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Chapter 6
Limiting Antibiotic-Resistant Bacteria 
Using Multifunctional Nanomaterials

Ragini Singh, Stuti Bhagat, and Sanjay Singh

Abstract In the current scenario, antibiotic-resistant bacteria become a global 
threat to human health, and it has been predicted that by the year 2050, death caused 
due to bacterial infection will surpass the cancer-related death. Existing antibiotic 
therapy experiences several limitations like side effects, poor stability, and solubil-
ity which leads to its inefficiency in antimicrobial therapy. To overcome these limi-
tations, research has been focused on alternative strategies like use of nanomaterials 
in the formulation of antimicrobial agents due to advantages like drug-targeting 
ability, biodistribution, enhanced uptake, and favored physicochemical properties. 
Nanomaterials interact with the cellular component of microbes, and their antimi-
crobial behavior depends majorly on surface chemistry, size, shape, and core mate-
rial. This chapter elaborates on the drug-resistant mechanism of microbes as well as 
the role of nanomaterials (nitric oxide-releasing, chitosan-based, and metallic) in 
combating drug resistance. Various bacterial-based diseases in animals are also lia-
ble to be transferred in humans and cause serious illness. The potential of nanoma-
terials in the prevention and treatment of diseases in animal models is also the 
highlight in the present article. Finally, we also discussed the clinical approaches of 
nanoformulation in combating drug-resistant microbes.
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6.1  Introduction

Multidrug-resistant (MDR) bacteria remain a key challenge for the treatment of 
bacteria-driven life-threatening diseases. According to an estimate, by the year 
2050, the deaths caused by bacteria-driven diseases may surpass the mortality 
caused by cancer. Currently, several bacterial species are reported to be resistant to 
the essential drugs like methicillin, carbapenem, and vancomycin, thus producing 
methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant 
Enterobacteriaceae, and vancomycin-resistant Enterococcus, respectively 
(Ssekatawa et  al. 2020; Willyard 2017). Some of the common reasons for drug 
resistance are irrational and overuse of antibiotics, bacterial adaptation to biofilms 
formation, and prolonged use of antibiotics for the treatment of bacterial diseases 
(Munir et al. 2020). Excess use of antibiotics causes selective pressure on microbes 
which in turn develop the genes encoding antibiotic resistance and thus produce 
new strains in which the resistance is transferred via horizontal or vertical transmis-
sion (Arzanlou et al. 2017a).

Antibiotics inhibit the growth of bacteria by different mechanisms including 
inhibition of cell wall synthesis and hindering DNA, RNA, protein synthesis, and 
biofilm formation. MecA genes in bacterial cells are reported to impart resistance 
against antibiotics such as penicillin and methicillin (Berger-Bachi 1994). Single 
microbe-like superbugs can acquire MDR by adapting drug-resistant genes from 
other bacteria. The enzyme, such as New Delhi metallo-b-lactamase-1 (NDM-1), 
can degrade the β-lactam ring, thus making a range of antibiotics ineffective against 
the bacterial strain (Rolain et al. 2010). Mycobacterium tuberculosis and S. aureus 
are other common examples of drug-resistant bacteria causing serious concern and 
threat to the global healthcare community (Munir et al. 2020). Thus, the origin of 
antibiotic-resistant pathogenic bacterial strains requires immediate attention, and 
some novel approaches are required to inhibit their growth and transmission. In this 
context, nanotechnology-based novel therapeutic strategies have shown promising 
results in controlling the growth of MDR microbes.

To overcome the antibiotic-resistant complications, it is important to understand 
the mechanism by which microbes escape the traditional antibiotic therapy. There 
are two types of bacterial growth: (i) planktonic growth, described as unicellular, 
free-swimming microbes not attached to a surface, and (ii) biofilm growth phase, 
characterized as multicellular sessile state which forms communities (Berlanga and 
Guerrero 2016).

Biofilm formation is an advanced method that allows bacteria to survive in harsh 
circumstances by developing permanent colonies with great ability to dissociate and 
form new colonies (Rizzato et al. 2019; Majumdar and Pal 2017). Bacterial biofilms 
are made up of a dense and hydrated clump of bacteria that are attached to a surface 
and are encased in a dense external matrix of exopolysaccharides, extracellular 
deoxyribonucleic acid (DNA), and amino acids (Blair et al. 2008). While biofilm 
formation in the common bacteria like Staphylococcus epidermis and Pseudomonas 
aeruginosa is well-known to protect them from various antibiotics, diverse other 
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biofilm-forming microbes also exist which confer resistance against wide range 
of  antibiotics. For example, yeast candida albicans and obligate anaerobe 
Porphyromonas gingivalis, when grown in the biofilm, have been reported to be less 
susceptible to antibiotics in comparison to free-floating cells (Stewart 2002). Human 
lung, urethra, colon, ear infections, infective endocarditis, gum infection, and 
wound-related infections are linked to biofilms formation (Valappil 2018). In com-
parison to planktonic bacterial growth, biofilms are thought to be ~1000 times more 
resistant to antibiotics (Rossi-Fedele, Roberts 2007). Biofilm bacteria are subjected 
to cell density-dependent control from their extracellular polymeric substances 
(EPS) matrix, and thus as a result of high density, they are discharged into the sur-
roundings as free-floating bacteria. Furthermore, both biofilms and host immune 
responses enhance the transformation of normal nonpathogenic commensal bacteria 
into virulent forms in the human body (Marsich et al. 2012). The evolution of sur-
vival mechanisms has been aided by the increased genetic mutation rates within 
biofilms. The expression of certain efflux pumps and upregulation of various pro-
teins could cause diffusion across the biofilm. In this context, deletion of genes 
encoding the biofilm-specific efflux pump, PA1874–1877, confers the P. aeruginosa 
sensitivity to antibiotics like gentamicin and ciprofloxacin. These genes are not 
found to be overexpressed in planktonic cells proving their importance in biofilm 
resistance. Furthermore, increased production of toxin-antitoxin modules inhibits 
important cell operations like translation (Zhang and Mah 2008; Eleraky et  al. 
2020). Thus, due to the diversity and anonymity of biofilm-resistant processes, 
innovative nanosystems are envisaged to effectively inhibit the spread of resistant 
bacterial strains.

Nanoparticles (NPs) offer multifunctional aspects of eradicating MDR microbes 
because of their ability to act as transporters for common antibiotics as well as natu-
ral antibacterial substances (Wang et al. 2017c). The most widely used aspect of 
nanomaterials (NMs)-based drug delivery system is its ability to introduce a diverse 
array of therapies being linked to or confined inside their huge surface area and 
controlled rate of targeted delivery to infected site (Gholipourmalekabadi et  al. 
2017; Baptista et  al. 2018). NMs-mediated delivery can improve the therapeutic 
index and pharmacokinetic profile of encapsulated drugs in comparison to free 
drugs which leads to decrease in the required dose to achieve an equivalent clinical 
effect. This will reduce the adverse toxic side effect caused due to high and frequent 
dose administration (Gao et al. 2018). Various NPs are reported to be used as effi-
cient drug delivery agents, i.e., liposome, polymeric NPs, inorganic NPs, den-
drimers, etc. Rinaldi et al. demonstrated the rifampicin-loaded liposome (Rif-Lipo) 
for the treatment of pulmonary infection caused due to Mycobacterium abscessus 
(Rinaldi et al. 2021). Synthesized nanoformulation was found to be stable at room 
temperature and 4 °C for 90 days. The authors showed that 18 h exposure of 96 μM 
Rif-Lipo nanoformulation inhibits the M. abscessus infection with a similar effect 
of 192 μM rifampicin alone. Targeted delivery of drugs and antibiotics can also be 
achieved efficiently by using various NPs. In this context, Güncüm et al. demon-
strated the antibacterial activity of polymeric (poly(vinyl alcohol)/sodium alginate) 
NPs containing amoxicillin (poly-AmoNPs) against Escherichia coli (E. coli) and 
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S. aureus (Güncüm et al. 2018). The result showed that with a decrease in pH, the 
release of amoxicillin also decreases which induces the controlled release of drug at 
infectious site. This formulation has a similar effect as a free drug against E. coli 
and S. aureus. Further, Wang et al. synthesized gold-silver nanocage coated with the 
pattern recognition receptors (PRRs) (found in macrophage membrane) (Shi et al. 
2018). Macrophages were treated with S. aureus and E. coli to confirm the expres-
sion of pathogen-related receptors on their membrane surface. This formulation 
promotes the adherence of NPs to specific bacteria for targeted therapy and delivery 
of the drug. Also, the gold-silver nanocages can convert NIR (laser light) into heat 
to destroy the bacteria by using laser irradiation treatment. The hollow structure of 
nanocage can be well utilized for the encapsulation of drugs for the targeted therapy.

6.2  Mechanism Underlying Antibiotic Resistance 
in Microbes

Existing antibiotics are reported to inhibit the growth of microbes via affecting three 
different machineries: DNA replication, translation process and cell wall synthesis. 
Interestingly, bacterial cells evolve various strategies to counter the inhibitory func-
tions of antibiotics by developing resistance mediated by mutations in chromo-
somes. Non-resistant bacteria get eradicated by antibiotics, whereas resistant 
species survive the exposure and eventually transfer the resistance mechanism to 
next generation through horizontal or vertical transfer (Arzanlou et  al. 2017b; 
Ruddaraju et al. 2020). Various mechanisms of antibiotic resistance in microbes are 
discussed below in detail and summarized in Fig. 6.1.

6.2.1  Competition to Antibiotics and Resistance to Persister

Bacterial cells can produce molecules displaying competitive inhibition for each 
antibiotic to acquire resistance against the antibiotics. In this context, sulfonamide- 
resistant bacterial cells produce a high amount of pare-aminobenzoic acid (PABA) 
to confer resistance. Sulfonamides hinder bacterial nucleic acid synthesis by inhib-
iting the bacterial enzyme dihydropteroate synthetase (DHPs) in the folic acid path-
way. In Neisseria meningitidis and S. aureus, PABA competes with the sulfonamides 
for enzyme DHPs and leads to resistance in bacterial cells (Ponce et al. 2017).

Inert persisters occur in the infected bacterial community causing a repetition of 
infection even after the treatment due to acquired resistance against antibacterial 
drugs. Persister cells decreased their metabolic rate by gene shift to achieve resis-
tance against antibiotics. Bacterial community exposed to antibiotics showed that 
some of the populations are sensitive to drugs, while other remains unaffected 
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Fig. 6.1 Scheme showing mechanistic action of antimicrobial resistance (Pauter et al. 2020)

indicating the treatment completion for certain infection. In some cases, persisters 
shift to an active metabolic state again to cause reinfection.

6.2.2  Low Drug Uptake and High Efflux

Reduced rate of drug uptake and high efflux rate are two major mechanisms that 
simultaneously regulate antibiotic resistance. For example, P. aeruginosa low sen-
sitivity for a drug could be due to the presence of inner membrane protein (H+/drug 
antiporter protein) in the periplasmic space attached to a linker protein. Regulatory 
protein suppresses the gene encoding efflux protein; thus, mutation in regulating 
protein leads to overexpression of efflux protein and high MDR of P. aeruginosa 
(Nikaido 2009). In addition, energy driven by transmembrane protein could also be 
utilized by nine efflux pumps expressed in E. coli that facilitate the development of 
resistance in bacteria by expelling many antibiotics (Du et al. 2018).

Several genes are reported in both gram-negative and gram-positive bacteria that 
encode efflux pumps such as tetracycline efflux pump encoded by TetB, TetK, and 
TetA. Transfer of these genes to bacterial cells may be attributed to transposons and 
horizontal gene transfer on the plasmid (Blair et al. 2015). Most of the gram- negative 
bacteria are reported to be resistant against chloramphenicol and fluoroquinolones 
primarily due to the efflux effect. Enterococcus faecalis develop resistance against 
dalfopristin and quinupristin antibiotics by using the same efflux mechanism. 
Further, decreased uptake of antimicrobial drugs in gram-negative bacteria causes 
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resistance against aminoglycosides, whereas resistance to vancomycin may be 
attributed to the increased thickness of cell walls in microbes (Blair et al. 2015).

6.2.3  Biofilm Formation

Resistance in bacteria from several antibiotics may be attributed to the biofilm for-
mation, which causes chronic infections. Biofilm-producing bacteria exhibit ~1000 
times more resistance against antibiotics than bacterial species that do not form 
biofilms (Arciola et al. 2018). At the initial stage of biofilm formation, antibiotic 
treatment is found to be more effective because the microbial population is not com-
pletely adapted into the biofilm community (Munoz-Egea et al. 2016). During bio-
film formation, EPS assembles to facilitate the localization of bacterial community; 
however, it acts as a diffusion barrier for antibiotics. Various mechanisms are sug-
gested regarding EPS mediating antibiotic inhibition. Here, at the initial stage, the 
pore size of the matrix is small enough to hinder the entry of antibiotics. The nega-
tively charged matrix further inhibits the effect of antibiotics on bacterial cells, and 
the enzymes located in EPS induce covalent modification in antibiotics that lead to 
the inhibition of their antimicrobial action (Ferreira et al. 2010). Additionally, EPS 
also acts as a barrier to nutrient and oxygen supply, thus promoting indirect resis-
tance to bacteria against antibiotics. Bacterial cells located deep inside the biofilm 
exhibit lower metabolic rates due to less supply of nutrients and thus are also less 
susceptible to antibiotics.

The multicellular nature of biofilm is one of the key factors responsible for anti-
biotic resistance. EPS accumulates the bacterial cells together and develops the 
multicellular consortia, which forms a heterogeneous environment inside the bio-
film and establishes a multicellular system. If the steps of multicellular structure 
formation of biofilm can be disrupted, antibiotic efficacy as well as host defense 
system could be improved. Another mechanism regarding the resistance of the bio-
film community is the internalization of resistance genes by horizontal gene transfer 
via conjugation method (Mah 2012). Biofilm provides a compatible environment 
for gene transfer such as high genetic competence, accumulation of genetic ele-
ments, and high cell density (Fux et al. 2005). Several studies have reported that the 
conjugation process is more efficient in biofilms compared to planktonic cells (Van 
Meervenne et al. 2014; Sharma et al. 2019).

6.2.4  Antibiotic Modification

Several microorganisms express the drug-resistant genes, which encode the enzymes 
responsible for covalent modification of antibiotics such as aminoglycosides, tetra-
cycline, quinolones and β-lactams (Laxminarayan et al. 2013). β-Ring of β-lactam 
has been reported to be hydrolyzed by β-lactamase enzyme leading to resistance in 
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β-lactamase-sensitive microbes. Horizontal transfer of β-lactamase gene on bacte-
rial plasmids or decreased activity of a repressor protein that inhibits β-lactamase 
gene transcription is the major cause of resistance development in microbes (Moyá 
et al. 2012; Munir et al. 2020).

Recently, New Delhi metallo-β-lactamase 1 (NDM-1)-producing carbapenem- 
resistant microbes have been discovered. Several NDM-1-expressing bacteria are 
resistant against a majority of antibacterial drugs used to treat serious infections. 
Research on samples collected from various regions reports that they are tolerant to 
monobactam aztreonam, aminoglycosides, quinolones, tetracycline and β-lactam 
antibiotics (Kumarasamy et  al. 2010). Moreover, the aminoglycoside resistance 
gene encodes enzymes causing a covalent modification of the OH and NH2 group of 
aminoglycosides which leads to the decreased affinity with the 30S ribosomal sub-
unit, thus inhibiting the antibacterial activity. Robicsek et al. reported the reduced 
susceptibility of clinical bacterial isolates against ciprofloxacin due to the expres-
sion of gene encoding aminoglycoside acetyltransferase. This enzyme inhibits cip-
rofloxacin’s activity by N-acetylating the amino nitrogen on the piperazinyl group 
(Robicsek et al. 2006).

6.2.5  Swarming

Swarming represents social motility enabling differentiated bacterial cells to 
migrate. Swarming is similar to the biofilm community and characterized by a high 
level of resistance to antimicrobial treatments (Lai et al. 2009). Several swarming 
bacterial species like P. aeruginosa, Salmonella enterica, and B. subtilis are reported 
to exhibit multiple antibiotic resistance. Swarming bacteria exhibit three different 
strategies against antibiotics including high cell density, lower exposure to antibiot-
ics due to circulation within the multilayer structure, and death of directly exposed 
individuals (Butler et al. 2010). Reports showed that even in the absence of swarm-
ing, high cell density promotes bacterial survival; however, movement ability, as 
well as the speed of movement, offers an extra advantage to swarm as an effective 
strategy against antimicrobials agents (Butler et al. 2010).

6.3  Nanotechnology-Mediated Strategies to Overcome MDR 
in Microbes

The emergence of new drug-resistant microbial species and the limited production 
of antimicrobial drugs have created a serious concern for human health. Synthesis 
of new antibiotics is a complex process and takes around 10–15 years for approval 
and also has a very high production cost (Eleraky et  al. 2020). Therefore, as an 
alternative, people have looked at using NMs as an effective antimicrobial. NPs are 
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Fig. 6.2 NPs act on bacterial cells through different mechanisms (Baptista et al. 2018)

also reported to enhance the physicochemical property and stability of existing anti-
biotics, prolong their release, and facilitate targeted delivery to the infection site, 
with reduced side effects (Patra et al. 2018). NMs possess various mechanisms to 
overcome microbial drug resistance (Fig.  6.2), which can be governed by their 
physicochemical properties like size, surface charge, and solubility. Nitric oxide- 
releasing NMs, metal-based NMs, and chitosan-derived NMs are reported to pre-
vent microbe resistance (Pelgrift and Friedman 2013). Encapsulation of antibiotics 
in NMs, inhibition of biofilm, increasing drug influx, and decreasing efflux are 
some of the mechanisms underlying their antimicrobial efficacy (Kaur et al. 2019; 
Tang and Zheng 2018). Table 6.1 shows the list of various NPs with their inhibitory 
mechanism against MDR microbes.

6.3.1  Nitric Oxide-Releasing Nanomaterials

In recent years, gas-releasing agents especially nitric oxide-releasing NMs 
(NO-NMs) have found applications in combating multidrug resistance in microbes 
(Rong et al. 2019). NO released from NMs reacts with superoxide (O2˙−) to produce 
reactive nitrogen intermediates (RNOS) causing bacterial cell death. NO (>1 mM) 
shows toxicity against microbes by various mechanisms (Wang et al. 2017c; Nguyen 
et al. 2016) including (i) interaction of RNOS with prosthetic groups of proteins, (ii) 
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inducing nitrosative damage to DNA, (iii) reacting with bacterial protein residues, 
(iv) lipid peroxidation, and (v) interference with zinc metalloproteins to hinder cel-
lular respiration. Additionally, NO can also trigger the immune response in humans 
and animals (Dolansky et al. 2018).

Kafshgari et al. reported the antibacterial efficacy of NO-releasing porous silicon 
NPs (Hasanzadeh Kafshgari et al. 2016). In the presence of ascorbic acid, NO inhib-
ited E. coli and S. aureus growth within 2 h of exposure. However, after 24 h of 
exposure, bacterial growth decreased to 1 log than untreated cells. Gehring et al. 
have also demonstrated the antibacterial activity from NO-releasing mesoporous 
organosilica (Gehring et al. 2016). The antibacterial effect of NO alone and along 
with gentamicin in polymeric NMs was also investigated (Nguyen et al. 2016). It 
was found that both agents were simultaneously released and displayed a synergis-
tic effect causing a decrease in the planktonic cell viability and biofilm formation by 
95% and 90%, respectively. NO-NMs are also reported to cause interference in 
adhesion of MR S. aureus and also prevent the biofilm formation when tested in rat 
central venous catheter model of infection (Mihu et al. 2017). NO-releasing silver 
NPs (AgNPs) are also reported to show antibacterial activity. The presence of NO 
on the particle surface enhances the antibacterial effect due to the synergistic effect 
of AgNPs and NO (Seabra et al. 2017). So far, there is no report on the development 
of resistance against NO, which could be due to the no increase in minimum inhibi-
tory concentration (MIC) of exposure (Privett et al. 2012). However, some bacteria 
express enzymes (flavohemoglobin, DNA repair enzymes, lactate dehydrogenase) 
that protect them from the nitrosative effect of NO at a physiological quantity of 
NO, but at an adequate concentration of NO, these enzymes also become ineffective 
(Hall et al. 2020). At a concentration of 1.25–5 mM, NO-NMs are reported to com-
pletely eradicate the bacterial cells and also lower the bacterial burden when applied 
on lesions and intramuscular and dermal abscesses (Schairer et al. 2012).

NO-NMs are also reported to be effective against fungal infections. Bio-screen C 
analysis and time-lapse microscopy showed NO-NMs induced inhibition of fungal 
colonies by decreasing the cell division, filament, and bud formation (Rosen et al. 
2016). NO-NMs are effective against the Candida albicans biofilm formation activ-
ity (Hetrick et al. 2009). NO-NMs treatment was found to decrease fungal load and 
accelerate wound closure in mice. This is also supported by the tissue histology 
showing a lack of fungal hyphae structures within the dermis and decreased inflam-
mation with increased fibrin and collagen deposition.

6.3.2  Metal-Based Nanoparticles

Different metallic NMs, i.e., gold (Au), silver (Ag), zinc (Zn), magnesium (Mg), 
and titanium (Ti), prevent drug resistance in microbes by employing a different 
mechanism to hinder the growth (Wyszogrodzka et al. 2016). Polyclonal antibody- 
decorated bismuth NPs are reported to enhance the effect of X-ray irradiation to 
eradicate the MDR bacterial species. The result showed a significant antibacterial 
effect due to the combined action of bismuth and X-ray, thus killing ~90% of 
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bacteria, whereas only ~6% death was observed when only X-ray was exposed (Luo 
et al. 2013). On the other hand, no significant toxicity was observed when human 
cells were exposed to same concentration. Some of the common metallic NPs that 
are reported to exhibit antimicrobial effects are discussed below.

6.3.2.1  Titanium Dioxide Nanoparticles

Titanium dioxide NPs (TiO2 NPs) exert antimicrobial action possibly by the follow-
ing two mechanisms: (i) production of reactive oxygen species (ROS) when irradi-
ated in the near-UV region leading to the damage of bacterial cell membrane 
(Ranjan and Ramalingam 2016) and (ii) TiO2 NPs itself inhibit the growth of 
microbes by an unknown mechanism (Venkatasubbu et al. 2016). In this context, 
Liu et al. demonstrated the antibacterial activity of TiO2 nanocrystals with [101] 
[001] surface heterojunction promoting electron-hole spatial separation at [101] and 
[001] facets leading to ROS generation and thus antimicrobial effect (Liu et  al. 
2017). SEM images revealed that the surface of both E. coli and S. aureus has been 
altered by the TiO2 nanocrystals and the antibacterial effect was due to the depletion 
of glutathione, membrane lipid peroxidation, and intracellular oxidative stress. 
Further, Arora et al. reported the antibacterial activity due to the use of a combina-
tion of TiO2 NPs, ceftazidime and cefotaxime in MDR P. aeruginosa isolated from 
sputum, pus, endotracheal tract, and bronchoalveolar lavage (Arora et  al. 2015). 
NPs showed toxicity at 350  μg/mL concentration in presence of UV light for 
an hour.

6.3.2.2  Zinc Oxide Nanoparticles

Zinc oxide NPs (ZnO NPs) are reported to exhibit antibacterial activity regulated by 
different mechanisms and also reduce the likelihood of resistance development 
(Sirelkhatim et al. 2015). Polyvinyl alcohol-coated ZnO NPs showed rapid internal-
ization into the cell cytoplasm by increasing the permeability of the bacterial mem-
brane and inducing oxidative stress within the cytoplasm. In the cytoplasm, ZnO 
NPs bind to bacterial membrane and destroy the lipid and membrane protein to 
release the cytoplasmic content, thus resulting in cell death. Additionally, ZnO NPs 
also produce Zn2+ ions, which may rupture the bacterial membrane and promote 
intracellular ROS generation (Sirelkhatim et al. 2015; Siddiqi et al. 2018). In a study 
by Patra et al., ciprofloxacin-functionalized ZnO NPs were developed to demon-
strate the antibacterial activity against MDR E. coli, S. aureus, and Klebsiella sp. 
Results showed that this nanoconjugate has a lower MIC than only drug (Patra et al. 
2014). Further, the two antibiotics (ciprofloxacin and ceftazidime) were conjugated 
with ZnO NMs and tested against MDR Acinetobacter baumannii (Ghasemi and 
Jalal 2016). Results showed that there was an increase in the internalization of anti-
biotics in bacterial cells that supported the change in shape of cells from rods to 
cocci form. ZnO NPs conjugated with clinically approved drugs (ceftriaxone, 
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amphotericin B, quercetin, naringin, and ampicillin) have also been evaluated for 
their antibacterial effect against gram-positive and gram-negative bacteria. 
Ceftriaxone- and ampicillin-conjugated ZnO-NMs exhibited high antibacterial 
activity but were found nontoxic to human cells (Akbar et al. 2021).

6.3.2.3  Silver Nanoparticles

Antimicrobial property of AgNMs is mainly considered due to the slow release of 
silver ions (Ag+) in an aqueous solution (Ramalingam et al. 2016). Ag+ react with 
the bacterial cell membrane and rupture them to release cytoplasmic content leading 
to cell death. Comparatively, gram-positive bacteria are less sensitive than gram- 
negative bacteria to Ag+ exposure, which could be due to the thin cell wall in the 
latter case (Dakal et al. 2016; Li et al. 2019b). Ag+ are also reported to be less likely 
to penetrate the gram-negative bacterial cells due to its strong binding to negatively 
charged lipopolysaccharide (LPS) of gram-negative bacteria (Acharya et al. 2018). 
Further, some other mechanisms suggested in the favor of Ag+ ions exerting antimi-
crobial effect are (i) damage to genetic material and prevention of p DNA duplica-
tion, thus arresting cell division, (ii) binding with cytochrome to interfere electron 
transport chain, and (iii) inhibition of cell wall formation in gram-positive bacteria 
(Brown et al. 2012; Munir et al. 2020).

AgNPs are effective against a wide range of pathogens, including drug-resistant 
fungus, bacteria, and viruses. AgNMs bactericidal effects have been reported against 
ampicillin-resistant E. coli and S. pyogenes and MDR P. aeruginosa. Combining 
AgNMs with several drugs (amoxicillin, penicillin G, vancomycin, clindamycin, 
and erythromycin) is reported to exhibit significant antimicrobial activity (Kaur 
et al. 2019; Li et al. 2019b). Wang et al. reported the synergistic antibacterial effect 
of levofloxacin decorated on Ag core-embedded silica nanoplatform (Ag@MSNs@
LEVO) against drug-resistant bacteria (Fig. 6.3) (Wang et al. 2016). Results showed 
that upon treatment with the Ag@MSNs@LEVO to in vivo acute peritonitis model, 
E. coli infection in the peritoneal cavity of the mice reduced to three-fold and patho-
logical effects from spleen and peritoneum were also found to be vanished without 
exerting any toxic side effect on mice. Thus, this data strongly suggests that Ag@
MSNs@LEVO has the potential to be a safe therapeutic option for clinical drug- 
resistant infections. Mottais et al. synthesized N-heterocyclic carbene-coated silver 
complexes (Ag-NHCs) featuring a lipid chain and investigated their antibacterial 
potency (Mottais et al. 2019). It was found that the aqueous formulation of Ag-NHCs 
showed a better antibacterial effect against some strains of S. aureus and P. aerugi-
nosa. Additionally, when combined with cationic lipid and DNA, it can also be used 
to deliver therapeutic genes to infected lungs via aerosolization. Taken together, the 
data presented herein suggest the use of n-alkyl chain Ag-NHC as a promising alter-
native to traditional antibiotics in the treatment of respiratory infections and to fight 
against the rise of MDR bacteria.
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Fig. 6.3 Schematic illustration showing the fabrication of Ag@MSNs@LEVO nanoplatform and 
its synergistic application over drug-resistant infections in vitro and in vivo. (Reprinted with per-
mission from Biomaterials, Copyright 2021, Elsevier (Wang et al. 2016))

6.3.2.4  Copper Oxide Nanoparticles

Copper oxide NPs (CuONPs) are reported as weak but wide spectrum antimicrobial 
agents, mostly reported effective against Listeria monocytogenes, E. coli, S. aureus, 
and S. cerevisiae. CuONPs utilize two different mechanisms for antimicrobial 
action: (i) excess amount of Cu ions cause generation of ROS to prevent both DNA 
replication and amino acid synthesis; and (ii) Cu ions react with amino and carboxyl 
groups presented on the bacterial surface (Ananth et al. 2015). Agarwal et al. dem-
onstrated the activity of CuONPs against MDR biofilm-forming bacteria (Agarwala 
et al. 2014). The result showed that CuONPs exposure displayed a zone of inhibi-
tion against MR S. aureus (22 ± 1 nm) followed by E. coli (18 ± 1 nm). It has been 
reasoned that Cu ions damage the microorganism’s envelope and subsequently bind 
with DNA leading to multiple damages mediated by OH radicals. However, in some 
cases, it has been reported that copper-mediated oxidative damage follows the 
Fenton mechanism (Borkow and Gabbay 2009).

6.3.2.5  Bismuth Nanoparticles

Bismuth NPs (BiNPs) are reported to be a potent antimicrobial agent against drug- 
resistant microbes (Hernandez-Delgadillo et  al. 2012). BiNPs are synthesized in 
different ways with controlled shape and size required to display maximum antibac-
terial activity (Wang et al. 2008). Besides the use of visible, topical, and UV radia-
tion, X-rays have a high impact to eradicate the bacterial infection when used with 
BiNPs. It leads to the reduced requirement of radiation dose needed to eradicate 
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bacteria, thus making it less harmful to humans. Mechanistically, Bi releases elec-
trons by photoelectric effect and generates free radicals following X-ray irradiation, 
which gradually destroys the bacterial DNA (Luo et al. 2013). Antibiotic conjuga-
tion with BiNMs reduces the average distance between targeted microbes and NPs 
and thus enhances the bactericidal action (Gao et al. 2014). Further, BiNMs radia-
tion therapy is also reported to be highly effective against MDR P. aeruginosa (Luo 
et al. 2013). The bacterial sample was incubated with polyclonal antibody-modified 
BiNMs and irradiated with X-rays. The result suggested that ~90% of bacteria were 
killed upon exposure to 200 μg/mL BiNMs, whereas only 6% were killed when 
exposed to X-ray alone. Additionally, no significant toxicity was observed on human 
cells, thus establishing the possibility of future clinical applications.

6.3.2.6  Graphene-Based Nanomaterials

Graphene is a single-layer carbon sheet that has been emerging as a potent antimi-
crobial agent along with other applications. It acts both by physical and chemical 
methods, and its sharp edges can disrupt the bacterial membrane leading to cell 
death. Graphene-based NMs (GNMs) are also utilized as dispersing and stabilizing 
agents for other NMs resulting in high antibacterial competence due to the synergis-
tic effect (Xia et al. 2019). In this context, Aunkor et al. reported the antibacterial 
activity of graphene oxide (GO) nanosheets against MDR superbugs (E. coli, 
Klebsiella pneumoniae, P. aeruginosa, P. mirabilis, S. marcescens, and S. aureus) 
obtained from hospitals (Aunkor et al. 2020). Antibacterial activity of GO nanosheets 
was compared with commonly used antibiotics (azithromycin, cotrimoxazole, cip-
rofloxacin, amoxicillin, ceftriaxone, imipenem, gentamycin, and cefixime). The 
result suggested that GO nanosheets may act as “Nano knives” due to the sharp 
edges and thus rupture the bacterial cell wall. Secondly, bacterial cells may be 
entrapped in GO nanosheets and detached from the external environment restricting 
them to access nutrient supply leading to cell death. Entrapment activity depends on 
the size of nanosheets, and larger-sized nanosheets showed better entrapment (Liu 
et al. 2012). Further, Wu et al. reported antimicrobial activity of GO in three differ-
ent MDR bacteria, i.e., K. pneumoniae, E. coli, and P. aeruginosa (Wu et al. 2017). 
Result demonstrated that upon GO exposure, K. pneumoniae colony is eradicated 
from the agar dish, thus protecting the alveolar macrophage from infection in cul-
ture. GO can inhibit the growth and spread of K. pneumoniae both in  vitro and 
in  vivo which leads to increased cell survival rate, suppressed inflammatory 
response, less tissue injury, and prolonged mice survival. Further, Pan et al. demon-
strated the antibacterial effect of a nanocomposite system based on reduced GO-iron 
oxide NPs (rGO-IONPs) against MR S. aureus (Pan et  al. 2016). Mechanism of 
rGO-IONPs antibacterial effect was suggested due to the heat and OH radical gen-
eration causing bacterial cell death both in vitro and in vivo (Fig. 6.4). These find-
ings suggest that GO may be used as promising NMs for efficiently combating 
MDR infections.
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Fig. 6.4 Schematic demonstrating rGO–IONP synthesis and their mechanism of action to inacti-
vate MRSA in subcutaneous abscesses created in a mouse model. (Reprinted with permission from 
Nanomedicine: Nanotechnology, Biology and Medicine, Copyright 2021, Elsevier (Pan et al. 2016))

6.3.2.7  Bimetallic Nanomaterials

Bimetallic NPs composed of AgNPs and AuNPs have been extensively investigated 
for their antibacterial activity (Singh et al. 2016). AgNPs are a well-known antimi-
crobial agent. Since the functionalization of AgNPs with biomolecules and drugs 
remains challenging, therefore, use of bimetallic/alloy NPs has been synthesized to 
realize its efficient antibacterial property. AuNPs, being biocompatible, are reported 
as an ideal vector for the delivery of pharmacological compounds. Bimetallic NMs 
display superior electrical, optical, and catalytic characteristics than their monome-
tallic counterparts (Latif ur et al. 2015). AuNPs and AgNPs bimetallic NMs com-
prise the properties of both individual NMs, i.e., antimicrobial activity of silver with 
stability and easy surface functionalization provided by gold (dos Santos et  al. 
2012). In this context, Fakhri et al. demonstrated the synthesis and functionalization 
of bimetallic AgAuNPs with tetracycline. The result showed that in combination 
with bimetallic NPs, antibiotics show a synergistic effect and produce high bacteri-
cidal results than their free forms (Fakhri et al. 2017). Recently, Baker et al. synthe-
sized AgAuNPs from the cell-free supernatant of Pseudomonas veronii strain 
AS41G inhabiting Annona squamosa L. and demonstrated their antimicrobial effi-
cacy against bacitracin-resistant strain of B. subtilis, E. coli, and K. pneumoniae. 
Result showed that the synergistic antibacterial effect with antibiotics, bacitracin, 
kanamycin, gentamicin, streptomycin, erythromycin, and chloramphenicol resulted 
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in 87.5, 18.5, 11.15, 10, 9.7, and 9.4% fold increase in the activity, respectively 
(Baker et al. 2017). Further, bimetallic NPs of Au and platinum (AuPtNPs) have 
also shown enhanced antibacterial activity against sensitive and drug-resistant bac-
teria (Zhao et al. 2014). Mechanism of action revealed the elevation of adenosine 
triphosphate (ATP) level and dissipation of bacterial membrane potential.

6.3.2.8  Silica Nanoparticles and Their Derivatives

Silica NPs (SiNPs) offer a variety of functional properties that make them a useful 
candidate to fight against bacterial infections and are reported to inhibit biofilms 
from wearable medical implants (Selvarajan et al. 2020). In this context, Kanugala 
et al. demonstrated the antibacterial activity of phenazine-1-carboxamide (PCN)-
loaded SiNPs (PCN-SiNPs) against planktonic C. albicans and biofilms of C. albi-
cans- S. aureus (Kanugala et al. 2019). Results showed that the antimicrobial activity 
of PCN-SiNPs was enhanced significantly than PCN and SiNPs alone on silicone 
urethral catheters. The mechanistic study revealed that released PCN induces ROS 
production in all microbes, thus resulting in disrupted homeostasis, reduced ergos-
terol content, altered membrane permeability, and leakage of Na+, K+, and Ca2+. 
Similarly, Wang et al. proposed that silica-gentamycin NPs incorporated in gelatin 
matrix cross-linked on microarc-oxidized titanium could be used for coating percu-
taneous implants (Wang et al. 2017b). The antibacterial titanium coating was found 
to be biocompatible and capable of inhibiting the growth of S. aureus. It was also 
found that the nano-delivery system is biocompatible and thus can be utilized to 
prevent infection around percutaneous implants.

In various cases, loaded drug amount is insufficient because the physically 
absorbed drugs in the mesopores suffer from quick release during encapsulation. To 
overcome this limitation, Kankala et al. developed metal-doped SiNPs where metal 
embedded in the siliceous frameworks acts as an anchor for drug molecules by 
establishing the coordination interaction (Kankala et al. 2020). Host-guest interac-
tion among metal and ligands facilitates the high loading capacity compared to the 
naked SiNPs to allow targeted delivery in the acidic environment at the bacterial 
infection site. Thus, the synthesized nanocomposite consists of cu-doped SiNPs and 
holds a pH-responsive coordination interaction with the molecule tetracycline. 
Further, the nanocomposite was coated with ultrasmall AgNPs. The released Ag+ 
can sensitize the resistant strain due to interaction with the membrane and damage 
the cytoplasmic components, by free radical via Fenton-like reaction. This formula-
tion showed no significant toxicity to mammalian fibroblast cells; therefore, it can 
be concluded that this trihybrid nanocomposite having a synergistic effect and pH- 
responsive delivery of antibiotics could play a significant role in combating MDR 
bacterial species.

Efflux pump system-mediated antibiotic discharge is one of the major causes of 
MDR in bacteria. To overcome this challenge, novel nanocarriers are designed that 
can significantly inhibit the growth of MDR bacteria by increasing the retention 
time of antibiotics (Chen et al. 2018). Based on this, Chen et al. demonstrated the 
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pH-responsive SiNPs nanocarrier coated with folic acid and calcium phosphate via 
electrostatic interaction and biomineralization, respectively (Chen et  al. 2018). 
Further, the nanocarrier was loaded with ampicillin with increased uptake and 
reduced efflux effect in E. coli and S. aureus via folic acid targeting. The mechanis-
tic study revealed that nanoformulation reduced the protein content and also inhib-
ited the protein activity in MDR bacteria, which leads to the destruction of the 
bacterial membrane and finally cells’ death.

6.3.2.9  Iron Oxide Nanoparticles

Reports suggest that antimicrobial activity of iron oxide NPs (IONPs) is mainly due 
to ROS generation leading to DNA damage, lipid peroxidation, cellular integrity 
disruption, and release of metal ions. All these events significantly alter cellular 
homeostasis and biomolecule coordination (Arias et al. 2018). Antibacterial activity 
of IONPs has been investigated in bacterial species present in the planktonic free 
state as well as in biofilms. Reports showed that MIC of IONPs-conjugated amoxi-
cillin nanosystem is approximately three to four times lower than the antibiotic alone 
when tested in E. coli and S. aureus (Grumezescu et al. 2014). It reduces the bacterial 
cell adhesion to polystyrene surface at the initial stage of biofilm formation. In addi-
tion, IONPs-chitosan (IONPs-CHT)-streptomycin nanosystem exhibited a signifi-
cant toxic effect on gram-negative bacteria than gram-positive bacteria (El Zowalaty 
et al. 2015). Wang et al. demonstrated the IONPs-based silver micro flowers conju-
gated with antibiotic vancomycin and SiO2 to act synergistically on MR S. aureus 
and E. coli (Wang et al. 2017a). Synthesized nanosystem possesses high magnetic 
response due to the presence of an iron core of ~200 nm and flower- like Ag shell for 
offering high surface area and thus release of Ag+. Vancomycin layer increases the 
permeability of bacterial membrane by binding to the cell wall, thus allowing the 
easy entry of Ag+ to induce cell death. The antimicrobial effect of the nanosystem is 
reported to be more than 90% effective even after five cycles of assays, which proves 
the stability of the system. Further, Benjamin et al. have synthesized a biocompati-
ble, multi-compartment nanocarrier consisting of hydrophobic IONPs and hydro-
philic methicillin for the treatment of infections associated with medical devices 
(Fig. 6.5) (Geilich et al. 2017). Applying an external magnetic field, the nanocarrier 
penetrates ~20 μm thick biofilm of S. epidermis and eradicates all bacterial popula-
tion at 40 μg/mL of IONPs carrying 20 μg/mL methicillin. Most importantly, this 
formulation was effective against biofilm from MR cells but nontoxic to mammalian 
cells. Thus, evidence suggests that the growth of antibiotic- resistant biofilms can be 
overcome by manipulating the arrangement of nanocarriers holding two or more 
therapeutics. Gabrielyan et  al. demonstrated the antibacterial effect of IONPs on 
ampicillin- and kanamycin-resistant E. coli strains (Gabrielyan et  al. 2019). The 
result showed that in the presence of ATPase inhibitor, N,N′-dicyclohexylcarbodiimide, 
IONPs reduces the H+ flux through the bacterial membrane by two-fold proving the 
ATP metabolism-dependent antibacterial activity of IONPs.
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Fig. 6.5 A strategy for biofilm treatment using SPIONs and/or antimicrobials. IOP = iron oxide- 
encapsulating polymersome. (Reprinted with permission from Biomaterials, Copyright 2021, 
Elsevier (Geilich et al. 2017))

To overcome antibiotic resistance, peroxidase-based therapies have gained tre-
mendous interest because of the knowledge that the peroxidase enzyme is present in 
blood cells to support innate immunity (Tonoyan et al. 2017). Natural peroxidase 
enzymes can inhibit microbial infections; however, their application is limited due 
to the low stability, difficult synthesis and purification process. Nanozymes with 
peroxidase mimetic activity have shown promising results than natural peroxidase 
enzymes because the former offers high stability and easy synthesis with tunable 
properties (Huang et al. 2019). H2O2 serves as an initiator in the peroxidase reaction 
and, therefore, used as a disinfectant in normal practice. However, due to the pres-
ence of peroxidase-degrading antioxidant enzymes (SOD and catalase) in bacterial 
cells, H2O2 alone cannot serve the purpose. Thus, a combination of peroxidase 
mimetic nanozyme with H2O2 could be used to kill the bacterial cells by generating 
●OH radicals (Yin et al. 2016). In this context, Vallabani et al. have demonstrated a 
synergistic antibacterial mechanism from citrate-coated IONPs in combination with 
ATP, which facilitates the ●OH radical production (Vallabani et al. 2020). The result 
showed that this strategy exhibits antibacterial activity on both gram-positive and 
gram-negative bacteria at neutral pH in presence of H2O2 and thus can be used as an 
effective broad-spectrum antibacterial mechanism.
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6.3.3  Chitosan-Based Nanomaterials

Chitosan-based NMs (CHT-NMs) exhibit antibacterial effect by various mecha-
nisms including (i) coherence with bacterial and fungal DNA to hinder the tran-
scription and translation processes; (ii) speedy wound recovery as chitosan deposits 
more collagen III and fibroblasts in addition to inhibition of inflammatory cytokine 
release; and (iii) removal of the acetyl group from chitosan that causes protonation 
at pH <6.5 and acquiring a positive charge. Thus, antimicrobial action is due to the 
osmotic damage caused due to interaction between positively charged molecules 
with negatively charged microbial cell walls (Ma et  al. 2017; Wassel and 
Khattab 2017).

Encapsulation of chitosan in NMs improves the solubility of chitosan as well as 
enhanced their antimicrobial activity (Wassel and Khattab 2017). Chitosan pro-
motes surface positive charge and thus facilitates strong interaction between 
microbes and CHT-NMs. Comparatively, NMs encapsulated in chitosan proved to 
be more efficient against E. coli and S. aureus than when used individually. High 
and low molecular mass chitosan are reported to be more effective against gram- 
positive and gram-negative bacteria, respectively. In this context, Marangon et al. 
demonstrated that the combination of chitosan and rhamnolipids (CHT-RL NMs) 
exhibits enhanced antimicrobial activity against S. aureus (Marangon et al. 2020). 
Rhamnolipids reduce the size and polydispersity index of CHT-NMs and enhance 
the surface positive charge to improve stability. CHT-NMs alone can only eliminate 
the bacteria present in the upper layer of biofilm, whereas CHT-RL NMs are more 
effective against the sessile bacteria and reduce the viable bacterial cells below the 
detection limit. This may be attributed to increased delivery of chitosan and rham-
nolipid to the bacterial cell surface and consequently to their targets in gram- positive 
bacteria.

6.3.4  Aptamer-Conjugated Nanoparticles

The application of aptamer-conjugated NMs is also proved to be an attractive strat-
egy to significantly enhance the efficiency as a novel class of antibiotics (Gao et al. 
2018; Gutiérrez-Santana et al. 2020). Friedman et al. have demonstrated that highly 
stable 2-fully modified RNA aptamers could be used for targeted delivery of bioma-
terials. Modification of anti-SpA (S. aureus Protein A) aptamer with fGmH (2-F- 
dG, 2-OMe-dA/dC/dU) provides resistance to aptamers against alkaline hydrolysis 
and nucleases present in serum. Further, this aptamer was conjugated with AgNPs 
to show SpA-dependent antimicrobial effect (Friedman et al. 2015). Moreover, the 
antimicrobial effect of NMs can be further enhanced by conjugation with different 
aptamers to target the same pathogen. Song et al. demonstrated the TiO2 NPs conju-
gated with aptamers specific for E. coli surface-specific ssDNA (three different 
aptamers). Results showed that the TiO2 conjugated with three different aptamers 
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eradicated 99.9% of bacteria in 30  min than TiO2 attached to a single aptamer 
(60 min) (Song et al. 2016). Due to the proximity between the aptamer and E. coli, 
there is an efficient and fast ROS transfer to the cells causing cell death. The devel-
oped nanosystem was found to be specific to E. coli even from the mixed culture of 
E. coli and S. epidermidis.

Single-wall carbon nanotubes (SWNTs) have been explored for antimicrobial 
activity. Using a selective aptamer conjugated to ciprofloxacin (Apt-CPX) and 
SWNTs, ~90% of P. aeruginosa biofilm inhibition was achieved (Apt-SWNTs) 
(Wang et al. 2018). Further, Yeom et al. demonstrated AuNPs-conjugated aptamer 
for delivery of antimicrobial peptide (AMP) to mammalian cells (Yeom et al. 2016). 
The result showed that treatment of nanoformulation increased the viability of host 
cells as well as inhibited the colonization of bacteria and thus promoted a 100% 
survival rate of infected mice. Therefore, the conjugate served as an efficient and 
novel agent to eradicate intracellular bacterial infection. Immobilization of vanco-
mycin in the pores of SiNPs and their subsequent conjugation with an anti-S. aureus 
aptamer are an effective strategy for antibiotic delivery to the targeted site and also 
reduce the MIC and toxicity of pure antibiotics against other related species.

6.4  Use of Nanomaterials in Combating Bacterial Diseases 
of Animals

Bacterial diseases in animals of industrial importance are becoming a serious global 
concern. The common animal bacterial diseases are brucellosis (Brucella meliten-
sis, Brucella abortus, Brucella canis), septicemia (Pasteurella multicoda and 
E. coli), mastitis (Staphylococcus aureus, Staphylococcus dysgalactiae, 
Staphylococcus agalactiae), listeriosis (Listeria monocytogenes), salmonellosis 
(Salmonella enterica), bovine tuberculosis (Mycobacterium bovis), anthrax 
(Bacillus anthracis), etc. Pathogens of these disease are transmitted from animals to 
humans and cause various disorders (Fig. 6.6). Although there have been several 
strategies adopted to circumvent the onset of these animal diseases, the use of NMs 
has shown potential in effective prevention. The following section will comprehend 
only a few important diseases and provide a summary of the progress of various 
treatment strategies.

6.4.1  Brucellosis

Brucellosis is a bacterial disease caused by various Brucella species such as Brucella 
melitensis, Brucella abortus, Brucella canis, Brucella neotomae, Brucella ovis, and 
Brucella suis. These species mainly infect goats, cattle, swine/pig, sheep, etc. 
Brucella can also be transmitted to human upon direct contact with infected animal 
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Fig. 6.6 Schematic showing a list of various diseases caused by bacteria in livestock and use of 
different nanomaterials for the treatment

or due to consumption of contaminated animal products such as unpasteurized milk, 
raw meat, and other byproducts (Thirumalaivasan et  al. 2019). In 2018, a large 
study from 23 states of India revealed ~12% of cases of brucellosis in cattle and 
buffalo (Deka et al. 2018) causing an economic loss of ~58.8 million USD per year 
in the dairy sector (Deka et al. 2018). Brucellosis leads to the reduced milk produc-
tion, death of young ones, abortion, retained placenta, stillbirths, increased calving 
intervals, etc. (Holt et al. 2021). Conventional antibiotics are prevalent to be used 
for the treatment of brucellosis including aminoglycosides, tetracycline, rifampicin, 
quinolones, doxycycline, streptomycin, and chloramphenicol (Khan, Zahoor 2018). 
The antibiotics are also delivered as encapsulated in NPs for the treatment of these 
pathogens. Lueth et al. (Lueth et al. 2019) developed polyanhydride NPs encapsu-
lating doxycycline and rifampicin (individually and in combination) and tested their 
activity against Brucella melitensis. A 1:1 ratio combination of doxycycline and 
rifampicin in NPs showed the best release performance of drugs under in vivo sys-
tem (BALB/C mice infected with Brucella melitensis). Within 5 days of treatment, 
the bacterial burden was decreased by 3 log10 times in the liver of mice. A treatment 
of 21 days led to the bacterial burden in the spleen and liver equal to free drugs 
(3.5 mg) and nanoformulation (1.5 mg). Thus, the NPs-based delivery improved the 
drug/s release time and dose sparing without compromising the activity under 
in vivo system. More examples of the use of NPs to display anti-brucellosis activity 
are summarized in Table 6.2.
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6.4.2  Septicemia

Septicemia is a type of blood poisoning caused by bacteria through the release of 
toxins leading to death in livestock. Hemorrhagic septicemia and colisepticemia 
mainly affect cattle, chickens, and water buffalo. Recovery from this disease is very 
rare. Hemorrhagic septicemia and colisepticemia are caused by Pasteurella multi-
coda and E. coli. According to a study, ~ 792 million USD per year economic loss 
in India is caused by hemorrhagic septicemia (Singh et al. 2014). Symptoms could 
be depression, fever, decreased milk production, nasal discharge, swelling on the 
neck and brisket, dyspnea, abdominal pain, and meningitis. A combination of strep-
tomycin and penicillin, oxytetracycline, trimethoprim, ampicillin, doxycycline, and 
other antibiotics has shown promising results if the treatment is given at the early 
stage of the disease (Liu et  al. 2018; Zhang et  al. 2017). Vaccines could protect 
animals for 6–12  months. The vaccine is developed using a virulent Pasteurella 
multicoda strain B:3–4, dense bacterin combined with oil or alum as an adjuvant, 
and formalin-inactivated bacterin (Li et al. 2019a). Awaad et al. (Awaad et al. 2021) 
studied the clinical and pathological performance of AgNPs on colisepticemia in 
broiler chickens infected by the exposure of 3 × 108 CFU/mL of E. coli (serogroup 
O78) for 2 days. Chickens fed on 4, 6, and 8 mg/kg of AgNPs revealed that 4 mg/kg 
dose significantly reduced the bacterial burden, histopathological lesion scores, and 
virulence of genes. A dose of AgNPs (8 mg/kg) resulted in a severe negative effect 
on chicken health.

6.4.3  Mastitis

Mastitis is a fatal infection of the mammary gland in cattle, which occurs when 
bacteria enter a milk duct via a crack in a nipple. Different species of bacteria such 
as S. aureus, Staphylococcus dysgalactiae, Staphylococcus agalactiae, coagulase- 
negative Staphylococcus, Staphylococcus uberis, Enterococci, coliform bacteria 
E. coli, etc. cause mastitis. The symptoms include reduction in milk production, 
poor milk quality, swelling and redness in the udder, pus, or clotting in milk 
(Yashchenok et al. 2012). In India, mastitis is estimated to decrease milk production 
by 21%, costing about Rs. 575 million USD per  annum (Sharun et  al. 2021). 
Common antibiotics such as ampicillin, cloxacillin, tetracycline, penicillin, and 
streptomycin are used as an ointment and intravenous or intramuscular injection for 
the treatment of mastitis (Yang et al. 2019). Among NPs-based treatment, Cardozo 
et al. (Cardozo et al. 2014) synthesized polymeric NPs releasing NO radicals against 
MDR S. aureus and E. coli. The polymeric NPs encapsulating mercaptosuccinic 
acid (MSA) (S-nitroso-MSA particles) worked well as a NO donor. This formula-
tion showed a sustained formation of NO radicals in presence of MDR bacterial 
strains (MIC 125–250 μg/mL).
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6.4.4  Listeriosis

Listeriosis is a food-borne intracellular infectious disease of animals, birds, fishes, 
and humans. Causative bacteria (Listeria monocytogenes) are present in soil, plants, 
mud, and stream. Goats, sheep, and cattle get sick from eating contaminated corn 
silage. In India, ~ 7.66% of animals were found to have listeriosis (a survey con-
ducted from 2015 to 2018) (Chaudhari et al. 2021). Common symptoms of listerio-
sis are inflammation in the brain, loss of balance, dystonia, loss of appetite, fever, 
etc. Penicillin, sulfonamides, ampicillin, tetracycline, etc. are traditional antibiotics 
used for the treatment (Dhama et  al. 2015). Mohammed and Abdel Aziz (2019) 
evaluated the biocidal activity of AgNPs alone and in combination with different 
commercial disinfectants (sodium hypochlorite, H2O2, Virkon®S, benzalkonium 
chloride, and ammonium compound TH4+®) on MDR species of L. monocytogenes 
isolated from 260 samples of animal and human stool. Among the different combi-
nation, 2% Virkon®S/AgNPs showed highest antibacterial activity (100%) fol-
lowed by 5% H2O2/AgNPs (90%) and 1% TH4+/AgNPs (90%).

6.4.5  Salmonellosis

Salmonella (Salmonella enterica), a gram-negative, rod-shaped bacterium, causes 
salmonellosis in warm-blooded animals. Salmonella is commonly found in con-
taminated food, the stool of animals, and the intestine of various animals. Different 
species of Salmonella infect different animals causing typhoid-like symptoms such 
as Salmonella Gallinarum in poultry, Salmonella Abortusovis in sheep, Salmonella 
Choleraesuis in pigs, Salmonella Dublin, and Salmonella Typhimurium in cattle. 
Diarrhea, fever, and abdominal cramps are the major symptoms of salmonellosis 
(Duraisamy 2016). For the treatment of salmonellosis, a high concentration of anti-
biotics is found to be effective when delivered at the infected intracellular site (small 
intestine). Among different NPs-based formulations, Xie et al. (2017) have devel-
oped enrofloxacin-encapsulated solid lipid NPs (SLN) for the effective intracellular 
delivery of the drug. Enrofloxacin-loaded SLN (0.24 and 0.06  μg/mL) showed 
~99.97% inhibition in salmonella CVCC541 (3.80 CFU/mL) growth, whereas same 
inhibition could be achieved by 0.6 μg/mL of free enrofloxacin (4.15 CFU/mL).

6.4.6  Bovine Tuberculosis

Mycobacterium bovis causes chronic disease, bovine tuberculosis, in pigs, goats, 
cattle, deer, cats, and dogs. Contaminated food and water are some of the common 
sources of infection. Bovine tuberculosis is commonly found to affect the lymph 
glands of the throat and lungs of infected animals. In 2017, 7.3% of the Indian (300 
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million cows and buffalos) population was found to be infected with bovine tuber-
culosis (Mydin et  al. 2018) causing a ~4% decrease in overall milk production 
(Rinu et al. 2020). In cattle, mostly respiration-related symptoms (coughing, lymph 
node enlargement, dyspnea) are realized without any significant clinical signs (Lee 
et al. 2001). Rifampicin, isoniazid, pyrazinamide, kanamycin, ethambutol, etc. are 
the traditional antibacterial drugs used for the treatment of Mycobacterium bovis 
infection (Marianelli et  al. 2015). Small cationic peptides as antimicrobials are 
recently reported as one of the best alternatives for the treatment of bovine tubercu-
losis (AlMatar et al. 2018). Zhou and coworkers (Liang et al. 2020) used PLGA NPs 
encapsulating small recombinant bovine neutrophil β-defensin-5 (PLGA-B5 NPs) 
as an antibacterial agent. In in  vitro studies (on J774A.1 cells), PLGA-B5 NPs 
enhanced the expression of IL-1β, tumor necrosis factor, and IL-10. After 4 weeks 
of PLGA-B5 NPs treatment, Mycobacterium bovis-infected BALB/C mice showed 
a significant decrease in bacterial burden in the lungs, pulmonary area, and spleen. 
More examples of the use of NPs to display anti-bacterial activity is mentioned in 
Table 6.2.

6.4.7  Anthrax

Anthrax is a bacterial disease caused by spore-forming Bacillus anthracis, com-
monly infecting livestock animals. According to the study, ~28% of cattle are 
infected with Bacillus anthracis globally (Sushma et al. 2021). The major symp-
toms of the infection include abrupt fever, convulsions, staggering, depression, car-
diac distress, etc. Various antibiotics are reported for the treatment of anthrax such 
as ofloxacin, gentamicin, doxycycline, imipenem, etc. (Weiss et al. 2011). Sun et al. 
(2016) synthesized a visible light-responsive carbon-containing TiO2 NPs (C-TiO2- 
NPs), causing a significant increase (~60%) in antibacterial activity than TiO2 NPs 
alone. Further, C-TiO2-NPs with visible light treatment cleared ~90% of anthrax 
lethal toxins (major virulence factor for anthrax). In another study by Manayani 
et  al. (2007), chimeric virus-like NPs (CV-NPs) were synthesized to work as an 
antitoxin against an AB-type toxin generated by Bacillus anthracis. CV-NPs gener-
ated a complex system with protective antigens, which further facilitated the clear-
ance of the toxins and generation of immune response in Sprague-Dawley rats.

6.5  Nanoparticle-Based Antibacterial Strategies 
in Clinical Studies

A number of nanosystem-based antibacterial strategies are being evaluated in clini-
cal trials (Eleraky et al. 2020). Few strategies are being discussed in the following 
section.
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6.5.1  Nanoparticles Delivering Antibiotics

First clinical use of ciprofloxacin-loaded liposome known as Lipoquin was under 
phase 1 trial in some healthy volunteers (Bruinenberg et  al. 2010), and then it 
entered in phase 2 trial of 14 days, on 21 adults, to evaluate the initial safety, activ-
ity, and pharmacokinetics (one-time inhalation every day). Simultaneously, a dou-
ble-blind and randomized phase 3 trial (ORBIT-3 and ORBIT-4) was conducted 
internationally in a similar region to investigate the safety and efficacy of Lipoquin 
(Haworth et  al. 2019). Further, amikacin-loaded liposomes were also studied in 
clinical trials. In a double-blind phase 2 trial, efficacy, tolerability, and safety of 
once-daily (QD) dosing of amikacin (590 mg) versus placebo was conducted for 
84  days against refractory nontuberculous mycobacteria lung infection. Another 
study also examined the stability and safety of once-daily dosing of 560  mg 
amikacin- loaded liposome for six cycles over 18 months in the patient suffering 
from cystic fibrosis and chronic infection by P. aeruginosa (Eleraky et al. 2020).

A new study of phase 2 trial of inhaled liposomal amikacin 590 mg, once-daily 
dosing for 12 months has been evaluated for their safety, tolerability, and efficacy of 
treatment against Mycobacterium abscessus lung disease. Further, a phase 3 trial 
was also conducted to study the safety and long-term tolerability of inhaled 
amikacin- loaded liposome (590 mg/day) in the patient suffering from chronic infec-
tion of P. aeruginosa (Eleraky et al. 2020).

6.5.2  Nanoparticle Delivering Antimicrobial Peptides 
and Antitoxins

Antimicrobial peptides exhibit less chance of resistance development and produce 
wide-spectrum antibacterial activity (Molchanova et al. 2017). They mainly target 
bacterial cell membrane synthesis of protein, nucleic acid, cell wall, enzymatic 
activity, and ATP efflux process. Some of the antimicrobial peptides are nisin (inter-
fere in cell wall synthesis); indolicidin (interfere in protein synthesis); buforin II 
(inhibit RNA synthesis); and histatins (alter ATP efflux) (Molchanova et al. 2017). 
In the treatment of bacterial-driven diseases, targeting the bacterial components 
which are responsible for their virulence, i.e., toxins, is a major aspect of nanomedi-
cine these days. Bezlotoxumab is a human monoclonal antibody and the first 
approved antitoxin in 2016 which is designed to target the toxin B of Clostridium 
difficile (Mullard 2016). Several antitoxin agents are still in clinical trials like mono-
clonal antibodies targeting S. aureus’ ɑ-toxin and type III toxin secretion moiety of 
P. aeruginosa (Azeredo da Silveira and Perez 2017). Further, a novel empty lipo-
some, CAL02, has been developed which leads to a synergistic effect with drugs 
and antibiotics and also demonstrated the ability to rescue mice from major infec-
tions, such as staphylococci, through the adsorption of toxins (Laterre et al. 2019).
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6.5.3  Limitations of Nanoparticle-Based Antibacterial Agents

Clinical translation of NPs-based antibacterial agents faces several challenges 
including biocompatibility, safety, laws and regulations, intellectual property rights 
(IPRs), and high cost than traditional therapies (Narang et al. 2013; Hua et al. 2018). 
Important issues which should be considered during clinical translation of nano-
medicine are:

 (i) Preclinical evaluation of toxicity: To avoid the side effects of nanomedicine, 
they should be initially evaluated in vivo (inappropriate animal models) and 
analyze their pharmacokinetics and pharmacodynamics properties. Further, 
biocompatibility and stability of NPs and interaction with the surrounding 
medium should also be considered (Eleraky et al. 2020).

 (ii) Nanopharmaceuticals design: In the designing of antimicrobial nanoformula-
tions, factors like biodegradability, administration route, and physical and 
chemical stability should be considered. Large-scale production of antimicro-
bial drugs should consider the factors like reproducibility and quality control 
assay, i.e., polydispersity, the storage stability of final product, charge, mor-
phology, incomplete purification, and consistency of nanomedicine (Tinkle 
et al. 2014; Teli et al. 2010).

 (iii) Challenges in commercialization: Launching antimicrobial products in the 
market is a complex process as it is time- and cost-intensive. Simple tech-
niques should be employed to test the therapeutic efficacy of antimicrobial 
drugs in the patient. With the use of NMs, biological half-lives of drugs have 
been greatly enhanced; thus, specialized toxicological tests in animals should 
be conducted to examine both short- and long-term side effects of antimicro-
bial nanomedicine (Eleraky et al. 2020). Thus, regulatory guidelines should be 
developed to examine the nanotoxicological effect and for standard and vali-
dated use of NPs in clinical development (Accomasso et al. 2018).

6.6  Conclusion and Expected Future Developments

With the increasing incidence of resistance against antibiotics, it is essential to find 
alternative methods exhibiting strong antimicrobial activity. In this quest, NPs- 
based formulations containing essential oils, antimicrobial peptides, and other natu-
ral products have been explored. Several studies have confirmed that these NPs-based 
formulations of certain NPs themselves are better in inhibiting the growth of patho-
genic bacterial species than their non-formulated counterparts. Although there are 
several vaccines available to protect humans from bacterial pathogens, the emer-
gence of new bacterial epidemics and pandemics would require significant efforts 
for the quick development of new vaccines. Traditional methods of vaccine devel-
opment take several years; therefore, novel methods must be explored to reduce the 
development phase in months. Nanotechnology could play an important role to act 
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as adjuvants to facilitate the delivery of vaccine components. Currently, multifunc-
tional nanocarriers are developed that could be used to deliver multiple vaccines in 
one shot. These nanocarriers could either encapsulate or carry the vaccine compo-
nents on their surface and offer high payload delivery to facilitate quick and long- 
term immune responses.

There has been a lot of effort devoted to develop nanotechnology-based antibac-
terial agents and vaccines for bacterial diseases in humans; however, limited efforts 
are made to protect animals from animal diseases caused by microbes. Vaccines for 
animal diseases (brucella, anthrax, and foot and mouth disease) are developed; how-
ever, they have not been improved for decades. These vaccines face several chal-
lenges of storage condition, being ineffective in immunocompromised animals, and 
requiring multiple doses. In the coming years, nanotechnology-based vaccines 
could be developed to offer long-term stability and better immune response with 
one-shot treatment. Oral and intranasal vaccines involving the controlled release of 
vaccine components would be another area of interest. The NPs-based antibacterial 
agents for animal diseases are so far limited to certain toxic particles such as ZnO 
and AgNPs, leaving a huge scope of research in developing novel NMs and nano-
formulations to combat the drug-resistant bacterial species. NPs conjugated aptam-
ers or another specific biomolecules-based targeting of particular bacterial species 
would be required to develop. Novel theranostics would also be required for simul-
taneous detection and treatment of pathogenic and drug-resistant strains of bacte-
ria. Overall, there remains a tremendous amount of research work for developing 
novel NPs-based antibacterial materials to effectively and selectively cause damage 
to pathogenic strains barring non-pathogenic strains, humans, and the environment.
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