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Chapter 12

Nanoformulations Against
Multidrug-Resistant Members of ESKAPE
Pathogens

Kawaljeet Kaur, Pramod Barathe, Sagar Reddy, Varsha Shriram,
Abhijit Dey, Suresh Gosavi, and Vinay Kumar

Abstract The rise and spread of antimicrobial resistance (AMR) and drug-resistant
nosocomial infections have become a significant global threat for human health and
well-being. Injudicious and persistent antibiotic usages have resulted in the creation
of drug-resistant microorganisms. Multidrug-resistant (MDR) ESKAPE pathogens
consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp. have been reported to raise the mortality and the expense of long-term therapy,
significantly. With the drying pipeline of novel-efficient drugs declining, urgent
need for novel therapies is required. Nanotechnology is a rapidly growing field of
research with tremendous applications in medicine owing to their tiny size and
extensive surface area. Recent reports on nanoformulations against MDR ESKAPE
pathogens have revealed their enhanced therapeutic efficiency, bioavailability, tar-
get specificity, and antimicrobial activity confirming their potential role in nanofor-
mulation strategies to combat ESKAPE pathogens. In this chapter, we discuss about
the evolution of the resistance mechanisms in ESKAPE pathogens and how these
pathogens are posing a serious threat for human health and environment. The chap-
ter further discusses on the potential exploration of nanoformulations as emerging
combating tool against ESKAPE with their drug delivery applications to these drug
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resistance determinants. Finally, we discuss about the various challenges faced for
implementing ESKAPE nanoformulations in clinical settings.

Keywords Antimicrobial resistance - Drug resistance determinants - Biofilm -
ESKAPE - Multidrug resistance - Nanoformulations

12.1 Introduction

In 1928, the miraculous medication penicillin ushered in the age of infections and
had a huge impact on contemporary medicine since then. Injudicious antibiotic
usage and continuous infection exposures have resulted in the overall rise of multi-
drug resistance (MDR) bacteria in nosocomial-related areas/regions. Recent reports
on hospital-acquired infections (HAI) have identified ESKAPE pathogens as one of
the major microorganisms resisting in these areas (Avershina et al. 2021). The
ESKAPE microorganisms comprise of six major drug-resistant pathogens, i.e.,
Enterococcus  faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. mak-
ing them a major group of microorganisms involved in life-threatening nosocomial
infections (Santajit and Indrawattana 2016). In 2017, the World Health Organization
(WHO) produced a list of pathogens causing MDR infections for which new
antimicrobials/antibiotics are urgently required to concentrate and steer research
and developments (De Oliveira et al. 2020) enlisting ESKAPE pathogens as a criti-
cal priority 1 pathogens revealing their looming threat to humanity in upcoming
years (Asokan et al. 2019). Similar reports were reviewed by the Department of
Biotechnology (DBT) in India with K. pneumoniae, A. baumannii, and P. aerugi-
nosa as critical priority pathogens, Staphylococcus aureus and Enterobacter spp. as
high-priority pathogens, while others in medium-priority pathogens list (DBT 2021).

Antimicrobial resistance (AMR) or antibiotic resistance (ABR) has become a
global health threat where these microorganisms acquire new resistance mecha-
nisms becoming “superbugs” and causing non-treatable MDR infections (Morrison
and Zembower 2020). The rise of MDR bacteria has coincided with the drying up
of the antibiotic research pipeline. To overcome these AMR situations, several
attempts to find effective and innovative antibacterial drugs have been made in
recent years. However, delivering powerful antimicrobial drugs in a safe and effica-
cious manner has proven to be a huge challenge. The use of nanotechnology has
emerged as a proven and efficient tool for eradicating MDR and AMR. Recent
advancements in the nanoformulations of drugs and other antimicrobials for target-
ing MDR ESKAPE pathogens have been proven to be advantageous concerning
bioavailability, cost-effectiveness, efficiency, target specificity, and antimicrobial
activity (Mba and Nweze 2021) that target antimicrobial resistance determinants
such as biofilms, efflux pumps, cell membrane, and other enzyme production



12 Nanoformulations Against Multidrug-Resistant Members of ESKAPE Pathogens 387

mechanisms (Peterson and Kaur 2018). In this chapter, we highlight the evolution
of ESKAPE pathogens and their resistance mechanisms in the environment.
Nanoformulation is the newer technology to combat ESKAPE; further, we discuss
various nanoformulation-based drug delivery to drug resistance determinants. At
last, we discuss the challenges in implementing these nanoformulations in clinical
trials and clinical settings.

12.2 ESKAPE Pathogens and Evolution of Their
Resistance Mechanisms

The abbreviation “ESKAPE” refers to a collection of life-threatening nosocomial
pathogens, viz., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp. (Pandey et al. 2021). The development of various antibiotics against these
pathogens has led to the development of different resistance mechanisms for them
to escape the antibiotics and survive in the environment. The development and mar-
keting of new antibiotics and antimicrobials have slowed down since the 1990s
(Conly and Johnston 2005). In the twentieth century, discoveries of antibiotic com-
binations such as imipenem/cilastatin/relebactam (Mansour et al. 2021),
niclosamide-tobramycin (Berry et al. 2021), meropenem-vaborbactam (Patel et al.
2018), imipenem-relebactam (Zhanel et al. 2018), eravacycline-colistin (Ozger
et al. 2019), and other combinations enhanced the targeting of pathogens.

12.2.1 Vancomycin-Resistant Enterococcus faecium (VREfm)

In the 1980s, E. faecium and E. faecalis, well-known for gut commensal bacteria,
became a prominent source of MDR hospital-acquired illness (Lebreton et al. 2013).
E. faecium therapeutic importance stems from its inherent poor sensitivity to a wide
range of antimicrobial drugs, including third-generation cephalosporins, vancomy-
cin, ampicillin, and other antibiotics (Table 12.1) (Kolar 2018). Antibiotic exposure
usually precedes VREfm entry into the bloodstream of hospitalized patients, allow-
ing VREfm to become the dominant species in the gastrointestinal tract (De Oliveira
et al. 2020; Carvalhaes et al. 2021). Other strains such as glycopeptide-resistant
Enterococcus faecium ST80 and ST117 are also found to be residing in a healthcare
facility (Rodriguez-Lucas et al. 2021). Apart from various antibiotics, small RNAs
present in VREfm are recently been found to be involved in daptomycin resistance
(Sinel et al. 2017). Exposure to multiple drugs, VREfm has developed various resis-
tance mechanisms to survive the drug exposures in nosocomial areas. Virulence
factors such as asal, gel E, cylA, esp, hyl, and Van; resistance genetic determinants
such as vanA, vanB, vanM, vanN, and vanD; and D1, D2, D3, D4, and D5 resistant
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to vancomycin and teicoplanin have been discovered in VREfm-associated infec-
tions (Kiruthiga et al. 2020) (Ahmed and Baptiste 2018). Recent reports on the
spread of VREfm strain ST133 into the aquatic environment have been reported
with vancomycin resistance-conferring vanA gene cluster on transposon Tn/546
(Biggel et al. 2021).

12.2.2 Methicillin-Resistant Staphylococcus aureus (MRSA)

The introduction and overuse of penicillin in the nineteenth century accelerated the
emergence and spread of penicillinase-producing  methicillin-resistant
Staphylococcus aureus (MRSA). However, the first report of MRSA with reduced
susceptibility to drug vancomycin came from Thailand (Trakulsomboon et al.
2001). Reports have confirmed the resistance of MRSA organisms to trimethoprim,
-lactamase, chloramphenicol, tetracycline, and aminoglycosides (De Oliveira et al.
2020). Current economic considerations have steered biopharmaceutical firms away
from new antibiotic research and approvals, leaving drug-resistant S. aureus-
infected patients with little choice (Fukunaga et al. 2016). With a tendency to colo-
nize and form biofilms, certain strains of MRSA have contributed to the spread of
hospital-acquired MRSA (HA-MRSA) (Turner et al. 2019). However, the growing
prevalence of community-acquired MRSA (CA-MRSA) has significantly become
the major risk factor for their colonization in India (Mehta et al. 2020). MRSA has
developed numerous resistant mechanisms to thrive in the environment. They
express virulence factors such as hemolysin and leukocidin toxins and capsule and
protein A immune-evasive surface factors as the line of defense (Turner et al. 2019).
Apart from virulence factors, mobile genetic elements (MGEs) such as blaZ, dfrA,
dfrK, ermC, tetK, and tetL have been identified to play a major role in providing
resistance to penicillin, trimethoprim, erythromycin, clindamycin, and tetracycline
antibiotics, respectively (Turner et al. 2019). The continuous exposure of bacteria to
antibiotics has led to genetic changes and the production of other resistant strains
such as vancomycin-resistant S. aureus (McGuinness et al. 2017).

12.2.3 Klebsiella pneumoniae

Klebsiella pneumoniae, gram-negative and clinically significant microorganisms,
has sparked widespread public concern becoming a major albatross around the
infection control professionals with majorly causing urinary tract infections (UTIs),
pneumonia, surgical wound infections, cystitis, endocarditis, and septicemia (Effah
et al. 2020). Third generation Cephalosporins (beta-lactam antimicrobials) and car-
bapenems are used for treating severe infections caused by Klebsiella pneumonia
(Karaiskos et al. 2019). For the past few years, drug resistance rates of K. pneu-
moniae strains obtained from hospitals and other healthcare systems have increased
dramatically leading to the emergence of extensively drug-resistant (XDR) K.
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pneumoniae (resistant to carbapenem and cephalosporin) (CRPK) (Bi et al. 2017).
A rise in CRPK bacteria-producing severe diseases was documented between 2005
and 2010 (Paczosa and Mecsas 2016). Several mechanisms such as extended-spec-
trum beta-lactamase (ESBLs), serine carbapenems, acquisition of MGEs, 16 s
rRNA methyltransferase, cephalosporinases, topoisomerase, gyrase, LPS and
PmrA-PmrB two-component genetic modification, plasmid-mediated quinolone
resistance (PMQR), aminoglycoside-modifying enzyme (AME), and Mcrl gene
mutations are the prevalent resistance mechanisms among the XDR K. pneumoniae
(Karaiskos et al. 2019). blacrx.m and blagyy genes are the major ESBL virulence
genes isolated from the clinical and healthcare systems (Carvalho et al. 2021).
Recent investigations have revealed the involvement of efflux pumps (AcrAB-
TolC), insertion elements (IS1, IS3), and integrons (Intll) in the clinically isolated
pan-resistant K. pneumoniae strains with overexpression of acrB, ramA, phoQ, and
phoP virulence genes (Lv et al. 2021).

12.2.4 Acinetobacter baumannii

These microorganisms are typically found in hospital-acquired infections with high
incidences in immunocompromised individuals referring to them as “red alert”
microorganisms (Howard et al. 2012). Acinetobacter is commonly implicated in
infections that are hospital-acquired or community-acquired and infect bloodstream,
meningitis, wounds, and pneumonia (Morris et al. 2019). Various antimicrobials
and therapies such as bacteriophage, gene transfer, radioimmunotherapy, photody-
namic therapy, nanoparticles, and cathelicidins have been used to eradicate drug-
resistant Acinetobacter (Howard et al. 2012). Reports have described the outbreak
of A. baumannii in the neonatal intensive care units (NICUs) in Latvia with increased
risk to newborns as HAIs (Gramatniece et al. 2019). Such infection outbreaks are
certainly linked to the multidrug resistance acquired by the bacteria via injudicious
or continuous exposure to antibiotics. In 2000, endemic carbapenem-resistant
A. baumannii (resistant to carbapenems and other antibiotics) was reported in
Brooklyn, New York, involving the strategies and practices to control the spread of
MDR (Manikal et al. 2000). Further outbreak of A. baumannii in 2012-2013, accu-
mulation of carbapenem resistance genes (oxa23 and oxa24), tetracycline resistance
genes (tet39), sul2 gene (encoding sulfamethoxazole resistance), and aadB gene
cassette (encoding gentamicin, kanamycin, and tobramycin resistance) in bacterial
isolates from Tehran burns hospital were reported (Douraghi et al. 2020). Other
virulence factors such as porins (OmpA), trimeric autotransporters, FhaBC secre-
tion system, RecA, PmrAbB, and biofilm-associated proteins (BAPs) are also found
to be produced by bacteria in biofilms and other environmental conditions (Mea
et al. 2021).
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12.2.5 Pseudomonas aeruginosa

Pseudomonas aeruginosa is a gram-negative bacterium that belongs to the family
Pseudomonadaceae. It is the most opportunistic bacterium and is mostly associated
with nosocomial infections and ventilator-associated pneumonia (Barbier et al.
2013). P. aeruginosa infections have become a great challenge because of its resis-
tance to currently available antibiotics. (Lister et al. 2009). The World Health
Organization (WHO) listed this carbapenem-resistant P. aeruginosa in the critical
priority list to which there is an urgent need of developing new antibiotics. Studies
have found P. aeruginosa mainly resistant to the aminoglycosides, beta-lactams,
and quinolones. Antibiotic resistance in P. aeruginosa can be classified as intrinsic
and acquired/adaptive resistance where production of antibiotic resistance enzymes,
expression of efflux pumps, and low outer membrane permeability are seen with the
acquired resistance of P. aeruginosa achieved by the horizontal gene transfer (HGT)
or mutational changes. It also involves biofilm formation in the lungs of infected
patients. In P. aeruginosa outer membrane acts as a selective barrier to prevent anti-
biotic penetrations, with the porins classified as specific (OprB, OprD, OprE, OprO,
and OprP), non-specific (OprF), gated (OprC and OprH), and efflux (MexAB-
OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM) porins (Hancock and
Brinkman 2002) contributing to antibiotic resistance (Dreier and Ruggerone 2015).
MexAB-OprM is responsible for efflux of f-lactams and quinolones (Masuda et al.
2000; Dupont et al. 2005). MexCD-OprJ is able to pump out f-lactams (Okamoto
et al. 2002). MexEF-OprN is capable of extruding quinolones (Llanes et al. 2011),
while MexXY-OprM expels aminoglycosides (Masuda et al. 2000; Hocquet et al.
2003). P. aeruginosa possesses an inducible ampC gene, encoding the hydrolytic
enzyme p-lactamase responsible for breaking the amide bond of p-lactam ring, lead-
ing to the inactivation of - lactam antibiotics (Wright 2005). Further, mutational
changes can also cause modification of antibiotic targets, reduced antibiotic uptakes,
and antibiotic-inactivating enzymes.

12.2.6 Enterobacter spp.

Enterobacter, another gram-negative bacillus, is the microorganisms mostly
involved in the nosocomial infections belonging to the family Enterobacteriaceae.
To date, almost 22 species of Enterobacter have been identified that confer many
drugs resistance genes such as cephalosporins in Enterobacter cancerogenus, car-
benicillin to Enterobacter asburiae, and p-lactams to Enterobacter cloacae (Davin-
Regli et al. 2019). Enterobacter is found to be highly resistant to carbapenems
polymyxins, tigecycline, fosfomycin, and carbapenems (used in a double carbape-
nem regimen) leading to UTI infections (Ramirez and Giron 2020). In the early
1990s, the most common cause of Enterobacter nosocomial infections was E. aero-
genes that led to the spread of pandemic clones in Western Europe (De Oliveira
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et al. 2020). However, the spread and persistence of these microorganisms in the
twenty-first century led to the production of carbapenem-resistant Enterobacter
(Codjoe and Donkor 2017). Various virulence factors/genes involved are enlisted in
Table 12.1.

12.3 Nanoformulations as an Emerging Combating Tool
Against ESKAPE Pathogens

The incredible potential of nanoformulations in the pharmaceutical area to enhance
healthcare has piqued scientists’ interest, promoting substantial study throughout
the world to gain a competitive advantage. Several nanoformulated products are
studied in human research with approval by US Food and Drug Administration
(FDA) for treating drug-resistant infections and other diseases. The rapid advance-
ment of nanotechnology has dominated the drug delivery sector resulting in the
development of drug-formulated deliveries with several clinical testing (Khiev et al.
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2021). ESKAPE pathogens being on the priority list of several countries, various
nanoformulations have been developed and are under development for treating
infection caused by MDR organisms (Lee et al. 2019). Nanoformulations involve
formulation in surface chemistry, reactivity, and other properties of nanosized mate-
rials making them useful in other applications of environmental science, engineer-
ing science, cosmetology, etc. (Siddiqui et al. 2020). Nanocrystals, nanoemulsions,
micellar encapsulation, nanodendrimers, and nanoliposomes are some examples of
nanoformulations that enhance drug solubility, bioavailability, drug efficiency, and
targeting (Patra et al. 2018).

Nanoemulsions, also known as mini-emulsions, are the dispersing systems with
kinetic stability that have emerged as the potential tool for addressing the bioavail-
ability difficulties lined with weakly water-soluble medicinal compounds (Pandey
and Kohli 2020). Besides bioavailability, nanoemulsions exhibit multifunctionali-
ties for carrying numerous antimicrobials with dual targeting capabilities (Chime
et al. 2014). Khan and Ramalingam (2019) investigated ten nanoemulsions against
eight ESKAPE pathogen strains showing their antimicrobial efficiencies as anti-
biofilm agents. Besides nanoemulsions, erythromycin-conjugated nanodendrimers
against S. aureus, S. epidermidis, S. saprophyticus, and P. aeruginosa have shown
great antimicrobial, bacteriostatic, and bactericidal activities with sustainable deliv-
ery of drug to the target site (Fallah et al. 2018). Recent technology of combining
nanoformulations with antimicrobial peptides (AMP) has attracted researchers as
natural host defense peptides against AMR (Mukhopadhyay et al. 2020). AMP den-
drimers against MDR ESKAPE pathogens have improved the drug/antimicrobials
targeting, pharmacokinetics, and efficiency (Kawano et al. 2020; Song et al. 2021).
Patrulea et al. (2021) studied the synergistic effects of antimicrobial peptide
dendrimer-chitosan polymer conjugates against P. aeruginosa via damaging cell
membrane with the absence of toxicity to mammalian cells. Recently, nanoformula-
tion of colistin-loaded human albumin nanoparticles (Col/haNPs) against MDR
Acinetobacter and Klebsiella resulted in the decline of bacterial growth over time
and inhibition of biofilm formation representing Col/haNPs as a promising tool with
greater antimicrobial activity (Scutera et al. 2021).

12.4 Nanoformulation-Based Drug Delivery to Drug
Resistance Determinant in ESKAPE

Ineffectiveness of existing drugs and the emergence of multidrug resistance in
ESKAPE led to the development of novel strategies that can efficiently reverse mul-
tidrug resistance. Recent leads showed that nanoformulation-based drug delivery of
antimicrobial agents against drug resistance determinants is an effective strategy to
tackle multidrug resistance in ESKAPE as they effectively restore the efficacy of
old unresponsive antibiotics and reduce toxic side effects associated with higher
drug doses by reducing minimum inhibitory concentration without contributing to
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resistance emergence; for example, ampicillin silver nanoformulation showed MIC
in range of 3-28 pg/ml (lower than the MIC of ampicillin alone (12720 pg/ml))
against ampicillin-resistant E. coli and S. aureus and multidrug-resistant
Pseudomonas aeruginosa and Klebsiella pneumoniae (Khatoon et al. 2019). Further
studies on bacterial strain did not show any resistance development even after expo-
sure to ampicillin silver nanoformulation up to 15 successive cycles demonstrating
the emergence of resistance against ampicillin silver nanoformulation (Khatoon
et al. 2019). Another study reported enhanced antibacterial effect nanoformulation
of biogenic cefotaxime conjugated-silver nanoparticles with the highest reduction
in MIC [26-96%] against cefotaxime-resistant MDR E. coli and MRSA and no cyto-
toxic effect on normal cell lines (human RPE-1), restoring the efficacy of otherwise
unresponsive cefotaxime (Halawani et al. 2020) highlighting the need to incorpo-
rate nanoformulation strategies into the development of next-generation antimicro-
bial therapeutics (Table 12.2).

12.4.1 Cell Wall, Cell Membrane,
and Membrane Permeabilization

Bacterial cell wall/membrane makes up the first and most powerful line of bacterial
defense preventing interaction of an antimicrobial agent with its target molecule.
Membrane permeability plays an important role in providing a protective layer for
regulating the inflow and intracellular concentration of antimicrobial agents; hence,
the nanoformulation damaging bacterial cell becomes the prime focus of research
for combating ESKAPE; for example, graphene (Gr)-based nanoformulation con-
taining curcumin (C.C.M.) and zinc oxide nanoparticles (ZnO-NPs) displayed a
wide range of anti-microbial activity against MRSA biofilm and also showed >five-
fold improved inhibitory effect when GrZnO nanocomposites combined with cur-
cumin (31.25 pg/ml M.I.C. of nanoformulation contrasting with GrZnO-NCs or
C.C.M. alone having M.I.C. value of 125 pg/ml) with bacterial cell wall damage
and cytoplasmic spillage as a major mechanism of inhibitory action, thereby dimin-
ishing their metabolism (Oves et al. 2020). In another study novel chitosan-masto-
paran nanoconstruct (Mast-Cs NC) was designed and assessed for its therapeutic
potential against clinical multidrug-resistant (MDR) A. baumannii and reported sig-
nificantly lowered MIC nanoformulation compared to chitosan alone, with loss of
cell membrane integrity (Hassan et al. 2021). Further, Thorat et al. (2021) synthe-
sized gold nanorods (GNRs) coated pegylated thiol, mPEG-SH, further modified by
adding curcumin, and a cell-targeting deoxyribonucleic acid (DNA) aptamer, dis-
playing bacterial cell wall disruption and block in biofilm formation through photo-
thermal action mechanism, and killing of MRSA due to the combination of
photothermal effect, ROS generation, and transmembrane potential loss.
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12.4.2 Biofilm Formation

Bacterial biofilm emerges as a severe health concern due to its multidrug resistance
ability. Biofilm is defined as an intricate three-dimensional aggregation of bacteria
attached to a surface and buried inflexibly in an extracellular polymeric substance
matrix (Srinivasan et al. 2021) further helping bacteria to withstand the harsh envi-
ronmental/physiological conditions or factors such as dehydration, antibiotic, bio-
cides stress (Kaur et al. 2021) and played a major role emergence of multidrug
resistance (MDR)/ pan-drug resistance (PDR)/ extensive drug resistance (XDR) by
preventing the penetration of antibiotic inside the biofilm via EPS; increasing the
chance for the genetic exchange among the bacterial species due to high population
density and proximity of cells in biofilm; accumulation of antibiotic degrading
enzymes; the presence of either non-growing cell (dormant or persister cells) /cells
which triggered stress response under unfavorable chemical condition within the
biofilm (Jolivet-Gougeon and Bonnaure-Mallet 2014; Balcdzar et al. 2015;
Srinivasan et al. 2021). Therefore, discovering novel strategies that can treat and
prevent biofilm becomes the prime focus in combating AMR.

Nanoformulations such as chitosan oligosaccharide-capped gold nanoparticles
(COSAuNPs) are shown to inhibit biofilm formation as well as eradication of pre-
existing mature biofilm, in addition to reduced virulence factor in P. aeruginosa
(Khan et al. 2019). Similarly, curcumin-loaded poly(lactic-co-glycolic) acid nano-
formulation with a drug loading of ~98 pg of curcumin/mg and release of ~45% of
cargo displayed biofilm disruption and strong antibacterial activity compared to
pure curcumin against E. coli and S. aureus (Kumari et al. 2020). Hydrophilic anti-
biotics such as gentamicin commonly used for treating Pseudomonas infection face
problems such as relative short half-life limiting their application in clinical set-
tings; therefore Abdelghany et al. (2012) developed a controlled-release gentamicin
formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles that enhance
in vitro and in vivo antimicrobial effects off gentamicin on both planktonic and
biofilm-based infection through controlled drug release from PLGA nanoparticles
and optimized encapsulation. Further, this optimized formulation, when incorpo-
rated in murine peritoneal-infected mice model, resulted in both free and
nanoparticle-encapsulated gentamicin effectively clearing the infection (both serum
and peritoneal lavage) by the 96 hours suggesting nanoformulation could act as a
potential agent exhibiting inhibitory properties against the ESKAPE pathogenesis
arisen from biofilm formation (Abdelghany et al. 2012).

12.4.3 Quorum Sensing

The chemical communication process involved in the regulation of cooperative and
communal activities in bacteria such as biofilm formation, virulence production,
and bioluminescence is defined as quorum sensing (QS) (Qin et al. 2018). Hence
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inhibition of quorum sensing has been emerged as a promising alternative to deal
with  MDR/XDR/PDR bacterial pathogens. Sharma et al. (2020) developed
zingerone-loaded chitosan nanoparticles (Z-NPs) nanoformulation with 67% drug
entrapment efficiency and pH-dependent controlled release of zingerone, when
evaluated against P. aeruginosa, depicting significant downregulation of quorum
sensing-related genes (rhlR, rhil, lasR, and lasI), the complete absence of quorum
sensing signaling molecules with the eradication of biofilm, and reduction of motil-
ity phenotypes (swimming, swarming, and twitching motilities). Similarly, nano-
structured lipid carriers (NLCs) containing a-terpineol («T) when evaluated against
P. aeruginosa resulted in a significant reduction of gene expression of key QS-related
genes (lasl, lasR, rhll, and rhIR) and QS-associated genes (rhlAB, toxA, lasB, and
plcH) with suppression of QS-related virulence factor production and biofilm for-
mation compared to conventional antibiotics (Bose et al. 2020).

12.4.4 Efflux Pump Inhibition

In recent years, multidrug efflux pumps (EPs) are established as major determinants
of AMR in both gram-negative and gram-positive bacteria, extruding multiple anti-
biotics, toxic substances, and metabolite out of cell mostly in a non-specific manner,
playing a vital role in the process such as virulence, biofilm formation, stress adap-
tation, pathogenicity, and transportation of essential nutrient, hence emerging as a
potential drug target for combating AMR (Shriram et al. 2018). Khan et al. (2020)
synthesized dextran-capped gold nanoparticles (GNPDEX) with attached concana-
valin-A (ConA) and methylene blue (MB) photosensitizer (MB @GNPDEX-ConA
formulation) that showed the multitargeted killing of MDR Klebsiella pneumoniae,
targeting major determinants of pathogenicity such as efflux pump, cell wall, and
bacterial biofilm by the combined effect of both photodynamic therapy (PDT) and
efflux pump inhibitor (carbonyl cyanide m-chlorophenylhydrazone). Further, they
also reported 96.2, 92.9, 80.8, and 70% biofilm reduction in the presence of MB @
GNPDEX-ConA nanoconjugate with varied concentrations of MB such as 20, 10,
5, and 2.5 pg/ml in the presence of EPI as compared to 80.8, 71.5, 53.9, and 38%
reduction in control biofilm (absence of CCCP), further reporting bacterial killing
by more than 3 loglO via PDT and EPI combinations, confirming EPI-based
enhanced killing of MDR pathogens. In another study nanoliposome formulation
co-loaded with piperine and gentamicin was investigated with remarkable inhibi-
tion and killing of MRSA pathogen via piperine-mediated inhibition of efflux pump
and increased intracellular concentration of gentamicin (Khameneh et al. 2015),
hence highlighting the importance of efflux pump inhibition in tackling multidrug
resistance in ESKAPE. Figure 12.1 depicts the antibacterial efficacy of
polysaccharide-capped silver nanoparticles against MDR Enterobacter species.
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12.5 Challenges in Clinical Applications
of ESKAPE-Combating Nanoformulations

Apart from the several advantages of nanoformulation such as protection of biomol-
ecules from degradation, improved pharmacokinetics, enhanced solubility and bio-
availability, reduced toxicity, and enhanced therapeutic efficacy (Agrahari and
Hiremath 2017), implementation of nanoformulation in clinical setting still faces
challenges that include biological understanding, large-scale manufacturing, bio-
compatibility and safety, government regulation, and cost-effectiveness as com-
pared to conventional formulations (Hua et al. 2018).

12.5.1 Large-Scale Manufacturing/Scale-Up
and Reproducibility

One of the most important factors slowing the pace of nanoformulations in clinical
settings is the physiological complexity of nanoformulation. A formulation that
required laborious or complex procedures and costly materials for synthesis gener-
ally is not compatible with large-scale production and, therefore, has a limited clini-
cal translation potential. It is easier to maintain the size, composition, and complexity
of nanomaterials at a smaller laboratory scale than at a large scale. Challenges arise
when nanoformulation becomes more complex by the addition of multiple compo-
nents in single nanocarriers/coating of formulation with multiple ligands, targeting
molecules, or encapsulation of more than one antibacterial agent; therefore, the
effective clinical translation, nanoformulation, must be prepared by a method that
allows large-scale production with same high level of quality and reproducibility
during scale-up (Muthu and Wilson 2012; Paliwal et al. 2014; Tinkle et al. 2014;
Hua et al. 2018).

12.5.2 Biological Understanding

Considerable fewer research efforts in understanding the relationship between
nanomedicine behavior (intracellular uptake, trafficking nanomaterial distribution,
and retention in complex biological network), patient’s biology and disease hetero-
geneity in patients are likely the major reasons for failure seen in the implementa-
tion of nanoformulation in clinical settings. Employing patient pre-selection
strategies (preselecting patients likely to respond to nanomedicine-based therapy)
and adopting a disease-driven approach to develop new nanoformulations and
understanding between disease pathophysiology and nanomedicine behavior are the
factors needed to be improved to access nanoformulation translatability and appli-
cability (Hare et al. 2017). Lack of specific regulatory guidelines for



12 Nanoformulations Against Multidrug-Resistant Members of ESKAPE Pathogens 403

characterization and preclinical development of the nanoformulation-based product
at the biophysiological level has hampered their potential in clinical practice
(Agrahari and Hiremath 2017). The approval process for nanodrugs is essentially
the same as that for any medicines and, therefore, is no longer appropriate to con-
firm clinical safety, efficacy, and quality of nanomedicines (Ventola 2017) due to
nanomedicine properties such as the complex structure, unclear interactions with
cell, tissue within the human body, and multifunctional nature of some formulation;
hence, regulatory standard protocol specifically validated for nanomedicines which
should take into account nanoformulation complexity, pharmacokinetics, safety,
and toxicity profile and also provide information on patient selection and clinical
trials is a must.

12.5.3 The Economic and Financial Barrier

Despite several patents of nanodrug delivery technologies, commercialization is
still in its early stage, because of the high developmental costs of nanodrugs and
medical devices (Zhang et al. 2016); in addition, the success of nanodrugs is also
hampered by the fact that expenses involved in development and regulatory approval
may not be compensated by limited sales for drugs especially in cases of increas-
ingly complex nanodrugs that are associated with higher cost (Ventola 2017). Hence
economical and financial barriers are also regarded as the biggest limitations in the
successful implementation of nanoformulation-based drugs in clinical settings.

12.5.4 Nanoformulated Drug Characterization and Quality
Control Challenges

Nanoformulated drug characterizations include analysis of stability, toxicity, size,
morphology, surface functionality, charge, distribution, drug loading, solubility,
entrapment efficiency, drug release, and retention that required advanced approaches
and instruments such as small-angle X-ray scattering (SAXS), wide-angle X-ray
scattering (WAXS), transmission electron microscopy (TEM), liquid
chromatography-mass spectrometry (LC/MS), high-performance liquid chromatog-
raphy (HPLC), atomic force microscope (AFM), the micropositron emission
tomography (PET)/CT imaging system, and FRET imaging together with spectros-
copy methods that are not only expensive but also require a team of expert to per-
form data analysis and interpretation increasing the cost of nanoformulation drug
manufacturing and testing (Landesman-Milo and Peer 2016). Further low therapeu-
tic efficiency of nanoformulation by self-aggregation at low drug concentration and
the swelling mechanism that leads to increase in the size of nanoformulated drug
further add to limited translation of nanoformulation in clinical settings (Jeevanandam
et al. 2016).
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12.5.5 Biocompatibility and Safety

Despite several pharmacokinetic advantages of nanodrugs, there is increasing con-
cern over their safety and biocompatibility. Several in vitro and in vivo studies have
shown that some nanoparticles used in nanoformulation demonstrated toxicity in
the biological system causing cytotoxicity, inflammation, allergic response oxida-
tive stress (generating ROS and free radicle), and DNA damage (genotoxicity).
Nanoparticle toxicity is very complex and multifactorial depending on various
physiological factors such as size, shape, composition, charge, and reactivity with
biological system; hence a better understanding of pharmacodynamics, safety, and
toxicity profile of nanodrugs and limitation of each nanoformulation-based drug
delivery system is very crucial for the development of efficacious nanodrugs (Onoue
et al. 2014).

12.6 Conclusion

Several approaches for nanoformulations have been developed so far. Among all
these nanoformulations, nanoemulsions, nanoliposomes, nanodendrimers, etc. are
the most promising models to combat and deliver drugs/antimicrobials.
Nanopharmaceuticals and nanomedicines such as Emend, Ostim, Rapamune,
Vitoss, Ritalin, TriCor, Doxil, DaunoXome, Onivyde, DepoCyt, Marqibo,
AmBisome, Adagen, Oncaspar, Copaxone, Eligard, etc. are currently available in
the market (Farjadian et al. 2019). Controlling the particle size, shape, controlled
manufacturing, production, modifications, nucleation, pharmacokinetics, growth
kinetics, and functionalization can lead to various nanoformulations that can target
various drug-resistant determinants. The controlled release of drugs/antimicrobials/
combinations to the target site will increase the antimicrobial efficiency and effec-
tiveness via deep penetrations (Kumar et al. 2020). Biofilm formations and quorum
sensing being interlined can be inhibited by the exposure of the nanoformulations
(Jegel et al. 2022). However, to fully comprehend the biological effectiveness of
nanoformulations, toxicity and biological activities must be properly investigated
prior to clinical trials with the challenges of implementing these ESKAPE nanofor-
mulations in clinical settings. Henceforth, these nanoformulated medications can be
a promising tool in the future for combating and delivering drugs to the MDR
ESKAPE pathogens.
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