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Chapter 9
Gold Nanoparticles: A Lethal Nanoweapon 
Against Multidrug-Resistant Bacteria

Md. Monir Hossain, Shakil Ahmed Polash, Tanushree Saha, 
and Satya Ranjan Sarker

Abstract  Multidrug-resistant (MDR) bacteria, also called superbugs, pose serious 
threat to the human health and existence because of their ability to develop resistant 
mechanism against commercially available antibiotics. Besides increasing the mor-
bidity and mortality rate of patients, MDR bacteria are also putting huge financial 
stress on health sectors across the globe. It is estimated that approximately 700,000 
people are losing their life every year due to MDR bacteria. It has been projected 
that more than 10 million people around the world will be the victim of MDR bac-
teria by 2050, if the current trend continues, superseding cancer as the main cause 
of global mortality. Hence, the mankind is in dire need to find an effective and safe 
tool against MDR bacteria.

Several metallic nanoparticles including Au, Ag, ZnO, and GO (graphene oxide) 
have shown antibacterial propensity against a wide range of bacteria. However, gold 
nanoparticles (AuNPs) received wide attention because of their inertness for the 
human body, easy surface fabrication properties, and optical properties. AuNPs 
demonstrate antibacterial activity through direct interaction with bacterial cell wall, 
generating reactive oxygen species (ROS), passing through the cell membrane and 
interacting with cellular macromolecules (i.e., DNA and proteins). In this chapter, 
we shall discuss different types of AuNPs, their role as potent antibacterial agents 
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against pathogenic as well as multidrug-resistant bacteria, mechanism of antibacte-
rial activity, biocompatibility, and future prospects in healthcare system.

Keywords  Gold nanoparticles · Multidrug-resistant bacteria · Antibacterial 
activity · Biocompatibility

9.1 � Introduction

Gold (Au) is an inert metal with distinct electronic and optical properties. When Au 
nanoparticles (AuNPs) are excited with light of a particular wavelength, the incident 
photons interact strongly with the conduction band of electrons and cause them to 
oscillate with resonant frequency. The collective oscillation is known as localized 
surface plasmon resonance (LSPR) that creates strong and localized electromag-
netic fields and allows sensitive detection of changes in dielectric environment sur-
rounding the surface of nanoparticles. This unique property makes them highly 
useful in imaging, drug delivery, cancer theranostics, and tackling menace of 
multidrug-resistant bacteria (Shankar et al. 2004; Mukherjee et al. 2001; Li et al. 
2014). Au nanoparticles induce hyperthermia (i.e., increased temperature to kill 
cancer cells) upon illumination with near-infrared (NIR) light (Dash and Bag 2014; 
Huang et al. 2011). Furthermore, AuNPs can also be successfully and selectively 
delivered to malignant as well as benign tumors and can act as carriers for chemo-
therapeutic drugs. They are used as imaging agents as well as biosensors because of 
their ability to emit photons upon illumination (Marangoni et al. 2013).

The misuse and overuse of antibiotics have resulted in the emergence of 
multidrug-resistant bacteria, which is the cause of an additional medical costs of up 
to billion dollars every year (Rossolini et al. 2014; Li et al. 2014). Hence, suitable 
antibacterial agents to deal with multidrug-resistant bacteria are urgently needed. 
The antibacterial activity demonstrated by various nanomaterials including Ag, Au, 
Cu, Ti, ZnO2, and MgO2 could be a suitable alternative to commercially available 
antibiotics (Vimbela et al. 2017; Hossain et al. 2019; Niloy et al. 2020; Polash et al. 
2021; Ranjan Sarker et  al. 2019). More specifically, gold nanoparticles (AuNPs) 
have distinctive properties including their adjustable shape, size, surface properties, 
optical properties, high stability, biocompatibility, and multiple functionalization 
potential that make them suitable for different applications in the field of nanomedi-
cine (Ashraf et al. 2016).

Based on the unique physical and chemical properties of nanoparticles, they pro-
vide a common platform for therapeutic applications against drug-resistant bacteria 
(Li et al. 2014). For example, AuNPs have already been used in the treatment of 
gum disease and dental caries, diagnosis of cancer, and in tissue engineering. Since 
AuNPs have antifungal and antibacterial activity, they can be conjugated with 
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biopolymers to improve their efficacy as bioactive materials (Bapat et al. 2020). In 
addition, AuNPs can also be used as carriers of antibacterial drugs. Antibacterial 
drugs are conjugated with AuNPs through chemical interactions so that drugs can be 
released at the desired site of action (Fan et al. 2019). Notably, AuNPs do not show 
toxic effects to normal cells at certain concentrations (Fang et al. 2019; Chatterjee 
et al. 2011). Therefore, it is possible to modify AuNPs that exhibit antibacterial activ-
ity against standard bacterial strains in general and have unique antibacterial 
activity against multidrug-resistant bacteria in particular (Su et al. 2020).

The recent development in nanoscience and nanotechnology has helped research-
ers to design and develop novel biomaterials including AuNPs with excellent bioac-
tivity as well as biocompatibility. Many inorganic (i.e., metal) nanoparticles have 
been developed including AuNPs. The AuNPs show various colors based on their 
shape, size, and amount of aggregation of particles (Daniel and Astruc 2004). They 
are used in medical and pharmaceutical industries for various purposes: antibacte-
rial agents, antibiofilm, diagnostic tools, drug delivery vehicles, personal care prod-
ucts, and for cosmetics development (Su et  al. 2020; Abdalla et  al. 2020). This 
chapter summarizes recent research works on the development of AuNPs and their 
application to tackle the menace of pathogenic and multidrug-resistant (MDR) 
bacteria.

9.2 � Different Types of AuNPs

There are many different types of gold nanoparticles (AuNPs) depending on their 
size, shape, and physical properties (Fig. 9.1). Important AuNPs include Au nano-
spheres, nanorods, nanoshells, and nanocages. There is also another type of 
Au-based nanoparticles known as “SERS nanoparticles” with excellent surface-
enhanced Raman scattering property. Most of the AuNPs are produced with well-
defined size, shape, and monodispersity due to the continuous development of 
synthetic, and characterization techniques in the last two decades.

9.2.1 � Au Nanospheres

The gold nanospheres, also known as gold colloids of 2 to 100 nm in diameter, can 
be synthesized through controlled reduction of an aqueous HAuCl4 solution using 
different reducing agents under varying conditions. Citrate is the most widely used 
reducing agent that can produce nearly monodisperse gold nanospheres (Turkevich 
et al. 1951; Frens 1973). The size of the nanospheres can be controlled by changing 
the citrate to gold ratio. Generally, less amount of citrate generates larger nano-
spheres. The two major limitations of this method are the low yield and the obliga-
tion of using water as the solvent. A two-phase method, introduced by Faraday in 
1857, capable of producing stable (irrespective of temperature and air) gold 
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Fig. 9.1  Different types of AuNPs according to their shape and morphology. (Adapted from 
Freitas de Freitas et al. (2018))

nanospheres of reduced dispersity and defined size (i.e., 10 nm in diameter), was 
reported in 1993 (Giersig and Mulvaney 1993). The phase transfer reagent such as 
tetraoctylammonium bromide was used to improve this technique. Moreover, thiol/
gold molar ratios can affect the average size of the nanospheres (Brust et al. 1994). 
Larger thiol-to-gold ratios and rapid addition of cold reductant solutions yield 
smaller and more monodispersed gold nanospheres. Many other methods have 
already been investigated for the synthesis of gold nanospheres using other reducing 
agents or ligands (Leff et al. 1996). On the other hand, dendrimers have been used 
as templates or stabilizers for the generation of Au nanospheres (Esumi et al. 1998). 
Biocompatible block copolymers have already been employed for the synthesis of 
sterically stabilized Au nanospheres in aqueous solution (Yuan et  al. 2006). The 
shape and size of the Au nanospheres could be readily controlled by optimizing the 
synthesis parameters including block copolymer composition, relative/absolute 
concentrations of the block copolymer, and HAuCl4. It was also reported that Au 
nanospheres could be grown in human cells (Anshup et al. 2005). Furthermore, Au 
nanospheres display a single absorption peak in the visible range between 510 nm 
and 550 nm. The absorption peak shifts to a longer wavelength with the increasing 
particle size, and the width of the absorption spectra is related to the size distribu-
tion range. Many other types of AuNPs with different size/shape including nanorods, 
nanoshells, and nanocages have been explored to obtain optical properties suitable 
for biomedical applications.
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9.2.2 � Au Nanorods

The Au nanorods have received worldwide attention because of their inimitable 
shape-dependent optical properties (i.e., different plasmon bands) that make the Au 
nanorods exclusive materials for biological imaging, sensing, photothermal therapy, 
and drug delivery (Hainfeld et al. 2008; Kodiha et al. 2014; Nichols and Bae 2014; 
Choi et al. 2010). Their application is very precise because even a small change in 
the shape, size, and surface nature alter their properties which in turn affect their 
biological applications. The surface plasmon resonance (SPR) band of Au nanorods 
is in the NIR region that makes them suitable for photothermal therapy, biological 
sensing, and imaging (Martin 1994). The Au nanorods can be synthesized using the 
template method. The diameter of the template membrane pore can be used to deter-
mine the diameter of the Au nanorods, while the length of the nanorods can be 
controlled through the amount of gold deposited within the pores. The main disad-
vantage of this method is low yield since only one monolayer of nanorods is pre-
pared. The formation of Au nanorods through electrochemical synthesis has been 
also reported (Reetz and Helbig 1994; Yu et al. 1997; Chang et al. 1999). According 
to this approach, many experimental parameters determine the length of the Au 
nanorods that influence their aspect ratio which is defined as the length divided by 
the width. On the other hand, the seed-mediated synthesis, the most established 
method for Au nanorod preparation, provides higher aspect ratio than that prepared 
by the other methods (Jana et al. 2001a; Busbee et al. 2003). Usually, Au seeds are 
prepared by chemical reduction of Au salt (i.e., HAuCl4.3H2O) with a strong reduc-
ing agent including sodium borohydride (i.e., NaBH4). These seeds, serving as the 
nucleation sites for Au nanorods, are then added to the growth solution containing 
Au salt, a weak reducing agent such as ascorbic acid, and hexadecyltrimethyl 
ammonium bromide. The aspect ratio of Au nanorods can be controlled by varying 
the amount of gold seeds with respect to the precursor. Furthermore, Au nanorods 
can be produced in quantitative yield upon addition of AgNO3 (Jana et al. 2001b, 
2002). Besides, several other types of approaches have also been investigated for the 
fabrication of Au nanorods including bioreduction (Canizal et al. 2001), growth on 
mica surface (Mieszawska and Zamborini 2005), and photochemical synthesis 
(Kim et al. 2006).

9.2.3 � Au Nanocages

Gold (Au) nanocages are characterized by their ultrathin porous walls and hollow 
interiors. They are synthesized using silver nanoparticles (AgNPs) as template that 
participate in the galvanic replacement (GR) reaction (Skrabalak et al. 2007, 2008; 
Lu et al. 2007). The controllable pores on the surface of Au nanocages have been 
synthesized via galvanic replacement reaction between silver nanocubes and aque-
ous HAuCl4 (Chen et  al. 2006). The silver (Ag) nanostructures with controlled 
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morphologies can be generated through polyol reduction where AgNO3 is reduced 
by ethylene glycol. Sequential addition of Ag atoms to the seeds produces the 
desired nanostructures by controlling Ag seed crystalline structures in the presence 
of poly(vinylpyrrolidone), a polymer capable of selectively binding to the surface. 
Ag nanostructures are used as supportive templates that can be transformed into Au 
nanostructures with hollow interiors via galvanic replacement (Chen et  al. 2005, 
2006). The wall thickness and dimension of the resultant Au nanocages could be 
readily controlled with high precision by adjusting the molar ratio of Ag to HAuCl4 
(Cai et al. 2008). The light penetration ability in soft tissues can be maximized by 
restricting the light source to near infrared (NIR) region (i.e., 650 to 900 nm). This 
is because the light absorption ability of hemoglobin and water is negligible in the 
NIR region. The LSPR peaks can be concisely tuned throughout the visible and NIR 
region to make the Au nanocages suitable for this application (Kwon et al. 2012; 
Mahmoud et al. 2010; Au et al. 2008; Mahmoud and El-Sayed 2010). Au nanocages 
can also be functionalized with the bioactive molecules to target cancer cells for 
diagnosis and photothermal therapy at an early stage (Dreaden et al. 2012; Chen 
et al. 2012).

9.2.4 � Au Nanoshells

The Au nanoshells are composed of silica core coated by a thin Au metallic shell. 
The most interesting property of Au nanoshells is their unique surface plasmon 
resonance property that can be finely tuned from visible to NIR region. There are 
multiple templates employed for the formation of hollow Au nanoshells including 
silica particles (Averitt et al. 1997), metal particles (Oldenburg et al. 1998, Oldenburg 
et al. 1999a, b; Tuersun and Han 2013), and so on. The Au nanoshells have been 
applied in various biomedical applications such as whole-blood immunoassays and 
photothermal cancer therapy (Loo et  al. 2005; Park et  al. 2008; Bickford et  al. 
2010). Cancer cells were successfully ablated in vitro by Au nanoshells as observed 
through magnetic resonance thermal imaging. Furthermore, the use of Au nanoshells 
for the photothermal ablation of tumors in mice showed complete regression of 
tumors while the mice remain healthy (Gobin et al. 2007, 2008; Hirsch et al. 2003; 
Lowery et al. 2006). Optical imaging techniques including those that use AuNPs as 
the contrast agents have limited applications in human studies. On the other hand, 
in the NIR region (i.e., 700–900 nm), the absorbance of all the bioactive molecules 
is negligible which provides clear window for optical imaging (Frangioni 2003). Au 
nanoshells can be designed and fabricated to control the location of surface plasmon 
resonance (SPR) peaks from visible to the NIR region of the electromagnetic spec-
trum by varying the composition and dimensions of the layers (Oldenburg et  al. 
1999a). The SPR peak can also be tuned by changing the ratio of the core size to its 
shell thickness for a given composition of Au nanoshells. Furthermore, Au 
nanoshells with SPR peaks in the NIR region can be prepared by coating Au shells 
with silica or polymer beads of variable thickness (Oldenburg et al. 1998; Caruso 
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et al. 2001). The silica cores are grown according to the Stöber process, that is, the 
reduction of tetraethyl orthosilicate in basic ethanol. A seed-mediated growth tech-
nique is typically used to coat the silica nanoparticles with Au in an aqueous envi-
ronment. The small Au nanospheres, such as 2–4 nm in diameter, can be attached to 
the silica core using an amine-terminated silane as a linear molecule that allows 
additional Au to be reduced until the seed particles coalesced into a complete shell 
(Oldenburg et al. 1999b). The diameter of the gold nanoshells is mainly determined 
by the diameter of the silica core, and the shell thickness can be controlled through 
the amount of gold deposited on the surface of the core. Gold nanoshells have also 
been synthesized via in situ gold nanoparticle formation using thermosensitive 
core-shell particles as the template (Suzuki and Kawaguchi 2005). The use of dif-
ferent microgels as the core offers significantly reduced particle aggregation. The 
thickness of Au nanoshells was also controlled through electroless deposition of Au. 
Recently, a virus scaffold has been used to assemble Au nanoshells which may 
potentially provide cores with a narrower size distribution and smaller diameters 
(i.e., 80 nm) than that of silica (Radloff et al. 2005).

9.2.5 � Au Nanostars

Gold (Au) nanostars belong to the anisotropic AuNPs category. Au nanostars are 
composed of a core and several branches with sharp tips. The unique characteristics 
of Au nanostars originate from these branches and their interaction with the core. 
The attractive features of Au nanostars are localized surface plasmon resonance 
(LSPR), surface-enhance Raman Scattering (SERS) activity, and catalytic activity. 
The Au nanostars are used for catalysis, nanosensing assays, thermal therapy, and 
drug delivery. The Au nanostars have multiple sharp branches that demonstrate sig-
nificant electromagnetic field enhancement and have unique plasmon bands which 
can be tuned from visible to NIR region. The synthesis of Au nanostars has been 
driven by the interest on the localized surface plasmons (LSPs) response to the 
environment, especially on sharp tips and edges, where light can be highly concen-
trated (Hao et  al. 2007; Rodríguez-Lorenzo et  al. 2009; Hrelescu et  al. 2009; 
Dondapati et al. 2010). They serve as effective tools in the field of nanomedicine 
due to their unique properties. The Au nanostars also display stronger surface-
enhanced resonance activity than Au spheres or even rods (Mukherjee et al. 2001; 
Cai et al. 2008).

9.3 � Antibacterial Activity of AuNPs

Although gold nanoparticles (AuNPs) are not strong antimicrobial agent as AgNPs, 
they have been reported to demonstrate antibacterial (Lima et al. 2013) as well as 
antifungal activity (Wani and Ahmad 2013; Zawrah et  al. 2011). Furthermore, 
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AuNPs have been used as an alternative tool to high-dose antibiotics against infec-
tious diseases including antibiotic-resistant bacteria (Podsiadlo et  al. 2008). The 
nanoparticle toxicity and antibacterial activity mainly depend on the intrinsic prop-
erties, surface modification, and tested bacterial species. The AuNPs of smaller 
diameter can penetrate the bacterial cells and cause cellular damage followed by 
death (Bindhu and Umadevi 2014a). Antibacterial properties of triangular-shaped 
AuNPs demonstrate better activity toward both gram-positive and gram-negative 
bacteria than that of spherical AuNPs (Smitha and Gopchandran 2013). The sharp-
faced triangular NPs, irrespective of their surface chemistry, size, and composition, 
can pierce the endosomal membrane before translocating to the cytoplasm where 
they can be retained. This feature makes them preferable to round-shaped NPs for 
drug delivery, gene delivery, subcellular targeting, and long-term tracking (Chu 
et al. 2014). Recently, it has been reported that very small AuNPs (i.e., less than 
2  nm) showed excellent antibacterial activity against gram-positive and gram-
negative bacteria (Kundu 2017).

9.3.1 � Antibacterial Activity Against Pathogenic Bacteria

The AuNPs synthesized using citrate, polyvinylpirrolidone (PVP), or other com-
monly used stabilizers usually do not show antibacterial activity (Amin et al. 2009). 
More specifically, the AuNPs (size: 20–30 nm) stabilized by PVP and/or sodium 
dodecyl sulfate (SDS) did not show antimicrobial activity against Staphylococcus 
aureus ATCC 6538, Escherichia coli K12 NCTC 10538, and fungi Candida albi-
cans ATCC 10231 at a concentration of 0.0016 wt% (Mukha et al. 2010). Chatterjee 
et  al. (2011) found that AuNPs showed no concentration-dependent antibacterial 
activity while stimulating the level of cell division. AuNPs are biologically inert and 
usually do not show antibacterial activity (Allahverdiyev et al. 2011) that can be 
convinced from their high MIC value and small zone of inhibition (ZOI) value when 
compared to AgNPs. Hernández-Sierra et  al. (2008) compared the antibacterial 
activity of AgNPs (size: 25 nm) with that of AuNPs (size: 80 nm) against S. aureus 
ATCC 25923. The AgNPs had a MIC (minimum inhibitory concentration) value of 
4.86 ± 2.71 μg/ml and MBC (minimum bactericidal concentration) value of 6.25 μg/
ml. On the other hand, AuNPs showed antibacterial propensity at a very high con-
centration (197  μg/ml). Shankar et  al. (2014) synthesized AuNPs, AgNPs, and 
Au-AgNPs having hydrodynamic size 140 ± 13, 74 ± 6, and 128 ± 15 nm, respec-
tively. The growth of S. aureus and E. coli was inhibited at 16 μg/ml and 8 μg/ml of 
AgNPs, respectively. Similar pattern of inhibition was also observed for Au-AgNPs 
having MIC value 16 and 32 μg/ml against S. aureus and E. coli, respectively. On 
the other hand, AuNPs did not show any antibacterial activity at the tested concen-
tration (i.e., 128 μg/ml). Sreelakshmi et al. (2011) compared the antibacterial activ-
ity of AuNPs and AgNPs (size: 10 nm) synthesized using natural honey as a source 
of stabilizing as well as reducing agent. Their MIC values confirmed that honey-
capped AgNPs exhibit very good antibacterial activity, whereas AuNPs exhibit 
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moderate activity against the tested strains. On the other hand, PVP-coated AuNPs 
have ~10 times higher MIC value than that of AgNPs synthesized using the same 
polymer (Mukha et al. 2010; Hernández-Sierra et al. 2008). Hence, AuNPs are not 
usually used as antibacterial agents. In addition, incorporation of AuNPs (2 nm), 
methylene blue (MB), and toluidine blue (TBO) with polyurethane polymer, a poly-
mer used to prepare catheters, enhanced the killing of S. aureus suspension under 
white illumination with a hospital light source (Naik et al. 2011). However, many 
other studies have revealed that AuNPs synthesized under certain conditions showed 
efficient antibacterial activity and they can be functionalized with different biopoly-
mers to make an effective antibacterial agent. The size, shape, surface modification 
(coating and capping agents), and purification methods of AuNPs are the key factors 
that determine their antibacterial activity. However, CTAB-coated AuNPs of 1~2 nm 
and 1~20 nm in size were reported to show similar zone of inhibition (~22 mm) 
against E. coli (ATCC 25922 strain) without any size dependence (Azam et  al. 
2009; Arshi et al. 2011).

Furthermore, Badwaik et  al. (2012) investigated the antibacterial activity of 
dextrose-coated AuNPs having different hydrodynamic diameters such as 25, 60, 
and 120 ± 5 nm. AuNPs with hydrodynamic diameter of 120 and 60 nm inhibit the 
proliferation of E. coli in a concentration-dependent manner and the MIC values 
were 16 × 1010 and 16 × 1011 particles/ml, respectively. On the other hand, AuNPs 
having 25 nm hydrodynamic diameter did not show any significant effect against 
the proliferation of E. coli even at concentration as high as 128 × 1012 particles/ml. 
Hence, they concluded that the antibacterial activity of AuNPs increases as the par-
ticle size increases, for example, in the order of 25 < 60 < 120 < nm. On the other 
hand, Ahmad et al. reported that smaller AuNPs (i.e., 7 nm) showed excellent anti-
fungal activity and greater biocidal effect against Candida species when compared 
to that of relatively large AuNPs (i.e., 15 nm) (Ahmad et al. 2013). The capping 
agent is also an important determinant of the antibacterial activity of AuNPs. Zhang 
et al. (2008) synthesized hyperbranched poly(amidoamine) having terminal dimeth-
ylamine groups (HPAMAM-N (CH3)2) to prepare AuNPs and they found that the 
cationic dimethylamine contributes to the antimicrobial activity through strong 
ionic interactions with bacteria. As shown in Table 9.1, AuNPs stabilized or modi-
fied by various coating agents have distinct antibacterial effects. Many small mole-
cules were also used for the synthesis of AuNPs and were investigated for their 
antibacterial potential. For example, 4, 6-diamino-2-pyrimidinethiol (DAPT), an 
analogue of 2-pyrimidinethiol that is present in E. coli; two positively charged and 
amino-substituted pyrimidines 4-amino-2-pyrimidinethiol and 2,4-diamino-6- 
pyrimidine thiol (iDAPT) (Chatterjee et  al. 2011); and one negatively charged 
pyrimidine 4,6-dihydroxyl-2- pyrimidine thiol (DHPT) (Zhao et  al. 2010) were 
used to fabricate AuNPs. The MIC values of DAPT, APT, and iDAPT fabricated 
AuNPs against Pseudomonas aeruginosa were 16, 18, and 24 μg/ml, respectively. 
DHPT-coated AuNPs did not inhibit the growth of both E. coli and P. aeruginosa 
even at high concentration (80 μg/ml).

The methods used for the purification of AuNPs were neither mentioned nor 
adequately carried out before performing antibacterial assay. There could be debate 
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Table 9.1  A summary of the antibacterial activity of AuNPs synthesized using different types of 
reducing agents and capping agents

AuNPs (reducing 
agents and capping 
agents)

Size (if 
present) Test bacteria

Effect of antibacterial 
activity Ref.

Citric acid 
Polyallylamine HCl

20–30 nm B. Calmette-
Guérin
E. coli

Effect and mechanism 
depend upon composition 
and surface modifications

Zhou et al. 
(2012)

Citrate/CTAB 1–22 nm E. coli AuNPs show high 
antibacterial activity with 
zone of inhibition of 
22 mm

Zhang et al. 
(2015)

Acridine derivatives 15–20 nm E. coli
Bacillus 
subtilis

Acridine-AuNPs has 
stronger antibacterial 
effect than acridine alone

Mitra et al. 
(2014)

Citrate 20–30 nm E. coli Dose-dependent 
inhibition, 0.1–5 μg/mL

Zhou et al. 
(2012)

Phosphine – S. aureus Antibacterial activity of 
two ligands are compared

Borah et al. 
(2011)

Pyrimidine thiols 3 nm P. aeruginosa MICs of Au-DAPT, 
Au-APT, and Au-iDAPT 
are 16, 18, and 24 μg/mL

Zhao et al. 
(2010)

Thioguanine – Micrococcus 
luteus
S. aureus
P. aeruginosa
E. coli

AuNPs are more potent 
than thioguanine

Selvaraj et al. 
(2010)

PVP/SDS 20–30 nm S. aureus
E. colі K12

AuNP of 0.0016% wt. 
showed no effect on tested 
strains

Mukha et al. 
(2010)

Gallic acid 14, 39, 
77 nm

S. mutans MICs of 12.31, 12.31, and 
49.25 μg /mL for 13.7, 
39.4, and 76.7 nm AuNPs

Moreno-
Álvarez et al. 
(2010)

Reduced by 
lysozyme at 40 °C

– Acinetobacter 
baumannii
Enterococcus 
faecalis

Broad-band labeling 
agents for pathogenic 
bacteria

Chen et al. 
(2010)

Citrate, CTAB 1 ~ 22 nm E. coli Zone of inhibition of 
22 mm

Arshi et al. 
(2011), Zhang 
et al. (2015)

Polyamidoamine 7.7, 4.6, 
3.9 nm

E. coli
S. aureus
B. subtilis
Klebsiella 
mobilis

Inhibit up to AuNP 
(2.8 μg/mL)
Ionic interaction with 
bacteria

Zhang et al. 
(2008)

PVP 80 nm S. aureus MIC, > 197 μg/mL Hernández-
Sierra et al. 
(2008)

(continued)
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Table 9.1  (continued)

AuNPs (reducing 
agents and capping 
agents)

Size (if 
present) Test bacteria

Effect of antibacterial 
activity Ref.

Polythiophene 
composite

– Common 
bacterial 
pathogens

Efficient antibacterial 
effect was observed

Adhikari et al. 
(2013)

Citrate or PAH 2–30 nm E. coli E. coli growth inhibited at 
0.1, 1, 5 μg/mL 
citrate-AuNPs

Zhou et al. 
(2012)

Capped by amine or 
polyacrylate

– E. coli 99.999% killing in 10 min. 
Coating agents are 
responsible for 
antibacterial activity

Wan and Yeow 
(2012)

Dextrose 25, 60, and 
120 nm

E. coli For 120 and 60 nm AuNPs 
with MIC 16 × 1010 and 
16 × 1011 NPs/mL for 
25 nm AuNPs, no 
inhibition at 128 × 1012 
NPs/mL

Badwaik et al. 
(2012)

Cationic peptides 1.2–2.5 nm S. aureus
B. subtilis
E. coli
P. aeruginosa

MIC higher with AuNP 
than without

Pal et al. 
(2011)

Zeolite (2.3–2.8%) 5 nm E. coli
Salmonella 
typhi

Eliminate 90–95% of E. 
coli and S. typhi colonies 
at short time

Lima et al. 
(2013)

Polyoxometalates 
and lysine

– E. coli 5 μM causes 80% bacterial 
death

Daima et al. 
(2013)

Cationic monolayer 2 nm MDR strains 
and MRSA

MIC values dependent on 
side chain functional 
groups and chain length

Li et al. 
(2014)

Zeolite – E. coli
S. Typhi

AuNPs dispersed on 
zeolites eliminate E. coli 
and S. typhi at short times

Zhang et al. 
(2015)

on the antibacterial activity of AuNPs because of the presence of capping agents or 
other reagents used for the synthesis of nanoparticles that were not purified prop-
erly. It might be, therefore, the presence of Au(III) ions as well as unreacted reagents 
interfere with the antibacterial results, thereby producing false results. Several stud-
ies have reported the purification of chemically synthesized AuNPs prior to investi-
gating their antimicrobial activity. For example, Daima et  al. synthesized 
tyrosine-functionalized AuNPs and dialyzed to remove free ions and unbound tyro-
sine prior to investigating their antibacterial activity to avoid any interference on 
their toxicity bacteria (Daima et al. 2013). Furthermore, Zhou et al. (2012) prepared 
citrate-stabilized AuNPs followed by purification through centrifugation to test 
antibacterial activity against E. coli and Bacillus Calmette-Guérin. Nazari et al. also 
reported the synthesis and purification of AuNPs before testing their antibacterial 
activity against P. aeruginosa, S. aureus, and E. coli (Nazari et al. 2012).
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On the other hand, AuNPs were also synthesized and fabricated using natural 
polymers extracted from either microorganisms or plants, or directly in the presence 
of microorganisms. They are summarized in Table 9.2. These processes are known 
as green or eco-friendly synthesis or biosynthesis. For instance, Nagaraj et al. (2012) 
synthesized spherical AuNPs (size: 10–50  nm) using Caesalpinia pulcherrima 
flower extract as the reducing agent that showed efficient antimicrobial activity 
against Aspergillus, E. coli, and Streptobacillus sp. Das et al. (2009) synthesized 
AuNPs (size: 10 nm) on the surface of Rhizopus oryzae MTCC 262 through in situ 
reduction of HAuCl4 that showed high antibacterial activity against several gram-
positive and gram-negative pathogenic bacteria. Mishra et al. (2011) synthesized 
AuNPs (size: 50–70 nm) and AgNPs (size: 10–20 nm) via extracellular synthesis 
using yeast Candida guilliermondii and the highest antibacterial activity for both 
AuNPs and AgNPs was found against Staphylococcus aureus. AuNPs were also 
synthesized using various plant extracts including Mentha piperita (MubarakAli 
et al. 2011), root extract of Trianthema decandra, (33–65 nm) (Geethalakshmi and 
Sarada 2012), Helianthus annuus flower extracts (Geethalakshmi and Sarada 2012), 
and dried flower extract of Carthamus tinctorius (Liny et al. 2012). Interestingly, all 
the green synthesized AuNPs demonstrated efficient antibacterial activity against 
several bacteria strains that were unaffected in the presence of chemically synthe-
sized AuNPs (Mishra et al. 2011). Finally, the question is what is responsible for the 
antibacterial activity of green-synthesized AuNPs. It may be due to the extracts 
alone, AuNPs or their combination with plant extracts, since several plant extracts 
including Euphorbia hirta plant alone demonstrated antibacterial activity 
(Annamalai et al. 2013). Hence, the antibacterial activity may also be due to the 
synergistic effect of the combination of AuNPs and extracts (Annamalai et al. 2013).

9.3.2 � Antibacterial Activity Against Multidrug-Resistant 
(MDR) Bacteria

Metallic gold is inert and non-toxic that may change when shifts from metallic to 
oxidation states (0, I, and III) (Merchant 1998). The antibacterial mechanism of 
AuNPs is associated with (i) the collapse of membrane potential that inhibits the 
ATPase activity and causes deterioration of the cellular metabolism and (ii) inhibi-
tion of the binding subunit of ribosomes to tRNA (Cui et  al. 2012). Also (iii) 
Shamaila and co-workers showed that AuNPs disrupt the bacterial respiratory chain 
by binding to the thiol group of enzymes including nicotinamide adenine (NADH) 
dehydrogenase and produce oxidative stress resulting in the cellular death (Shamaila 
et al. 2016). Since AuNPs are non-toxic to the host (Li et al. 2014; Conde et al. 
2014; Rajchakit and Sarojini 2017), the possibility of fine-tuning their conjugation 
ability to act as carriers of antibiotics or other antibacterial moieties may enhance 
their bactericidal effect as well as potentiate the effect of antibiotics (Baptista et al. 
2018). Functionalization of AuNPs with cationic and hydrophobic polymers was 
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Table 9.2  A summary of antibacterial activity of AuNPs synthesized using “green” method

AuNPs (green 
method)

Size (if 
present) Test bacteria

Effect of antibacterial 
activity Ref.

Black tea extract 2–100 nm P. aeruginosa
S. aureus
E. coli

AuNPs did not increase 
antibacterial activity at 
concentration of 40 μg/
disc

Nazari et al. 
(2012)

Shewanella 
oneidensis

12 ± 5 nm E. coli
S. oneidensis
B. subtilis

No bactericidal effect for 
the tested strains at 
concentrations of 150 μM

Suresh et al. 
(2011)

Punica 
Granatum

5–17 nm S. aureus
S. typhi
Vibrio cholerae

MIC values for the tested 
bacteria – 0.33, 0.37 and 
0.41 mg/mL

C. zeylanicum 
leaf broth

>100 nm E. coli
S. aureus

Efficient antibacterial 
activity

Smitha and 
Gopchandran 
(2013)

Memecylon 
umbellatum leaf

15–25 nm B. subtilis
E. coli
S. pneumoniae
S. aureus
S. typhimurium
K. aerogenes

Inhibited bacterial growth Arunachalam 
et al. (2013)

E. hirta 6–71 nm E. coli
P. aeruginosa
K. pneumoniae

Complete inhibition at a 
concentration of 200 μg/
mL

Annamalai et al. 
(2013)

T. decandra 33–65 nm P. vulgaris
E. coli
S. aureus
S. faecalis

Excellent activity at a 
concentration of 10 mg/L 
on each disc

Geethalakshmi 
and Sarada (2012)

Solanum nigrum 18–20 nm B. subtilis
E. coli
P. aeruginosa

Inhibited bacteria growth Balagurunathan 
et al. (2011)

Phyllanthus 
emblica

2–4 nm S. aureus
E. coli

Zone of inhibition, 
0.8–1.0 cm

Balasubramanian 
(2014)

Gracilaria 
corticata

45–57 nm S. aureus
E. faecalis
E.coli
Enterobacter 
aerogenes

Antimicrobial activity 
observed for tested 
bacteria at 24, 21, 19 and 
14 mm

Naveena and 
Prakash (2013)

Phytochemicals 15–35 nm E. coli
B. subtilis
S. aureus
Enterococci

AuNPs showed zone of 
inhibition against all the 
studied bacteria

Mahitha et al. 
(2013)

Soybean 
Polyphenols

7–12 nm S. aureus
P. aeruginosa
A. baumannii

Gram-negative bacteria 
with thin cell wall were 
more susceptible to cell 
wall damage compared to 
gram-positive bacteria

El-Batal et al. 
(2013)

(continued)
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Table 9.2  (continued)

AuNPs (green 
method)

Size (if 
present) Test bacteria

Effect of antibacterial 
activity Ref.

Rhizopus oryzae 
MTCC 262

10 nm P. aeruginosa
E. coli
B. subtilis
S. aureus

Inhibition starts at 50 μg/
mL caused rupture of cell 
membrane

Das et al. (2009)

Saururus 
chinensis leaf

– S. aureus
E. coli

27.6% inhibition with 
AuNPs of 0.2 mM and 
>90% inhibition after 
24 h exposure at AuNPs 
of 0.8–1 μM

Sreekanth et al. 
(2012)

Reduced by C. 
tinctorius flower

– S. aureus
E. coli
B. subtilis

Efficient antibacterial 
effect was observed

Nagajyothi et al. 
(2012)

Treatment with 
root extract of T. 
decandra

33–65 nm E. faecalis
S. aureus
S. faecalis
B. subtilis
Y. enterocolitica
P. vulgaris
E. coli
P. aeruginosa

Inhibition areas (mm) for 
E. faecalis 10.5,  
S. aureus 14.5, S. faecalis 
13.5, B. subtilis 9.5,  
Y. enterocolitica 15.5,  
P. vulgaris 15.0, E. coli 
9.5, P. aeruginosa 11.5

Geethalakshmi 
and Sarada (2012)

Ananas comosus – E. coli
Streptobacillus 
sp

Effective on E. coli & 
Streptobacillus sp

Basavegowda 
et al. (2013)

Euphorbia hirta 6–71 nm E. coli
P. aeruginosa, 
K. pneumoniae

Inhibited 88% E. coli, 
86% P. aeruginosa, and 
94% K. pneumoniae at 
200 μg/mL; plant E. hirta 
has antibacterial activity 
itself

Annamalai et al. 
(2013)

Solanum torvum – E. coli
Pseudomonas
Bacillus

AuNPs showed strong 
and fair zone of 
inhibition

Ramamurthy et al. 
(2013)

Dioscorea 
batatas

18–56 nm Gram-positive 
and gram-
negative bacteria

AuNPs inhibited S. 
aureus, S. epidermidis, E. 
coli; 21.5% inhibition by 
0.2 μM and >50% by 
0.8–1 μM AuNPs

Sreekanth et al. 
(2015)

LD fruit peel 140, 74, 
128 nm

S. aureus  
E. coli

No antibacterial activity 
at >128 μg/mL for 
AuNPs, but for AgNPs 
and Au-Ag-NPs

Shankar et al. 
(2014)

(continued)
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Table 9.2  (continued)

AuNPs (green 
method)

Size (if 
present) Test bacteria

Effect of antibacterial 
activity Ref.

Abelmoschus 
esculentus

14 nm B. subtilis
B. cereus 
P. aeruginosa
M. luteus
E. coli

AuNPs (0.2 mg/mL) 
showed inhibition zones 
of 26, 24, 15, 35 and 
21 mm against  
B. subtilis, B. cereus,  
E. coli, M. luteus,  
P. aeruginosa

Mollick et al. 
(2014)

Trichoderma 
viride, Hypocrea 
lixii

61 nm E. coli
Shigella sonnei
P. syringae

Inhibition of the growth 
of E. coli, S. sonnei, and 
P. syringae up to 53%, 
47%, 55%

Mishra et al. 
(2014)

Punica granatum 5 and 
20 nm

S. aureus
S. typhi
V. cholerae

MICs against S. aureus, 
S. typhi, V. cholerae are 
0.33, 0.37, 0.41 mg/mL

Lokina et al. 
(2014)

Solanum 
lycopersicums

14 nm S. aureus
P. aeruginosa

Effective inhibition of 
growth of all tested 
bacteria

Bindhu and 
Umadevi (2014b)

Mentha piperita 150 nm E. coli
S. aureus

Effective against aureus 
E. coli, but not S. aureus

MubarakAli et al. 
(2011)

Candida 
guilliermondii

50–70 nm Five pathogenic 
bacterial strains

Highest inhibition against 
S. aureus; chemically 
synthesized AuNPs 
showed no effect

Mishra et al. 
(2011)

Trianthema 
decandra or 
saponin

37.7–
79.9 nm

10 different 
bacteria

Zones of inhibition of 
8.2 mm to 11.5 mm; 
excellent activity against 
Y. enterocolitica,  
P. vulgaris, E. coli,  
S. aureus, S. faecalis

Geethalakshmi 
and Sarada (2013)

Grapes fruit – P. aureus
S. typhi
V. cholerae

Excellent antibacterial 
activity toward most of 
the tested bacterial strains

Lokina et al. 
(2014)

shown to be effective against both gram-negative and gram-positive uropathogens 
including MRSA.  These AuNPs exhibited low toxicity to mammalian cells, and 
development of resistance to these nanoparticles was very low (Li et al. 2014). Vinoj 
et al. demonstrated that the conjugation of AuNPs with N-acylated homoserine lac-
tonase proteins (AiiA AuNPs) resulted in a nano-composite with greater antibacte-
rial activity against MDR species when compared to AiiA proteins alone (Vinoj 
et al. 2015).

The integration of AuNPs on the shell of PVA-lysozyme microbubbles demon-
strated better antibacterial potential against E. coil than that of only microbubbles 
(Mahalingam et al. 2015). Galic acid–capped AuNPs have also been found to be 
active against gram-negative and gram-positive bacteria (Kim et al. 2017). Recently, 
Ramasamy et al. reported one-pot synthesis of cinnamaldehyde-immobilized gold 
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nanoparticles (CGNPs) having more than 80% effectivity against biofilm formation 
of gram-positive (methicillin-sensitive and -resistant strains of S. aureus, MSSA, 
and MRSA, respectively) and gram-negative (E. coli and P. aeruginosa) bacteria 
(Ramasamy et al. 2017a, b). The incorporation of AuNPs with ultrathin graphitic 
carbon nitride (g-C3N4) generates peroxidase activity and demonstrates excellent 
antibacterial potential against drug-resistant (DR) gram-positive and gram-negative 
bacteria. They also exhibit high efficiency in eliminating existing DR biofilms and 
preventing the formation of new biofilms in vitro (Wang et al. 2017a). The conjuga-
tion of antibiotics (e.g., vancomycin and methicillin) to AuNPs increases their 
intrinsic activity against MDR strains (Baptista et al. 2018). Recently, Payne et al. 
developed a single-step synthesis technique for kanamycin-capped AuNPs (Kan-
AuNPs) that exhibit high antibacterial activity against both gram-positive and -neg-
ative bacteria including kanamycin-resistant bacteria. The authors observed a 
significant reduction in the MIC value against all the bacterial strains tested when 
compared to free drug. This higher efficacy was due to the disruption of the bacte-
rial envelope that resulted in the leakage of cytoplasmic content and thereby cell 
death (Payne et al. 2016). Pradeepa et al. synthesized AuNPs using bacterial exo-
polysaccharide (EPS) and functionalized them with antibiotics (e.g., levofloxacin, 
cefotaxime, ceftriaxone, and ciprofloxacin). They observed that antibiotic-
conjugated AuNPs exhibited excellent bactericidal activity against MDR gram-
positive and -negative bacteria when compared to free drugs. E. coli was the most 
susceptible MDR bacteria followed by K. pneumoniae and S. aureus (Vidya et al. 
2016). Recently, Yang et  al. described the effect of small molecule 
(6-aminopenicillanic acid, APA) coated AuNPs to inhibit MDR bacteria (Yang et al. 
2017). They conjugated AuNPs with electrospun fibers of poly(ε-caprolactone) 
(PCL)/gelatin to produce materials that inhibit wound infection by MDR bacteria 
and also demonstrated that APA-AuNPs reduce MDR bacterial infections (Yang 
et al. 2017). Shaker et  al. evaluated the surface functionalization of AuNPs with 
carbapenems [i.e., imipenem (Ipm) and meropenem (Mem)] and investigated their 
antibacterial activity against carbapenem-resistant gram-negative bacteria isolated 
from an infected human. Both Ipm-AuNPs and Mem-AuNPs (size: 35 nm) showed 
significant increase in their antibacterial activity against all the tested isolates 
(Shaker and Shaaban 2017). Recently, Shaikh et  al. described the synthesis and 
characterization of cefotaxime-conjugated AuNPs to target drug-resistant CTX-M-
producing bacteria. The authors inverted resistance in cefotaxime-resistant bacterial 
strains (i.e., E. coli and K. pneumoniae) by using cefotaxime-AuNPs. Hence, the 
conjugation of unresponsive antibiotics with AuNPs can restore their antibacterial 
activity against drug-resistant bacterial strains (Shaikh et al. 2017).

One of the most important properties of AuNPs is their ability to generate heat 
upon illumination with laser (Mendes et al. 2017; Mocan et al. 2017). This property 
is very important because it can be exploited to develop photothermal nano-vectors 
to destroy MDR bacteria at the molecular level (Mocan et al. 2017). For example, 
Khan et al. showed that the combination of Concanavalin-A (ConA)-directed dex-
tran capped AuNPs (GNPDEX-ConA) conjugated with methylene blue (MB) (MB@
GNPDEX-ConA)-mediated photodynamic therapy (PDT) enhanced the efficacy and 
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selectivity of MB-induced killing of MDR clinical isolates including E. coli, 
K. pneumoniae, and Enterobacter cloacae (Khan et  al. 2017). Gil-Tomas et  al. 
reported that the covalent conjugation of AuNPs with toluidine blue O–tiopronin 
forms an enhanced and exceptionally potent antimicrobial agent when activated by 
white light or 632 nm laser light (Gil-Tomás et al. 2007).

Hu et al. modified the surface of AuNPs with pH-responsive mixed charged zwit-
terionic self-assembled monolayers composed of weak electrolytic 
11-mercaptoundecanoic acid (HS-C10-COOH) and strong electrolytic 
(10-mercaptodecyl) trimethylammonium bromide (HS-C10-N4) that exhibited an 
enhanced photothermal ablation of MRSA biofilm without any damage to the 
healthy tissues around the biofilm when illuminated with near infrared (NIR) laser 
(Hu et  al. 2017). Furthermore, the antibacterial activity of glucosamine-gold 
nanoparticle-graphene oxide (GlcN-AuNP-GO) and UV-irradiated GlcN-AuNP-GO 
was evaluated against E. coli and E. faecalis. UV irradiation of GlcN-AuNP-GO 
demonstrated higher antibacterial activity than antibiotic kanamycin (Govindaraju 
et al. 2016).

Ocsoy et al. developed DNA aptamer-functionalized AuNPs (Apt@AuNPs) and 
gold nanorods (Apt@AuNRs) to kill methicillin-resistant Staphylococcus aureus 
(MRSA) through photothermal therapy (PTT) (Ocsoy et al. 2017). They found that 
both Apt@AuNPs and Apt@AuNRs attached to MRSA and inactivated cells by 5% 
and > 95%, respectively, through PTT. The difference in the induction of cell death 
was based on the relatively high longitudinal absorption of NIR radiation and strong 
photothermal conversion capability of the Apt@AuNRs compared to Apt@AuNPs. 
Recently, a new approach based on the conjugation of AuNPs with antimicrobial 
peptides (AMPs) has shown promising results (Rajchakit and Sarojini 2017). For 
example, Kuo et al. mixed synthetic peptides containing arginine, tryptophan, and 
cysteine termini [i.e., (DVFLG) 2REEW4C and (DVFLG) 2REEW2C] with aque-
ous tetrachloroauric acid to generate peptide-immobilized AuNPs [i.e., (DVFLG) 
2REEW4C-AuNPs and (DVFLG) 2REEW2C-AuNPs] that were effective against 
Staphylococci, Enterococci, and other antibiotic-resistant bacterial strains (Kuo 
et al. 2016). Conjugation of AMPs with AuNPs usually involves the formation of 
Au-S coordinate covalent bond between the amine and thiol groups of peptides or 
conjugating linkers as well as terminal (N- or C-terminal) cysteine of AMPs which 
help in their conjugation with gold (Tielens and Santos 2010; Xue et  al. 2014). 
However, there is one example when covalent conjugation of an AMP to AuNPs has 
been achieved via Au-O bond (Lai et al. 2015). Other approaches used a polyethyl-
ene glycol linker to covalently attach AMPs with AuNPs that showed significantly 
increased antibacterial and anti-biofilm activity against antibiotic-resistant gram-
negative bacteria (Casciaro et  al. 2017). Yeom and co-workers demonstrated the 
most advanced clinical application for AuNPs@AMP using infected mice in vivo 
that resulted in the inhibition of Salmonella typhi colonization in the organs of the 
animals (Yeom et al. 2016). The reason behind the increased antimicrobial activity 
of AuNPs@AMP over the free AMPs is that AuNPs can get a higher concentration 
of the peptides at the site of action. These NPs interact with lipopolysaccharides 
(LPS) and proteins of bacterial membrane and, in some cases, penetrate the 
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bacterial membrane through the porin channel. Thus, the nanoparticles interact with 
the bacterial inner membrane making the AuNPs@AMP conjugate more efficient 
than the non-conjugated form (Baptista et  al. 2018). Rai et  al. demonstrated the 
conjugation of cecropin-melittin (CM-SH), a known peptide with inherent antibac-
terial propensity (Boman et  al. 1989), with the surface of AuNPs through Au-S 
bond. The CM-SH-AuNPs showed greater antimicrobial activity in a systemic (i.e., 
animal) model than CM-SH (Rai et al. 2016) (Table 9.3).

Table 9.3  Mechanism of antibacterial activity of AuNPs against multidrug-resistant (MDR) 
bacteria

Type of 
antibiotic 
resistance Targeted bacteria

Mechanisms of antibacterial 
activity of AuNPs Ref.

Methicillin 
resistant

S. aureus Photothermal therapy with 
ROS generation

Hu et al. (2017), Ocsoy 
et al. (2017), Kuo et al. 
(2009), Millenbaugh 
et al. (2015), Mocan 
et al. (2016)

Methicillin 
resistant

E. faecalis Combination with 
vancomycin

Lai et al. (2015)

Ampicillin 
resistant

S. aureus, E. coli,  
P. aeruginosa, 
Enterobacter 
aerogenes

Combination with ampicillin
lead to entry into the bacterial 
cell

Brown et al. (2012)

Carbapenems 
resistant

Klebsiella 
pneumoniae, 
Proteus
mirabilis,  
A. baumannii

Disturbance of osmotic 
balance and disruption of the 
integrity of bacterial cell wall

Shaker and Shaaban 
(2017)

Cefotaxime 
resistant

E. coli,  
K. pneumoniae

Disruption of the bacterial 
cell wall, DNA damage

Shaikh et al. (2017)

Kanamycin-
resistant

Streptococcus 
bovis,  
S. epidermidis,  
E. aerogenes

Disruption of the bacterial 
cell wall

Payne et al. (2016)

Biofilm 
formation

P. aeruginosa Interaction with cell surface Yu et al. (2016)

Biofilm 
formation

S. aureus Laser excitation of the near 
IR LSPR led to an efficient 
photothermal response with 
efficient killing of bacteria 
biofilms

Pallavicini et al. (2014)

Biofilm 
formation

S. epidermidis,  
S. haemolyticus

Combination with antibiotics Roshmi et al. (2015)

Biofilm 
formation

E. coli,  
P. aeruginosa,  
S. aureus

Penetration through biofilm 
layers and interaction with 
cellular components

Ramasamy et al. 
(2017a, b)

(continued)
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Table 9.3  (continued)

Type of 
antibiotic 
resistance Targeted bacteria

Mechanisms of antibacterial 
activity of AuNPs Ref.

Biofilm 
formation

E. coli,  
P. aeruginosa,  
S. aureus,  
B. subtilis

ROS generation Wang et al. (2017a)

Biofilm 
formation

Proteus species Interaction between proteins 
and NPs

Vinoj et al. (2015)

Multidrug 
resistant

Gram-negative 
bacteria

Automated microarray-based 
system for early identification 
of pathogen and resistance 
marker detection

Walker et al. (2016)

Multidrug 
resistant 

E. coli, S. aureus, 
K. pneumoniae

Combination with antibiotics Vidya et al. (2016)

Multidrug 
resistant 

E. coli, S. aureus, 
Salmonella 
typhimurium

Depend on coexisting 
chemicals that were not 
removed from AuNPs

Zhang et al. (2015, 
Dasari et al. (2015)

Multidrug 
resistant 

E. coli Interaction between lysozyme 
micro-bubbles and cell wall

Mahalingam et al. 
(2015)

Multidrug 
resistant 

S. aureus, E. coli,  
P. aeruginosa

Disruption of bacterial cell 
wall

Li et al. (2014), Yang 
et al. (2017)

Multidrug 
resistant 

E. coli, S. aureus Interaction with biomolecules Kim et al. (2017)

Multidrug 
resistant 

E. coli,  
K. pneumoniae,  
E. cloacae

Photodynamic therapy/
photothermal therapy; 
Photodynamic therapy/
photothermal therapy

Khan et al. (2017)

Multidrug 
resistant 

S. aureus, E. coli, 
E. cloacae,  
P. aeruginosa

Photodynamic therapy/
photothermal therapy

Mocan et al. (2016)

Multidrug 
resistant 

Salmonella 
typhimurium

Photodynamic therapy/
photothermal therapy

Lin and Hamme II 
(2015)

Multidrug 
resistant 

S. aureus Photodynamic therapy/
photothermal therapy

Gil-Tomás et al. (2007)

Multidrug 
resistant 

E. coli ROS generation Zhang et al. (2013)

Multidrug 
resistant 

E. coli Change of membrane 
potential and inhibition of 
ATP synthase; inhibition of 
the subunit of the ribosome 
for tRNA binding

Cui et al. (2012)

Multidrug 
resistant 

E. coli,  
K. pneumoniae,  
S. aureus,  
B. subtilis

Change of membrane 
potential and inhibition of 
ATP synthase; inhibition of 
the subunit of the ribosome 
for tRNA binding

Shamaila et al. (2016)

(continued)
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Table 9.3  (continued)

Type of 
antibiotic 
resistance Targeted bacteria

Mechanisms of antibacterial 
activity of AuNPs Ref.

Multidrug 
resistant 

S. aureus Photoacoustic detection and 
photothermal therapy

Galanzha et al. (2012)

Multidrug 
resistant 

E. coli,  
K. pneumoniae

Not revealed Bresee et al. (2014)

Multidrug 
resistant /biofilm 
formation

P. aeruginosa Conjugation with AMP Casciaro et al. (2017)

Multidrug 
resistant/ biofilm 
formation

Staphylococci, 
Enterococci, and 
other bacterial 
strain

Conjugation with AMP Kuo et al. (2016)

Multidrug 
resistant /biofilm 
formation

E. coli, S. aureus, 
K. pneumoniae,  
P. aeruginosa

Conjugation with AMP Rai et al. (2017)

Multidrug 
resistant /biofilm 
formation

Salmonella 
typhimurium

Conjugation with AMP Yeom et al. (2016)

9.4 � Mechanism of Antibacterial Activity of Au Nanoparticles

Drug-resistant bacteria acquire genetic modification to exclude antimicrobial drugs 
and become less sensitive to drugs. To find an effective way to control the threat of 
bacterial drug resistance, a novel approach to enhance antimicrobial activity is 
urgently needed. AuNPs are the most studied metal nanoparticles (NPs) for antibac-
terial applications (Borzenkov et  al. 2020). They are biologically inert and pure 
form of Au does not exert any antibacterial activity (Zhang et al. 2015). However, 
the surface area of AuNPs is suitable for conjugation with antibiotics and other 
drugs. A wide range of proteins, drugs, and even nucleotides have also been suc-
cessfully delivered using AuNPs in the recent past (Perzanowska et  al. 2021). 
Though the exact mechanism underlying the antimicrobial propensity of AuNPs 
remains unclear, several factors including size, shape, and surface functionalization 
significantly influence the activity of AuNP.

Major pathways through which AuNPs exert antimicrobial activity include (i) 
direct contact with bacteria (Shaikh et al. 2019), (ii) physical disruption of mem-
brane (Piktel et  al. 2021), (iii) generation of reactive oxygen species (ROS) (Yu 
et al. 2020), (iv) interaction with cellular proteins and genetic elements (Wang et al. 
2015), and (v) trigger host-response immunity (Dykman and Khlebtsov 2017) 
(Fig. 9.2a). The antimicrobial efficacy of AuNP is largely dependent on their size 
and shape. The size of the AuNPs plays a critical role in their bactericidal activity, 
and functionalization with hydrophilic molecule enhances their interaction with 
bacterial membrane. Hayden et al. reported the size-dependent antimicrobial effect 
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Fig. 9.2  Mechanism of antibacterial activity of AuNPs. (a) AuNPs cause irreversible membrane 
damage and, hence, particles get internalized in the cytosol. AuNPs then interfere with the cellular 
components and induce the generation of reactive oxygen species (ROS). ROS brings about differ-
ent kinds of damage and finally promotes cells to apoptosis. Damaged electron transport chain 
(ETC) and efflux pump change the electron and proton homeostasis in a cell, respectively. (b) 
Size-dependent antimicrobial activity of gold (Au) NPs. TEM images confirmed B. subtilis mem-
brane rupture by 2 nm AuNPs but not in case of 6 nm NPs. (Reproduced from Hayden et al. (2012) 
with permission. Copyright © 2012 American Chemical Society)

of cationic AuNPs (Hayden et al. 2012) (Fig. 9.2b). The larger particles (>100 nm) 
are unable to cross the bacterial membrane; however, smaller particles do and make 
pores in the membrane (Zheng et al. 2017; Xing et al. 2018).

The large surface area of AuNPs allows the attachment of a wide range of func-
tional elements to enhance the pristine antimicrobial effect. Hence, both AuNPs and 
their functionalized derivatives have been used to control infections caused by 
antimicrobial-resistant (AMR) pathogens (Li et al. 2014; Zhao et al. 2013). In addi-
tion to increased bactericidal effect, functionalization of the AuNPs’ surface also 
stabilizes the particle and provides prolonged effective and safe drug delivery (Tao 
2018). Multivalent Au atom is conjugated with multiple ligands to enhance its anti-
microbial activity (Zheng et al. 2017; Ortiz-Benítez et al. 2019). In addition, cap-
ping agents used in the synthesis of AuNPs also disrupt cell membrane via 
electrostatic interactions. AuNPs capped with a mixture of different small mole-
cules can also enhance their antibacterial propensity. For example, AuNPs of 2 nm 
size capped with p-mercaptobenzoic acid (pMBA-Au) are not effective against bac-
teria. When pMBAs on the AuNPs’ surface are partially replaced with a mixture of 
2-mercaptoethylamine and 3-mercaptopropylsulfonate, the resultant AuNPs show 
99.9% growth inhibition against E. coli at 0.5  mM concentration (Bresee et  al. 
2011). Li et al. systematically modified the surface of AuNPs to combat multidrug-
resistant (MDR) bacteria. Herein, they functionalized 2  nm size AuNPs using 
hydrophobic molecules having different chain length (Li et al. 2014). The hydro-
phobic interaction destroys the integrity of bacterial membrane and allows internal-
ization of metal ions, loaded drugs, and protein inhibitors. On the contrary, it also 
allows the leakage of cytoplasmic content.

The interaction between cationic AuNPs and negatively charged membrane pro-
teins (mostly teichoic acids) results in the aggregation, protrusion and, therefore, 
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damage the membrane permanently (Hayden et al. 2012; Zhao et al. 2010). The 
positive charge of AuNPs is responsible for better interaction with negatively 
charged bacteria which leads to membrane rupture. However, it has been reported 
that interaction of AuNPs with bacteria changes the membrane permeability, inter-
rupts the electrolyte balance, and deactivates protein function (Wang et al. 2017b). 
Payne et al. confirmed that the membrane-attached AuNPs penetrate the cell wall of 
bacteria using small-angle X-ray scattering (Payne et al. 2016). This phenomenon 
resulted in the disruption of cytosolic environment and leakage of cellular compo-
nents (Fig. 9.3).

Ortiz-Benítez et al. found that AuNPs reached the cytosolic environment of resis-
tant S. pneumoniae and formed spherical cytoplasmic structures known as inclusion 
bodies (Ortiz-Benítez et al. 2019). They separated the proteins from the inclusion 
bodies that are potential candidates to facilitate the uptake of NPs in S. pneumoniae.

However, conjugation of antibiotics to AuNPs provides enhanced bactericidal 
effect than pristine AuNPs (Rattanata et al. 2016). Bagga et al. reported that AuNPs-
levofloxacin showed greater bactericidal effect against Staphylococcus aureus, 
Escherichia coli, and Pseudomonas aeruginosa (Payne et  al. 2016; Bagga et  al. 
2017). XX et al. reported a one-pot, fast synthesis of vancomycin-conjugated AuNP 
which had 16-fold better antibacterial activity against vancomycin-resistant 
Enterococci when compared to free vancomycin (Wang et al. 2018). Other similar 

Fig. 9.3  Transmission electron microscopic images of bacteria. Sequential images of gram-
positive Staphylococcus epidermidis bacteria (a) and gram-negative Enterobacter aerogenes bac-
teria (b) treated with kanamycin-AuNPs after 0, 6, and 12  h of incubation. (Reproduced with 
permission Payne et al. (2016). Copyright © 2016)
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studies also support the codelivery of antibiotics with AuNP to reduce resistance 
development (Fuller et  al. 2020; Justo and Bosso 2015; Sans-Serramitjana et  al. 
2016; Wang et al. 2020; Fan et al. 2019). Thus, the delivery of antibiotic-conjugated 
AuNPs not only improve antibacterial efficacy but also require low dose of free 
antibiotic. Moreover, they also retard bacteria from developing resistance to antibi-
otics (Chopra 2007). Antibiotic-conjugated AuNPs exert higher antibacterial activ-
ity with minimal toxicity (Huh and Kwon 2011). Though synergistic effect of 
AuNPs-drug conjugate is always discussed as responsible for enhanced antimicro-
bial activity, the exact mechanism is still unknown. It is hypothesized that this stable 
conjugation improves internalization of antibiotics to resistant cells (Gu et al. 2003). 
Only a stable conjugation offers better antibacterial effect. Major drawbacks of anti-
biotic adsorption on AuNPs include aggregation and poor dispersity of the nanopar-
ticles leading to compound instability. On the other hand, the conjugation of 
amphiphilic antimicrobial peptides (AMPs) with AuNPs enhances the antibacterial 
activity of nanoparticles. The advantage of conjugating amphiphilic AMPs is that 
they facilitate the interaction of AMP-AuNP with bacterial membrane (Wimley and 
Hristova 2011; Craik et al. 2013; Wadhwani et al. 2017). For example, Lee et al. 
conjugated hexahistidine-tagged AMPs with aptamer-bound AuNP (Lee et  al. 
2017). The resultant conjugate was highly effective against infectious pathogens 
including Vibrio vulnificus.

The photothermal property of AuNPs is advantageous for their biomedical appli-
cations (Mahmoud et al. 2019). AuNPs produce heat upon illumination with laser, 
and the thermal energy damages the neighboring bacteria. It is important to make 
sure that the AuNPs and bacteria are in close proximity so that the photothermal 
energy generated in the local environment damages the target cell (Mahmoud et al. 
2018). Photothermal therapy (PTT) and photodynamic therapy (PDT) are the two 
main approaches followed by AuNPs to kill bacteria upon laser irradiation. In case 
of PTT, AuNPs convert the light energy into heat and enhances local temperature to 
kill bacteria (Jo and Kim 2013; Zhu et al. 2014; Pallavicini et al. 2017). On the other 
hand, PDT relies on the irradiation of photosensitizers to generate more reactive 
oxygen species (ROS) that kill bacteria (Venditti 2019). TEM images confirmed the 
laser-induced bacterial death after treatment with AuNPs. Bermúdez-Jiménez et al. 
reported the antibacterial effect of chitosan hydrogel–embedded AuNPs against 
clinical MDR pathogens upon illumination with laser (Bermúdez-Jiménez et  al. 
2019) and the minimum inhibitory concentration (MIC) was <4 μg/ml. The low-
power infrared diode laser ruptured the bacterial membrane through enhanced ROS 
production. The principle of PDT is to generate toxic singlet oxygen upon illumina-
tion of photosensitizers with visible light. The highly reactive singlet oxygen dam-
ages the neighboring bacterial membrane, interferes with the cellular metabolic 
pathways, and damages the DNA (Bertoloni et al. 2000; Narband et al. 2009). In 
recent studies, photosensitizer-embedded AuNPs showed effective antimicrobial 
activity against both gram-positive and gram-negative bacterial strains (Rossi et al. 
2019; Jain et al. 2006; Pallares et al. 2016; Darby et al. 2016; Ni et al. 2008). PDT 
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is very safe and effective; however, it is highly recommended to deliver therapeutic 
concentration of the photosensitizers.

Cui et al. investigated the molecular mechanism of bactericidal activity of AuNPs 
using transcriptomic and proteomic approaches. Two major ways of exerting anti-
bacterial activities include decrease in the cellular ATP level that collapses the 
membrane potential and the inhibition of tRNA-binding ribosomal protein subunit 
(Cui et  al. 2012). Thus, AuNPs interfere with the activities of ATPase and 
tRNA.  Hence, decoding of mRNA responsible for functional protein enhances 
ROS-mediated chemotaxis in bacteria and leads to apoptosis (Cui et al. 2012). The 
most supported mechanism for antibacterial activity of the AuNP is the generation 
of reactive oxygen species (ROS). These highly reactive chemicals enhance oxida-
tive stress and form vacuoles inside cells (Mohamed et al. 2017).

It is important to highlight that commercially available antibiotics do not follow 
the multidimensional mode of action like AuNPs to inhibit bacterial growth. Hence, 
AuNPs can be a good alternative tool to control MDR pathogens. The different 
mode of antibacterial action of AuNPs is due to the structural differences of gram-
positive and gram-negative bacteria (Ranjan Sarker et  al. 2019). Hence, AuNPs 
have a promising future in the field of drug-delivery system (DDS) because delivery 
of drugs using AuNP is not only effective but also less toxic.

In-depth studies are recommended to unravel the precise mode of action involved 
in AuNPs-bacteria interaction and their inhibition.

9.5 � Biocompatibility of Au Nanoparticles

The field of nanomaterials is expanding rapidly with a wide range of applications 
(Khan et al. 2019). Besides having several medical applications, AuNPs have toxici-
ties associated with them. Hence, it is very important to know the basic information 
about the nanomaterials, especially composition, variability of size, shape, surface 
charge, surface area, surrounding media, and aggregation tendency in biological 
fluid that influence the biocompatibility of NPs. In this section, properties of Au 
NPs will be discussed to understand their biocompatibility cell.

A range of techniques have been used to investigate the biocompatibility of 
AuNPs (Fig. 9.4). Table 9.4 summarizes the principle and benefits of each assay. 
MTT assay is considered as the “gold standard” to investigate the toxicity of AuNPs. 
It is a colorimetric assay to determine cellular metabolic activity (Stockert et  al. 
2018). Herein, enzymatic activity of mitochondrial reductase is monitored under a 
defined condition. In an oxidation reaction, the enzyme reduces a yellow-colored 
tetrazolium dye (known as MTT or 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide) and produces insoluble purple-colored formazan. 
This irreversible reaction reflects the number of live cells at different time points. 
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Fig. 9.4  Commonly used assays to determine cell viability

Cell number is quantified by measuring the absorbance of formazan at 570 nm. The 
degree of formazan production reflects the number of dead cells and is directly pro-
portional to light absorption.

One of the pioneering reports on the biocompatibility assessment of AuNPs was 
reported by Shukla et al., where the biocompatibility and the uptake of AuNPs by 
RAW 264.7 macrophage cells were investigated (Shukla et al. 2005). Their find-
ings suggest that AuNPs are highly biocompatible having antioxidation potential at 
higher doses besides suitable for prolonged treatment. In addition, they found that 
spherical AuNPs did not induce the secretion of proinflammatory cytokines (e.g., 
TNFα and interleukin β) by macrophage cells. Chithrani et al. studied the effect of 
AuNP’s shape, size, and toxicity (Chithrani et  al. 2006). They concluded that 
citrate-capped spherical and rod-shaped AuNPs did not cause any significant toxic-
ity to HeLa cells. This study was followed by other research groups and found 
negligible toxicity for spherical and rod-shaped AuNPs using different cell lines 
in vitro (Khan et al. 2007; Gu et al. 2009; Villiers et al. 2010). We demonstrated 
that functionalization of elongated tetrahexahedral (ETHH) AuNPs with α-lipoic 
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Table 9.4  Summary of commonly used assays to evaluate the cytotoxicity of AuNPs

Assay Principle Remarks Reference

Trypan blue 
assay

This diazo dye penetrates the cell 
membrane of dead cells and stains them 
selectively

Identifies live 
(unstained) and 
dead (blue) cells
Provides 
quantitative 
cell-to-cell count
Fast method
Long-time 
incubation may give 
false positive result

Strober 
(2001)

Comet assay Denatured cleaved DNA fragments 
migrate out of the cell under 
electrophoresis and the undamaged DNA 
remains within the cell membrane

Single-cell gel 
electrophoresis
Economical
Sensitive method

Fairbairn 
et al. (1995)

LDH assay Colorimetric detection of lactate 
dehydrogenase (LDH)

Depends on LDH 
detection
Qualitative and 
quantitative cell 
count
Not preferable for 
multiple samples

Kumar et al. 
(2018)

Cell Counting 
Kit 8
(CCK8)

Cellular dehydrogenases cause reduction 
of water-soluble tetrazolium salt, WST-8 
[2-(2-methoxy-4-nitrophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium, monosodium salt]
And produce orange colored formazan

Colorimetric assay
No premixing is 
required
Rapid and sensitive
Expensive
Absorbance 
interference

Cai et al. 
(2019)

Neutral Red 
assay

Incorporation of dye lower in dead cell Depends on 
lysosomal function
Simple and fast 
method
Quantitative cell 
count

Repetto et al. 
(2008)

Tetrazolium-
based assays

Conversion of tetrazolium dye to 
insoluble formazan

Depends on 
mitochrondiral 
function
Colorimetric assay
Simple and fast 
method
Qualitative and 
quantitative cell 
count
Repeatable
Economical
Not suitable for 
suspending cells
Seeding amount and 
assay duration must 
be optimized

Stockert et al. 
(2018), 
Vistica et al. 
(1991)
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acid, a natural antioxidant, increased their hemocompatibility as well as biocom-
patibility to human red blood cells (RBCs) and HeLa cells, respectively (Ranjan 
Sarker et al. 2019). Recently, we also reported that functionalization of concave 
cube AuNPs (CCAu) with α-lipoic acid and glutathione, a tripeptide with antioxi-
dation potential, increased their hemocompatibility to human RBCs and biocom-
patibility to HeLa cells, L929 fibroblasts, and CHO-GFP cells (Pandala et  al. 
2021). On the contrary, Patra et  al. synthesized spherical (33  nm in diameter) 
AuNPs and investigated their toxicity using three different cell lines (Patra et al. 
2007). They found the particles were toxic to human lung carcinoma cells (A549), 
but compatible with baby hamster kidney cells (BHK21) and human liver carci-
noma cells (HepG2).

The hydrodynamic size of AuNPs plays an important role in terms of their cel-
lular uptake and biocompatibility. Earlier studies found that size variability of 
AuNPs demonstrates negligible toxicity (Khan et al. 2007; Gu et al. 2009; Villiers 
et al. 2010; Connor et al. 2005). Large AuNPs are generally stable, inactive, non-
catalytic, and biocompatible (Khlebtsov and Dykman 2011). Sophisticated tools 
including inductively coupled plasma mass spectrometry (ICP-MS) are used to 
quantify AuNPs taken up inside cell (Merrifield et al. 2018). Moreover, electron 
microscopy confirmed the presence of Au particles in the treated cells (Shukla 
et  al. 2005; García et  al. 2013). Chithrani et  al. and others studied the cellular 
uptake of a wide range of AuNPs and quantified the number of nanoparticles inside 
each cell using inductively coupled plasma atomic emission spectroscopy 
(Chithrani et al. 2006; Osaki et al. 2004; Huo et al. 2013; Wang et al. 2010; Heuskin 
et al. 2017). All these studies reported that the maximum uptake was observed in 
case of 50 nm AuNPs without any cytotoxic effect. Karakoçak et al. used two inde-
pendent methods (i.e., electric cell-substrate impedance sensing and MTT assay) 
to investigate the cellular uptake and biocompatibility of spherical, rod-, and cube-
shaped AuNPs (Karakoçak et al. 2016). They concluded that sphere-shaped AuNPs 
have better biocompatibility when compared to Au rods (Fig. 9.5). However, cube-
shaped AuNPs neither entered into cells nor had any cytotoxic effect.

Most often rod-shaped AuNPs are synthesized using a cationic surfactant called 
CTAB. Wang et al. found that free CTAB up to 1 μM is toxic to mammalian cells 
(Wang et al. 2008). Therefore, several strategies including chemical exchange or 
surface functionalization have been chosen to make Au nanorods less toxic. 
Polyethylene glycol (PEG), a hydrophilic polymer, has been widely used to modify 
AuNPs’ surface. However, PEGylation of AuNPs interferes with the cellular uptake 
process through reduced endocytosis (Nel et al. 2009; Doak et al. 2009). Chen et al. 
evaluated intraperitoneally injected eight AuNPs of different size (3–100 nm) and 
found size dependent toxicity in mice (Chen et al. 2009).
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Fig. 9.5  The mechanism of AuNPs-mediated cytotoxicity. (a) Exposure of AuNPs to ARPE-19 
cell. (b) Dynamic bipolymer layer (thick and loose blue color coating) creates a superficial surface 
exposed to the cell membrane. (c,d) Uptake of AuNPs by endocytosis. (e) Fusion of endocytic 
vesicle with lysosome. (f) Complete internalization of AuNPs by lysosome. (g) AuNPs cross the 
single membrane of lysosome and penetrate the mitochondrial intermembrane space to initiate 
apoptosis signal. (h) AuNPs available in the cytoplasm cause cell death by activating subcellular 
signaling pathways for apoptosis, initiating cell shrinkage, decreasing cytoplasmic shrinkage, and 
beginning subcellular fragmentation. Here, L lysosome; M mitochondria; and N nucleus. 
(Reproduced with permission Karakoçak et al. (2016) Copyright © 2016 Elsevier Ltd.)

9.6 � Conclusions and Future Perspectives

Multidrug-resistance bacteria are exerting real threat to the existence of mankind 
because they have become resistant to almost all the commercially available antibi-
otics. Overuse and misuse of antibiotics are the main causes of the development of 
bacterial resistance mechanisms against antibiotics. Gold nanoparticles demon-
strate antibacterial activity mainly through the oxidation of bacterial membrane 
resulting in the formation of pores on the membranes. As a result, AuNPs interact 
with the cellular DNA, proteins, and other macromolecules and cause bacterial 
death. Since AuNPs demonstrate antibacterial activity by damaging bacterial mem-
brane and other subcellular organelles, they demonstrate antibacterial activity 
against a wide range of bacteria including pathogenic bacteria and multidrug-
resistant bacteria. Furthermore, AuNPs are highly biocompatible in terms of their 
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compatibility with various cell lines, red blood cells (RBCs), and mouse model (i.e., 
in vivo). Hence, in clinical trials, AuNPs can be recommended to be used as an 
alternative nanoweapon to commercially available antibiotics to tackle multidrug-
resistant bacteria.
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