this yields the desired lower bound. Thus, fix
an alternating polynomial space Turing machine M, i.e., there is some polyno-
mial p such that M uses at most space p(|w|) when started on input w. Let us
also fix some input w for M. We construct an instance of inc-nfer that simu-
lates a run of M on w. To simplify our construction, we make some assumptions
(all without loss of generality):

– The set Q of states of M is of the form {1, 2, . . . , q} for some q ∈ N and 1 is
the initial state.

The Complexity of Evaluating Nfer 397

– The tape alphabet Γ of M is equal to {0, 1, . . . , 9} and 0 is the blank symbol.
– Every run tree of M has only finite branches, i.e., M terminates on every

input. To this end, we assume the existence of a set of terminal states, which
is split into accepting and rejecting ones.

– Every nonterminal configuration (one with a nonterminal state) has exactly
two successor configurations. Such states are either existential or universal.

So, a configuration of M is of the form 	qr with q ∈ Q and 	, r ∈ Γ ∗ such that
|	| + |r| = p(|w|), with the convention that the head is on the first letter of r.

For c ∈ Γ ∗, let cR denote the reverse of c. Due to our assumption on Γ
we can treat 	 and rR as natural numbers encoded in base ten. We uniquely
identify a configuration 	qr by the triple (, q, rR) of natural numbers. The initial
configuration of M on w is encoded by the triple (0, 1, wR) representing that
the tape to the left of the head has only blanks, the machine is in the initial
state 1, and w is to the right of the head with the remaining cells of the tape
being blank.

This encoding allows us to read the tape cell the head is currently pointing
to, update the tape cell the head is pointing to, and move the head by simple
arithmetic operations. For example, whether the head points to a cell containing
a 3 is captured by rR mod 10 being 3, and writing a 7 to the cell pointed to
by the head is captured by adding −(rR mod 10) + 7 to rR. Finally, moving
the head to, say, the right, is captured by multiplying 	 by 10 and then adding
rR mod 10 to it, and then dividing rR by 10 (which is done without remainder
and therefore removes the last digit of rR). In the following, we use intervals
of the form (A, 	, q, rR) to encode the configuration 	qr of M. Here, A is some
identifier and we disregard timestamps, as all intervals have the same start and
end. Hence, 	, q, and rR are three map values of the interval.

We now describe the rules simulating M on w. We start with some fixed
event that yields the interval (G, 0, 1, wR) encoding the initial configuration.
As described above, the computation of a successor configuration can be imple-
mented using arithmetic operations. Thus, given the interval encoding the initial
configuration, one can write rules (one for each transition of M) that generate
the set of all configurations, encoded as intervals of the form (G, 	, q, rR). Fur-
thermore, one can write a rule that produces the interval (A, 	, q, rR) from every
interval (G, 	, q, rR) with an accepting q.

Now, we describe rules to compute the set of accepting configurations, i.e., the
smallest set A of configurations that contains all those with an accepting terminal
state, all existential ones that have a successor in A, and all universal ones that
have both successors in A. For every transition t from an existential state q,
there is a rule to produce the interval (A, 	, q, rR) if the intervals (G, 	, q, rR) and
(A, 	′, q′, rR′) already exist, where (′, q′, rR′) encodes the configuration obtained
by applying the transition t to the configuration encoded by (, q, rR). Thus, to
declare an existential configuration as accepting at least one of its successor
configurations has to be already declared as accepting.

Now, let us consider universal configurations. Due to our assumption, for
every pair of a state and a tape symbol, there are exactly two transitions t1
and t2 that are applicable. There are two rules for this situation. The first one

398 S. Kauffman and M. Zimmermann

Algorithm 1. Algorithm checking the existence of a witness tree
Input: Specification D, trace τ , bound k, target identifier ηT

1: n := 0
2: nondeterministically guess interval i labeled by ηT

3: while n < b(D, τ, k) and i is not initial do
4: n := n + 1
5: nondeterministically guess intervals i1, i2 and δ ∈ D such that i is obtained

by applying δ to i1 and i2
6: universally pick i := ij for j ∈ 1, 2
7: if i is initial then return accept
8: else return reject

produces the interval (B, 	, q, rR) if the intervals (G, 	, q, rR) and (A, 	′, q′, rR′)
already exist, where (′, q′, rR′) encodes the configuration obtained by apply-
ing the transition t1 to the configuration encoded by (, q, rR). The second one
produces the interval (A, 	, q, rR) if the intervals (B, 	, q, rR) and (A, 	′, q′, rR′)
already exist, where (′, q′, rR′) encodes the configuration obtained by applying
the transition t2 to the configuration encoded by (, q, rR). Thus, to declare a
universal configuration as accepting both of its successor configurations have to
be already declared as accepting.

Finally, there is a rule producing an interval with identifier ηT from the
interval (A, 0, 1, wR), indicating that the initial configuration is accepting. Thus,
the fixed point contains an interval labeled by ηT iff M accepts w.

It remains to show that the specification has the required properties. It is of
polynomial size and each rule has polynomial size (both measured in |M|+ |w|).
Further, all numbers used in the intervals are bounded by max{|Q|, 10p(|w|)},
whose binary representation is bounded polynomially in |M| + |w|.

Now, we prove the upper bound. We are given a specification D, an input
trace τ of events, a k ∈ N (given in binary), and a target label ηT and have
to determine whether the fixed point T

k
inc[[D]] τ contains an interval labeled by

ηT . We describe an alternating polynomial space Turing machine solving this
problem by searching for a witness tree. APSpace = ExpTime yields the result.

To this end, we rely on the following properties.

1. Every interval in T
k
inc[[D]] τ can be stored in polynomial space, as every value

in its map can be stored using log k bits, and there are only linearly many
such values (measured in |D| + |τ |).

2. There are only exponentially many intervals in T
k
inc[[D]] τ , e.g.,

b(D, τ, k) = ι · t2 · k|D|+|τ | ≤ ι · |τ |2 · 2(log k)(|D|+|τ |)

is a crude upper bound. Here, ι is the number of identifiers appearing in D
and τ and t is the number of timestamps in τ (recall that inc-nfer does not
create new timestamps).

3. Given three intervals i, i1, i2 and a rule δ ∈ D one can determine in polynomial
space whether i is obtained by applying δ to i1 and i2.

The Complexity of Evaluating Nfer 399

Using alternation, Algorithm 1 determines whether a witness tree exists
whose root is labeled by ηT and whose height is bounded by b. Due to Proposi-
tion 1, this is equivalent to an interval labeled by ηT being in T

k
inc[[D]] τ . Due to

the above properties, one can easily implement the algorithm on an alternating
polynomial space Turing machine, yielding the desired upper bound. �

Finally, we consider the last fragment: cycle-free specifications with infinite
data. A crucial aspect here is that cycle-free specifications imply an upper bound
on the map values of intervals in the fixed point, as each interval in the fixed point
can be generated by applying each rule at most once. For the lower bound, we
generate large numbers using a set of cycle-free rules and encode configurations
using these numbers as before.

Theorem 4. The cycle-free inc-nfer evaluation problem with infinite data is
NExpTime-complete.

4 The Full Nfer Language

This section introduces the second type of nfer rules, called exclusive rules, that
test for the existence of one interval and the absence of another interval matching
constraints. These rules were introduced in [19] and they, together with inclusive
rules, complete the nfer language. We define the syntax of these rules, including
mathematical functions to simplify the presentation, as follows:

η ← η1 unless � η2 where Φ map Ψ

where, η, η1, η2 ∈ I are identifiers, � ∈ {after, follow, contain} is a clock pred-
icate on two intervals (one for each of η1 and η2), and Φ and Ψ are the same as
in inclusive rules. We say that an exclusive rule includes η1 and excludes η2.

Exclusive rules share many features with inclusive rules but they require
additions to the inc-nfer semantics that were omitted in Sect. 2 for brevity.
Notably, these changes to the semantics produce equivalent results when evalu-
ating inclusive rules. The following definition gives semantics to exclusive rules:

R [[η ← η1 unless � η2 where Φ mapΨ]] π
= { i ∈ I : i1∈ π . id(i) = η ∧ id(i1) = η1

∧ start(i) = start(i1) ∧ end(i) = end(i1)
∧ map(i) = Ψ(map(i1),{ })
∧ ¬ (∃ i2∈ π . id(i2) = η2

∧ �(i1,i2) ∧ Φ (map(i1),map(i2))) }
Like with inclusive rules, exclusive rules match intervals in the input pool π to
produce a pool of new intervals. The difference is that exclusive rules produce
new intervals where one existing interval in π matches the identifier η1 and no
intervals exist that match the identifier η2 such that the clock predicate � and
the map predicate Φ hold for the η1-labeled and the η2-labeled interval.

The three possibilities referenced by � are shown in Fig. 2. These clock
predicates are based on ATL and described formally in a previous definition

400 S. Kauffman and M. Zimmermann

A B unless after C A B unless follow C A B unless contain C

Fig. 2. nfer clock predicates for exclusive rules

of nfer [19]. They relate two intervals using familiar ATL temporal operators
while the timestamps of the produced interval are copied from the included inter-
val rather than being defined by the clock predicate. In the figure, the excluded
interval labeled C is shown as a rectangle with a dotted outline and the pro-
duced interval labeled A is always the same as the included interval labeled B.
For example, given intervals i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C,
A ← B unless follow C holds when end(i2) = start(i1), start(i) = start(i1),
and end(i) = end(i1).

Exclusive rules are forbidden in specifications with cycles because the inter-
vals they produce depend on the persistent non-existence of other intervals.
When cycles exist in a specification, rules are evaluated multiple times and each
evaluation may add intervals. Exclusive rules may have non-deterministic behav-
ior in a specification with cycles because the intervals they exclude may be pro-
duced either before or after the exclusive rule is evaluated. The order in which
rules are evaluated may also affect the result of applying exclusive rules for this
reason, which motivates a generalization of the Tinc[[]] (resp. T

k
inc[[]]) function.

Tfull [[]] : Δ∗ → P → P

Tfull [[δ1 · · · δn]] π =

{
S [[topsort(δ1 · · · δn)]] (π) if ∃ topsort(δ1 · · · δn)
Tinc [[δ1 · · · δn]] (π) otherwise

where topsort is a topological sort of the directed graph G(D) described in Sect. 3
and Tinc[[]] is the interpretation function defined in Sect. 2. A topological sort,
which can be computed in linear time [13], only exists in a cycle-free specification.
In that case, topsort orders the rules such that the fixed-point computation of
Tinc[[]] can be short-circuited, since one application of S[[]] is sufficient to produce
the final pool. The results of Tfull[[]] are independent of the topological sort, as
any such ordering will guarantee that all intervals matched by a rule exist before
it is applied using R[[]] .

In the following, we study the complexity of the cycle-free nfer evaluation
problem with finite and infinite data, starting with the former.

Theorem 5. The cycle-free nfer evaluation problem with finite data is
PSpace-complete.

Proof. The lower bound already holds for the special case of inc-nfer (see
Theorem 2), so we only need to prove the upper bound. To this end, we show
how to witness in alternating polynomial time that a given interval is in the

The Complexity of Evaluating Nfer 401

fixed point, which yields the desired bound due to APTime = PSpace. Note
that we cannot just search for a witness tree as for inc-nfer, as we also have
to handle exclusive rules.

Intuitively, an exclusive rule requires the existence of one interval in the fixed
point and the non-existence of other intervals in the fixed point. We have seen
how to capture existence of an interval via the existence of a witness tree. Hence,
we can capture the non-existence of an interval via the non-existence of a witness
tree. As we construct an alternating algorithm, we use duality to capture the
non-existence of a witness tree and switch between an existential and a universal
mode every time the non-existence of an interval is to be checked.

As in Algorithm 1, the algorithm keeps track of a single interval and applies
rules in a backwards fashion. Using alternation, it guesses and verifies a tree
structure witnessing the (non-)existence of intervals in the fixed point. To sim-
ulate exclusive rules, it uses a Boolean flag f to keep track of the parity of the
number of exclusive rules that have been simulated, initialized with zero. If f
is zero, then a rule δ is guessed nondeterministically. If this rule is inclusive,
two intervals i1 and i2 are guessed nondeterministically such that the current
interval i is obtained from i1 and i2 by applying δ. Then, the current interval
is updated by universally picking i := i1 or i := i2, so that both choices are
checked. This case is similar to Algorithm 1.

On the other hand, if the rule is exclusive, then a single interval i1 is
guessed nondeterministically and another interval i2 is picked universally so that
δ includes i1, excludes i2, and i is the result of applying δ to i1. Now, the cur-
rent interval is updated by universally picking i := i1 or i := i2, so that both
choices are checked. In the second case, the flag is toggled to signify that another
exclusive rule is simulated.

In the case where f is equal to one, the approach is just dual, i.e., we switch
existential and universal choices. As the input specification is cycle-free, we need
to simulate at most |D| applications of a rule. Finally, acceptance depends on
whether the value of the flag, i.e., while the flag is zero the last interval has to
be initial (i.e., in the input trace) while it has to be non-initial if the flag is one.

The algorithm runs in alternating polynomial time as each run simulates at
most |D| rule applications and each application can be implemented in determin-
istic polynomial time due to the encodings of the map values and time stamps
being bounded by |D| + |τ |. �

Finally, we consider the case of infinite data. Here, the upper bound we obtain
is AExpTime(poly), the class of problems decided by alternating exponential-
time Turing machines with a polynomial number of alternations between exis-
tential and universal states.

Theorem 6. The cycle-free nfer evaluation problem with infinite data is
NExpTime-hard and in AExpTime(poly).

5 Minimality

This section discusses the minimality restriction and its implications on the com-
plexity of the nfer evaluation problem. Traditionally, nfer supports the concept

402 S. Kauffman and M. Zimmermann

Fig. 3. Minimality discards the checkered interval produced by A ← B before C

of a selection function that may modify the results of R[[]] [19]. The reason is
to support minimality, which filters any intervals that are not minimal in their
timestamps. Although minimality was originally introduced for its utility [18],
it has positive implications for evaluation complexity as well.

Figure 3 shows the effect of minimality on the evaluation of a single rule.
In the figure, time moves from left to right and the dark-gray intervals are the
inputs to R[[A ← B before C where true map { }]] . This evaluation produces
the three intervals labeled A but minimality discards the longer interval with a
checkerboard pattern because there are shorter A intervals in the same period.

Given a pool π of existing intervals and a pool π′ of intervals to add, the
minimality function returns only the minimal intervals in π′ that do not sub-
sume any interval in π. That is, the intervals where there is not another interval
with the same identifier with a shorter duration during the same time. No new
intervals will be produced with the same identifier and timestamps when one
already exists in π. If there are multiple intervals with the same identifier and
the same timestamps in π′, the one with the least map is retained (with respect
to some fixed ordering of maps). We define minimality as the following:

minimality : P × P → P

minimality (π′, π)
= {(η, s, e,M) ∈ π′ : �(η, s1, e1,M1) ∈ π. s ≤ s1 ∧ e1 ≤ e}
∩ {(η, s, e,M) ∈ π′ : �(η, s2, e2,M2) ∈ π′. (s ≤ s2 ∧ e2 < e) ∨ (s < s2 ∧ e2 ≤ e)}
∩ {(η, s, e,M) ∈ π′ : �(η, s3, e3,M3) ∈ π′. s = s3 ∧ e = e3 ∧ M3 ≺ M}

where ≺ is a total order over M used as a tiebreaker when more than one new
intervals exist in π′ with equal identifiers and timestamps.

For the nfer evaluation problem under minimality we replace R[[]] in the
semantics with an interpretation function that applies minimality to the result
of R[[]] .

Rmin[[]] : Δ → P → P

Rmin[[δ]] π = minimality (R[[δ]]π,π)

Theorem 7. The nfer evaluation problem with finite data and minimality is
in PTime.

Proof. Consider an instance with specification D, trace τ , and bound k on the
map values. Due to minimality, the size of T

k
full[[D]] τ is bounded by (ι · t2) + |τ |,

The Complexity of Evaluating Nfer 403

where ι is the number of identifiers in D and τ and t is the number of timestamps
in τ . Note that this bound is independent of k.

Also, map values and timestamps can be represented with polynomially many
bits in the size of D and τ . Hence, we can compute T

k
full[[D]] τ and check whether

it contains an interval labeled by the target identifier in polynomial time. �
A similar approach works for infinite data.

Theorem 8. The nfer evaluation problem with infinite data and minimality is
in ExpTime.

6 Discussion and Conclusion

We have studied the complexity of the nfer evaluation problem. It is undecid-
able in the presence of recursion and infinite data, even without exclusive rules.
In contrast, regardless of the presence of exclusive rules, the evaluation prob-
lem is decidable for cycle-free specifications or with respect to finite data. Most
importantly for applications, the problem is in PTime if we impose the minimal-
ity constraint and restrict to finite data. While we only allow natural numbers
and Booleans as map values, our upper bounds also hold for more complex data
types, i.e., signed numbers, (fixed-precision) floating point numbers, and strings,
which were included in the original definitions [18,19].

Most of our complexity bounds are tight, but we leave two gaps. First, the
cycle-free nfer evaluation problem with infinite data is NExpTime-hard and
in AExpTime(poly). Recall that the lower bound already holds for inc-nfer,
i.e., without exclusive rules, while the polynomial number of alternations in the
upper bound are used to simulate exclusive rules (our algorithm requires one
alternation per exclusive rule). One approach to close this gap is to capture
alternations of a Turing machine using exclusive rules.

Secondly, the nfer evaluation problem with infinite data and minimality
is in ExpTime while no nontrivial lower bounds are known. The upper bound
follows from the fact that the map values may be of doubly-exponential size, i.e.,
they require exponential time to be computed. However, minimality is a very
restrictive constraint that in particular severely limits the ability to simulate
nondeterministic computations. Coupled with the fact that minimality implies
a polynomial upper bound on the number of intervals in the fixed point, this
explains the lack of a nontrivial lower bound.

All our lower bound proofs only use intervals with the same timestamps,
i.e., the complexity stems from the manipulation of data instead of temporal
reasoning. Similarly, the upper bound proofs are mostly concerned with encoding
of data and the temporal reasoning is trivial. One of the reasons is that nfer
rules do not create new timestamps for intervals; newly created intervals can
only use timestamps that already appear in the input trace. This leaves only a
polynomial number of combinations of start points and end points, which is (at
least) exponentially smaller than the number of data values. For this reason, we
propose to investigate data-free nfer to analyze the complexity of the evaluation

404 S. Kauffman and M. Zimmermann

problem with respect to the choice of temporal operators. In this case, there are
only polynomially many possible intervals in the fixed point. So, a trivial upper
bound on the complexity is PTime, but we expect better results for fragments.

Another interesting fragment is the combination of cycles and exclusive rules.
As long as exclusive rules lie outside cycles the deterministic semantics can be
defined. In the full version of this paper [21] we show that this fragment has an
ExpTime-complete evaluation problem when restricted to finite data.

References

1. Aceto, L., Della Monica, D., Goranko, V., Ingólfsdóttir, A., Montanari, A., Sciav-
icco, G.: A complete classification of the expressiveness of interval logics of Allen’s
relations: the general and the dense cases. Acta Inform. 53(3), 207–246 (2015).
https://doi.org/10.1007/s00236-015-0231-4

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, USA (2009)

4. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 7

5. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous
query system for internet databases. In: International Conference on Management
of Data (ACM SIGMOD 2000), pp. 379–390. ACM (2000). https://doi.org/10.
1145/342009.335432

6. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

7. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring (2019)

8. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 68–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 6

9. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991). https://doi.org/10.1145/115234.115351

10. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2014). https://doi.org/10.1007/s10009-014-0309-2

11. Havelund, K.: Git repository (2022). git@github.com:rv-tools/nfer.git.
Accessed January 2022

12. Havelund, K., Omer, M., Peled, D.: Monitoring first-order interval logic. In: Cali-
nescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 66–83.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92124-8 4

13. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(1962). https://doi.org/10.1145/368996.369025

14. Kauffman, S.: nfer – a tool for event stream abstraction. In: Calinescu, R.,
Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 103–109. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92124-8 6

https://doi.org/10.1007/s00236-015-0231-4
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1145/342009.335432
https://doi.org/10.1145/342009.335432
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1145/115234.115351
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/978-3-030-92124-8_6

The Complexity of Evaluating Nfer 405

15. Kauffman, S.: Runtime monitoring for uncertain times. Ph.D. thesis, University
of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON,
Canada (2021). http://hdl.handle.net/10012/16853

16. Kauffman, S.: Website (2022). http://nfer.io/. Accessed January 2022
17. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.:

Palisade: a framework for anomaly detection in embedded systems. J. Syst. Archi-
tect. 113, 101876 (2021). https://doi.org/10.1016/j.sysarc.2020.101876

18. Kauffman, S., Havelund, K., Joshi, R.: nfer – a notation and system for inferring
event stream abstractions. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 235–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 15

19. Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream
abstractions. Formal Methods Syst. Design 53(1), 54–82 (2018). https://doi.org/
10.1007/s10703-018-0317-z

20. Kauffman, S., Joshi, R., Havelund, K.: Towards a logic for inferring properties of
event streams. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
394–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 31

21. Kauffman, S., Zimmermann, M.: The complexity of evaluating nfer.
arXiv:2202.13677 (2022)

22. Luckham, D.: The power of events: an introduction to complex event processing
in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, p. 3. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88808-6 2

23. Minsky, M.L.: Computation. Prentice-Hall, Englewood Cliffs (1967)
24. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern and

Shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp.
345–356. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-
1 29

25. Montanari, A., Puppis, G., Sala, P., Sciavicco, G.: Decidability of the interval
temporal logic ABB over the natural numbers. In: Proceedings of STACS 2010.
pp. 597–608. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010). https://
hal.archives-ouvertes.fr/hal-00717798

26. Narayan, A., et al.: System call logs with natural random faults: experimental
design and application. In: International Workshop on Silicon Errors in Logic -
System Effects (SELSE 2017). SELSE-13, IEEE (2017)

27. Rosser, B.: Explicit bounds for some functions of prime numbers. Am. J. Math.
63(1), 211–232 (1941). http://www.jstor.org/stable/2371291

28. Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chaturanga, S., Perera, S.,
Nanayakkara, V.: Siddhi: a second look at complex event processing architectures.
In: Workshop on Gateway Computing Environments (GCE 2011), pp. 43–50. ACM
(2011). https://doi.org/10.1145/2110486.2110493

http://hdl.handle.net/10012/16853
http://nfer.io/
https://doi.org/10.1016/j.sysarc.2020.101876
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/978-3-319-47169-3_31
http://arxiv.org/abs/2202.13677
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/978-3-642-14162-1_29
https://doi.org/10.1007/978-3-642-14162-1_29
https://hal.archives-ouvertes.fr/hal-00717798
https://hal.archives-ouvertes.fr/hal-00717798
http://www.jstor.org/stable/2371291
https://doi.org/10.1145/2110486.2110493

Supporting Algorithm Analysis
with Symbolic Execution in Alk

Alexandru-Ioan Lungu and Dorel Lucanu(B)

Alexandru Ioan Cuza University, Iaşi, Romania
dlucanu@info.uaic.ro

Abstract. Alk is an educational platform designed for writing, execut-
ing, and analyzing algorithms. The platform consists of an algorithmic
language, an interpreter able to execute algorithms, and tools to under-
stand, analyse, and evaluate algorithms, and to acquire a rigorous algo-
rithm thinking. In this paper, we present Alk and show how the analysis
and evaluation tools are built using symbolic execution and data-flow
analysis.

1 Introduction

Alk is an educational platform designed for writing, executing, and analyzing
algorithms. To have a taste of Alk, we consider the algorithm described in Fig. 1
using Alk Language [15,16]. This algorithm can be executed as it is using the
Alk interpreter (we suppose it is stored in the file fstalg.alk):

$ alki -a fstalg.alk -m -i "a |-> [1,2,2,3,3,3] "

a |-> [1, 2, 2, 3, 3, 3]

slp |-> 3

i |-> 6

Fig. 1. An algorithm in Alk

where the value of the option -i describes
the initial state of the algorithm execution,
which consists of a single variable a having as
value the array [1,2,2,3,3,3]. When the ini-
tial state is complex, it could be included in
a file, given then as the value for the option
-i. The option -m is for displaying the final
state. In this way we see the execution of the
algorithm as a process transforming the ini-
tial state into the final state; how the input is encoded in the initial state and
the output is extracted from the final state is a different story.

In this paper we describe the tools included in the Alk platform that help
the user in analyzing, evaluating, and understanding algorithms. These tools are
based on three main features implemented in Alk:

symbolic execution helped by data-flow analysis and abstract interpretation.

c© Springer Nature Switzerland AG 2022
Y. Aït-Ameur and F. Crăciun (Eds.): TASE 2022, LNCS 13299, pp. 406–423, 2022.
https://doi.org/10.1007/978-3-031-10363-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10363-6_27&domain=pdf
https://doi.org/10.1007/978-3-031-10363-6_27

Supporting Algorithm Analysis with Symbolic Execution 407

The analysis of the algorithms raises several challenges that must be addressed.
Perhaps the most important challenge is what analysis mechanisms are suit-

able for understanding the algorithm behavior and acquiring a rigorous algorith-
mic thinking. How to discover what an algorithm computes? How to understand
loops and what properties a loop preserves? How to reason when an algorithm
is used by another one? How to evaluate the execution time of an algorithm?

There are also several language-dependent challenges. As we can see in Fig. 1,
the Alk language does not include variable declarations. In order to analyze an
algorithm, the types for the variables used in that algorithm must be known and
they can be found using data-flow analysis. Another examples where the data-
flow analysis is useful include the set of variables modified by a loop statement
(e.g., to check loop invariants) and worst case execution time analysis (to find
out recurrences). The size of arrays in Alk is dynamic. For instance, given an
assignment a[7] = z;, the only information about size we know is that it is
greater than or equal to 8. This can be easily handled for concrete executions,
but becomes problematic when the array is specified as a theory for a SMT solver
(see [17] for such a theory). Alk includes also statements for describing non-
deterministic or randomized algorithms. If the analysis of the non-deterministic
algorithms is similar to that of deterministic ones, the randomized algorithms
require other means, which are out of the scope of this paper.

Symbolic execution is used by almost all analysis tools and methods. A sym-
bolic execution interpreter of a language can be obtained from the concrete
execution one [2,14]. However, its implementation requires the extension of the
language definition with symbolic values, an interface to a external prover (e.g.,
SMT solver), and a set of annotations, e.g., for algorithm specification, loop
invariants, state invariants, initializing some variables with fresh symbolic val-
ues, loop upper bounds for the execution time analysis.

Contribution. The main contributions of this paper include:

1. A description of the algorithmic language Alk, including its extension to han-
dle symbolic executions. The symbolic extension is mainly based on the app-
roach presented in [2,14], but taking into account the specificity of the Alk
language and its implementation [15].

2. We show how experiments performed using the symbolic execution can help
a user to understand what a piece of an algorithm computes. For instance,
we may experimentally discover what a loop executes.

3. Once we make a presumption on what a loop computes, we may use invari-
ants to check if the presumption is valid. The verification of the invariant is
accomplished by symbolic execution and a SMT solver (Z3, [9]).

4. We use a (pre/post)-condition specification of an algorithm in order to under-
stand how it is used by other algorithms. Usually, this kind of specification is
for the problem solved by the algorithm. Here we use it only for understanding
some properties of the data computed by an algorithm.

5. We show that a data-flow analysis and symbolic execution (based on an
abstract semantics of the language) can be used to derive recurrences helping

408 A.-I. Lungu and D. Lucanu

to evaluate the execution time of an algorithm. This is work in progress, but
the experiments we have done up to now are promising.

Even if some analysis means presented are strongly related to algorithm/program
verification, the focus of this paper is not on verification. In order to verify an
algorithm, a complete formal specification of the problem is needed, and that
depends on the problem domain. In most cases, the annotation language must
be extended with statements that express concepts and relations in the problem
domain.

Related Work. There are similarities between Alk and Python: both are dynam-
ically typed languages, use similar data structures, and work based on an inter-
preter. Python is a language created for a more general purpose: web develop-
ment, software development, mathematics, system scripting, and so on. So, only
a kernel of Python has to be used as an algorithmic language, which is fine for
simple deterministic algorithms. For non-deterministic algorithms or random-
ized algorithms, external libraries must be used, and the algorithms must be
instrumented in order to compute, e.g., the probability of a computation. The
Alk interpreter detects if an execution is randomized and automatically start to
compute the probability. Also, for a non-deterministic algorithm it may display
all possible results. In order to analyse algorithms in Python, external tools must
be used. For instance, for checking invariants for Python programs can be used
Nagini [10], which based on the Viper infrastructure [18].

The implementation of the Alk platform follows the methodology and the
logical foundation promoted by the K Framework [6,7], including the formal
definition of the language and the analysis components. The verification is imple-
mented using reachability logic [14,21] and the annotation language is the usual
one used by program verifiers, e.g., Dafny [13], Why3 [5], Frama-C [12], JML [11],
Key [1], Verifast [22], etc. However, Alk uses a minimal set annotations since the
focus is the algorithm understanding and not full verification. The implementa-
tion of the data-flow analysis and abstract interpretation components follows a
classic approach [8,19,20]. The time analysis component is inspired from [4] and
combined with symbolic computation [3].

Structure of the Paper: Section 2 introduces the Alk language together with its
concrete and symbolic semantics. Section 3 shows how the symbolic execution
of algorithms can be used to understand what an algorithm computes. Section 4
shows how the invariants can be used to understand the behavior of loops and
how this invariants are checked using symbolic execution. The specification of
Alk algorithms and the use of these specifications is presented in Sect. 5. Section 6
presents a case study of symbolically estimating the execution time of an algo-
rithm. Finally, Sect. 7 ends the paper with some concluding remarks.

2 Alk - An Educational Algorithmic
Language/Framework

What is the best language for writing, testing and analyzing algorithms, and
helpful in acquiring an algorithmic thinking? Most of the textbooks use a pseu-

Supporting Algorithm Analysis with Symbolic Execution 409

docode for writing algorithms. A pseudocode is a mix between a set of statements
with a precise semantics (code) and text written with a free syntax and intu-
itive semantics (pseudo). A requirement, which is almost always omitted, is that
the text with free syntax must be able to be translated into code, such that
we can get a full formal description of the algorithm, if needed. Obviously, the
algorithm described in pseudocode cannot be tested/executed and the analysis
is semi-formal. Some textbooks are presenting algorithms as programs in a pro-
gramming language, e.g., Pascal, C, C++, Java, Python, etc. These algorithms
can be tested and formally analyzed. A main drawback of such an approach is
that the algorithm design techniques (and algorithmic thinking) must be learned
at the same time with the use of the programming language, which also could
be a strong challenging task. Moreover, many times a big part of the effort is
oriented towards the implementation of the needed data structures, their testing,
and only after that to the algorithm description in the terms of the implemented
data structure. The testing is not always easy, because there are needed routines
for reading input data and for writing the output results. The analysis of the
algorithms requires the use of additional specialized tools.

What properties should have a suitable algorithmic language? We think that
the following features are essential for an algorithmic language (the order is
arbitrary).

1. To have a formal definition for both the syntax and the semantics. The syntax
should be as simple as possible, expressive, and intuitive, including the main
algorithmic thinking structures. The semantics of a programming language
can be given using various paradigms, e.g., operational, axiomatic, denota-
tional, at different abstraction levels. For an algorithm oriented language, the
best choice is an operational semantics at an abstract level that help the algo-
rithmic thinking, the understanding of the execution of the algorithms, and
to supply a computation model suitable for analysis.

2. To be executable such that the algorithms or fragments of them can be tested
in an easy and flexible way. Having a formal definition, it should be easy to
implement an interpreter.

3. To include means for relating an algorithm to the problem solved by it. This
can be achieved, e.g., by suitable data structures and annotations.

4. To offer support for algorithm analysis and algorithm thinking. This should
also be based on the formal definition and incorporated in a natural way.

5. To allow to describe various kind of algorithms (e.g., deterministic, non-
deterministic, probabilistic). This feature should be supported by a natural
component of the algorithm oriented language, in contrast with using external
structures.

The main purpose of this paper is to show how Alk fulfills the requirements 1
(formal definition) and 4 (algorithm analysis and algorithm thinking). In this
section we briefly present its syntax and semantics.

410 A.-I. Lungu and D. Lucanu

Fig. 2. Bubble Sort in Alk

2.1 Syntax

The syntax of the Alk language is very simple, similar to the imperative part of
C or Java. We do not include its formal definition here, which is intuitive, and
we use instead examples to get its flavor. Figure 2 shows a typical description of
algorithms in Alk. The algorithm bubbleSort proceeds by asking for inversions
(successive element in wrong order) and solving them until no more inversions
are found (and the array is sorted). The variable last stores the position of
the last inversion. Some operations of the algorithm are described as separated
algorithms. The last line is for testing the algorithm. There are no variable
declarations, so that the algorithm can be executed as well on integers, floats,
or strings:

$ alki -a bubblesort.alk -m -i "b |-> [2, 3, 1]"

b |-> [1, 2, 3]

$ alki -a bubblesort.alk -m -i "b |-> [1.2, 1.5, 1.4]"

b |-> [1.2, 1.4, 1.5]

$ alki -a bubblesort.alk -m -i "b |-> [\"ab\", \"ac\", \"aa\"]"

b |-> ["aa", "ab", "ac"]

The annotations @requires are only informative here for the concrete executions,
but they could be easily transformed into run-time verification assertions (not
implemented yet). Later, we show how this kind of annotations are used for
static analysis.

Remark 1. In order to save space, we often use mathematical notation in annota-
tions. Examples: a∧ b instead of a && b, or a≤ b≤ c instead of a <= b && b <= c.
We also interchangeably use the notions of algorithm and that of Alk program.

Supporting Algorithm Analysis with Symbolic Execution 411

Alk algorithms may process complex data structures without using special
definition for them. Here is a directed graph D and its description as an Alk
value:

2

5 7

D |-> {

V -> [2, 5, 7]

adj -> {

2 |-> < 5, 7 >

5 |-> < 2, 7 >

7 |-> < 2 >

}

}

The Alk value D is a structure with two fields: D.V (for vertices) and D.adj (for
arcs given by the external adjacency lists), where D.V is an array and D.adj
is a map having the elements of D.V as keys and the corresponding the exter-
nal adjacency lists as values. Here is the Alk recursive description of the DFS
algorithm:

dfsRec(out D, i, out S) {

if (!(i in S)) {

// visit i

S = S U {i};

foreach j from D.adj[i]

dfsRec(D, j, S);

}

}

2.2 Semantics

A concrete configuration is a pair 〈κ〉 〈σ〉, where κ is the code/algorithm to
be executed and σ is the current state. Since we want the algorithms to be
described at an abstract level, independent on the value representation, a state
σ is modeled as a map from the algorithm variables to their values. The set of
possible values for variables includes integers, Booleans, floats, strings, struc-
tures (records), arrays, lists, maps, sets, and any combination of these. We write
〈κ � . . .〉 〈. . . σ . . .〉 when we want to emphasize the first piece κ of code to be
evaluated/executed in the next step and the part σ of the state that is used in
evaluating/executing κ. The semantics is given by rules of the form

〈κ � . . .〉 〈. . . σ . . .〉 ⇒ 〈κ′ � . . .〉 〈. . . σ′ . . .〉 if ψ

where κ and σ may include meta-variables, and ψ is a condition. The syntax
of rules is inspired from the K Framework (see, e.g., [6,7]) and the set of such
rules completely describes the operational semantics of the language. Here are
three examples of rules, describing the semantics of the assignment operator and
of the if statement:

412 A.-I. Lungu and D. Lucanu

〈X = V � κ〉 〈σ〉 ⇒ 〈V � κ〉 〈σ[X �→ V]〉
〈if true S1 else S2 � κ〉 〈σ〉 ⇒ 〈S1 � κ〉 〈σ〉
〈if false S1 else S2 � κ〉 〈σ〉 ⇒ 〈S2 � κ〉 〈σ〉

The right-hand side of the assignment and the if condition are reduced to values
by similar rules. The meta-variable κ is for the remaining code to be executed.
Non-deterministic algorithms are written using the choose X from C statement,
having the following semantics:

〈choose X from CV � κ〉 〈σ〉 ⇒ 〈κ〉 〈σ[X �→ V]〉
where CV is a “container value” (obtained by evaluating C), V is a value arbitrar-
ily chosen from CV , and σ[X �→ V] is σ but where the new value of X is V . The
randomized algorithms are described using various probabilistic distributions,
like uniform X from C with the semantics:

〈uniform X from CV � κ〉 〈σ〉 〈prob〉 ⇒ 〈κ〉 〈σ[X �→ V]〉
〈
prob · 1

CV .size()

〉

where V is a value uniformly chosen from CV . Note that for probabilistic algo-
rithms, the configuration is extended with a new “cell” storing the probability of
the execution path.

2.3 Concrete and Symbolic Executions

A concrete execution is a sequence of execution steps

〈κ0〉 〈σ0〉 ⇒ 〈κ1〉 〈σ1〉 ⇒ 〈κ2〉 〈σ2〉 ⇒ . . .

where κ0 is the initial algorithm and σ0 is the initial state. An execution step is
obtained by applying a semantic rule.

A symbolic configuration is a triple 〈κ〉 〈σ〉 〈pc〉1, where κ is the symbolic
code/algorithm to be executed, σ is the current symbolic state, and pc is the
path condition. Symbolic code and symbolic states are similar to concrete ones,
but where the values can be symbolic expressions built with symbolic logical vari-
ables, operators from the definition of Alk, and possible new logical functions.
Symbolic code may also include annotations that can declare and/or constraint
the use of symbolic values (we will see later some examples). As for concrete
configurations, we write 〈k � . . .〉 〈. . . σ . . .〉 〈pc〉 to emphasize only the compo-
nents involved in the next step. A symbolic execution is a sequence of execution
steps

〈k0〉 〈σ0〉 〈pc0〉 ⇒ 〈k1〉 〈σ1〉 〈pc1〉 ⇒ 〈k2〉 〈σ2〉 〈pc2〉 ⇒ . . .

where all path conditions are satisfiable (this is checked with a SMT solver, e.g.,
Z3). The semantic execution steps are obtained by applying rules of the form

〈κ � . . .〉 〈. . . σ . . .〉 〈pc〉 ⇒ 〈κ′ � . . .〉 〈. . . σ′ . . .〉 〈pc′〉 if ψ

1 The symbolic execution is given only for non-randomized algorithms.

Supporting Algorithm Analysis with Symbolic Execution 413

Plateau1 Plateau2

Fig. 3. Different versions of Plateau

which are automatically obtained from the concrete ones [2,14]. Here the sym-
bolic counterparts of the concrete rules presented in the previous section:

〈X = V � κ〉 〈σ〉 〈pc〉 ⇒ 〈V � κ〉 〈σ[X �→ V]〉 〈pc〉
〈if B S1 else S2 � κ〉 〈σ〉 〈pc〉 ⇒ 〈S1 � κ〉 〈σ〉 〈pc ∧ B〉
〈if B S1 else S2 � κ〉 〈σ〉 〈pc〉 ⇒ 〈S2 � κ〉 〈σ〉 〈pc ∧ ¬B〉
〈choose X from SCV � κ〉 〈σ〉 〈pc〉 ⇒ 〈κ〉 〈σ[X �→?V]〉 〈pc ∧ ?V ∈SCV 〉

where B is now a symbolic value (expression), SCV is a symbolic “container
value”, and ?V is a fresh symbolic variable (implicitly considered existentially
quantified).

3 Understanding Algorithms by Experimentation

Consider the algorithm Plateau1 in Fig. 3 (left) and assume that we want to find
out what is computed in the variable slp. One possibility is to test the algorithm
for various inputs. For instance, executing the algorithm with the initial state
a �→ [1, 2, 3], the final state will include slp �→ 1. This answer does not say too
much to us. Instead, we may use symbolic execution to find out what conditions
should satisfy a for a given value of slp. We added to the Alk language two
annotations that allows us to symbolically execute algorithms: @havoc(X:T);,
which assigns a fresh symbolic value of type T to the variable X, and @assume φ;,
which adds to the path condition the constraint φ. Executing symbolically the
algorithm Plateau2 in Fig. 3 (right), with the initial path condition a.size() == 3

stated by the @assume annotation and analyzing the path condition from the final
states, we get the following information:

1. slp �→ 3 if ($a[1]==$a[0]) ∧ ($a[2]==$a[0]);
2. slp �→ 1if !($a[1]==$a[0]) ∧ !($a[2]==$a[1]);
3. slp �→ 2 if ($a[1]==$a[0])∧ !($a[2]==$a[0])∨!($a[1]==$a[0])∧ $a[2]==$a[1]).

414 A.-I. Lungu and D. Lucanu

Now it is easy to guess that slp stores the length of the longest array segment
of equal elements (plateau).

We explain now how the above information is obtained. The symbolic exe-
cution is considering some assumptions stated using @assume by appending
them into an initial path condition. Each time the while loop is reached, the
i < a.size() condition is evaluated and the execution is split. The first gener-
ated branch assumes that the condition does not hold and continues with the
code after the while statement, while the second generated branch assumes that
the condition holds and executes the statements inside the loop.

The symbolic execution of loops usually leads to infinite executions. This is
why, in the previous example, there is a constraint on a.size() to be equal to 3,
which bounds the number of executions:

init

1 < a.size()
2 < a.size() !3 < a.size()

!(2 < a.size())
!(1 < a.size())

Furthermore, the execution splitting is also happening on the if statement. One
branch assumes the equality of two elements in the array, while the other pre-
sumes that two elements are not equal. These assumptions are reflected in the
path condition:

init

$a[0] == $a[1]
$a[0] == $a[2] slp �→ 3

!($a[0] == $a[2]) slp �→ 2

!($a[0] == $a[1])
$a[1] == $a[2] slp �→ 2

!($a[1] == $a[2]) slp �→ 1

The user can also add assertions to check if the algorithm is satisfying a
post condition. The annotation for an assertion is of the form @assert ψ; and
its symbolic execution determines if the provided property ψ is implied by the
current path condition.

4 Understanding Loops

The use of invariants can help to check if the intended behavior of an iterative
structure is the same to that described in the algorithmic language. Consider
again the algorithm from Fig. 3. In Sect. 3 we presumed that slp stores the length
of the longest plateau. Now we can check that using an appropriate invariant, as
it is suggested in Fig. 4 (left). The invariant explains in fact what kind of value
is stored by the variable slp at the beginning and at the end of the body of the
while loop, for each iteration.

Alk interpreter is able to check the invariant by symbolic execution of the
annotated algorithm and to eliminate the concern of endless symbolic executions
due to the lack of constraints over loop conditions. When an invariant is defined,

Supporting Algorithm Analysis with Symbolic Execution 415

Invariant annotation Invariant checking by symbolic execution
(the first branch)

Fig. 4. Plateau3

the Alk interpreter simply splits the symbolic execution. The first branch tries to
validate the invariant by executing the loop body, while the second one manages
the code after the while statement, assuming the invariant and the negated
condition. An example of the first branch is In Fig. 4 (right), which includes
the algorithm that is symbolically executed to check the invariant, where ψ is
the invariant from the left hand side: the execution of the loop body starts
from a symbolic state satisfying the invariant and the condition, and at the end
the invariant is checked again. If this process ends successfully, Alk considers the
invariant as verified. Otherwise, it warns the user that the used invariant couldn’t
be verified. A description of the second branch, which continues the execution
assuming that while loop was executed, is shown in Fig. 5: the execution of
while is abstracted by checking that initially the invariant holds, assigning fresh

Invariant annotation Symbolic execution of the while loop
(the second branch)

Fig. 5. Plateau4

416 A.-I. Lungu and D. Lucanu

symbolic values to the variable modified by the invariant, and assuming the
invariant and the negation of the while loop.

There is also a data-flow analysis component that at this stage can compute
the set of variables changed inside a loop body. This system is built based on
the support of data-flow framework inside Alk. Overall, the modifies annotation
can be generated if none is already specified. This process is taking place in the
preprocessing stage, so there is no prior symbolic execution, so no proper context.
It takes advantage of the fact that the current configuration is symbolic and tries
to inject the modifies annotations, while taking care of semantics equivalence.

The steps described above are summarized by the following rules:

〈 while (E)

@invariantψ;

S � κ

〉
〈σ〉 〈pc〉 �

〈 while (E)

@invariantψ;

− MV ;

S � κ

〉
〈σ〉 〈pc〉

〈 while (E)

@invariant ψ;

@modifies MV ;

S � κ

〉
〈σ〉 〈pc〉 ⇒

〈 @havoc(MV);

@assume ψ ∧ E;

S;

@assert ψ;

〉
〈σ〉 〈pc〉

⇒
〈 @assert ψ;

@havoc(MV);

@assume ψ ∧ ¬E;� κ

〉
〈σ〉 〈pc〉

The first rule correspond to the program transformation given by the data-flow
analysis component (and therefore we used a different arrow), and the last two
rules to the two branches generated: the invariant checking and the symbolic
execution of the program that follows after the looping structure.

Writing invariants is not always an easy task. More commonly, one specifies
what property is expected after the loop is finished. For instance, for the plateau
example, we expect that slp to store the length of the longest plateau and
this can be specified as in Fig. 6 (left). Then, the symbolic interpreter should
automatically derive the invariant and check it as in Fig. 6 (right). Finally, the
invariant and the negation of the loop condition should imply the loopassert

condition:

〈 while (E)

S

@loopassert φ;

� κ

〉
〈σ〉 〈pc〉 �

〈 while (E)

@invariant ψ;

@modifies MV ;

S � κ

〉
〈σ〉 〈pc ∧ (ψ ∧ ¬E) =⇒ φ〉

The idea behind this feature is to allow the interpreter itself to determine
the invariant based on an assertion preferred by users non-familiar with invari-
ants. The transformation shows that Alk should find ψ which together with the
negated condition imply the provided assertion φ.

Supporting Algorithm Analysis with Symbolic Execution 417

Loop assert annotation Invariant annotation

Fig. 6. Loop assertion

5 Understanding the Use of Algorithms

Alk language has support for understanding algorithms as functions from input
states that satisfy certain properties (known as precondition) to output states
that satisfy certain properties (known as postcondition). Similar to verification
languages, Alk includes the annotation @requires for specifying the precondition
and the annotation @ensures for postcondition. The pairs of these annotations
are also known as contracts and they help in a correct use simpler algorithms
as “sub-algorithms” in more complex algorithms. In this section we explain how
these annotations are handled by the symbolic execution.

Technically, the Alk interpreter parses the whole algorithm and identifies the
functions that should be verified. It identifies the ones which have at least one
@ensures annotation and it starts the verification process. Once a function is fully
verified, the calls will not execute the function body, but they make use of the
pre-conditions and post-conditions which were previously validated.

The pre-conditions should hold at the start of the function call, which means
that it is safe to assume them before verifying the body statements. Obviously,
this step and the ones to come should work on freshly generated symbolic values
for each parameter in use. This means that Alk uses a @havoc statement for all
parameters (i.e. input, output, global uses and global modifies).

The challenge here is to determine the data type of each parameter, as the
path condition should keep track of these details in order to make use of the
SMT solver. We extended the annotation language by allowing to express type
constraints for some variable. For instance, in Fig. 7, the parameter a of the
function askIth is constrained to have the type array<int> by the first @requires

annotation. This kind of annotations are not required when a type-inference
analysis component can determine the type of parameters from the function

418 A.-I. Lungu and D. Lucanu

Specification of Its checking by symbolic execution

Fig. 7. Pre/post-condition specification

body2. Similarly, the return type can be specified using ensures annotations for
\result, when it cannot be computed by the type inference component. After
the type of parameters are known, a new thread with the following initial sym-
bolic configuration is generated in order to check the function body against its
specification:

F (LP, out OP)
uses IGV
modifies MGV
@requires φ

@ensures ψ

S

⇒
〈 @havoc(MGV , IGV ,OP ,LP);

@havoc(\result);

@assume φ;

S[(\result = R];)/(return R;);

@assert ψ;

〉
〈σ〉 〈pc〉

LP is the list of the “call-by-value” parameters, OP the list of out parameters
defined outside function, IGV the set of the uses global variables that are used
in the function body and not modified, and MGV the list of the modifies global
variables used that are modified by the function body. The @havoc annotations
initialize the parameters with fresh symbolic values. Each return statement is
replaced by an assignment of the reserved variable \result. Any loop invariant
and/or assertion in the function body S (if any) are validated using the approach
presented in the previous sections. Finally, the post-condition should be asserted
in order to ensure that the user defined annotations are validated.

2 This is work in progress and it is also data-flow-based.

Supporting Algorithm Analysis with Symbolic Execution 419

The function calls are no longer executing the function body statements, but
makes use of the validated conditions:

〈F (VS) � κ 〉 〈σ〉 〈pc〉 ⇒
〈 @assert φ;

@havoc(MGV , IGV ,OP , −);

@assume ψ;

\result � κ

〉
〈σ〉 〈pc〉

At first, the pre-conditions should be asserted in order to make sure the initial
assumptions hold. Afterwards, only the variables which are to be changed in the
function body are actually assigned to fresh symbolic values and are constrained
by the post-conditions. While evaluating the post-conditions, the returning value
of the function is in fact the symbolic value assigned to the special variable
\result, in order to consider the right constraints. An example is shown in Fig. 8,
where $result_0 is the symbolic value of the variable \result.

Call of Using function specifications

Fig. 8. Verified function call

6 Hints for Estimating Execution Time

The Alk interpreter has an internal data-flow framework implemented which
helps developing different kind of analysis tools. For instance, it can be success-
fully executed against Live Variables and Constant Propagation systems, which
are used to analyze an algorithm.

A data-flow framework is a mechanism over which analysis tools can be
created. Such approach is easy to use as it allows a consistent interface across
all analyzers. This framework will also aid the implementation of several static
tools required for the previous features like identifying the variables modified in
a loop or identifying the data type of a variable.

Worst Case Execution Time (WCET) estimation analysis tool3 is inspired
from [4] and it is based on the data-flow analysis that consists of the following
components:

– CFG: this is a forward analysis and it uses the original control flow graph.
3 This tool is under development and it reached a state in which it can display recur-

rence formulas for each variable modified inside a loop statement.

420 A.-I. Lungu and D. Lucanu

– Lattice domain: consists of execution path sets and the inclusion relation.
An execution path consists of an environment and a path condition. A set of
execution paths is also called a program context.

– Transfer function: this function is applied over all execution paths inside a
program context. A simple statement is symbolically evaluated, an if state-
ment modifies the path condition and a loop statement virtualizes the execu-
tion path updating the path condition.

– Initialization function: all CFG node states are initialized with the empty
program context, excluding the input node which is initialized with a singleton
program context containing the initial execution path.

Fig. 9. Operation annotation

The virtualization process, used by the trans-
fer function, means that all variables are reas-
signed a virtual symbolic value representing the
state at the beginning of a generic loop iteration
t. For this matter, each loop statement is mapped
to an indexed name used by the virtual value. For
example, tl0 is the index of an iteration of loop l0.
This technique is used in order to fit the data-flow
constraints. That is, there is no need to generate a
new execution path for each loop body execution,
otherwise there is no proper fix-point to satisfy
the data-flow prerequisites. Even if this tool lim-
its itself to one single execution of a loop body, the information about how the
variables are changed is insightful enough.

The @count annotation is pre-processed and it is replaced by an incremen-
tation operation on a fresh variable. This is used in order to identify which
operations should be considered when computing the WCET. For the algorithm
in Fig. 9, the WCET tool identifies a single loop which captures three variables:
sum, i and n. In this example, the while condition evaluation is counted. Because
there is only one loop, the recurrence formulae are omitting the l0 quantifier.
Here are the computed recurrences:

i(t) =

{
1, t = 0
i(t − 1) + 1, (t − 1) ≤ n(t − 1)

sum(t) =

{
0, t = 0
sum(t − 1) + i(t), i(t − 1) ≤ n(t − 1)

n(t) =

{
$n, t = 0
n(t − 1), i(t − 1) ≤ n(t − 1)

@count(t) =

{
0, t = 0
@count(t − 1) + 1, i(t − 1) ≤ n(t − 1)

It can be seen that these functions are not defined for all non-negative t. For
example, there is no valid definition for the sum variable if i exceeds n.

Supporting Algorithm Analysis with Symbolic Execution 421

For execution paths which are considering the negated value of a while con-
dition, the variables inside the program context are virtualized into a symbolic
value representing the state at iteration ω. Consider that ωl0 is the first iteration
for which the loop l0 condition is not satisfied. For the algorithm in Fig. 9, the
final environment and path condition are displayed below:

i �→ i(ω) sum �→ sum(ω)
n �→ n(ω) @count �→ @count(ω)
PC �→ ¬(i(ω) ≤ n(ω))

At the final stage of this analysis process, Alk identifies the value for @count,
which is in fact the number of evaluations of the while condition. Using this
metric, an approximation of the WCET can be computed as long as the recur-
rence formulae can be resolved. Assume that n = N is the size of an instance.
By solving the formulae, Alk identifies that @count = N, and ω = N . It is easy
to notice that the WCET, specified by the chosen @count expression, is O(N).
This result helps an algorithm designer to understand how his algorithm works.

7 Conclusion

We presented Alk, a platform dedicated to educational use and showed how the
symbolic execution and data-flow&abstract-interpretation-based analysis supply
a suitable way to build tools that facilitate the understanding of algorithms.

Starting right from the light-weight syntax and intuitive but formal seman-
tics, the Alk platform focuses on delivering an out-of-the-box solution for the
users which are new to algorithm design and analysis. The Alk interpreter is
equipped with a symbolic execution engine which can check assertions, invariants
and functions against specification or assumptions. All of these were designed to
allow experimentation and better understanding, while it also avoids altering the
core algorithm structure. As of a greater impact, the WCET tool using data-flow
framework is implemented to aid the understanding of algorithm efficiency and
display relations helping to approximate the worst case execution time.

The Alk interpreter reached a mature state, which ensures that the concrete
and symbolic execution engines are solid, while the verification phase is theoret-
ically correct and efficient due to the Z3 engine. The data-flow framework is well
supported and optimized and completely supports several analysis tools.

The WCET mechanism is still under development. The challenges which
make the difference between the current system and a real WCET tool is that
these recurrence formulae are not yet solved by the Alk interpreter. This means
that there are no generated constrains over the ω values. There is future work
which targets the implementation of a recurrence formulae solver, which can
determine the final values of the variables and eventually the final value of a
@count variable, but right now these metrics are useful just to understand the
changes inside the program state in regard to loop.

Acknowledgment. We warmly thank the anonymous TASE reviewers for their
insightful comments, which helped us to improve the presentation.

422 A.-I. Lungu and D. Lucanu

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. Lec-
ture Notes in Computer Science, vol. 10001. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-49812-6

2. Arusoaie, A., Lucanu, D., Rusu, V.: A generic framework for symbolic execution.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
281–301. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1_16

3. Ballabriga, C., Forget, J., Lipari, G.: Symbolic WCET computation. ACM Trans.
Embed. Comput. Syst. 17(2), 39:1–39:26 (2018)

4. Blieberger, J.: Data-flow frameworks for worst-case execution time analysis. Real
Time Syst. 22(3), 183–227 (2002)

5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Let’s verify this with why3.
Int. J. Softw. Tools Technol. Transf. 17(6), 709–727 (2015)

6. Chen, X., Roşu, G.: Matching μ-logic: foundation of K framework. In: Proceedings
of the 8th Conference on Algebra and Coalgebra in Computer Science (CALCO
2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 139, pp. 1–4.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

7. Chen, X., Roşu, G.: K—a semantic framework for programming languages and
formal analysis. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2019. LNCS, vol.
12154, pp. 122–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
55089-9_4

8. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)
9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

10. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 596–603. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_33

11. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the Java modeling language. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Schmitt, P., Ulbrich, M. (eds.) Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_7

12. Kosmatov, N., Signoles, J.: Frama-C, a collaborative framework for C code ver-
ification: tutorial synopsis. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 92–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9_7

13. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

14. Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution:
a coinductive approach. J. Symb. Comput. 80, 125–163 (2017)

15. Lungu, A., Lucanu, D.: Alk interpreter. https://github.com/alk-language/java-
semantics. Accessed 23 Feb 2022

16. Lungu, A., Lucanu, D.: Alk interpreter - reference manual. https://github.com/
alk-language/java-semantics/wiki/Reference-Manual. Accessed 27 Feb 2022

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-02654-1_16
https://doi.org/10.1007/978-3-030-55089-9_4
https://doi.org/10.1007/978-3-030-55089-9_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://github.com/alk-language/java-semantics
https://github.com/alk-language/java-semantics
https://github.com/alk-language/java-semantics/wiki/Reference-Manual
https://github.com/alk-language/java-semantics/wiki/Reference-Manual

Supporting Algorithm Analysis with Symbolic Execution 423

17. Lungu, A.-I.: Extended Z3 array. In: 23th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (FROM Workshop), SYNASC
2021. IEEE (2021, to appear)

18. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.)
Dependable Software Systems Engineering. NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 50, pp. 104–125. IOS
Press (2017)

19. Nielson, F., Nielson, H.R.: Principles of Program Analysis. Springer, Cham (1999).
https://doi.org/10.1007/978-3-662-03811-6

20. Rival, X., Yi, K.: Introduction to Static Analysis: An Abstract Interpretation Per-
spective. MIT Press, Cambridge (2020)

21. Stefanescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Serbanuta, T.-F., Rosu,
G.: All-path reachability logic. Log. Methods Comput. Sci. 15(2) (2019)

22. Vogels, F., Jacobs, B., Piessens, F.: Featherweight verifast. Log. Methods Comput.
Sci. 11(3), 1–57 (2015)

https://doi.org/10.1007/978-3-662-03811-6

Author Index

Ameur-Boulifa, Rabéa 381
Arun-Kumar, S. 173
Ayed, Rahma Ben 256

Badevic, Goran 49
Bao, Yulong 92
Boender, Jaap 49
Bonsangue, Marcello 290
Bougacha, Racem 256

Caltais, Georgiana 290
Chattopadhyay, Sudipta 29
Chaymae, El Jabri 274
Chen, Zhenbang 148
Cheng, Baijun 155
Collart-Dutilleul, Simon 256

Dai, Ting 29
Devillers, Raymond 15
Dong, Guoliang 29
Dong, Jin Song 29
Du, Yide 148

Feng, Hui 290
Fu, Xuanming 326

Gall, Pascale Le 113
Gao, Ying 220
Gaston, Christophe 113
Guo, Yanhui 155

Hasrat, Imran Riaz 363
Hong, Weijiang 148

Jensen, Peter Gjøl 363

Kallwies, Hannes 197
Kauffman, Sean 388
Kissi, Salim Yahia 381
König, Harald 308

Laleau, Régine 256
Larsen, Kim Guldstrand 344, 363
Lawford, Mark 65
Leucker, Martin 197

Liu, Kai 238
Lucanu, Dorel 406
Lungu, Alexandru-Ioan 406

Mahe, Erwan 113
Marc, Frappier 274
Mariegaard, Anders 344
Meng, Fanqi 131
Miné, Antoine 73
Monahan, Rosemary 180
Moore, Nicholas 65

Parolini, Francesco 73
Pierre-Martin, Tardif 274
Prilop, Meiko 197
Pu, Bowen 205

Ren, Yan 155
Reynolds, Conor 180

Schewe, Klaus-Dieter 1
Schmid, Stefan 344
Schmitz, Malte 197
Seladji, Yassamin 381
Shen, Wuwei 92
Shi, Jie 29
Srba, Jiří 344, 363
Sun, Jun 29
Sun, Pengfei 92

Tang, Xiaochao 326
Thibaud, Ecarot 274
Tredup, Ronny 15
Tunç, Hünkar Can 290

Wang, Ji 148
Wang, Jianlin 326
Wang, Jingdong 131
Wang, Jingyi 29
Wang, Meng 220
Wang, Peifang 131
Wang, Xinyu 29
Wang, Xuesong 131
Wolter, Uwe 308

Xu, Guosheng 155

426 Author Index

Yang, Gang 155
Yang, Zhengfeng 326
Yu, Bin 220

Zeng, Zhenbing 326
Zhang, Chunxi 238

Zhang, Haitao 205
Zhang, Rong 238
Zhang, Wenhui 92
Zhao, Yingqi 92
Zhu, Xue-Yang 92
Zimmermann, Martin 388

	 Preface
	 Organization
	Keynotes
	 Neural Network Discrimination: Evaluation, Mitigation and Certification
	 SMT Solving: Historical Roots, Recent Developments and Future Directions
	 Rigorous System Design for AI Software
	 Contents

	Practical Theory of Computation on Structures
	1 Introduction
	2 Towards a Theory of Computation on Structures
	3 Insignificant Non-determinism
	3.1 Abstract State Machines
	3.2 Polynomial-Time-Bounded ASMs
	3.3 Insignificant Choice ASMs
	3.4 PTIME Logics
	3.5 Recursive Syntax
	3.6 PTIME Verification

	References

	Complexity of Distributed Petri Net Synthesis
	1 Introduction
	2 Preliminaries
	3 Distributability
	4 Complexity Analysis
	5 Conclusion
	References

	Repairing Adversarial Texts Through Perturbation
	1 Introduction
	2 Background
	3 Our Repair Approach
	3.1 Adversarial Text Detection
	3.2 Semantic-Preserving Perturbation
	3.3 Voting for the Correct Label
	3.4 Overall Algorithm

	4 Experiments
	4.1 Experimental Settings
	4.2 Research Questions
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Formal Verification of a Keystore
	1 Introduction
	1.1 Related Work
	1.2 The Keystore
	1.3 Verification Objectives

	2 Methodology
	2.1 The Code
	2.2 Abstract Specification
	2.3 C Code
	2.4 Refinement
	2.5 Simulation
	2.6 Integration

	3 Standard Library Connection
	3.1 Heap Abstraction
	3.2 The Connector

	4 Discussion
	4.1 Verification
	4.2 Lessons Learned
	4.3 Future Research
	4.4 Conclusion

	References

	A Case Study in the Automated Translation of BSV Hardware to PVS Formal Logic with Subsequent Verification
	1 Introduction
	2 Preliminaries
	3 Computational Model
	4 Optimizations Addressing Scalability
	5 Case Study: RapidIO Encoder
	6 Related Work
	7 Conclusion
	References

	Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks
	1 Introduction
	2 Background
	2.1 ReDoS Vulnerabilities
	2.2 ReDoS Detection
	2.3 Regexes Basics
	2.4 Regex Matching

	3 Semantics
	4 Detection of ReDoS Vulnerabilities
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	On Verification of Smart Contracts via Model Checking
	1 Introduction
	2 Related Work
	3 Solidity and VERDS
	3.1 Solidity
	3.2 Model Checking Tool VERDS

	4 Overview of mcVer Framework
	5 Smart Contract Modeling
	6 Scenario Configuration and Specification Formulation
	6.1 Scenario Configuration
	6.2 Specification

	7 Verification and Counter Example Extraction
	8 Case Studies and Experiments
	8.1 Security Vulnerabilities Checking
	8.2 Access Control Contract

	9 Conclusion and Future Work
	References

	Equivalence of Denotational and Operational Semantics for Interaction Languages
	1 Introduction
	2 Basic Interactions and Intuition of Their Meaning
	2.1 Preliminaries
	2.2 Basic Interactions
	2.3 Repetition Operators on Sets of Traces

	3 Syntax and Denotational Semantics
	4 A Structural Operational Semantics
	4.1 Termination
	4.2 Dealing with Weak-Sequencing Using Evasion and Pruning
	4.3 Execution Relation and Operational Semantics
	4.4 Illustrative Example

	5 Proving the Equivalence of both Semantics
	6 Related Works
	7 Conclusion and Further Work
	References

	Automatic Classification of Bug Reports Based on Multiple Text Information and Reports’ Intention
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preprocessing
	3.2 Feature Extraction
	3.3 Classifier

	4 Experiment
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Results

	5 Discussion
	5.1 Experiment Analysis
	5.2 Threats to Validity

	6 Conclusion and Future Work
	References

	Collaborative Verification of Uninterpreted Programs
	1 Introduction
	2 Motivation
	3 Collaborative Verification Framework
	4 Preliminary Result
	5 Related Work
	6 Next Steps
	7 Conclusion
	References

	MSDetector: A Static PHP Webshell Detection System Based on Deep-Learning
	1 Introduction
	2 Motivation
	2.1 Framework Overview
	2.2 Motivating Example

	3 MSDetector
	3.1 Pre-training Transformer Model
	3.2 Training Transformer Model and Detecting Webshell

	4 Experiment and Evaluation
	4.1 Experimental Configuration and Evaluation Criteria
	4.2 Datasets
	4.3 Experiments for Answering RQ1
	4.4 Experiments for Answering RQ2
	4.5 Experiments for Answering RQ3

	5 Limitations
	6 Related Work
	6.1 Static Webshell Detection
	6.2 Code Representation
	6.3 Pre-trained Models for Programming Languages

	7 Conclusions
	References

	Extending Process Algebra with an Undefined Action
	1 Motivation and Related Work
	2 Labelled Transition Systems: Basics
	3 Basic Extended Process Algebra (BXPA)
	4 Lifted Strong Bisimulations and PHML
	5 Conclusion
	References

	Machine-Assisted Proofs for Institutions in Coq
	1 Introduction
	2 Mathematical Background
	2.1 First-Order Predicate Logic

	3 Institutions in Coq
	4 First-Order Logic in Coq
	4.1 Representing FOL
	4.2 Proofs and Proof Strategy

	5 Formalizing EVT
	5.1 Representing EVT
	5.2 Proofs and Proof Strategy

	6 Conclusion
	References

	Optimizing Trans-Compilers in Runtime Verification Makes Sense – Sometimes
	1 Introduction
	2 TeSSLa and Its Reference Compiler
	3 The TeSSLa Compiler and Optimizations
	3.1 Expansion of the Language Core and the DSL
	3.2 Usage of Smart Initializations Within the Monitors

	4 Evaluation
	5 Summary
	References

	Testing Vehicle-Mounted Systems: A Stepwise Symbolic Execution Approach for OSEK/VDX Programs
	1 Introduction
	2 OSEK/VDX Background and Motivating Example
	2.1 Scheduler of OSEK/VDX OS
	2.2 Running Example

	3 Symbolic Execution for OSEK/VDX Programs
	3.1 Overview
	3.2 Sequentialization of OSEK/VDX Programs
	3.3 Background of Symbolic Execution Techniques
	3.4 Stepwise Symbolic Execution

	4 Experiment and Evaluation
	4.1 Experiments and Benchmarks
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Dynamic Specification Mining Based on Transformer
	1 Introduction
	2 Preliminary
	2.1 Seq2seq Model
	2.2 Attention Mechanism
	2.3 Transformer Model

	3 Dynamic Specification Mining Based on Transformer
	3.1 Trace Generating
	3.2 Transformer Model Learning
	3.3 Trace Sampling
	3.4 Feature Extraction
	3.5 Cluster Analysis
	3.6 Model Selection

	4 Experiment
	4.1 DataSet
	4.2 Experience Setting
	4.3 Experiment Results and Analyses

	5 Related Work
	5.1 Mining Properties Expressed in Temporal Logic Formulas
	5.2 Mining Properties Expressed in FSA-Like Model

	6 Conclusion
	References

	Dynamic Environment Simulation for Database Performance Evaluation
	1 Introduction
	2 Related Work
	3 Workload Generator Definition
	3.1 Workload Generator Definition

	4 Environment Simulation
	4.1 Workload Modeling on Each Individual Dimension
	4.2 Modeling Environment by Learning Workload Interaction Among Dimensions
	4.3 Dynamic Environment Simulation

	5 Experiment Results
	5.1 Environment Workload Demonstration
	5.2 Environment Simulation
	5.3 Evaluation on Database

	6 Conclusion
	References

	Extending SysML with Refinement and Decomposition Mechanisms to Generate Event-B Specifications
	1 Introduction
	2 Background
	2.1 SysML
	2.2 Event-B

	3 SysML Extensions with Refinement and Decomposition Mechanisms
	3.1 SysML Package Diagram Extensions
	3.2 SysML Sequence Diagram Extension

	4 Illustration of the SysML Extensions
	5 SysML to Event-B Translation
	5.1 Translation Rules
	5.2 Implementation
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Development of Monitoring Systems for Anomaly Detection Using ASTD Specifications
	1 Introduction
	2 Related Work
	3 Case Study
	3.1 Graphical Specification of the IDS
	3.2 Action Definitions
	3.3 IDS Code Generation
	3.4 Example of Specification Execution

	4 Evaluation and Discussion
	5 Conclusion
	References

	A Language-Based Causal Model for Safety
	1 Introduction
	2 Preliminaries
	3 A Railway Crossing Example
	4 A Language-Based Causal Model
	5 Computing Causes
	6 Experimental Evaluation
	7 Extensions
	8 Conclusions
	References

	Consistency of Heterogeneously Typed Behavioural Models: A Coalgebraic Approach
	1 Introduction and Motivation
	2 Running Example
	3 Background
	3.1 Notation
	3.2 Coalgebras
	3.3 Signature Morphisms
	3.4 Predicate Lifting
	3.5 Temporal Operators

	4 Formula Translation
	4.1 Truth Preservation
	4.2 The Case Study Revisited
	4.3 Handshaking

	5 Related Work
	6 Future Work
	References

	Improving Adversarial Robustness of Deep Neural Networks via Linear Programming
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 Adversarial Robustness

	3 Training for Adversarial Robustness
	3.1 Generating Easily-Misclassified Examples
	3.2 Improving Adversarial Robustness with Easily-Misclassified Examples

	4 Experiments
	4.1 Effect of Parameters
	4.2 Performance on Adversarial Examples Generation
	4.3 Performance on Robust Training

	5 Related Work
	6 Conclusion
	References

	AllSynth: Transiently Correct Network Update Synthesis Accounting for Operator Preferences
	1 Introduction
	2 A Model for Update Synthesis
	2.1 Routing Policies
	2.2 Update Synthesis
	2.3 Simple Update Sequence Reordering

	3 The AllSynth Tool and the Synthesis Algorithm
	4 Implementation and Evaluation
	5 Conclusion
	References

	End-to-End Heat-Pump Control Using Continuous Time Stochastic Modelling and Uppaal Stratego
	1 Introduction
	2 Usecase and Method
	2.1 Methodological Overview

	3 Thermal Model Identification
	4 Modelling in Uppaal Stratego
	4.1 Learning by Stratego
	4.2 Online Synthesis

	5 Evaluation
	6 Conclusion
	References

	Security Vulnerabilities Detection Through Assertion-Based Approach
	1 Introduction
	2 Assertion Construction
	3 Conclusion
	References

	The Complexity of Evaluating Nfer
	1 Introduction
	2 The Inclusive Nfer Language
	3 Complexity Results for Inclusive Nfer
	4 The Full Nfer Language
	5 Minimality
	6 Discussion and Conclusion
	References

	Supporting Algorithm Analysis with Symbolic Execution in Alk
	1 Introduction
	2 Alk - An Educational Algorithmic Language/Framework
	2.1 Syntax
	2.2 Semantics
	2.3 Concrete and Symbolic Executions

	3 Understanding Algorithms by Experimentation
	4 Understanding Loops
	5 Understanding the Use of Algorithms
	6 Hints for Estimating Execution Time
	7 Conclusion
	References

	Author Index

