
109

Chapter 3
Nanomaterial-Mediated Delivery 
of Antimicrobial Agents: ‘The 
Nanocarriers’

Pramod Barathe, Sagar Reddy, Kawaljeet Kaur, Varsha Shriram, 
Rohit Bhagwat, Abhijit Dey, Sandeep Kumar Verma, and Vinay Kumar

Abstract  Antimicrobial resistance (AMR) emergence has entangled the cure of 
health-related diseases with the existing medicines. Though several potent and 
novel antimicrobial agents have been identified in recent past, their safe and effec-
tive delivery is yet to be achieved fully. Nanotechnology has emerged as the con-
tinual and practical solution in the delivery of antimicrobial therapeutics using 
nanotechnology-based drug carriers (nanocarriers) and signifies the correlation 
between biological and physical sciences, by employing it in the variety of branches 
like nanomedicines and nanomaterial-based drug delivery approaches. Owing to 
their tiny size and large surface area, nanocarrier is the hotspot in the nanotechnol-
ogy world. In the recent reports, biocompatibility, cost-effectiveness, controlled 
drug release, deep penetration, target specificity and sustainability of nanocarriers 
have revealed their ideal role in the drug delivery system. In this chapter, we discuss 
about the various nanomaterials and antimicrobial agents employed in the delivery 
of antimicrobials such as metals, peptides, drugs and plant resources to target drug 
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determinants such as efflux pumps, cell membrane permeability, biofilms and quo-
rum sensing in the drug-resistant bacteria with their applications in the clinical trials.

Keywords  Antimicrobial resistance · Nanocarriers · Antimicrobial agents · 
Biosafety · Efficacy

3.1 � Introduction

Since earlier civilizations, natural products have been widely employed as potent 
therapeutics against numerous ailments. Based on historical learning, modern medi-
cations are thus mostly developed from medicinal plant resources (Veeresham 
2012). Natural substances exhibiting various molecular backgrounds provide a 
starting point for the development of new medications. Various approaches such as 
natural product-based drug development and drug delivery have been developed to 
cure enormous diseases caused by drug-resistant bacteria (Atanasov et al. 2021). 
However, incompatibility issues, availability restrictions and tedious purification 
techniques (Siddiqui et al. 2014) somewhat restrict their full potential therapeutic 
usages, and thus newer technologies are required to address these and other issues 
for the development of efficient drug/antimicrobial delivery systems. Nanotechnology 
has been demonstrated to bridge the gap between the physical and the biological 
sciences by employing nanomaterials in a variety of sectors, including nanomedi-
cines and nanomaterial-based drug delivery approaches (Patra et  al. 2018). 
Employing nanocarriers as an effective drug delivery system has lately gotten a lot 
of press because of their capacity to identify and cure diseases caused by drug-
resistant bacteria (Yeh et al. 2020).

Antimicrobial resistance (AMR) or antibiotic resistance (ABR) is a condition 
where microbes or bacteria show resistance against commonly used antimicrobial 
drugs, especially antibiotics. The AMR has become a major public health threat 
making it challenging to cure health-related diseases with existing medicines (Lee 
et  al. 2019b). The World Health Organization (WHO) has recognized AMR and 
multidrug-resistant (MDR) bacteria as major global public health threats human-
ity is facing (WHO 2021) owing to their colonizing abilities both domestically and 
globally (Hall et al. 2020), though there are several successful attempts of identify-
ing potent and novel antimicrobial agents in recent years. However, effective and 
safe delivery of potent antimicrobial agents has emerged a major hurdle. The use of 
nanomaterial- and nanotechnology-based drug carriers (nanocarriers) that can carry 
nano- or other antimicrobial therapeutics is emerging as a sustainable and practical 
solution (Krishnamoorthi et al. 2021). These approaches use nanoscale materials for 
the delivery of antimicrobials including natural products to their target tissues (Yeh 
et  al. 2020). Various antimicrobial agents including metals, peptides, drugs and 
plant resources possessing different inhibitory mechanisms have been owned in 
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nanocarriers. Nanocarriers or nanomaterial-based antimicrobial systems in MDR 
microorganisms have been shown to inhibit various drug resistance determinants 
such as efflux pumps (EPs), cell membrane, biofilms and quorum sensing (Baptista 
et al. 2018) showing their potential clinical applications.

In this chapter, we discuss the nanomaterials emerging as a nanocarrier for deliv-
ering wide-ranging antimicrobial agents. We describe the various types of nanoma-
terials and antimicrobial agents with their inhibitory mechanisms that act as the 
major components in the delivery of antimicrobials such as drugs, metals, peptides 
and plant resources. Further, we highlight the delivery of antimicrobial agents via 
nanomaterials to target the major bacterial drug resistance determinants (cell mem-
brane, EPs, quorum sensing, biofilm formation). The potential applications of nano-
carriers in clinical trials have been also discussed herein.

3.2 � Nanocarriers as Emerging Drug Delivery Systems

The significance of nanocarriers as drug delivery systems was discovered around a 
century ago for the delivery of therapeutic drugs and other natural agents to the site 
of microbial infections (Patra et al. 2018). Nanocarriers are defined as the nanopar-
ticles that can be employed to carry antimicrobial agents or other chemical agents to 
the target location for their effective treatment of infections caused by the patho-
genic microbes including drug-resistant bacteria (Chamundeeswari et  al. 2019). 
Nanocarriers mainly consist of many small-sized nanoparticles (1–100 nm range) 
such as nanomaterials, dendrimers, lipid-based nanoparticles and liposomes that 
effectively transport the antimicrobial agents to the target tissue (Lombardo et al. 
2019). The property of enhanced stability, improved drug serum solubility, pharma-
cokinetics, sustainability, longer systemic circulation duration and reduced toxicity 
make them excellent choice as drug delivery systems (Zhang et al. 2010). Further, 
deep penetration abilities of nanomaterials into the host cells, controlled drug 
release and endocytosis for treating drug-resistant pathogens make them ideal drug 
carriers with their potential clinical applications against wide range of infectious 
diseases (Fatima et  al. 2021). To enhance the pharmacokinetics and therapeutic 
effects of drugs, antimicrobial agents are loaded into nanomaterials via adsorption, 
chemical conjugation and physical encapsulation (Patra et al. 2018).

Nanocarriers are designed in a wide range of materials with different chemical 
compositions to transport diverse bioactive compounds in a regulated, systemic and 
targeted manner, making them highly effective drug delivery agents (Manju and 
Sreenivasan 2010). Various nanomaterials such as metal, non-metals, semiconduc-
tors, quantum dots, dendrimers, biopolymers and organic and inorganic nanomate-
rials have been successfully used as nanocarriers in medical applications. 
Interestingly, the organic nanomaterials including liposomes, ferritin and micelles 
have been reported to enhance the drug bioavailability and thus improved antimi-
crobial activity (Yetisgin et  al. 2020). Besides, other metallic and non-metallic 
nanomaterials combined with drugs and other antimicrobial agents have also been 
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widely used for the drug delivery applications (Mba and Nweze 2021). Recently, 
nanostructured lipid-based carriers (NLCs) have emerged as novel drug delivery 
systems for the delivery of chemotherapeutic agents because of their excellent phys-
ical stability, good drug-loading capacity and biocompatibility (Haider et al. 2020). 
The development of amoxicillin- and clarithromycin-loaded magnetic nanostruc-
ture lipid-based carriers (AMO-CLR-Fe3O4@NLCs) with enhanced and prolonged 
drug delivery with 3.13  μg/mL minimum inhibitory concentration (MIC) value 
against Staphylococcus aureus, Bacillus subtilis and Bordetella pertussis resulted in 
deterioration of bacterial cell morphology and ultimately led to cell death (Sharaf 
et al. 2021). Nano-drug carriers are also being explored in diagnosis and treatment 
of brain infections (Barani et al. 2021). Streptococcus pneumoniae, Staphylococcus 
aureus, Neisseria meningitidis, Haemophilus influenza and Listeria monocytogenes 
are found to invade the brain causing bacterial infections in the endothelial barrier 
and inflammation in meninges called meningitis (Al-Obaidi and Desa 2018). The 
intranasal route for delivering the drugs to the brain for overcoming the blood-brain 
barrier and central nervous system (CNS) is considered the most viable method. The 
nanocarriers for drug delivery are transferred to the brain via receptor-mediated 
transcytosis (Sharma et  al. 2021). In vivo and in  vitro studies on levofloxacin-/
doxycycline-loaded solid lipid nanoparticles against bacterial meningitis (Abdel 
Hady et al. 2020), gentamicin-loaded polymeric nanoparticles against Pseudomonas 
aeruginosa (Abdelghany et al. 2012), ansamycin-loaded polymeric nanomaterials 
(Nair et al. 2020b) and ofloxacin-loaded nano-transfersomes against bacterial men-
ingitis (Eid et al. 2019), recombinant protein OmpAVac-loaded chitosan-modified 
poly(lactic-co-glycolic acid) (PLGA) nanoparticles against E. coli K1 in neonatal 
meningitis-infected mice (Zhang et al. 2021) and bacitracin A and brain-targeting 
peptide (BTP)-loaded polymeric nanoparticles against Pneumococcal meningitis 
(Hong et al. 2018) have been investigated as drug delivery systems for their biocom-
patibility, controlled drug release and longer systemic circulation duration for treat-
ing brain bacterial infections.

Considering the phototoxicity and low tissue penetration, light-responsive nano-
materials are emerging with potential drug design and light-triggered controlled 
drug delivery systems mostly useful in photothermal therapy (PTT) and photody-
namic therapy (PDT) (Zhao et al. 2019; Tang and Wang 2021). Liu et al. (2021a) 
developed rough carbon-iron oxide nanohybrids (RCF) for near-infrared (NIR) syn-
ergistic antibacterial therapy, resulting in increased RCF bacterial adhesion and 
PTT in methicillin-resistant Staphylococcus aureus (MRSA), proposing a facile 
strategy to construct antibacterial agents for designing drugs and medical applica-
tions. Further in vivo studies in MRSA rat wound models showed enhanced syner-
gistic antibacterial effects revealing their potential role in treating drug-resistant 
bacterial infections (Liu et al. 2021b). Wang et al. (2018) developed Staphylococcus 
aureus-pre-treated macrophage-membrane-coated gold nanocage (Sa-M-GSNC) 
drug delivery system, where macrophage membrane receptors were used to achieve 
specific bacterial-targeted delivery under near-infrared (NIR) laser irradiation in 
infected mice, and this resulted in better bacterial adherence, effective delivery and 
retaining in infection site with prolonged blood circulation and system 
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biocompatibility. Other than light-responsive nanomaterials, some of the alternative 
strategies such as pH-responsive nanomaterials, enzyme-responsive nanomaterials 
and redox-responsive nanomaterials are also used as drug delivery systems 
(Devnarain et al. 2021). Hassan et al. (2020) developed novel chitosan-based pH-
responsive lipid polymer hybrid nanovesicles (OLA-LPHVs) as a vancomycin 
delivery system against MRSA biofilms leading to the easy release of vancomycin 
at pH  6.0 and inhibition of biofilms via damaging bacterial cell membrane and 
showing their potentials in treating bacterial infections. Enzyme-responsive nano-
gels developed from alginate/peptide ciprofloxacin conjugates with enhanced sta-
bility in dispersion and aqueous environment resulted in enzyme-triggered release 
of ciprofloxacin by degrading the peptide linkers against S. aureus (Bourgat et al. 
2021). Similarly, Salamatipour et al. (2019) synthesized light-reduction-/oxidation-
responsive alginate nano-hydrogels loaded with the folic acid drug by reverse 
emulsification-diffusion method and improved water retention capacity (WRC) 
under UV light that resulted in antibacterial activity against S. aureus and E. coli.

3.3 � Types of Nanocarriers

3.3.1 � Metal-Based

Metal nanoparticles usually have non-specific broad-spectrum bacterial toxicity 
mechanisms where they bind to outer membrane receptors (Yuan et al. 2018) that 
enhance their potencies. Metal-based nanoparticles have shown their efficacy in 
both Gram-positive and Gram-negative bacteria with multiple biomolecule target 
involved in the development of resistant strains (Slavin et al. 2017).

3.3.1.1 � Silver Nanoparticles (AgNPs)

Chemical methods in the production of AgNPs include three components: a metal 
precursor, a reducing agent and a stabilizing agent (Singh et al. 2015). Appropriate 
size, shape and polydispersity of AgNPs can be achieved by monitoring experimen-
tal parameters such as precursors used in the reaction, reducing agents, reagent 
concentration, pH and temperature in the nucleation step during the synthesis pro-
cess (Solomon et al. 2007; Dakal et al. 2016; Kumar et al. 2018b). Stabilization 
being the critical stage, chitosan, amine derivatives, thiols and gluconic acid have 
been recently used as stabilizers with polymeric compounds proven advantageous 
(Solomon et al. 2007). Beta-D glucose as the reducing agent has emerged as with 
special interest of researchers for the reduction of AgNO3 and green synthesis giv-
ing AgNO3 up to 10 nm mean size (Kumar et al. 2018b). Pal et al. (2019) studied 
antimicrobial peptide (AMP)-AgNP against MDR bacteria strains (Klebsiella pneu-
monia, Pseudomonas aeruginosa and Salmonella typhi) using combinations of AY1 
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(CAY1-AgNP and AY1C-AgNP) showing increased stability and antimicrobial 
activity. Recent investigations on tragacanth gum, N-isopropyl acrylamide and 
2-(vinyloxy) ethanol-based stimuli-responsive silver nanocomposites (TGIAVE-Ag) 
resulted in controlled release of 5-fluorouracil against MDR bacteria (Nagaraja 
et al. 2021). Similarly, selective delivery of AgNP-responsive microparticles incor-
porated into dissolving microneedles against Staphylococcus aureus and 
Pseudomonas aeruginosa biofilms resulted in controlled release of AgNPs and 
eradication of biofilms with improved antibiofilm activities in ex  vivo biofilm-
infected rat skin model (Permana et al. 2021).

3.3.1.2 � Gold Nanoparticles (AuNPs)

Gold nanoparticles are colloidal particles consisting of gold as a core substance 
with good biocompatible property. The synthetic versatility of these NPs allows 
them to control particle solubility, stability and interaction with the environment. 
Further, studies on gold nanospheres conjugated with gentamicin have shown great 
activity against S. aureus than gentamicin alone (Ahangari et al. 2013). Reduction 
of chloroauric acid followed by agglomeration in the presence of the stabilizing 
agent is the basic synthesis process of all chemical, biological and physical path-
ways (Newman and Blanchard 2006). Pathogen-specific antibodies or photosensi-
tizing molecules for photothermal and PDT conjugated with AuNPs have also been 
proven to promote antimicrobial activity (Savas et al. 2018; ElZorkany et al. 2019). 
Flavonoid-coated AuNPs with enhanced antibacterial effects of chrysin, kaempferol 
and quercetin against Gram-negative E. coli bacteria resulted in bacterial cell mem-
brane penetration and their ablation, hence making them good drug delivery candi-
dates (Alhadrami et al. 2021). Similar to this, Punica granatum extract delivering 
chitosan-gold hybrid nanoparticles (CS-AuNPs) exhibited high synergistic effects 
against MRSA (Hussein et al. 2021).

3.3.1.3 � Ceramic Nanoparticles

Ceramic nanoparticles constitute oxides, carbides, phosphates and carbonates of 
metals and metalloids such as calcium, titanium, silicon, etc. The favourable prop-
erty of heat resistance and chemical inertness makes them suitable for their wide 
variety of applications in medicine where they are structured by heat and pressure 
(comprising of solid core and a combination of metal/non-metal, at least two non-
metallic elemental solids, at least one metal and a non-metallic elemental solid or a 
non-metal) (Wu and Zreiqat 2010). Depending upon architectural differences, they 
are further categorized into ceramic nanoparticles, ceramic nano-scaffold and nano-
clay and are made up of ceramic compounds such as silica-titania and alumina 
(Rawat et al. 2008). Nano-scaffolds are defined as a structure that allows interac-
tions of cells and extracellular matrices with microporosity (pore size >50  nm), 
whereas nano-clay resembles thin layers having a thickness of few nanometres. 
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These ceramic nanoparticles can be synthesized with microemulsion preparation, 
hydrothermal synthesis, sol-gel process, aerogel method, pechini-citrate gel method 
and low-temperature combustion (LCS) methods (Singh et al. 2016). In a recent 
study on biphasic calcium phosphate (BCP), a biocompatible and non-immune-
responsive biphasic ceramic was used to synthesize silver-doped BCP/alginate 
(AgBA) microcluster stating their inhibitory action on S. aureus and E. coli (Nie 
et al. 2021). In one of the studies, the in vitro release profile of vancomycin-loaded 
hydroxyapatite compared with the pure vancomycin-HCl with increased antibiotic-
loaded hydroxyapatite release rate and antibacterial activity (zone of inhibition 
11.5 ± 0.5 mm and 15 ± 0.4 mm) in S. aureus and E. coli, respectively, when com-
pared to antibiotic alone (Ain et al. 2020). Similarly, zirconia nanoparticle green 
synthesized using L. nobilis were found to be more effective against Gram-negative 
pathogenic bacteria (Chau et  al. 2021). Chauhan (2021) reviewed the distinctive 
benefits of ceramic-based hybrid nanoparticle as a drug delivering system.

3.3.1.4 � Silica Nanoparticles

Because of large surface area, ease of functionalization and biocompatibility, silica 
nanoparticles are commonly used in drug delivery applications. The mesoporous 
silica nanoparticles (MSN) are the porous variant that confers amenities and have 
been recently demonstrated as a powerful drug delivery tool for combating bacterial 
infections (Şen et al. 2018; Martínez-Carmona et al. 2018; Bernardos et al. 2019; 
Selvarajan et al. 2020). Synthesis of silica nanoparticles is carried out by Stober’s 
method (Stober et al. 1968) and the microdilution method. Modifications in Stober’s 
process have been performed to suit user-specific requirements such as usage of 
low-cost precursor (sodium silicate solution instead of tetraethyl orthosilicate) 
(Zulfiqar et al. 2016a, b). Another method, the microdilution, involves the formation 
of oil-in-water (O/W) micelles and water-in-oil (W/O) reverse micelles (Arturo 
Lopez-Quintelá 2003) stabilized using surfactants (twins or pluronics) acting as 
nanoreactors to synthesize nanoparticles depending upon the nanoreactor volume 
(Selvarajan et al. 2020). As peptides can be loaded using silica, Kwon and his team 
used the tandem peptide cargo made of lactoferrin and a synthetic bacterial toxin D 
[KLAKLAK]2 for treating Pseudomonas aeruginosa infection in lungs (Kwon et al. 
2017). Stewart et al. (2018) reported a lower drug release rate for a longer period 
compared to the initial burst release of the conventional drug formulation using co-
assembly of an antimicrobial drug (octenidine dihydrochloride, OCT) and silica 
with the loading efficacy of 35%. Similarly, a nanoantibiotic system made of MSN 
loaded with levofloxacin (LEVO) was designed with anti-biofilm activity against 
S. aureus resulting in cell destruction (Pedraza et al. 2018). Further, effective pen-
etration of LEVO-loaded MSN grafted with poly(propyleneimine) dendrimer of 
third generation (G3) in the cellular membrane of E. coli was reported with excel-
lent anti-biofilm activity (González et al. 2018).
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3.3.2 � Liposome-Based

Liposomes are composed of lipids. Due to their similar structure and composition 
of the cell membrane, they are used for bacterial cell targeting that can carry both 
hydrophobic and hydrophilic antimicrobials and thus offering a wider choice of 
antimicrobial candidates to be loaded. Liposomes show fusogenicity property as 
they have a phospholipid bilayer structure which upon fusion with antimicrobials is 
directly available inside a bacterium. The most important factor of liposomes in 
in  vivo investigations is the diameter, so to avoid rejection of liposomes by the 
reticuloendothelial system and allowing penetration through water channels in 
infectious biofilms, they should preferentially have a diameter in the range of 
100–200 nm (Ferreira et al. 2021). Realization of biofilm targeting from the blood 
circulation, penetration and accumulation over the entire thickness of an infectious 
biofilm, associated with deep killing in the biofilm, are some of the challenges in the 
development of liposomal antimicrobial nanocarriers (Wang et al. 2020). Sanches 
et  al. (2021) demonstrated the potential use of rhamnolipid-based liposomes as 
nanocarriers against E. coli and S. aureus with high haemolytic activity and negli-
gible cytotoxicity (highest concentration of 1.3  mmol  L−1) to HepG2 cells. 
Liposomes have also been identified as one of the major antimicrobial agent 
(meropenem, PEG, triclosan, benzyl penicillin, zinc citrate) delivery systems for 
treating bacterial biofilm-mediated infections (Wang 2021).

3.3.3 � Quantum Dots (QDs)

The ultra-small size semiconductor nanocrystals, with the average size in the range of 
1.5–10 nm, are defined as the quantum dots and are synthesized from group II–VI 
elements in the periodic table depending on their conductive properties and high sur-
face to volume ratios. Due to their unique physical and chemical properties of QDs 
such as high stability, exceptionally narrow range of emission and high quantum 
yield, they are used in biosensors, real-tracking, multipolar labelling and imaging 
(Jahangir et  al. 2019; Wang et  al. 2019). Polymer-functionalized QDs give QD a 
promising feature with higher antibacterial activity. Based on structural dimensions 
(spherical, pentagonal and hexagonal) and size, QDs can be tuned with the ligands 
and polymer, and thus modified GQDs facilitate the attachment of GQDs to bacterial 
membrane. For example, PEGylated GQDs exhibited 100% growth inhibition for 
S. aureus and P. aeruginosa following 8 h of incubation (Habiba et al. 2015). Reports 
on antibiotics conjugated with QDs (ceftriaxone conjugated to CdTe QDs) with 
increased antibiotic efficiency have demonstrated the synergistic antimicrobial effect 
against E. coli (Luo et al. 2011). Recently, gentamicin (GEN)-loaded mesoporous 
silica nanoparticle sealed with acid-decomposable 3-mercaptopropionic acid capped-
ZnS QDs (MPA-ZnS QDs) resulted in controlled release of GEN drug against E. coli 
(strain 0157:H7) and S. aureus (strain ATCC:25923) (Mandani et al. 2021).
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3.3.4 � Biopolymeric Nanomaterials

Polymers derived from living organisms are said to be biopolymers and are made up 
of several monomeric units forming macromolecular polymer structures with cova-
lent bonds. Rational selection of biopolymers is the most important challenge in 
controlled drug delivery systems which necessitate a comprehensive understanding 
of surface and bulk characteristics of biopolymers to achieve optimum therapeutic 
efficacy. Chitosan (CS) is the most common linear polysaccharide derived from 
naturally occurring chitin and is mainly extracted from crustacean shellfish and cer-
tain fungi. Chemically, it consists of N-acetylglucosamine and glucosamine joining 
together with the beta-1-4 linkage, giving a positive charge under acidic pH (Kumar 
2000; Rinaudo 2006). Chitosan is often chemically modified at amino or hydroxyl 
groups to make them more effective and widen their medical applications (Rabea 
et al. 2003; Verlee et al. 2017; Sahariah and Másson 2017). Antimicrobial chitosan 
is prepared mainly via quaternarization and carboxylation to improve its solubility 
and antimicrobial activity with the maintenance of its biodegradability and bio-
safety. Essential oils such as rosemary essential oil when nanoencapsulated on chi-
tosan/polyglutamic acid nanoparticles resulted in a significant increase of the 
antibacterial activity against B. subtilis (Lee et al. 2019a). Bacterial cellulose com-
bined with ZnO-NPs was analysed for the healing property (Mihai et al. 2019).

3.3.5 � Dendrimers

Dendrimers are synthetic polymers with a large number of exposed anionic, neutral 
or cationic functionalities on the surfaces formed by the branched repeating units 
that emerge from a focal point (Lyu et al. 2019). Carbon, nitrogen and phosphorus 
as central atoms of dendrimer play an important role in determining the structure, 
branches and cavities (Elsabahy and Wooley 2012; Kulthe et al. 2012; Fox et al. 
2018). Further, the structural specificity of dendrimers allows attachment of com-
pounds and drug molecules to the outer surfaces of dendrimers with final inclusion 
inside the cavities, which helps in encapsulation and conjugation (Pandurangan 
et al. 2016; Kim et al. 2018).

Dendrimers can be used in combination with traditional drugs, besides their 
structures can be formulated based on the pharmacodynamics and pharmacokinet-
ics of the drug (Authimoolam and Dziubla 2016). In an interesting study, 
poly(amidoamine) (PAMAM) dendrimers conjugated with fluoroquinolones (nadi-
floxacin and prulifloxacin) showed enhanced antimicrobial activity and water solu-
bility (Kuwahara et al. 2005; Cheng et al. 2007). Further studies on nanodendrimers 
conjugated with erythromycin significantly showed delivery of erythromycin with 
four times lesser minimum inhibitory concentration (MBC) against P. aeruginosa, 
2 times lower against S. aureus and 16 times lower against S. epidermis (Xue 
et al. 2013).
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3.3.6 � Photothermally Activated Nanomaterials (PANs)

PANs are the broad spectrum of nanoparticles that convert absorbed light into heat. 
Resonance oscillation of the surface electron (surface plasmon) or energy of band 
transition gives the thermal effect to the nanoparticles. These nanoparticles produce 
thermal relaxation which leads to temperature increase, and their effect depends on 
many factors such as irradiation intensity, wavelength, the concentration of nanopar-
ticles and photothermal conversion efficacy (Borzenkov et  al. 2019). In a recent 
study, a chitosan-based hydrogel with embedded gold nanorods under low-power 
diode laser irradiation showed antimicrobial activity against both Gram-positive 
and Gram-negative bacteria including MDR strains (Bermúdez-Jiménez et  al. 
2019). Another study on the photothermal effect of phospholipid-coated gold 
nanorods loaded into a poloxamer 407 hydrogel resulted delivery of poloxamer 
407  in ≈4.5–5 log cycle reduction of P. aeruginosa biofilm (Al-Bakri and 
Mahmoud 2019).

3.3.7 � Carbon-Based Nanomaterials

3.3.7.1 � Graphene-Based Nanomaterials

Graphene is the thinnest two-dimensional crystal sheet of single-layer sp2 carbon 
(Goenka et  al. 2014). Graphene nanomaterials are comprised of graphene oxide 
(GO), reduced graphene oxide, single layer, bi-layer graphene and multilayer gra-
phene. Graphene-based nanostructures have wide applications including antimicro-
bial coatings, cellular targeting, biosensor, wound dressings, etc. The antimicrobial 
activity of GO increases after the reduction of sheet area. As GO is also a semicon-
ductor material, hence it can be utilized for catalytic disinfection once exposed to 
UV-visible irradiation. Functionalization of GO with antibiotics, metallic com-
pounds, immunoglobulins, chemotherapeutics, metallic nano-compounds and other 
organic/inorganic functionalities such as amine and carboxyl is comparatively easy 
because of its chemically reactive oxygen groups (carboxylic acid, hydroxyl and 
epoxy groups) (Sun et al. 2018a; Zarafu et al. 2018). Sharp edges of GO make it 
capable of killing bacteria through direct contact interactions. This mechanism of 
killing bacteria is called ‘trapping’ and ‘nanoknife’ mechanisms. DNA aptamer-
conjugated magnetic graphene oxide (Apt@MGO) for rapid eradication of MRSA 
superbugs via generation of heat and cell death (~78%) under NIR laser irradiation 
considering them as biocompatible and light-activated photothermal agent for effi-
cient ablation of MRSA (Ocsoy et  al. 2021). Antibacterial activity of three-
dimensional porous self-assembled graphene-based composite and VA-laden 
RGO-nHA composite scaffold (VA@RGO-nHA) against S. aureus with controlled 
release of vancomycin was reported using the S. aureus-infected bone by Weng 
et al. (2017).
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3.3.7.2 � Carbon Nanotubes (CNTs)

The size and surface area of carbon nanotubes are inversely proportional to each 
other which enhances the cell damage and subsequent cell death (Wang et al. 2016; 
Costa et al. 2020). Functionalization and modification help CNTs to improve their 
biocompatibility and dispersibility and to optimize their antimicrobial property 
(Rebelo et  al. 2016). Enhanced antimicrobial activity of multiwall layer CNTs 
(MWCNTs) has been observed when functionalized with amino acids such as lysine 
and arginine. Antimicrobial activity of antibiotic ciprofloxacin can also be improved 
when coated with the single-wall CNTs (SW-CNTs) resulting in increased bacteri-
cidal activities against S. aureus and P. aeruginosa by 16-fold and E. coli by 8-fold, 
compared to ciprofloxacin alone (Assali et al. 2017).

3.3.7.3 � Fullerenes

Fullerenes are ball-shaped molecules, C60 being the most common fullerene. 
Amphiphilic fullerenes are widely used as drug nanocarriers because of their bio-
compatibility and cage-like structure (Tan et  al. 2017). Fullerene has also being 
used in PDT to treat drug-resistant bacteria, for instance, against P. aeruginosa in 
the form of its derivatives like fulleropyrrolidinium salts and sulfobutyl fullerene 
(Hamblin 2016). Photochemical activity and antimicrobial activity of fullerenes as 
drug carriers upon exposure to light via ROS have been studied in Gram-positive 
bacteria such as Streptococcus pyogenes (Kazemzadeh and Mozafari 2019).

3.3.7.4 � Carbon-Based Nanodots

Carbon nanomaterials, such as graphene quantum dots and carbon nanodots with 
zero-dimensional, are celled as carbon-based nanodots (Manisha et  al. 2019). 
Carbon quantum dots are electrically conductive materials and hence can be used 
with various antimicrobial materials (Miao et al. 2015). Carbon nanodots synthe-
sized via top-down or bottom-up approaches with a diameter <10 nm have been 
investigated for loading ciprofloxacin hydrochloride for their antimicrobial activity. 
These ciprofloxacin hydrochloride-loaded carbon nanodots exhibited enhanced 
antimicrobial activity against both Gram-positive and Gram-negative bacteria 
(Thakur et al. 2014). Recent reports on enhanced antimicrobial activity of CDs via 
green synthesis medicinal turmeric leaves (Curcuma longa) against Staphylococcus 
aureus, Staphylococcus epidermidis, Escherichia coli and Klebsiella pneumoniae 
resulted in effective delivery of phytochemicals and reactive oxygen species (ROS) 
production leading to cell death (Nair et al. 2020a; Saravanan et al. 2021).
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3.3.7.5 � Carbon Nitride Nanomaterials

Graphite C3N4 (g-C3N4) is a metal-free photocatalyst. A study on strong mesoporous 
g-C3N4 which were manufactured with the cyanimide as raw material and silica as 
a template showed good inactivation of E. coli under visible irradiation (Huang 
et al. 2014). Modification of graphite ‘carbonitrides’ with other antimicrobial agents 
such as aerobic conditions (caused by photocatalytic oxidative inactivation) and 
under anaerobic circumstances (caused by photocatalytic reductive inactivation), 
co-rapping of g-C3N4 and reduced graphene oxide sheets have been reported to 
destroy bacteria (Wang et al. 2013). Graphitized carbonitride (g-C3N4) nanosheets 
with embedded AgNPs improved the generation of photoelectrons and thus proved 
to be effective antibacterial agents (Bing et al. 2015).

3.4 � Antimicrobial Agents and Their Inhibitory Mechanisms

Antimicrobial agents destroy bacteria by interfering with their bacterial growth/
survival/reproduction mechanisms. Various antimicrobial agents such as antibiot-
ics/drugs, AMPs, phytochemicals and metal-based nanomaterials are used as or in 
delivery systems to treat microbial infections (Patra et al. 2018). These antimicro-
bial agents show specific inhibition mechanisms against bacteria as illustrated in 
Fig. 3.1 and Table 3.1.

3.4.1 � Antibiotics

Antibiotics represent the most common antimicrobial agents that exert their effects 
by targeting major bacterial mechanisms such as cell wall synthesis, DNA synthe-
sis, protein synthesis, DNA damage and mRNA synthesis and can be classified into 
various groups based on the mode of action (bacteriostatic or bactericidal) and their 
origin, route of administration, range of action (broad-spectrum or narrow-spectrum) 
and chemical structure (Table 3.2). β-Lactam antibiotics are the bactericidal agents 
that contain β-lactam ring in their molecular structures and interrupt bacterial cell 
wall formation by binding covalently to penicillin-binding protein (PBP) enzyme 
involving the terminal step of peptidoglycan cross-linking in both Gram-positive 
and Gram-negative bacteria (Bush and Bradford 2016) and include penicillins, 
cephalosporins, carbapenems and monobactams. Penicillins further can be broadly 
classified into four different groups: natural penicillins, aminopenicillins, extended-
spectrum penicillins and penicillinase stable penicillins. Cephalosporins like peni-
cillins are β-lactam antibiotics developed from cephalosporin C (a natural product 
of Cephalosporium acremonium). Successive modification of cephem ring structure 
has led to the ‘generations’ of cephalosporin to be divided into first, second, third, 
fourth and fifth generations. Carbapenems are derivatives of thienamycin from 
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Fig. 3.1  Major mechanism of action displayed by antibiotics, AMPs, phytochemicals and metals

Streptomyces cattleya and differ from penicillins with replacement of sulphur by 
methylene group in a five-membered ring of β-lactams, further represented by 
meropenem, doripenem, ertapenem and imipenem. Monobactam is characterized 
by a non-fused β-lactam nucleus that differs from penicillins, cephalosporins and 
carbapenems including Aztreonam (Paris 2012). Aminoglycoside antibiotics are 
bactericidal agents structurally characterized by the presence of amino sugars 
attached to an aminocyclitol ring by glycosidic bond (Dasenaki and Thomaidis 
2017) that include neomycin, amikacin, kanamycin, gentamicin and tobramycin 
(Shriram et al. 2018). Aminoglycosides inhibit protein synthesis in bacteria by irre-
versibly binding to the 30S ribosomal subunit, preventing the transfer of aminoacyl-
tRNA to the peptidyl site, causing premature termination of the peptide chain and 
also increasing the frequency of mRNA misreading (Waller and Sampson 2018). 
Tetracyclines are usually considered as bacteriostatic antibiotics characterized 
chemically by a linear fused tetracyclic nucleus that inhibits bacterial protein syn-
thesis by binding to 16S rRNA of 30S bacterial ribosomal subunit, arresting transla-
tion by interfering with the docking of incoming aminoacyl-transfer RNA (tRNA) 
at the acceptor site (A site) (Grossman 2016; Markley and Wencewicz 2018). 
Tetracycline antibiotics are broad spectrum in activity, spanning a wide range of 
Gram-positive and Gram-negative bacteria, obligate intracellular bacteria, proto-
zoan parasites, chlamydia, mycoplasma, rickettsia and spirochetes and are repre-
sented by tetracycline, minocycline, demeclocycline and doxycycline. 
Streptogramins (pristinamycin, mikamycin, virginiamycin and quinupristin-
dalfopristin) are composed of two structurally different components, A and B. A 
component (pristinamycin IIA, mikamycin A or dalfopristin, virginiamycin M) is 
polyunsaturated macrolactones, and B component (pristinamycin IB, mikamycin B 
or quinupristin, virginiamycin S) is a cyclic hexadepsipeptide (Schwarz et al. 2016). 
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Component A interferes with polypeptide elongation by preventing binding of 
aminoacyl-tRNA to ribosome whereas component B destabilizes the peptidyl-tRNA 
resulting in enhanced bactericidal activity (Lee 2006).

Macrolides are a different group of compounds that has a lactone ring (14–16 
atoms) bonded to one or more deoxy sugar and classified according to the number 
of carbon atoms in the lactone ring; 14 membered includes erythromycin, roxithro-
mycin, troleandomycin, clarithromycin and dirithromycin, whereas 15 membered 
includes azithromycin and 16 membered includes spiramycin, josamycin, mideca-
mycin and spiramycin (Kuruvilla 2018). Macrolide antibiotics inhibit protein syn-
thesis by targeting bacterial ribosomes, further binding at nascent peptide exit tunnel 
and partially occluding it. Thus macrolides are viewed as ‘tunnel plugs’ that stop 
protein synthesis (Vázquez-Laslop and Mankin 2018). Another class of antimicro-
bial agents, the lincosamides, are derived from Streptomyces spp. Lincosamide 
structure consists of three components: an amino acid (L-proline substituted by a 
4′-alkyl chain), a sugar (lincosamide) and an amide bond connecting these two moi-
eties (Kwon 2017). Lincosamides inhibit protein synthesis by binding to 50S sub-
unit at a site that overlaps both P and A sites on the bacterial ribosome, preventing 
charged tRNA docking and their movement through the peptidyl transferase centre 
(Sauberan and Bradley 2018). Lincomycin, clindamycin and pirlimycin are three 
antibiotics present in the lincosamide group.

Besides macrolides, antibiotics and lincosamides, the quinolones are another 
family of synthetic antimicrobial drugs that have been reported to be effective 
against various bacterial infections. The first quinolone reported, nalidixic acid, was 
introduced in 1964, and its further chemical manipulation and advancements 
resulted in the development of fluorinated quinolones (fluoroquinolones) that 
includes danofloxacin, difloxacin, marbofloxacin, orbifloxacin, enrofloxacin, cipro-
floxacin, moxifloxacin and levofloxacin. The major mechanism involved in the inhi-
bition of topoisomerase II (DNA gyrase and topoisomerase IV), regulates 
under-winding and over-winding of DNA. The binding of quinolones to enzyme-
DNA complex results in the conformational changes of enzyme further inhibiting 
relegation of broken DNA strands leading to the bactericidal effect. Besides quino-
lones, sulfonamides are one of the oldest groups of antibacterial agents introduced 
into medical practice even before the discovery of penicillin and have broad-
spectrum use concerning both Gram-negative and Gram-positive microorganisms. 
Sulfonamide drugs are the structural analogs of para-aminobenzoic acid (PABA), 
an essential component in the folic acid pathway. Sulfonamides inhibit the bacterial 
dihydropteroate synthetase (DPS) enzyme of the folic acid pathway, blocking bacte-
rial nucleic acid synthesis. Sulfonamides also contribute in preventing the conver-
sion of PABA to dihydrofolic acid by substituting competitively for 
PABA. Combinations with trimethoprim have also shown an excellent bactericidal 
effect. Trimethoprim inhibits dihydrofolic acid reductase thereby preventing the 
subsequent conversion of dihydrofolic acid to tetrahydrofolic acid thus blocking 
two successive steps in the folic acid pathway and exhibiting enhanced bactericidal 
effect (Ahern and Richardson 2012). Metronidazole and tinidazole are the main 
representatives of nitroimidazoles. Metronidazole is active against some anaerobic 
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bacteria (e.g. Clostridium difficile), protozoan infections and microaerophilic bacte-
ria (Gardenia vaginalis and helicobacter pylori). Metronidazole first diffuses across 
the membrane and then gets reduced by intracellular protein under anaerobic condi-
tions, hence exerting its effect through cytotoxic intermediate and free radical’s 
formation that provoke DNA damage (Bury-Moné 2014).

Apart from the wide-spectrum activity and fast-action advantages of antibiotics, 
they face some disadvantages such as side effects, hypersensitivity, drug interaction 
and toxicity and negative effect on commensal microflora (Weledji et al. 2017). In 
addition to injudicious usage of conventional and commonly available antibiotics in 
human health, veterinary agriculture further adds to the evolution, persistence and 
spread of AMR with emergence of new drug-resistant bacterial strains at a frighten-
ing rate resulting in the inefficacy of existing drugs with very few or no solutions in 
sight. Therefore, to successfully combat the escalating problem of AMR, novel and 
effective antimicrobial agents are recommended such as phytochemicals, metal, 
metal-based complexes, metallic nanoparticles and AMPs.

3.4.2 � Antimicrobial Peptides (AMPs)

AMPs are broadly defined as ‘naturally occurring polypeptide sequences of 12–15 
residues comprising cationic and hydrophobic amino acid with direct antibacterial 
activity’ (Li et al. 2021). AMPs are produced by all organisms ranging from bacte-
ria, plants, invertebrates and vertebrates and have a wide range of inhibitory effects 
against fungi, bacteria, viruses and parasites (Kumar et al. 2018a). AMPs have sev-
eral advantages over conventional antibiotics showing the multifunctional mecha-
nism of antibacterial action altering cell membrane and also attacking specific 
targets that take part in the development of different intracellular processes such as 
bacterial cell wall formation, transcription and translation that has antimicrobial 
activity against multidrug-resistant pathogens (León-Buitimea et al. 2020).

AMPs are found to be highly effective against Gram-negative bacteria which are 
more challenging to treat than their Gram-positive counterparts because of the outer 
membrane composition in the earlier that makes them impermeable to most of the 
conventional antibiotic drugs. AMPs are often introduced in literature as a ‘promis-
ing alternative to antibiotics’ and ‘potential to address the growing problem of anti-
biotic resistance’ and ‘hold promise to be developed as novel antibiotics’ (Li et al. 
2021) because of a non-specific mechanism involving membrane target, oxidative 
damage, damage to intracellular molecules, potent microbicidal activity in the 
micromolar range and rapid drug action increasing difficulty in resistance develop-
ment because of limited time for extensive mutation and growth (Koo and Seo 
2019). In addition, AMPs are also known as host defence peptides (HDPs) as they 
can also enhance immune response highlighting the clinical potential of AMPs to 
stimulate innate immunity (Li et  al. 2021). AMPs such as HPA3P (Helicobacter 
pylori-derived AMP) loaded onto a gold nanoparticle-DNA aptamer (AuNP-Apt) 
conjugate (AuNP-Apt-HPA3PHis) when utilized against Vibrio vulnificus resulted in 
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HPA3PHis-induced bacterial cell death via disruption of membrane integrity and 
100% survival rate in Vibrio vulnificus-infected mice resulting in complete inhibi-
tion of Vibrio vulnificus colonization, hence displaying effective drug delivery of 
AMPs (Lee et al. 2017).

AMPs are commonly known for non-receptor-mediated membrane-lytic bacteri-
cidal activity. Membrane-targeting mechanisms of AMPs can be described through 
pole and carpet models, barrel-stave models and toroidal pore models (Fig. 3.2). In 
the toroidal-pore model, the initial binding of the peptide to the membrane is fol-
lowed by cascade aggregation of incoming monomer units, causing the lipid moi-
eties of inner and outer membranes to fold inward, forming continuous channels 
lined by multiple peptide units and thus tightly associating lipid head groups of 
membrane phospholipids with peptides. A typical example of this model includes 
magainin 2, lacticin Q, arenicin and melittin (Huan et al. 2020). However, the barrel-
stave model differs from the toroidal pore model by the peptide monomers inserted 
into the membrane arranged parallelly to phospholipid molecules of the membrane. 
Besides membrane penetration and pore formation, AMPs have another mechanism 
of action which includes inhibition of protein synthesis by affecting transcription, 
translation, protein folding and assembly of newly synthesized proteins. For exam-
ple, PR-39, a proline, and arginine-rich AMP isolated from pigs’ small intestine 
were found primarily to penetrate rapidly into E. coli outer membrane that led to 
protein synthesis inhibition and degradation of the protein (Boman et  al. 1993). 
Following penetration, inhibition of nucleic acid biosynthesis occurs by affecting 
the key enzymes of DNA synthesis or inducing degradation of the nucleic acid mol-
ecule. By inhibiting the DNA replication, DNA damage response (SOS response), 
causing chromosomal separation failure blocking cell cycle, and inhibiting cell divi-
sion is the process of AMPs. Cruz et al. (2020) identified 40-amino acid residue 
MciZ as an effective inhibitor of bacterial cell division, Z-ring formation and local-
ization. Histatin, eNAP-2 and indolicidin were also found to have strong protease 
inhibition mechanisms (Huan et al. 2020). Similarly, investigations on NP-6 from 
Sichuan pepper seeds showed inhibition of beta-galactosidase activity in E. coli 
(Hou et al. 2019). These multifunctional mechanisms of antibacterial action thus 
highlight the AMPs as a promising alternative to antibiotics.

3.4.3 � Phytochemicals

Plants produce a wide array of phytochemicals that have been utilized for centuries 
in ethnomedicine or folk medicines. Phytochemicals are compounds that occur 
naturally in plants as secondary metabolites (Bai et al. 2011) and can be classified 
into many major classes depending upon the chemical structure (alkaloids, 
polyphenols(flavonoids and non-flavonoids), terpenoids, sulphur-containing phyto-
chemicals), biosynthetic pathways, biological pathways and botanical origins 
(Górniak et  al. 2019; Belščak-Cvitanović et  al. 2018). Two major sub-classes of 
phenolic acid include hydroxybenzoic acid (e.g. gallic acid, vanillic acid, 
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protocatechuic acid, salicylic acid, syringe) and hydroxycinnamic acid (e.g. chloro-
genic acid, coumaric acid, caffeic acid, ferulic acid curcumin, caftaric acid, cin-
namic acid) (Flamini and De Rosso 2018). Similar to phenolic acids, tannins are a 
group of structurally complex polyphenols comprising condensed (proanthocyani-
dins) and hydrolyzable tannins that can form complexes with proteins by non-
specific interactions. Therefore, displaying antimicrobial activity may be associated 
with their potential to denature microbial transport protein, adhesins and microbial 
enzymes preventing microbial growth through deprivation of metal ions and sub-
strates (Gupta and Pandey 2019). Bacterial cells can be affected by phytochemicals 
in several ways due to the greater diversity displayed by phytochemicals. The major 
mechanism of phytochemicals action includes membrane permeabilization, cell 
membrane disruption, EP inhibition, inhibition of biofilm formation and quorum 
sensing, targeting resistant plasmid, inhibition of cell division and DNA and protein 
synthesis (Table 3.1) (Navarro-Martínez et al. 2005; Gradišar et al. 2007; Domadia 
et al. 2008; Wu et al. 2008; Boulet et al. 2018). For instance, studies have shown 
enhanced bactericidal activity of thymol against S. aureus and E. coli by encapsulat-
ing thymol in hollow mesoporous silica sphere with cell membrane disruption as an 
inhibitory mechanism of action, thus highlighting enhanced resistance reversal 
potential antimicrobial agent when combined with nanocarriers (Liu et al. 2021a) 
that could speed up the successful application of antimicrobial agents in clinical 
settings.

Similarly, essential oils are known for their broad-spectrum antimicrobial poten-
tials mainly attributable to their abilities of targeting major determinants of drug 
resistance, pathogenicity and spread, which include EPs, cell membrane, quorum 
sensing, resistant plasmids and biofilms. Recent reports confirm that essential oils 
show both direct killing (bactericidal) or re-sensitizing (or resistance-reversal) 
potentials providing effective solutions for tackling AMR and the potential to reju-
venate or replace otherwise fading antibiotic arsenal (Yu et al. 2020). Recent years 
have witnessed the use of nanomaterials as synergistic agents with essential oils as 
well as their carriers. Montmorillonite nanosheet-based (MMT-based) drug nano-
platform involving antibacterial metal copper ions, quaternized chitosan (QCS) and 
antibiotic 5-fluorocytosine (5-FC) [QCS/MMT/5-FCCu] strongly inhibited 
S. aureus, E. coli and Candida albicans with high drug-loading capacity, excellent 
wound healing and good biocompatibility in a mouse model infected with wound 
demonstrating enhanced killing effect against both bacteria (Sun et  al. 2019). 
Similarly, cinnamaldehyde-loaded liposomes decorated with chitosan also showed 
strong antibacterial efficacy against S. aureus by damaging cell membrane integrity, 
causing cell death by leakage of intracellular components (Wang et al. 2021).
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3.4.4 � Metals, Metal-Based Complexes 
and Metallic Nanoparticles

Since ancient times, antimicrobial activities of metals such as silver (Ag), gold 
(Au), copper (Cu) titanium (Ti), mercury (Hg) and tellurium (Te) consisting of dif-
ferent properties defining the spectrum of activity and potencies are known that are 
used as antimicrobial agents because of their microbiocidal activity at extremely 
low concentration. Previous reports on E. coli and S. aureus treated with AgNO3 
resulted in losing their replication ability and protein inactivation resulting in strong 
antibacterial activity of metals (Woo et al. 2008). The major mechanism of antibac-
terial action of metals includes production of ROS, impairing membrane function, 
interfering with nutrient assimilation, inducing genotoxicity, protein dysfunction 
and loss of enzyme activity (Lemire et al. 2013). For example, tellurite (TeO3 2−) 
toxicity in E. coli by treatment of K2TeO3 in E. coli leads to superoxide formation 
(Pérez et al. 2007). Similar results with loosening of cell walls, cytoplasmic aggre-
gation and cell wall rupture were observed when Erwinia carotovora subsp. atro-
septica was treated with aluminium chloride resulting in increased mortality 
(Yaganza et al. 2004). Further, as there is a chemical similarity between iron (Fe) 
and gallium (Ga), Ga can substitute Fe in a different biological system and inhibits 
Fe-dependent processes, for example, inhibition of growth, biofilm formation and 
death of P. aeruginosa by Ga-induced reduced uptake of Fe and reduced expression 
of genes involved in Fe uptake suggesting the importance of Ga in interference of 
nutrient assimilation. In addition, since Ga is FDA approved for intravenous (IV) 
administration suggesting Ga as potentially promising therapeutics in the dearth of 
new antibiotic development (Kaneko et al. 2007).

Treatment of E. coli (lacking copper homeotic system) with copper metal resulted 
in rapid inactivation of isopropyl malate dehydratase (an iron-sulphur cluster 
enzyme in the pathway of branched-chain amino acid synthesis) damaging essential 
enzymes of biosynthetic pathways (Macomber and Imlay 2009). In addition to this, 
metals when used in nanoformulations or complexed with other antimicrobial 
agents such as phytochemicals, antibiotics and synthetic metal complex show 
greater inhibitory effects against bacteria compared to their free ligand, exhibiting 
potent broad-spectrum antimicrobial activity, with low toxicity (Lemire et al. 2013). 
For example, when a metal complex of Ga and flavonoid quercetin (metal complex 
1) and H2bbppd and Cu(II) (metal complex 2) were evaluated against Staphylococcus 
aureus (ATCC SP 25923), Escherichia coli (ATCC SP 11229), Enterococcus faeca-
lis (ATCC SP 19433) and Pseudomonas fluorescens (ATCC SP 13525), both metal 
complex showed greater inhibitory effects as compared to their ligand with lower 
MIC ≤250 μg/ml, confirming broad-spectrum strong antibacterial activities.

3  Nanomaterial-Mediated Delivery of Antimicrobial Agents: ‘The Nanocarriers’



134

3.5 � Nanomaterial-Based Antimicrobial Delivery Targeting 
Drug-Resistant Determinants

3.5.1 � Bacterial Cell Membrane

The first line of defence in bacteria is the cell membrane that maintains the neces-
sary osmotic balance between the outer environment and the cytoplasm (Yeh et al. 
2020). Various nanomaterials have been found interacting with the bacterial cell 
membrane to increase the membrane permeability via the generation of ROS and 
production of radicals [singlet oxygen (1O2), electrons (e−), hydroxyl radicals 
(●OH) and superoxide radicals (O2

●−)] (Wang et  al. 2017). As an alternative to 
traditional antibiotics, photothermally active nanomaterials have emerged as a 
potential drug delivery system to target bacterial drug-resistant determinants 
(Borzenkov et al. 2020; Kaur et al. 2021). Multifunctional drug delivery nanoparti-
cle (MDD-NP) and crystalline ruthenium polypyridine nanoparticles (Sph-Ru-
MMT@PZ) consisting of adhesive and surface-anchoring properties, under 670 nm 
red irradiation therapy (R-IT), resulted in bacterial destruction and cell lysis of 
E. coli via ROS production (Yin et al. 2021). Further in vivo studies in mice revealed 
synergistic anti-infective effects of nanoparticles, hence promoting wound healing. 
Vancomycin-encapsulated, pH-responsive, surface charge-switching poly(D,l-
lactic-co-glycolic acid)-b-poly(l-histidine)-b-poly(ethylene glycol) (PLGA-PLH-
PEG) nanocarriers demonstrated pH-sensitive NP binding to bacteria (pH 6.0) and 
drug delivery to bacterial cell membrane of S. aureus causing cystic fibrosis with an 
1.3-fold increase in MIC (Radovic-Moreno et  al. 2012). A study on controlled 
release of drug at the injection site was conducted with kanamycin-loaded TiO2 
nanotubes (NTs) under NIR irradiation via disrupting the bacterial cell membrane 
integrity by damaging bacterial cell wall and radical-induced inflammation and 
cytotoxicity resulting in ≥99.9% reduction in E. coli (Xu et al. 2021). Similar results 
were observed in eco-friendly chitosan-based nanoantibiotic system (LD@CN/DA) 
for potential delivery of linezolid (LD) with 3,5-dinitrosalicylic acid (DA) as anti-
microbial agents with 98.4% drug release efficiency against MRSA, E. coli and 
E. faecalis resulting in the formation of ROS and enhancing pathogen-specific 
activity (Teaima et al. 2020).

3.5.2 � Biofilms

Human infections can be caused by bacteria that are in the form of biofilms, plank-
tonic cultures and intracellular residence depending on their surroundings and 
growth parameters (Yeh et  al. 2020). Biofilms are well-organized community of 
bacteria that adhere to the host cells to protect themselves from the harsh environ-
mental, physiological conditions and action of antibiotics (Sharma et  al. 2019). 
Recent reports on worldwide human infections caused by biofilms have crossed 
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60% making them the primary cause of various treatment failures in medicine 
(Huang et al. 2021). Therefore, biofilms have emerged as one of the major resis-
tance mechanisms and spreading AMR. Recent years have witnessed the successful 
applications of nanomaterials in eradicating biofilms as well as in carrying effective 
anti-biofilm agents.

Endophthalmitis is defined as the bacterial infections caused by various microor-
ganisms inside the eye vitreous and aqueous humour (Durand 2013). Chen et al. 
(2019) studied the eradication of E. coli, S. aureus and MRSA biofilms causing 
endophthalmitis using ammonium methylbenzene blue-loaded pH-responsive zeo-
litic imidazolate framework-8-polyacrylic acid (ZIF-8-PAA) modified with AgNO3 
and secondary modification of vancomycin/NH2-polyethylene glycol (Van/NH2-
PEG) composite nanomaterial (ZIF-8-PAA-MB@AgNPs@Van-PEG). Further 
in  vitro retinal pigment epithelium cellular experiments and in  vivo mice endo-
phthalmitis models resulted in effective drug release, biocompatibility and antibac-
terial efficiency of composite nanomaterial against biofilm-causing bacteria (Chen 
et  al. 2019). Pseudomonas aeruginosa, another pathogen found in adult patients 
infected with cystic fibrosis (CF), is the major biofilm-forming bacteria (Davies 
2002). The development of novel aerosolized ciprofloxacin-loaded poly(lactic-co-
glycolic (PLGA) acid) nanocarriers onto the in vitro model of Pseudomonas aeru-
ginosa biofilm-infected human bronchial epithelial cells resulted in the eradication 
of planktonic bacteria and reduced biofilm fraction by log 6 revealing their potential 
avenues in preclinical studies (Juntke et al. 2021).

Nitric oxide has emerged as a promising agent for disrupting biofilms and pro-
moting wound healing (Englande and Friedman 2010). Hasan et al. (2019) devel-
oped polyethyleneimine/diazeniumdiolate (PEI/NONOate)-doped PLGA 
nanoparticles (PLGA-PEI/NO NPs) against MRSA biofilm of diabetic wounds 
resulting in binding of NPs to biofilm matrix facilitating NO delivery and enhanced 
anti-biofilm activity. Further in vivo studies in MRSA biofilm-infected wounds in 
diabetic mice accelerated healing via biofilm binding NO release from NPs (Hasan 
et  al. 2019). Amikacin and ciprofloxacin drugs encapsulated in liposomes have 
shown their effective penetration abilities in P. aeruginosa biofilms (Zhang et al. 
2018; Chalmers et  al. 2021). Besides liposomes, AMP-based nanocarriers have 
greatly enhanced their medicinal benefits by improving stability, solubility and 
in vivo half-life in various pulmonary, gastrointestinal and wound infections (Song 
et al. 2021) (Table 3.3).

3.5.3 � Efflux Pumps (EPs)

Extrusion of therapeutically relevant antimicrobial agents/drugs from inside cells to 
the extracellular environment via EPs has been frequently involved in microbial 
antibiotic resistance and spreading AMR (Alav et  al. 2018). Investigations have 
identified several EP genes in chromosomes and plasmids of different bacterial spe-
cies that mediate drug resistance (Li and Nikaido 2009). EPs are also found to play 
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Fig. 3.2  Membrane-targeting mechanism of antimicrobial peptides (AMPs)

key roles in biofilm formation by extruding quorum sensing molecules and quorum 
quenchers that mediate the formation of biofilm matrix, thus promoting surface 
adhesion (Ugwuanyi et al. 2021). EPs have been characterized as one of the major 
drug-resistant determinants. Numerous nanomaterials for delivering antimicrobials 
to EP target sites have been investigated using in  vivo and in  vitro models as a 
potential tool for treating bacterial infection (Prasher et al. 2021). A recent study has 
reported on the synergistic effects of ciprofloxacin with embelin-loaded chitosan-
gold nanoparticles against environmental MDR P. aeruginosa and E. coli strains by 
inhibiting EPs by interacting with PA-r (MexA, MexB and OprM) and EC-r (AcrA, 
AcrB and TolC) active sites (Khare et al. 2021). Further advancements in the micro-
fluidic assembly of pomegranate-like hierarchical microspheres and meropenem-
loaded porous silica (MCM-48), for efflux regulation in oral drug delivery against 
S. aureus and P. aeruginosa, demonstrated reduced efflux of MER back into the 
gastrointestinal lumen (Raza et al. 2021). One of the recent innovative strategies 
includes the application of combinations of different antibiotics on nanomaterials to 
combat MDR bacteria. Khameneh et al. (2015) investigated the antibacterial activ-
ity of co-loaded piperine and gentamicin nanoliposomes in MRSA resulting in EP 
inhibition with MIC of 32 and 100 μg/mL, respectively. Similarly, liposome-
encapsulated phenylalanine-arginine β-naphthylamide (PAβN), an EP inhibitor 
(EPI), has been proven a cost-effective and worthwhile delivery system against 
MDR P. aeruginosa in lung infections (Ray et al. 2021). However, deeper studies 
are much further required in this field.
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3.5.4 � Quorum Sensing

The communication mechanism between the bacteria cells with each other that 
entails the synthesis, detection and autoinducer extracellular signalling molecules is 
defined as quorum sensing (QS) (Rutherford and Bassler 2012). Molecular mecha-
nisms involving acyl-homoserine lactones, peptide autoinducers and autoinducer 2 
are the major QS systems present in bacteria involved in intercellular signalling 
during human bacterial infections (Irie and Parsek 2008). As a result, there is an 
increasing demand for viable, non-toxic/anti-QS agents exhibiting dual actin modes 
addressing both biofilm formation and QS in bacterial infections. In recent years, 
nanomaterials as antimicrobial agents/drug delivery systems have been reported as 
an effective tool for QS elimination and treating microbial infections. Bueloni et al. 
(2020) developed vanadium-nalidixic acid complex (V-NA) nanoencapsulated into 
myristyl myristate nanostructured lipid carriers (NLCs), and polymeric nanoparti-
cles of Eudragit NE 30D (EuNPs) with enhanced antibacterial and anti-quorum 
sensing properties against P. aeruginosa and Chromobacterium violaceum resulted 
in controlled release of V-NA (30–40% for 3 days) with 59.3 and 129.9 μM MIC 
values, respectively. Similar results were observed in chitosan-gum acacia gold 
nanocomposite (CS-GA-AuNC) against MDR P. aeruginosa with a greater reduc-
tion in Las-R gene expression levels majorly involved as a virulence factor in bio-
film formation and QS (Raja Namasivayam et al. 2020). Further in vivo studies on 
murine macrophage cell line revealed their excellent biocompatibility, an excellent 
property for drug delivery systems. Recently, the formulations of AMP dendrimers 
and QSIs (anti-MvfR compounds) for treating burn wound infections caused by 
P. aeruginosa were developed that inhibited the MvfR virulence pathway in the QS 
system of the bacteria (Jafari et al. 2021). Similar results in tobramycin antibiotic 
and alkylquinolone quorum sensing inhibitor (QSI)-loaded squalenyl hydrogen sul-
phate nanoparticles (SqNPs) in in vitro models of pulmonary P. aeruginosa infec-
tions were observed with improved biofilm penetration and enhanced antimicrobial 
efficiency (Ho et al. 2020).

3.6 � Conclusion and Future Perspectives

Biocompatibility, cost-effectiveness, controlled drug release, deep penetration, tar-
get specificity and sustainability properties of nanocarriers make them ideal drug 
carriers, for delivering wide-ranging antimicrobial agents. However, despite the 
seemingly large corpus of research and development of a nanomaterial-based deliv-
ery system of antimicrobial agents, numerous hurdles need to be overcome before 
nanomaterial-based approaches for the optimum treatment of drug-resistant bacte-
rial infections may be successfully translated to clinical settings. Silver-oxide and 
zinc-oxide nanomaterials being approved by the FDA have increased the likelihood 
of clinical settings among the current leads. Antimicrobial agents such as phyto-
chemicals, AMPs, antibiotics and metallic complexes comprising great 
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biocompatibility and enhanced antimicrobial activity in conjugation with nanocar-
riers such as liposomes, nanoparticles, nanocomposites and dendrimers are the 
emerging promising tools for prolonged and regulated release of drugs/antimicro-
bial agents against microbial infections. These nanomaterial-based drug delivery 
systems are proven to be targeting key drug-resistant determinants (cell membrane, 
EPs, biofilm formation, QS) in pathogenic and threatening bacteria. Nanoliposomes 
are been already employed in clinical settings for delivering antimicrobials to 
biofilm-forming bacterial infections. PLGA NPs and GO-NPs have the broadest 
drug delivery range including AMPs that are found to target biofilms and QS sys-
tems. However, deeper research is still required in the field of nanomaterial-based 
delivery of antimicrobials targeting specific EPs, drug release kinetics, biodegrada-
tion, pharmacokinetics and their clearance. For their development, research neces-
sitates multidisciplinary clinical and industrial collaborations for fighting these 
human microbial infections and making them available from bench to bedside.
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