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Abstract Algorithms for simulation of a Lévy process X (t) are discussed, with
particular emphasis on two algorithms approximating jumps that are in some sense
small. One is classical, defining small jumps as those of absolute value <ε. The
other one appears to be new and relies on an completely monotone structure of the
Lévy density n(x). One then truncates the representing measure of n(x) to [0, A],
meaning that jumps of mean <1/A are left out. In both algorithms, the large jump
part is simulated as compound Poisson and the small jumps are approximated. The
standard choice of such an approximation is normalwith the samemean and variance,
but we also consider gamma approximations in two variants, and show that in some
cases these perform substantially better. Other algorithms are briefly surveyed andwe
sketch a new one for simulation of a tempered stable (CGMY) process with infinite
variation.

Keywords Acceptance-rejection · Complete monotonicity · Conditional Monte
Carlo · Lévy measure · Tempered stable process

1 Introduction

A Lévy process X (t) has the structure X (t) = at + σW (t) + J (t) where W (t) is
standard Brownian motion (BM) and J (t) an independent pure jump process (see
further below). This class of processes has been used in numerous application areas,
of which we in particular mention finance [14, 35] and queueing [15].

Calculations for a Lévy process are, however, in general more difficult than for
BM, and an abundance of expressions that are explicit for BM are not so even in
the most popular parametric Lévy models. Simulation of X (t) is therefore one of
the main computational tools. For example in finance, it is most often the simplest
vehicle for evaluating option prices of the form
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E�
(
X (0 : T )

)
(1)

where T is the maturity time, X (0 : T ) stands for the whole path
{
X (t)

}
0≤t≤T , and

� is a suitable path functional.
The simulation of the at + σW (t) component is straightforward, so we assume

that X (t) is a pure jump process. The main characteristic of such a process is its
Lévy measure ν, which with a few exceptions we throughout assume absolutely
continuous with density n(x) ≥ 0. Conditions needed on ν are

∫
|x |>ε

ν(dx) < ∞
and

∫
|x |≤ε

x2ν(dx) < ∞ for some (and then all) ε > 0. The process is said to have
finite activity if λ = ∫

R
ν(dx) < ∞ and is then a compound Poisson process with

Poisson rate λ and density n(x)/λ of the jumps. Sample paths of X (t) are of finite
variation if and only if

∫
|x |≤ε

xν(dx) < ∞. The picture is roughly that jumps in
[x, x + dx) occur at Poisson rate n(x) dx and independently for different values of
x . In the infinite variation case, X (t) is, however, only completely specified by n(x)
up to a drift term (see further Sect. 2). The process is called spectrally positive or
negative if n(x) ≡ 0 for x < 0, resp. x > 0; otherwise, we refer to it as two-sided.
In finance, the most popular classes of jump processes are the NIG (Normal Inverse
Gaussian), tempered stable (TS or CGMY), VG (Variance Gamma) and Meixner
ones, and we survey these in Sect. 3.

Exact simulation of the whole path X (0 : T ) is obviously impossible due to the
presence of infinitely many jumps of the process. One could hope that one can per-
form exact simulation of X (T ) for any given T and thereby a discrete skeleton
X (h), X (2h), . . . for any h. As surveyed briefly in Sect. 8, this is simple for VG,
with a little added effort also possible for NIG and CGMY with finite variation,
and presumably possible but quite tedious for Meixner. In general, this is however
not feasible and we focus on two approximative alternatives. They both consist in
simulating the finite number of jumps which are in some sense “big” as a compound
Poisson process, and replacing the infinity of the remaining “small” ones with an eas-
ily simulated approximation. The path X (0 : T ) can then by obtaining by assigning
i.i.d. uniform [0, T ] location to the jumps and possibly filling in some information
provided by the particular form of the approximation. The first of these approaches
is classical and widely applied, and simply defines the big jumps as those of absolute
value > ε; we refer to this as the ε-algorithm. These jumps are those coming from
the part of ν concentrated on {|x | > ε}. By definition, this is a finite measure and
so the corresponding contribution to X can be simulated as a compound Poisson
process. The second approach, which does not appear to have been considered in the
simulation literature, relies on a completely monotone (CM) structure

n(x) =
∫ ∞

0
e−xt V (dt) =

∫ ∞

0
e−xtv(t) dt (2)

of the Lévy density where V is a Radon measure with density v. This holds in many
main examples and represents the jumps as an infinite mixture of exponential(t)
jumps with the rate t having weight v(t)/t (see further Sect. 5). The compound
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Poisson part is then obtained by restricting V to (0, A) for some A < ∞, meaning
that exponential jumps with mean < 1/A are left out. We refer to the method as
the CM-algorithm. In both approaches, the computational effort as measured by the
Poisson mean goes to infinity as ε → 0, resp. A → ∞. As for the approximation
of the small jump part, the standard choice in the ε-algorithm is a normal with
the same mean and variance and is substantiated in [6] by a limit result as ε → 0
(further relevant references pertaining to this are [16, 37]). However, we shall also
consider gamma alternatives in 2–3 variants and illustrate by examples that these
perform at least as well, in some cases even convincingly better. Doing so, our point
of view is largely empirical: for the practitioner, comparison of approaches as ε → 0
matters less than performance for ε so moderate that the computational effort is
within reach. As ε → 0, the small jumps contribute less, and hence limit results
become less relevant. Similar remarks apply to the CM-algorithm. We also point out
that in some types of applications, the approximation of the small jumps need not
necessarily be simulated, but instead it may be used via conditional Monte Carlo for
providing smooth density estimates and variance reduction.

2 Lévy Processes

For the general theory of Lévy processes, see e.g. [33] and [10]. A jump process
is constructed from a Poisson random measure L(dt, dx) on (0,∞) × R/{0} with
intensity measure dt ⊗ ν(dx). In the finite variation case

∫ |x | ν(dx) < ∞, one has

X (t) =
∫

s≤t, x∈R
x L(ds, dx) , κ(θ) =

∫ ∞

−∞

(
eθx − 1

)
ν(dx) (3)

at least for 	(θ) = 0 and in our examples in a strip containing the imaginary axis.
Here κ(θ) = logEeθX (1) is the so-called Lévy exponent or cumulant function. In the
infinite variation case, there are toomany small jumps for these integrals to converge.
Instead, so-called compensation is needed and consists in appropriate centerings and
limits. Traditionally, jumps of absolute size < 1 are centered, which leads to

X (t) = at + lim
ε→0

{∫

s≤t, ε<|x |<∞
x L(ds, dx) − t

∫

ε<|x |≤1
x ν(dx)

}
, (4a)

κ(θ) = a +
∫ ∞

−∞

(
eθx − 1 − θxI(|x | ≤ 1)

)
ν(dx) (4b)

for some a. Obviously, taking 1 as truncation point is arbitrary, and other choices
lead to different values of a. If the mean EX (1) = κ ′(0) is finite, it may be more
convenient to center all jumps, and one then has
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X (t) = tκ ′(0) + lim
ε→0

{∫

s≤t, |x |>ε

x L(ds, dx) − t
∫

|x |>ε

x ν(dx)

}
, (5a)

κ(θ) = κ ′(0) +
∫ ∞

−∞

(
eθx − 1 − θx

)
ν(dx) . (5b)

The cumulants κk of X (1) are given as the kth derivatives κ(k)(0) of κ(θ) at θ = 0.
In particular, κ1 = EX (1), κ2 = Var X (1), and the skewness and (excess) kurtosis
are κ3/κ

3/2
2 , resp. κ4/κ2

2 . For k ≥ 2, one alternatively has

κk =
∫ ∞

−∞
xk ν(dx), (6)

and this expression is also valid for k = 1 in the finite variation case.

3 Main Examples

In the absolutely continuous case, define the Lévy density n(x) = dν(x)/dx as the
density of the Lévy measure w.r.t. Lebesgue measure.

The NIG process [9] has parameters α, δ > 0, β ∈ (−α, α) and μ ∈ R. The Lévy
density is

n(x) = αδ

π |x |K1
(
α|x |)eβx , x ∈ R, (7)

where as usual K1(z) denotes the modified Bessel function of the third kind with
index 1. The cumulant function and the density of X (1) are, respectively,

κ(s) = μs + δ
(√

α2 − β2 −
√

α2 − (β + s)2
)

, α − β < 	(s) < α + β ,

αδ

π
exp

{
δ
√

α2 − β2 + β(x − μ)
}K1

(
α
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

.

The Meixner (MX) process [18, 28, 35] has parameters a, d > 0, b ∈ (−π, π)

and m ∈ R. The Lévy density is

n(x) = d
exp{bx/a}

x sinh(π |x |/a)
= 2d

exp
{
bx/a − π |x |/a}

|x |(1 − exp{−2π |x |/a}) . (8)

The cumulant function and the density of X (1) are, respectively,
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κ(s) = 2d log
(
cos(b/2)

) − 2d log
(
cos(as + b)/2)

) + ms , π+b
a < 	(s) < π−b

a ,

(2 cos(b/2))2d

3aπ
(2d)
eb(x−m)/a

∣∣
(d + i(x − m)/a)
∣∣2 . (9)

For the tempered stable (TS) process [3, 12, 24]

n(x) = δ±e−β±|x |/|x |α±+1 (10)

where δ+, β+ are for x > 0 and δ−, β− for x < 0. When δ+ = δ−, α+ = α−, the TS
process goes under the acronym CGMY process in particular in finance, where the
traditional notation is δ+ = δ− = C ,α+ = α− = Y ,G instead ofβ− andM instead of
β+. Cf. the author names in [12]! In terms of the positive jumps, α+ < 0 corresponds
to a compound process,α+ = 0 to a gammaprocesswhere X (1) is gammadistributed
with shape parameter δ+ and rate parameter β+, 0 < α+ < 1 to infinite activity but
finite variation, and 1 ≤ α+ < 2 to infinite variation. The cumulant function is

κ(s) = δ−
(−α−)
(
(β− + s)α− − β

α−−
) + δ+
(−α+)

(
(β+ − s)α+ − β

α++
)
, (11)

−β− < 	(s) < β+. Here and at other places in the theory, exceptions apply when α+
or α− or both equals 0 or 1. The case α+ = α− = 0 is the VG process (the difference
between two gamma processes).

Starting from [12, 13], the density of X (1) in the TS process has traditionally
been computed by Fourier inversion via (11). However, it is pointed out in [3] that
the density can be expressed as

f (x) = exp{−βx − δ
(−α)βα} f0(x) (12)

where f0 is the density of a strictly α-stable distribution Sα(σ, 1, 0) distribution with
σ = (−δ
(−α) cos(πα/2)

)1/α
. See also [27, 30]. Given the availability of software

for stable distributions, (12) provides an easy approach to numerical computations.
In all these examples, one has

n(x) ∼ δ

x1+α∗ as x ↓ 0 (13)

for some δ and some α∗ ∈ [0, 2) (subject to this, α∗ is sometimes referred to as
the Blumenthal-Getoor index). In fact, for TS this holds since e−βx → 1, whereas
one has α∗ = 1 for NIG and MX, as follows from known asymptotics of K1, resp.
1 − exp{−2πxa} ∼ 2πx/a.
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4 The ε–Algorithm

Typically, the positive and negative jumps are simulated separately, so we consider
only the spectrally positive case in the following.

When truncating the jumps to [ε,∞), the exactly simulated compound Poisson
part of X (1) is Xε,∞(1) = ∑N

1 Yn(ε) where N is Poisson λ(ε) and Y1(ε),Y2(ε), . . .
are i.i.d. with density g(x; ε) with

λ(ε) =
∫ ∞

ε

n(x) dx , g(x; ε) = n(x)

λ(ε)
, ε < x < ∞.

Some approximation X̂0,ε(1) of jumps of value < ε is then used, and one returns the
r.v. X̂0,ε(1) + Xε,∞(1). For these approximations, one typically needs the cumulants
of X0,ε(1) which according to (6) are κk;0,ε = ∫ ε

0 xk ν(dx) if either k ≥ 2 or k ≥ 1
and the process has finite variation; in the infinite variation case, κ1;0,ε = 0 subject
to (5a). In practice,

∫ ε

0 xk ν(dx) is seldom explicit, but needs to be evaluated by
numerical integration. Alternatively, one may note that subject to (13), one has

κk;0,ε =
∫ ε

0
xk ν(dx) ∼ δ

εk−α∗

k − α∗ if α∗ < 1, k ≥ 1 or 1 ≤ α∗ < 2, k ≥ 2. (14)

The most naive choice is X̂0,ε(1) ≡ 0. However, it was suggested in [11] and [32]
to take X0,ε(t) as a BM with fitted mean and variance when ε < 1. Supporting limit
theorems were given in [6], establishing the validity of this procedure when X is
not too close to the finite activity case

∫
ν(dx) < ∞ and ν satisfies some weak

smoothness conditions (a simple proof under the stronger condition (13) follows
by paralleling the proof of Proposition 3 below). We shall here suggest gamma
alternatives in two variants.

Recall that the gamma distribution with shape parameter r and rate param-
eter b has density br xr−1e−bx/
(r) and cumulant function log

(
b/(b − z)

)r =
−r log(1 − z/b) with kth derivative r(k − 1)!b−k(1 − z/b)−k . Thus the kth cumu-
lant is κk = r(k − 1)!/bk ; in particular the skewness is (2r/b3)/(r/b2)3/2 = 2r−1/2.
Given a distribution or a set of data with cumulants κ#

k , the most obvious possibility
is to fit the mean and variance which leads to

b = κ#
1

κ#
2

, r = bκ#
1 = κ#

1
2

κ#
2

. (
1)

One could also consider a three-parameter gamma family by allowing a shift m, and
fitting the mean, variance and skewness then gives

r = 4κ#
2
3

κ#
3
2 , b =

√
r

κ#
2

= 2κ#
2

κ#
3

, m = κ#
1 − r

b
. (
2)
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Note that for a Lévy process, (
1) does not make sense in the infinite variation case
since then κ1;0,ε = 0 subject to (5). For a subordinator (a spectrally positive process
with a non-negative linear drift), (
2) may be controversial because it may destroy
the property of the process being non-decreasing. The normal approximation has the
same problem, but not (
1). Both of (
1), (
2) asymptotically agree with the normal
approximation as ε ↓ 0. This follows since (14) implies that b → ∞ in both cases,
which implies a gamma distribution to be asymptotically normal.

Efficiently generating r.v.’s from the density g(x; ε) = n(x)/λ(ε), x > ε may not
always be trivial. However, a general set-up covering many examples is

(n1n2) n(x) = n1(x)

n2(x)
for x > 0 with n1(x) strictly decreasing, n

′
2(x) > 0,

n1(x) integrable on (x0, ∞) and 1/n2(x) on (ε, x0) for all 0 < ε < x0 < ∞.

In the TS situation, n1(x) = de−βx , n2(x) = x1+α; for the positive jumps of MX,
one may take n1(x) = 2d exp

{
bx/a − πx/a

}
, n2(x) = x

(
1 − exp{−2πx/a}); etc.

Even for the TS case, the c.d.f. of g(x; ε) is not explicitly available. Thus inversion
is not feasible and acceptance-rejection (A-R) seems the reasonable approach. What
suggests itself is to either use the exponential(β) distribution on (ε,∞) as proposal
and reject w.p. proportional to 1/x1+α , or to use the Pareto(α) distribution on (ε,∞)

as proposal and reject w.p. proportional to e−βx . However, the first procedure would
lead to a high rejection rate for small or moderate x , and the second for large or
moderate x . So, a reasonable compromise is to choose some threshold x0 and use
the Pareto proposal on (ε, x0) and the exponential on (x0,∞). An equivalent formu-
lation is to decompose Xε,∞ into two compound Poisson terms, one having jumps
in (ε, x0] and the other having jumps in (x0,∞). Note that the proposal on (ε, x0) (a
truncated Pareto) is easily simulated by inversion as

(
1/εα − αμ2(x0)U

)−1/α
with

U uniform(0, 1), cf. [4, p. 39].
In order to analyze this A-R procedure in the general set-up of (n1n2), define for

a fixed ε > 0

λ1(x0) =
∫ x0

ε

n(x) dx , μ1(x0) =
∫ x0

ε

1

n2(x)
dx , C1(x0) = n1(ε)μ1(x0)

λ1(x0)
,

λ2(x0) =
∫ ∞

x0

n(x) dx , μ2(x0) =
∫ ∞

x0

n1(x) dx , C2(x0) = μ2(x0)

λ2(x0)n2(x0)
.

The target distributions are then

f1(x) = n1(x)

λ1(x0)n2(x)
, ε < x < x0, and f2(x) = n1(x)

λ2(x0)n2(x)
, x0 < x < ∞,

and the proposals are

g1(x) = 1

μ1(x0)n2(x)
, ε < x < x0, and g2(x) = n1(x)

μ2(x0)
, x0 < x < ∞.
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Then f1(x) ≤ C1(x0)g1(x) and f2(x) ≤ C2(x0)g2(x), and we may use A-R with
acceptance probabilities

f1(x)

C1(x0)g1(x)
= n1(x)μ1(x0)

λ1(x0)C1(x0)
,

f2(x)

C2(x0)g2(x)
= μ2(x0)

λ2(x0)C2(x0)n2(x)

for r.v. generation from f1, resp. f2. This gives expected numbers C1(x0), C2(x0)
of samplings from g1(x), resp. g2(x), and as measure E(x0) of the computational
effort, we shall use the total number of these samplings, i.e.

E(x0) = λ1(x0)C1(x0) + λ2(x0)C2(x0) = n1(ε)μ1(x0) + μ2(x0)

n2(x0)
.

Of course, if the costs to generate from g1(x), resp. g2(x) are very different, E(x0)
needs to be reflected to reflect this disparity.

Proposition 1 Consider the function E(x0), ε ≤ x0 ≤ ∞, If n′
2(x0)/n2(x0) → 0 as

x0 → ∞, then E(x0) attains its minimum for some ε < x∗
0 < ∞ satisfying ψ(x∗

0 ) =
0 where ψ(x0) = n2(x0)

(
n1(ε) − n1(x0)

) − μ2(x0)n′
2(x0). In particular, for the TS

case x∗
0 is the unique solution in (ε,∞) of

x∗
0 (e

β(x∗
0−ε) − 1) = 1 + α

β
. (15)

Proof We have d
dx0

E(x0) = ψ(x0)/n2(x0)2. Here ψ(ε) = −μ2(ε)n′
2(ε) < 0.

As x0 → ∞, we have lim inf
(
n1(ε) − n1(x0)

)
> 0 and μ2(x0) → 0, and so

n′
2(x0)/n2(x0) → 0 impliesψ(x0) > 0 for all large x0. This gives the first part of the

result. For the second on the TS case, we get

ψ(x0) = x1+α
0 (de−βε − de−βx0) − d(e−βx0/β) · (1 + α)xα

0 .

Multiplying by e−βx0 and rearranging shows that ψ(x∗
0 ) = 0 is the same as (15). For

uniqueness of the solution, note that the l.h.s. of (15) is strictly increasing in x∗
0 with

limits 0 at x∗
0 = ε and ∞ at x∗

0 = ∞. �

5 Using Complete Monotonicity Structure

Again, we consider only the spectrally positive case and assume the Lévy measure
n(x) to be completely monotone in the sense of (2). We refer to the measure V (dt)
as the reference measure and to v(t) as the reference density. See, e.g., [34] for
background on complete monotonicity and a huge list of examples. Motivation and
financial examples are in [12, 19, 21].
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Example 1 We check here that complete monotonicity holds in our main examples.
We use the rule that if m(x) is completely monotone with reference density v(t),
t > 0, then e−βxm(x) is completely monotone with reference density v(t − β) for
t > β and = 0 for 0 < t < β.

In the NIG case, this rule together with the standard formula K1(x) =
x

∫ ∞
1 e−xt (t2 − 1)1/2dt and elementary substitutions gives the expression

v(t) = δ

π

√
(t + β)2 − α2 , t > α − β,

for the reference density for the positive part of the Lévy measure. For MX, let
χ(t) = �t� be the step function equal to n + 1 for t ∈ (n, n + 1]. Then

1

1 − e−x
= 1 + e−x + e−2x + · · · = 1 − e−x + 2(e−x − e−2x ) + 3(e−2x − e−3x ) + · · ·

=
∞∑

n=0

(n + 1)x
∫ n+1

n
e−xt dt = x

∫ ∞

0
e−xtχ(t) dt

which gives

v(x) = 2d χ
(
a(t − π/a + b/a)/(2π)

)
, t > π/a − b/a.

Finally for the TS case, it is shown in [12] that v(t) = δ(t − β)α/
(1 + α), t > β,
which in turn is an easy consequence of

∫ ∞
0 e−xt tα dt = 
(1 + α)/x1+α . ♦

In all three examples, the reference density v(t) grows at rate tα
∗
as t → ∞,

with α∗ as in (13). This is in fact no coincidence since Feller’s Tauberian theorem
[17, p. 445] implies that V (t) = ∫ t

0 v(s) ds ∼ δt1+α∗
/
(2 + α∗). Hence by formal

differentiation,

v(t) ∼ δ(1 + α∗)tα
∗
/
(2 + α∗) = δtα

∗
/
(1 + α∗). (16)

We stress that this is formal: the known rigorous result in this direction requires
(beyond existence of v) that v is monotone, cf. [36]. However, we shall take (16) as
an assumption for the further developments to follow.

In the following, we use that (2), (6) and Fubini’s theorem give the representation

∫ ∞

0
xkn(x) dx =

∫ ∞

0

(∫ ∞

0
xke−t x dx

)
v(t) dt =

∫ ∞

0

k!
t k+1

v(t) dt (17)

of the cumulants for k = 0, 1, . . . As in Sect. 4, we decompose the Lévy density n
into two components, here taken as

n0,A(x) =
∫ A

0
e−xtv(t) dt , nA,∞(x) =

∫ ∞

A
e−xtv(t) dt .
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The corresponding decomposition of X is written as X = X0,A + XA,∞. The key to
our algorithm using complete monotonicity is the following:

Proposition 2 Assume the measure V in (2) is finite and let

μ = V (∞) =
∫ ∞

0

v(t)

t
dt , λ =

∫ ∞

0
n(x) dx .

Thenμ = λ. Let further T be standard exponential, Y a independent r.v. with density
v(t)
tμ and Z one with density n(x)/λ. Then T/Y = Z in distribution.

Proof Taking k = 0 in (17) gives λ = μ. We then get

P
(
T/Y ∈ dx

) =
∫ ∞

0
P
(
T/Y ∈ dx

∣∣ Y = t
)v(t)

tμ
dt

=
∫ ∞

0
te−t x v(t)

tμ
dt = n(x)

μ
= P(Z ∈ dx) .

�

This suggests that in the finite variation case, we can generate a r.v. X approxi-
mately distributed as X (1) as follows (more details on the individual steps are given
below):

(1) Choose A < ∞, let λ = ∫ A
0 v(t)/t dt and generate N as Poisson(λ).

(2) Generate X1 = ∑N
n=1 Tn/Yn(A) where the Tn are standard exponential and the

Yn(A) have density v(t)/(λt), 0 < t < A.
(3) Generate X2 as some approximation to XA,∞(1).
(4) Return X = X1 + X2.
In the infinite variation case subject to (5), replace X1 in (2) by

N∑

n=1

Tn
Yn(A)

−
∫ ∞

0
xn0,A(x) dx =

N∑

n=1

Tn
Yn(A)

−
∫ A

0

v(t)

t2
dt

and X in (4) by κ ′(0) + X1 + X2. In both cases, X → X (1) as A → ∞.
That λ in (1) is finite follows by the Radon property of V (dx). The shape of the

part n0,A of n corresponding to the simulated large jumps is illustrated in Fig. 1, The
process in the example is TSwithα = 0.8, variance κ2 = 1, kurtosis K = 2 and there
are 4 values of A determined by the ρ defined as the proportion Var

(
XA,∞(1)

)
/κ2

of the total variance provided by the small jumps (see further Sect. 6).
As for the approximation in (3), the most obvious choice is a normal distribution

with the correct mean and variance, and this is in fact justified by the following result
(recall that W denotes BM):

Proposition 3 Define X∗
A,∞(t) = (

XA,∞(t) − tEXA,∞(1)
)/√

Var XA,∞(1). Then
X∗

A,∞
D−→ W in the Skorokhod space D[0,∞) as A → ∞.
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Fig. 1 n(x) and n0,A(x)
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Proof Let κ∗
k be the kth cumulant of X∗

A,∞(1). Then κ∗
k is of order Aα−k A(2−α)k/2 =

Aα((1−k/2) for k > 2 since by (17)


(1 + α)

δ

∫ ∞

0
xknA,∞(x) dx = k!

∫ ∞

A

(t − β)α

t k+1
dt

∼ k!
∫ ∞

A
tα−k−1 dt = k!Aα−k

k − α
.

Hence κ∗
k → 0 for k > 2 and obviously, κ∗

1 = 0, κ∗
2 = 1. Thus all cumulants and

hence all moments of X∗
A,∞(1) converge to those of the standard normal r.v. W (1).

This implies X∗
A,∞(1)

D−→ W (1) (e.g. [22, Exercise 11 p.101]), from which the
asserted convergence in function space follows from Chap. 15 in [22]. �

Gamma distributions fitted by (
1) or (
2) are appealing alternatives to the normal
approximation and perform again significantly better in the numerical examples to
be given in Sect. 6. A gamma form of nA,∞(x) comes up directly: one can use (16)
and standard asymptotics of the upper incomplete gamma function to infer that

nA,∞(x) ∼
∫ ∞

A
e−t xδtα/
(1 + α) dt = δ

x1+α
(1 + α)

∫ ∞

Ax
e−y yα dy

∼ δ

x1+α
(1 + α)
(Ax)αe−Ax ∼ δ


(1 + α)

Aα

x
e−Ax

for any given fixed x . However, the first ∼ is not valid if Ax is small or moderate,
and in fact the gamma distribution with shape parameter δAα/
(1 + α) and rate
parameter A substantially underestimates the order of XA,∞(1). For example, its
mean is 1.2 for α = 0.8, κ2 = 2, K = 2 and ρ = 0.75, whereas the correct value is
EXA,∞(1) = 5.5.
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6 Numerical Examples

As illustration of the ε- and CM-algorithms, we considered spectrally positive TS
processes with varying parameters. Such a process can be parametrized with the
variance κ2, the kurtosis K and α, and one then has

β =
√

(2 − α)(3 − α)

κ2
2K

, δ = κ2


(2 − α)
β2−α ,

cf. [3]. We considered three values 0.2, 0.8, 1.4 of α and three 1/2, 2, 8 of K , and
normalized by taking κ2 = 1. We further considered the normal as well as the two
gammaapproximations (
1), (
2) of the small jumps, and asmeasure of performance,
we took the L2–distance

d =
∫ ∞

0

(
f (x) − f̂ (x)

)2
dx (18)

between the true density f (x) of X (1) and an estimate f̂ (x) provided by simulation.
Here f (x)was evaluated by (12), using theMatlab routines for stable distributions.
For f̂ (x), we simulated M = 106 replicates Z1, . . . , ZM of Xε,∞(1) and used the
conditional Monte Carlo estimator

f̂ (x) = 1

M

M∑

m=1

ξ(x − Zm) (19)

where ξ(·) is the density in the approximation in question for the density of X(0,ε)(1).
Cf. e.g. [4, p. 146] and [2] (see also [26] for more sophisticated applications of the
technique), but note also that conditional Monte Carlo can not universally replace
generation of a r.v. distributed according to ξ(·); e.g., this is needed when simulating
a discrete skeleton. Numerically, (18) was computed by a discrete approximation
with step length 0.01 in the interval EX (1) ± 3 (recall that X (1) was normalized to
standard deviation 1).

The truncation parameters ε, resp. A, for the two algorithms were chosen such
that the variance of the approximated small jumps equaled various fractions ρ of the
total variance κ2 = 1 of all jumps. For the ε-algorithm, this means that for a given ρ

ρ =
∫ ε

0
x2

δe−βx

x1+α
dx = δ

β2−α

∫ εβ

0
y2−α−1e−y dy = δ

β2−α

(εβ, 2 − α)
(2 − α)

where 
(·; 2 − α) is the lower incomplete Gamma function with parameter 2 − α.
Thus

ε = 1

β

−1

(
ρβ2−α

δ
(2 − α
; 2 − α

)
.
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Fig. 2 Left: ε-alg., α = 0.2, K = 2, ρ = 0.50, dN = 1.3 e−1, d
1 = 6.7 e−3, d
2 = 3.5 e−2;
middle: CM-alg,. α = 0.8, K = 8, ρ = 0.75, dN = 7.6 e−3, d
1 = 2.6 e−3, d
2 = 5.3 e−5

right: ε-alg., α = 1.4, K = 2, ρ = 0.75, dN = 2.0 e−2, d
2 = 1.1 e−4

For the CM-algorithm, we have instead by (17) that

ρ =
∫ ∞

0
x2 dx

∫ ∞

A
e−t x δ(t − β)α


(1 + α)
dt = δ


(1 + α)

∫ ∞

A

(t − β)α

t3
dt

= δ


(1 + α)

∫ ∞

B

yα

(β + y)3
dy

where B = A − β, and this equation was solved numerically.
Here S is the skewness of X (1) and λ is the Poisson mean in the compound

Poisson sum of the simulated “large” jumps, that is,

λ =
∫ ∞

ε

n(x) dx =
∫ ∞

ε

δe−βx

x1+α
dx , λ =

∫ A

0

v(t)

t
dt =

∫ B

0

δtα

(t + β)
(1 + α)
dt

in the two cases. The L2 distances in (18) are denoted by dN for the normal approx-
imation and by d
1 , d
2 for the two gamma ones. Graphs of f (x) and the f̂ (x) are
in Fig. 2 for some selected the parameter combinations in Table2.

Our interpretation of Fig. 2 is that an L2-distance of e−4 or less corresponds to an
almost perfect fit, whereas one of order e−3 is sufficient for most practical purposes,
one of order e−2 or more inadequate. With this in mind, we were quite surprised to
see how well both algorithms perform already for so large values of ρ as 75% and
50%, or equivalently for so small values of λ as those reported in the Tables 1 and 2.
One further notes that both algorithms improve as K gets smaller or α larger, which
is in agreement with limit theorems given in [3] stating roughly that the distribution
of X (1) gets closer to normal in the two cases.

Taking λ as measure of computational effort is certainly not unambiguous. On
top comes the effort in generating from the r.v.’s Yn(ε),Yn(A) with densities propor-
tional to n(x), ε < x < ∞, resp. v(t)/t , 0 < t < A. However, this issue is largely
implementation dependent. We have given one suggestion (based on (15)) for the
ε-algorithm in Sect. 4 and give a similar A-R scheme for the CM-algorithm and
TS case in the appendix. Both are certainly amenable to improvement. Comparison
of the ε- and CM algorithms show that λ is slightly higher for the CM algorithm.
However, the values of λ reported in the tables are quite small and thus 1 + λ could
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Table 1 ρ = 75%
α K S ε-algorithm CM-algorithm

λ dN d
1 d
2 λ d(F, FN ) d(F, F
1 ) d(F, F
2 )

0.2 1/2 0.57 0.23 1.4 e−3 8.2 e−5 4.0 e−5 1.6 2.0 e−2 2.8 e−5 4.0 e−5

2 1.13 0.06 1.4 e−2 1.7 e−4 2.2 e−4 0.40 1.5 e−2 2.8 e−4 1.4 e−4

8 2.27 0.01 1.6 e−1 1.3 e−2 3.7 e−2 0.10 1.6 e−1 2.6 e−2 7.1 e−2

0.8 1/2 0.52 0.24 8.8 e−4 2.3 e−4 4.3 e−5 1.3 1.2 e−2 4.6 e−4 5.3 e−5

2 1.04 0.06 7.6 e−3 2.6 e−3 5.3 e−5 0.33 8.2 e−3 3.5 e−3 3.3 e−4

8 2.09 0.01 5.0 e−2 2.4 e−2 2.8 e−3 0.08 5.0 e−2 2.5 e−2 2.0 e−2

1.4 1/2 0.43 0.30 2.9 e−4 – 2.2 e−5 1.23 3.7 e−4 – 4.8 e−5

2 0.77 0.07 2.0 e−3 – 1.1 e−4 0.31 2.4 e−3 – 2.2 e−4

8 1.73 0.02 1.1 e−2 – 1.0 e−3 0.08 1.1 e−2 – 3.6 e−3

Table 2 ρ = 50%
α K S ε-algorithm CM-algorithm

λ dN d
1 d
2 λ d(F, FN ) d(F, F
1 ) d(F, F
2 )

0.2 1/2 0.57 0.96 2.9 e−4 8.8 e−5 3.9 e−5 4.1 5.7 e−4 2.8 e−5 4.6 e−5

2 1.13 0.24 6.1 e−3 4.4 e−4 1.4 e−4 1.0 7.5 e−3 1.4 e−4 1.0 e−4

8 2.27 0.060 1.3 e−1 6.7 e−3 3.5 e−2 0.26 1.3 e−1 1.9 e−2 4.4 e−2

0.8 1/2 0.52 1.20 1.2 e−4 2.6 e−5 4.3 e−5 4.35 2.5 e−4 8.0 e−5 3.6 e−5

2 1.04 0.30 5.1 e−4 5.1 e−4 4.7 e−5 1.09 2.9 e−3 1.1 e−3 1.2 e−4

8 2.09 7.5 e−2 2.3 e−2 1.1 e−2 6.2 e−4 2.7 e−2 3.0 e−2 1.4 e−2 4.2 e−3

1.4 1/2 0.43 2.42 2.0 e−5 – 4.0 e−5 7.66 2.8 e−5 – 3.0 e−5

2 0.77 0.61 1.8 e−4 – 6.1 e−5 1.92 3.1 e−4 – 5.8 e−5

8 1.73 0.15 2.3 e−2 – 1.3 e−4 0.48 2.9 e−3 – 3.1 e−4

be a more fair measure than λ, taking into account also the generation of the Poisson
r.v.’s in addition to the Y . This makes the difference even smaller. As for precision,
values of order e − 5 should not be compared as they do not improve by increasing
ρ, which could presumably be due to the discretization. Once this is said, the 
2

scheme gives most often better precision than the 
1 one, and both improve upon
the normal, in some cases even significantly. The ε-algorithm gives slightly more
precise estimates for the given ρ than the CM one, but most often not that much.
Altogether, which one to prefer may depend on case-dependent issues such as the
facility to generate the Yn(ε) or Yn(A).

Concerning the chosen values 1/2, 2, 8 of the kurtosis K , we remark that in finan-
cial log-return data K is most often of order 1–3 for daily log-returns series, but
higher values occur when calibrating parameters, cf. Table 1 in [3]. Sampling at
higher frequencies than daily will also increase K , and hence one may expect that
larger values of λ than the ones in our tables will be needed for good precision.
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7 Exact Simulation of X (h) and other Methods

In our main examples, it is fairly straightforward to generate a r.v. distributed as
X (h) in a NIG process. Indeed, one description of the process is as subordinate to
a BM W with drift β w.r.t. an inverse Gaussian subordinator χ(t). In more detail,
if W1 is another independent BM with drift γ and χ(t) = inf{s > 0 : W1(t) > δt},
then W (χ(t)) + μt is distributed as X (1) in a NIG(δ, α, β, μ) process with α =√

β2 + γ 2. Here a r.v. distributed as χ(t) need not be simulated via the relation to
W1 but can be directly generated. For X (h), just replace δ by δh and μ my μh.
These facts are surveyed in, e.g., [4, p. 343] and implemented in, e.g., [25]. A similar
but easier exact subordination construction applies to the VG process. Asymptotic
subordination algorithms for TS and MX are in [27].

For the spectrally positive TS process with finite variation (α < 1), it was noted
in [3] that a r.v. distributed as X (1) can be generated by an A-R scheme, using (12)
with the Sα(σ, 1, 0) r.v. Z as proposal and acceptance probability e−βz when Z = z;
for the standard algorithm to generate Z , see [4, p. 332]. Two-sided processes are of
course generated by taking the difference between the positive and negative parts. The
simplicity of this scheme should be compared to other approaches in the literature,
e.g. [8, 23]. It was also remarked in [3] that the situation is more complicated when
α ≥ 1, since then X (1) is supported by the whole of R and e−βz is unbounded there.
We suggest here an exact scheme based on asymptotic properties of stable densities.
The details are in the Appendix but are included more for the sake of completeness
than because we think the scheme is more attractive than the simple and efficient ε-
and CM-algorithms.

A general comment on the method of discrete skeletons is that it gives little
information on the whole path X (0 : T ) unless one uses a skeleton with a quite
small h and thereby a considerable computational effort.

We are not aware of methods for exact simulation of X (h) in theMX process. One
could potentially use the explicit form of the density, cf. (9), via A-R, but a difficulty
is to find suitable bounds for the complex gamma function.

Another approximate method is based on using a series expansion of the form
X (T ) = ∑∞

1

{
H(
n, Vn) − cnT

}
where the 
n are the order epochs of a standard

Poisson process, and the Vn independent i.i.d. (possibly multivariate) r.v.’s., see the
surveys in [31] and [4] XII.4. In the implementation, ones truncates to n ≤ N terms.
Since H(·, v) is typically decreasing for fixed v, this method is hardly intrinsically
different from the ε-algorithm. Calculation of H is not always straightforward. We
are not aware of systematic studies of the error term

∑∞
N+1 . . ..

8 Maxima, Minima and Other Path Functionals

In Sects. 4–6 and 7, we have concentrated on simulation of X (T ) alone, say T = h
or T = 1 (there is no loss of generality in taking T = 1 since X (T ) = XT (1) where
XT is the process obtained by replacing the Lévy measure ν by T ν). In the financial



36 S. Asmussen

context, this covers European options, where � in (1) is a function of X (T ) alone.
E.g. �

(
X (0 : T ) = e−rT

[
Z(0)eX (T ) − K

]+
for a European call with strike K . For

many other options,� is, however,more complicated. E.g. for an down-and-in barrier
option

�
(
X (0 : T )

) = e−rT
[
Z(0)eX (T ) − K

]+
I
(
Z(0)eX (t) ≤ L for some t ≤ T

)
.

One therefore needs to know also the minimum mT = inf t≤T X (t) of X (0 : T ),
which typically is close to the value at some negative jump. Minima or maxima also
come up in the context of queues modeled by Lévy input, where key processes Y
such as workload, queue length etc. are obtained by reflecting the input X at 0. This
means

Y (T ) = (
Y (0) + X (T )

) ∨ max
t≤T

(
X (T ) − X (t)

)
.

In particular, Y (T )
d= MT where MT = supt≤T X (t) in the case Y (0) = 0 of an

initially empty queue. If X is simulated as a discrete skeleton with step size h, the
path of Y is approximated by Yh(0) = Y (0) and the Lindley recursion

Yh
(
(n + 1)h

) = [
Yh(nh) + X

(
(n + 1)h

) − X (nh)
]+

,

leading to

Yh(Nh) = (
Y (0) + X (Nh)

) ∨ max
n≤N

(
X (Nh) − X (nh)

) d= max
n≤N

X (nh)

where the final
d= requires Y (0) = 0. For these facts, see Sects. III.6–7, IX.2 of [1].

We mention several strategies to access a minimum or maximum, say m(T ),
without recommending any particular one (in fact, such a choice may depend on the
particular application context and a more extensive numerical study). One strategy is
just to simulate a sufficiently fine skeleton exactly, when possible, and then take the
minimum along the skeleton. This may be supplemented with continuity corrections
as developed in [5, 20], that is, r.v.’s approximating

min
nh≤t≤(n+1)h

X (t)
∣∣ X(n+1)h, Xnh .

If exact simulation of a skeleton is not feasible, onemay instead generate the skeleton
approximately by one of the compound Poisson algorithms of Sects. 4, 5, allocate
uniform [0, T ] locations to the Poisson jump times τn , and supplement the minimum
along the τn by invoking bridge r.v.’s of the form

min
τn≤t≤τn+1

(
X̂0:ε(t) − X̂0:ε(τn)

) ∣∣ X̂0:ε(τn) .
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The distribution and hence generation of such bridge minima is standard when X̂0:ε
is generated by using the normal approximation. For our gamma approximations,
they may be efficiently generated by invoking the relation between gamma, beta and
Dirichlet distributions, as developed in [7] and implemented in [25].

Similar remarks apply to other and possibly more complicated path functionals.
For example, for a Parisian option one needs to know the first time the asset price
eX (t) makes an excursion of length > D below some level L .

Acknowledgements I am grateful to the reviewers for useful comments and corrections, and to
Alexey Kuznetsov for useful hints related to Example 1.

Appendix

An A-R Scheme for Generation from v(t)/ t in the TS Case

We need to generate a r.v. Z with density proportional to u(t)/t , β < t < A where
u(t) = (t − β)α . To this end, write Z = β + Z0 where Z0 has density proportional
to u(t + β)/(t + β) = tα/(t + β) , 0 < t < B where B = A − β. Here Y = 1/Z0

has density proportional to 1/y1+α/(1 + βy), 1 < 1/B < y < ∞, and can therefore
be generated by A-R with either a Pareto(α) proposal and acceptance probabil-
ity proportional to 1/(1 + βy) (high for small y) or a Pareto(1 + α) proposal and
acceptance probability proportional to y/(1 + βy) (high for large y). As in Sect. 4,
we use a mixture, corresponding to breaking the compound Poisson part in 2) above
into two. So, let

λ1 =
∫ y0

1/B

1

y1+α(1 + βy)
dy , μ1 =

∫ y0

1/B

1

y1+α
dy = 1

α
[Bα − 1/yα

0 ] ,

λ2 =
∫ ∞

y0

1

y1+α(1 + βy)
dy , μ2 =

∫ ∞

y0

1

y2+α
dy = 1

(1 + α)y1+α
0

,

C1 = μ1

λ1(1 + β/B)
, C2 = μ2

βλ2

The target densities are then

f1(y) = 1

λ1y1+α(1 + βy)
, 1/B < y < y0, and f2(y) = 1

λ2y1+α(1 + βy)
, y0 < y < ∞,

and chosen with probabilities λ1/(λ1 + λ2), resp. λ2/(λ1 + λ2), and the proposals
are

g1(y) = 1

μ1y1+α
, 1/B < y < y0, and g2(y) = 1

μ2y2+α
, y0 < y < ∞,
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Then f1(y) ≤ C1(y0)g1(y) and f2(y) ≤ C2(y0)g2(y), and we may use A-R with
acceptance probabilities

f1(y)

C1(y0)g1(y)
= 1

1 + βy
,

f2(y)

C2(y0)g2(y)
= y

1 + βy

for r.v. generation from f1, resp. f2. This gives expected numbers C1(y0), C2(y0)
of samplings from g1(y), resp. g2(y), and as measure E(y0) of the computational
effort, we shall use the total number of these samplings, i.e.

E(y0) = λ1C1 + λ2C2 = μ1

1 + β/B
+ μ2

β
= βμ1 + (1 + β/B)μ2

β(1 + β/B)
(20)

Proposition 4 The function E(y0), 1/B < y0 < ∞, is minimized for y0 = y∗
0 =

1/β + 1/B.

Proof In (20), β and B as well as term Bα/α in μ1 do not depend on y0, so we are
left with the minimization of −β/α/yα

0 + (1 + β/B)/(1 + α)/y1+α
0 . The derivative

is 1/y1+α
0 /(1 + β/B) − 1/y2+α

0 which changes sign from negative to positive at y∗
0 .

From this the result follows. �

An A-R Scheme for Spectrally Positive Infinite Variation TS
Processes

Let f0 be the density of a strictly α-stable distribution Sα(σ, 1, 0) distribution with
σ = (−δ
(−α) cos(πα/2)

)1/α
. The goal is to generate a r.v. X from the density

f (x) = exp{−βx − ψ} f0(x) in the case α > 1 where f and f0 have support on the
whole ofR; hereψ = δ
(−α)βα . We use that f0(x) has the asymptotics [29, p. 100]

f0(x) ∼ c1
|x |� exp

{−c2|x |η
}
as x → −∞ (21)

for suitable (explicit) constants) c1, c2 and � = α/(2α − 2), η = α/(α − 1).
For initialization of the algorithm:

(1) Select −A < 0 and compute p = ∫ ∞
−A f (x) dx

(2) Select c3 < c2 and find c4 < ∞ such that

h(x) = eβ|x | f0(x)
|x |η−1 exp

{−c3|x |η
} ≤ c4 for all x < −A.

The algorithm is then as follows:
(3) Generate I as Bernoulli(p).
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(4) If I = 1, generate X ∈ (−A,∞) having density f (x)/p,−A < x < ∞, by A-R
with proposal Z0 having a strictly α-stable distribution Sα(σ, 1, 0) conditioned to
(−A,∞) and acceptance probability e−b(z+A) when Z0 = z
(5) If I = 0, generate X ∈ (−∞,−A) with density f̃ (x) = eb|x |−ψ f0(x)/(1 − p),
= ∞ < x < −A, by an A-R scheme defined as follows. As proposal, take a r.v. Z1

distributed as−Z2 given Z2 > A where Z2 > 0 isWeibull with P(Z2 > z) = e−c3zη

.
If Z1 = x , accept w.p. c4h(x).
(8) return X .
Explanation: Step (2) is possibly because (21), c2 > c3 and η > 1 imply h(x) →
0 as x → −∞. In (5), the proposal density is g(x) = P

(
X2 ∈ d|x | ∣∣ Z2 > A

) =
c3η|x |η−1e−c3zη

/e−c3Aη

. Thus the ratio of the target density to the proposal density is

f̃ (x)

g(x)
= c5h(x) where c5 = exp{−ψ − c3Aη}

c3η(1 − p)

Hence f̃ (x)/g(x) ≤ c0h(x) where c0 = c4c5, and acceptance w.p. f̃ (x)/c0/g(x) =
c4h(x) will produce the correct result. The conditioned sampling of proposals in
(6) and (7) is straightforward by sampled by sampling a Sα(σ, 1, 0), resp. Weibull,
r.v. until the conditioning requirement is met. Available software, say Matlab or
Nolan’s stable package (see the Preface to [29]) accounts for computing f0(x) and
generating the Sα(σ, 1, 0) r.v.’s. The Weibulls can be generated by inversion.
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