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Preface

This Festschrift is a collection of invited research articles on the occasion of Pierre
L’Ecuyer’s 70th birthday in 2020.During the pandemic, a celebrationwith friends and
colleagues was impossible. When discussing the opportunity to publish a Festschrift
instead, support has been enthusiastic. We are grateful to the authors of this volume
for their endorsement and their ready willingness to contribute. The works reflect
Pierre’s influence on the fields of stochastic modeling, simulation, and operations
research. It is a real pleasure to present this Festschrift to honor Pierre L’Ecuyer.
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Biography

Abstract Pierre L’Ecuyer is regarded as a top scientist, his leadership in the field of
simulation and, in particular, pseudo-random number generation being uncontested.
Pierre is not only known for his scientific results, but also for his rigorousness, his
dedication to excellence, his dynamism, his enormous working capacity, and his
curiosity making an impression on every person who gets to know him. Those in
desire of more detail may have a look at Pierre’s vita at http://www.iro.umontreal.
ca/lecuyer/cva.pdf.

Education

Pierre followed an education path from the Université de Montréal, Canada. His first
academic degree is a Bachelor’s in mathematics in 1972, followed by an M.Sc. in
Operations Research in 1980 (in between he had been a teacher of mathematics at
the CEGEP of Sept-Iles, Québec), and then a Ph.D. in Computer Science with Oper-
ations Research orientation in 1983 on Markovian decision processes. From 1982 to
1990, he served as a Professor in the Computer Science Department at Université
Laval, and since then has been a Professor in the “Département d’informatique et
de recherche opérationnelle” (DIRO) at the Université de Montréal. Pierre has also
been spending time visiting colleagues in numerous places worldwide during sabbat-
icals or long stays, including Stanford University, Université de Nantes, Waseda
University, University of Salzburg, North Carolina State University, Université de
Savoie, Inria Rocquencourt and Rennes, University of New SouthWales, andGoogle
Research.
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Research Activity and Visibility

As of the beginning of November 2021, Pierre has written or co-written 26 book
chapters, 125 journal papers (in prestigious journals), and 134 referred conference
papers. According to Google Scholar, his H-index is 68 and he has 16,481 citations.
Pierre has a wide range of interests and diverse contributions. Among these, Pierre
is a world leader in multiple areas:

• Dynamic programming and operations research (OR) in general. Pierre’s
activity on dynamic programming (starting with his Ph.D. thesis) and a broad
range of OR domains, including the computation of derivatives, is still highly
referenced in the domain.

• Variance reduction techniques. His work on variance reduction, including rare
event simulation, has made Pierre one of the most renowned researchers in the
domain, both from the theoretical and application (to reliability and queuing)
aspects. He contributed to the advances of importance sampling and splitting
procedures drastically reducing the simulation time to reach a predefined accuracy.

• Telephone call centers. His industrial contracts have led Pierre to work on the
modeling, simulation, and optimization of call centers. His activity has led to
the development of a software used by several companies and the development
of models and specific analysis techniques making him a renowned expert in
the area collaborating with the best-known other teams in the world. He notably
developed new and more realistic models than those existing at the time in which
the arrival rate of customers changeswith time, is stochastic, and the arrival rates in
different time periods are not independent. Novel estimations of parameters have
also been designed. He also developed simulation-based optimization algorithms
and heuristics for agent’s staffing.

• Quasi-Monte Carlo methods are deterministic methods, as opposed to the
random Monte Carlo ones, having the advantage of converging faster, even if
less easy to apply. Again, Pierre has developed a strong and world-leading exper-
tise in the generation of sequences of highly uniformly distributed points used by
those methods, their randomization to get a practical estimation of the error, and
their application in finance.

• Random number generators.While Pierre’swork on all the previously described
topics is already impressive, his activity on randomnumber generators, a key issue
for simulation, is probably what should be highlighted the most. If one has to give
a single name on this topic, Pierre is probably the one that will be mentioned.
His random generator RNGStreams is widely used, because it is one of the most
efficient and portable ones. His extensive test suites are also very popular. Pierre’s
TestU01 software library is the standard suite of procedures for empirically testing
the performance of random number generators. Among his many publications on
the subject, the one he has in the Communications of the ACM has been cited
more than 1,100 times.
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Editorial Activities

Pierre is currently an Associate Editor for three journals: ACM Transactions on
Mathematical Software, Statistics and Computing, and International Transactions
in Operational Research. He was previously Associate Editor for five other journals
and the Departmental Editor for the Simulation Department ofManagement Science.
He was the Editor-in-Chief for ACM Transactions onModeling and Computer Simu-
lation from 2010 to 2013, a period during which the journal grew in scope and
volume of submissions; Pierre was carefully reading all the submitted papers and
prescreening submissions to alleviate the workload of the editorial team.

Remarkably, Pierre has reviewed articles for 170 different journals. That illustrates
how well-known he is by people even outside the simulation community. Typically,
he has been reviewing between three to four papers per week on average.

Organizing Conferences

Pierre has already organized seven international events in Montréal, including the
Eighth International Conference on Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing (MCQMC) in 2008 and the INFORMS Simulation Society
Workshop in2011, or theEleventh InternationalConferenceonMonteCarloMethods
and Application (MCM) in 2017. He also co-organized MCQMC 2018 in Rennes,
France. Pierre has been serving on many program or steering committees.

Simulation Societies

Pierre has been a member of numerous evaluation committees worldwide for
grant proposals, promotion, and prizes from universities. Among the most notable
memberships are the INFORMS Simulation Society Distinguished Service Award,
INFORMS Simulation Society Outstanding Publication Award, or INFORMS
College on Simulation Outstanding Publication and Outstanding Award committees.

Industry and Civil Society

Pierre has receivedmany grants from the industry to successfully apply his simulation
and operations research results. For example, Pierre has developed specific modeling
and simulation tools for Bell and Hydro-Québec. He has also been contacted to
implement his random number generators, or test existing ones, by AMD, Alcatel,
LottoQuébec, The Mathworks, and Montréal Police Service, to name a few.
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Pierre has devoted a lot of time to software development, with all his random
generators available inmany languages, a Java library for stochastic simulation called
SSJ, or a software library called TestU01 offering a collection of utilities for the
empirical statistical testing of uniform random number generators. All these tools
are freely available to the scientific community.

Mentorship

Pierre has supervised 49 Master and Ph.D. students, as well as 23 postdocs. He has
been a member of numerous Ph.D. examination committees all over the world. His
courses on simulation at the Université de Montréal and various Summer Schools
have also contributed to the widespread dissemination of modeling and simulation
knowledge.

Recognition

Pierre has been recognized by the scientific community, having received prestigious
awards such as a Canadian and an Inria Research Chair, the Award of Merit from the
Canadian Operational Research Society, the INFORMS Fellow Award in 2006, the
INFORMSSimulation Society Distinguished Service Award in 2011, the INFORMS
SimulationSocietyOutstandingResearchPublicationAwardwon three times in 1999
(on CombinedMultiple Recursive RandomNumber Generators), 2009 (on computa-
tional finance, by designing efficient algorithms for pricing path-dependent options),
and 2018 (on call centersmodeling), the SIGSIMDistinguishedContributionsAward
in 2016, or INFORMSSimulationSocietyLifetimeProfessionalAchievementAward
in 2020. On the Canadian scene, to name only a few of the awards and distinctions
earned by Pierre, in 1996, he was awarded a prestigious Steacie Fellowship for the
period 1995–1997 from the Natural Science and Engineering Research Council of
Canada. He received a Killam Research Fellowship from the Canada Council for the
Arts for the period 2001–2003. And in 2004, he was awarded a Canada Research
Chair on Stochastic Simulation and Optimization for the period 2004–2010, which
was renewed in 2011 for another seven years.

Personal Achievements

Besides his scientific life, Pierre has had an amazing sport-related life, for which he
is also well-known in the respective communities: not only as a competitor but also
as a coach. While skilled in many kinds of sport, Pierre is exceptionally competitive
and skilled in cross-country skiing and road cycling.
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In cross-country skiing, he won the bronze medal at the Canadian championship
in 50 km classic in 1994. But his main achievements are probably in road cycling.
He was Canadian champion (by age groups) in 2000, 2001, 2011, and 2012 and
finished second in 2002 and 2004. He was Quebec champion in road race in 1996,
2000, 2001, 2003, and 2012; in time trial in 2002, 2003, 2004, 2005, and 2012; and
in criterium in 2011 and 2016. Among successful participation in other races, he
won the America’s cup in 2000 and 2012. He was named cyclist of the year 2012
in masters categories by the Quebec Cycling Federation, another award in another
category! Pierre keeps on riding his bicycle all over the world and is known to always
bring his bike with him when traveling.

Prior to these accomplishments, Pierre had been a coach in Track and Field
between 1970 and 1992. He started by building and training a local team. He became
a member of the Canadian team at the Olympic Games, World Championships,
Commonwealth Games, etc. He was named Quebec’s track and field federation’s
“coach of the year” in 1985 and 1992. He was the coach of the Barcelona Olympic
games silver medalist (20 kmwalk) andworld record holder (30 kmwalk) Guillaume
Leblanc, from 1973 to 1992.
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Monte Carlo Methods for Pricing
American Options

Raul Chavez Aquino, Fabian Bastin, Maria Benazzouz,
and Mohamed Kharrat

Abstract American options are widespread in the financial market. We review vari-
ous popular techniques used to value American options, as well asMalliavin calculus
and recent approaches proposed in machine learning, and examine their performance
on synthetic and real data. Our preliminary results confirm that pricing an American
put option on a single asset can be efficiently done using regression approaches, and
random forests are competitive in terms of accuracy and computation times. Malli-
avin calculus, despite its interesting mathematical properties, is not competitive for
American option pricing, and neural networks are difficult to design in the context of
options. Variance reduction, achieved here by means of control variates, is a crucial
tool to obtain reliable results at a reasonable cost.

Keywords American options · Monte Carlo · Dynamic programming · Variance
reduction · Control variates
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1 Introduction

Since their official recognition as a financial tool in 1973 with the creation of the
ChicagoBoardOptionsExchange, options have attracted a lot of interest by investors,
traders and academicians. An option gives the right, but not the obligation, to buy
(call option) or sell (put option) an asset at a predetermined price, either at a fixed
time T , called the maturity, or at times in a set T, but no later than T . An American
option is defined as an option giving its holder the privilege to exercise it at any time
during its life. In order to benefit from this privilege, the holder of this type of option
must exercise at the best possible time. The option is usually based on underlying
price series (stock price, interest rate, index value, etc.) whose random fluctuations
are modeled using stochastic processes. The main difficulty with pricing American
options is getting a reliable estimate of the continuation value.

One of the first techniques proposed to valuate financial options is the bino-
mial tree, introduced by Cox et al. [16] and Rendleman and Bartter [40]. Binomial
trees rely on the discretization of the stochastic differential equation governing the
assets value evolution, and do not generalize well to high dimensional portfolios
and stochastic processes other than the geometric Brownian motion. An alternative,
introduced by Boyle [10] in the context of option pricing, is the Monte Carlo simula-
tion of asset price trajectories. The value of an American option at some time, given
a scenario, is expressed as the maximum between the instantaneous exercise price
and the expected continuation value, that is the optimal return that can be obtained
if one delays the exercise at a later stage. In their seminal paper, Longstaff and
Schwartz [33] use dynamic programming and Monte Carlo simulation to estimate
the optimal stopping time frontier, relying on least squares regression to approximate
the continuation value. Clément et al. [15] analyze the theoretical properties of the
method, that can provide lower bounds in expectation, close to the true option prices.

The continuation value can also be estimated with other techniques. Capitalizing
on the formulation proposed by Lions and Régnier [32], Bally et al. [3] explore the
use ofMalliavin calculus [34, 35]. Their work is further explored by Caramellino and
Zanette [13], stressing on the importance of an indirect variable, while Kharrat and
Bastin [28] develop the expression of Malliavin weights for American options under
a stochastic volatility. Bouchard and Warin [9] compare regression approaches and
Malliavin calculus, but without variance reduction techniques. The use of Malliavin
calculus in financial engineering had recently been covered by Alòs and Lorite [1],
but without consideration of options, andwe refer to Pascucci [37] for amore specific
coverage. Ruf and Wang [41] review the use of neural networks for option pricing,
while Rabia [38] considers the use of random forests, reporting promising results.

All these approaches can greatly benefit from the use of variance reduction tech-
niques, although many of the previously cited works do not take full advantage of
them. In particular, Rasmussen [39] proposes to use European options, valued at the
exercise times, as control variates, and reports significant improvement in the option
valuation accuracy when combined with the Longstaff and Schwartz’s approach.
Dion and L’Ecuyer [17] explore the use of quasi-Monte Carlo draws. Another strat-



Monte Carlo Methods for Pricing American Options 3

egy to reduce the variance is the multilevel Monte Carlo technique, proposed by
Giles [20]. The main idea is to sum estimators built on multiple sets of simulations
with different time steps. Such estimators can be obtained using any of the reviewed
dynamic programming approaches. Mixed results have however been reported for
American options (see for instance Wu [43]), and Belomestny et al. [5] suggest to
rather consider levels corresponding to different degrees of approximation of the
continuation values. They illustrate the method on a multi-assets option, using the
mesh method [12] and the regression approach [33], in combination with the simpler
control variate proposed by [12], reporting promising results along with complexity
reduction guarantees.

In this chapter, we numerically compare these techniques to valuate an American
option in a simple, yet reasonable, assumptions framework, and derive some practi-
cal guidelines, emphasizing the importance of variance reduction techniques. Other
techniques have been proposed to price American options, in particular the stochastic
mesh method [12]. However, regression methods as the one proposed by Longstaff
and Schwartz, when combined to variance reduction techniques, have been shown
to outperform the stochastic mesh method, in accuracy and computational time [42].
We will therefore not consider such approaches.

The rest of this chapter is organized as follows.We introduce the American option
pricing problem in Sect. 2, and present the binomial tree method in Sect. 3. Section4
covers dynamic programming approaches and we discuss the use of control variates
in Sect. 5. Numerical comparisons are performed in Sect. 6. We conclude and present
future research avenues in Sect. 7.

2 American Option Pricing

The problem of pricing, or valuing, anAmerican option consists of finding an optimal
exercise strategy and valuing the expected discounted payoff from this strategy.Given
the underlying asset value St , let denote by Vt the option value at time t , defined as

βt Vt (St ) = sup
τ∈T(t,T )

Et [βτ Xτ (Sτ ) | St ], (1)

where {Xt }0≤t≤T is the payoff process with the discount factors βt , t ∈ [0, T ], with
β0 = 1, and T(t, T ) denotes the class of stopping times satisfying t ≤ τ ≤ T . The
American option value is defined as V0, i.e. the value at time 0.

We assume that the factors βt , t ∈ [0, T ] are deterministic and the asset value
process {St }0≤t≤T is Markovian and exogenous, i.e. is not affected by the decision to
exercise the option or to wait. For simplicity, we only consider an option on a single
asset without dividends. The exercise price at time t of a put option is

Xt (St ) = (K − St )
+ := max{K − St , 0},
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where K is the strike. For a call option, the exercise price is max(St − K )+. If
the discount factors βt , t > 0, are less than one, it can be shown that the optimal
exercise of an American call option is at the expiration date T [36]. The option is
then equivalent to a European call option with maturity date T , whose value at time
t is

βt V
E
t (St ) = βTE[XT (ST ) | St ],

and we will focus on put options. We can similarly define a European put option by
allowing to exercise the option at time T only. Obviously, V E

0 (S0) ≤ V0(S0).
Solving (1) is usually intractable, and the problem is simplified by restricting the

set of possible exercise times. A usual approximation is obtained with the Bermudan
option, allowing the option holder to exercise it at equidistant times tm = m�t ,
for m = 0, . . . , M , and �t = T/M . Denoting TB(0, T ) the class of stopping times
satisfying τ = m�t , m ∈ {0, . . . , M}, the value of the Bermudan option is

V B
0 (S0) = sup

τ∈TB (0,T )

E[βτ Xτ (Sτ ) | S0] ≤ V0(S0).

Under mild conditions, V B
0 (S0) converges to V0(S0) when m grows to infinity.

It is also often important to measure the sensitivity of the option price with respect
to some initial conditions. The most common is the Delta, that measures the change
in the option price as a result of a change in the value S0 of the underlying. The other
options valuation variables being constant:

�(S0) = ∂

∂S0
V0(S0),

where we have stressed the dependency of the option value towards the initial asset
value. All the techniques covered in this chapter can be adapted to compute the Delta,
that can be approximated by finite difference, using common random numbers for the
simulation-based methods covered in Sect. 4. While we have computed them during
our numerical experiments, we do not report their value for conciseness.

In the simplest case, the asset value St is often assumed to follow theBlack-Scholes
model, that can be described with the partial differential equation

dSt = r Stdt + σ StdBt , (2)

where r is the risk-free interest rate, σ is the volatility, and Bt is a standard Brownian
motion, and a known initial asset value S0 > 0. The asset price at time t can also be
expressed as

St = S0 exp(ht + σ Bt )

where h = r − 1
2σ

2. Under the Black-Scholes model, it is possible to derive ana-
lytical expressions of the price of simple options, as the European option (see for
instance Higham [23, Chap. 8]). Moreover, we have
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βt = e−r t , β�ti := β�t = e−r�t , for i = 0, . . . , M − 1.

Given the time discretization {ti = i�t, i = 0, . . . , M}, we define the continua-
tion value at time ti as the discounted conditional expectation β�tiE

[
Vi+1(Si+1) | St

]
,

where Vi (Si ) is defined as in (1). As the asset value process is Markovian and exoge-
nous, if the option has not yet been exercised, the option value at time ti is

Vti (Sti ) = max
{
Xti (Sti ), β�tiE

[
Vti+1(Sti+1) | Sti

]}
. (3)

The rationale is to exercise if the exercise price surpasses the continuation value.
However, the continuation value has no analytical expression and must be approxi-
mated. We now review several approaches and compare them on simple examples.

3 Binomial Tree Method

A simple approach to price a single-asset option is the binomial model, introduced
by Cox et al. [16]. At each time step, we assume that the asset value can either go up
by a factor u, with a probability p, or down by a factor d, with a probability 1 − p.
This allows to represent M scenarios with a recombined tree, as in Fig. 1. If the asset
value follows the Black-Scholes model (2), the discretization of the process on the
binomial tree with p = 1

2 leads to set

u = exp

(
σ
√

�t +
(
r − σ 2

2

)
�t

)
, d = exp

(
−σ

√
�t +

(
r − σ 2

2

)
�t

)

(see for instance Higham [23, Chap. 16]). It is then easy to compute the value of
the option on the discretized asset value process by proceeding backward on the
binomial tree. At the expiration date, for n = 1, . . . , M , we set V n

M = (K − SnM)+,

Fig. 1 Binomial tree
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and then, we recursively compute, for 0 ≤ n ≤ i, i = 1, . . . , M − 1,

V i
n = max

{(
K − Sin

)+
, β�t

(
pV i+1

n+1 + (1 − p)V i+1
n

)}
. (4)

Equation (4) can be seen as an approximation of (3), the continuation value being
approximated as the discounted expected value of the two children nodes values. The
American option value V0(S0) is then approximated by V 0

0 .
Several tricks have been proposed to improve the method accuracy. Here we

follow the suggestions made by Broadie and Detemple [11] to construct the binomial
Black-Scholes with Richardson extrapolation (BBSR) method. At the stage M − 1,
the Black-Scholes formula replaces the usual continuation value in (4) by

V i
M−1 = max

{
(K − SiM−1)

+, Kβ�t�(−d2) − SiM−1�(−d1)
}
.

where �(·) is the standard normal cumulative distribution function, with

d1 = ln
(
SiM−1/K

) + �t (r + σ 2/2)

σ
√

�t
, d2 = d1 − σ

√
�t .

They furthermore add a two-point Richardson extrapolation consisting in pricing the
option with M and 2M time steps. Denote by VM and V2M the respective prices. The
approximate option price is then set to V̂0 = 2V2M − VM .

Efforts have also been made to improve the accuracy by using more complex
structures, in particular trinomial trees, but they have not delivered any advantage
over binomial trees [14], and therefore are not considered here.

4 Dynamic Programming Approach

The binomial treemethod provides a simple and effectivemethod for put options on a
single asset following the Black-Scholesmodel (2), andwewill use it as a benchmark
in our numerical experiments. However, the approach cannot be easily extended to
put an option on multiple assets that are not subject to the Black-Scholes model.
The other methods that we consider rely on the dynamic programming principle and
Monte Carlo simulation [21]. The basic idea consists to sample N price trajectories
from the initial asset value S0, by drawing the asset value Sni at time ti , producing the
asset values {S0, Sn1 , . . . , Sni−1}, for i = 1, . . . , M , n = 1, . . . , N , and estimate the
expected continuation values at each time step for each scenario. Given a scenario
and a time stage i , we exercise the option if we obtain a better return value.

We first compute the option value at the expiration date T , for each trajectory
n = 1, . . . , N , as

V̂ n
T (SnM) = (

K − SnM
)+

.
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We then compute estimators of the option value at each time step for each simulated
trajectory, using a backwards recursion. For i = M − 1, . . . , 1, n = 1, . . . , N , we
set

V̂ n
ti (Si ) =

{
Xti (S

n
i ) if Xti (S

n
i ) ≥ Ṽti (S

n
i ),

β�ti V̂
n
ti+1

(Sni ) otherwise,
(5)

where Ṽti (Si ) is an estimation of the continuation value at time ti , given the current
asset value Si , and

β�ti = βti

βti+1

.

We finally build the estimator of the option value V0(S0) as the maximum between
the exercise price at time 0 and the empirical average of the estimated continuation
values over the N simulated trajectories, as

V̂ (S0) = max

{

X0(S0), βt1
1

N

N∑

n=1

V̂ n
1

}

. (6)

The methods differ in the way we compute Ṽti (Si ), i = 1, . . . , M − 1 in (5).

4.1 Regression Methods

Longstaff and Schwartz [33] propose to build a function predicting the continuation
value by assuming that the latter can be expressed as a linear combination of a
countable set of basis functions: for i = 1, . . . , M − 1,

β�tE
[
Vt+�t (Si+1) | Si

] =
∞∑

j=1

α
j
t F

j
t (Si ). (7)

In order to make it computationally feasible, the sum in (7) is truncated to the J first
terms, assuming that the truncation error can be neglected:

β�tE
[
Vt+�t (Si+1) | Si

] ≈
J∑

j=1

α
j
t F

j
t (Si ). (8)

The weights α
j
t are then estimated using a linear regression, i.e. by minimizing the

mean square error
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min
αt

1

#Nt

∑

n∈N

⎛

⎝
J∑

j=1

α
j
t F

j
t

(
Snt

) − β�t V̂
n
t+�t

(
Snt+�t

)
⎞

⎠

2

, (9)

where Nt is the subset of the N simulated trajectories for which the position at time
t is in the money, i.e. for any n ∈ Nt , K > Snt , while for any n ∈ N \ Nt , K ≤ Snt .
This limits the size or the problem to solve, but also reflects that for trajectories
out or at the money at time t , it is always preferable to wait rather than to exercise
the option. Various choices can be made for the basis functions [39]. The simplest
is to fit a multivariate polynomial in the case of an option over a multidimensional
portfolio [21]. For an option over a single asset, we will simply fit a polynomial of
degree d.

The continuation value can also be estimated bymeans ofmachine learning regres-
sion techniques. We first consider the random forest method, a supervised machine
learning algorithm widely used in classification and regression problems and ini-
tially introduced by Ho [24]. We here focus on the main ingredients, referring to
Hastie et al. [22, Chap. 15] for more details. At each time step ti , i = 1, . . . , M − 1,
we generate K bootstrap samples, and for each of them, we construct a regression
tree [27, Chap. 8], aiming to predict the value of the dependent variable, here the
continuation value, as a function of the independent variable, the asset value for each
in-the-money trajectory at the time ti + �t . The approach is similar to the expres-
sion (8), but with a non-parametric model, the weights being replaced by the tree
structure. First, a large tree is obtained bymeans of recursive binary splitting, as each
non-terminal node n is associated with to a subset of the asset values at time ti , and
is split into two children nodes, gathering the values either less or greater than some
value sn, typically the mean of the values associated with to the father node. We stop
when each terminal node has less than some minimum number of observations. The
tree size is then reduced by applying cost complexity pruning, in order to limit the
number of leaf nodes, knowing that more nodes tend to provide a better estimation,
but a greater risk of overfitting. Each terminal node then provides a prediction of the
dependent variable value, i.e. the continuation value, and the predictions are aver-
aged to produce the output of the tree. We can then use this built collection of trees
to compute a set of predictions vkti (S), k = 1, . . . , K , given the asset value S, and
average them to produce the estimation of the continuation value as

Ṽti (S) = 1

K

K∑

k=1

vkti (S).

Another class ofmodels popular inmachine learning are neural networks.Aneural
network is a directed graph where each node represents a neuron, that receives a
number of inputs xi from its direct predecessors and applies an activation function to
produce an output that feeds its direct successors. Several activation functions exist.
We here choose the ReLU function, defined as ReLU (x) = x+, as it guarantees
that only non-negative values are produced. We also limit ourselves to multilayer
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Fig. 2 The architecture of a neural network

perceptions (MLP) [22, Chap. 11], where each neuron receives the output of the
previous layer as input, and its own output is the input of the next layer, as illustrated
in Fig. 2.

At each stage ti , i = 1, . . . , M − 1, we train a neural network by minimizing a
loss function, here defined similarly to (9) as the mean square error minimization
problem

min
γti

1

#Nti

∑

n∈Nti

(
Ṽti

(
γti , S

n
ti

) − β�ti V̂
n
ti+�ti

(
Snti+�ti

))2
, (10)

for the #Nti in-the-money scenarios at stage ti . We then set

Ṽti (·) = Ṽti (γ
∗
ti , ·),

where γ ∗
ti is the optimal solution found when solving (10). The machine learning

architectures have to be trained on a large number of scenarios (we consider 100000
scenarios in our experiments), leading to a significant overhead time. Once trained,
they can be used on several replications of the option pricing problem, as long as the
underlying asset value follows the same process.

4.2 Malliavin Calculus

Fournié et al. [19] express the expected value of the option at time t, conditionally
to the asset value at time s ≤ t , as
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E [Vt (St ) | Ss = α] = E
[
πs,t (Vt (St ), α)

]

E[πs,t (1, α)] (11)

where πs,t (·) are the Malliavin weights, whose expressions vary according to the
asset value process. Under the Black-Scholes model (2), Bally et al. [2] show that

πs,t (ξ, α) = ξH(Ss − α)

σ s(t − s)Ss
�Bs,t ,

where �Bs,t = t Bs − sBt + σ s(t − s), and H(·) is the Heaviside step function,
defined as H(�) = 1(�≥0), 1 representing the indicator function. They further refine
the computation of the conditional expectation (11) by introducing a density function
ψ parameterized by x ≥ 0, referred as the localization function, leading to

E[Vt (St ) | Ss = α] = T
ψ
s,t (Vt (St ), α)

T
ψ
s,t (1, α)

(12)

with

T
ψ
s,t (ξ, α) = E[ξψ(Ss − α)] + E

[
ξ
H(Ss − α) − �(ξ, Ss − α)

σ s(t − s)Ss
�Bs,t

]
,

where �(x, �) = ∫ �

−∞ ψ(x, y)dy is the cumulative distribution function associated
toψ(x, ·).We follow their suggestion and consider in our numerical experimentation
the Laplace-type probability distribution function

ψ(x, y) = λ(x)

2
e−λ(x) |y| (13)

where λ(x) = 1/
√
t − s.

Bally et al. [3] adapt the algorithm proposed by Lions andRégnier [32] and using a
backwards recursion, they approximate the N continuationvaluesE[Vti+1(Si+1) | Si =
Sni ], n = 1, . . . , N , at time ti , by taking the empirical sample averages of the expec-
tations appearing in the right hand sides of (11) and (12) over the N simulated asset
price trajectories. Ignoring the localization function for simplicity of exposition, the
estimated discounted continuation value is

Ṽti (S
n
i ) = π̂ti ,ti+1(V̂ti+1 , S

n
i )

π̂ti ,ti+1(1, S
n
i )

,

with
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π̂ti ,ti+1(V̂ti+1 , S
n
i ) = 1

N

N∑

q=1

V̂ q
ti+1

(Sqi+1)H
(
Sqi − Sni

)

σ ti�t Sqi
�Bq

ti ,ti+1
,

π̂ti ,ti+1(1, S
n
i ) = 1

N

N∑

q=1

H
(
Sqi − Sni

)

σ ti�t Sqi
�Bq

ti ,ti+1
,

where �Bq
ti ,ti+1

is obtained from the draws generating the q th asset value path. The
computational effort required at each time step is therefore of order O(N 2).

5 Control Variates

The convergence properties of the Longstaff and Schwartz’s algorithm have been
studied in details [15]. In essence, when N and M grow to infinity, (6) converges
to a lower bound of the American option value. The quality of this bound can be
refined and made arbitrarily close to the true value by improving the accuracy of the
approximations Ṽt (·), t ∈ cT , especially by letting J rise to infinity in (8). However,
for finite N , M , and J , the error can be large and the estimator (6) can present
a significant noise. If M is too small, the number of opportunities to exercise the
option is limited and we tend to underestimate the option value, while if N is not
large enough, we face the risk of overfit the policy with respect to the simulated
trajectories, and to overestimate the option value. The quality of the estimator (6)
can be improved by applying variance reduction techniques [6, 30], among which
control variates have received a lot of attention for option pricing. Given an estimator
X , the basic idea is to find an random variable Y whose expectation is known, and
highly correlated with X . We then form the new estimator Z = X − θ(Y − E[Y ]).
If θ is fixed, E[Z ] = E[X ] and Var[Z ] = Var[X ] + Var[Y ] − 2θ Cov(X,Y ). The
variance of Z can be minimized by choosing

θ = Cov(X,Y )

Var[Y ] .

θ can be estimated using pilot experiments, but more often, an estimator will be
produced using the same draws as those used to generate X and Y , so that Z is
biased, but usually, this bias is negligible. When θ is set to one, we say that Z is an
indirect estimator, noticing that several authors still speak about control variate [3,
13, 25].

It is often possible to accurately estimate the price of a European option. When
the asset value follows a simple process, as in the Black-Scholes model, it is even
possible to derive it analytically. This suggests to use the European price estimator
V̂ E
0 = βT (K − ST )+ as a control variate for theAmericanoption price estimator [25].

Its performance is however disappointing, and several authors have searched for
better candidates [8, 18]. Rasmussen [39] notices that an early exercise produces a
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value whose correlation with the corresponding European option price degrades as
the expiration date is later in the future. He then suggested to use as a control variate
for the continuation value a European option emitted at the candidate exercise time
of the American option. Indeed, the optional sampling theorem establishes that for
any scenario n, the exercise value at T is an unbiased estimator of the price of the
European option emitted at the exercise time τn of the American option under this
scenario, and at time 0 if the American option is never exercised.

In order to apply this control variate, we first initialize the estimator of the Euro-
pean option at the expiration date T as V E,n

T = Xn
T (SnT ). Going backwards, for

i = M − 1, . . . , 1, in addition to Ṽti (S
n
i ), we produce an estimator Ṽ E

ti (Sni ) of the
value of the European option emitted at ti and expiring at T , for n = 1, . . . , N , using
the same estimation technique. We also estimate the second moment of this estima-
tor and its covariance with the continuation value estimator, in order to get θn

ti . We

then replace Ṽti (S
n
i ) by Ṽti (S

n
i ) − θn

ti (Ṽ
E
ti (Sni ) − V E

ti (Sni )) to estimate the continua-
tion value at time ti for the scenario n. At time 0, the European option theoretical
price is computed for each scenario, using the exercise time of the American option
as the emission date of the European option, and a time 0 if is never exercised, leading
to the new American option price estimator

Ẑ0 = max

{

X0(S0),
1

N

N∑

n=1

(
βt1 V̂

n
1 − θ0

(
βτn V

E,n
τn

(Snτn ) − V E
0 (S0)

))
}

,

where τn is set to T if the option is never exercised in the scenario n. For more
implementation details, we refer the reader to West [42, Chap. 3].

6 Numerical Experiments

We now evaluate the presented methods to estimate the price of American options.
Similar results have been obtained for the Delta, but are not reported as they bring
similar conclusions. As a convention, we abbreviate the method name by LS for
the Longstaff and Schwartz’s algorithm, RF for the Random Forests, NN for the
Neural Networks, and Malliavin for the estimation based on Malliavin calculus. The
experiments have been conducted using Python 3.9 and numpy and sklearn libraries,
on an Intel i7-9700Kat 3.60GHz, eight cores, and32Goofmemory.Randomnumbers
have produced using the xoshiro pseudo-random generator [7]. Similar results have
been obtained with theMRG32k3a generator [29]. We followed Bally et al. [2] when
implementing the Malliavin calculus approach, using the localization function (13)
and a pointwise indirect estimation for the computation of the continuation value,
based on the European option value emitted at the exercise time. Results obtained
with indirect estimation are identified with the postfix “-I”, and with the suffix “-
CV” for those produced with the Rasmussen’s control variates. The implementation
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code is available at https://github.com/RaulChavezAquino/Monte-Carlo-methods-
for-pricing-American-Options.

We first consider an American put option on the stock price process S with param-
eters S0 = 100, K = 100, σ = 0.20, r = ln(1.1), T = 1, taken from Bally et al. [3].
The binomial tree gives us a reference option value of 4.9175.

We report the estimation time as a function of M and N for each technique in
Fig. 3. The MLP models have been trained using sklearn and the solver ADAM. For
each time discretization factor M = (10, 20, 50, 100, 500), we use (2, 2, 2, 3, 3, 3)
hidden layers and (10, 20, 50, 25, 50, 70) neurons per layer, respectively, those con-
figurations having been selected by trial and error. The random forests have been
trained with 10 trees and a maximum number of leaves equal to 15. The machine
learning models have been trained by 100000 scenarios, but the training time is
not taken into account in these graphs, while it affects the overall performance. For
the random forests, we observed an overhead due to the training going from 10s
for (M, N ) = (10, 500) to 235s for (M, N ) = (200, 10000). We have also empir-
ically observed that this overhead approximately grows linearly with M , but does
not significantly change with N . MLP models required a large training time, and we
stopped the computations when it exceeded 2h. As a result, we only report results
for M = 10 and M = 20 with the neural networks. From Fig. 3, we observe that
LS is the fastest method while Malliavin calculus requires prohibitive times. The
effect could be exacerbated due to the use of Python, an interpreted programming
language, but we observe that the computation time rises at a rate faster than a linear
rate with the number of scenarios, as expected, while the other approaches exhibit
an computation time that grows approximately linearly with N .

We next analyze in more details the performances of the methods when we vary
N and M , for the naive estimator, the indirect estimator, and the estimator with the
control variate. For each configuration, we repeat the valuation 1000 times, and draw
a box plot over these replications. Figures4 and 5 show the behavior of LS and RF
methods, respectively, where we fix N = 5000 on the left part and M = 100 on the
right part. When M is small and N is kept constant, we tend to underestimate the
option value, but we can face some overfit whenM is largewith LS.On the other side,
fixing M reveals a large overfit for small values of N with LS, but a convergence to
a lower bound of the option price when N grows. Several configurations were tried
with the random forests. The two upper graphs in Fig. 5 have been obtained with
50 trees and a maximum number of leaves of 20, while the two lower graphs have
been computed with 90 trees and a maximum of 100 leaves. We see that the random
forests always underestimate the true price, and the effect can be dramatic with the
naive estimator when we have many leaves. However, applying variance reduction
techniques allow to obtain good price estimators, and the estimators obtained with
100 leaves are close to the ones obtained with the least-squares approach. Large
random forests therefore appear very sensitive to the variance in the asset price
trajectories, andmore research is needed to properly explain themethod behavior, and
to automatically choose the best design. Reducing the variance nevertheless allows
the random forests to be competitive, and they represent an alternative method to
parametric regression that we plan to further investigate. Of course, the option value
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Fig. 3 Estimation time (s)
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can also be computed during the training phase of the model, and for large M and
N , random forests deliver good price estimation, even with a simple configuration
of 10 trees and a maximum of 15 nodes used to produce the results reported in
Table1, computed over one run, wherewe additionally report in brackets the standard
deviation over the N simulated trajectories.

We finally illustrate theMLPmodel with N = 1000, M ∈ {10, 20, 50, 100, 200},
and the Malliavin calculus, with M = 100, and N going from N = 100 to 20000,
in Fig. 6. In both cases, the computational burden prevented us to perform more
experiments.We first observe that theMLPmodel strongly underestimates the option
value, the control variate performing better than the naive estimator, but less than
the indirect estimation, that is still far from the quality obtained with the LS and
RF approaches. Better MLP designs could improve the results, but we do not have
an automatic way to find a good MLP structure. On the other hand, the Malliavin
calculus gives good price estimation when the number of scenarios is at least equal

Fig. 4 Least-squares regression

Fig. 5 Random forests
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Table 1 American option value with RF

M N RF RF-I RF-CV

10 10000 4.89 (6.01) 4.82 (1.36) 4.82 (0.65)

100000 4.71 (5.99) 4.82 (1.36) 4.82 (0.64)

20 10000 4.90 (5.99) 4.87 (1.38) 4.86 (0.60)

100000 4.77 (5.91) 4.86 (1.38) 4.86 (0.61)

50 10000 4.98 (5.97) 4.92 (1.40) 4.89 (0.58)

100000 4.85 (5.89) 4.91 (1.41) 4.89 (0.58)

200 10000 5.04 (5.81) 4.92 (1.38) 4.90 (0.56)

100000 4.89 (5.68) 4.92 (1.37) 4.90 (0.55)

Fig. 6 Neural networks (left) and Malliavin-I (right)

to 5000. However, the LS and RF models already perform well with N = 1000, and
therefore, on this example, the Malliavin calculus does not provide any advantage.

We finally report the estimated American option values on five real stocks, whose
characteristics are reported in Table2. The data were obtained from Quandl, now
replaced by Data Nasdaq Link (https://data.nasdaq.com/). We first compute the
option value for N ∈ {500, 1000, 5000, 10000, 20000} and M ∈ {10, 20, 50, 100,
200, 500}, using the LS, RF, and NN approaches. We do not report results with the
Malliavin calculus due to the required computational time to produce them. From
Fig. 7, showing all the options except GOOG due to scale difference, we see that
pure LS method delivers better results than RF, which itself performs better than
NN. However, all the methods provides similar results, close to the true option price,

Table 2 Real data characteristics
Stock V0 S0 K T r σ Trade Date Maturity Name

AAPL 8.65 113.700 100.0 1.17808 0.0086 0.310016 2015-11-17 2017-01-20 Apple

BIIB 13.00 279.095 200.0 1.17808 0.0086 0.412166 2015-11-17 2017-01-20 Biogen

GOOG 135.70 726.160 860.0 0.06575 0.0007 0.410721 2015-11-17 2015-12-11 Google

MSFT 17.75 53.020 80.0 0.41096 0.0034 0.424071 2015-11-17 2016-04-15 Microsoft

SBUX 10.25 60.620 70.5 0.06575 0.0007 0.462461 2015-11-17 2015-12-11 Starbucks
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Fig. 7 Real option data comparison
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Table 3 Estimated option prices, N = 5000, M = 100

Stock LS LS-I LS-CV RF RF-I RF-CV

APPL 8.14 (11.69) 8.07 (0.08) 8.07 (0.04) 7.88 (11.47) 8.07 (0.08) 8.06 (0.03)

BIIB 13.53 (26.15) 13.23 (0.11) 13.23 (0.05) 13.63 (24.87) 13.23 (0.11) 13.21 (0.04)

GOOG 136.33 (48.00) 135.72 (0.01) 135.72 (0.01) 134.02 (16.84) 135.72 (0.01) 135.71 (0.01)

MSFT 27.61 (8.91) 27.41 (0.02) 27.41 (0.01) 27.09 (4.36) 27.41 (0.02) 27.39 (0.01)

SBUX 10.46 (5.90) 10.25 (0.00) 10.25 (0.00) 10.01 (2.34) 10.25 (0.00) 10.25 (0.00)

as soon as indirect estimation or control variates are used, even for small values of
M and N . The time required to train the neural networks prevented us to report the
MISFT value for N greater than 10000 and M greater than 100. In order to better
assess the effect of variance reduction, we finally report in Table3 the option values
averaged over 5000 simulated paths, along with the standard deviations in brackets,
and M = 100. Indirect estimation and control variates again dramatically reduce the
standard deviations.

7 Conclusion

American options valuation has been an active research topic for more than three
decades, andmany approaches have been proposed to tackle it.We have reviewed and
compared a few of them, from the least-squares Monte Carlo method [33] to Malli-
avin calculus andmachine learning techniques, on simple examples.While providing
accurate results, Malliavin calculus exhibited a large computational burden in addi-
tion to the theoretical difficulties to derive the weights, and for practical purposes,
it is outperformed by traditional regression techniques. Advanced machine learning
techniques, such as neural networks, require careful designs and more research is
needed to validate and automatically select them. In particular, we were not able to
obtain satisfying results with multilayer perceptions, while random forests deserve
more investigation as well selected structures brought promising results. In both
cases, we must face higher calibration costs, requiring a large number of scenar-
ios, but option value can also be estimated during this phase, and the computational
effort remains reasonable for random forests. Least-squaresMonte Carlo approaches
performed remarkably well, but we must keep in mind that we reported results on
simple examples only. Variance reduction techniques, illustrated by the control vari-
ates proposed by Rasmussen [39], appeared to be a crucial ingredient in any of the
investigated methods, dramatically improving the results, at a negligible cost.

We nevertheless must remain cautious as more experiments should be performed
on more complex situations, including high-dimensional options and value prices
with stochastic volatility of jumps. While the Greeks can be estimated by finite
difference, specific techniques have been proposed and could also be considered [26].
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Some authors [4] suggest that deep learning approaches help to avoid the curse of
dimension. However, it is often difficult to collect enough data to accurately calibrate
such models and simulation, along with simplifying assumptions on the assets prices
processes, remains a key tool.Carefully designedvariance reduction techniques allow
the estimation of the option price with a limited number of simulated assets price
trajectories, and classical parametric regression techniques appear more robust than
complexmachine learningmodels that often require a large number of simulations to
calibrate, and can underperform if their design is not well selected. We have focused
on control variates, but other variance reduction methods, as scenario bundles [26],
multilevel Monte Carlo [5], or quasi-Monte Carlo sampling [17], should be also
considered, especially as such techniques can be combined [31].
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Remarks on Lévy Process Simulation

Søren Asmussen

Abstract Algorithms for simulation of a Lévy process X (t) are discussed, with
particular emphasis on two algorithms approximating jumps that are in some sense
small. One is classical, defining small jumps as those of absolute value <ε. The
other one appears to be new and relies on an completely monotone structure of the
Lévy density n(x). One then truncates the representing measure of n(x) to [0, A],
meaning that jumps of mean <1/A are left out. In both algorithms, the large jump
part is simulated as compound Poisson and the small jumps are approximated. The
standard choice of such an approximation is normalwith the samemean and variance,
but we also consider gamma approximations in two variants, and show that in some
cases these perform substantially better. Other algorithms are briefly surveyed andwe
sketch a new one for simulation of a tempered stable (CGMY) process with infinite
variation.

Keywords Acceptance-rejection · Complete monotonicity · Conditional Monte
Carlo · Lévy measure · Tempered stable process

1 Introduction

A Lévy process X (t) has the structure X (t) = at + σW (t) + J (t) where W (t) is
standard Brownian motion (BM) and J (t) an independent pure jump process (see
further below). This class of processes has been used in numerous application areas,
of which we in particular mention finance [14, 35] and queueing [15].

Calculations for a Lévy process are, however, in general more difficult than for
BM, and an abundance of expressions that are explicit for BM are not so even in
the most popular parametric Lévy models. Simulation of X (t) is therefore one of
the main computational tools. For example in finance, it is most often the simplest
vehicle for evaluating option prices of the form
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E�
(
X (0 : T )

)
(1)

where T is the maturity time, X (0 : T ) stands for the whole path
{
X (t)

}
0≤t≤T , and

� is a suitable path functional.
The simulation of the at + σW (t) component is straightforward, so we assume

that X (t) is a pure jump process. The main characteristic of such a process is its
Lévy measure ν, which with a few exceptions we throughout assume absolutely
continuous with density n(x) ≥ 0. Conditions needed on ν are

∫
|x |>ε

ν(dx) < ∞
and

∫
|x |≤ε

x2ν(dx) < ∞ for some (and then all) ε > 0. The process is said to have
finite activity if λ = ∫

R
ν(dx) < ∞ and is then a compound Poisson process with

Poisson rate λ and density n(x)/λ of the jumps. Sample paths of X (t) are of finite
variation if and only if

∫
|x |≤ε

xν(dx) < ∞. The picture is roughly that jumps in
[x, x + dx) occur at Poisson rate n(x) dx and independently for different values of
x . In the infinite variation case, X (t) is, however, only completely specified by n(x)
up to a drift term (see further Sect. 2). The process is called spectrally positive or
negative if n(x) ≡ 0 for x < 0, resp. x > 0; otherwise, we refer to it as two-sided.
In finance, the most popular classes of jump processes are the NIG (Normal Inverse
Gaussian), tempered stable (TS or CGMY), VG (Variance Gamma) and Meixner
ones, and we survey these in Sect. 3.

Exact simulation of the whole path X (0 : T ) is obviously impossible due to the
presence of infinitely many jumps of the process. One could hope that one can per-
form exact simulation of X (T ) for any given T and thereby a discrete skeleton
X (h), X (2h), . . . for any h. As surveyed briefly in Sect. 8, this is simple for VG,
with a little added effort also possible for NIG and CGMY with finite variation,
and presumably possible but quite tedious for Meixner. In general, this is however
not feasible and we focus on two approximative alternatives. They both consist in
simulating the finite number of jumps which are in some sense “big” as a compound
Poisson process, and replacing the infinity of the remaining “small” ones with an eas-
ily simulated approximation. The path X (0 : T ) can then by obtaining by assigning
i.i.d. uniform [0, T ] location to the jumps and possibly filling in some information
provided by the particular form of the approximation. The first of these approaches
is classical and widely applied, and simply defines the big jumps as those of absolute
value > ε; we refer to this as the ε-algorithm. These jumps are those coming from
the part of ν concentrated on {|x | > ε}. By definition, this is a finite measure and
so the corresponding contribution to X can be simulated as a compound Poisson
process. The second approach, which does not appear to have been considered in the
simulation literature, relies on a completely monotone (CM) structure

n(x) =
∫ ∞

0
e−xt V (dt) =

∫ ∞

0
e−xtv(t) dt (2)

of the Lévy density where V is a Radon measure with density v. This holds in many
main examples and represents the jumps as an infinite mixture of exponential(t)
jumps with the rate t having weight v(t)/t (see further Sect. 5). The compound
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Poisson part is then obtained by restricting V to (0, A) for some A < ∞, meaning
that exponential jumps with mean < 1/A are left out. We refer to the method as
the CM-algorithm. In both approaches, the computational effort as measured by the
Poisson mean goes to infinity as ε → 0, resp. A → ∞. As for the approximation
of the small jump part, the standard choice in the ε-algorithm is a normal with
the same mean and variance and is substantiated in [6] by a limit result as ε → 0
(further relevant references pertaining to this are [16, 37]). However, we shall also
consider gamma alternatives in 2–3 variants and illustrate by examples that these
perform at least as well, in some cases even convincingly better. Doing so, our point
of view is largely empirical: for the practitioner, comparison of approaches as ε → 0
matters less than performance for ε so moderate that the computational effort is
within reach. As ε → 0, the small jumps contribute less, and hence limit results
become less relevant. Similar remarks apply to the CM-algorithm. We also point out
that in some types of applications, the approximation of the small jumps need not
necessarily be simulated, but instead it may be used via conditional Monte Carlo for
providing smooth density estimates and variance reduction.

2 Lévy Processes

For the general theory of Lévy processes, see e.g. [33] and [10]. A jump process
is constructed from a Poisson random measure L(dt, dx) on (0,∞) × R/{0} with
intensity measure dt ⊗ ν(dx). In the finite variation case

∫ |x | ν(dx) < ∞, one has

X (t) =
∫

s≤t, x∈R
x L(ds, dx) , κ(θ) =

∫ ∞

−∞

(
eθx − 1

)
ν(dx) (3)

at least for 	(θ) = 0 and in our examples in a strip containing the imaginary axis.
Here κ(θ) = logEeθX (1) is the so-called Lévy exponent or cumulant function. In the
infinite variation case, there are toomany small jumps for these integrals to converge.
Instead, so-called compensation is needed and consists in appropriate centerings and
limits. Traditionally, jumps of absolute size < 1 are centered, which leads to

X (t) = at + lim
ε→0

{∫

s≤t, ε<|x |<∞
x L(ds, dx) − t

∫

ε<|x |≤1
x ν(dx)

}
, (4a)

κ(θ) = a +
∫ ∞

−∞

(
eθx − 1 − θxI(|x | ≤ 1)

)
ν(dx) (4b)

for some a. Obviously, taking 1 as truncation point is arbitrary, and other choices
lead to different values of a. If the mean EX (1) = κ ′(0) is finite, it may be more
convenient to center all jumps, and one then has
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X (t) = tκ ′(0) + lim
ε→0

{∫

s≤t, |x |>ε

x L(ds, dx) − t
∫

|x |>ε

x ν(dx)

}
, (5a)

κ(θ) = κ ′(0) +
∫ ∞

−∞

(
eθx − 1 − θx

)
ν(dx) . (5b)

The cumulants κk of X (1) are given as the kth derivatives κ(k)(0) of κ(θ) at θ = 0.
In particular, κ1 = EX (1), κ2 = Var X (1), and the skewness and (excess) kurtosis
are κ3/κ

3/2
2 , resp. κ4/κ2

2 . For k ≥ 2, one alternatively has

κk =
∫ ∞

−∞
xk ν(dx), (6)

and this expression is also valid for k = 1 in the finite variation case.

3 Main Examples

In the absolutely continuous case, define the Lévy density n(x) = dν(x)/dx as the
density of the Lévy measure w.r.t. Lebesgue measure.

The NIG process [9] has parameters α, δ > 0, β ∈ (−α, α) and μ ∈ R. The Lévy
density is

n(x) = αδ

π |x |K1
(
α|x |)eβx , x ∈ R, (7)

where as usual K1(z) denotes the modified Bessel function of the third kind with
index 1. The cumulant function and the density of X (1) are, respectively,

κ(s) = μs + δ
(√

α2 − β2 −
√

α2 − (β + s)2
)

, α − β < 	(s) < α + β ,

αδ

π
exp

{
δ
√

α2 − β2 + β(x − μ)
}K1

(
α
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

.

The Meixner (MX) process [18, 28, 35] has parameters a, d > 0, b ∈ (−π, π)

and m ∈ R. The Lévy density is

n(x) = d
exp{bx/a}

x sinh(π |x |/a)
= 2d

exp
{
bx/a − π |x |/a}

|x |(1 − exp{−2π |x |/a}) . (8)

The cumulant function and the density of X (1) are, respectively,
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κ(s) = 2d log
(
cos(b/2)

) − 2d log
(
cos(as + b)/2)

) + ms , π+b
a < 	(s) < π−b

a ,

(2 cos(b/2))2d

3aπ(2d)
eb(x−m)/a

∣∣(d + i(x − m)/a)
∣∣2 . (9)

For the tempered stable (TS) process [3, 12, 24]

n(x) = δ±e−β±|x |/|x |α±+1 (10)

where δ+, β+ are for x > 0 and δ−, β− for x < 0. When δ+ = δ−, α+ = α−, the TS
process goes under the acronym CGMY process in particular in finance, where the
traditional notation is δ+ = δ− = C ,α+ = α− = Y ,G instead ofβ− andM instead of
β+. Cf. the author names in [12]! In terms of the positive jumps, α+ < 0 corresponds
to a compound process,α+ = 0 to a gammaprocesswhere X (1) is gammadistributed
with shape parameter δ+ and rate parameter β+, 0 < α+ < 1 to infinite activity but
finite variation, and 1 ≤ α+ < 2 to infinite variation. The cumulant function is

κ(s) = δ−(−α−)
(
(β− + s)α− − β

α−−
) + δ+(−α+)

(
(β+ − s)α+ − β

α++
)
, (11)

−β− < 	(s) < β+. Here and at other places in the theory, exceptions apply when α+
or α− or both equals 0 or 1. The case α+ = α− = 0 is the VG process (the difference
between two gamma processes).

Starting from [12, 13], the density of X (1) in the TS process has traditionally
been computed by Fourier inversion via (11). However, it is pointed out in [3] that
the density can be expressed as

f (x) = exp{−βx − δ(−α)βα} f0(x) (12)

where f0 is the density of a strictly α-stable distribution Sα(σ, 1, 0) distribution with
σ = (−δ(−α) cos(πα/2)

)1/α
. See also [27, 30]. Given the availability of software

for stable distributions, (12) provides an easy approach to numerical computations.
In all these examples, one has

n(x) ∼ δ

x1+α∗ as x ↓ 0 (13)

for some δ and some α∗ ∈ [0, 2) (subject to this, α∗ is sometimes referred to as
the Blumenthal-Getoor index). In fact, for TS this holds since e−βx → 1, whereas
one has α∗ = 1 for NIG and MX, as follows from known asymptotics of K1, resp.
1 − exp{−2πxa} ∼ 2πx/a.
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4 The ε–Algorithm

Typically, the positive and negative jumps are simulated separately, so we consider
only the spectrally positive case in the following.

When truncating the jumps to [ε,∞), the exactly simulated compound Poisson
part of X (1) is Xε,∞(1) = ∑N

1 Yn(ε) where N is Poisson λ(ε) and Y1(ε),Y2(ε), . . .
are i.i.d. with density g(x; ε) with

λ(ε) =
∫ ∞

ε

n(x) dx , g(x; ε) = n(x)

λ(ε)
, ε < x < ∞.

Some approximation X̂0,ε(1) of jumps of value < ε is then used, and one returns the
r.v. X̂0,ε(1) + Xε,∞(1). For these approximations, one typically needs the cumulants
of X0,ε(1) which according to (6) are κk;0,ε = ∫ ε

0 xk ν(dx) if either k ≥ 2 or k ≥ 1
and the process has finite variation; in the infinite variation case, κ1;0,ε = 0 subject
to (5a). In practice,

∫ ε

0 xk ν(dx) is seldom explicit, but needs to be evaluated by
numerical integration. Alternatively, one may note that subject to (13), one has

κk;0,ε =
∫ ε

0
xk ν(dx) ∼ δ

εk−α∗

k − α∗ if α∗ < 1, k ≥ 1 or 1 ≤ α∗ < 2, k ≥ 2. (14)

The most naive choice is X̂0,ε(1) ≡ 0. However, it was suggested in [11] and [32]
to take X0,ε(t) as a BM with fitted mean and variance when ε < 1. Supporting limit
theorems were given in [6], establishing the validity of this procedure when X is
not too close to the finite activity case

∫
ν(dx) < ∞ and ν satisfies some weak

smoothness conditions (a simple proof under the stronger condition (13) follows
by paralleling the proof of Proposition 3 below). We shall here suggest gamma
alternatives in two variants.

Recall that the gamma distribution with shape parameter r and rate param-
eter b has density br xr−1e−bx/(r) and cumulant function log

(
b/(b − z)

)r =
−r log(1 − z/b) with kth derivative r(k − 1)!b−k(1 − z/b)−k . Thus the kth cumu-
lant is κk = r(k − 1)!/bk ; in particular the skewness is (2r/b3)/(r/b2)3/2 = 2r−1/2.
Given a distribution or a set of data with cumulants κ#

k , the most obvious possibility
is to fit the mean and variance which leads to

b = κ#
1

κ#
2

, r = bκ#
1 = κ#

1
2

κ#
2

. (1)

One could also consider a three-parameter gamma family by allowing a shift m, and
fitting the mean, variance and skewness then gives

r = 4κ#
2
3

κ#
3
2 , b =

√
r

κ#
2

= 2κ#
2

κ#
3

, m = κ#
1 − r

b
. (2)
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Note that for a Lévy process, (1) does not make sense in the infinite variation case
since then κ1;0,ε = 0 subject to (5). For a subordinator (a spectrally positive process
with a non-negative linear drift), (2) may be controversial because it may destroy
the property of the process being non-decreasing. The normal approximation has the
same problem, but not (1). Both of (1), (2) asymptotically agree with the normal
approximation as ε ↓ 0. This follows since (14) implies that b → ∞ in both cases,
which implies a gamma distribution to be asymptotically normal.

Efficiently generating r.v.’s from the density g(x; ε) = n(x)/λ(ε), x > ε may not
always be trivial. However, a general set-up covering many examples is

(n1n2) n(x) = n1(x)

n2(x)
for x > 0 with n1(x) strictly decreasing, n

′
2(x) > 0,

n1(x) integrable on (x0, ∞) and 1/n2(x) on (ε, x0) for all 0 < ε < x0 < ∞.

In the TS situation, n1(x) = de−βx , n2(x) = x1+α; for the positive jumps of MX,
one may take n1(x) = 2d exp

{
bx/a − πx/a

}
, n2(x) = x

(
1 − exp{−2πx/a}); etc.

Even for the TS case, the c.d.f. of g(x; ε) is not explicitly available. Thus inversion
is not feasible and acceptance-rejection (A-R) seems the reasonable approach. What
suggests itself is to either use the exponential(β) distribution on (ε,∞) as proposal
and reject w.p. proportional to 1/x1+α , or to use the Pareto(α) distribution on (ε,∞)

as proposal and reject w.p. proportional to e−βx . However, the first procedure would
lead to a high rejection rate for small or moderate x , and the second for large or
moderate x . So, a reasonable compromise is to choose some threshold x0 and use
the Pareto proposal on (ε, x0) and the exponential on (x0,∞). An equivalent formu-
lation is to decompose Xε,∞ into two compound Poisson terms, one having jumps
in (ε, x0] and the other having jumps in (x0,∞). Note that the proposal on (ε, x0) (a
truncated Pareto) is easily simulated by inversion as

(
1/εα − αμ2(x0)U

)−1/α
with

U uniform(0, 1), cf. [4, p. 39].
In order to analyze this A-R procedure in the general set-up of (n1n2), define for

a fixed ε > 0

λ1(x0) =
∫ x0

ε

n(x) dx , μ1(x0) =
∫ x0

ε

1

n2(x)
dx , C1(x0) = n1(ε)μ1(x0)

λ1(x0)
,

λ2(x0) =
∫ ∞

x0

n(x) dx , μ2(x0) =
∫ ∞

x0

n1(x) dx , C2(x0) = μ2(x0)

λ2(x0)n2(x0)
.

The target distributions are then

f1(x) = n1(x)

λ1(x0)n2(x)
, ε < x < x0, and f2(x) = n1(x)

λ2(x0)n2(x)
, x0 < x < ∞,

and the proposals are

g1(x) = 1

μ1(x0)n2(x)
, ε < x < x0, and g2(x) = n1(x)

μ2(x0)
, x0 < x < ∞.
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Then f1(x) ≤ C1(x0)g1(x) and f2(x) ≤ C2(x0)g2(x), and we may use A-R with
acceptance probabilities

f1(x)

C1(x0)g1(x)
= n1(x)μ1(x0)

λ1(x0)C1(x0)
,

f2(x)

C2(x0)g2(x)
= μ2(x0)

λ2(x0)C2(x0)n2(x)

for r.v. generation from f1, resp. f2. This gives expected numbers C1(x0), C2(x0)
of samplings from g1(x), resp. g2(x), and as measure E(x0) of the computational
effort, we shall use the total number of these samplings, i.e.

E(x0) = λ1(x0)C1(x0) + λ2(x0)C2(x0) = n1(ε)μ1(x0) + μ2(x0)

n2(x0)
.

Of course, if the costs to generate from g1(x), resp. g2(x) are very different, E(x0)
needs to be reflected to reflect this disparity.

Proposition 1 Consider the function E(x0), ε ≤ x0 ≤ ∞, If n′
2(x0)/n2(x0) → 0 as

x0 → ∞, then E(x0) attains its minimum for some ε < x∗
0 < ∞ satisfying ψ(x∗

0 ) =
0 where ψ(x0) = n2(x0)

(
n1(ε) − n1(x0)

) − μ2(x0)n′
2(x0). In particular, for the TS

case x∗
0 is the unique solution in (ε,∞) of

x∗
0 (e

β(x∗
0−ε) − 1) = 1 + α

β
. (15)

Proof We have d
dx0

E(x0) = ψ(x0)/n2(x0)2. Here ψ(ε) = −μ2(ε)n′
2(ε) < 0.

As x0 → ∞, we have lim inf
(
n1(ε) − n1(x0)

)
> 0 and μ2(x0) → 0, and so

n′
2(x0)/n2(x0) → 0 impliesψ(x0) > 0 for all large x0. This gives the first part of the

result. For the second on the TS case, we get

ψ(x0) = x1+α
0 (de−βε − de−βx0) − d(e−βx0/β) · (1 + α)xα

0 .

Multiplying by e−βx0 and rearranging shows that ψ(x∗
0 ) = 0 is the same as (15). For

uniqueness of the solution, note that the l.h.s. of (15) is strictly increasing in x∗
0 with

limits 0 at x∗
0 = ε and ∞ at x∗

0 = ∞. �

5 Using Complete Monotonicity Structure

Again, we consider only the spectrally positive case and assume the Lévy measure
n(x) to be completely monotone in the sense of (2). We refer to the measure V (dt)
as the reference measure and to v(t) as the reference density. See, e.g., [34] for
background on complete monotonicity and a huge list of examples. Motivation and
financial examples are in [12, 19, 21].
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Example 1 We check here that complete monotonicity holds in our main examples.
We use the rule that if m(x) is completely monotone with reference density v(t),
t > 0, then e−βxm(x) is completely monotone with reference density v(t − β) for
t > β and = 0 for 0 < t < β.

In the NIG case, this rule together with the standard formula K1(x) =
x

∫ ∞
1 e−xt (t2 − 1)1/2dt and elementary substitutions gives the expression

v(t) = δ

π

√
(t + β)2 − α2 , t > α − β,

for the reference density for the positive part of the Lévy measure. For MX, let
χ(t) = �t� be the step function equal to n + 1 for t ∈ (n, n + 1]. Then

1

1 − e−x
= 1 + e−x + e−2x + · · · = 1 − e−x + 2(e−x − e−2x ) + 3(e−2x − e−3x ) + · · ·

=
∞∑

n=0

(n + 1)x
∫ n+1

n
e−xt dt = x

∫ ∞

0
e−xtχ(t) dt

which gives

v(x) = 2d χ
(
a(t − π/a + b/a)/(2π)

)
, t > π/a − b/a.

Finally for the TS case, it is shown in [12] that v(t) = δ(t − β)α/(1 + α), t > β,
which in turn is an easy consequence of

∫ ∞
0 e−xt tα dt = (1 + α)/x1+α . ♦

In all three examples, the reference density v(t) grows at rate tα
∗
as t → ∞,

with α∗ as in (13). This is in fact no coincidence since Feller’s Tauberian theorem
[17, p. 445] implies that V (t) = ∫ t

0 v(s) ds ∼ δt1+α∗
/(2 + α∗). Hence by formal

differentiation,

v(t) ∼ δ(1 + α∗)tα
∗
/(2 + α∗) = δtα

∗
/(1 + α∗). (16)

We stress that this is formal: the known rigorous result in this direction requires
(beyond existence of v) that v is monotone, cf. [36]. However, we shall take (16) as
an assumption for the further developments to follow.

In the following, we use that (2), (6) and Fubini’s theorem give the representation

∫ ∞

0
xkn(x) dx =

∫ ∞

0

(∫ ∞

0
xke−t x dx

)
v(t) dt =

∫ ∞

0

k!
t k+1

v(t) dt (17)

of the cumulants for k = 0, 1, . . . As in Sect. 4, we decompose the Lévy density n
into two components, here taken as

n0,A(x) =
∫ A

0
e−xtv(t) dt , nA,∞(x) =

∫ ∞

A
e−xtv(t) dt .
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The corresponding decomposition of X is written as X = X0,A + XA,∞. The key to
our algorithm using complete monotonicity is the following:

Proposition 2 Assume the measure V in (2) is finite and let

μ = V (∞) =
∫ ∞

0

v(t)

t
dt , λ =

∫ ∞

0
n(x) dx .

Thenμ = λ. Let further T be standard exponential, Y a independent r.v. with density
v(t)
tμ and Z one with density n(x)/λ. Then T/Y = Z in distribution.

Proof Taking k = 0 in (17) gives λ = μ. We then get

P
(
T/Y ∈ dx

) =
∫ ∞

0
P
(
T/Y ∈ dx

∣∣ Y = t
)v(t)

tμ
dt

=
∫ ∞

0
te−t x v(t)

tμ
dt = n(x)

μ
= P(Z ∈ dx) .

�

This suggests that in the finite variation case, we can generate a r.v. X approxi-
mately distributed as X (1) as follows (more details on the individual steps are given
below):

(1) Choose A < ∞, let λ = ∫ A
0 v(t)/t dt and generate N as Poisson(λ).

(2) Generate X1 = ∑N
n=1 Tn/Yn(A) where the Tn are standard exponential and the

Yn(A) have density v(t)/(λt), 0 < t < A.
(3) Generate X2 as some approximation to XA,∞(1).
(4) Return X = X1 + X2.
In the infinite variation case subject to (5), replace X1 in (2) by

N∑

n=1

Tn
Yn(A)

−
∫ ∞

0
xn0,A(x) dx =

N∑

n=1

Tn
Yn(A)

−
∫ A

0

v(t)

t2
dt

and X in (4) by κ ′(0) + X1 + X2. In both cases, X → X (1) as A → ∞.
That λ in (1) is finite follows by the Radon property of V (dx). The shape of the

part n0,A of n corresponding to the simulated large jumps is illustrated in Fig. 1, The
process in the example is TSwithα = 0.8, variance κ2 = 1, kurtosis K = 2 and there
are 4 values of A determined by the ρ defined as the proportion Var

(
XA,∞(1)

)
/κ2

of the total variance provided by the small jumps (see further Sect. 6).
As for the approximation in (3), the most obvious choice is a normal distribution

with the correct mean and variance, and this is in fact justified by the following result
(recall that W denotes BM):

Proposition 3 Define X∗
A,∞(t) = (

XA,∞(t) − tEXA,∞(1)
)/√

Var XA,∞(1). Then
X∗

A,∞
D−→ W in the Skorokhod space D[0,∞) as A → ∞.
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Fig. 1 n(x) and n0,A(x)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

Proof Let κ∗
k be the kth cumulant of X∗

A,∞(1). Then κ∗
k is of order Aα−k A(2−α)k/2 =

Aα((1−k/2) for k > 2 since by (17)

(1 + α)

δ

∫ ∞

0
xknA,∞(x) dx = k!

∫ ∞

A

(t − β)α

t k+1
dt

∼ k!
∫ ∞

A
tα−k−1 dt = k!Aα−k

k − α
.

Hence κ∗
k → 0 for k > 2 and obviously, κ∗

1 = 0, κ∗
2 = 1. Thus all cumulants and

hence all moments of X∗
A,∞(1) converge to those of the standard normal r.v. W (1).

This implies X∗
A,∞(1)

D−→ W (1) (e.g. [22, Exercise 11 p.101]), from which the
asserted convergence in function space follows from Chap. 15 in [22]. �

Gamma distributions fitted by (1) or (2) are appealing alternatives to the normal
approximation and perform again significantly better in the numerical examples to
be given in Sect. 6. A gamma form of nA,∞(x) comes up directly: one can use (16)
and standard asymptotics of the upper incomplete gamma function to infer that

nA,∞(x) ∼
∫ ∞

A
e−t xδtα/(1 + α) dt = δ

x1+α(1 + α)

∫ ∞

Ax
e−y yα dy

∼ δ

x1+α(1 + α)
(Ax)αe−Ax ∼ δ

(1 + α)

Aα

x
e−Ax

for any given fixed x . However, the first ∼ is not valid if Ax is small or moderate,
and in fact the gamma distribution with shape parameter δAα/(1 + α) and rate
parameter A substantially underestimates the order of XA,∞(1). For example, its
mean is 1.2 for α = 0.8, κ2 = 2, K = 2 and ρ = 0.75, whereas the correct value is
EXA,∞(1) = 5.5.
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6 Numerical Examples

As illustration of the ε- and CM-algorithms, we considered spectrally positive TS
processes with varying parameters. Such a process can be parametrized with the
variance κ2, the kurtosis K and α, and one then has

β =
√

(2 − α)(3 − α)

κ2
2K

, δ = κ2

(2 − α)
β2−α ,

cf. [3]. We considered three values 0.2, 0.8, 1.4 of α and three 1/2, 2, 8 of K , and
normalized by taking κ2 = 1. We further considered the normal as well as the two
gammaapproximations (1), (2) of the small jumps, and asmeasure of performance,
we took the L2–distance

d =
∫ ∞

0

(
f (x) − f̂ (x)

)2
dx (18)

between the true density f (x) of X (1) and an estimate f̂ (x) provided by simulation.
Here f (x)was evaluated by (12), using theMatlab routines for stable distributions.
For f̂ (x), we simulated M = 106 replicates Z1, . . . , ZM of Xε,∞(1) and used the
conditional Monte Carlo estimator

f̂ (x) = 1

M

M∑

m=1

ξ(x − Zm) (19)

where ξ(·) is the density in the approximation in question for the density of X(0,ε)(1).
Cf. e.g. [4, p. 146] and [2] (see also [26] for more sophisticated applications of the
technique), but note also that conditional Monte Carlo can not universally replace
generation of a r.v. distributed according to ξ(·); e.g., this is needed when simulating
a discrete skeleton. Numerically, (18) was computed by a discrete approximation
with step length 0.01 in the interval EX (1) ± 3 (recall that X (1) was normalized to
standard deviation 1).

The truncation parameters ε, resp. A, for the two algorithms were chosen such
that the variance of the approximated small jumps equaled various fractions ρ of the
total variance κ2 = 1 of all jumps. For the ε-algorithm, this means that for a given ρ

ρ =
∫ ε

0
x2

δe−βx

x1+α
dx = δ

β2−α

∫ εβ

0
y2−α−1e−y dy = δ

β2−α
(εβ, 2 − α)(2 − α)

where (·; 2 − α) is the lower incomplete Gamma function with parameter 2 − α.
Thus

ε = 1

β
−1

(
ρβ2−α

δ(2 − α
; 2 − α

)
.
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Fig. 2 Left: ε-alg., α = 0.2, K = 2, ρ = 0.50, dN = 1.3 e−1, d1 = 6.7 e−3, d2 = 3.5 e−2;
middle: CM-alg,. α = 0.8, K = 8, ρ = 0.75, dN = 7.6 e−3, d1 = 2.6 e−3, d2 = 5.3 e−5

right: ε-alg., α = 1.4, K = 2, ρ = 0.75, dN = 2.0 e−2, d2 = 1.1 e−4

For the CM-algorithm, we have instead by (17) that

ρ =
∫ ∞

0
x2 dx

∫ ∞

A
e−t x δ(t − β)α

(1 + α)
dt = δ

(1 + α)

∫ ∞

A

(t − β)α

t3
dt

= δ

(1 + α)

∫ ∞

B

yα

(β + y)3
dy

where B = A − β, and this equation was solved numerically.
Here S is the skewness of X (1) and λ is the Poisson mean in the compound

Poisson sum of the simulated “large” jumps, that is,

λ =
∫ ∞

ε

n(x) dx =
∫ ∞

ε

δe−βx

x1+α
dx , λ =

∫ A

0

v(t)

t
dt =

∫ B

0

δtα

(t + β)(1 + α)
dt

in the two cases. The L2 distances in (18) are denoted by dN for the normal approx-
imation and by d1 , d2 for the two gamma ones. Graphs of f (x) and the f̂ (x) are
in Fig. 2 for some selected the parameter combinations in Table2.

Our interpretation of Fig. 2 is that an L2-distance of e−4 or less corresponds to an
almost perfect fit, whereas one of order e−3 is sufficient for most practical purposes,
one of order e−2 or more inadequate. With this in mind, we were quite surprised to
see how well both algorithms perform already for so large values of ρ as 75% and
50%, or equivalently for so small values of λ as those reported in the Tables 1 and 2.
One further notes that both algorithms improve as K gets smaller or α larger, which
is in agreement with limit theorems given in [3] stating roughly that the distribution
of X (1) gets closer to normal in the two cases.

Taking λ as measure of computational effort is certainly not unambiguous. On
top comes the effort in generating from the r.v.’s Yn(ε),Yn(A) with densities propor-
tional to n(x), ε < x < ∞, resp. v(t)/t , 0 < t < A. However, this issue is largely
implementation dependent. We have given one suggestion (based on (15)) for the
ε-algorithm in Sect. 4 and give a similar A-R scheme for the CM-algorithm and
TS case in the appendix. Both are certainly amenable to improvement. Comparison
of the ε- and CM algorithms show that λ is slightly higher for the CM algorithm.
However, the values of λ reported in the tables are quite small and thus 1 + λ could
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Table 1 ρ = 75%
α K S ε-algorithm CM-algorithm

λ dN d1 d2 λ d(F, FN ) d(F, F1 ) d(F, F2 )

0.2 1/2 0.57 0.23 1.4 e−3 8.2 e−5 4.0 e−5 1.6 2.0 e−2 2.8 e−5 4.0 e−5

2 1.13 0.06 1.4 e−2 1.7 e−4 2.2 e−4 0.40 1.5 e−2 2.8 e−4 1.4 e−4

8 2.27 0.01 1.6 e−1 1.3 e−2 3.7 e−2 0.10 1.6 e−1 2.6 e−2 7.1 e−2

0.8 1/2 0.52 0.24 8.8 e−4 2.3 e−4 4.3 e−5 1.3 1.2 e−2 4.6 e−4 5.3 e−5

2 1.04 0.06 7.6 e−3 2.6 e−3 5.3 e−5 0.33 8.2 e−3 3.5 e−3 3.3 e−4

8 2.09 0.01 5.0 e−2 2.4 e−2 2.8 e−3 0.08 5.0 e−2 2.5 e−2 2.0 e−2

1.4 1/2 0.43 0.30 2.9 e−4 – 2.2 e−5 1.23 3.7 e−4 – 4.8 e−5

2 0.77 0.07 2.0 e−3 – 1.1 e−4 0.31 2.4 e−3 – 2.2 e−4

8 1.73 0.02 1.1 e−2 – 1.0 e−3 0.08 1.1 e−2 – 3.6 e−3

Table 2 ρ = 50%
α K S ε-algorithm CM-algorithm

λ dN d1 d2 λ d(F, FN ) d(F, F1 ) d(F, F2 )

0.2 1/2 0.57 0.96 2.9 e−4 8.8 e−5 3.9 e−5 4.1 5.7 e−4 2.8 e−5 4.6 e−5

2 1.13 0.24 6.1 e−3 4.4 e−4 1.4 e−4 1.0 7.5 e−3 1.4 e−4 1.0 e−4

8 2.27 0.060 1.3 e−1 6.7 e−3 3.5 e−2 0.26 1.3 e−1 1.9 e−2 4.4 e−2

0.8 1/2 0.52 1.20 1.2 e−4 2.6 e−5 4.3 e−5 4.35 2.5 e−4 8.0 e−5 3.6 e−5

2 1.04 0.30 5.1 e−4 5.1 e−4 4.7 e−5 1.09 2.9 e−3 1.1 e−3 1.2 e−4

8 2.09 7.5 e−2 2.3 e−2 1.1 e−2 6.2 e−4 2.7 e−2 3.0 e−2 1.4 e−2 4.2 e−3

1.4 1/2 0.43 2.42 2.0 e−5 – 4.0 e−5 7.66 2.8 e−5 – 3.0 e−5

2 0.77 0.61 1.8 e−4 – 6.1 e−5 1.92 3.1 e−4 – 5.8 e−5

8 1.73 0.15 2.3 e−2 – 1.3 e−4 0.48 2.9 e−3 – 3.1 e−4

be a more fair measure than λ, taking into account also the generation of the Poisson
r.v.’s in addition to the Y . This makes the difference even smaller. As for precision,
values of order e − 5 should not be compared as they do not improve by increasing
ρ, which could presumably be due to the discretization. Once this is said, the 2

scheme gives most often better precision than the 1 one, and both improve upon
the normal, in some cases even significantly. The ε-algorithm gives slightly more
precise estimates for the given ρ than the CM one, but most often not that much.
Altogether, which one to prefer may depend on case-dependent issues such as the
facility to generate the Yn(ε) or Yn(A).

Concerning the chosen values 1/2, 2, 8 of the kurtosis K , we remark that in finan-
cial log-return data K is most often of order 1–3 for daily log-returns series, but
higher values occur when calibrating parameters, cf. Table 1 in [3]. Sampling at
higher frequencies than daily will also increase K , and hence one may expect that
larger values of λ than the ones in our tables will be needed for good precision.
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7 Exact Simulation of X (h) and other Methods

In our main examples, it is fairly straightforward to generate a r.v. distributed as
X (h) in a NIG process. Indeed, one description of the process is as subordinate to
a BM W with drift β w.r.t. an inverse Gaussian subordinator χ(t). In more detail,
if W1 is another independent BM with drift γ and χ(t) = inf{s > 0 : W1(t) > δt},
then W (χ(t)) + μt is distributed as X (1) in a NIG(δ, α, β, μ) process with α =√

β2 + γ 2. Here a r.v. distributed as χ(t) need not be simulated via the relation to
W1 but can be directly generated. For X (h), just replace δ by δh and μ my μh.
These facts are surveyed in, e.g., [4, p. 343] and implemented in, e.g., [25]. A similar
but easier exact subordination construction applies to the VG process. Asymptotic
subordination algorithms for TS and MX are in [27].

For the spectrally positive TS process with finite variation (α < 1), it was noted
in [3] that a r.v. distributed as X (1) can be generated by an A-R scheme, using (12)
with the Sα(σ, 1, 0) r.v. Z as proposal and acceptance probability e−βz when Z = z;
for the standard algorithm to generate Z , see [4, p. 332]. Two-sided processes are of
course generated by taking the difference between the positive and negative parts. The
simplicity of this scheme should be compared to other approaches in the literature,
e.g. [8, 23]. It was also remarked in [3] that the situation is more complicated when
α ≥ 1, since then X (1) is supported by the whole of R and e−βz is unbounded there.
We suggest here an exact scheme based on asymptotic properties of stable densities.
The details are in the Appendix but are included more for the sake of completeness
than because we think the scheme is more attractive than the simple and efficient ε-
and CM-algorithms.

A general comment on the method of discrete skeletons is that it gives little
information on the whole path X (0 : T ) unless one uses a skeleton with a quite
small h and thereby a considerable computational effort.

We are not aware of methods for exact simulation of X (h) in theMX process. One
could potentially use the explicit form of the density, cf. (9), via A-R, but a difficulty
is to find suitable bounds for the complex gamma function.

Another approximate method is based on using a series expansion of the form
X (T ) = ∑∞

1

{
H(n, Vn) − cnT

}
where the n are the order epochs of a standard

Poisson process, and the Vn independent i.i.d. (possibly multivariate) r.v.’s., see the
surveys in [31] and [4] XII.4. In the implementation, ones truncates to n ≤ N terms.
Since H(·, v) is typically decreasing for fixed v, this method is hardly intrinsically
different from the ε-algorithm. Calculation of H is not always straightforward. We
are not aware of systematic studies of the error term

∑∞
N+1 . . ..

8 Maxima, Minima and Other Path Functionals

In Sects. 4–6 and 7, we have concentrated on simulation of X (T ) alone, say T = h
or T = 1 (there is no loss of generality in taking T = 1 since X (T ) = XT (1) where
XT is the process obtained by replacing the Lévy measure ν by T ν). In the financial
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context, this covers European options, where � in (1) is a function of X (T ) alone.
E.g. �

(
X (0 : T ) = e−rT

[
Z(0)eX (T ) − K

]+
for a European call with strike K . For

many other options,� is, however,more complicated. E.g. for an down-and-in barrier
option

�
(
X (0 : T )

) = e−rT
[
Z(0)eX (T ) − K

]+
I
(
Z(0)eX (t) ≤ L for some t ≤ T

)
.

One therefore needs to know also the minimum mT = inf t≤T X (t) of X (0 : T ),
which typically is close to the value at some negative jump. Minima or maxima also
come up in the context of queues modeled by Lévy input, where key processes Y
such as workload, queue length etc. are obtained by reflecting the input X at 0. This
means

Y (T ) = (
Y (0) + X (T )

) ∨ max
t≤T

(
X (T ) − X (t)

)
.

In particular, Y (T )
d= MT where MT = supt≤T X (t) in the case Y (0) = 0 of an

initially empty queue. If X is simulated as a discrete skeleton with step size h, the
path of Y is approximated by Yh(0) = Y (0) and the Lindley recursion

Yh
(
(n + 1)h

) = [
Yh(nh) + X

(
(n + 1)h

) − X (nh)
]+

,

leading to

Yh(Nh) = (
Y (0) + X (Nh)

) ∨ max
n≤N

(
X (Nh) − X (nh)

) d= max
n≤N

X (nh)

where the final
d= requires Y (0) = 0. For these facts, see Sects. III.6–7, IX.2 of [1].

We mention several strategies to access a minimum or maximum, say m(T ),
without recommending any particular one (in fact, such a choice may depend on the
particular application context and a more extensive numerical study). One strategy is
just to simulate a sufficiently fine skeleton exactly, when possible, and then take the
minimum along the skeleton. This may be supplemented with continuity corrections
as developed in [5, 20], that is, r.v.’s approximating

min
nh≤t≤(n+1)h

X (t)
∣∣ X(n+1)h, Xnh .

If exact simulation of a skeleton is not feasible, onemay instead generate the skeleton
approximately by one of the compound Poisson algorithms of Sects. 4, 5, allocate
uniform [0, T ] locations to the Poisson jump times τn , and supplement the minimum
along the τn by invoking bridge r.v.’s of the form

min
τn≤t≤τn+1

(
X̂0:ε(t) − X̂0:ε(τn)

) ∣∣ X̂0:ε(τn) .
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The distribution and hence generation of such bridge minima is standard when X̂0:ε
is generated by using the normal approximation. For our gamma approximations,
they may be efficiently generated by invoking the relation between gamma, beta and
Dirichlet distributions, as developed in [7] and implemented in [25].

Similar remarks apply to other and possibly more complicated path functionals.
For example, for a Parisian option one needs to know the first time the asset price
eX (t) makes an excursion of length > D below some level L .

Acknowledgements I am grateful to the reviewers for useful comments and corrections, and to
Alexey Kuznetsov for useful hints related to Example 1.

Appendix

An A-R Scheme for Generation from v(t)/ t in the TS Case

We need to generate a r.v. Z with density proportional to u(t)/t , β < t < A where
u(t) = (t − β)α . To this end, write Z = β + Z0 where Z0 has density proportional
to u(t + β)/(t + β) = tα/(t + β) , 0 < t < B where B = A − β. Here Y = 1/Z0

has density proportional to 1/y1+α/(1 + βy), 1 < 1/B < y < ∞, and can therefore
be generated by A-R with either a Pareto(α) proposal and acceptance probabil-
ity proportional to 1/(1 + βy) (high for small y) or a Pareto(1 + α) proposal and
acceptance probability proportional to y/(1 + βy) (high for large y). As in Sect. 4,
we use a mixture, corresponding to breaking the compound Poisson part in 2) above
into two. So, let

λ1 =
∫ y0

1/B

1

y1+α(1 + βy)
dy , μ1 =

∫ y0

1/B

1

y1+α
dy = 1

α
[Bα − 1/yα

0 ] ,

λ2 =
∫ ∞

y0

1

y1+α(1 + βy)
dy , μ2 =

∫ ∞

y0

1

y2+α
dy = 1

(1 + α)y1+α
0

,

C1 = μ1

λ1(1 + β/B)
, C2 = μ2

βλ2

The target densities are then

f1(y) = 1

λ1y1+α(1 + βy)
, 1/B < y < y0, and f2(y) = 1

λ2y1+α(1 + βy)
, y0 < y < ∞,

and chosen with probabilities λ1/(λ1 + λ2), resp. λ2/(λ1 + λ2), and the proposals
are

g1(y) = 1

μ1y1+α
, 1/B < y < y0, and g2(y) = 1

μ2y2+α
, y0 < y < ∞,
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Then f1(y) ≤ C1(y0)g1(y) and f2(y) ≤ C2(y0)g2(y), and we may use A-R with
acceptance probabilities

f1(y)

C1(y0)g1(y)
= 1

1 + βy
,

f2(y)

C2(y0)g2(y)
= y

1 + βy

for r.v. generation from f1, resp. f2. This gives expected numbers C1(y0), C2(y0)
of samplings from g1(y), resp. g2(y), and as measure E(y0) of the computational
effort, we shall use the total number of these samplings, i.e.

E(y0) = λ1C1 + λ2C2 = μ1

1 + β/B
+ μ2

β
= βμ1 + (1 + β/B)μ2

β(1 + β/B)
(20)

Proposition 4 The function E(y0), 1/B < y0 < ∞, is minimized for y0 = y∗
0 =

1/β + 1/B.

Proof In (20), β and B as well as term Bα/α in μ1 do not depend on y0, so we are
left with the minimization of −β/α/yα

0 + (1 + β/B)/(1 + α)/y1+α
0 . The derivative

is 1/y1+α
0 /(1 + β/B) − 1/y2+α

0 which changes sign from negative to positive at y∗
0 .

From this the result follows. �

An A-R Scheme for Spectrally Positive Infinite Variation TS
Processes

Let f0 be the density of a strictly α-stable distribution Sα(σ, 1, 0) distribution with
σ = (−δ(−α) cos(πα/2)

)1/α
. The goal is to generate a r.v. X from the density

f (x) = exp{−βx − ψ} f0(x) in the case α > 1 where f and f0 have support on the
whole ofR; hereψ = δ(−α)βα . We use that f0(x) has the asymptotics [29, p. 100]

f0(x) ∼ c1
|x |� exp

{−c2|x |η
}
as x → −∞ (21)

for suitable (explicit) constants) c1, c2 and � = α/(2α − 2), η = α/(α − 1).
For initialization of the algorithm:

(1) Select −A < 0 and compute p = ∫ ∞
−A f (x) dx

(2) Select c3 < c2 and find c4 < ∞ such that

h(x) = eβ|x | f0(x)
|x |η−1 exp

{−c3|x |η
} ≤ c4 for all x < −A.

The algorithm is then as follows:
(3) Generate I as Bernoulli(p).
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(4) If I = 1, generate X ∈ (−A,∞) having density f (x)/p,−A < x < ∞, by A-R
with proposal Z0 having a strictly α-stable distribution Sα(σ, 1, 0) conditioned to
(−A,∞) and acceptance probability e−b(z+A) when Z0 = z
(5) If I = 0, generate X ∈ (−∞,−A) with density f̃ (x) = eb|x |−ψ f0(x)/(1 − p),
= ∞ < x < −A, by an A-R scheme defined as follows. As proposal, take a r.v. Z1

distributed as−Z2 given Z2 > A where Z2 > 0 isWeibull with P(Z2 > z) = e−c3zη

.
If Z1 = x , accept w.p. c4h(x).
(8) return X .
Explanation: Step (2) is possibly because (21), c2 > c3 and η > 1 imply h(x) →
0 as x → −∞. In (5), the proposal density is g(x) = P

(
X2 ∈ d|x | ∣∣ Z2 > A

) =
c3η|x |η−1e−c3zη

/e−c3Aη

. Thus the ratio of the target density to the proposal density is

f̃ (x)

g(x)
= c5h(x) where c5 = exp{−ψ − c3Aη}

c3η(1 − p)

Hence f̃ (x)/g(x) ≤ c0h(x) where c0 = c4c5, and acceptance w.p. f̃ (x)/c0/g(x) =
c4h(x) will produce the correct result. The conditioned sampling of proposals in
(6) and (7) is straightforward by sampled by sampling a Sα(σ, 1, 0), resp. Weibull,
r.v. until the conditioning requirement is met. Available software, say Matlab or
Nolan’s stable package (see the Preface to [29]) accounts for computing f0(x) and
generating the Sα(σ, 1, 0) r.v.’s. The Weibulls can be generated by inversion.
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Exact Sampling for the Maximum
of Infinite Memory Gaussian Processes

Jose Blanchet, Lin Chen, and Jing Dong

Abstract We develop an exact sampling algorithm for the all-time maximum of
Gaussian processes with negative drift and general covariance structures. In par-
ticular, our algorithm can handle non-Markovian processes even with long-range
dependence. Our development combines a milestone-event construction with rare-
event simulation techniques. This allows us to find a random time beyond which the
running timemaximumwill never be reached again. The complexity of the algorithm
is random but has finite moments of all orders. We also test the performance of the
algorithm numerically.

Keywords Perfect simulation · Infinite memory · Rare event sampling

1 Introduction

It is a pleasure to contribute this paper in honor of Professor Pierre L’Ecuyer, whose
many contributions to stochastic simulation have significantly influenced this area.
In this paper, we propose and study an exact simulation algorithm for the infinite-
horizonmaximumof some general Gaussian processes.Whatmakes our contribution
novel relative to other results in the literature is the non-Markovian, even long-
range dependence structure of the processes we study. Long-range dependence is
an important phenomenon that arises in many applications. An early work studying
such a phenomenon dates back to the 1950’s when Hurst [29] studied the flow
of water in Nile river. Since then, evidence of long-range dependence has been
found in economics [36], internet traffic [8, 31], linguistics [3], etc. (see [23, 37]
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for comprehensive reviews). More generally, Gaussian processes have been one of
the main modeling tools to capture various non-Markovian features [7, 35, 37].
For example, in contrast to long-range dependence, they are also used to model a
phenomenon associatedwith very rough paths that have rapid short-termfluctuations.
This phenomenon is found in volatility of high frequency data [6, 25]. Due to the
complicated dependences, limited analytical results are available for sample-path
quantities (such as the maximum) of these processes. Simulation has been a key
numerical tool for analysis. The all-time maximum of Gaussian processes arises in
communication applications [1], risk management, and analysis of queues [5].

Let S = {Sn : n ∈ Z
+} be a discrete-time Gaussian process. We assume S0 ≡ 0,

E[Sn] = −nμ for some μ > 0, i.e., the process has a negative drift, and

Var(Sn) = σ 2n2H + o(n2H ) for H ∈ (0, 1) and σ 2 > 0. (1)

Note that Var(Sn) can grow sublinearly (H < 1/2) or superlinearly (H > 1/2) in n.
The Gaussian process S defined above can be fairly general. Let Xn = Sn − Sn−1

denote the increment of theGaussianprocess. In the special casewhere {Xn : n ∈ Z
+}

is a stationary process with mean −μ and variance σ 2, we have

Var(Sn) =
n∑

i=1

n∑

j=1

Cov(Xi , X j ) = σ 2

(
n + 2

n−1∑

i=1

(n − i)ρi

)
,

where ρi := Corr(Xn, Xn+i ) for n ∈ Z
+. When ρi = i−α for α ∈ (0, 1), Var(Sn) =

Cn2−α + o(n2−α) for some C > 0. In this case, H > 1/2 and S has long-range
dependence. In general, a stationary Gaussian process is said to have long-range
dependence or infinite memory if limn→∞Var(Sn)/n = ∞ [27].

A classic stationary Gaussian process that can be used to model both long-range
dependence or rapid short-term fluctuations is fractional Brownian motion (fBM).
Let BH = {BH (t) : t ∈ R

+} be an fBM with Hurst index H ∈ (0, 1). BH is a self-
similar Gaussian process with E[BH (t)] = 0 and covariance function

E[BH (s)BH (t)] = 1

2

(
t2H + s2H − |t − s|2H ) .

When H > 1/2, BH is a non-Markovian Gaussian process with long-range depen-
dence; when H = 1/2, BH is a standard Brownian motion; when H < 1/2, BH is a
non-MarkovianGaussian processwith very roughpaths (evenmore rough thanBrow-
nian motion). We define an embedded discrete-time process Sn = −nμ + σ BH (n),
which is often referred to as fractional Gaussian noise. Then, E[Sn] = −nμ and
Var(Sn) = σ 2n2H , which satisfies (1).

In this paper, we are interested in estimating the all-timemaximumof theGaussian
process S. The all-time maximum is defined as

M∞ = max
n≥0

Sn.
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We develop an algorithm to draw samples from the exact distribution of M∞. The
termination time of the algorithm is random but has finite moments of all orders.

Sampling the all-timemaximum of a stochastic process is in general a challenging
task. Based on the definition of M∞, naive simulation would require one to generate
an infinite sequence {Sn : n ≥ 0}, which is infeasible. Our algorithm combines the
construction of a sequence of stopping times with rare-event simulation techniques.
It allows us to identify a non-stopping time T , which is defined as as the time beyond
which the running-time maximum MT = max0≤n≤T Sn will never be reached again,
i.e., Sn < MT for n > T . Then, M∞ = MT .

Our development builds on three key components (1) a milestone event con-
struction, which is used to define the sequence of stopping times; (2) a rare-event
simulation technique for Gaussian processes called Target Bridge Sampling (TBS);
and (3) a sandwiching construction to sample Bernoulli random variables whose
probability of success cannot be evaluated exactly. These techniques are not new
and have found important applications in the simulation literature. However, how to
apply them jointly to solve our simulation problem is highly non-trivial.

The idea of milestone events is to construct a sequence of stopping times (cor-
responding to event times) in a way that enables us to translate the infinite-horizon
simulation problem to finding the last finite stopping time in the sequence (see Sect. 2
for more details). The strategy was first developed in [13] and has seen applications
in many subsequent works [9, 10]. The key to successful implementation of this idea
is to construct a proper sequence of milestone events, which requires understanding
the large deviation behavior of the underlying stochastic process. Here, we are able
to apply this idea by analyzing the tail behavior of the Gaussian processes.

Themilestone events are defined in such away that it becomes increasingly harder
to reach them along the sequence, i.e., the probability that the stopping time is finite
is decreasing. To efficiently sample the trajectories leading to the milestone events,
we utilize a change of measure induced by TBS. TBS was developed in [12]. It is
an importance sampling algorithm not based on exponential tilting, which allows us
to circumvent the challenge of tracking the most likely path under non-Markovian
structures. In [12], it is applied to estimate P(M∞ > b) for large values of b, which
is different from our task here: drawing exact samples from M∞. In addition, the
implementation in [12] involves a truncation which induces a bias in the estimator.
We circumvent the truncation using a sandwiching construction.

The sandwiching construction is also known as the series method [17]. In our
application of the method, we want to generate a Bernoulli random variable whose
probability of success p cannot be evaluated exactly. The idea is to approximate p
from above and below by sequences of refined bounds. Then, we can sequentially
update the bounds to determine whether U is less than p, where U is a Uniform
random variable (see Sect. 3 for more details). When applying the method, the key
is to come up with a carefully-designed sequence of bounds. As we will explain in
Sect. 3, due to the general covariance structure, constructing the sequence of upper
bounds can be quite involved.



44 J. Blanchet et al.

Literature Review. There is a growing amount of literature on generating discrete-
time Gaussian processes with complex time correlation. The papers [4, 21] develop
efficient exact simulation algorithms for Gaussian process with long-range depen-
dence. They come upwith techniques to reduce the computational complexity associ-
ated with the high-dimensional covariancematrices. These techniques can be applied
in our algorithm as well when generating the underlying Gaussian processes. Effi-
cient simulation of fBM and related processes has also attracted continuous attention
from the literature [16, 19, 30, 32, 34] (see also [18] for a review).

As explain above, all-timemaximum is in general difficult to simulate exactly. For
random walks with independent increments, the paper [24] is among the first to use
rare-event simulation techniques to draw exact samples of the maximum when the
increments are light-tailed distributed. Later extensions include heavy-tailed incre-
ments [14] and the maximum over a nonlinear boundary [11]. For Gaussian pro-
cesseswith general covariance structures, rare-event simulation techniques have been
applied to estimate the tail probability of M∞, i.e., P(M∞ > b) for large values of
b [2, 12, 15, 20, 28]. Comparing to previous works, substantial new developments
are required to draw exact samples from M∞. Meanwhile, the existing rare-event
simulation techniques can be applied as an important intermediate step in our devel-
opment. The papers [22, 33] develop exact simulation algorithms for max-stable
fields at a finite collection of locations, which requires generating the maximum of
a Gaussian random field.

Notation. Throughout the paper, we use �(x) to denote the cumulative distribution
function (cdf) of standard Gaussian distribution, and denote �̄(x) := 1 − �(x) as
the tail cdf. Let Sn = (S1, . . . , Sn)�. Recall that S (without the subscript) denotes
the whole process. We denote �n as the covariance function of Sn . In particular,
γi j = Cov(Si , Sj ) is the (i, j)th entry of �n . Let Unk = (γ1k, . . . , γnk)

�. We also
define S̃n = (S1 + μ, S2 + 2μ, . . . , Sn + nμ)� as the mean-zero counterpart of Sn .
Let Mn = max1≤l≤n Sl , i.e., the running-time maximum. Last, let Pn(·) = P(·|Sn).

2 Basic Strategy

In this section, we introduce the main idea of our algorithm. We start by introducing
the milestone-event construction, which allows us to decompose the problem into
generating a sequence of downward-crossing and upward-crossing events. We then
discuss how to generate these events sequentially.
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2.1 Milestone Events

An upward-crossing event is an event where the Gaussian process reaches a new
maximum.Our goal is to find these upward-crossing events sequentially until we find
the last one. To achieve this algorithmically, we also need to define some downward-
crossing events.

Given Sn , let

q(n) =
∞∑

k=n+1

Pn (Sk > Mn) , (2)

which provides an upper bound for the probability of having an upward-crossing
event beyond n. We define a sequence of downward-crossing and upward-crossing
event times as follows. Let τ+

0 ≡ 0. For k ≥ 1, if τ+
k−1 < ∞, define

τ−
k := m̃in{n > τ+

k−1 : q(n) < 3/4}, τ+
k := inf

{
n > τ−

k : Sn > Mτ−
k

}
,

where m̃in is a notation we introduce to denote the caveat that we only require τ−
k

to be a time at which q(n) < 3/4. It does not need to be the first time at which
this happens. This indicates that τ−

k is not uniquely defined, which gives us some
flexibility when designing the algorithm. For example, we can define τ−

k as the first
time after τ+

k−1 where our algorithm can “detect” that q(n) < 3/4.
Note that the downward-crossing event time τ−

k is defined in such a way that
the chance of having an upward-crossing event after τ−

k will be upper bounded
by 3/4, i.e., Pτ−

k
(τ+

k < ∞) ≤ q(τ−
k ) < 3/4. This indicates that the upward-crossing

event only happens a finite number of times. In particular, let K = sup{k : τ+
k < ∞},

i.e., the number of upward-crossing events. Then, K is stochastically bounded by a
Geometric random variable with probability of success 1/4.

Once we find K , M∞ = max0≤n≤τ−
K+1

Sn . Thus, by generating the Gaussian pro-

cess S up to the random time τ−
K+1, we are able to recover the all-time maximum of

S. We also remark that finding K or τ−
K+1 is not straightforward since τ−

K+1 is not a
stopping time, i.e., finding K requires knowing information of S beyond Sτ+

K
.

The next lemma shows that the downward-crossing events are well-defined.

Lemma 1 For any fixed a ∈ (0, 1), there exists a random integer L, such that for
any n > L, q(n) < a. Moreover, for any η > 0, E[Lη] < ∞.

The proof of Lemma 1 and all the subsequent lemmas are delayed to the Appendix.
The next theorem shows that τ−

K+1 is well defined. In particular, even though τ−
K+1

is random, it has finite moments of all orders.

Theorem 1 For any η > 0, E[(τ−
K+1)

η] < ∞.

The proof of Theorem 1 is based on constructing an algorithm to find τ−
K+1 and is

provided in Sect. 4.2.1 as part of the complexity analysis of Algorithm 2.
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2.2 Main Algorithm

Based on the milestone event construction, we next explain how to find these events
sequentially.

Downward-crossing events. Finding the downward-crossing events can be done
under the nominal measure. The main difficulty is to check whether q(n) < 3/4,
because q(n) involves an infinite sum which cannot be calculated exactly. To over-
come the difficulty, we use a sandwiching construction. We derive a sequence of
upper and lower bounds, {U(	)}	≥1 and {L(	)}	≥1 satisfying

L(1) ≤ L(2) ≤ · · · ≤ q(n) ≤ · · · ≤ U(2) ≤ U(1)

and lim	→∞ U(	) = lim	→∞ L(	) = q(n). Then, we can sequentially refine the
bounds until the stopping criterion—U(	) < 3/4 orL(	) > 3/4—-met to determine
whether q(n) < 3/4. The technical and algorithmic details are provided in Sect. 3
and Algorithm 3.

Upward-crossing events. Sampling the upward-crossing event is more challenging.
In particular, since P(τ+

k < ∞|Sτ−
k
, τ−

k ) < 1, given τ−
k and Sτ−

k
, if we generate the

Gaussian process under the nominal measure until Sn > Mτ−
k
, we may never be able

to find τ+
k , i.e., the algorithm can take an infinite amount of time. To overcome this

challenge,we employ a rare-event simulation technique forGaussian processes called
TBS [12].We remark that there aremany candidate rare-event simulation techniques.
We choose TBS because it is especially well-suited for Gaussian processes with
general covariance structures. The implementation contains two key components: a
change-of-measure and an acceptance-rejection step.

First, given Sn , we introduce a newmeasure Qn under which the upward-crossing
event happens with probability 1. In particular, given Sn , define

κn := inf{k > n : Sk > Mn}.

Then, the new measure is defined through the following likelihood ratio

dPn

dQn
1{κn < ∞} =

∑∞
	=n+1 Pn(S	 > Mn)∑∞
m=κn

Pκn (Sm > Mn)
. (3)

If we simulate Sn+1, ..., Sκn under Qn , we have a proposed upward-crossing path. To
algorithmically achieve this, we use TBS defined in Algorithm1. The idea is to first
sample a target upward-crossing time, and then use Gaussian bridge to sample the
process conditional on the upward-crossing event at the target time.

Lemma 2 verifies that the probability measure induced by TBS is our target
measure Qn . We comment that there remains an implementation challenge—how
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to sample N (n), since q(n) cannot be evaluated exactly. We address this challenge
using a sandwiching construction in Algorithm 4 in Sect. 3.

Lemma 2 The probability measure induced by TBS satisfies (3).

Second, we apply an acceptance-rejection step. In particular, given the proposed
path Sn+1, ..., Sκn underQn ,we sample aBernoulli randomvariable I with probability
of success

Algorithm 1: Target Bridge Sampling (Given Sn)
1. Sample N (n) > n with probability mass function

fn(m) = Pn(Sm > Mn)∑∞
k=n+1 Pn(Sk > Mn)

= Pn(Sm > Mn)

q(n)
, form = n + 1, . . . . (4)

2. Given N (n) = m and Sn , sample Sm conditional on Sm ≥ Mn .
3. Conditional on Sm and Sn , sample Sn+1, ..., Sm−1. Calculate κn = min{k > n : Sk > Mn}.
4. Output Sn+1, . . . , Sκn .

p(κn) =
( ∞∑

m=κn

Pκn (Sm > Mn)

)
=
(
1 +

∞∑

m=κn+1

Pκn (Sm > Mn)

)−1

≤ 1. (5)

If the Bernoulli is a success, i.e., I = 1, the proposed path is accepted and it is the
path leading to the next upward-crossing event as verified by the following lemma:

Lemma 3 Given Sn, for Sn+1, ..., Sκn generated under Qn, let I denote a Bernoulli
random variable with probability of success p(κn). Then

Qn(I = 1) = Pn(κn < ∞)∑∞
l=n+1 Pn(Sl > Mn)

= Pn(κn < ∞)

q(n)

andQn((Sn+1, ..., Sk) ∈ ·, κn = k|I = 1) = Pn((Sn+1, ..., Sk) ∈ ·, κn = k|κn < ∞).

We note from Lemma 3 that Qn(I = 1) = Pn(κn < ∞)/q(n) > Pn(κn < ∞).
Thus, given τ−

k = n and Sn , we generate another independent Bernoulli random
variable J with probability of success q(n). Note that

Qn(J = 1, I = 1) = q(n)
Pn(κn < ∞)

q(n)
= Pn(κn < ∞) = Pn(τ

+
k < ∞),

Qn((Sn+1, ..., Sk) ∈ ·, κn = k|I = 1, J = 1)

= Qn((Sn+1, ..., Sk) ∈ ·, κn = k|I = 1) by independence

= Pn((Sn+1, ..., Sk) ∈ ·, κn = k|κn < ∞) by Lemma 3.

(6)

Meanwhile, we also note that
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Qn(J = 0) + Qn(J = 1, I = 0) = 1 − q(n) + q(n)

(
1 − Pn(κn < ∞)

q(n)

)

= Pn(κn = ∞) = Pn(τ
+
k = ∞).

(7)

This indicates that to determine whether τ+
k < ∞, we first sample J . If J = 0, we

can claim that τ+
k = ∞. If J = 1, we further applyQn to sample a proposed path and

sample I . If I = 1,we accept the proposedpath as the path leading to the next upward-
crossing event. If I = 0, we can claim that τ+

k = ∞. We remark that sampling J
and I is not straightforward, as q(n) and p(κn) can not be evaluated exactly. We
will explain how to do so using a sandwiching construction in Algorithms 4 and 5
in Sect. 3.

We conclude the section by summarizing the ideas discussed above and presenting
the main simulation algorithm—Algorithm 2.

Algorithm 2: Simulating the all-time maximum of S

1 Step 0: Initialization.
1. Set k = 0, τ+

k = 0, n = 0, and S0 = 0.

Step 1: Downward-crossing event.

1. Sample Sn+1 conditional on Sn .
2. Call Algorithm 3 to sample W ∈ {0, 1}. If W = 0, set n = n + 1 and go back to Step 1.1.

If W = 1, go to Step 1.3.
3. Set n = τ−

k and Mn = max1≤l≤n Sl .

Step 2: Upward-crossing event.

1. Call Algorithm 4 to sample J ∼ Bernoulli(q(n)). If J = 0, go to Step 3. If J = 1,
Algorithm 4 also outputs a random time N ∼ fn(·).

2. Given N , sample SN according to Pn(SN ∈ ·|SN > Mn).
3. Conditional on SN and Sn , sample Sn+1, ..., SN−1. Calculate κn=min{l ≥ n : Sl > Mn}.
4. Call Algorithm 5 to sample I ∼Bernoulli(p(κn)). If I=1, set k=k + 1, τ+

k = κn , n = τ+
k

and go to Step 1. If I = 0, go to Step 3.

Step 3: Output.

1. Output M∞ = Mn . (We can also output Sn)

Theorem 2 The output of Algorithm 2 follows the same distribution as M∞.

Before we prove Theorem 2, we need to introduce the details of the intermediate
steps in Algorithm 2. Thus, the proof is delayed to Sect. 4.1.
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3 Intermediate Steps in Algorithm 2

In this section, we present the details of the intermediate steps in Algorithm 2. In
particular, we introduce Algorithms3–5.

The fundamental challenge in these algorithms is that we need to compare a
number, say u, to a probability p that cannot be evaluated exactly. We resolve this
challenge by deriving a sequence of upper and lower bounds for p.

Given Sn , recall from (2) that q(n) = ∑∞
k=n+1 Pn(Sk > Mn). We define the lower

bounds by simply truncating the infinite sum to a finite number of terms:

q(n, 	) :=
	∑

k=n+1

Pn(Sk > Mn)

The upper bounds are more challenging to construct. Define

h(	) = 8σ 2

(1 − H)μ2 exp

(
− μ2

16σ 2 	2−2H
)

, (8)

B(n) = max

⎧
⎨

⎩

(
2σ 2nH‖�−1

n ‖1‖S̃n‖1
μ

) 1
1−H

,

(
2σ 2

πμ2

) 1
2(1−H)

,

(
2H − 1

1 − H

16σ 2

μ2

)2

, n + 1

⎫
⎬

⎭ .

(9)

Lemma 4 For any η > 0, E[B(n)η] < ∞. For any 	 ≥ B(n),

q(n, 	) < q(n) ≤ q(n, 	) + h(	).

In addition, q(n, 	) ≤ q(n, 	 + 1) ≤ · · · ≤ q(n) ≤ · · · ≤ q(n, 	 + 1) + h(	 + 1) ≤
q(n, 	) + h(	) and lim	→∞ q(n, 	) = lim	→∞ q(n, 	) + h(	) = q(n).

Based on Lemma 4, we have constructed a proper sequence of lower and upper
bounds for q(n). These bounds allow us to check whether we have reached a
downward-crossing event inAlgorithm3 and to sample J ∼Bernoulli(q(n)) inAlgo-
rithm 4.

Algorithm 3: Given n and Sn , output W where W = 1 implies q(n) < 3/4.
0. Calculate B(n) and set 	 = �B(n)�.
1. Sample U0 ∼Uniform[1/2, 3/4].
2. Calculate L(	) = q(n, 	) and U(	) = q(n, 	) + h(	).
3. If U0 ≤ L(	), set W = 0, and go to Step 4; if U0 ≥ U(	), set W = 1 and go to Step 4;

otherwise, set 	 = 	 + 1 and go to Step 2.
4 Output W .
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In Algorithm 3, we do not compare q(n) to 3/4 directly. Instead, we compare
q(n) to a uniform random variable on [1/2, 3/4]:U0. In this case,W = 1 implies that
U0 > q(n), which further implies that q(n) < 3/4, i.e., the criteria for the downward-
crossing event is met.

Algorithm 4: Given n and Sn , sample J ∼Bernoulli(q(n)).
0. Calculate B(n) and set 	 = �B(n)�.
1. Sample U ∼Uniform[0, 1].
2. If U ≤ q(n, 	), set J = 1 and 	 = min{h ≥ n + 1 : q(n, h − 1) < U ≤ q(n, h)}, and go

to Step 5; otherwise, set 	 = 	 + 1 and go to Step 3.
3. Calculate L(	) = q(n, 	) and U(	) = q(n, 	) + h(	).
4. If U ≤ L(	), set J=1, N=	, and go to Step 5; if U ≥ U(	), set J = 0 and go to Step 5;

otherwise, set 	 = 	 + 1 and go to Step 3.
5. If J = 1, output J and N = 	; otherwise, output J

In Algorithm 4, when J = 1, it also outputs N = 	. To see this, note that

Pn(N = 	|J = 1) = Pn(L(	 − 1) < U < L(	))

P(U < q(n))
= Pn(S	 > Mn)∑∞

k=n+1 Pn(Sk > Mn)
= fn(	).

(10)
Thus, as a byproduct of Algorithm 4, we also get a sample of N ∼ fn(·).

Lastly, given κn and Sκn , we develop an algorithm to sample Bernoulli(p(κn))
(Algorithm 5). Recall from (5) that p(κn) = (

∑∞
	=κn

Pκn (S	 > Mn))
−1. Define

q̃(n, 	) :=
	∑

i=k+1

Pκn (Si > Mn).

Then, we have the following analog of Lemma 4.

Lemma 5 For 	 ≥ B(κn), where B(k) is defined in (9),

(1 + q̃(n, 	) + h(	))−1 ≤ p(κn) ≤ (1 + q̃(n, 	))−1,

where h(	) is defined in (8). In addition, (1 + q̃(n, 	) + h(	))−1 ≤ (1 + q̃(n, 	 +
1) + h(	 + 1))−1 ≤ · · · ≤ p(κn) ≤ · · · ≤ (1 + q̃(n, 	 + 1))−1 ≤ (1 + q̃(n, 	))−1

and lim	→∞(1 + q̃(n, 	))−1 = lim	→∞(1 + q̃(n, 	) + h(	))−1 = p(κn).

Then, Algorithm 5 follows based on the sequence of bounds in Lemma 5.
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Algorithm 5: Given κn and Sκn , sample I ∼Bernoulli(p(κn)).
0. Calculate B(κn) and set 	 = �B(κn)�.
1. Sample U ∼Uniform[0, 1].
2. Calculate L(	) = (1 + q̃(n, 	) + h(	))−1 and U(	) = (1 + q̃(n, 	))−1.
3. If U ≤ L(	), set I = 1 and go to Step 4; if U ≥ U(	), set I = 0 and go to Step 4;

otherwise, set 	 = 	 + 1 and go to Step 2.
4. Output I

4 Analysis of Algorithm 2

In this section, we provide detailed analysis to verify the correctness and complexity
of Algorithm 2. In particular, we provide the proof of Theorems 1 and 2.

4.1 Output Analysis

Proof (of Theorem 2) In Step 1 of Algorithm 2, we simulate S under the nominal
measure.

For Step 2, we first verify the output of Algorithms 4. Because lim	→∞ q(n, 	) +
h(	) = q(n) byLemma4,we havePn(J = 1) = Pn(U < q(n)) = q(n). In addition,
from (10), we have Pn(N = 	|J = 1) = fn(	). Therefore, in Step 2.1, if J = 1,
N ∼ fn(·). Then, Steps 2.1–2.3 constitute the TBS procedure, i.e., Sn+1, . . . , Sκn in
Step 2.3 is a sample path drawn under Qn . We next verify the output of Algorithm 5.
Since lim	→∞(1 + q̃(n, 	) + h(	))−1 = p(κn) by Lemma 5, Qn(	 = 1) = Qn(U <

p(κn)) = p(κn). Therefore, Step 2.4 is the acceptance-rejection step. From (6),

Qn((Sn+1, ..., Sk) ∈ ·, κn = k|I = 1, J = 1) = Pn((Sn+1, ..., Sk) ∈ ·, κn = k|κn < ∞).

Thus, if we accept the path, it is is the path leading to the next upward-crossing event.
Meanwhile, from (7), Qn(J = 0) + Qn(J = 1, I = 0) = Pn(τ

+
k = ∞). Thus, if we

go to Step 3, there is no more record breakers, i.e., n = κ−
K+1. �

4.2 Complexity Analysis

In this section, we conduct detailed complexity analysis of Algorithm 2. Note that the
computational cost of Algorithm 2 is random due the random length of the sample
path, i.e., τ−

K+1, and the random number of iterations in Algorithms 3–5. We will
show that these random quantities have finite moments of all orders.
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LetC(i) denote the computational complexity of generating the i-th sample ofM∞
from Algorithm 2, M∞(i). Let N(c) denote the total number of M∞(i)’s generated
with a computational budget of c, i.e., N(c) := max{n ≥ 0 : C(1) + · · · + C(n) ≤
c}. Then, if E[C(1)] < ∞, which is the case in our setting, and Var(M∞(1)) < ∞,
we achieve the canonical

√
c rate of convergence [26], i.e.,

√
c

(
N(c)∑

i=1

M∞(i) − E[M∞(1)]
)

⇒ √
e[C(1)]Var(M∞(1))N(0, 1)asc → ∞,

where N(0, 1) denote a Gaussian distribution with mean 0 and variance 1. It is also
important to study how the complexity, e.g., E[C(1)], depends on the covariance
structure. We investigate this through numerical experiments in Sect. 5.

4.2.1 Proof of Theorem 1

Before we prove Theorem 1, we first introduce an auxiliary lemma.

Lemma 6 Given Sn, for N (n) and J generated in Step 2.1 in Algorithm 2, we have
for any η > 0, E[N (n)η1{J = 1}|Sn] < ∞.

Proof (of Theorem 1) Let T̃ = τ−
K+1, which is the length of the Gaussian process

generated in Algorithm 2.
First, let G denote number of times we visit Step 1 in Algorithm 2, which is the

same as the number of times we visit Step 2. We note that when we visit Step 2.1 in
Algorithm 2, if J = 0, the algorithm terminates. By the construction of downward-
crossing event,q(n) < 3/4when inStep 2.1. Thus,G is stochastically upper bounded
by a Geometric random variable with probability of success 1/4.

Second, we study the number of elements of the Gaussian process generated in
Step 1. If we set a = 1/2 in Lemma 1, then there exists a random time, L̃ , which has
finite moments of all orders, such that for n > L̃ , q(n) < 1/2. When q(n) < 1/2,
W = 1 in Algorithm 3 with probability 1. This suggests that when n > L̃ , every
time we go to Step 1, we only generate one more point of the Gaussian process, i.e.,
τ−
k+1 = τ+

k + 1. Thus, the number of elements of the Gaussian process we generate
in Step 1 is upper bounded by L̃ + G, which has finite moments of all orders.

Third, we study the number of elements of the Gaussian process we generate in
Step 2 in Algorithm 2. When we visit Step 2 at τ−

k = n, if J = 1 in Step 2.1, we
generate a path leading to the next upward-crossing event. The number of elements
of the Gaussian process we generate is upper bounded by N (n) − n. By Lemma 6,
N (n) has finite moments of all orders. Then, the number of elements of the Gaussian
process we generate in Step 2 is upper bounded by

∑G
k=1 N (κ−

k ) − κ−
k , which has

finite moments of all orders. �
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4.2.2 Complexity of Algorithms 3–5

Based on the sandwiching construction, in Algorithms 3–5 we compare a uniform
random variable with an unknown probability p using the iteratively updated bounds
for p. We present the analysis for Algorithm4 next.

Given Sn , let � − n denote the number of iterations in Algorithm 4:

� := inf{l > n : U ≤ q(n, l) or U ≥ q(n, l) + h(l)},

where U ∼Uniform[0, 1]. Then, for any l > B(n),

Pn(� > l) = Pn(q(n, l) < U < q(n, l) + h(l)) = h(l).

Wefirst note that for anyη > 0,
∑∞

l=1 l
ηh(l) < ∞. Next, fromLemma4,E[B(n)η] <

∞. Thus, � has finite moments of all orders.
Similarly, we can show that the number of iterations in Algorithm 3 and 5 also

has finite moments of all orders. Note that for the sandwiching construction in
Algorithm 5, we have (1 + qb(n, l))−1 − (1 + qb(n, l) + h(l))−1 ≤ h(l).

5 Numerical Experiments

In this section, we implement our algorithm and test its performance based on frac-
tional Gaussian noises. This complements our complexity analysis in Sect. 4.2. Con-
sider Sn = −nμ + BH (n)where BH is an fBMwith Hurst index H ∈ (0, 1). We set
μ = 1 and use three different values of H : H = 0.3, 0.5, and 0.7, corresponding to
the cases where Xn’s are negatively , un-, and positively correlated, respectively.

In Fig. 1, we show the distribution of M∞ based on 103 independent copies of it,
i.e. we repeat Algorithm 2 103 times for each model. On the left panel, we plot the
histogram of M∞. We note that there is a very high probability that M∞ = 0. On the
right panel, we plot the histogram of M∞ conditional on M∞ > 0. We observe that
as H increases, the tail of the distribution of M∞ becomes heavier. In particular, M∞
is more likely to take very large values when H = 0.7 than when H = 0.3.

We next look at the complexity of our algorithm. We analyze two quantities: 1)
the length of the sample path generated in Algorithm 2, which we denote as T̃ and 2)
the number of iterations in Algorithm 4, which we denote as �m . We note that even
though T̃ is a natural measure of the complexity, in actual implementations, the most
time-consumingpart is the intermediate step—Algorithm4, i.e., sampling aBernoulli
random variable with probability of success q(n). In Fig. 2, we plot the histogram
of T̃ (left panel) and �m (right panel) based on 103 independent replications of
Algorithm 2. We observe that as H increases, T̃ tends to take larger values. More
importantly, as H increases, the tail of the distribution of �m becomes heavier very
rapidly. For example, when H = 0.3, �m tends to take very small values, i.e., less
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Fig. 1 Histograms of M∞ where Sn = −n + BH (n) and H = 0.3, 0.5, or 0.7

than 14. However, when H = 0.7, the distribution of �m has an extremely heavy
tail. In our sample, �m can be as large as 5 × 105.

Based on the numerical experiments, we note that as H increase, the computa-
tional complexity increases. Indeed, when H ≥ 0.9 in our fractional Gaussian noise
example, �m in Algorithm4 can be too large to handle computationally, e.g, 1017.
Note that for 	 > B(n),
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Fig. 2 Histograms of T̃ and �m . Sn = −n + BH (n) and H = 0.3, 0.5, or 0.7
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Pn(�m > 	) = h(	) = 8σ 2

(1 − H)μ2
exp

(
− μ2

16σ 2
	2−2H

)
,

which can decay very slowly when H is close to 1. Even B(n) (defined in (9)) can be
very large in this case. How to sample M∞ when H is close to 1 in a computationally
efficientwaywould require fundamentally newdevelopments, which is an interesting
future research direction.

6 Conclusion

In this paper, we develop an exact sampling algorithm for the all the maximum of
negative-drifted Gaussian processes with general covariance structures. The com-
plexity of our algorithm is random but has finite moments of all orders. Our devel-
opments involve novel applications of several simulation techniques, including the
milestone-event construction, a rare event simulation technique called TBS, and the
sandwiching construction. We test the performance of algorithm numerically and
discuss limitations in implementation when H is close to 1.

Appendix

Proof of Lemma 1

Proof Note that Sk conditional on Sn is still a Gaussian random variable with con-
ditional mean

μn(k) = E[Sk |Sn] = −kμ + U�
nk�

−1
n S̃n,

and conditional variance

σn(k)
2 = Var[Sk |Sn] = σ 2k2H − U�

nk�
−1
n Unk .

The proof of the lemma is divided into three steps.We first establish bounds for the
conditional mean μn(k). Let μ̃n(k) = U�

nk�
−1
n S̃n . As μ̃n(k) is a linear combination

of S̃n , it follows a Normal distribution with mean 0 and varianceU�
nk�

−1
n Unk . By the

law of total variance, U�
nk�

−1
n Unk < σ 2k2H . In this case, for any fixed δ ∈ (0, μ),

P(μ̃n(k) > δk) ≤ P

⎛

⎝ μ̃n(k)√
U�

nk�
−1
n Unk

>
δk

σkH

⎞

⎠ = �̄

(
δ

σ
k1−H

)
. (11)

Then,
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∞∑

n=1

∞∑

k=n

P(μ̃n(k) > δk) =
∞∑

k=1

k∑

n=1

P(μ̃n(k) > δk) ≤
∞∑

k=1

k�̄

(
δ

σ
k1−H

)
< ∞.

By Borel-Cantelli Lemma, there exits a random number L0 ≥ n, which is finite
almost surely, such that when k > L0, μ̃n(k) ≤ δk, which further implies that
μn(k) ≤ −(μ − δ)k.

We next establish bounds for
∑∞

n=1 q(n). For k > L0, we have μn(k) ≤ −(μ −
δ)k and σn(k)2 ≤ σ 2k2H . Thus, for any b ≥ 0,

Pn(Sk > b) ≤ Pn

(
Sk − μn(k)

σn(k)
>

b + (μ − δ)k

σkH

)
≤ �̄

(
μ − δ

σ
k1−H

)
. (12)

Based on the analysis above, let b = max1≤l≤n Sl . We decompose
∑∞

n=1 q(n) into
three parts:

∞∑

n=1

∞∑

k=n

Pn(Sk > b) ≤
L0∑

n=1

L0∑

k=n

Pn(Sk > b)

︸ ︷︷ ︸
(I)

+
L0∑

n=1

∞∑

k=L0

Pn(Sk > b)

︸ ︷︷ ︸
(II)

+
∞∑

n=L0

∞∑

k=n

Pn(Sk > b)

︸ ︷︷ ︸
(III)

.

Part (I) only involves a finite number of terms. For part (II), from (12), we have

(II) ≤ L0

∞∑

k=L0

�̄

(
μ − δ

σ
k1−H

)
< ∞.

Similarly, for part (III), from (12), we have

(III) =
∞∑

k=L0

k∑

n=L0

Pn(Sk > b) ≤
∞∑

k=L0

(k − L0)�̄

(
μ − δ

σ
k1−H

)
< ∞.

Putting parts (I)–(III) together,wehave
∑∞

n=1 q(n) < ∞. ByBorell-Cantelli Lemma,
there exits L , which is finite almost surely, such that for any n > L , q(n) < a.

Lastly, we show thatE[Lη] < ∞ for any η > 0. Let L1 denote a large enough con-
stant, such that

∑∞
k=L1

�̄
(

μ−δ

σ
k1−H

)
< a. Then, L ≤ max{L0, L1}. Thus, to prove

E[Lη] < ∞, we only need to show that E[Lη

0] < ∞. Define An = ⋃∞
k=n{μ̃n(k) >

δk}. Then Lη

0 ≤ ∑∞
n=1 1{An}nη, and

E[Lη
0] ≤ E

[ ∞∑

n=1

1{An}nη

]
=

∞∑

n=1

∞∑

k=n

P(μ̃n(k) > δk)nη

=
∞∑

k=1

k∑

n=1

nη
P(μ̃n(k) > δk) ≤

∞∑

k=1

kη�̄

(
δ

σ
k1−H

)
< ∞,

where the last inequality follows from (11). �
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Proof of Lemma 2

Proof With a little abuse of notation, we denote Qn as the measure induced by the
TBS procedure. First note that

Qn((Sn+1, ..., Sk) ∈ ·, κn = k) =
∞∑

m=n+1

fn(m)Pn((Sn+1, ..., Sk) ∈ ·, κn = k|Sm > b)

=
∞∑

m=n+1

fn(m)
Pn((Sn+1, ..., Sk) ∈ ·, κn = k, Sm > b)

Pn(Sm > b)

=
∞∑

m=n+1

Pn((Sn+1, ..., Sk) ∈ ·, κn = k, Sm > b)∑∞
	=n+1 Pn(S	 > b)

=
∞∑

m=n+1

Pn((Sn+1, ..., Sk) ∈ ·, κn = k)
Pn(Sm > b|(Sn+1, ..., Sk) ∈ ·, κn = k)∑∞

	=n+1 Pn(S	 > b)

= Pn((Sn+1, ..., Sk) ∈ ·, κn = k)

∑∞
m=k Pn(Sm > b|(Sn+1, ..., Sk) ∈ ·, τ (b) = k)∑∞

	=n+1 Pn(S	 > b)
.

Thus, dPn
dQn

(Sn+1, ..., Sκn , κn < ∞) =
∑∞

	=n+1 Pn(S	>b)∑∞
m=κn

Pκn (Sm>b) . �

Proof of Lemma 3

Proof Let EQ denote the expectation under measure Q. Suppose Mn = b. First note
that by Lemma 2,

Qn(I = 1) = EQn

⎡

⎣
( ∞∑

	=κn

Pκn (S	 > b)
)−1

⎤

⎦

= EPn

[
1∑∞

	=κn
Pκn (S	 > b)

∑∞
	=κn

Pκn (S	 > b)
∑∞

	=n+1 Pn(S	 > b)
1{κn < ∞}

]

= EPn

[( ∞∑

	=n+1

Pn(S	 > b)
)−1

1{κn < ∞}
]

= Pn(κn < ∞)∑∞
	=n+1 Pn(S	 > b)

(13)
Next, by Bayes rule,

Qn((Sn+1, ..., Sκn ) ∈ ·, κn ∈ ·|I = 1) = Qn(I = 1|κn, Sκn )Qn((Sn+1, ..., Sκn ) ∈ ·, κn ∈ ·)
Qn(I = 1)

.

(14)
As Qn(I = 1|κn, (Sn+1, ..., Sκn )) = 1∑∞

	=τ(b) Pκn (S	>b) , plugging (13) in (14), we have
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Qn((Sn+1, ..., Sk) ∈ ·, κn = k|I = 1)

= 1∑∞
	=k Pk(S	 > b)

Qn((Sn+1, ..., Sk) ∈ ·, κn = k)

∑∞
	=n+1 Pn(S	 > b)

Pn(κn < ∞)

= EQn

[
1{(Sn+1, ..., Sk) ∈ ·, κn = k}

∑∞
	=n+1 Pn(S	 > b)
∑∞

	=k Pk(S	 > b)

]
1

Pn(κn < ∞)

= EPn

[
1{(Sn+1, ..., Sk) ∈ ·, κn = k}]

Pn(κn < ∞)
by Lemma 2

= Pn(Sn+1, ..., Sk) ∈ ·, κn = k|κn < ∞).

�

Proof of Lemma 4

Proof Given Sn , suppose Mn = b. We also define

N1 =
(
2σ 2nH‖�−1

n ‖1‖S̃n‖1
μ

) 1
1−H

, N2 =
(
2σ 2

πμ2

) 1
2(1−H)

, and N3 =
(
2H − 1

1 − H

16σ 2

μ2

)2

.

Note that for any k > n, Sk conditional on Sn is still a Gaussian random variable with
conditional meanμn(k) = E[Sk |Sn] = −kμ + U�

nk�
−1
n S̃n , and conditional variance

σn(k)2 = Var[Sk |Sn] = σ 2k2H − U�
nk�

−1
n Unk .

We first establish the sequence of bounds. The lower bound is straightforward.
For the upper bound, note that for k ≥ N1,

μn(k) ≤ −kμ + σ 2(nk)H‖�−1
n S̃n‖1 ≤ −kμ + σ 2(nk)H‖�−1

n ‖1‖S̃n‖1 ≤ −kμ

2
.

Next, note that for k ≥ max{N1, N2},

Pn(Sk > b) ≤ 1√
2π

σn(k)

b − μn(k)
exp

(
− (b − μn(k))2

σn(k)2

)
≤ exp

(
− μ2

8σ 2
k2−2H

)
.

(15)
To see the second inequality, note that when k ≥ N1, μn(k) ≤ −kμ/2 and σn(k) ≤
σkH . Thus, b−μn(k)

σn(k)
≥ b+kμ

2σkH ≥ μ

2σ k
1−H . And for k ≥ N2, 1√

2π

(
μ

2σ k
1−H

)−1 ≤ 1.
Lastly, we have for 	 ≥ max{N1, N2, N3},
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∞∑

k=	+1

Pn(Sk > b) ≤
∞∑

k=	+1

exp

(
− μ2

8σ 2
k2−2H

)
from 15 as 	 ≥ max{N1, N2}

≤
∫ ∞

	

exp

(
− μ2

8σ 2
k2−2H

)
dk

= 1

2 − 2H

∫ ∞

	2−2H
y(2H−1)/(2−2H) exp

(
− μ2

8σ 2
y

)
dy

≤ 1

2 − 2H

∫ ∞

	2−2H
exp

(
− μ2

16σ 2
y

)
dy as 	 ≥ N3

≤ 8σ 2

(1 − H)μ2
exp

(
− μ2

16σ 2
	2−2H

)
= h(	).

For E[B(n)η], we first note that N2 and N3 are finite constants. Thus, we only
need to show that E[N η

1 ] < ∞. For any fixed n,

E[N η

1 ] = E

⎡

⎣
(
2σ 2nH‖�−1

n ‖1‖S̃n‖1
μ

) η

1−H
⎤

⎦

=
(
2σ 2nH‖�−1

n ‖1
μ

) η

1−H
E

⎡

⎣
(

n∑

k=1

|Sk + kμ|
) η

1−H
⎤

⎦

≤
(
2σ 2nH‖�−1

n ‖1
μ

) η

1−H
n

η

1−H −1
n∑

k=1

E

[
|Sk + kμ|

η

1−H

]

=
(
2σ 2‖�−1

n ‖1
μ

) η

1−H
n

ηH+η+H−1
1−H

�(
η/(1−H)+1

2 )√
π

(2σ 2)
η

2(1−H)

n∑

k=1

k
ηH
1−H

≤
(
23/2σ 3‖�−1

n ‖1
μ

) η

1−H �(
η/(1−H)+1

2 )√
π

n
2ηH+η

1−H .

�

Proof of Lemma 5

Proof Given κn and Sκn , suppose Mn = b. First note that

q̃(n, 	) ≤ q̃(n, 	) ≤ · · · ≤
∞∑

i=κn+1

Pκn (Si > b).
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Next, following the proof of Lemma 4, we have for 	 ≥ B(κn),

q̃(n, 	) + h(	) ≥ q̃(n, 	 + 1) + h(	 + 1) ≥ · · · ≥
∞∑

i=κn+1

Pκn (Si > b).

SincePk(Sk > b) = 1, p(k) = (1 +∑∞
i=k+1 Pk(Si > b))−1, and for 	 ≥ B(κn), (1 +

q̃(n, 	) + h(	))−1 ≤ p(κn) ≤ (1 + q̃(n, 	))−1. The rest of the results follow simi-
larly. �

Proof of Lemma 6

Proof Wefirst note that inStep2.1 inAlgorithm2,Pn(N (n) = 	, J = 1) = Pn(S	 >

Mn). Next, following the same lines of analysis as the proof of Lemma 1, we have for
any δ > 0, there exists L0 > 0 such that for 	 > L0, Pn(S	 > Mn) ≤ �̄

(
μ−δ

σ
	1−H

)
,

and for any η > 0, E[Lη

0] < ∞. Then for any η > 0,

E[N (n)η|Sn] =
∞∑

	=n+1

	η
Pn(N (n) = 	)

≤ E[N η

0 |Sn] + E

[ ∞∑

	=N0+1

	η�̄

(
μ − δ

σ
	1−H

)∣∣∣∣∣ Sn

]
.

Thus,

E[N (n)η] = E[E[N (n)η|Sn]] ≤ E[N η

0 ] + E

[ ∞∑

	=N0+1

	η�̄

(
μ − δ

σ
	1−H

)]
< ∞.

�
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Truncated Multivariate Student
Computations via Exponential Tilting

Zdravko I. Botev and Yi-Lung Chen

Abstract In this paper we consider computations with the multivariate student den-
sity, truncated on a set described by a linear system of inequalities. Our goal is
to both simulate from this truncated density, as well as to estimate its normalizing
constant. To this end we consider an exponentially tilted sequential importance sam-
pling (IS) density. We prove that the corresponding IS estimator of the normalizing
constant, a rare-event probability, has bounded relative error under certain condi-
tions. Along the way, we establish the multivariate extension of the Mill’s ratio
for the student distribution. We present applications of the proposed sampling and
estimation algorithms in Bayesian inference. In particular, we construct efficient
rejection samplers for the posterior densities of the Bayesian Constrained Linear
Regression model, the Bayesian Tobit model, and the Bayesian smoothing spline
for non-negative functions. Typically, sampling from such posterior densities is only
viable via approximate Markov chain Monte Carlo (MCMC). Finally, we propose
a novel Reject-Regenerate sampler, which is a hybrid between rejection sampling
and MCMC. The Reject-Regenerate sampler creates a Markov chain, whose states
are, with a certain probability, flagged as commencing a new regenerative or renewal
cycle.Whenever a state initiates a new regenerative cycle, we can further flip a biased
coin to decide whether the state is an exact draw from the target, or not. We show
that the proposed MCMC algorithm is strongly efficient in a rare-event regime and
provide a numerical example.
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1 Introduction

ArandomvectorY ∈ R
d is said to obey the standardmultivariate student distribution,

denoted by Y ∼ tν , if its density function is

c1

(
1 + 1

ν
‖ y‖2

)−(ν+d)/2

, y ∈ R
d ,

where c1 = �((d+ν)/2)
(πν)d/2�(ν/2) . Since the multivariate student is a location-scale family, if

Y ∼ tν , we can write μ + �1/2Y ∼ tν(μ, �) for some location μ and scale matrix
�. For a given m × d real matrix C (we assume that m ≤ d) and vectors l, u ∈ R

m

(hereR = R ∪ {−∞,∞}), denoting � = P[l ≤ CY ≤ u], it follows that the density
of Y conditioned on Y ∈ { y | l ≤ C y ≤ u} is

h( y) = c1
(
1 + 1

ν
‖ y‖2)−(ν+d)/2

1{l ≤ C y ≤ u}
�

.

Estimating � and simulating draws Y ∼ h are two closely related problems with
many statistical applications (see [10] and the references therein).

In this paper we consider estimating � and simulating from h via the exponentially
tilted sequential proposal density in [2], which is itself inspired by the separation-of-
variables in [10] and constructs a proposal density g with following sequential form
(θ = (θ1, . . . , θd)

�): g(θ) = g(θ1)g1(θ2 | θ1)g2(θ3 | θ1, θ2) . . . gd(θd | θ1, . . . , θd−1),

where each gk belongs to a family of densities indexed by some ‘tilting’ param-
eter. An optimal tilting parameter is chosen such that the variance of an estimator
of � with IS density g is approximately minimized. This proposal density gives an
accurate IS estimator for � and an efficient rejection sampler to simulate draws from
h (similar to ideas in [5]).

Our contributions over and above those in [2] are as follows. Firstly, we prove that
the IS estimators for � in [2] is asymptotically efficient. In particular, we show that
the estimator enjoys the bounded relative error property for rare-event probability
estimation. This is a desirable property in rare-event simulation [14]. A by-product
of our theory is the extension of the well-known Mill’s ratio [16] to the multivariate
student distribution.

Secondly, we show how the exponentially tilted proposal density can be used in a
rejection sampler for simulating draws from the posterior densities of the Bayesian
constrained linear regression, Bayesian Tobit model, and the Bayesian smoothing
spline for non-negative functions [6, 8, 9, 19]. When viable, this exact sampling is
preferable to approximate MCMC posterior simulations.

Since exact sampling becomes inefficient as the dimensions grow, our third con-
tribution is a novel Reject-Regenerate sampling algorithm. This sampling algorithm
takes advantage of the classical splitting technique for Markov chains [18] and com-
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bines regeneration with rejection sampling. We show that as an MCMC sampler in
a rare-event regime, the algorithm is a strongly efficient MCMC, as defined in [4].

All truncatedmultivariate student code is freely available in bothR1 andMatlab.2

There is also relevant JAVA software, see [3].

2 Review of the Sequentially Tilted Proposal Density

The construction of the proposal density in [2] begins by recalling that if X ∼
N(0, �), and independently R ∼ chiν , then

√
νX/R ∼ tν(0, �), where the density

of a chiν random variable is

cν(r) = 21−ν/2

�(ν/2)
exp

(
−r2

2
+ (ν − 1) ln r

)
, r > 0.

In this manner, it suffices for one to consider simulating (X, R) ∼ f where

f (x, r) = 1{r l ≤ √
νCx ≤ ru}/�√|�|(2π)d/2 × 2ν/2−1�(ν/2)

exp

(
− 1

2
x��−1x − r2

2
+ (ν − 1) ln r

)
.

Next, let � = L1L�
1 be the Cholesky decomposition of � and CL1 = LQ be the

LQ decomposition of CL1 so that L1 ∈ R
d×d , L ∈ R

m×d are lower triangular, while
Q ∈ R

d×d is orthonormal. It follows that the substitution x = L1Q�z yields the
density

f (z, r) = 1{r l ≤ √
νL z ≤ ru}/�√|�|(2π)d/2 × 2ν/2−1�(ν/2)

exp

(
−‖z‖2

2
− r2

2
+ (ν − 1) ln r

)
. (1)

Given l, u and L , define R = {(z, r) : r l ≤ √
νL z ≤ ru}. Then, we can write R as

l̃1(r) := r l1√
ν
/L11 ≤z1 ≤ r u1√

ν
/L11 =: ũ1(r)

...

l̃d (r,z1,...,zd−1)︷ ︸︸ ︷
r ld√

ν
−∑d−1

i=1 Ldi zi

Ldd
≤zd ≤

ũd (r,z1,...,zd−1)︷ ︸︸ ︷
r ud√

ν
−∑d−1

i=1 Ldi zi

Ldd
.

1 https://cran.r-project.org/web/packages/TruncatedNormal/index.html.
2 https://www.mathworks.com/matlabcentral/fileexchange/53796-truncated-normal-and-student-
s-t-distribution-toolbox.

https://cran.r-project.org/web/packages/TruncatedNormal/index.html
https://www.mathworks.com/matlabcentral/fileexchange/53796-truncated-normal-and-student-s-t-distribution-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/53796-truncated-normal-and-student-s-t-distribution-toolbox
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Observing that l̃k, ũk only depend on r and zi for i < k, it is natural to consider a
proposal g, with support on R, that takes sequential form in the following manner:

g(z, r;μ, η) = g0(r; η)g1(z1 | r;μ1)g2(z2 | r, z1; μ2) . . . gd (zd | r, z1, . . . , zd−1;μd ),

where μ and ν are parameters to be specified shortly. Denote φ(·;μ, σ 2) to be the
pdf of theN(μ, σ 2) distribution and� to be the cdf ofN(0, 1). Then, one can choose
g0(r; η) = φ(r;η,1)

�(η)
, r > 0 and

gk(zk | r, z1, . . . , zk−1;μk) = φ(zk;μk, 1)1{l̃k ≤ zk ≤ ũk}
�(ũk − μk) − �(l̃k − μk)

, k = 1, 2, . . . ,

that is (denotingTN[a,b](θ, σ 2) as aN(θ, σ 2) randomvariable, truncated/conditioned
to the interval [a, b]):

R ∼ TN(0,∞)(η, 1)

Zk | R, Z1, . . . , Zk−1 ∼ TN(l̃k ,ũk )
(μk, 1), k = 1, . . . , d.

(2)

Finally, define the logarithm of the likelihood ratio:

ψ(z, r;μ, η) := ln
cν(r)φId (z)
g(z, r;μ, η)

= ‖μ‖2
2

− z�μ + η2

2
− rη + (ν − 1) ln r + ln�(η)

+
d∑

k=1

ln[�(ũk − μk) − �(l̃k − μk)].

The tilting parameters (η,μ) is the unique solution to the program [2]

(z∗, r∗,μ∗, η∗) = argmin
(μ,η)

argmax
(z,r)∈R

ψ(z, r;μ, η). (3)

Intuitively, maxz,r∈R ψ seeks to find how much g can deviate from f . The optimiza-
tion with respect to (μ, η) shapes g so that this worst-case deviation is minimized.
This optimization is tackled in [2] by solving the nonlinear system of equations
∇ψ = 0, where ∇ψ is the gradient with respect to all the variables. To this end, [2]
proposes the unbiased IS estimator

�̂ = 1

n

n∑
k=1

exp(ψ(Zk, Rk;μ∗, η∗)), (Zk, Rk) ∼i id g. (4)
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Since ψ(z, r;μ∗, η∗) ≤ c =: ψ(z∗, r∗,μ∗, η∗) for all (z, r), the following rejection
sampling algorithm yields an exact draw (Z, R) ∼ f .

Algorithm 1: Rejection sampling for f in (1)
Input: (z∗, r∗,μ∗, η∗), the solution to program (3) and c ← ψ(z∗, r∗,μ∗, η∗)

1 repeat
2 Draw (Z, R) ∼ g(·, ·;μ∗, η∗), as given by (2);
3 Independently draw E ∼ Exp(1);
4 until E ≥ c − ψ(Z, R;μ∗, η∗);
5 return (Z, R) an exact draw from f

3 Asymptotic Efficiency of the IS Estimator

The main contribution presented in this section is Theorem 3, which establishes
an asymptotic efficiency of the estimator (4). Along the way, we shall establish
Theorem 2, which is a multivariate extension of the Mill’s ratio for the student
distribution. We shall begin by establishing the following notations.

Suppose � is a positive definite covariance matrix and ν > 0 is degrees of free-
dom. We wish to find the asymptotic approximation to the tail

�(γ ) = P[Y ≥ l(γ )], Y ∼ tν(0, �) (5)

where maxi li > 0, and at least one component of l(γ ) diverges to ∞, that is,
limγ↑∞ ‖l(γ )‖ = ∞. Let P be a permutation matrix which maps the vector
(1, . . . , d)� into the permutation p = (p1, . . . , pd)�, that is, P(1, . . . , d)� = p.
Note that �(γ ) = P[PY ≥ P l(γ )] for any permutation p, and PY ∼ tν(0, P�P�).
We will specify p shortly.

Consider the convex quadratic programming: minx:x≥P l(γ ) x�(P�P�)−1x. The
Karush-Kuhn-Tucker (KKT) conditions [12, p. 409] are a necessary and sufficient
condition to find the unique solution:

(P�P�)−1x − λ = 0

λ ≥ 0, P l − x ≤ 0

λ�(P l − x) = 0 ,

(6)

where λ ∈ R
d is the Lagrange multiplier. Denote the number of active constraints

in the quadratic program by d1 and the number of inactive constraints as d2, so that
d1 + d2 = d. Note that the number of active constraints d1 ≥ 1, because otherwise
the solution is x = 0, which implies P l ≤ 0, thus reaching a contradiction.

Given the partition λ = (λ�
1 ,λ�

2 )� with dim(λ1) = d1 and dim(λ2) = d2, one can
select the permutation vector p and the corresponding matrix P in such a way that all
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the active constraints in (6) correspond to λ1 > 0 and all the inactive ones to λ2 = 0.
For simplicity of the notation, we assume that this reordering of the variables via the
permutation operator P is always applied to l and�, so that P l = l and P�P� = �.

If we partition x, l , and � =
(

�11 �12

�21 �22

)
, then the KKT equations tell us that the

optimal solution x∗ is:

x∗
1 = �11λ1 = l1(γ )

x∗
2 = �21λ1 = �21�

−1
11 l1(γ ) > l2(γ )

with the global minimum 1
2 (x

∗)��−1x∗ = 1
2 (x

∗
1)

�λ1 = 1
2 l

�
1 �−1

11 l1.

Theorem 1 (Mill’sRatioForMultivariateNormal [11])Under the conditions above,
if X ∼ N(0, �), then as γ ↑ ∞, we have:

P[X ≥ l(γ )] = P[X2 ≥ l∞ | X1 = 0]
(2π)d1/2|�11|1/2∏d1

k=1 u
�
k �−1

11 l1
exp

(
− l�1 �−1

11 l1
2

)
(1 + o(1)),

where l∞ := limγ↑∞(l2(γ ) − x∗
2(γ )) with l∞ ≤ 0.

One of our main contributions is to generalize the result of [11] to the following.
The proof for this result is provided in the Appendix.

Theorem 2 (Mill’s Ratio For Multivariate Student) Suppose Y ∼ tν(0, �) with
ν > 0, and � and l satisfy the conditions imposed for the solution of (6). Then,

P[Y ≥ l(γ )] = (c + o(1)) ×
(
1 + l1(γ )��−1

11 l1(γ )

ν

)−ν/2

, γ ↑ ∞,

where c is a constant, independent of γ , and is given by the expression:

c = 21−ν/2

�(ν/2)

∫ ∞

0
r ν−1

P[X ≥ r l∞]dr,

with l∞ = limγ↑∞ l(γ )√
ν+l1(γ )��−1

11 l1(γ )
and X ∼ N(0, �).

As an example, when d = 1 and l∗ = 1, L1 = σ , we obtain:

�(γ ) ↓ 21−ν/2

�(ν
2 )
(
1 + γ 2σ 2

ν

)ν/2

∫ ∞

0
uν−1�(u)du = �((ν + 1)/2)

ν
√

π�(ν
2 )
(
1 + γ 2σ 2

ν

)ν/2 .

The last agrees with the result of [20, 21], namely, �(γ ) ↓ γ

σν
tν(γ ; 0, σ 2), where

tν(x;μ, σ 2) is the pdf of the univariate tν(μ, σ 2) distribution evaluated at x .
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A second example considers the tail asymptotics of l(γ ) = γ l, maxi li > 0. We
have:

P[Y ≥ γ l] = (c + o(1)) ×
(
1 + γ 2 l

�
1 �−1

11 l1
ν

)−ν/2

, γ ↑ ∞,

where c = 21−ν/2

�(ν/2)

∫∞
0 r ν−1

P

[
X ≥ r l√

l�1 �−1
11 l1

]
dr.

Finally, recall that g(x) = �( f (x)) is the same as g(x) = O( f (x)) and f (x) =
O(g(x)). In addition to f (x) = o(g(x)) being a shorthand notation for
limx↑∞ f (x)/g(x) = 0, we use the notation � for “asymptotically less than”. We
have the following result concerning the asymptotic efficiency of this IS estimator
for �. The proof is provided in the Appendix.

Theorem 3 (Bounded Relative Error estimator) Suppose we wish to estimate the
tail probability �(γ ) = P[Y ≥ l(γ )], where Y ∼ tν(0, �), and maxi li > 0 with
l(γ )/γ = �(1) as γ ↑ ∞. Then, the exponentially tilted estimator

�̂ = exp(ψ(Z, R;μ∗, η∗)), (Z, R) ∼ g(z, r; η∗,μ∗),

is a bounded relative error estimator: lim supγ↑∞
Var(�̂)
�2(γ )

< ∞.

We note that the same estimator �̂ in Theorem 3 was shown to enjoy a vanishing

relative error property, Var(�̂)
�2(γ )

↓ 0, as ν ↑ ∞, see [1].
Theorem 3 explains the excellent simulation results obtained in [2], especially

when estimating small tail probabilities. In view of these theoretical and simulation
results, we can confidently state that the method proposed in [2] significantly outper-
forms its competitors, such as Genz’s method [10]. Figure 1 summarizes one exam-
ple of estimating P(0 ≤ CY ≤ 2)with Y ∼ t10(0, Id) and (CC�)−1 = 1

2 Id + 1
211

�,

where 1 = (1, . . . , 1)� ∈ R
d .

Fig. 1 Comparison of proposed estimator with that of Genz [10]. Both the computing time and the
relative error favor �̂. In fact, Genz’s estimator gives meaningful estimates only for up to d = 10
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4 Application to Constrained Linear Regression

Consider the linear regression model Y = Xβ + ε, X ∈ R
m×d , ε ∼ N(0, σ 2 I ) with

the (possibly “improper” Bayesian) prior information p(β) ∝ 1{l ≤ Cβ ≤ u} for
some appropriate matrix C and vectors l, u.

Assuming for simplicity a non-informative prior p(σ ) ∝ σ−2, theBayesian poste-

rior fromwhichwewish to sample is: f (β, σ ) ∝ exp
(
−‖ y−Xβ‖2

2σ 2 − (m + 2) ln σ
)

×
1{l ≤ Cβ ≤ u}. If β̂ is the least squares estimate, and s2 := ‖ y − X β̂‖2 is the norm
of the residuals, then

f (β, σ ) ∝ exp

(
− s2

2σ 2 − (m + 2) ln σ − (β − β̂)�X�X (β − β̂)

2σ 2

)
× 1{l ≤ Cβ ≤ u}

Let L1L�
1 = X�X be the lower triangular Cholesky decomposition of X�X and

LQ = CL−�
1 be the LQ decomposition of matrix CL−�

1 . Then, the bijective smooth
transformation

r = s/σ, z = Q L�
1 (β − β̂)/σ

l ← √
ν(l − Cβ̂)/s, u ← √

ν(u − Cβ̂)/s,
(7)

where ν ← (m − d + 1) ≥ 1, yields the density for (z, r):

f (z, r) ∝ exp

(
−1

2
‖z‖2 − r2

2
+ (ν − 1) ln r

)
× 1{r l ≤ √

νL z ≤ ru},

which is finally of a form amenable to Algorithm 1.
As a numerical example, we consider the Apple dataset [7] which records

207observations of the number apples produced (in cartons) alongwith the number of
trees of each year of age from various growers. This can be modeled by the Bayesian
constrained linear regression where the i-th response, yi ∈ R, is the number of apples
produced and the i-th predictor vector, xi ∈ R

10, records the number of trees of age
j + 1, j = 1, . . . , 10 being the entry index within the vector xi . Note that here trees
of year 1 is considered to have zero production and age 11 is considered as the
mature age of an apple tree, so that any tree above an age of 11 is recorded as age
11. Finally, the prior π(β) ∝ 1{β1 ≤ β2 ≤ · · · ≤ β10} captures the prior belief that
a more mature tree produces more apples. The results are summarized in Fig. 2 and
Table 1.
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Fig. 2 The empirical posterior distribution derived from n = 104 independent exact draws

Table 1 Estimated mean, 0.95 credible interval and standard deviation

Mean 0.025-quantile 0.975-quantile Sample std.

Age 2 3.1890 × 10−2 6.1072 × 10−3 5.4554 × 10−2 1.1964 × 10−2

Age 3 4.8505 × 10−2 2.5604 × 10−2 7.7669 × 10−2 1.3294 × 10−2

Age 4 1.7888 × 10−1 1.5264 × 10−1 2.0631 × 10−1 1.3757 × 10−2

Age 5 2.7876 × 10−1 2.0196 × 10−1 3.6938 × 10−1 4.3667 × 10−2

Age 6 5.2097 × 10−1 3.5380 × 10−1 7.0809 × 10−1 9.1928 × 10−2

Age 7 7.0249 × 10−1 5.8087 × 10−1 8.2818 × 10−1 6.4465 × 10−2

Age 8 7.3122 × 10−1 6.1550 × 10−1 8.5433 × 10−1 6.2582 × 10−2

Age 9 8.6244 × 10−1 6.8128 × 10−1 1.2004 1.3217 × 10−1

Age 10 9.5653 × 10−1 7.2493 × 10−1 1.3117 1.5596 × 10−1

Age 11 1.1594 8.2762 × 10−1 1.6596 2.1844 × 10−1

5 Tobit Model Application

In the Tobit regression model with normally distributed error, the response is Yi =
max{Wi , ui },∀i , where W ∼ N(Xβ, σ 2 I ). The posterior, given for the data y and
with uninformative priors, say p(β) ∝ 1 and p(σ ) ∝ σ−2, is then of the form:
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f (β, σ ) ∝ exp

⎛
⎝−

∑
i :yi>ui

(
(yi − x�

i β)2

2σ 2 + ln σ

)
+

∑
i :yi=ui

ln�((ui − x�
i β)/σ )

⎞
⎠× σ−2

Let y and y be vectors that collect all yi > ui and yi = ui , respectively. Denote

the corresponding matrix with predictors via X and X , respectively. Using a latent
variable wi for each yi = ui , we can write:

f (β, σ,w) ∝ exp

(
−‖ y − Xβ‖2

2σ 2
− ‖w − Xβ‖2

2σ 2
− (m + 2) ln σ

)
1{w ≤ u}

so that the marginal of (β, σ ) has the desired posterior pdf. Note that, conditional

on (σ,w), the distribution of β isN(C(X
�
y + X�w), σ 2C), where C−1 = X

�
X +

X�X . Thus, to simulate from the posterior, it suffices to simulate from the marginal
of (σ,w), which is of the form:

f (σ, w) ∝ exp

(
−‖w‖2

2σ 2 + (X
�
y + X�w)�C(X

�
y + X�w)

2σ 2 − ‖ y‖2
2σ 2

)
1{w ≤ u} × σ d−m−2.

After some straightforward computations we can rewrite it as:

f (σ, w) ∝ exp

(
− (w − ŵ)�(I − XCX�)(w − ŵ)

2σ 2 − s2

2σ 2 − (m − d + 2) ln σ

)
1{w ≤ u},

where ŵ := X(X
�
X)−1X

�
y and s2 := y�(I − X(X

�
X)−1X

�
) y. It follows that the

transformation r = s/σ , z = L−1(ŵ − w)/σ , where LL� = I + X(X
�
X)−1X� is

the Cholesky decomposition, and ν ← m − d − dim( y) + 1, l ← √
ν(ŵ − u)/s,

reveals that simulating from f (σ,w) is equivalent to simulating form

f (z, r) ∝ exp

(
−‖z‖2

2
− r2

2
+ (ν − 1) ln r

)
1{√ν L z ≥ r l},

which is again amenable to Eq. (1). As a numerical example, we consider the
Women’s Wages dataset [17] with ui = 0∀i . It consists of m = 753 observations
on the number of hours per annum (the response yi ) married women spend in the
labor force. The seven predictor variables (x1, . . . , x7) are:

1. kidslt6, number of children of age less than 6;
2. kidsge6, number of children of age between 6 and 18;
3. age, age of the married woman;
4. educ, level of education;
5. experience, number of years worked since age 18;
6. nwifeinc, household income that is not earned by the wife;
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Fig. 3 The empirical posterior distribution (represented a boxplots) derived from n = 104 inde-
pendent exact draws

Table 2 Estimated mean, 0.95 Bayesian credible interval and standard deviation of the posterior

Mean 0.025-quantile 0.975-quantile Sample std.

β0 9.5938 × 102 2.2870 × 101 1.8375 × 103 4.6362 × 102

kidslt6 −9.0330 × 102 −1.1493 × 103 −6.8019 × 102 1.1975 × 102

kidsge6 −1.6187 × 101 −9.3890 × 101 6.1027 × 101 3.9863 × 101

age −5.5046 × 101 −7.0864 × 101 −4.0027 × 101 7.8629

educ 8.1827 × 101 3.8144 × 101 1.2759 × 102 2.2705 × 101

exper 1.3301 × 102 9.7990 × 101 1.7019 × 102 1.8504 × 101

nwifeinc −8.9230 −1.8092 × 101 8.0835 × 10−2 4.6469

expersq −1.8884 −3.0007 −8.0634 × 10−1 5.5906 × 10−1

7. expersq, square of the number of years the married woman has worked since
age 18.

The results are summarized in Fig. 3 and Table 2.
We can see that the most important factors for women’s labour force participation

is: (1) the number of children of age less than 6 (with a large negative effect on the
number of hours in the workforce); (2) the experience in the work force (with a large
positive effect). Education and Age are also relevant, but their effect is smaller (the
corresponding coefficient estimates are much smaller).
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6 Application to “Bayesian” Splines for Non-negative
Functions

Consider the dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}. Using {0, x1, . . . , xn, h} as
knots, a common cubic smoothing spline regressionmodel is: yi = ∑n+4

k=1 βksk(xi ) +
εi , εi ∼i id N(0, σ 2), where sk is the k-th 4-th order B-spline basis for inner knots
{x1, . . . , xn}. The goal is to estimate β := (β1, . . . , βn+4)

� such that the estimator is
non-negative [19]. Without the non-negativity constraints, the frequentist estimator
is:

argmin
β

n∑
i=1

⎛
⎝yi −

n+4∑
k=1

βksk(xi )

⎞
⎠
2

+ λ

∫ h

0

⎛
⎝n+4∑
k=1

βks
′′
k (x)

⎞
⎠
2

dx,

where λ > 0 controls the smoothness of the splines. Denoting

s(xi ) = (s1(xi ), s2(xi ), . . . , sn+4(xi ))
�,

the Bayesian inference proceeds with [19]:

f ( y|x, β, σ 2) ∝ σ−n exp

⎛
⎝− 1

2σ 2

n∑
i=1

(yi − β�s(xi ))
2

⎞
⎠

f (β|σ 2, λ) ∝ λ(n+4)/2σ−(n+4) exp

(
− λ

2σ 2 β�Kβ

)
, p(σ 2) ∝ σ−2,

where K is a square matrix of size n + 4 with entries Kkl = ∫ h
0 s ′′

k (x)s
′′
l (x) dx .

Enforcing the non-negativity of the regression function over the grid {0 ≤ z1 < z2 <

· · · < zm ≤ h} reduces to imposing the constraint: β�s(z j ) := ∑n+4
k=1 βksk(z j ) ≥

0, j = 1, . . . ,m. Consequently, Bayesian inference for this model requires one to
sample from the posterior distribution:

f (β, σ 2| y, x, λ) ∝ f ( y|x,β, σ 2) f (β|σ 2, λπ(σ 2),

restricted to: β�s(z j ) ≥ 0, j = 1, . . . ,m. By denoting S = [s(x1), . . . , s(xn)]� and
completing the square, the posterior distribution reduces to:

f (β, σ 2| y, x, λ) ∝ exp

(
− s2

2σ 2 − (2n + 6) ln σ − (β − β̂)�A(β − β̂)

2σ 2

)
1{Sb ≥ 0},

where A = S�S + λK , β̂ = A−1S� y, s2 = y� y − y�SA−1S y. This again takes
the form amenable to Algorithm 1. Figure 4 gives a numerical example from [19].
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Fig. 4 There are fifty xi ’s uniformly distributed on [0, 2π ] and yi = xi sin2(xi ) + εi , where εi ∼
N(0, 1). The dotted line and the bands are the mean and the empirical 95% function values obtained
from sampling the posterior distribution exactly 1000 times

7 The Reject-Regenerate Sampler

So far we have successfully applied the exponential tilting technique in [2] to con-
struct exact samplers for certain Bayesian posterior densities. However, due to the
curse of dimensionality, no matter how careful one constructs a proposal density,
rejection sampling will eventually become inefficient as the sampling dimension
grows.

Consider the situation where we have designed a sequential proposal density for
efficient rejection sampling. We know that the rejection sampler will be efficient up
to a certain dimension, which is typically unknown a-priori. Beyond this unknown
dimension, the rejection sampling will be inefficient and we will have to switch from
exact rejection sampling to approximate independentMetropolis sampling [13]. This
scenario has a number of undesirable features.

First, the user has to explicitly decide when a rejection sampler is inefficient. For
example, should the cutoff for efficiency be an acceptance probability of 10−3 or
10−2?

Second, the user has to run the rejection sampling algorithm to find out if it meets
the efficiency criterion above. In the likely event that the rejection sampler does not
meet the efficient criterion, this simulation effort has been effectivelywasted, because
the user now has to run a separate MCMC algorithm from scratch. The simulation
effort from rejection sampling is not recycled by the MCMC sampler, but is simply
used to make a dichotomous, all-or-nothing decision about the rejection sampler.
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Given the above drawbacks of using rejection and MCMC sampling as two dis-
tinct algorithms, in this section we propose a single algorithm which combines the
desirable features of both rejection and MCMC sampling and thus removes the need
to make a choice between the two. We call this algorithm the Reject-Regenerate
sampler.

The Reject-Regenerate sampler has the following desirable features. At a given
step t , using an exponentially tilted proposal density, the Reject-Regenerate sampler
simulates a random variable X t . Then, with a certain probability the variable X t is
flagged as belonging to either one of these three states:

1. an draw within an Markov chain which initiates the next regenerative cycle;
2. an independent and exact/perfect draw from the target;
3. a regular draw within an MCMC run (which is neither exact, nor regenerative).

As a result of these features, the Reject-Regenerate sampler makes is unneces-
sary for the user to choose between rejection and MCMC sampling. If the rejection
sampling is efficient, then most of the draws in the sequence {X t } will be indepen-
dent and exact draws from the target. However, if rejection sampling is not viable,
then the sequence {X t } will be interpreted as the output of an MCMC with the
possibility of identifying regeneration cycles. In this way, the simulation effort in
rejection sampling is recycled for MCMC sampling. In summary, we will describe
a sampling scheme in which we identify the regeneration times of an independence
sampler, and whenever regeneration occurs, it has a certain probability of achiev-
ing an independent exact draw from the target density. The regeneration is achieved
using the classical method of “splitting” of the Markov transition kernel into mixture
components, which was first proposed by Nummelin [18].

7.1 Nummelin Splitting of Transition Kernel

Suppose that the target pdf is f (x) = p(x)

�
where � = ∫

p(x) dx is the normalizing
constant and we have p(x) available analytically. Our proposal pdf is g(x) that sat-
isfies w(x) := p(x)

g(x) exp(ψ∗) ≤ 1, where ψ∗ = maxx ψ(x) = maxx ln
p(x)

g(x)
. In the case

where g(·;μ) comes from a family of densities, indexed by some tilting parameter
μ, we choose ψ∗ = minμ maxx ψ(x;μ) and g(·;μ∗) is the corresponding optimal
proposal.

Next denote wρ(x) := min{w(x)/ρ, 1} for some ρ ∈ (0, 1]. Now, suppose that
we wish to simulate X ∼ g, conditional on U ≤ wρ(X). The probability of this
happening is cρ = Ewρ(X). The well-known rejection sampling corresponds to ρ =
1, giving acceptance probability c1 = �/ exp(ψ∗).

Recall that the probability transition kernel of an independence sampler with
proposal g is

κ(d y | x) = α( y | x)g( y)d y + (1 − α∗(x))δx(d y)
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where α( y | x) = 1 ∨ w( y)
w(x)

, α∗(x) = ∫
α(u | x)g(u) du. Given the current state of

the Markov chain x, the conventional implementation of the independence sampler
draws Y ′ ∼ g, U ∼ Unif(0, 1) and if U <

w( y′)
w(x)

, the next state of the chain Y is
assignedY ← Y ′, otherwiseY ← x. This can be seen as drawing from the following
transition kernel

κ(d y, d y′, u | x) = g( y′)1u<
w(y′)
w(x)

δ y′(d y) d y′ + g( y′)1u>
w(y′)
w(x)

δx(d y) d y′

which has the desired marginal κ(d y | x) and marginals κ(d y′ | x) = g(d y′) and
κ(u | x, y′) = 1, u ∈ (0, 1), so that

κ(d y | x, y′, u) = 1u<
w(y′)
w(x)

δ y′(d y) + 1u>
w(y′)
w(x)

δx(d y).

Next, define gρ( y) := g( y)wρ( y)
cρ

and note that we have

1 ∨ w( y)
w(x)

≥ (1 ∨ w( y)/ρ) × (1 ∨ ρ/w(x)) ≥ (1 ∨ w( y)/ρ) × ρ,

and α∗(x) ≥ (1 ∨ ρ/w(x)) × cρ =: sρ(x). It follows that we can decompose
κ(d y | x) as a three-component mixture:

κ(d y | x) = sρ(x)gρ( y) d y + (α∗(x) − sρ(x))
g( y)(1 ∨ w( y)

w(x)
) − gρ( y)sρ(x)

α∗(x) − sρ(x)
d y

+ (
1 − α∗(x)

)
δx(d y).

Regeneration happens whenever we simulate from the first component gρ (the idea
being due to Nummelin [18]), again in practice this is done retrospectively. Formally,
let us define

r( y | x) = (1 ∨ w( y)/ρ) × (1 ∨ ρ/w(x))

1 ∨ w( y)
w(x)

≤ 1. (8)

Given previous state x and current state Y of the Markov chain, where Y �= X (that
is, a transition has happened), one simulates another independent V ∼ Unif(0, 1) and
decides that Y initiates a new regenerative cycle if V < r(Y | X). In other words, one
retrospectively identifies Y as a draw from gρ if V < r(Y | X). This is equivalent to
sampling from the kernel:

κ(d y | x, y′, u, v) = δ y′(d y)1u<
w(y′)
w(x)

[
1v<r( y′ | x) + 1v>r( y′ | x)

]+ 1u>
w(y′)
w(x)

δx(d y).

Finally, to get the exact sampling as a subset of regeneration, define

e( y) = w( y)
1 ∨ (w( y)/ρ)

≤ 1, (9)
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so that cρ ≥ c1. Then,

gρ( y) = g( y)(1 ∨ w( y)/ρ)

cρ

= c1
cρ

g( y)w( y)
c1

+
(
1 − c1

cρ

)
g( y)(1 ∨ w( y)/ρ) − g( y)w( y)

cρ − c1
.

Notice that drawing from first component of this mixture g( y)w( y) ∝ π( y) gives an
exact draw from π . Simulation from this mixture is accomplished by sampling from
the joint: gρ( y, v′) = gρ( y)1{v′<e( y)} + gρ( y)1{v′>e( y)}. In otherwords, simulateY ∼
gρ( y) and V ′ ∼ Unif(0, 1) and then evaluate 1{V ′<e(Y)} (to check if we sampled from
the first component of this mixture).

Putting these observations together, we describe an algorithm where we
simulate Y ∼ g( y), independently V, V ′,U ∼i id Unif(0, 1), and sample from
κ(d y | x, y′, u, v, v′) =:

δ y′ (d y)1
u<

w( y′)
w(x)

[
1v<r( y′ | x),v′<e( y′) + 1v<r( y′ | x),v′>e( y′) + 1v>r( y′ | x)

]+ 1
u>

w( y′)
w(x)

δx(d y).

The probability of exact sampling, conditional on x is: sρ(x) × c1
cρ

= c1 × (1 ∨
ρ/w(x)). The final algorithm is thus as follows (here B = 1 means regenerative
draw and B = 2 means exact sampling draw).

Algorithm 2: MCMC with regeneration and exact sampling
Input: Current state of chain (Xn, Bn) and constant ρ.

1 Bn+1 ← 0, simulate Y ∼ g( y) and U, V, V ′ ∼iid Unif(0, 1), independently;
2 if U ≤ w(Y)/w(Xn) then
3 Xn+1 ← Y ;
4 if V ≤ r(Y | Xn) as in (8) then
5 Bn+1 ← 1;
6 if V ′ ≤ e(Y) as in (9) then
7 Bn+1 ← 2;

8 else
9 Xn+1 ← Xn;

10 return (Xn+1, Bn+1) as the next state of the chain

The special case of ρ = 1 corresponds to an independence sampler with regen-
eration, but with each regeneration corresponding to an exact draw from π . In other
words, every regenerative cycle is initialized by an exact draw from the target.

Applying Algorithm 2 on the Women’s Wages dataset from Sect. 5, we find that
when ρ = 0.5c = 0.5ψ(z∗, r∗,μ∗, η∗), the frequency of regenerative outcomes is
observed to be 0.45, while the frequency of exact draws is 0.29. Here we do not
address the interesting question of choosing the constant ρ optimally.
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7.2 Rare-Event Robustness

Of interest is the robustness of Algorithm 2 in the case when the target is the pdf
of Y ∼ tν(0, �), conditional on {Y ≥ l(γ )}, as the rarity parameter γ diverges to
infinity.

The concept of rare-event efficiency for MCMC sampling was introduced in
[4]. Briefly, if κt (A|x) is the t-step transition kernel of a Markov chain with
limiting and stationary density f , then the total variation distance is Dt (x) =
supA |κt (A|x) − f (A)| , where f (A) := ∫

A f (x)dx is the measure of a Borel set
A on R

d . Taking at least T = min{t : Dt (x) ≤ ε} MCMC number of steps will
keep the total variation distance below ε. A Markov chain is strongly efficient if
lim supγ T (γ ) < ∞ and logarithmically efficient if lim supγ

ln T (γ )

ln γ
< ∞. Note that

the length of a strongly efficient chain does not have to be increased as the rar-
ity parameter γ gets larger and larger. But the length of a logarithmically efficient
chain must grow at a polynomial rate to ensure that the total variation distance stays
below ε.

Just like the exponentially tilted estimator �̂ is strongly efficient as per Theorem 3,
the independence sampler (and hence the Reject-Regenerate Algorithm 2) is also
strongly efficient for sampling Y ∼ tν(0, �), conditional on {Y ≥ l(γ )}, when we
apply the exponentially tilted sequential proposal density (2). In other words, we
have the following theorem whose proof is given in the Appendix.

Theorem 4 (Strongly Efficient Reject-Regenerate Sampling)As γ ↑ ∞, the Reject-
Regenerate Algorithm 2 using the optimal exponentially tilted sequential proposal
density (2) simulates a strongly efficient Markov chain with target pdf (1).

8 Concluding Remarks

In this paper we establish the bounded relative error of the IS estimator �̂ =
exp(ψ(Z, R;μ∗, η∗)) in a rare-event regime. A byproduct of this proof is a mul-
tivariate extension of the Mill’s ratio, currently known only for univariate student
densities.

Wedescribe novel applications of rejection-samplingAlgorithm1on theBayesian
inference for: (a) the constrained linear regression model; (b) the Tobit model; (c)
the non-negative smoothing spline model.

We have also tested these rejection samplers on real and synthetic datasets. Our
simulation experience reveals that these samplers achieve valid posterior inferences
and the probabilities of retaining samples are reasonably high.

We have also proposed a new sampler, which we call the Reject-Regenerate sam-
pler. The proposed algorithm identifies regeneration times within the Markov chain,
and in the event of a regeneration, with some probability, the Markov chain achieves
an exact draw from the target. The validity of this sampler is established by rewriting
its transition kernel as a nested mixture with a regenerative and non-regenerative
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components. Whenever a draw is made from the regenerative component, it initial-
izes a new regenerative cycle.We further decompose the regenerative component into
a mixture that includes the target density. In this manner we have an independence
sampler whose regeneration times can be identified, and whenever a new regenera-
tive cycle is initialized, there is chance that the cycle starts with an exact draw from
the target density.

Finally, we establish that the version of the Reject-Regenerate sampler using an
exponentially tilted proposal density is asymptotically strongly efficient in a rare-
event setting.

Appendix

Proof of Theorem 2

Proof First, we use the normal scale-mixture representation of Y ∼ tν(0, �) as Y =
√

νZ/R, where Z ∼ N (0, �) is independent of R ∼ cν(r) = exp
(
− r2

2 +(ν−1) ln r
)

2ν/2−1�(ν/2) ,

r > 0. We can thus write � as a conditional expectation: �(γ ) = P

[√
νZ
R ≥ l(γ )

]
=

E

[
P

[√
νZ
R ≥ l(γ )

∣∣∣ R]] . Next, condition on R = r , and let μ = rx∗/
√

ν, where x∗

is the solution of the QPP. Denoting t = [t�1 , t�2 ]� =: r l/√ν, and making a change

of variable z ← z − μ, we obtain P

[√
νZ
R ≥ l(γ )

∣∣∣ R = r
]

= P[Z ≥ t] =

= E exp(−μ��−1μ

2
− Z��−1μ)1{Z ≥ t − μ}

= exp(−μ��−1μ

2
)E exp(−Z�

1 �−1
11 t1)1{Z1 ≥ t1 − μ1, Z2 ≥ t2 − μ2}

= exp(−t�1 �−1
11 t1/2)E exp(−Z�

1 �−1
11 t1)1{Z1 ≥ 0, Z2 ≥ t2 − μ2}.

In other words, we have:

P[Z ≥ t] = exp(−r2l�1 �−1
11 l1

2ν
)E exp(−rZ�

1 �−1
11 l1√
ν

)1{Z1 ≥ 0, Z2 ≥ r(l2 − �21�
−1
11 l1)√

ν
}

(10)

LetD ≡ {z : z1 ≥ 0, z2 ≥ r(l2−�21�
−1
11 l1)√

ν
}. We can now rewrite (10) as an integral and

integrate over r . This gives �(γ ) =:
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= ∫∞
0

∫
Dcν(r)φ� (z) exp

(
−r2 l�1 �−1

11 l1/(2ν) − r z�1 �−1
11 l1/

√
ν
)
dzdr

= 21−(ν+d)/2π−d/2

�( ν
2 )|�|1/2

∫∞
0

∫
D exp

(
− r2

2

(
1 + l�1 �−1

11 l1
2ν

)
− z��−1 z

2 − r z�1 �−1
11 l1√
ν

+ (ν − 1) ln r

)
dzdr

= 21−(ν+d)/2π−d/2

�( ν
2 )|�|1/2

(
1+ l�1 �

−1
11 l1
ν

)ν/2

∫∞
0

∫
D exp

(
− u2

2 − z��−1 z
2 − u z�1 �−1

11 l1√
ν+l�1 �−1

11 t1
+ (ν − 1) ln u

)
dzdu

= 1(
1+ l�1 �

−1
11 l1
ν

)ν/2

∫∞
0

∫
Rd cν (u)φ�(z) exp

(
− u z�1 �−1

11 l1√
ν+l�1 �−1

11 l1

)
1

{
z1 ≥ 0, z2 ≥ u(l2−�21�

−1
11 l1)√

ν+l�1 �−1
11 l1

}
dzdu

=
(
1 + l�1 �−1

11 l1
ν

)−ν/2

E exp

(
− R Z�

1 �−1
11 l1√

ν+l�1 �−1
11 l1

)
1

{
Z1 ≥ 0, Z2 ≥ R(l2−�21�

−1
11 l1)√

ν+l�1 �−1
11 l1

}
,

where the third line follows from the change of variable u = r
√
1 + l�1 �−1

11 l1
ν

. Next,
using formula (10) we rewrite the last expression as:

(
1 + l�1 �−1

11 l1
ν

)−ν/2

E exp

(
R2l�1 �−1

11 l1

2(ν + l�1 �−1
11 l1)

)
P

⎡
⎣Z ≥ Rl√

ν + l�1 �−1
11 l1

∣∣∣ R
⎤
⎦ .

We now seek to apply the dominated convergence theorem to the expectation in the
last displayed equation. For this we need the upper bound (recall that �−1

11 l1 ≥ 0)

exp

(
r2 l�1 �−1

11 l1

2(ν + l�1 �−1
11 l1)

)
P

⎡
⎣Z ≥ r l√

ν + l�1 �−1
11 l1

⎤
⎦ ≤ exp(r2/2)P

⎡
⎣Z1 ≥ r l1√

ν + l�1 �−1
11 l1

⎤
⎦

≤ exp(r2/2)P

⎡
⎣l�1 �−1

11 Z1 ≥ r l�1 �−1
11 l1√

ν + l�1 �−1
11 l1

⎤
⎦

= exp(r2/2)�

⎡
⎣r
√√√√ l�1 �−1

11 l1

ν + l�1 �−1
11 l1

⎤
⎦ ≤ exp(r2/2)� (r) .

The last expression is integrable in the sense that
∫∞
0 cν(r) exp(r2/2)� (r) dr =

21−ν/2

�(ν/2)

∫ ∞
0

rν−1�(r) dr = 21−ν/2

�(ν/2)2ν

∫ ∞
−∞

|u|νφ(u)du = 21−ν/2�((ν + 1)/2)2ν/2
√

π�(ν/2)2ν
= �((ν + 1)/2)√

π�(ν/2)ν
< ∞.

In addition, as γ ↑ ∞, by Lemma 1 we have the pointwise limits:

exp

[
r2l�1 �−1

11 l1

2(ν + l�1 �−1
11 l1)

]
P

⎛
⎝Z ≥ r l√

ν + l�1 �−1
11 l1

⎞
⎠ → exp(r2/2)P[Z ≥ r l∞].

Therefore, by the dominated convergence theorem
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lim
γ↑∞E exp

(
R2 l�1 �−1

11 l1

2(ν + l�1 �−1
11 l1)

)
P

⎡
⎣Z ≥ Rl√

ν + l�1 �−1
11 l1

∣∣∣ R
⎤
⎦ = 21−ν/2

�(ν/2)

∫ ∞

0
rν−1

P[Z ≥ r l∞]dr.

This concludes the proof. �

Lemma 1 (Continuity ofGaussian tail)Suppose that Z ∼ N(0, �) for somepositive
definite matrix�, and an → a as n ↑ ∞. Then, the tail of the multivariate Gaussian
is continuous: limn↑∞ P[Z ≥ an] = P[Z ≥ a].
Proof The proof is yet another application of the dominated convergence theorem
to show that:

∫
[0,∞)

φ�(z + an)dz → ∫
[0,∞)

φ�(z + a)dz = P[Z ≥ a]. Since � is
a positive definite matrix, the ‖x‖2� := x��−1x is a norm satisfying ‖z + an‖2� ≤
2(‖z‖2� + ‖an‖2�). Therefore,

∫
[0,∞)

φ�(z + an)dz ≤ exp(−‖an‖2�)

2n/2

∫
[0,∞)

φ�/2(z)dz <

∞, and the conditions for the dominated convergence theorem are met. �

Proof of Theorem 3

Proof First, note that the second moment is
∫
g(z, r;μ∗, η∗) exp(2ψ(z, r;μ∗, η∗))

dzdr =

=
∫
R

cν(r)φ�(z) exp(ψ(z, r;μ∗, η∗))dzdr ≤ �(γ ) exp(ψ(z∗, r∗;μ∗, η∗)).

Since the properties of ψ imply that

ψ(z∗, r∗;μ∗, η∗) ≤ ψ(z∗, r∗; 0, η∗) ≤ (η∗)2

2
− r∗η∗ + (ν − 1) ln r∗ + ln�(η∗),

bounded relative errorwill follow ifwe can show that
(r∗)ν−1�(η∗) exp( (η∗)2

2 −r∗η∗)
�(γ )

remains
bounded in γ . The pair (r∗, η∗) is determined from the solution to (3), namely
from finding the saddle-point solution of: maxr,z minη,μ ψ(z, r;μ, η). This can be
obtained by setting the gradient of ψ with respect to the vector (z, r,μ, η) to zero:
∇ψ = 0. We now introduce the following notation that will allow us to express
∇ψ = 0 explicitly. Let L be the lower triangular Cholesky factor of � = LL�.
Define D = diag(L) , L̆ = D−1L , l̃ = r√

ν
D−1l(γ ) − (L̆ − I )z, and vector � with

elements �k = φ(l̃k − μk)/�(l̃k − μk). Then, ∇ψ = 0 can be written as
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(L̆� − I )� − μ = 0
ν − 1

r
− η − 1√

ν
��D−1l(γ ) = 0

μ + � − z = 0

η + φ(η)

�(η)
− r = 0.

(11)

Next, we verify via substitution that the solution of (11) as γ ↑ ∞ satisfies r∗ =
O(γ −1), z∗ = O(1), η∗ = O(−γ ), μ∗ = O(1). First, equations one and three in
(11) are trivially satisfied and we can deduce that � = O(1). Second, since l̃ =
O(r l(γ )) = O(1), it follows that equation two in (11) is equivalent to

r∗η∗ = ν − 1 − r∗
√

ν
��D−1l(γ ) = O(1).

Finally, note thatMill’s ratio �(η)

φ(η)
� − 1

η
+ 1

η3 , η ↓ −∞, implies that equation four is

asymptotically equivalent to rη2 + η − r � 0.The solution of this quadratic equation
in turn implies that η � (−1 − √

1 + 4r2)/(2r) � −1/r . In other words, η∗r∗ =
O(1), as desired. Therefore, if ψ̃ denotes the value of ψ at the solution (11), we have

ψ̃ = ‖μ∗‖2
2

− (z∗)�μ∗ + (η∗)2

2
− r∗η∗ + (ν − 1) ln r∗ + ln�(η∗) +

d∑
k=1

ln�(l̃k − μ∗
k )

= O(1) + (η∗)2

2
+ (ν − 1) ln r∗ + ln�(−η∗).

By Mill’s ratio inequality: ln�(−η) ≤ −η2/2 − 1
2 ln(2π) − ln(−η), we obtain:

ψ̃ � O(1) − ln(−η∗) − 1
2 ln(2π) + (ν − 1) ln r∗ = −ν log(γ ) + O(1). In other

words, there exist constants c1, c2 > 0 such that exp(ψ̃) ≤ c1γ −ν for every γ > c2.
Therefore,

Var(�̂) = E exp(ψ(Z, R;μ∗, η∗)) − �2 � �(γ ) exp(ψ̃) − �2 ≤ c1γ
−2ν − �2(γ )

and since by Theorem 2

�(γ ) � c ×
(
1 + γ 2 × l�1 �−1

11 l1
ν × γ 2︸ ︷︷ ︸

�(1)

)−ν/2

= �(γ −ν), γ ↑ ∞,

we have lim supγ↑∞Var(�̂)/�2 < ∞. �
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Proof of Theorem 4

Proof Ignoring the Bi variable in Algorithm 2 gives a state Xn with marginal distri-
bution that follows an independence Metropolis Hastings sampler. From [15, Theo-
rem 2.1] we know that for an independence Metropolis sampler with proposal g(x)

and target f (x) such that supx f (x)/g(x) < c for some constant c > 0, the Markov
chain is uniformly ergodic with convergence rate

sup
A

|κt (A|x) − f (A)| ≤ (1 − c−1)t .

Thus, to ensure the total variation bound remains below ε, we need to run the inde-
pendence sampler for t∗ steps such that

(1 − c−1)t
∗ ≤ exp(−t∗/c) ≤ ε.

In other words, we have t∗ ≥ �−c ln(ε)� and the length of the chain will remain
bounded in the rarity parameter γ provided that c(γ ) remains bounded in γ . In
Algorithm 2 we have

c(γ ) = f (x)/g(x) = p(x)

g(x)�(γ )
≤ exp(ψ∗)

�(γ )
≤ (r∗)ν−1�(η∗) exp( (η∗)2

2 − r∗η∗)
�(γ )

,

whereψ∗ = exp(ψ(z∗, r∗;μ∗, η∗)). However, from the proof of Theorem3weknow
that exp(ψ∗)

�(γ )
remains bounded as γ ↑ ∞. Hence, the Markov chain in Algorithm 2 is

strongly efficient. �

References

1. Botev, Z.I.: The normal law under linear restrictions: simulation and estimation via minimax
tilting. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(1), 125–148 (2017)

2. Botev, Z.I., L’Ecuyer, P.: Efficient probability estimation and simulation of the truncated mul-
tivariate student-t distribution. In: 2015 Winter Simulation Conference (WSC), pp. 380–391.
IEEE (2015)

3. Botev, Z., L’Ecuyer, P.: Simulation from the normal distribution truncated to an interval in
the tail. In: proceedings of the 10th EAI International Conference on Performance Evaluation
Methodologies and Tools on 10th EAI International Conference on Performance Evaluation
Methodologies and Tools, pp. 23–29 (2017)

4. Botev, Z.I., Mackinlay, D., Chen, Y.L.: Logarithmically efficient estimation of the tail of the
multivariate normal distribution. In: 2017 Winter Simulation Conference (WSC), pp. 1903–
1913. IEEE (2017)

5. Botev, Z.I., Chen, Y.L., L’Ecuyer, P., MacNamara, S., Kroese, D.P.: Exact posterior simulation
from the linear lasso regression. In: 2018 Winter Simulation Conference (WSC), pp. 1706–
1717. IEEE (2018)

6. Chen, M.H., Deely, J.J.: Bayesian analysis for a constrained linear multiple regression problem
for predicting the new crop of apples. J. Agric. Biol. Environ. Stat. 1(4), 467–489 (1996)



Truncated Multivariate Student Computations via Exponential Tilting 87

7. Chen, M.H., Ibrahim, J.G., Shao, Q.M.: Monte Carlo Methods in Bayesian Computation.
Springer (2000)

8. Chib, S.: Bayes inference in the Tobit censored regression model. J. Econom. 51(1–2), 79–99
(1992)

9. Gelfand,A.E., Smith,A.F., Lee, T.M.:Bayesian analysis of constrained parameter and truncated
data problems using Gibbs sampling. J. Am. Stat. Assoc. 87(418), 523–532 (1992)

10. Genz, A., Bretz, F.: Numerical computation of multivariate t-probabilities with application to
power calculation of multiple contrasts. J. Stat. Comput. Simul. 63(4), 103–117 (1999)

11. Hashorva, E., Hüsler, J.: On multivariate Gaussian tails. Ann. Inst. Stat. Math. 55(3), 507–522
(2003)

12. Kroese, D.P., Botev, Z.I., Taimre, T., Vaisman, R.: Data Science and Machine Learning: Math-
ematical and Statistical Methods. Chapman and Hall/CRC (2019)

13. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley (2011)
14. L’Ecuyer, P., Blanchet, J.H., Tuffin, B., Glynn, P.W.: Asymptotic robustness of estimators in

rare-event simulation. ACM Trans. Model. Comput. Simul. (TOMACS) 20(1), 1–41 (2010)
15. Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algo-

rithms. Ann. Stat. 24(1), 101–121 (1996)
16. Mills, J.P.: Table of the ratio: area to bounding ordinate, for any portion of normal curve.

Biometrika, pp. 395–400 (1926)
17. Mroz, T.A.: The sensitivity of an empirical model of married women’s hours of work to eco-

nomic and statistical assumptions. Econom. J. Econom. Soc. 55(4), 765–799 (1987)
18. Nummelin, E.: A splitting technique for Harris recurrent Markov chains. Zeitschrift für

Wahrscheinlichkeitstheorie und verwandte Gebiete 43(4), 309–318 (1978)
19. Pakman,A., Paninski, L.: ExactHamiltonianMonteCarlo for truncatedmultivariateGaussians.

J. Comput. Graph. Stat. 23(2), 518–542 (2014)
20. Soms, A.P.: An asymptotic expansion for the tail area of the t-distribution. J. Am. Stat. Assoc.

71(355), 728–730 (1976)
21. Soms, A.P.: Rational bounds for the t-tail area. J. Am. Stat. Assoc. 75(370), 438–440 (1980)



Quasi-Monte Carlo Methods in Portfolio
Selection with Many Constraints

Alexander Brunhuemer and Gerhard Larcher

Abstract We describe a concrete on-going industry project on advanced portfolio
optimization based on machine-learning techniques, and we report on attempts and
results of successful and advantageous application of QMC methods in this project.
We are also carrying out an approach to determine a measure for dispersion in an
opportunity set, which cannot trivially be found, because of the uncertainty of the
shape of an opportunity set. Finally, we state some still open problems and questions
in this context.

Keywords Portfolio-optimization · Quasi-Monte Carlo methods · Dispersion

1 Introduction

We all know that it is a strong concern and a great strength of Pierre L’Ecuyer to
provide powerful and user-optimized algorithms and also software for the application
of QMC methods to a broad audience of potential users, both in academics as well
as in industry.

I remember very well: In 2018, when we applied for the continuation of a very
large research project (“Special Research Area (SFB): Quasi-Monte Carlo Methods:
Theory and Applications”) of the Austrian Science Fund, that had started in 2014,
Pierre was one of the reviewers, and hewas amember of the jury at the corresponding
scientific hearing in Vienna. In one of his statements at this hearing, Pierre proposed,
that in our work in the SFB accompanying our research work we could intensify our
efforts in the direction of QMC software development. This proposal by Pierre was
one of the incentives for the creation of our working group LSQF (Linz School of
Quantitative Finance, www.lsqf.org) in which we carry out MC- and QMC-based
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industry projects in the field of quantitative finance and in which we have developed
corresponding open source MC- and QMC-based quantitative finance software.

To be honest: Many real-world applications (especially in quantitative finance),
which rely on simulation techniques, can be handled and managed successfully with
the help of pureMCmethods. If we compare the results of theseMC simulations with
the results we obtain when we use QMC techniques (i.e., roughly speaking, when
we use carefully chosen extremely well distributed simulation samples instead of
(pseudo-)random samples) then often these QMC approaches do not provide better,
or only slightly better (at the cost of higher computation time) results than pureMonte
Carlo. A survey of some such industry-projects carried out via LSQF can be found
in Chap. 10 of the monograph [6].

Sometimes, however, we have to deal with challenges where QMC indeed can
improve the performance of our approaches considerably. In this paper we will give
such an example of a concrete industry project, where we strongly believe that we
will be able to successfully apply QMC methods. This is still ongoing work, and we
will state and explain here the problem and present first investigations and results in
this direction. The basic topic of the project is advanced portfolio optimization with
many constraints, based also on machine learning techniques.

Our investigations are obviously not the first ones where MC (or QMC) simula-
tions are used in portfolio optimization or asset allocation (see e.g. [1–3, 11]). These
papers follow a more general approach in terms of the considered utility function
wherewe restrict ourselves to the classical Sharpe ratio.However, our approach could
easily be extended to general utility functions. Additionally, we are not exclusively
interested in finding the optimal portfolio, but are highly interested in the coverage
of the opportunity set. This should provide insights into the quality of our approach
when looking at portfolio optimization with many (and especially more complex)
constraints.

Principal Remarks
We are very well aware of two facts: First, there are reservations against a use of
classical portfolio optimization theory of Markowitz. However, we explicitly were
instructed by our industry partner to implement an adapted version of thisMarkowitz
portfolio selection system. Thus, for us it was not in question to discuss pros and
cons of this theory and, therefore, this is also not a topic in this paper.

Secondly, as will be also addressed several times later in this paper, we know
very well that there exist a number of other powerful techniques (apart from MC-
and QMC-simulation) to solve the challenges of Markowitz portfolio selection very
efficiently. For a survey see e.g. the paper [10]. However, since in our concrete
industry project we had to deal with many additional constraints (see Sect. 3 for
some details), and were required to deliver a solution with great flexibility (in terms
of expandability as well as fast generation of multiple variants) while staying in
a tight financial budget, we restricted our approach to MC- and QMC simulation.
For this reason, we also restrict our investigations in this paper to MC- and QMC
approaches.
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2 Classical Portfolio Selection in a Nutshell

We start with giving a very short introduction to classical portfolio selection theory
whichwas founded byHarryMarkowitz in the 1950s [8]. The setting is the following:

• We should (now, i.e. at time 0) create a financial portfolio and we want to hold
this portfolio until time T in the future.

• We have a certain amount of money in our domestic currency to invest. For sim-
plicity we say the investment is 1 Euro.

• We have s assets A1, A2, . . . , As in which we are allowed to invest our money.
• For each of these Ai we assume that we have given an estimate μi for its expected
per annum return (given in percent) in the time interval [0, T ].

• For each of these Ai we assume that we have given an estimate σi for its expected
per annum volatility (given in percent), i.e., for the standard deviation of its returns
in the time interval [0, T ].

• For each pair (i, j) with 1 ≤ i �= j ≤ s we assume that we have given an estimate
ρi j for the correlation between returns of asset Ai and asset A j in the time interval
[0, T ]. We set ρi i := 1 and denote by C the correlation matrix (ρi j )i, j=1,...,s .

• We build portfolios P which we denote by x1A1 + x2A2 + · · · + xs As with
x1 + x2 + · · · + xs = 1, which means: Invest xi Euro of your money in asset Ai .
Here we restrict to non-negative weights xi (meaning, that no short selling of assets
is allowed).

We obviously have for the expected return μ(P) = μ(x1, . . . , xs) and for the
volatility σ(P) = σ(x1, . . . , xs) of the portfolio P in the time period T the following
representations:

μ(P) = x1μ1 + x2μ2 + · · · + xsμs (1)

σ(P) =
√
√
√
√

s
∑

i, j=1

xi x jσiσ jρi j (2)

The opportunity set (OS) of the optimization problem is defined as

{(σ (x1, . . . , xs), μ(x1, . . . , xs)) | x1 + x2 + · · · + xs = 1, xi ≥ 0,∀i}. (3)

If we illustrate this OS in a volatility/return diagram then typically we get sets of the
form shown in Fig. 1.

If we add one further asset A0 which is “riskless”, i.e. σ0 = 0, then the new
opportunity set has the typical shape as in Fig. 2. Here the left upper boundary of
the new OS is built by the tangent from A0 to the tangent point T to the left upper
boundary of the original OS and the remaining part of the left upper boundary of the
original OS.

The “left upper bound” of an OS is called its “Efficient Border (EB)”. It is obvious
that (theoretically) only portfolios which are situated on the EB are of interest: for
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Fig. 1 Typical shape of an opportunity set without riskless asset

Fig. 2 Typical shape of an opportunity set with riskless asset A0
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any portfolio P in the interior of the OS there certainly exists a portfolio S on the
EB such that σ(S) ≤ σ(P) and μ(S) > μ(P).

The tangent point T represents the portfolio with maximal Sharpe ratio, i.e., the
portfolio P for which the ratio μ(P)−r

σ(P)
attains its maximal value. Here r denotes the

riskfree interest rate for the time period [0, T ]. r is also the expected return of A0.
So the two main objectives in portfolio optimization are to determine the EB

and the portfolio T (the so-called “market portfolio”. This can efficiently be done
with convex optimization techniques. In classical portfolio optimization, information
about the concrete shape of the whole OS, i.e. especially about the interior of the
OS, usually is not needed.

3 Portfolio Optimization with Many Constraints

The main problem in the application of Markowitz’ portfolio optimization is to give
reliable estimates for the expected returns of the assets.

In 2018 a fintech company contacted and mandated us to develop an advanced
portfolio optimization tool which should improve and extend the classical approach
in two aspects:

• the new technique should be less dependent on estimates for future expected returns
• it should be possible to integrate many additional constraints

The first item was managed by our team by inventing a new performance measure
for assets named “fynup-ratio”. Thismeasure is based onmachine learning principles
and substitutes the expected return μ. Using this new measure, however, we can
proceed in absolutely the same way as in classical portfolio optimization. It is not
the topic of this article to explain how this new measure “fynup-ratio” is conceived
and how it works, for this we refer to [6]. Hence, in the following we will just address
the old concept of expected return.

The second item, however, will be in the center of the following considerations.
We will first give some examples of “strict” and “soft” constraints, which should be
handled with the new system.

Examples of strict constraints could be:

• We just consider portfolios P which contain at most k of the s assets
• Every asset in a portfolio P must appear in the portfolio with at least (or at most)
z%

• Assuming that each of the assets Ai (which for example may be large investment
funds) has an asset classification, i.e., it is classified with respect to asset classes
(e.g.: Ai consists of 20% stocks, 30% bonds, 10% alternative investments, 5%
commodities, …). Then, (for example) every portfolio P must contain at least a%
stocks, b% bonds, and c% commodities
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• If we assume that each of the assets has a sustainability parameter, i.e., has a
classification number τ between 0% and 100%, which classifies increasing sus-
tainability, then (for example) everyportfolio Pmust have an average sustainability
of at least y%.

• Assuming that each of the assets Ai has a regional classification, (e.g.: Ai consists
of 20%US assets, 30% European assets, 10%Asian assets,…), then (for example)
every portfolio P must contain at least a%US assets, and at least b%Asian assets.

• Assuming that each of the assets Ai has a classification with respect to industries
(e.g.: Ai consists of 20% IT assets, 30% telecommunication assets, 10% chemistry
assets,…). Then (for example) every portfolio Pmust contain at leasta%ITassets,
b% chemistry assets, and c% financial industry assets.

Examples of soft constraints could be:

– We predefine an asset class distribution (e.g.: 40% stocks, 30% bonds, 10% com-
modities, 20% alternative investments), then the portfolios in consideration should
have an asset class distribution “as close as possible” to our desired distribution.

– We predefine a regional distribution (e.g.: 40% US, 30% Europe, 10% Asia, 10%
Southern America, 10% others), then the portfolios in consideration should have
a regional distribution “as close as possible” to our desired distribution.

– We pre-define a distribution with respect to industries (e.g.: 20% IT, 30% telecom-
munication, 10% chemistry, 10% transport, 30% others), then the portfolios in
consideration should have a distribution with respect to industries “as close as
possible” to our desired distribution.

Now it is our task to search for portfolios P which satisfy the strict constraints,
which satisfy the soft constraints approximately, and which show a high expected
return (high fynup-ratio) combined with a low volatility, i.e. with a high Sharpe ratio.

In this article we will not address this concrete challenge in detail, but we will
project it in a first step to a more “abstract” problem: If we deal with constraints
like above, then in general we have to consider also portfolios in the interior of the
opportunity set. That means, we need also information about portfolios in the interior
of the OS, hence, also on the shape of the OS when the constraints are applied. So an
immediate idea would be, to approximate the OS as well as possible with the help
of Monte Carlo simulation and to work with the simulated portfolios.

4 Approximation of the Opportunity Set by Naïve Monte
Carlo, and by Exponential Monte Carlo

A naïve approach to the task of approximating the OS of course would be the fol-
lowing:

We generate a large number (say N ) of random portfolios P1(1), P (2), . . . , P (N )

by generating N · s independent uniformly distributed pseudo-random numbers y( j)
i

in the interval [0, 1] for j = 1, 2, . . . , N and i = 1, 2, . . . , s. We set
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Fig. 3 Approximation of an OS with naïve MC and 150.000 sample points. The points are plotted
semi-transparent to illustrate where most simulations are located

x ( j)
i := y( j)

i

y( j)
1 + y( j)

2 + · · · + y( j)
s

.

Then the portfolio P (i) is given by

P (i) = x (i)
1 A1 + x (i)

2 A2 + · · · + x (i)
s As .

In Fig. 3 we see an example for an approximation of the OS of s = 5 assets, which
are highlighted in red. This approximation was generated with the above described
naïve method and with 150.000 sample weights.

We see a picture that is not satisfying. Trivially, the assets are elements of the
connected (!) OS. We see a small region which is very well and densely covered by
sample points, however, there are large regions (especially near some of the assets)
in which we can hardly find any sample points.

One reason for this unsatisfactory situation of course is the following:
The s-dimensional sample weight vectors (x (1), x (2), . . . , x (s)) lie on the
(s − 1)-dimensional simplex

H : x (1) + x (2) + · · · + x (s) = 1, x (i) ≥ 0.

If they are constructed with the help of uniformly distributed y(i) as described above,
then the (x (1), x (2), . . . , x (s)) are not uniformly distributed in H , but they have a
higher density in the center of H than close to the boundary of H . This effect can
already be seen in the case s = 3 (see Fig. 4), but it becomes worse and worse in
higher dimensions.

In the following we show how to alternatively and correctly construct uniformly
distributed point sets on this simplex. Nevertheless, we have seen the above naïve
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Fig. 4 Normed 3-dimensional sample weights, naïve approach, 10.000 samples

approach several times in applications. The use of this approach is not completely
“wrong”, since in our case we are not evaluating an integral or expected value, but
we are searching for a maximum and for a dense approximation of a set. Therefore,
we also give the results for the naïve approach in the following.

Certainly, the better approach is to generate the sample weights (x (1), x (2), . . . ,

x (s)) on H in such a way that we generate a “typical” distribution of (s − 1) points
z(1), z(2), . . . , z(s−1) in [0, 1], and choose the (x (1), x (2), . . . , x (s)) as the distances
between successive elements from 0, 1, and z(1), z(2), . . . , z(s−1).

Distances between successive elements from a random sample are exponen-
tially distributed. So we can generate s exponentially distributed random variables
y(1), y(2), . . . , y(s). Finally, we again set

x ( j)
i := y( j)

i

y( j)
1 + y( j)

2 + . . . + y( j)
s

. (4)

Because of this normalization procedure, it does not matter which parameter λ we
choose for the generation of Exp(λ) distributed y(i). If we proceed in this way, the
distribution of Fig. 4 changes to the one illustrated in Fig. 5. In fact, we obtain
uniformly distributed point sets on the (s − 1)-dimensional simplex in this way (see
[5] or [12] for more information).

If we use this exponential approach to generate samples for the approximation of
the opportunity set of a portfolio optimizationproblem, thenwith the sameparameters
as in the example leading to Fig. 3 we now get a result as it is shown in Fig. 6. The
visual impression of the new result is already considerably better than the result
shown beforehand.
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Fig. 5 Normed 3-dimensional sample-weights, exponential approach, 10.000 samples

Fig. 6 Approximation of an OS with exponential MC and 150.000 sample points

5 Approximation of the Opportunity Set with Exponential
QMC

When we apply MCmethods for simulation, then we generate samples with the help
of pseudo-random generators, i.e., with the help of pseudo-random point sets. How-
ever, for some types of problems it is advantageous to use so-called low-discrepancy
(i.e. in some sense very well distributed) point sets instead of pseudo-random point
sets. Examples of such low-discrepancy sequences (we will call them “QMC point
sets”) are Faure point sets, Sobol’ point sets, Halton point sets, Niederreiter nets,
good lattice point sets, …
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The construction of such point sets is based on deep results and principles from
various fields of mathematics, as for example number theory, combinatorics, alge-
braic geometry, complexity theory, among others.

If we use QMC point sets instead of pseudo-random point sets, we say that we
apply Quasi-Monte Carlo methods (QMC methods). We will not go into detail on
how to construct QMC point sets. There is vast excellent literature on this topic (see
e.g. [9], or [4]), and there exists excellent open source software repositories where
you can easily and efficiently download and use QMC point sets, for example Pierre
L’Ecuyer’s “LatticeFinder” on [7] (https://github.com/mungerd/latbuilder), or also
the software on our homepage www.lsqf.org.

Again, just to give a first (!) visual impression for the difference between the
qualities of an MC and a QMC approach to our portfolio optimization problem, we
show the right hand part of Fig. 5 (projection of three-dimensional weights generated
with exponential approach and a pseudo-random point-set) in comparison with the
result when using a Niederreiter point-set. Here we use just 1.000 sample points, then
the difference is easier to see with the bare eye. We see a more regular distribution
of sample weights if we use QMC instead of MC (Fig. 7).

Of course, when using uniformly distributed (!) QMC point sets, in a first step
we transform these uniformly distributed point sets by the inversion method to expo-
nentially distributed point sets. We will call this the “exponential QMC-approach”
in the following.

In Fig. 8 we show the analogue to Figs. 3 and 6 again now using Niederreiter
point sets instead of pseudo-random point sets. Again we recognize a (slight, visual)
improvement compared to Fig. 6.

Fig. 7 Normed 3-dimensional sample-weights, exponential approach, 1.000 samples, MC left,
QMC right

https://github.com/mungerd/latbuilder
 13809 10046 a 13809 10046
a
 
https://github.com/mungerd/latbuilder
www.lsqf.org
 11622 11374 a 11622 11374 a
 
www.lsqf.org
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Fig. 8 Approximation of an OSwith exponential Niederreiter point sets and 150.000 sample points

6 Approximating the Market Portfolio with MC,
Exponential MC, and Exponential QMC

In the previous sectionswealways just arguedwith “visual superiority” of onemethod
over the other.Of course,we alsowant tomeasure the quality of the differentmethods.
A quick first test could be to compare the performance of the “best” portfolio given
by the different approaches, which translates to finding portfolios with as high as
possible Sharpe ratio (without further constraints).

We have carried out a multitude of corresponding experiments for examples with
many different parameter choices. We just show three different typical examples of
our results in the following three pictures.

Example 1: 5 assets. The best attained Sharpe ratios after 10.000.000 generated
samples are shown in Table 1.

In Fig. 9 we illustrate the corresponding speed of convergence. While all the
exponential distribution approaches are approximating the best value for Sharpe
ratio in a similar speed and accuracy, the pure MC approach is noticeable slower in

Table 1 Example 1: best attained Sharpe ratios after 10.000.000 generated samples

Approach Best simulated Sharpe ratio

MC 0.38112

Exp. MC 0.38127

Exp. Sobol’ 0.38132

Exp. Niederreiter 0.38134

Exp. Faure 0.38125
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Fig. 9 Example 1: maximization of Sharpe ratio with different approaches, 5 assets

Table 2 Example 2: best attained Sharpe ratios after 10.000.000 generated samples

Approach Best simulated Sharpe ratio

MC 1.61989

Exp. MC 2.08056

Exp. Sobol’ 2.21090

Exp. Niederreiter 2.32745

Exp. Faure 2.11156

terms of number of steps needed. This phenomenon occurs not only occasionally for
a singleMCexperiment but it consistently occurs also in repetitions of the experiment
with other pseudo-random strings.

Further we see, that for this type of problem using QMC instead of MC hardly
does provide an advantage.

Example 2: 20 assets. The best attained Sharpe ratios after 10.000.000 generated
samples are shown in Table 2.

Also in the second example we recognize the superiority of the exponential dis-
tribution approach over the pure MC approach in terms of finding an approximation
to the portfolio with best Sharpe ratio. However, there was not such a discrepancy
in the number of steps needed to get to similarly good solutions as can be seen in
Fig. 10. This behavior again could be observed for multiple simulations of the MC
approach, so it is not an event that occurs for only a single MC experiment. Further,
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Fig. 10 Example 2: maximization of Sharpe ratio with different approaches, 20 assets

Table 3 Example 3: best attained Sharpe ratios after 10.000.000 generated samples

Approach Best simulated Sharpe ratio

MC 1.16872

Exp. MC 1.22833

Exp. Sobol’ 1.27687

Exp. Niederreiter 1.31698

Exp. Faure 1.22367

the switch from exponential MC to exponential QMC leads to slight improvements,
especially for the Sobol’- and Niederreiter point sets.

Example 3: 50 assets. In the next example we consider even more assets, and look if
we can again recognize an improvement of the exponential QMC methods over the
exponential MC method. We see the results in Table 3 and again the development of
the best attained Sharpe ratio in Fig. 11.

Summarized, we see – as expected – clearly better results, when switching from
pureMC simulation to the exponential approaches. Again, the switch from exponen-
tial MC to exponential QMC methods leads to better results, the improvements are
especially visible for a larger number of assets.

The investigation of the maximization of the Sharpe ratio was just a first test
for the effectiveness of the different methods. (Of course this task can be carried
out directly or with adaptive methods much more successfully than with MC- and
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Fig. 11 Example 3: maximization of Sharpe ratio with different approaches, 50 assets

QMC-simulation!) The definite goal in fact is to carry out portfolio optimization with
many constraints—as explained in Sect. 3—in an efficient way.

Recall,we searched for example for portfolioswith, e.g., a very high sustainability,
with strong focus on Asian technology in form of alternative investment assets, with
a Sharpe ratio as high as possible, ….

Thus, we need to approximate the whole opportunity set most efficiently and not
only the region of the portfolio with the global maximum in terms of Sharpe ratio.

7 Approximating the Whole OS with MC, Exponential
MC, and Exponential QMC

First we have to clarify what we mean by a “good approximation of the OS”. If we
carry out an approximation of the OS, with the help of N sample portfolios, then
of course we do not want to have large “empty regions” in the OS, which do not
contain a sample portfolio. A possible suitable measure would be the “dispersion”
of the sample set in the OS.

If we denote with P1, P2, . . . , PN the position of the N sample points in the
opportunity set OS and if we denote with dist the distance given by the max-norm,
then we would like to calculate

dispOS(P1, P2, . . . , PN ) := sup
x∈OS

min
i=1,2,...,N

dist(x, Pi ) (5)



Quasi-Monte Carlo Methods in Portfolio Selection with Many Constraints 103

Fig. 12 Calculate the dispersion of this 1,000-point sample set in its OS!

That means, we would like to calculate half the length of the sides of the largest
square with center in the opportunity set, which contains none of the sample points.
We call dispOS(P1, P2, . . . , PN ) the dispersion of the sample set in the opportunity
set. Of course we would like to have sample sets with dispersion as small as possi-
ble. However, if we want to calculate for example the dispersion of the sample set
consisting of 1,000 samples shown in Fig. 12, then there arise two main problems.

1. Find an efficient algorithm to calculate the dispersion at least approximately
2. We do not know the exact shape of the opportunity set in advance, so, how is one

able to calculate the supx∈OS in the definition of the dispersion?

Especially the second problem is a severe restriction in this regard.

8 How to Calculate the Dispersion of a Sample Set in an
OS?

For our experimental environment, in which we principally test the general approx-
imation properties of exponential QMC for opportunity sets compared to naïve and
exponential MC, we proceed in the following way:

• For each of our given parameter sets for the portfolio problems, we first approxi-
mate the opportunity set with exponential QMC with M simulations, where M is
a number of sample points which is much larger, than the number of simulations
N of the sample points which are tested with our experiments.

• In Fig. 13 we see the 1,000 sample points P1, P2, . . . , PN we want to test, and
which are shown already in Fig. 12 in blue, and in yellow we have approximated
the OS with the help of 10,000,000 sample points, Q1, Q2, . . . , QM .
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Fig. 13 Calculate the dispersion of the blue 1,000-point sample set in the yellow approximation
of the OS!

Thenwe approximate the dispersion dispOS fromEq. (5) by the following quantity:

max
j=1,2,...,M

min
i=1,2,...,N

dist(Q j , Pi ) (6)

There remains the question on how to efficiently calculatemini=1,2,...,Ndist(Q j , Pi ).
This task could simply be accomplished by calculating all distances of Q j to each

of the points in set {Pi }i=1,...,N , however, this is impractical due to the enormous
amount of distances, which would have to be determined. Much more efficient is the
following method:

1. Wemake sure the test set {Pi }i=1,...,N , with each point being (vola(Pi ), trend(Pi ))
is ordered by one of the two axis. We chose ordering by the volatility, and assume
this type of ordering in the further steps.

2. For each point Q j we execute the following:

a. Determine the closest point in terms of the vola-axis in {Pi }i=1,...,N (which can
be done inO (log N ) steps with a modified binary search algorithm, due to the
previously executed sorting). We denote this closest point with Pi .

b. Starting from Pi , we calculate the distance to Q j for the points Pi , Pi+1,

Pi+2, . . . and always remember the determined minimal distance to Q j , until
the distance on the vola-axis is already greater than the current minimal
distance.

c. We carry out the same procedure “downwards”, i.e. for Pi−1, Pi−2, . . . again
until the distance on the vola-axis is already greater than the current minimal
distance.

By repeating this for every point in {Q j } j=1,...,M we finally get the desired value
for Eq. (6). By proceeding in the described way we finally get the overall minimal
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distance with much less steps – and therefore time – taken. In fact, in our examples of
Sect. 9, where we used up to N = 105 and M = 107, the above algorithm only took
around 10 seconds for the search, while the brute force would have needed around 4
hours on our machine. And this only came with the cost of sorting the set once.

9 Some Simulation Results

In the following we give some selected examples for the typical outcomes in our
simulations and the corresponding analysis of the quality of the approximations
of opportunity sets with different approaches. As before, because of the random
behavior in this type of simulations all the results were again rechecked in multiple
simulations to ensure these numbers were no outliers.

In all the following examples we used a set with 10,000,000 samples, produced
by the exponential QMC (Niederreiter) method, as our approximation for the oppor-
tunity set, denoted by {Q j } in the description in Sect. 8.

Example 1: 5 assets (as in Fig. 8). In Table 4 we see the dispersion in the point sets
generated by the different approaches. Whilst we saw not much improvement when
using exp. QMC over exp. MC in example 1 of Sect. 6, we see a clear improvement
in terms of dispersion already in this example.

One remarkable fact (but not entirely surprising when we look at Fig. 8) is, that
the largest dispersion always occurs in the same area in our opportunity set. The sets
are always dispersed the most at the upper right corner, i.e. really close to the asset
at the top right of our vola-trend chart. The fact that the greatest dispersion is close
to the single assets becomes even more pronounced when the number of assets is
increased, as we see in further examples.

To also get a feeling about the dispersion in the denser part of the opportunity
set we executed another test, where we only checked the dispersion on {Q j } for
portfolios with trend above 5% and volatility below 30%. This is especially interest-
ing for us, since restrictions of these types would also be a standard requirement of
customers when looking for suitable portfolios. The (again) promising results can

Table 4 Example 1: dispersion after 40,000 respectively 100,000 generated samples in our test
sets

Approach Dispersion (40,000 samples) Dispersion (100,000 samples)

MC 0.11993 0.10159

Exp. MC 0.04452 0.03368

Exp. Sobol’ 0.02357 0.01603

Exp. Niederreiter 0.03207 0.02235

Exp. Faure 0.02686 0.01721
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Table 5 Example 1: dispersion after 40,000 respectively 100,000 generated samples in our test
sets with respect to the opportunity set with μ ≥ 0.05 and σ ≤ 0.3

Approach Dispersion (40,000 samples) Dispersion (100,000 samples)

MC 0.0024311 0.0015621

Exp. MC 0.0016736 0.0013923

Exp. Sobol’ 0.0014320 0.0012667

Exp. Niederreiter 0.0014699 0.0012971

Exp. Faure 0.0016503 0.0013572

Table 6 Example 2: dispersion after 40,000 respectively 100,000 generated samples in our test
sets

Approach Dispersion (40,000 samples) Dispersion (100,000 samples)

MC 0.320021 0.315001

Exp. MC 0.118638 0.108512

Exp. Sobol’ 0.107355 0.075218

Exp. Niederreiter 0.103512 0.097131

Exp. Faure 0.108361 0.077263

be found in Table 5.

Example 2: 20 assets. In example 2 we are again interested in the behavior of the
dispersion property, when the number of assets increases. Table 6 again indicates
strong improvement when switching to exponential approaches, and using QMC
again gives slightly better results.

However, we have to highlight some strong caveat: Even when using exponential
QMCmethods and lots of sample points the approximation of the actual opportunity
set is not really satisfying, as can be seen in Fig. 14. Diversification effects lead to an
accumulation of the portfolios in a certain area of the opportunity set, whilst other
areas are barely covered. We are going to address this problem again in Sect. 10.
Because of this behavior Table 7 is more reliable than the results from Table 6. Here,
we used restrictions on the trend and volatility as before, with trend at least at 4%
and maximal volatility at 20%.

10 Conclusions, Outlook, and Further Practical Problem

The above (and many more) examples have convinced us, that it doubtlessly makes
sense to integrate exponentialQMCmethods in our commercial software projectwith
the goal to carry out portfolio optimization with many constraints. Exponential QMC
never gave worse results than exponential MC and in many cases led to recognizable
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Table 7 Example 2: dispersion after 40,000 respectively 100,000 generated samples in our test
sets with respect to the opportunity set with μ ≥ 0.04 and σ ≤ 0.2

Approach Dispersion (40,000 samples) Dispersion (100,000 samples)

MC 0.0216138 0.0179415

Exp. MC 0.0164915 0.0096525

Exp. Sobol’ 0.0161258 0.0081269

Exp. Niederreiter 0.0123436 0.0098834

Exp. Faure 0.0186645 0.0115707

improvements (especially Niederreiter sequences seemed to work very well on a
consistent basis). However, several practical problems still have to be managed.
For example, we will also have to compare our advanced approach and its potential
superiority to other approaches reliably in the muchmore complex real-world setting
and not only in the artificially simplified environment, which we have described and
analyzed above.

Also the problem of worse coverage of the opportunity set when looking at a
larger number of assets (illustrated in Fig. 14), needs to be taken care of. One idea to
tackle this problem would be to use a certain fraction of our samples for portfolios
restricted on subsets of our assets. I.e. if we simulate, say 10,000,000 samples of
our portfolios, we could use one half or two thirds of these simulations on portfolios
of size 5 instead of 20. The subsets would again be chosen randomly. We assume
this procedure would cover the opportunity set as a whole better, than just using
portfolios, which include all assets. The details like, how to choose these subsets or
their sizes in a smart way, are still open for research.

Fig. 14 Approximation of an OS with exponential QMC (Niederreiter) and 500.000 sample points
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Additionally, this issue is closely connected to one further practical problem, we
are faced with: A further constraint that can be given in a portfolio optimization
problem (and it was indeed requested by our industry-partner that these constraints
also can be handled) is the following:

We have a rather large universe of, say, S = 50 possible assets. However, the port-
folios which we generate, always must contain at most, say, k = 10 of these assets.
How should we proceed in this case, to approximate the corresponding opportunity
set in a best possible way?

Of course we can proceed with a naïve MC approach: In a first step we choose a
random-k-tuple out of the S assets. In a second step we generate a k-tuple of weights
for this choice of assets. Probably, in this situation we will not benefit from choosing
exponentially distributed weights. Note, that

(

50
10

)

∼= 1010,

hence, in a simulation experiment any chosen k-tuple of assets will appear at most
once. So, it does not really make sense to choose the only relevant weight sequence
for this k-tuple exponentially.

Thus, the question is: Is it possible to improve the described naïve MC approach
in this situation in any way by some exponential distribution approach and/or by
applying QMC instead of MC?
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Abstract For asymptotically valid point and confidence-interval (CI) estimation of
steady-state quantiles in dependent simulation output processes, two recent output-
analysis procedures assume that those processes satisfy the geometric-moment con-
traction (GMC) condition.Moreover, theGMCcondition ensures satisfaction ofmost
of the other assumptions underlying those procedures, which are based on the tech-
niques of batch means and standardized time series, respectively. For performance
evaluation of the associated point and CI estimators, the G/G/1 queueing system
provides gold-standard test processes. We prove that the GMC condition holds for
G/G/1 queue-waiting times obtained with a non-heavy-tailed service-time distribu-
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1 Introduction

Simulation output analysis has been an active area of research for many years, par-
ticularly in the context of point and confidence-interval (CI) estimation for quantities
such as the steady-state mean and quantiles of a simulation-generated process. This
analysis is difficult to carry out because the observed simulation output is often
non-stationary, serially correlated, and non-normal—as typified, for example, by the
sequence of consecutive queue-waiting times for customers in a single-server queue-
ing system that has the empty-and-idle initial condition and a high long-run server
utilization. Various well-known output analysis methodologies (e.g., batch means,
standardized time series, etc.) assume sufficient, but difficult-to-check, moment and
mixing conditions for those methods to work as advertised. In this article, we con-
sider a different underlying assumption that facilitates the development of asymp-
totically valid point and CI estimators of the mean or quantiles of the steady-state
output-response distribution—namely, the geometric-moment contraction (GMC)
condition (cf. [25]). We begin by defining the GMC condition.

Definition 1 Consider a stochastic process {Xk : k≥0} that is defined by a function
ξ(·) of a sequence of independent and identically distributed (i.i.d.) random variables
(r.v.’s) {ε j : j ∈ Z} such thatXk = ξ(. . . , εk−1, εk) for k≥0.We say that {Xk : k ≥ 0}
satisfies theGMCcondition if there exist constantsψ > 0,C > 0, and r ∈ (0, 1) such
that for two independent sequences {ε j : j ∈ Z} and {ε∗

j : j ∈ Z} each consisting of
i.i.d. r.v.’s distributed like ε0, we have

E
[∣∣ξ(. . . , ε−1, ε0, ε1, . . . , εk) − ξ

(
. . . , ε∗

−1, ε∗
0, ε1, . . . , εk

)∣∣ψ ]

≤ Crk for k ≥ 0. (1)

The setting for the GMC condition (1) is that we have two replications of the sim-
ulation with the response function ξ(·) that are driven by two independent streams
of random numbers as specified by Eq. (1) so that (a) the runs are initialized inde-
pendently in steady-state operation at time 0, perhaps using preliminary warm-up
periods for each run that are respectively based on the independent streams of ran-
dom numbers {. . . , ε−1, ε0} and

{
. . . , ε∗−1, ε

∗
0

}
; and (b) subsequently the runs share

the common random numbers {ε1, . . . , εk } from time 1 to the current time k ≥ 1.
The GMC condition requires that the difference between the paired output responses
generated by the two simulations at time k will converge to zero in the mean of order
ψ as the time index k → ∞. Hence the difference between the paired responses also
converges in probability to zero as k → ∞.

In [25], it is argued that the GMC condition is easier to verify than a mixing
condition such as α-, ρ-, or φ-mixing; and Remark 2 in [4] details problems with
verifying the latter mixing conditions. On the other hand, the GMC condition has
been proved to hold for the widely used finite-order moving average (MA), autore-
gressive (AR), and autoregressive–moving average (ARMA) processes; see Theo-
rem 5.2 in [23]. The latter theorem in conjunction with Theorem 2 in [26] suffice
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to show that the GMC condition is satisfied by a plethora of other linear and non-
linear processes exhibiting short- or long-range dependence, such as: autoregres-
sive conditional heteroscedastic (ARCH) processes [14]; generalized autoregressive
conditional heteroscedastic (GARCH) processes [9]; ARMA–ARCH and ARMA–
GARCH processes [19]; random coefficient autoregressive (RCA) processes [21];
threshold autoregressive (TAR) processes [24]; and a large class of Markov chains
[27]. For performance evaluation of output-analysis procedures, the G/G/1 queueing
system provides gold-standard test processes; however, to the best of our knowledge,
the GMC condition has not been proved to hold for any of those test processes. In this
paper we prove that the GMC condition holds for the queue-waiting-time process in
the G/G/1 queueing system with non-heavy-tailed service times (i.e., their moment
generating function exists).

In the context of formulating asymptotically valid point and CI estimators of
steady-state quantiles, the GMC condition plays a critical role in recently devel-
oped output-analysis procedures based on the techniques of batch means [5, 6]
and standardized time series [3, 4]. Some additional notation is required to explain
clearly and concisely the significance of the GMC condition in this context. For the
steady-state simulation response X and for each 𝔵 ∈ R, we let F(𝔵) ≡ Pr{X ≤ 𝔵}
denote the cumulative distribution function (c.d.f.) of X. Given p ∈ (0, 1), we seek
to estimate the p-quantile of the response, 𝔵p ≡ F−1(p) ≡ inf{𝔵 : F(𝔵) ≥ p}; and
we let f (𝔵) denote the probability density function (p.d.f.) of F(𝔵). For each k ≥ 1,
we define the indicator r.v.Ik(𝔵) ≡ 1 if 𝔵k ≤ 𝔵, and Ik(𝔵) ≡ 0 otherwise. Using the
series of responses {X1, . . . ,Xn} of length n ≥ 1, we sort the responses in ascend-
ing order to obtain the order statistics X(1) ≤ · · · ≤ X(n). The point estimator of 𝔵p
is defined as �̃�p(n) ≡ X(	np
), where 	·
 denotes the ceiling function. For a sample
of size n ≥ 1, we let Ī (𝔵, n) ≡ n−1∑n

k=1 Ik(𝔵); and for each � ∈ Z, we let ρI (𝔵, �)≡ Corr[ Ik(𝔵), Ik+�(𝔵)] denote the autocorrelation at lag � in the indicator process
{Ik(𝔵) : k ≥ 1}.With this setup,we candefine another key assumptionof our quantile-
estimation procedures.

Definition 2 The indicator process {Ik(𝔵p) : k ≥ 1} has the short-range dependence
(SRD) property if

0 <
∑
�∈Z

ρI (𝔵p, �) ≤
∑
�∈Z

|ρI (𝔵p, �)| < ∞ (2)

[8, p. 7]. If the SRD property holds, then the variance parameters for the r.v.’s
Ī (𝔵p, n) and �̃�p(n) satisfy the relations

σ 2
I ≡ lim

n→∞ nVar
[
Ī (𝔵p, n)

] = p(1 − p)
∑
�∈Z

ρI (𝔵p, �) ∈ (0,∞),

σ 2 ≡ lim
n→∞ nVar

[̃
𝔵p(n)

] = σ 2
I

f 2(𝔵p)
∈ (0,∞).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)
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The SRD property is assumed for all simulation output-analysis procedures based
on the techniques of batch means or standardized time series; and in general this
property is relatively difficult to verify either empirically or theoretically [1, 2, 10,
15]. It was proved recently in [13] that if the output process {Xk : k ≥ 1} satisfies
the GMC condition, then the associated indicator process { Ik(𝔵p) : k ≥ 1} satisfies
the SRD condition.

Another key assumption for developing asymptotically valid point and CI esti-
mates of 𝔵p is that the indicator process { Ik(𝔵p) : k ≥ 1} must satisfy a certain func-
tional limit theorem (FCLT) as detailed in [5, Eqs. (7) and (8)] and [4, Sect. 2.2.4];
moreover, as explained in [4, Remark 3], for all practical purposes verifying the
SRD condition is also considered adequate verification of the FCLT condition. Thus
in the context of steady-state quantile estimation, verifying the GMC condition is
tantamount to verifying three of the four assumptions underlying the procedures in
[4, 5].

The rest of this article is organized as follows. In Sect. 2 we present the main
results, which establish that the GMC condition is satisfied for the sequence of
consecutive queue-waiting times for a stable G/G/1 queueing system with a non-
heavy-tailed service-time distribution. In Sect. 3 we discuss a Monte Carlo study
illustrating small-sample and robustness performance related to the GMC condition
for a variety of M/G/1 queueing systems with non-heavy-tailed and heavy-tailed
service-time distributions. In Sect. 4 we recapitulate our conclusions, and we make
recommendations for future work.

2 Main Results

This paper establishes that the GMC condition holds for the waiting-time process
arising from a steady-state G/G/1 queueing system with traffic intensity less than
unity and a non-heavy-tailed service-time distribution. (The term heavy-tailed dis-
tribution is formally defined to mean that the distribution’s moment generating func-
tion (m.g.f.) does not exist in any neighborhood of the origin; thus in this article the
term non-heavy-tailed distribution applies to a distribution whose m.g.f. does exist
in a neighborhood of the origin. On the other hand, the term light-tailed distribution
does not have a universally accepted formal definition; see [22, pp. 33–34].) Thus we
consider a G/G/1 queueing system with i.i.d. interarrival times T0, T1, T2, . . . having
mean E[Tk] < ∞; i.i.d., non-heavy-tailed service times S0, S1, S2, . . . having mean
E[Sk] < ∞; and server utilization ρ ≡ E[Sk]/E[Tk] ∈ (0, 1). In the usual parlance,
Tk is the interarrival time between the k-th and (k + 1)-st customers, and Sk is the
service time of the k-th customer. For k = 0, 1, 2, . . . , let Wk denote the waiting
time in the queue for the k-th customer. The well-known Lindley recursion gives an
easy way to calculate the waiting times,

Wk+1 = [Wk + Sk − Tk]+ for k = 0, 1, 2, . . . , (4)
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where x+ ≡ max{x, 0}. Denote the cumulative distribution function (c.d.f.) of the
steady-state waiting time by F(x); this is a mixture of a point probability at zero and
a c.d.f. with positive support for x > 0.

Example 1: For the M/M/1 queue with exponential interarrivals and services with
respective rates λ = 1/E[Tk] and μ = 1/E[Sk], we have

F(x) =
⎧⎨
⎩
0, if x < 0,
1 − ρ, if x = 0,
1 − ρe−γ x , if x > 0,

where γ ≡ μ(1 − ρ) = λ(1 − ρ)/ρ; see, e.g., p. 4 of [7]. �
We go over some additional notation and set the stage for our main Theorem 1

below. For k = 1, 2, . . . , and any v ≥ 0, let the random function Wk(v) denote the
waiting time of the k-th customer given that thewaiting timeW0 = v has occurred for
the 0-th customer, whose arrival marks the start of system operation (i.e., simulation
time 0). This random function is formally defined in Eqs. (6)–(8) below based on the
Lindley recursion. Let V1 and V2 be two i.i.d. r.v.’s having c.d.f. F(x), that are also
independent of the Si ’s and Ti ’s. In this case, the GMC condition (1) can be written
as

E
[∣∣Wk(V1) − W ∗

k (V2)
∣∣ψ] ≤ Crk for k = 0, 1, 2, . . . , (5)

where for all v1, v2 ≥ 0, we define the recursive random functions

Wk(v1) ≡
{

v1, if k = 0,[
Wk−1(v1) + Xk−1

]+
, if k ≥ 1; and (6)

W ∗
k (v2) ≡

{
v2, if k = 0,[
W ∗

k−1(v2) + Xk−1
]+

, if k ≥ 1; (7)

and the r.v.’s

Xi ≡
{
0, if i = −1,

Si − Ti , if i = 0, 1, 2, . . . .
(8)

(The definition X−1 ≡ 0 is made for notational convenience in some of the following
expressions.) In this setting of the G/G/1 waiting-time process, Eqs. (6)–(8) are
equivalent to using common random numbers for the interarrival and service times
of customers 1, 2, . . ., while generating the waiting time of the “initial” customer
(customer 0) from the c.d.f. F(·). The GMC condition (1) quantifies the intuition
that any transient effect in the G/G/1 waiting-time process due to its initial condition
decays geometrically fast as the customer index increases without bound.

From Eq. (2.3) of [20], we obtain the key representations
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Wk(V1) = Wk(0) + (
V1 + min{Uj : j = −1, 0, . . . , k − 1})+

W ∗
k (V2) = Wk(0) + (

V2 + min{Uj : j = −1, 0, . . . , k − 1})+
}

for k = 0, 1, 2, . . . ,

where

Uj ≡
j∑

i=−1

Xi for j = −1, 0, 1 . . . ,

is a random walk with the i.i.d. increments {Xi : i = 0, 1, . . .}. Let

Mk ≡ min{Uj : j = −1, 0, . . . , k − 1} for k = 0, 1, 2, . . . ,

denote the minimum of the random walk prior to the arrival of the k-th customer.
Since U−1 = X−1 = 0, we have M0 = 0 and Mk ≤ 0 for k = 1, 2, . . . ; and hence
Mk tends toward progressively smaller negative numbers as k grows without bound.
The difference between Wk(V1) and W ∗

k (V2) is given by

Wk(V1) − W ∗
k (V2) = (V1 + Mk)

+ − (V2 + Mk)
+

=

⎧⎪⎪⎨
⎪⎪⎩

0, if V1 ≤ −Mk and V2 ≤ −Mk,

V1 − V2, if V1 > −Mk and V2 > −Mk,

V1 + Mk, if V1 > −Mk and V2 ≤ −Mk,

−(V2 + Mk), if V1 ≤ −Mk and V2 > −Mk

⎫⎪⎪⎬
⎪⎪⎭

for k = 0, 1, . . . .

This difference depends on V1 and V2, which are i.i.d. and independent of the stochas-
tic process {Mk : k = 0, 1, . . .}. By conditioning and the fact that V1 and V2 are
identically distributed, we obtain, for k = 0, 1, 2, . . .,

E
[ ∣∣Wk(V1) − W ∗

k (V2)
∣∣ψ]

= E
[ ∣∣V1 − V2

∣∣ψ ∣∣ V1 > −Mk , V2 > −Mk

]
Pr(V1 > −Mk , V2 > −Mk )

+ 2 E
[ ∣∣V1 + Mk

∣∣ψ ∣∣ V1 > −Mk , V2 ≤ −Mk

]
Pr(V1 > −Mk ,%V2 ≤ −Mk)

= E
[
|V1 − V2|ψ 1{V1>−Mk ,V2>−Mk }

]
+ 2 E

[
|V1 + Mk |ψ 1{V1>−Mk ,V2≤−Mk }

]

= E

[
E
[
|V1 − V2|ψ 1{V1>−Mk ,V2>−Mk }

∣∣Mk

]]

+ 2 E

[
E
[
|V1 + Mk |ψ 1{V1>−Mk ,V2≤−Mk }

∣∣Mk

]]
. (9)

Remark 1 We assume E[Xi ] < 0 so that the G/G/1 queue is stable; and thus the
distribution ofWk converges (regardless of W0) to that of a finite r.v.W∞ as k → ∞
(see, e.g., [18, p. 103]). We also assume that the service times have a non-heavy-
tailed distribution so that for some c > 0, we have E[ecSi ] < ∞; and so the m.g.f.
of the Xi ’s, ϕ(t) ≡ E[et Xi ], exists in the neighborhood (−∞, c) of the origin. Since
ϕ(t) is an m.g.f., it is a convex function. In addition, ϕ′(0) = E[Xi ] < 0; and it is
straightforward to show that limt→+∞ ϕ(t) = +∞. Let
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γ ≡ sup{t > 0 : ϕ(t) < 1} ,

which is positive and finite (except in the case Pr(W∞ = 0) = 1). Thus we see that
γ is the unique positive quantity such that ϕ(γ ) = 1 and ϕ′(γ ) > 0. In the M/M/1
case, by the way, we obtain the closed-form result γ = λ(1 − ρ)/ρ (recall Example
1). Finally, in what follows, we assume the derivatives of ϕ(t) at points 0 and γ are
finite, i.e.,

ϕ′(0) = E[Xi ] > −∞ and ϕ′(γ ) = E[Xie
γ Xi ] < +∞ . (10)

Note that γ can be used to formulate an exponential upper bound for the upper tail
probability of W∞:

Pr(W∞ ≥ x) ≤ e−γ x , for all x > 0 ; (11)

see [18, Eq. (17) and the theorem on p. 106]. �

We state and prove two inequalities that will be useful in Theorem 1 below.

Lemma 1 For two real numbers a and b, it is true that

|a + b|ψ ≤ |a|ψ + |b|ψ if 0 < ψ ≤ 1, (12)

and
|a + b|ψ ≤ 2ψ−1(|a|ψ + |b|ψ) if ψ > 1. (13)

Proof From the observation that |a + b|ψ ≤ ||a| + |b||ψ for all a, b ∈ R andψ > 0,
it is straightforward to verify (12) when ab = 0; and otherwise, it is sufficient
to verify (12) when a = 1 and b ∈ (0, 1). For ψ ∈ [0, 1], define the functions
g(ψ) ≡ (1 + b)ψ and h(ψ) ≡ 1 + bψ . We have g(0) = 1 and h(0) = 2, g′(ψ) =
g(ψ) log(1 + b) > 0, h′(ψ) = bψ log b < 0, and g(1) = h(1) = 1 + b. To verify
Eq. (12), we prove by contradiction that g(ψ) ≤ h(ψ) for ψ ∈ [0, 1]. Suppose that
g(ψ0) > h(ψ0) for some ψ0 ∈ (0, 1). Since g(·) is increasing and h(·) is decreasing
on [0, 1], we have 1 = g(1) > g(ψ0) > h(ψ0) > h(1) = 1, a contradiction. Thus
Eq. (12) holds. Finally to verify Eq. (13), we note that it is sufficient to verify (13)
when a, b > 0; and in that case we let n ≡ 2, a1 ≡ a and a2 ≡ b, r ≡ 1, and s = ψ

so that r < s. Then we can rewrite (13) in the form

(
1

n

n∑
ν=1

arν

)1/r

≤
(
1

n

n∑
ν=1

asν

)1/s

,

which coincides with Eq. (2.9.1) of [16]; and thus Eq. (13) also holds. �

We are finally in a position to give our main result.
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Theorem 1 Consider the setup heretofore discussed. Suppose that E[Xi ] < 0 for
all i and that Eqs. (11) and (10) hold. Then the GMC condition (5) holds with a
decay rate r = exp

[ ∫ 1
0 logϕ(γ z) dz

] ∈ (0, 1).

Proof Westart by replacing−Mk inEq. (9)with a deterministic nonnegative constant
x ≥ 0 and finding upper bounds for the inner conditional expectations. Along the
way, we let E ∼ Exp(γ ) be an exponential r.v. so that there is a stochastic order
W∞ ≤st E due to the bound in (11). Moreover, let u(y) = |y − x |ψ 1{y>x}, which is
a nondecreasing function of y for all x ≥ 0. Then

E
[|W∞ − x |ψ 1{W∞>x}

] = E
[
u(W∞)

]

≤ E
[
u(E)

]
(W∞ ≤st E and u(·) is nondecreasing)

= E
[|E − x |ψ 1{E>x}

]

= E
[|E − x |ψ ∣∣E > x

]
Pr(E > x)

= c(ψ) e−γ x ,

where c(ψ) ≡ E
[|E − x |ψ ∣∣E > x

] = E[Eψ ] = �(ψ + 1)/γ ψ is a constant inde-
pendent of x due to the memoryless property of the exponential distribution. There-
fore, since V1 and W∞ have the same distribution, we have

E
[|V1 − x |ψ 1{V1>x,V2≤x}

] ≤ E
[|V1 − x |ψ 1{V1>x}

]

= E
[|W∞ − x |ψ 1{W∞>x}

] ≤ c(ψ) e−γ x . (14)

Now, let κ(ψ) ≡ max{1, 2ψ−1} for ψ > 0. Then

E
[|V1 − V2|ψ 1{V1>x,V2>x}

] = E
[|(V1 − x) − (V2 − x)|ψ 1{V1>x,V2>x}

]

≤ E
[
κ(ψ)(|V1 − x |ψ + |V2 − x |ψ) 1{V1>x,V2>x}

]
(by (12) and (13))

≤ κ(ψ)
{
E
[|V1 − x |ψ 1{V1>x,V2>x}

]+ E
[|V2 − x |ψ 1{V1>x,V2>x}

]}

= 2κ(ψ)E
[|V1 − x |ψ 1{V1>x,V2>x}

]

≤ 2κ(ψ)E
[|V1 − x |ψ 1{V1>x}

]

≤ 2κ(ψ)c(ψ) e−γ x ,

where the last step follows from Eq. (14).
Since V1 and V2 are independent of Mk , we obtain from Eq. (9) that

E
[|Wk(V1) − W ∗

k (V2)|ψ
] ≤ 2c(ψ)(1 + κ(ψ))E[eγ Mk ] . (15)

Next we find an upper bound for E[eγ Mk ] that decreases geometrically fast as
k → ∞. First note that
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Mk ≤ Ū k+1 ≡ 1

k + 1

k−1∑
j=−1

Uj =

⎧
⎪⎪⎨
⎪⎪⎩

U−1 = X−1 = 0, if k = 0,

1

k + 1

k−1∑
j=−1

j∑
i=−1

Xi = 1

k + 1

k−1∑
i=0

(k − i)Xi , if k ≥ 1.

This implies that E[eγ Mk ] ≤ E[eγ Ū k+1] for k ≥ 0. In particular, for k = 0, we have
E[eγ M0 ] ≤ 1; and for k ≥ 1, we have

E[eγ Mk ] ≤ E
[
exp

( γ

k + 1

k−1∑
i=0

(k − i)Xi

)]

= E
[
exp

( γ

k + 1

k∑
i=1

i Xi

)]
(Xi

′s are i.i.d.)

=
k∏

i=1

E
[
exp

( iγ

k + 1
Xi

)]
(Xi

′s are i.i.d.)

=
k∏

i=1

ϕ
( iγ

k + 1

)
. (16)

Let f (z) = ϕ(γ z) for 0 ≤ z ≤ 1.Note that f (0) = ϕ(0) = 1 and f (1) = ϕ(γ ) =
1. Since the m.g.f. ϕ is log-convex, f is log-convex too. On the other hand, due to
Eq. (10), the logarithmic derivatives of f at 0 and 1 are (log f )′(0) = f ′(0)/ f (0) =
γ ϕ′(0) = γE[Xi ] ∈ (−∞, 0) and (log f )′(1) = f ′(1) = γ ϕ′(1) = γE[Xieγ Xi ] ∈
(0,+∞), respectively. Thus, log f (z) < 0 for 0 < z < 1, so that

∫ 1
0 log f (z) dz < 0;

and then the quantity r ≡ exp
[ ∫ 1

0 log f (z) dz
] ∈ (0, 1). Moreover, since f is a log-

convex function, (log f )′ ismonotonically increasing; and somaxz∈[0,1](log f )′(z) =
f ′(1) < ∞.
By Eq. (16) and the definition of f (z), we have

E[eγ Mk ] ≤
k∏

i=1

f

(
i

k + 1

)

= exp

{
k∑

i=1

log f

(
i

k + 1

)}

=
[
exp

{
1

k

k∑
i=1

log f

(
i

k + 1

)}]k

≤
[
exp

{
1

k + 1

k+1∑
i=1

log f

(
i

k + 1

)}]k

, (17)
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where the final inequality holds because log f (1) = 0 and log f (z) < 0 for z ∈
(0, 1).

By the error bound on Riemann sums for integrals, we have (see Eqs. (2.1.7)–
(2.1.9) on p. 53 in [11])

1

k + 1

k+1∑
i=1

log f

(
i

k + 1

)
−
∫ 1

0
log f (z) dz ≤ 1

2(k + 1)2

k+1∑
i=1

sup
z∈[ i−1

k+1 , i
k+1 ]

(log f )′(z)

≤ 1

2(k + 1)
max

i=1,...,k+1
sup

z∈[ i−1
k+1 , i

k+1 ]
(log f )′(z)

= maxz∈[0,1](log f )′(z)
2(k + 1)

= f ′(1)
2(k + 1)

for k = 0, 1, . . . . (18)

Therefore, Eqs. (17)–(18) and some algebra give us the following upper bound
on E[eγ Mk ]:

E[eγ Mk ] ≤
[
exp

{
1

k + 1

k+1∑
i=1

log f

(
i

k + 1

)}]k

≤
[
exp

{∫ 1

0
log f (z) dz + f ′(1)

2(k + 1)

}]k

= rk exp

{
k f ′(1)
2(k + 1)

}

≤
{
1, for k = 0,

rke f ′(1)/2, for k = 1, 2, . . . .
(19)

It follows from Eqs. (15) and (19) that there is a sufficiently large positive quantity
C depending on f ′(1), c(ψ), and κ(ψ) for which

E
[ ∣∣Wk(V1) − W ∗

k (V2)
∣∣ψ ] ≤ Crk for k = 0, 1, . . . . � (20)

�

Example 2: For the special case of theM/M/1 queue, it is possible to obtain a closed-
form formula for the decay rate r in (20) (as a function of ρ). It is also possible
to explicitly show that the two conditions, r = exp

[ ∫ 1
0 log f (z) dz

] ∈ (0, 1) and
f ′(1) < ∞, are satisfied for any ρ ∈ (0, 1). To do so, note that
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Fig. 1 Plot of r(ρ) for an M/M/1 queue

f (z) = E[exp(zγ Xi )] = E[exp(zγ Si )]E[exp(−zγ Ti )] for z ∈ [0, 1] and i ≥ 0

=
[

1

1 − z(1 − ρ)

] [
1

1 + z(1 − ρ)/ρ

]
> 0 for z ∈ [0, 1],

sinceρ ∈ (0, 1) and z ∈ [0, 1] so that 0 ≤ z(1 − ρ) < 1.The function f is symmetric
on [0, 1], i.e., f (z) = f (1 − z) for z ∈ [0, 1]; and f (0) = f (1) = 1. In addition, it
can be shown that

r(ρ) = exp

[∫ 1

0
log f (z) dz

]
= e2ρ

1+ρ

1−ρ and f ′(1) = (1 − ρ)2

ρ
. (21)

Further, we see that (i) for each ρ ∈ (0, 1), we have 0 < r(ρ) < 1 (cf. Fig. 1); (ii)
d
dρ r(ρ) > 0 for ρ ∈ (0, 1); (iii) r(ρ) → 0 as ρ → 0; and (iv) r(ρ) → 1 as ρ → 1.
Also observe that for each ρ ∈ (0, 1), we have f ′(1) < ∞. �

3 Monte Carlo Results

The purpose of this section is to illustrate empirical and robustness properties of
E[|Wk(V1) − W ∗

k (V2)|ψ ] on various simple, single-server queueing systems, where
V1 and V2 are i.i.d. r.v.’s having the same distribution as the steady-state waiting time.
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In particular, we check to see whether or not the decay of E[|Wk(V1) − W ∗
k (V2)|ψ ]

adheres to a geometric rate as k becomes large.

3.1 M/M/1 Queue

We plot Monte Carlo estimates of log E[|Wk(V1) − W ∗
k (V2)|ψ ] in Fig. 2 for ψ = 1.5

and k = 1, . . . , 800, based on one million paths of waiting time pairs {Wk(V1),

W ∗
k (V2)}, k = 1, . . . , 800, generated by Lindley’s recursion, where we used the same

paths for each k. The arrival and service rates are λ = 0.8 and μ = 1, respectively.
The red line is the fitted linear regression line, the R2 value of which is 0.988,
indicating a reasonable fit (and thus, the desired approximately geometric decay).
Also, the estimated slope is−0.01542 so that the estimated rate is e−0.01542 = 0.9847.
Therefore, since the empirical plot is roughly linear and the estimated rate is less
than one, we can conclude that the decay rate seems to be geometric as suggested
by Theorem 1. Furthermore, from Eq. (21), the asymptotic rate of the upper bound
in Theorem 1 is r = e2(0.8)9 = 0.9917, which is higher but close to the estimated
rate.
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Fig. 2 Monte Carlo estimates of log E
[|Wk(V1) − W ∗

k (V2)|1.5
]
for an M/M/1 queue with λ = 0.8

and μ = 1
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3.2 M/G/1 Queues

To simulate |Wk(V1) − W ∗
k (V2)|ψ , k = 1, 2, . . ., we first need to sample V1 and V2

from the stationary waiting time distribution. For M/G/1 queues, it is possible to
sample from the “exact” stationary distribution. Let FS(x) denote the c.d.f. of the
randomservice time S.According to thePollaczek–Khinchine formula, the stationary
waiting time is equal in distribution to

∑N
i=1 Yi , where the Yi ’s are i.i.d. r.v.’s having

the probability density function (p.d.f.)

fY (x) = 1 − FS(x)

E[S] ,

and N is a geometric r.v., which is independent of the Yi ’s, with a success prob-
ability 1 − ρ and the probability mass function (p.m.f.) Pr(N = u) = ρu(1 − ρ),
u = 0, 1, 2, . . .; see e.g., p. 21 of [7]. So, in order to sample from the exact stationary
distribution, what we need to do is to generate a geometric r.v. N and then N i.i.d.
copies of Y . We can subsequently sample from the density fY (x) by using standard
methods (as described in what follows).

3.2.1 M/H2/1 Queue

In an M/H2/1 queue, the service time S follows a hyperexponential distribution with
p.d.f.

fS(x) = pμ1e
−μ1x + (1 − p)μ2e

−μ2x , for x ≥ 0,

where 0 < p < 1 and μ1, μ2 > 0. So,

1 − FS(x) = pe−μ1x + (1 − p)e−μ2x

and

E[S] = p

μ1
+ 1 − p

μ2
.

The density of Y is

fY (x) = qμ1e
−μ1x + (1 − q)μ2e

−μ2x ,

where

q = p/μ1

p/μ1 + (1 − p)/μ2
.

Thus, Y is also a hyperexponential r.v., and one can easily generate an i.i.d. sample
of Y ’s. We can then simulate the stationary waiting time by computing

∑N
i=1 Yi ,

where N is a shifted geometric, as described in Sect. 3.2. We can alternatively do
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so via a more-direct route: Let �(k, λ) denote the gamma distribution with shape
parameter k and rate parameter λ; let Bin(n, p) denote the binomial distribution with
number of trials n and success probability p; and let Geom(p) denote the “shifted”
geometric distribution with success probability p and p.m.f. f (i) = (1 − p)i p, for
i = 0, 1, 2, . . .. Also, let N1 ∼ Bin(N , q) and N2 = N − N1,where N ∼ Geom(1 −
ρ). If N = 0, then

∑N
i=1 Yi = 0; and otherwise,

N∑
i=1

Yi ∼ X1 + X2 ,

where X1 ∼ �(N1, μ1) and X2 ∼ �(N2, μ2) are two independent gamma r.v.’s. So,
the steps for simulating from the stationary waiting time distribution are

1. Generate a geometric r.v., N ∼ Geom(1 − ρ). If N = 0, return 0, else continue.
2. Generate a binomial r.v., N1 ∼ Bin(N , q) and set N2 = N − N1.
3. Generate X1 ∼ �(N1, μ1) and X2 ∼ �(N2, μ2). Return stationary waiting time

X1 + X2.

Note that [17] showed that the stationary waiting time distribution of a G/G/1 queue
with hyperexponential service and interarrival times also has a hyperexponential
structure.

Moreover, for an M/H2/1 queue, it is possible to calculate the decay rate r =
exp

[ ∫ 1
0 log f (z) dz

]
of the upper bound in (20), at least numerically. The m.g.f. of

Xi = Si − Ti is

ϕ(t) = λ

λ + t

[
p

(
μ1

μ1 − t

)
+ (1 − p)

(
μ2

μ2 − t

)]
for t < min{μ1, μ2} .

The positive solution of ϕ(γ ) = 1 is

γ = 1

2

(
−λ + μ1 + μ2 −

√
(λ + μ1 − μ2)2 + 4λ(−μ1 + μ2)p

)
.

The integral
∫ 1
0 logϕ(γ z) dz has no closed-form solution, but can be calculated

numerically.
Figure3 plots Monte Carlo estimates of log E[|Wk(V1) − W ∗

k (V2)|ψ ] forψ = 1.5
and k = 1, . . . , 1500, based on 100,000 replications for each k. The parameters of
the hyperexponential distribution are p = (5 + √

15)/10 ≈ 0.8873,μ1 = 2.5 p, and
μ2 = 2.5(1 − p), and the arrival rate is λ = 1. With these parameter values, E[S] =
0.8, and so ρ = λE[S] = 0.8. In addition, the stationary mean waiting time is 8. The
red line again depicts the fitted regression line, with associated R2 = 0.974. Also, the
estimated slope is −0.005986, so that the estimated decay rate is e−0.005986 = 0.994.
For the selected parameter values, we have
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Fig. 3 Monte Carlo estimates of log E
[|Wk(V1) − W ∗

k (V2)|1.5
]
for an M/H2/1 queue with λ = 1

and ρ = 0.8

f (z) = ϕ(γ z) =
8
[
5 + 4

(
−3 + √

7
)
z
]

40 + 30
(
−3 + √

7
)
z + 12

(
−8 + 3

√
7
)
z2 +

(
90 − 34

√
7
)
z3

.

By numerical integration, the decay rate of the upper bound is obtained as r =
exp

[ ∫ 1
0 log f (z) dz

] = 0.997. Thus, as in the M/M/1 case, we see an empirical con-
firmation of Theorem 1. This is not surprising since all the conditions of Theorem 1
are satisfied for the M/H2/1 queue as well.

3.2.2 M/G/1 with Lognormal Service Time

Suppose that the service time S follows a lognormal distribution with parameters μ

and σ , i.e., log S ∼ Nor(μ, σ 2). Then

1 − FS(x) = �
[−(log x − μ)/σ

]
,

where �(·) is the c.d.f. of the standard normal distribution, and

E[S] = eμ+σ 2/2 .
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Fig. 4 Monte Carlo estimates of log E
[|Wk(V1) − W ∗

k (V2)|1.5
]
for an M/G/1 queue with a lognor-

mal service time and utilization ρ = 0.8

The density of Y is therefore

fY (x) = e−μ−σ 2/2 �
[−(log x − μ)/σ

]
.

To generate samples from fY (x), the numerical inversionmethod of [12] can be used.
Figure4 plots the Monte Carlo estimates of log E[|Wk(V1) − W ∗

k (V2)|ψ ] for ψ =
1.5 and k = 1, . . . , 7,000, based on 100,000 replications for each k. The parameter
values of the lognormal distribution are μ = −1.374436 and σ = 1.517427 and the
arrival rate is λ = 1. With these parameter values, E[S] = 0.8, and so ρ = λE[S] =
0.8. In addition, the expected value of the stationary waiting time is 16. The red
fitted regression line corresponds to an R2 value of 0.969. The estimated slope is
−0.0008147 and the estimated decay rate is e−0.0008147 = 0.9992, which is very
close to one. Since the lognormal distribution is a heavy-tailed distribution, whose
m.g.f. is undefined for positive arguments, the assumptions of Theorem1 are violated.
Therefore, we have no theoretical result stating that the GMC condition is satisfied
for this queueing system. Also, note that the R2 value and estimated decay rate are
worse than those of M/M/1 and M/H2/1 examples. So, we have weaker empirical
evidence regarding the adherence to the GMC condition.
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3.2.3 M/G/1 with Pareto Service Time

Finally, suppose that S follows a Pareto distribution with shape parameter α > 1, the
complementary c.d.f.

1 − FS(x) = 1/(1 + x)α ,

and the expected value
E[S] = 1/(α − 1) .

So, the density of Y is

fY (x) = (α − 1)(1 + x)−α , for x ≥ 0 .

Its c.d.f. is
FY (x) = 1 − (1 + x)1−α , for x ≥ 0 ,

and the inverse c.d.f. is

F−1
Y (u) = −1 + (1 − u)1/(1−α) , for 0 < u < 1 .

We can generate an i.i.d. sample of Y by using the above inverse c.d.f. and an i.i.d.
sample of uniforms.

Figure5 depicts the Monte Carlo estimates of log E[|Wk(V1) − W ∗
k (V2)|ψ ] for

ψ = 1.5 and k = 1, . . . , 11,000, based on 100,000 replications for each k. The
shape parameter of the Pareto distribution is α = 2.25 and the arrival rate is λ = 1.
With these parameter values, E[S] = 0.8 and so ρ = λE[S] = 0.8. In addition, the
expected value of the stationarywaiting time is 16, and its variance is infinite. The red
fitted regression line corresponds to an R2 = 0.943. The estimated slope is−7.665E-
05, the estimated rate is e−7.665E−05 = 0.9999234, which is extremely close to unity,
and the linear fit appears to be exceptionally poor. In addition, the Pareto distribution
is heavy-tailed, so that the assumptions of Theorem 1 are violated. In any case, it
is not surprising to see that empirical evidence for this example appears to mitigate
against a geometric decay rate, at least compared to theM/M/1 andM/H2/1 examples.

4 Conclusions

We have proved that the GMC condition holds for the queue-waiting-time process
in a G/G/1 queueing system whose service-time distribution is non-heavy-tailed. We
have also demonstrated the use of empirical techniques for checking that the GMC
condition approximately holds for the G/G/1 queue-waiting-time process based on
more-general service-time distributions. Such results are useful since the GMC con-
dition enables certain output-analysis procedures to work reliably when they are
applied to a broad class of output processes that are generated by a simulation in
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Fig. 5 Monte Carlo estimates of log E
[|Wk(V1) − W ∗

k (V2)|1.5
]
for an M/G/1 queue with a Pareto

service time and utilization ρ = 0.8

steady-state operation. In particular, the GMC assumption underlies recent proce-
dures that are based on the methods of batch means and standardized time series
and that are designed to deliver asymptotically valid point and CI estimators of the
steady-state process mean or selected quantiles. Whereas the GMC condition can be
empirically checked in practice, the usual moment and mixing conditions are much
more problematic to check as detailed in [4, Remark 2]. Among promising directions
for future work, we are currently investigating the theoretical connections between
the GMC and FCLT conditions; and we are also investigating the possible applica-
bility of the GMC condition to sojourn (cycle) times of customers in certain types of
queueing networks.
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Tractability of Approximation in the
Weighted Korobov Space in the
Worst-Case Setting

Adrian Ebert, Peter Kritzer, and Friedrich Pillichshammer

Abstract In this paper we consider L p-approximation, p ∈ {2,∞}, of periodic
functions from weighted Korobov spaces. In particular, we discuss tractability prop-
erties of such problems, which means that we aim to relate the dependence of the
information complexity on the error demand ε and the dimension d to the decay rate
of the weight sequence (γ j ) j≥1 assigned to the Korobov space. Some results have
been well known since the beginning of this millennium, others have been proven
quite recently. We give a survey of these findings and will add some new results on
the L∞-approximation problem. To conclude, we give a concise overview of results
and collect a number of interesting open problems.

Keywords Approximation · Worst-case error · Average-case error · Tractability ·
Weighted Korobov space

1 Introduction

In this paperwe consider L p-approximation,where p ∈ {2,∞}, of periodic functions
from a weighted Korobov space with smoothness parameter α from the viewpoint of
Information-Based Complexity. In particular, we study the information complexity
n(ε, d) of these problems, which is the minimal number of information evaluations
required to push the approximation error below a certain error demand ε ∈ (0, 1) for
problems in dimension d ∈ N. The information classes considered are the class �all

consisting of arbitrary continuous linear functionals and the class �std consisting of
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point evaluations only. Furthermore, we will distinguish between the absolute and
the normalized error criterion in the worst-case setting.

If the information complexity n(ε, d) grows exponentially in d for d tending to
infinity, the problem is said to suffer from the curse of dimensionality. Otherwise, for
sub-exponential growth rates, the problem is said to be tractable. Initially, only the
notions of polynomial and strong polynomial tractabilitywere introduced and studied
in the literature. An extensive overview of tractability of multivariate problems can
be found in the trilogy [10–12].

For weighted function classes, one assigns real numbers (weights) to the coordi-
nates in order tomodel varying influence of the single variables on the approximation
problem, and one is interested in (matching) necessary and sufficient conditions on
the weights which guarantee tractability. In the particular case of L2-approximation
for the weighted Korobov space, matching conditions can be found in the paper [14]
by Wasilkowski and Woźniakowski for the information class �all and in the paper
[9] by Novak, Sloan, and Woźniakowski for �std. For L∞-approximation, results on
(strong) polynomial tractability are due to Kuo, Wasilkowski, and Woźniakowski;
see [5] for �all and [6] for �std.

After (strong) polynomial tractability, more and finer notions of tractability have
been introduced with the aim of obtaining a more detailed and clearer picture of the
tractability of multivariate problems. Nowadays, there is a variety of finer notions of
tractability comprising quasi-polynomial tractability, weak tractability, and uniform
weak tractability. The exact definitions will be given in Definition1. Based on this
development,manymultivariate problems need to be reconsidered in order to classify
them further with respect to the newer notions of tractability. This has been done
recently in [2] for the problem of L2-approximation for weighted Korobov spaces.
These results will be summarized in Sect. 3. In the present paper we shall also study
the L∞-case. We derive necessary and sufficient conditions for several notions of
tractability (see Sect. 4). The presented conditions are tight, but unfortunately do not
match exactly. Here, some problems remain open.

In Sect. 5 we give a concise survey of the current state of research in tractability
theory of approximation in weighted Korobov spaces and formulate some interesting
open questions.

Notation and basic definitions will be introduced in the following section.

2 Basic Definitions

2.1 Function Space Setting

TheKorobov spaceHd,α,γ with weight sequence γ = (γ j ) j≥1 inR
+ is a reproducing

kernel Hilbert space with kernel function Kd,α,γ : [0, 1]d × [0, 1]d → R given by

Kd,α,γ (x, y) :=
∑

h∈Zd

rd,α,γ (h) exp(2πih · (x − y)),
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where by “·” we denote the usual dot product. The corresponding inner product and
norm are given by

〈 f, g〉d,α,γ :=
∑

h∈Zd

1

rd,α,γ (h)
f̂ (h) ĝ(h) and ‖ f ‖d,α,γ = √〈 f, f 〉d,α,γ .

Here, the Fourier coefficients of a function f ∈ Hd,α,γ are given by

f̂ (h) =
∫

[0,1]d
f (x) exp(−2πih · x)dx,

and the decay function equals, for h = (h1, . . . , hd), rd,α,γ (h) =∏d
j=1 rα,γ j (h j ),

with α > 1 (the so-called smoothness parameter of the space), and

rα,γ (h) :=
{
1 for h = 0 ,

γ /|h|α for h ∈ Z \ {0}.

The kernel Kd,α,γ is well-defined for α > 1 and for all x, y ∈ [0, 1]d , since

|Kd,α,γ (x, y)| ≤
∑

h∈Zd

rd,α,γ (h) =
d∏

j=1

(
1 + 2ζ(α)γ j

)
< ∞,

where ζ is the Riemann zeta function (note that ζ(α) < ∞ since α > 1).
Furthermore, we assume here that the weights are ordered and satisfy

1 ≥ γ1 ≥ γ2 ≥ · · · > 0.

The weights γ and the smoothness parameter α are parameters of the Korobov space
Hd,α,γ .

The weighted Korobov space is a popular reference space for quasi-Monte Carlo
rules, in particular for lattice rules. See, e.g., [7, Chap. 4] or [10, Appendix A] and
the references therein.

2.2 Approximation inHd,α,γ

In this paper we consider L p-approximation of functions from the weighted Korobov
spaceHd,α,γ for fixed weights γ and fixed smoothness parameter α for p ∈ {2,∞}.
We consider the operator APPd,p : Hd,α,γ → L p([0, 1]d) with APPd,p( f ) = f for
all f ∈ Hd,α,γ . Note that, strictly speaking, also this operator depends on α and on γ ,
but as these parameters are considered to be fixed we do not include them explicitly
in the notation and simply write APPd,p rather than APPd,p,α,γ . The operator APPd,p

is the embedding from the weighted Korobov spaceHd,α,γ to the space L p([0, 1]d).
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In order to approximate APPd,p with respect to the L p-norm ‖ · ‖L p over [0, 1]d ,
p ∈ {2,∞}, it suffices to employ linear algorithms An,d that use n information eval-
uations and are of the form

An,d( f ) =
n∑

i=1

Ti ( f ) gi for f ∈ Hd,α,γ (1)

with functions gi ∈ L p([0, 1]d) and bounded linear functionals Ti ∈ H∗
d,α,γ for i =

1, . . . , n; see [1] and also [8, 10]. We will assume that the functionals Ti belong
to some permissible class of information �. In particular, we study the class �all

consisting of the entire dual space H∗
d,α,γ and the class �std, which consists only of

point evaluation functionals. Recall thatHd,α,γ is a reproducing kernel Hilbert space,
which means that point evaluations are continuous linear functionals and therefore
�std is a subclass of�all. With some abuse of notation we will write An,d ∈ � if An,d

is a linear algorithm of the form (1) using information from the class �.
We remark that in both cases p = 2 and p = ∞, the embedding operator APPd,p

is continuous for all d ∈ N, which can be seen as follows.

• For p = 2, we have for all f ∈ Hd,α,γ that

‖APPd,2( f )‖2L2
= ‖ f ‖2L2

=
∑

h∈Zd

| f̂ (h)|2

≤
∑

h∈Zd

1

rd,α,γ (h)
| f̂ (h)|2 = ‖ f ‖2d,α,γ < ∞.

By considering the choice f ≡ 1, it follows that the above inequality is sharp such
that the operator norm of APPd,2 is given by

‖APPd,2‖ = 1.

• For p = ∞, we have for all f ∈ Hd,α,γ that

‖APPd,∞( f )‖L∞ = ‖ f ‖L∞ = sup
x∈[0,1]d

| f (x)| = sup
x∈[0,1]d

∣∣〈 f, Kd,α,γ (·, x)〉d,α,γ

∣∣

≤ ‖ f ‖d,α,γ sup
x∈[0,1]d

‖Kd,α,γ (·, x)‖d,α,γ

= ‖ f ‖d,α,γ sup
x∈[0,1]d

√
Kd,α,γ (x, x)

= ‖ f ‖d,α,γ

(
∑

h∈Zd

rd,α,γ (h)

)1/2

= ‖ f ‖d,α,γ

⎛

⎝
d∏

j=1

(
1 + 2ζ(α)γ j

)
⎞

⎠
1/2

< ∞.
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By considering the choice f = Kd,α,γ (·, x), it follows that the above inequality is
sharp such that the operator norm of APPd,∞ is given by

‖APPd,∞‖ =
⎛

⎝
d∏

j=1

(
1 + 2ζ(α)γ j

)
⎞

⎠
1/2

.

2.3 The Worst-Case Setting

The worst-case error of an algorithm An,d as in (1) is defined as

e(An,d ,APPd,p) := sup
f ∈Hd,α,γ

‖ f ‖d,α,γ ≤1

‖APPd,p( f ) − An,d( f )‖L p ,

and the nth minimal worst-case error with respect to the information class� is given
by

e(n,APPd,p,�) := inf
An,d∈�

e(An,d ,APPd,p) ,

where the infimum is extended over all linear algorithms of the form (1) with infor-
mation from the class �. In the case p = ∞ the essential supremum is used in the
calculation of ‖APPd,∞( f ) − An,d( f )‖L∞ .

The initial error, i.e., the error obtained by approximating f by zero, equals

e(0,APPd,p) = sup
f ∈Hd,α,γ

‖ f ‖d,α,γ ≤1

‖APPd,p( f )‖L p

= ‖APPd,p‖ =
{
1 if p = 2,(∏d

j=1

(
1 + 2ζ(α)γ j

))1/2
if p = ∞.

Note that for p = ∞ the initial error e(0,APPd,∞) may be exponential in d if it is
not properly normalized. In the following analysis, we will therefore consider the
normalized as well as the absolute error criterion.

We are interested in how the approximation error of algorithms An,d depends on
the number n of information evaluations used and how it depends on the problem
dimension d. To this end, we define the so-called information complexity as

n(ε,APPd,p,�) := min{n ∈ N0 : e(n,APPd,p,�) ≤ εCRId,p}

with ε ∈ (0, 1) and d ∈ N, and where either CRId,p = 1 for the absolute error cri-
terion (we then write nabs(ε,APPd,p,�)) and CRId,p = e(0,APPd,p) = ‖APPd,p‖
for the normalized error criterion (then, we write nnorm(ε,APPd,p,�)).
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2.4 Useful Relations

In the case of L2-approximation we have e(0,APPd,2) = 1 and hence the absolute
and the normalized error criteria coincide. This means that

nnorm(ε,APPd,2,�) = nabs(ε,APPd,2,�)

and we just write n(ε,APPd,2,�) for � ∈ {�all,�std}.
In the case of L∞-approximation the situation is different, since e(0,APPd,∞) >

1. Hence we only have

nnorm(ε,APPd,∞,�) ≤ nabs(ε,APPd,∞,�) for � ∈ {�all,�std}. (2)

Furthermore, it is well known, see, e.g., [3], that L2-approximation is not harder
than L∞-approximation for the absolute error criterion, which means that for � ∈
{�all,�std} we have

n(ε,APPd,2,�) ≤ nabs(ε,APPd,∞,�).

Thus, necessary conditions for tractability of L2-approximation in theweighted space
Hd,α,γ are also necessary conditions for tractability of L∞-approximation inHd,α,γ

for the absolute error criterion.
For the information class �all, L p-approximation for p ∈ {2,∞} can be fully

characterized in terms of the eigenvalues of the self-adjoint, compact operator

Wd := APP∗
d,2APPd,2 : Hd,α,γ → Hd,α,γ .

The following well-known lemma (see, e.g., [10, p. 215]) provides information
on the eigenpairs of the operator Wd .

Lemma 1 The eigenpairs of the operator Wd are (rd,α,γ (k), ek) with k ∈ Z
d , where

for k ∈ Z
d we set

ek(x) = ek,α,γ (x) :=
√
rd,α,γ (k) exp(2πik · x) , for x ∈ [0, 1]d .

Furthermore, denote the ordered eigenvalues of Wd by (λd,k)k∈N, where

λd,1 ≥ λd,2 ≥ λd,3 ≥ · · · .

Note that λd,1 = 1, since rd,α,γ (0) = 1 and γ j ≤ 1 for all j ∈ N.
We then have the following relations (see, for example, [10, 13] for p = 2 and

[5, Theorem 2] for p = ∞) for the nth minimal error with respect to �all,
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e(n,APPd,p,�
all) =

{
λ
1/2
d,n+1 if p = 2,(∑∞

k=n+1 λd,k
)1/2

if p = ∞.

Consequently,
n(ε,APPd,2,�

all) = min
{
n : λd,n+1 ≤ ε2

}

for p = 2, and

n(ε,APPd,∞,�all) = min

{
n :

∞∑

k=n+1

λd,k ≤ ε2 CRI2d,∞

}
(3)

for p = ∞.

2.5 Relations to the Average-Case Setting

Note that (3) is exactly the same as the information complexity for L2-approximation
in the average-case setting for certain spaces (see [12, p. 190] for a general intro-
duction to the average-case setting). Indeed, following the outline in [4], assume
that we are given a sequence of spaces Fd , d ∈ N, and study the operator ÃPPd,2 :
Fd → L2([0, 1]d) with ÃPPd,2( f ) = f for f ∈ Fd . Furthermore, we assume that
Fd is equipped with a Gaussian probability measure μd , which has mean zero and a
covariance function that coincides with the reproducing kernel of the Korobov space
Hd,α,γ , with all parameters as above. I.e.,

∫

Fd

f (x) f ( y)μd(d f ) = Kd,α,γ (x, y) for all x, y ∈ [0, 1]d .

Again, it is of interest to study approximation of ÃPPd,2 by linear algorithms An,d

of the form (1). The average-case error of such an algorithm An,d is given by

eavg(An,d , ÃPPd,2) :=
(∫

Fd

∥∥ÃPPd,2( f ) − An,d( f )
∥∥2
L2([0,1]d ) μd(d f )

)2

,

and the initial error by

eavg(0, ÃPPd,2) :=
(∫

Fd

∥∥ÃPPd,2( f )
∥∥2
L2([0,1]d ) μd(d f )

)2

.

We can also define the nth minimal average-case error of L2-approximation in Fd

for an information class � by
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e(n, ÃPPd,2,�) := inf
An,d∈�

eavg(An,d , ÃPPd,2).

Now define, for any Borel set G in L2([0, 1]d), the inverse image under ÃPPd,2 by

ÃPP
−1

d,2(G) := { f ∈ Fd : APPd,2( f ) ∈ G} and let νd := μd ◦ ÃPP
−1

d,2. Then, νd is
a Gaussian measure on L2([0, 1]d), again with mean zero, and a covariance operator
Cνd given by

(Cνd f )(x) =
∫

[0,1]d
Kd,α,γ (x, y) f ( y)d y for all x ∈ [0, 1]d .

For more detailed information we refer to [4] and the references therein.
Using the notation just introduced, there are several relations to be observed

between the worst-case setting and the average-case setting. Indeed, it is known
that the eigenvalues of the covariance operator Cνd coincide with the eigenvalues
(λd,k)k∈N of the operator Wd introduced above. Furthermore, by making use of the
relation between the covariance function of μd and the kernel Kd,α,γ , it can easily
be shown that

eavg(0, ÃPPd,2) =
⎛

⎝
∑

k∈Zd

rd,α,γ (k)

⎞

⎠
1/2

=
( ∞∑

k=1

λd,k

)1/2

.

Hence the initial error of average-case L2-approximation in Fd is exactly the same
as the initial error of worst-case L∞-approximation in Hd,α,γ . What is more, if one
allows information from �all, we have

e(n, ÃPPd,2,�
all) =

( ∞∑

k=n+1

λd,k

)1/2

for thenthminimal error, i.e., thenthminimal error of average-case L2-approximation
in Fd equals the nth minimal error of worst-case L∞-approximation in Hd,α,γ . For
the derivation of these results and further details, we refer to [13, Chap. 6], see also
[10].

These observations (which have been pointed out in the literature before) imply
that the results on L∞-approximation inHd,α,γ presented here can also be interpreted
as results on average-case L2-approximation in Fd . Indeed some of the theorems
presented on L∞-approximation below recover some of the results in [4] and the
references therein, formulated for the average-case setting there.
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2.6 Notions of Tractability

An important goal of tractability theory is to analyze which problems suffer
from the curse of dimensionality, i.e., whether there exist C, δ > 0 such that
n(ε,APPd,p,�) ≥ C(1 + δ)d for infinitely many d ∈ N, and which do not. In the
latter case it is then an important task to classify the growth rate of the informa-
tion complexity with respect to the dimension d tending to infinity (d → ∞) and the
error threshold ε tending to zero (ε → 0). Different growth rates are characterized by
means of various notions of tractability which are given in the following definition.

Definition 1 Consider the approximation problem APPp = (APPd,p)d≥1 for the
information class �. We say that for this problem we have:

(a) Strong polynomial tractability (SPT) if there exist non-negative numbers τ,C
such that

n(ε,APPd,p,�) ≤ C ε−τ for all d ∈ N and all ε ∈ (0, 1). (4)

The infimum of all exponents τ ≥ 0 such that (4) holds for someC ≥ 0 is called
the exponent of strong polynomial tractability and is denoted by τ ∗(�).

(b) Polynomial tractability (PT) if there exist non-negative numbers τ, σ,C such
that

n(ε,APPd,p,�) ≤ C ε−τdσ for all d ∈ N and all ε ∈ (0, 1).

(c) Quasi-polynomial tractability (QPT) if there exist non-negative numbers t,C
such that

n(ε,APPd,p,�) ≤ C exp(t (1 + ln d)(1 + ln ε−1))

for all d ∈ N and all ε ∈ (0, 1). (5)

The infimum of all exponents t ≥ 0 such that (5) holds for some C ≥ 0 is called
the exponent of quasi-polynomial tractability and is denoted by t∗(�).

(d) Weak tractability (WT) if

lim
d+ε−1→∞

ln n(ε,APPd,p,�)

d + ε−1
= 0.

(e) (σ, τ )-weak tractability ((σ, τ )-WT) for positive numbers σ, τ if

lim
d+ε−1→∞

ln n(ε,APPd,p,�)

dσ + ε−τ
= 0.

(f) Uniform weak tractability (UWT) if (σ, τ )-weak tractability holds for all σ, τ ∈
(0, 1].
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We obviously have the following hierarchy of tractability notions:

SPT ⇒ PT ⇒ QPT ⇒ UWT ⇒ (σ, τ )-WT, for any choice of (σ, τ ) ∈ (0, 1]2.

Furthermore, WT coincides with (σ, τ )-WT for (σ, τ ) = (1, 1).

It is now our aim to find necessary and sufficient conditions on the weights γ

of the Korobov space Hd,α,γ (for fixed smoothness parameter α) under which the
approximation problem is tractable. The characterization of the applicable tractability
classes will be done with respect to decay conditions on the weight sequence γ =
(γ j ) j≥1. To this end, we introduce the following notation.

• The infimum of the sequence γ is denoted by γ I := inf j≥1 γ j .
• The sum exponent sγ is defined as

sγ := inf

⎧
⎨

⎩κ > 0 :
∞∑

j=1

γ κ
j < ∞

⎫
⎬

⎭ .

• The exponent tγ is defined as

tγ := inf

⎧
⎨

⎩κ > 0 : lim sup
d→∞

1

ln(d + 1)

d∑

j=1

γ κ
j < ∞

⎫
⎬

⎭ .

• The exponent uγ ,σ , for σ > 0, is defined as

uγ ,σ := inf

⎧
⎨

⎩κ > 0 : lim
d→∞

1

dσ

d∑

j=1

γ κ
j = 0

⎫
⎬

⎭ .

In the definitions of sγ , tγ , and uγ ,σ we use the convention that inf ∅ = ∞.

3 The Results for APP2

A complete overview of necessary and sufficient conditions for tractability of L2-
approximation in the weighted Korobov space has recently been published in [2].

Theorem 1 Consider the approximation problem APP2 = (APPd,2)d≥1 for the
weighted Korobov spaces Hd,α,γ , d ∈ N, and for the information class �all and
let α > 1. Then we have the following results.
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1. (Cf. [14]) Strong polynomial tractability for the class �all holds if and only if
sγ < ∞. In this case the exponent of strong polynomial tractability is

τ ∗(�all) = 2max

(
sγ ,

1

α

)
.

2. (Cf. [14]) Strong polynomial tractability and polynomial tractability for the class
�all are equivalent.

3. Quasi-polynomial tractability, uniform weak tractability, and weak tractability
for the class �all are equivalent and hold if and only if γ I < 1.

4. If we have quasi-polynomial tractability, then the exponent of quasi-polynomial
tractability satisfies

t∗(�all) = 2max

(
1

α
,

1

ln γ −1
I

)
.

In particular, if γ I = 0, we set (ln γ −1
I )−1 := 0 and we have that t∗(�all) = 2

α
.

5. For σ > 1, (σ, τ )-weak tractability for the class �all holds for all weights 1 ≥
γ1 ≥ γ2 ≥ · · · > 0.

Theorem 2 Consider multivariate approximation APP2 = (APPd,2)d≥1 for the
weighted Korobov spaces Hd,α,γ , d ∈ N, and for the information class �std and
α > 1. Then we have the following results.

1. (Cf. [9]) Strong polynomial tractability for the class �std holds if and only if

∞∑

j=1

γ j < ∞,

which implies sγ ≤ 1. In this case the exponent of strong polynomial tractability
satisfies

τ ∗(�std) = 2max

(
sγ ,

1

α

)
.

2. (Cf. [9]) Polynomial tractability for the class �std holds if and only if

lim sup
d→∞

1

ln(d + 1)

d∑

j=1

γ j < ∞.

3. Polynomial and quasi-polynomial tractability for the class �std are equivalent.
4. Weak tractability for the class �std holds if and only if

lim
d→∞

1

d

d∑

j=1

γ j = 0.
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5. For σ ∈ (0, 1], (σ, τ )-weak tractability for the class �std holds if and only if

lim
d→∞

1

dσ

d∑

j=1

γ j = 0.

For σ > 1, (σ, τ )-weak tractability for the class �std holds for all weights 1 ≥
γ1 ≥ γ2 ≥ · · · > 0.

6. Uniform weak tractability for the class �std holds if and only if

lim
d→∞

1

dσ

d∑

j=1

γ j = 0 for all σ ∈ (0, 1].

Theorems1 and 2 imply that in the case of L2-approximation no open questions
remain, at least for the currently most common tractability classes.

Remark 1 For the information class �std also the precise form of the algorithms
leading to the respective notions of tractability is of interest. However, it would be
beyond the scope of this work to provide comprehensive comments on this issue.
For the case of (strong) polynomial tractability we refer to the paper [9] for fur-
ther information. The proof for the weak tractability notions is based on a general
relation between tractability for the classes �all and �std; see [2] as well as [12,
Theorem 26.11].

4 The Results for APP∞

We have the following result for L∞-approximation in the space Hd,α,γ .

Theorem 3 Consider multivariate approximation APP∞ = (APPd,∞)d≥1 for the
weighted Korobov spaces Hd,α,γ , d ∈ N, and for the information classes �all and
�std for the normalized and absolute error criterion and α > 1. Then we have the
following results.

1. (Cf. [5] for �all and [6] for �std) The approximation problem is strongly
polynomially tractable if and only if sγ < 1. If this holds, then for any τ ∈
(max(1/α, sγ ), 1) we have

e(n,APPd,∞,�all) = O
(
n−(1−τ)/(2τ)

)
and

e(n,APPd,∞,�std) = O
(
n−(1−τ)/(2τ(1+τ))

)
,

where in both cases the implied factor is independent of n and d.
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2. (Cf. [5] for �all and [6] for �std) The approximation problem is polynomially
tractable if and only if tγ < 1. If this holds, then for any τ ∈ (max(1/α, tγ ), 1)
and any δ > 0 we have

e(n,APPd,∞,�all) = O
(
n−(1−τ)/(2τ)dδ+ζ(ατ)tγ /τ

)
and

e(n,APPd,∞,�std) = O
(
n−(1−τ)/(2τ(1+τ))dδ+ζ(ατ)tγ /τ

)
,

where in both cases the implied factor is independent of n and d.
3. A necessary condition for quasi-polynomial tractability is

lim sup
d→∞

1

ln(d + 1)

d∑

j=1

γ j < ∞,

which implies tγ ≤ 1.
4. A necessary condition for weak tractability is

lim
d→∞

1

d

d∑

j=1

γ j = 0,

which implies uγ ,1 ≤ 1, and a sufficient condition for weak
tractability is uγ ,1 < 1.

5. A necessary condition for (σ, τ )-weak tractability for σ ∈ (0, 1] is

lim
d→∞

1

dσ

d∑

j=1

γ j = 0,

which implies uγ ,σ ≤ 1, and a sufficient condition for (σ, τ )-weak
tractability is uγ ,σ < 1.

For σ > 1, (σ, τ )-weak tractability holds for all weights 1 ≥ γ1 ≥ γ2 ≥ · · · > 0.
6. A necessary condition for uniform weak tractability is

lim
d→∞

1

dσ

d∑

j=1

γ j = 0 for all σ ∈ (0, 1],

which implies uγ ,σ ≤ 1 for all σ ∈ (0, 1], and a sufficient condition for uniform
weak tractability is

uγ ,σ < 1 for all σ ∈ (0, 1].
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Remark 2 Some remarks on Theorem3 are in order.

1. So far we only have a necessary condition for QPT, which is

lim sup
d→∞

1

ln(d + 1)

d∑

j=1

γ j < ∞, (6)

and which in turn implies tγ ≤ 1. However, this condition is very close to the
“if and only if”-condition for PT, which is tγ < 1. It is an interesting question
whether (6) is already strong enough to imply QPT or whether tγ < 1 is really
necessary. The latter case would imply that PT and QPT are equivalent.

2. The necessary and sufficient conditions for the notions of weak tractability in
Items 4–6 are very tight, although not matching exactly. How to close these gaps
is another interesting problem. Regarding Item 4, we also refer to [10, Sect. 6.3],
where a corresponding result for L2-approximation in the average-case setting
is shown, and this is—as pointed out in our remarks above—equivalent to our
result for L∞-approximation in the worst-case setting. There, the same gap is
observed, but the authors of [10] point out that at least for general weights the
condition limd→∞ 1

d

∑d
j=1 γ j = 0 is not sufficient for weak tractability. Whether

a similar observation also holds for the special case of product weights, which
are considered in the present paper, remains open.

3. Again, for the information class �std, it is natural to ask for the precise form of
the algorithms leading to the respective notions of tractability. Similarly to our
remark above, we point out that it would go beyond the scope of this work to
provide comprehensive comments regarding this question. For the case of (strong)
polynomial tractability we refer to [6] formore detailed information. For the other
cases the tractability results are based on a spline algorithm as indicated in the
proof below; see [15] for further information.

Proof of Theorem 3 Proofs of the results on (strong) polynomial tractability in
Items 1 and 2 can be found in [5, Theorem 11] for the class �all and in [6, Theo-
rem 11] for �std.

Now we consider QPT. From (3) and the fact that λd,k ≤ 1 for all k ∈ N, we have
for n = nnorm(ε,APPd,∞,�all) that

∞∑

k=1

λd,k − n ≤
∞∑

k=n+1

λd,k ≤ ε2
∞∑

k=1

λd,k .

Hence,

n ≥ (1 − ε2)

∞∑

k=1

λd,k = (1 − ε2)

d∏

j=1

(
1 + 2ζ(α)γ j

)
. (7)
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Assume that we have QPT for L∞-approximation for �all and the normalized error
criterion. Then there exist positive t and C such that

Cet (1+ln d)(1+ln ε−1) ≥ nnorm(ε,APPd,∞,�all) ≥ (1 − ε2)

d∏

j=1

(
1 + 2ζ(α)γ j

)

for all d ∈ N and all ε ∈ (0, 1).
Fixing ε ∈ (0, 1), e.g., choosing ε = e−1 and taking the logarithm implies the

condition

lnC + 2t (1 + ln d) ≥ ln

(
e2 − 1

e2

)
+

d∑

j=1

ln(1 + 2ζ(α)γ j )

for all d ∈ N. This implies lim j→∞ γ j = 0. Since ln(1+x)
x → 1 for x → 0, this then

implies

lim sup
d→∞

1

ln(d + 1)

d∑

j=1

γ j < ∞. (8)

Thus we have shown that (8) is a necessary condition for QPT for �all and the
normalized error criterion. Since QPT for �std implies QPT for �all, we find that (8)
is also a necessary condition for QPT for �std and the normalized error criterion.

Assume that we have QPT for L∞-approximation for � ∈ {�all,�std} and the
absolute error criterion. Then, according to (2), we have QPT for L∞-approximation
for � and the normalized error criterion, and hence (8) holds. Thus the proof of
Item 3 is complete.

We now discuss (σ, τ )-WT and first consider the necessary conditions. Assume
that we have (σ, τ )-WT for σ ∈ (0, 1] for L∞-approximation for �all and the nor-
malized error criterion. Then, according to (7),

0 = lim
d+ε−1→∞

ln nnorm(ε,APPd,∞,�all)

dσ + ε−τ

≥ lim
d+ε−1→∞

(
ln(1 − ε2)

dσ + ε−τ
+
∑d

j=1 ln(1 + 2ζ(α)γ j )

dσ + ε−τ

)
.

For fixed ε ∈ (0, 1) this implies

lim
d→∞

1

dσ

d∑

j=1

ln(1 + 2ζ(α)γ j ) = 0,

which in turn implies that
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lim
d→∞

1

dσ

d∑

j=1

γ j = 0. (9)

So (9) is a necessary condition for (σ, τ )-WT for σ ∈ (0, 1] for �all and the nor-
malized error criterion. In the same way as for QPT we see that (9) is a necessary
condition for (σ, τ )-WT for σ ∈ (0, 1] for � ∈ {�all,�std} and the normalized and
the absolute error criterion. Note that (9) implies uγ ,σ ≤ 1. This finishes the proof
of the necessary conditions in Items 4–6.

Next, we discuss sufficient conditions for (σ, τ )-WT. In [15] Zeng, Kritzer, and
Hickernell constructed a spline algorithm Aspline

n,d based on lattice rules with a prime
number n of nodes, for which for arbitrary λ ∈ (1/2, α/2)

e(Aspline
n,d ,APPd,∞) ≤

√
2

nλ(2λ−1)/(4λ−1)

d∏

j=1

(
1 + 22α+1γ

1/(2λ)

j ζ
( α

2λ

))2λ
. (10)

Assume that uγ ,σ < 1. Then there exists a λ ∈ (1/2, α/2) such that

lim
d→∞

1

dσ

d∑

j=1

γ
1/(2λ)

j = 0. (11)

We show that (11) implies (σ, τ )-WT for the class�std and the absolute error criterion
(and therefore also for the class �all and, because of (2), the same holds true for the
normalized error criterion).

Let

M :=
⎡

⎢⎢⎢⎢

⎛

⎝
√
2

ε

d∏

j=1

(
1 + 22α+1γ

1/(2λ)

j ζ
( α

2λ

))2λ
⎞

⎠
(4λ−1)/(λ(2λ−1))

⎤

⎥⎥⎥⎥

and let n be the smallest prime number that is greater than or equal to M . Note that
then, according to Bertrand’s postulate, n ∈ [M, 2M]. Hence, according to (10) we
have

e(n,APPd,∞,�std) ≤ ε,

and therefore

n(ε,APPd,∞,�std) ≤ n

≤ 2M ≤ 4

⎛

⎝
√
2

ε

d∏

j=1

(
1 + 22α+1γ

1/(2λ)

j ζ
( α

2λ

))2λ
⎞

⎠
(4λ−1)/(λ(2λ−1))

.



Tractability of Approximation in the Weighted Korobov spaces 147

Taking the logarithm and using that ln(1 + x) ≤ x for x ≥ 0 yields

ln n(ε,APPd,∞,�std) ≤ ln 4 + 4λ − 1

λ(2λ − 1)

⎡

⎣ ln 2

2
+ ln ε−1+ 22(α+1)λζ

( α

2λ

) d∑

j=1

γ
1/(2λ)
j

⎤

⎦

and hence

lim
d+ε−1→∞

ln n(ε,APPd,∞,�std)

dσ + ε−τ

≤ 4λ − 1

λ(2λ − 1)

⎡

⎣ lim
d+ε−1→∞

ln ε−1

dσ + ε−τ
+ 22(α+1)λζ

( α

2λ

)
lim

d+ε−1→∞
1

dσ + ε−τ

d∑

j=1

γ
1/(2λ)
j

⎤

⎦

= 0 ,

where we used (11) for the case σ ∈ (0, 1] in the last step. If σ > 1 then (11) is not
required, since γ j ≤ 1 for all j ∈ N, and so the limit relation holds anyway. Thus the
proof of Items 4–6 is finished. �

Remark 3 Let us briefly comment on the L p-approximation problem APPp =
(APPd,p)d≥1 for p ∈ (2,∞) and the absolute error criterion. As for the relation
between the minimal errors of L2- and L∞-approximation, it can be shown that

e(n,APPd,2,�) ≤ e(n,APPd,p,�) ≤ e(n,APPd,∞,�) for all n, d ∈ N,

and
n(ε,APPd,2,�) ≤ n(ε,APPd,p,�) ≤ n(ε,APPd,∞,�).

for all ε ∈ (0, 1), and all d ∈ N.

Therefore, we can conclude that a sufficient condition on the weights for a certain
tractability notion for L∞-approximation is also sufficient for the same tractability
notion for the L p-approximation problem. The other way round, every necessary
condition on the weights for a certain tractability notion for L2-approximation is
also necessary for the same tractability notion for the L p-approximation problem.We
summarize the results that are implied by this insight in Table3 in Sect. 5. However,
many of the sufficient and necessary conditions which we obtain in this way are far
from matching each other (especially the ones for the class �all). Whether a similar
observation is also true for the normalized error criterion and for p ∈ (2,∞) remains
an open question.
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5 Overview and Formulation of Open Problems

In Tables1, 2 and 3 below,we give a concise overview of the known results and condi-
tions for the various tractability notions. Table1 is concernedwith L2-approximation,
Table2with L∞-approximation, and Table3with L p-approximation for p ∈ (2,∞).

5.1 Open Problems

While we have a full picture of the characterizations of the currently most com-
mon notions of tractability for the L2-approximation problem, the L∞-case is only
partially solved and several details remain open. In particular, for QPT a sufficient

Table 1 Overview of the conditions for tractability of the L2-approximation problem APP2 for
product weights satisfying 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 (recall that normalized and absolute criterion
coincide for APP2)

�all �std

SPT sγ < ∞ ∑∞
j=1 γ j < ∞

PT sγ < ∞ lim supd→∞ 1
ln(d+1)

∑d
j=1 γ j < ∞

QPT γ I < 1 lim supd→∞ 1
ln(d+1)

∑d
j=1 γ j < ∞

UWT γ I < 1 limd→∞ 1
dσ

∑d
j=1 γ j = 0 ∀σ ∈ (0, 1]

(σ, τ )-WT, σ ∈ (0, 1] γ I < 1 limd→∞ 1
dσ

∑d
j=1 γ j = 0

WT γ I < 1 limd→∞ 1
d

∑d
j=1 γ j = 0

(σ, τ )-WT, σ > 1 No extra condition on γ No extra condition on γ

Table 2 Overview of the conditions for tractability of the L∞-approximation problem APP∞ for
product weights satisfying 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 (normalized and absolute criterion)

�all and �std

SPT sγ < 1

PT tγ < 1

QPT nec.: lim supd→∞
∑d

j=1 γ j

ln(d+1) < ∞

UWT

{
nec.: limd→∞

∑d
j=1 γ j

dσ = 0 ∀σ ∈ (0, 1]
suff.: uγ ,σ < 1 ∀σ ∈ (0, 1]

(σ, τ )-WT, σ ∈ (0, 1]
{
nec.: limd→∞

∑d
j=1 γ j

dσ = 0

suff.: uγ ,σ < 1

WT

{
nec.: limd→∞

∑d
j=1 γ j

d = 0

suff.: uγ ,1 < 1

(σ, τ )-WT, σ > 1 No extra condition on γ
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Table 3 Overview of the conditions for tractability of the L p-approximation problem APPp , p ∈
(2,∞), for product weights satisfying 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 (absolute criterion)

�all �std

SPT

{
nec.: sγ < ∞
suff.: sγ < 1

{
nec.: sγ ≤ 1

suff.: sγ < 1

PT

{
nec.: sγ < 1

suff.: tγ < 1

{
nec.: lim supd→∞

∑d
j=1 γ j

ln(d+1) < ∞
suff.: tγ < 1

QPT

{
nec.: γI < 1

suff.: ?

{
nec.: lim supd→∞

∑d
j=1 γ j

ln(d+1) < ∞
suff.: ?

UWT

{
nec.: γI < 1

suff.: uγ ,σ < 1 ∀σ ∈ (0, 1]

{
nec.: limd→∞

∑d
j=1 γ j

dσ = 0 ∀σ ∈ (0, 1]
suff.: uγ ,σ < 1 ∀σ ∈ (0, 1]

(σ, τ )-WT,
σ ∈ (0, 1]

{
nec.: γI < 1

suff.: uγ ,σ < 1

{
nec.: limd→∞

∑d
j=1 γ j

dσ = 0

suff.: uγ ,σ < 1

WT

{
nec.: γI < 1

suff.: uγ ,1 < 1

{
nec.: limd→∞

∑d
j=1 γ j

d = 0

suff.: uγ ,1 < 1

(σ, τ )-WT, σ > 1 No extra condition on γ No extra condition on γ

condition is still missing, and for the (σ, τ )-weak tractability notions the necessary
and sufficient conditions are tight, but do not match (see Remark2). These cases
remain open for the moment.

Furthermore, also the more general L p-approximation problem for arbitrary p ∈
(2,∞) remains unsolved. While there are some fragmentary results for the absolute
error criterion, the case of the normalized criterion is completely open (seeRemark3).
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4. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approxima-
tion in the average case setting. J. Complex. 24, 283–323 (2008)
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Rare-Event Simulation via Neural
Networks

Lachlan J. Gibson and Dirk P. Kroese

Abstract We present a neural network framework for the simulation of independent
random variables from arbitrary distributions. The framework includes two neural
networks that are trained simultaneously using a target function, rather than a target
dataset. One is a generative model that maps samples from a joint normal distribu-
tion to samples in the target space. The second network estimates the probability
density of these samples, trained with targets obtained via kernel density estimation.
The effectiveness of the approach is illustrated with various examples from rare-
event simulation. The generator was able to learn all the 1-dimensional distribution
examples well enough to pass the Kolmogorov–Smirnov test. However, estimates
of higher-dimensional probability densities were limited by the kernel density esti-
mation. Refining the density estimates of the generated samples is a clear way to
improve the accuracy of the method when learning more complex higher dimen-
sional distributions.

Keywords Random variable generation · Neural networks · Rare events ·
Generative networks · Deep learning · Simulation

1 Introduction

Ever since the inception of electronic computing, there has been a demand for fast
and reliable methods to simulate random experiments on a computer. Computations
with neural networks are nowadays so commonplace and powerful that the question
arises whether such networks can be used to generate independent samples from
any complicated probability distribution. This is particularly pertinent in the field of
rare-event simulation, where sampling from the conditional distribution given that a
rare event takes place can be prohibitively difficult.
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Neural networks are already used extensively to simulate artificial data, by using
so-called generative models, and so devising a generator network to simulate inde-
pendent random variables from a prescribed distribution should be feasible. We
introduce network architecture and training procedures to learn to generate samples
from a given target distribution that is known up to possibly a normalization constant.
A typical instance arises in rare-event simulation, where the objective is to simulate
a random object X ∈ X from a specified probability density h, conditional upon the
occurrence of an event {S(X) ≥ γ }, where S is a positive performance function and
γ a level or rarity parameter. The conditional pdf of X given {S(X) ≥ γ } is then
given by

h(x)1{S(x)≥γ }
c

, x ∈ X, (1)

where the normalization constant c = E1{S(x)≥γ } = P(S(X) ≥ γ ) is typically
unknown. Here, 1A denotes the indicator random variable of an event A.

Our contribution should be seen as a pilot study to provide a neural network frame-
work for independent sampling from an arbitrary target distribution that is known
up to possibly a normalization constant. We do this by introducing two networks: a
generator network and a probability density network. The generator network takes
standard normal random vectors as input and aims to return (after training) an inde-
pendent sample from the target distribution. The probability density network provides
(after training) an estimate of the probability density corresponding to the generator
network. Both networks are trained simultaneously.

Once training is completed, the network output can be combined with impor-
tance sampling—for example, to estimate the normalization constant of the target
distribution. Although in principle the class of sampling distributions provided by the
generator network is parametric, the number of parameters is so large that effectively
any pdf can be matched very closely. This is particularly useful when dealing with
truncated densities, as in (1).

The advantage of this approach is that by feeding the network independent nor-
mals, the output samples are independent as well, even in a rare-event simulation
setting. This is in contrast to well-known sampling methods such as Markov chain
Monte Carlo and splitting. The implementation in Python is made freely available
for experimentation and requires little programming. An example implementation is
given in the Appendix.

1.1 Background

Much research has gone into devising fast and reliable random number generators,
which lie at the heart of every simulation algorithm. Two of the most popular gener-
ators are the Mersenne twister [36] and MRG32k3a [30]. The latter is much easier
to implement than the former and passes all known statistical tests (in contrast to
the earlier version of the Mersenne twister). Other interesting generators, including
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those based on F2 arithmetic, are given in [29, 32]. The ultimate test suite for random
number generator is TESTU01 by [33].

Many methods for non-uniform random variable generation are given in [12]. A
wide range of algorithms for random process simulation, including spatial processes
are discussed in [4, 24, 26].

There are many uses for simulation and Monte Carlo methods, ranging from
simulation modelling [13, 28], optimization [1, 3, 7], counting [6] to the solving
of difficult estimation problems [23]. Typical applications in finance, queueing and
reliability can for example be found in [8, 14, 22, 34, 37, 43]. In statistics, the
MCMC method is ubiquitous [9, 17].

The area of rare-event simulation has a long history. Two generic techniques for
rare-event simulation are importance sampling [42] and splitting [15, 19, 31]. Both
methods aim to increase the probability of rare events.

In splitting, this is achieved by duplicating promising trajectories that could more
likely lead to the rare event. In importance sampling the probability distribution
under which the process is simulated is changed to make the rare event more likely.
In particular, for rare-event probabilities of the form c = P(S(X) ≥ γ ) in (1), one
can, in principle, estimate c via the estimator

ĉ := 1

n

n∑

k=1

1{S(Xk )≥γ }
h(Xk)

g(Xk)
, (2)

were X1, . . . , Xn is an iid sample from an arbitrary pdf g. In fact, the pdf in (1) gives
the optimal importance sampling distribution, yielding a zero-variance estimator.
Of course, if c is unknown, this pdf cannot be evaluated. Using an inappropriate IS
density g can lead to estimates that differ from c by orders of magnitude. Knowing
the form of the zero-variance pdf is important in devising rare-event simulation
techniques with theoretical guarantees of efficiency. Moreover, the zero-variance
distribution provides essential insights in the way that rare events happen.

An often-used importance sampling approach is to seek an optimal exponential
change of measure through a large deviation analysis [10]. This usually requires
that the distribution of interest is light-tailed. For rare-event simulation with heavy-
tailed distributions, a different strategy needs to be used; see e.g., [5]. In adaptive
importance sampling methods, the sampling distribution is interactively updated
to lie increasingly closer to the optimal importance sampling distribution within
a parametric class of distributions. The cross-entropy (CE) method [40] is a well-
known example. The method uses the Kullback–Leibler divergence [27] to measure
the proximity (relative entropy) between two probability densities. The CE method
can also be used to optimize complicated multi-modal functions; see, e.g., [7].

The field of deep learning has achieved several significant advances over the last
decade. Specifically, the recent growth in computing power and improvement in
algorithms has enabled the training of deep neural networks to succeed in a broad
range of tasks. This has revolutionized many fields, such as computer vision [44],
natural language processing [38], recommender systems [45], fraud detection [11],
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and many more. There are many types of neural networks, but one standard class
is the multilayer perceptron (MLP). The MLP is a type of feed-forward network
comprised of a sequence of layers, with the first being the input, the last being the
output and all intermediate layers being ‘hidden’. The node values at layer i form a
vector xi which serves as an input to compute the subsequent layer via

xi+1 = σi (W i xi + bi ), (3)

where W i is a matrix of weights, bi is a vector of biases and σi is the so-called
activation function at layer i . Choosing non-linear activation functions introduces
non-linearity into the network which can improve its ability to learn complicated
functions. Some typical activation function choices include the logistic function
and the rectified linear unit (ReLU) which are applied elementwise. The MLP is
a composite function of all these layers, generally containing a large number of
learnable parameters (the weights and biases). The number of layers is the network
‘depth’ and the number of nodes per layer is the network ‘width’. The width of
each hidden layer, the depth of the network and the activation function at each layer
form the network architecture, and are typically chosen prior to training. A short
introduction to the mathematics behind multilayer neural networks may be found in
[25, Chap. 9].

According to universal approximation theorems, MLPs are arbitrary function
approximators [18], in that any well-behaved function can be approximated to any
degree of precision given sufficient width or depth (hence parameters) of the network
and appropriate activation functions. Therefore, these networks have huge potential
for modeling, provided appropriate parameters can be identified. A common method
for training MLPs to learn these optimal parameters is through gradient descent,
where a loss function that measures performance can be minimized by iteratively
updating the network parameters by small steps based on their loss function deriva-
tives. The layered structure of MLPs allows these derivatives to be efficiently com-
puted via the chain rule, a process called backpropagation [41]. Modern software
packages such as TensorFlow [2] and PyTorch [39] make these algorithms accessi-
ble by computing the derivatives automatically and efficiently performing parallel
processing on hardware, such as GPUs.

Deep neural networks can also form generative models, such as generative adver-
sarial networks (GANs) [16] and variational autoencoders (VAEs) [21] which have
proven to be very successful. These kinds of models aim to generate samples fol-
lowing the same distribution as a provided data-set. However, such data-sets in the
context of rare-event simulation are not typically accessible. Therefore, we wish to
apply deep learning methods to the field of rare-event simulation to train a generative
model to be able to generate rare eventswithout using a training dataset. Additionally,
we want to provide a basic Python software implementation.

The rest of the chapter is organized as follows. Section2 explains the details of
the new method. Section3 has results from several examples, and Sect. 4 concludes
the work and outlines potential avenues for further research.
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2 Rare-Event Deep Learning

We introduce a procedure to train a generator deep neural network to learn how to
generate iid samples from a target distribution, where the corresponding probability
density is known up to a constant factor. This also allows the learning of conditional
densities, so that the generator can sample rare events directly. This section outlines
the details of the networks and training procedures that are involved.

2.1 Networks and Loss Functions

The generator network, G, is a feedforward neural network, such as a multilayer
perceptron (MLP), that takes as input a d-dimensional standard normal random
vector Z; we write this as Z ∼ N(0, Id). The (many) parameters of the network are
gathered in a vector u. The generator network G maps each “noise” input Z to a
target variable

X := G(Z; u). (4)

The aim is to construct G such that X has the target probability density f (x)/c
at the point x, where f (x) can be evaluated, but the normalization constant, c, may
be unknown. In the setting of (1), f (x) = h(x)1{S(x)≥γ }. In other words, the goal
is to learn appropriate values of u to make the density of sampling x from G(Z; u)

as close to f (x)/c as possible. This can be achieved by minimizing the Kullback–
Leibler (KL) divergence from the target density to the generator density. Let g(x; u)

represent the probability density of sampling x from the generator with parameters
u. The KL divergence is given by

D(g, f/c) = E ln
g(X; u)

f (X)
+ ln c, (5)

where E represents the expectation with respect to the generator distribution with
parameters u. Note that the KL divergence is not symmetrical and that D(g, f ) is
different from D( f, g) used in the CE method. This change is motivated by a key
difference in how the parameters are updated during training. Unlike the CE method
which fixes generated points while updating parameters to optimize the density func-
tion, our method fixes an estimate of the density function while updating parame-
ters to optimize the generated points. Specifically, points sampled in regions where
g(x; u) > f (x)/c need to be ‘pushed’ towards regions where g(x; u) < f (x)/c,
which can be achieved by minimizing the specified generator loss while keeping g
fixed during the parameter updates.

Evaluating the probability density function g(x; u) is not always straightforward,
and for this reason we introduce a second network, D(x; v), with parameters v,
to estimate the probability density of the generator network. This gives rise to the
generator loss, defined as
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LG(u, v) := D(D, f/c) − ln c = E ln
D(X; v)

f (X)
, (6)

which drops the ln c term from the KL divergence, since it does not depend on any
network parameters.

To ensure that the probability density network represents a good estimate of the
densities produced by the generator network for fixed parameters u, the parameters
v of the density network are chosen to minimize the expected squared error between
the network log-density and the true log-density. So we define the density loss as

L D(u, v) := E (ln D(X; v) − ln g(X; u))2 . (7)

Obviously, L D(u, v) is minimal (and equal to 0) when D(x; v) = g(x; u). In that
case, the smallest value that LG(u, v) can take is − ln c, when g(x; u) = f (x)/c.
Therefore, training the generator and density networks to learn the desired distribu-
tion involves solving the following minimization program:

min
u

LG
(
u, argmin

v

L D(u, v)
)
. (8)

To achieve this, we utilize a form of stochastic gradient descent whereby batches
{X1, . . . , Xn} of n samples from the generator network are used to estimate the loss
functions. Specifically, LG(u, v) is estimated by

L̂G(u, v) = 1

n

n∑

k=1

ln
D(Xk; v)

f (Xk)
, Xk = G(Zk; u), Zk ∼ N(0, I). (9)

and L D(u, v) is estimated by

L̂ D(u, v) = 1

n

n∑

k=1

(ln D(Xk; v) − ln ĝ(Xk; u))2 , Xk = G(Zk; u), Zk ∼ N(0, I),

(10)

where ĝ is an estimate of g obtained from the batch. In principle, ĝ could be used to
train the generator network directly without requiring the use of the density network.
However, there are practical benefits to including the density network. Specifically,
using a density network can ensure the density estimate is compatible with gradient
descent optimization, by being a well behaved function whose derivatives can be
stably computed using automatic differentiation. Additionally, the density network
estimates the probability density of individual points independently, without needing
a large sample. This improves stability during training, since the density estimates
have less variance, and provides a relatively compact model of the generator proba-
bility density function after the training has finished.
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2.2 Kernel Density Estimation

Computing the density loss of a sample via Eq. (10) requires an estimate of the
generator probability density function. We estimate g(x; u) via the kernel density
estimator

ĝ(x; u) := 1

n

n∑

k=1

ϕ(x, Xk;�), (11)

where the “kernel” is a normalized multivariate Gaussian centered at Xk with covari-
ance matrix �:

ϕ(x, Xk;�) := det(2π�)−
1
2 e− 1

2 (x−Xk )
ᵀ�−1(x−Xk ). (12)

In general,� can be any symmetric positive definitematrix of correct dimensionality,
but for simplicity we choose � = σ 2 I , where σ represents the bandwidth and I is
the identity matrix. An ‘optimal’ bandwidth for a given sample can be chosen via
least-squares cross-validation to minimize the integrated squared error, given by

ISE =
∫

[̂g(x; u) − g(x; u)]2 dx,

=
∫

ĝ(x; u)2dx − 2
∫

g(x; u)ĝ(x; u)dx +
∫

g(x; u)2dx. (13)

The third term in Eq. (13) is independent of the kernel, so the bandwidth can be
chosen to minimize just the first two terms. Substituting the Gaussian kernel from
Eq. (12) into Eq. (11), the first term can be evaluated as

∫
ĝ(x; u)2dx = 1

n2

n∑

i=1

n∑

j=1

ϕ(X i , X j ; 2�), (14)

while the second term can be estimated using the unbiased cross-validation estimator

∫
g(x; u)ĝ(x; u)dx ≈ 1

n(n − 1)

n∑

i=1

∑

j �=i

ϕ(X i , X j ;�), (15)

which computes the sample mean of the kernel density estimator at each sample
point that omits that point. Therefore, for a given sample, the bandwidth is chosen
to minimize

s(�) = 1

n2

n∑

i=1

n∑

j=1

ϕ(X i , X j ; 2�) − 2
1

n(n − 1)

n∑

i=1

∑

j �=i

ϕ(X i , X j ;�). (16)
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We use a form of gradient descent to find argminσ s
(
σ 2 I

)
, where I is the identity

matrix of the same size as �.

2.3 Training Procedure

The objective shown in Eq. (8) involves the simultaneous minimization of both the
generator and density losses. To achieve this, we use a form of stochastic gradient
descent which alternates between updating the parameters of the generator network
and thedensity network.The trainingprocedure, outlined inAlgorithm1, aims to train
the density network at a faster rate than the generator network, to ensure it represents
a reasonable estimate of the generator probability density function. The networks
are initialized with random parameters and the kernel bandwidth is optimized by
minimizing Eq. (16) via a form of gradient descent. Then, the density network is
trained for several steps using Algorithm3. Then for a fixed number of epochs, the
generator network is updated for one or more steps via Algorithm2 and the density
network is updated for one or more steps. The number of steps the density network is
updated is typically larger than the number of steps the generator network is updated,
to ensure the density network can adapt to the changes in the generator network.

Figure1 depicts a flowchart representation of the network training steps.

Fig. 1 A flowchart representation of the network training steps. The estimate of the optimal band-
width is updated at a fixed epoch interval. The left side of the figure shows a generator network
training step as outlined in Algorithm2 and the right shows a density network training step as
outlined in Algorithm3. The networks are shown in gray, the losses shown in orange and training
targets shown in green. The network inputs and outputs are shown in white
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Algorithm 1: Concurrent training of both generator and density networks

1 Update optimal kernel bandwidth estimate;
2 Train density network for several steps using Algorithm3;
3 Evaluate networks;
4 for several epochs do
5 Train generator network for some steps using Algorithm2;
6 if epoch is at a pre-specified interval then
7 Update optimal kernel bandwidth estimate;

8 Train density network for several steps using Algorithm3;
9 Evaluate networks;

Algorithm 2: Training generator network

1 for several steps do
2 Sample n samples of noise Zk ∼ N(0, Id);
3 Generator network maps noise to target space Xk ← G(Zk; u);
4 Density network estimates the probability density of the samples D(Xk; v);
5 Compute the target at each sample f (Xk);
6 Estimate generator loss L̂G(u, v);
7 Adjust parameters u via standard gradient descent methods;

Algorithm 3: Training density network

1 for several steps do
2 Sample n samples of noise Zk ∼ N(0, Id);
3 Generator network maps noise to target space Xk ← G(Zk; u);
4 Density network estimates the probability density of the samples D(Xk; v);
5 Estimate the true densities at each sample using KDE ĝ(Xk; u);
6 Estimate density loss L̂ D(u, v);
7 Adjust parameters v via standard gradient descent methods;

2.4 Rare-Event Distribution

In the rare-event setting, the generator aims to generate samples from the conditional
distribution with probability density given by (1), with f (x) = h(x)1{S(x)≥γ }. How-
ever, the generator loss, calculated by Eq. (6), is only defined when f (x) > 0. So,
we set the target to f (x) = h(x)ρ(x) instead, where ρ(x), defined by

ρ(x) := e−α(γ−S(x))1{S(X)<γ } ≈ 1{S(x)≥γ }, (17)

penalizes non-rare-events exponentially with γ − S(x). This also facilitates auto-
matic differentiation in the neural networks. The parameter α > 0 determines the
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strength of the penalty and should be large enough to maintain the approximation.
Evaluating the generator loss with this target yields

LG(u, v) = E ln
D(X; v)

h(X)
+ αE(γ − S(X))1{S(X)<γ }. (18)

The first term isminimized to 0when D(x; v) = h(x), pushing the generator to learn
the unconditional target distribution. The additional second term is minimized to 0
when all generated samples are rare-events with S(X) ≥ γ , pushing the generator
to sample more rare-events.

3 Experimental Results

We apply our pilot framework to a few simple examples, to demonstrate its strengths
andweaknesses and highlight aspects that need further development. In each example
the network architecture of the generator and density networks are mostly the same.
The generator takes 8-dimensional standard normal random vector inputs. Both the
generator and density networks have three hidden layers of sizes 16, 32 and 64 nodes.
The hidden layers all use the rectified linear unit (ReLU) activation function, while
the density network output layer uses the exponential activation function ensuring a
strictly positive density estimate.1 The output layer activation function of the gener-
ator network is the identity function when the target space included all reals, and is
an exponential function when the target space was non-negative. The Adam gradi-
ent descent algorithm [20] was used to train both networks in each example, with a
weight decay parameter of 0.0001. The Python code for each example is available at
https://github.com/LachlanGibson/NNRareEvent with one example included in the
Appendix.

3.1 Learning Normal Distributions

In the first two examples, the generator aims to learn 1-dimensional distributions
with normalized targets. These are to demonstrate the ability of the generator to
learn simple distributions. The first example is the standard normal distribution with
a target of

f (x) = h(x) = 1√
2π

e− x2

2 , x ∈ R. (19)

1 Actually, in the code the density network output activation function is the identity function, but
the output is interpreted as the log-density.

https://github.com/LachlanGibson/NNRareEvent
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Fig. 2 A comparison of learned and target probability densities. Learned probability densities, as
estimated by the density networks, are represented by solid red lines. The dashed blue lines represent
the target probability densities of Eqs. (19) and (20). On the left, the generator learns a standard
normal distribution. On the right, the generator learns a mixture of two normal distributions

The second example is a bimodal distribution with a target of

f (x) = h(x) = 1

4
√
2π0.52

e− (x+4)2

2×0.52 + 3

4
√
2π

e− x2

2 , x ∈ R. (20)

One of the key limitations of gradient descent based optimization is the possibility of
convergence to a local minimum of the loss function, rather than the desired global
minimum. In the context of multi-modal distributions with peaks separated by large
distances of low density, the generator might only learn a subset of the distribution,
never exploring one or more modes of the distribution.

In both examples the generator is able to learn the target distributions sufficiently
well to pass the one sample Kolmogorov–Smirnov test. Generating two sets of sam-
ples each of sizes 1000 and 10000 the p-values in the first example are about 0.46
and 0.19, which are too high to reject the null hypothesis that the generator distribu-
tion equals the target distribution. Likewise, the p-values are about 0.61 and 0.25 in
the second example. Figure2 compares the estimated density learned by the density
network with the target densities of Eqs. (19) and (20).

3.2 Normal Distribution Rare-Events

In this third example, the generator aims to learn a truncated standard normal distribu-
tion; in particular, the normal distribution conditional on the event {S(X) = X ≥ γ }.
Including the penalty factor from Eq. (17), the (unnormalized) target is thus given by

f (x) = 1√
2π

e− x2

2 −α(γ−x))1{x<γ } , x ∈ R. (21)
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Fig. 3 A comparison of
learned and target probability
densities of a truncated
normal distribution. The
target distribution is a
normal distribution N(0, 12)
with S(x) = x and rarity
γ = 3. The red line is the
density learnt by the
probability density network.
The dashed blue line
represents the target density
given by renormalizing (21)

For γ = 3, the probability of sampling a value X ≥ γ from a normal distribution is
about 0.0013499, which also forms the normalization constant of (21) in the limit
as α → ∞. Choosing α = 100, the generator passed the one sample Kolmogorov–
Smirnov test after training with a p-value of 0.15 with sample of size 1000, but failed
with sample of size 10000 with a p-value of 0.0021. Figure3 compares the estimated
density learned by the density network with the target density given by renormalizing
(21). Based on Eq. (2) an estimator of the normalization constant can be obtained via
importance sampling, and depends on how well the density network estimates the
generator probability density function. This estimator is given by

ĉ := 1

n

n∑

k=1

f (Xk)

D(Xk; v)
. (22)

With a sample size of 1000 points, the constant is estimated as 0.0013030 with
standard error of 0.0000027. This is within about 3.5% error of the target value
0.0013499.

3.3 Learning Sum of Exponential Distributions

In this final example, the generator aims to learn a 2-dimensional distribution. The
target distribution is the joint distribution of two independent exponential random
variables, conditional on the event {S(X, Y ) ≥ γ }, where S(x, y) = x + y. Including
the penalty factor from Eq. (17), the target is given by

f (x, y) = e−x−ye−α(γ−x−y)1{x+y<γ } , x, y ∈ R
+. (23)
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Fig. 4 Sum of two exponential distributions. Threshold at x + y = 10. On the left plot, colour
represents probability density estimated by the density network. Red dots are a sample of 500
points generated by the generator. On the right, a histogram with 50 bins of 10000 samples of x + y
is compared to a truncated gamma distribution

In this case the generator successfully learned to generate rare-events, but with a
distribution only roughly approximating the target distribution. Figure4 includes a
scatter plot of 500points sampled from the trained generator network, and a histogram
of x + y compared to the renormalized target truncated gamma distribution. While
the scatter plot indicates the points are sampled fairly uniformly along x + y contours,
the histogram shows that the generator network undersamples larger values of x + y.
Furthermore, the importance sampling estimate computed using densities estimated
by the density network, 0.0004014 with standard error 0.0000020, is about 20% off
the correct value of about 0.0004994.

We believe the network training was limited by the kernel density estimation.
Errors learned by the density network could warp the learned generator distribution
and could account for much of the 20% discrepancy in the normalization constant
estimation, since this calculation relies on those density estimates. For further evi-
dence, we estimated the normalization constant using density estimates found via
kernel density estimation (rather than the density network) for a range of kernel
bandwidths. Figure5 illustrates how the estimated normalization constant is sensi-
tive to the kernel bandwidth. For bandwidths that predict values close to the correct
normalization constant, the predicted values vary by about 0.7% for every 1% change
in bandwidth.

The kernel density estimation would likely be improved by increasing the sam-
ple size, but this is quickly limited by hardware, especially for higher dimensional
samples. Different kernel functions or more complex kernel covariances could lead
to more accurate estimates. Another alternative, would be to replace the density net-
work, with a network that learns the CDF of the generator using the empirical CDF
of generated samples, such as discussed in [35]. But in this case, an estimate of the
generator probability density is less accessible, requiring the derivative of the outputs
of the CDF network with respect to its inputs.
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Fig. 5 The dependence on kernel bandwidth σ when estimating the normalization constant. The
solid blue line represents the normalization constant estimated by importance samplingwith genera-
tor probability densities estimated by kernel density estimation. 10000 samples are used to compute
each estimate. The dashed black line shows the true rare-event probability of about 0.000499399

The Python code used to run these four experiments is available at https://github.
com/LachlanGibson/NNRareEvent. It includes a core file ‘rare_event.py’ of classes
and functions that make experiments relatively simple to code. To demonstrate, the
code used for the last sum of exponentials example is shown in the Appendix. The
general layout of such a script is as follows. Firstly, the relevant classes and func-
tions are imported from ‘rare_event.py’. Next, an instance of the Generator class
is created, which contains both the generator and density networks. Functions to
represent the log-target, ln f (x), and performance, S(x), are defined. The inputs of
these functions should be torch tensors of shape (# samples, # dimensions) while the
outputs have shape (# samples, 1). Next, the kernel bandwidth is optimized using
the optimise_t method, before the density network is trained using the train_system
function. The train_system function is used again with different arguments to train
both the generator network and the density network. This function will save check-
points of the Generator instance depending on the save_interval argument. Once
training has finished, plots can be generated and statistical tests performed.

4 Conclusions and Further Research

We have introduced a neural network framework for independent sampling from
an arbitrary target distribution that is known up to possibly a normalization con-
stant. Our pilot study that examined four examples shows that the framework has
potential for rare-event simulation, especially when sampling a 1-dimensional distri-
bution. Quantifying performance when learning a broad range of distributions, such
as disconnected or heavy tailed distributions, is a good avenue of further research.
Additionally, limitations in the kernel density estimation begin to appear when learn-

https://github.com/LachlanGibson/NNRareEvent
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ing higher dimensional distributions, which requires further investigation. Provided
this hurdle can be resolved, the method could be applied to much higher dimensional
contexts, such as simulating rare-events in stochastic processes.

For example, trajectories of a particle undergoing Brownian motion can be repre-
sented by a Gaussian stochastic process {X t , t ∈ T} where X t represents the change
in spatial position of the particle at time step t , such that the position at step T is
given by

RT =
T∑

t=1

X t . (24)

The joint probability density of a trajectory is the product of Gaussian densities of
each dimension in each time step. A set of rare events could be the set of trajectories
that pass within distance −γ a particular location L at time T ,

{−‖RT − L‖ ≥ γ }. (25)

In this case, the generator network would learn to generate trajectories conditional
on the final or an intermediate location.

Appendix

from rare_event import *

# Create instance of the full system. Note the generator outputs
# are forced to be positive by the exp activation function.
h = Generator(

num_dims=2, #generator output dimensionality
num_input_dims = 8, #generator input dimensionality
genHLsizes = [16,32,64], #generator hidden layer sizes
pdf_netHLsizes = [16,32,64], #density net hidden layer sizes
generator_activation = torch.exp, #generator activation func
name = "exponential_sum_gamma10" #name of system
).to(device)

gamma = 10 # The performance threshold

# The target log-density function (up to a constant).
def exponential(X):

return -X.sum(1, keepdim = True)

# The sample performance function
def S(X):

return X.sum(1, keepdim = True)
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# Optimize the kernel bandwidth for samples of size 1000.
# The large learning rate of 0.1 accelerates the calculation.
h.optimise_t(1000, lr = 0.1)

# Train the system, only updating the density network 1000 steps.
train_system(h,1,exponential,S,gen_steps=0,pdf_steps=1000,
gamma=gamma,save_interval=1,kernel_interval=1,bs=1000)

# Optimize the kernel bandwidth for samples of size 10000.
h.optimise_t(10000, lr = 0.1)

# Train the system for 3000 epochs. At each epoch the generator
# is updated once and the density network is updated 10 times.
train_system(h,3000,exponential,S,gen_steps=1,pdf_steps=10,
gamma=gamma,save_interval=100,kernel_interval=10,bs=10000)

# Lower the learning rate of the generator optimizer from the
# default of 0.001 to 0.0001.
h.generator.optimiser.param_groups[0]["lr"] = 0.0001

# Train the system for another 3000 epochs.
train_system(h,3000,exponential,S,gen_steps=1,pdf_steps=10,
gamma=gamma,save_interval=100,kernel_interval=10,bs=10000)

# Plot a contour plot
h.plot2Dcontour(xrange = [0,14], xn = 1000, levels = 100)
plt.show()
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Preintegration is Not Smoothing When
Monotonicity Fails

Alexander D. Gilbert, Frances Y. Kuo, and Ian H. Sloan

Abstract Preintegration is a technique for high-dimensional integration over the
d-dimensional Euclidean space, which is designed to reduce an integral whose inte-
grand contains kinks or jumps to a (d − 1)-dimensional integral of a smooth func-
tion. The resulting smoothness allows efficient evaluation of the (d − 1)-dimensional
integral by a Quasi-Monte Carlo or Sparse Grid method. The technique is similar
to conditional sampling in statistical contexts, but the intention is different: in con-
ditional sampling the aim is usually to reduce the variance, rather than to achieve
smoothness. Preintegration involves an initial integration with respect to one well
chosen real-valued variable. Griebel, Kuo, Sloan [Math. Comp. 82 (2013), 383–400]
and Griewank, Kuo, Leövey, Sloan [J. Comput. Appl. Maths. 344 (2018), 259–274]
showed that the resulting (d − 1)-dimensional integrand is indeed smooth under
appropriate conditions, including a key assumption—that the smooth function under-
lying the kink or jump is strictly monotone with respect to the chosen special variable
when all other variables are held fixed. The question addressed in this paper iswhether
this monotonicity property with respect to one well chosen variable is necessary. We
showhere that the answer is essentially yes, in the sense that without this property, the
resulting (d − 1)-dimensional integrand is generally not smooth, having square-root
or other singularities. The square-root singularity is generically enough to prevent
the preintegrated function from belonging to the mixed derivative spaces typically
used in Quasi-Monte Carlo or Sparse Grid analysis.
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1 Introduction

Preintegration is a method for numerical integration over Rd , where d may be large,
in the presence of “kinks” (i.e., discontinuities in the gradients) or “jumps” (i.e., dis-
continuities in the function values). In this method, one of the variables is integrated
out in a “preintegration” step, with the aim of creating a smooth integrand overRd−1.
Smoothness is important if the intention is to approximate the (d − 1)-dimensional
integral by a method that relies on some smoothness of the integrand, such as the
Quasi-Monte Carlo (QMC) method [6] or Sparse Grid (SG) method [5].

Integrands with kinks and jumps arise in option pricing, because an option is
normally considered worthless if the value falls below a predetermined strike price.
In the case of a continuous payoff function this introduces a kink, while in the case
of a binary or other digital option it introduces a jump. Integrands with jumps also
arise in computations of cumulative probability distributions, see [7].

In this paper we consider the version of preintegration for functions with kinks
or jumps presented in the recent papers [10–12], in which the emphasis was on a
rigorous proof of smoothness of the preintegrated (d − 1)-dimensional integrand
under appropriate conditions, where smoothness is determined by membership of a
certain mixed derivative Sobolev space.

A key assumption in [10–12] was that the smooth function (the function φ in (2)
below) underlying the kink or jump is strictly monotone with respect to the special
variable chosen for the preintegration step, when all other variables are held fixed.
While a satisfactory analysis was obtained under that assumption, it was not clear
from the analysis in [10–12] whether or not the monotonicity assumption is in some
sense necessary. That is the questionwe address in the present paper. The short answer
is that the monotonicity condition is necessary, in that in the absence of monotonicity,
the integrand typically has square-root or other singularities. Although a square-
root singularity is better behaved than a jump discontinuity, we shall see in Sect. 2
(see Example5) that the square-root singularity (defined precisely in Definition1)
is generically enough to prevent the preintegrated function from belonging to the
mixed derivative spaces typically used in QMC or SG analysis.

1.1 Related Work

A similar method has already appeared as a practical tool in many other papers,
often under the heading “conditional sampling”, see [9], Lemma 7.2 and preceding
comments in [1], and recent papers [15, 16] byL’Ecuyer and colleagues.Also relevant
are root-finding strategies for identifying where the payoff is positive, see a remark
in [2, 13, 18]. For other “smoothing” methods, see [3, 19].

The goal in conditional sampling is usually to decrease the variance of the inte-
grand, motivated by the idea that if the Monte Carlo method is the chosen method
for evaluating the integral then reducing the variance will certainly reduce the root
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mean square expected error. The reality of variance reduction in the preintegration
context was explored analytically in Sect. 4 of [12]. But if cubature methods are used
that depend on smoothness of the integrand, as with QMC and SG methods, then
variance reduction is not the only consideration. In the present work the focus is on
smoothness of the resulting integrand.

1.2 The Problem

For the rest of the paper we will follow the setting of [12]. The problem addressed
in [12] was the approximate evaluation of the d-dimensional integral

Id f :=
∫
Rd

f ( y)ρd( y) d y =
∫ ∞

−∞
. . .

∫ ∞

−∞
f (y1, . . . , yd) ρd( y) dy1 · · · dyd , (1)

with

ρd( y) :=
d∏

k=1

ρ(yk),

where ρ is a continuous and strictly positive probability density function on R, and
f is a real-valued function of the form

f ( y) = θ( y) ind
(
φ( y)

)
, (2)

or more generally
f ( y) = θ( y) ind

(
φ( y) − t

)
, (3)

where θ and φ are smooth functions in some sense, ind(·) is the indicator function
which has the value 1 if the argument is positive and 0 otherwise, and t is an arbitrary
real number.When t = 0 and θ = φ we have f ( y) = max(φ( y), 0) and thuswe have
the familiar kink seen in option pricing through the occurrence of a strike price.When
θ and φ are different (for example, when θ( y) = 1) we have a structure that includes
digital options.

The key assumption on the smooth function φ in [12] was that it has a positive
partial derivativewith respect to somewell chosen variable y j (and so is an increasing
function of y j ); that is, we assume that for one special choice of j ∈ {1, . . . , d} we
have

∂φ

∂y j
( y) > 0 for all y ∈ R

d . (4)

In other words, φ is monotone increasing with respect to y j when all variables other
than y j are held fixed.
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With the variable y j chosen to satisfy this condition, the preintegration step is to
evaluate

(Pj f )( y− j ) :=
∫ ∞

−∞
f (y j , y− j ) ρ(y j ) dy j , (5)

where y− j ∈ R
d−1 denotes all the components of y other than y j . Once (Pj f )( y− j )

is known we can evaluate Id f as the (d − 1)-dimensional integral

Id f =
∫
Rd−1

(Pj f )( y− j ) ρd−1( y− j ) d y− j , (6)

which can be done efficiently if (Pj f )( y− j ) is smooth. In the implementation of
preintegration, note that if the integral (6) is to be evaluated by an N -point cubature
rule, then the preintegration step in (5) needs to be carried out for N different values
of y− j .

The key is the preintegration step. Because of the monotonicity assumption (4),
for each y− j ∈ R

d−1, there is at most one value of the integration variable y j such
that φ(y j , y− j ) = t , where we recall that t is the parameter in the general form of
f ( y) as in (3). We denote that value of y j , if it exists, by ξ( y− j ) = ξt ( y− j ) so that
φ(ξ( y− j ), y− j ) = t . Under the condition (4), it follows from the implicit function
theorem that ξ( y− j ) is smooth if φ is smooth. Then we can write the preintegration
step as

(Pj f )( y− j ) =
∫ ∞

ξ( y− j )

θ
(
y j , y− j

)
ρ(y j ) dy j , (7)

which is a smooth function of y− j if θ is smooth.
If φ is strictly decreasing instead of increasing with respect to y j , then analogous

arguments show that Pj f is again smooth if θ is smooth. In this case, the limits
of the integral in (7) are −∞ to ξ( y− j ). Clearly, the essential property is that φ is
monotonic with respect to y j , which allows the implicit function theorem to be used.

For the remainder of this paper, we consider what happens after preintegration if
monotonicity fails, i.e., if (∂φ/∂y j )( y∗) = 0 at some point y∗ ∈ R

d .

1.3 Informative Examples

We now illustrate the success and failure of the preintegration process with some
simple examples. In these examples, we take d = 2 and t = 0, and choose ρ to be
the standard normal probability density, ρ(y) = exp(−y2/2)/

√
2π .We also initially

take θ(y1, y2) = 1, and comment on other choices at the end of the section.
To help in our discussion of the examples, we define the following subsets related

to a function φ : Rd → R. The zero level set of φ is { y ∈ R
d : φ( y) = 0} and the

positivity set of φ is { y ∈ R
d : φ( y) > 0}.
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Fig. 1 Illustrations for Example1

Example 1 In this example, we take

φ(y1, y2) = y2 − y21 ,

see Fig. 1 (left). The zero level set of this function is the parabolic curve y2 = y21 , see
Fig. 1 (middle). The positivity set of φ is the open region above the parabola.

If we take the special variable to be y2 (i.e., if we take j = 2) then themonotonicity
condition (4) is satisfied, and the preintegration step is truly smoothing. Specifically,
we see that

(P2 f )(y1) =
∫ ∞

y21

ρ(y2) dy2 = 1 − �(y21 ),

where �(x) := ∫ x
−∞ ρ(y) dy is the standard normal cumulative distribution. Thus

(P2 f )(y1) is a smooth function for all y1 ∈ R, and I2 f is the integral of a smooth
integrand over the real line,

I2 f =
∫ ∞

−∞
(P2 f )(y1) ρ(y1) dy1 =

∫ ∞

−∞

(
1 − �(y21 )

)
ρ(y1) dy1.

If on the other hand we take the special variable to be y1 (i.e., take j = 1) so that
the monotonicity condition (4) is violated, then we have

(P1 f )(y2) =

⎧⎪⎨
⎪⎩
0 if y2 ≤ 0,∫ √

y2

−√
y2

ρ(y1) dy1 = �(
√

y2) − �(−√
y2) if y2 > 0.

The graph of (P1 f )(y2), shown in Fig. 1 (right), reveals that there is a singu-
larity at y2 = 0. To see the nature of the singularity, note that since ρ(y1) =
ρ(0) exp(−y21/2) = ρ(0) + O(y21 ) as y1 → 0, we can write
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Fig. 2 Illustrations for Example2

(P1 f )(y2) =

⎧⎪⎨
⎪⎩
0 if y2 ≤ 0,∫ √

y2

−√
y2

ρ(y1) dy1 = 2
√

y2 ρ(0) + O
(
y3/22

)
if y2 > 0.

(8)

Thus in this simple example, (P1 f )(y2) is not a smooth function of y2, having a
square-root singularity, and hence an infinite one-sided derivative as y2 → 0+.

Example 2 In this example, we take

φ(y1, y2) = y22 − y21 − 1,

see Fig. 2 (left). The zero level set of φ is now the hyperbola y22 = y21 + 1, see Fig. 2
(middle), and the positivity set is the union of the open regions above and below
the upper and lower branches, respectively. Taking j = 1, we see that monotonicity
again fails, and that specifically,

(P1 f )(y2)

=

⎧⎪⎨
⎪⎩
0 if y2 ∈ [−1, 1],∫ √

y22−1

−
√

y22−1
ρ(y1) dy1 = 2

√
y22 − 1 ρ(0) + O

(
(y22 − 1)3/2

)
if |y2| > 1.

Its graph is shown in Fig. 2 (right). Again we see square-root singularities, this time
two of them.

Example 3 Here we take
φ(y1, y2) = y22 − y21 ,

see Fig. 3 (left). The zero level set is now the pair of lines y2 = ±y1, see Fig. 3
(middle), and the positivity set is the open region above and below the crossed lines.
This time P1 f is given by
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Fig. 4 Illustrations for Example4

(P1 f )(y2) =
∫ |y2|

−|y2|
ρ(y1) dy1 = 2|y2| ρ(0) + O

(|y2|3),

revealing in Fig. 3 (right) a different kind of singularity (a jump discontinuity in the
first derivative), but one still unfavorable for numerical integration.

Example3 is rather special, in that the preintegration is performed on a line that
touches a saddle at its critical point (the “flat point” of the saddle). Example4 below
illustrates another situation, one that is in some ways similar to Example1, but one
perhaps less likely to be seen in practice.

Example 4 Here we consider

φ(y1, y2) = y31 − y2,

see Fig. 4 (left). The zero level set of φ is the graph of y2 = y31 , see Fig. 4 (middle),
and the positivity set is the unbounded domain to the right of the curve. We see that
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(P1 f )(y2) =
∫ y1/32

−∞
ρ(y1) dy1 =

∫ 0

−∞
ρ(y1) dy1 +

∫ y1/32

0
ρ(y1) dy1

= 1

2
+ y1/32 ρ(0) + O

(|y2|),
which holds regardless of the sign of y2. The graph of P1 f in Fig. 4 (right) displays
the cube-root singularity at y2 = 0.

In each of the above examples we took θ(y1, y2) = 1. Other choices for θ are
generally not more interesting. An exception is the choice θ(y1, y2) = φ(y1, y2),
which yields a kink rather than a jump because

φ( y) ind(φ( y)) = max(φ( y), 0),

and so leads to a weaker singularity. For example, for f (y1, y2) = max(φ(y1, y2), 0)
with φ as in Example1, we obtain instead of (8)

(P1 f )(y2) =

⎧⎪⎨
⎪⎩
0 if y2 ≤ 0,∫ √

y2

−√
y2

(y2 − y21 ) ρ(y1) dy1 = 4

3
y3/22 ρ(0) + O

(
y5/22

)
if y2 > 0.

With the recognition that kinks lead to less severe singularities than jumps, but
located at the same places, from now on we shall for simplicity consider only the
case θ( y) = 1.

1.4 Outline of This Paper

In Sect. 2 we study theoretically the smoothness of the preintegrated function, assum-
ing that the original d-variate function is f ( y) = ind(φ( y) − t), with φ smooth but
not monotone. We prove that the behavior seen in the above informative examples
is typical, and give a precise definition of a square-root singularity in Definition1.
We also show in Example5 that for d ≥ 3 a square-root singularity is generically
enough to preclude the preintegrated function from belonging to any of the typical
mixed derivative spaces used to study convergence of QMC or SG methods.

Section3 contains a numerical experiment for a high-dimensional integrand that
allows both monotone and non-monotone choices for the preintegration variable.
Section4 gives brief conclusions.
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2 Smoothness Theorems in d Dimensions

In the general d-dimensional setting, we take θ ≡ 1 and use the general form (3)
with arbitrary t ∈ R. Thus now we consider

f ( y) := ft ( y) := ind
(
φ( y) − t

)
, y ∈ R

d . (9)

A natural setting in which t can take any value is in the computation of the (com-
plementary) cumulative distribution function of a random variable of the form
X = φ(Y), as in [7], where Y = (Y1, Y2, . . . , Yd) ∈ R

d is a vector of independent
real-valued random variables, with realizations y = (y1, y2, . . . , yd). In the case of
option pricing, varying t corresponds to varying the strike price.

For simplicity, in this section we shall always take the special preintegration
variable to be y1, so we fix j = 1. The task, assuming that φ in (9) has smoothness
at least C2(Rd), is to study the smoothness of

(P1 ft )( y−1) :=
∫ ∞

−∞
ft (y1, y−1) ρ(y1) dy1 =

∫ ∞

−∞
ind

(
φ( y) − t

)
ρ(y1) dy1,

(10)

where ρ ∈ C(R) is a general probability density function with supp(ρ) = R.
To gain a first insight into the role of the parameter t in (9), it is useful to observe

that for the examples in Sect. 1.3 a variation in t can change the position and even the
nature of the singularity in P1 ft , but does not necessarily eliminate the singularity.
For a general t ∈ R and φ as in Example1, we easily find that (8) is replaced by

(P1 ft )(y2) =

⎧⎪⎨
⎪⎩
0 if y2 ≤ t,∫ √

y2−t

−√
y2−t

ρ(y1) dy1 if y2 > t,

so that the graph of P1 ft is simply translated with the singularity now occurring at
y2 = t instead of y2 = 0. The situation is the same for φ as in Example4.

For φ as in Example2, the choice t = −1 recovers Example3, while for t > −1
we find

(P1 ft )(y2) =

⎧⎪⎨
⎪⎩
0 if y2 ∈ [−√

1 + t,
√
1 + t ],∫ √

y22−1−t

−
√

y22−1−t
ρ(y1) dy1 if |y2| >

√
1 + t ,

thus in this case (P1 ft )(y2) has square-root singularities at y2 = ±√
1 + t . For the

case t < −1 (which we leave to the reader) P1 ft has no singularity.
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In [12] it was proved that P1 ft has the same smoothness as φ, provided that

∂φ

∂y1
( y) > 0 for all y ∈ R

d , (11)

together with some other technical conditions, see [12, Theorems 2 and 3]. Here the
important property is that φ is monotone, since if φ is instead monotone decreasing,
i.e., (∂φ/∂y1)( y) < 0 for all y ∈ R

d , then simple modifications to the arguments and
technical conditions in [12] show again that P1 ft has the same smoothness as φ.

Here we are interested in the situation when φ is not monotone with respect to y1
for all y−1. In that case there is at least one point, say y∗ = (y∗

1 , y
∗−1) ∈ R

d , at which
(∂φ/∂y1)( y∗) = 0. At such a point, the gradient of φ is either zero or orthogonal to
the y1 axis. If t in (9) has the value t = φ( y∗), then there is generically a singularity
of some kind in P1 ft at the point y∗−1 ∈ R

d−1. If t 
= φ( y∗), then there is in general
no singularity in P1 ft at the point y∗−1 ∈ R

d−1, but if t is allowed to vary, then the
risk of encountering a near-singularity is high.

Theorem1 below states a general result for the existence and the nature of the
singularities induced in P1 ft in the common situation in which the second derivative
ofφwith respect to y1 is non-zero at y = y∗, the point atwhich thefirst derivativewith
respect to y1 is zero. If the second derivative is not zero but a higher partial derivative
with respect to y1 is non-zero, then by a similar argument a weaker singularity arises.
For simplicity, we shall concentrate on the case in which the second partial derivative
is non-zero.

First, we make a formal definition of “square-root singularity”, as encountered
in Examples1 and 2. Note that in higher dimensions, an isolated singularity can be
approached from multiple directions.

Definition 1 A function g ∈ C(Rd−1), with d ≥ 2, is defined to have a square root
singularity at y∗ ∈ R

d−1 in the direction z ∈ R
d−1, ‖z‖ = 1, if

lim
τ→0+

g( y∗ + τ z) − g( y∗)√
τ

= α, for some 0 
= α ∈ R.

Theorem 1 Let φ ∈ C2(Rd), ρ ∈ C(R) with supp(ρ) = R, and assume that y∗ =
(y∗

1 , y
∗−1) ∈ R

d is such that

∂φ

∂y1
( y∗) = 0,

∂2φ

∂y21
( y∗) 
= 0, and ∇φ( y∗) 
= 0. (12)

Define t := φ( y∗). Then the function (P1 ft )( y−1) as defined in (10) has a square-
root singularity at y∗−1 ∈ R

d−1 in any direction in R
d−1 that has a positive inner

product with ∇−1φ( y∗) := ((∂φ/∂y2)( y∗), (∂φ/∂y3)( y∗), . . . , (∂φ/∂yd)( y∗)).

Proof Since ∇φ( y∗) is not zero, and has no component in the direction of the y1
axis, it follows that ∇φ( y∗) can be written as (0,∇−1φ( y∗)), where ∇−1φ( y∗) =
∇−1φ(y∗

1 , y
∗−1) is a non-zero vector in R

d−1 orthogonal to the y1 axis. Note that as
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y−1 changes in a neighborhood of y∗−1, with y1 held fixed, the function φ(y∗
1 , y−1)

is increasing in the direction ∇−1φ( y∗), and also in the direction of an arbitrary unit
vector z in Rd−1 that has a positive inner product with ∇−1φ( y∗). Our aim now is to
explore the nature of P1 ft on the line through y∗−1 ∈ R

d−1 in the direction of z.
For simplicity of presentation, and without loss of generality, we assume from

now on that the unit vector z points in the direction of the positive y2 axis. This
allows us to write y = (y1, y2, y∗

3 , . . . , y∗
d ) =: (y1, y2), temporarily holding fixed

and ignoring all components other than the first two. In this 2-dimensional setting
we know that

∂φ

∂y1
(y∗

1 , y∗
2 ) = 0,

∂φ

∂y2
(y∗

1 , y∗
2 ) > 0, and

∂2φ

∂y21
(y∗

1 , y∗
2 ) 
= 0. (13)

Since (∂φ/∂y2)(y1, y2) is continuous and positive at (y1, y2) = (y∗
1 , y∗

2 ), it follows,
for sufficiently small δ > 0, that for each y1 ∈ [y∗

1 − δ, y∗
1 + δ] there is at most one

value of y2 such that φ(y1, y2) = t . For that unique value we write y2 = ζ(y1), hence
by construction we have φ(y1, ζ(y1)) = t , and ζ(y∗

1 ) = y∗
2 .

(Note that ζ here is the implicit function for a two-dimensional problem, and is a
univariate function of the preintegration variable y1, whereas ξ in (7) is the implicit
function from the preintegration process, giving y1 as a function of the remaining
variables y2, y3, . . . , yd .)

From the implicit function theorem (or by implicit differentiation of
φ(y1, ζ(y1)) = t with respect to y1) we obtain

ζ ′(y1) = − (∂φ/∂y1)(y1, ζ(y1))

(∂φ/∂y2)(y1, ζ(y1))
, (14)

in which the denominator is positive in a neighborhood of y∗
1 . From this and the first

condition in (13), it follows that

ζ ′(y∗
1 ) = − (∂φ/∂y1)(y∗

1 , y∗
2 )

(∂φ/∂y2)(y∗
1 , y∗

2 )
= 0.

Differentiating (14) using the product rule and the chain rule and then setting y1 = y∗
1

(so that several terms vanish), we obtain using the second condition in (13) that

ζ ′′(y∗
1 ) = − (∂2φ/∂y21 )(y∗

1 , y∗
2 )

(∂φ/∂y2)(y∗
1 , y∗

2 )

= 0.

We now assume that (∂2φ/∂y21 )(y∗
1 , y∗

2 ) < 0, from which it follows that ζ ′′(y∗
1 ) is

positive; the case (∂2φ/∂y21 )(y∗
1 , y∗

2 ) > 0 is similar. Taylor’s theoremwith remainder
gives
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ζ(y1) = ζ(y∗
1 ) + 1

2 (y1 − y∗
1 )

2 ζ ′′(y∗
1 ) (1 + o(1))

= y∗
2 + 1

2 (y1 − y∗
1 )

2 ζ ′′(y∗
1 ) (1 + o(1)), (15)

whereo(1) → 0 as |y1 − y∗
1 | → 0. Thus ζ(y1) is a convex function in a neighborhood

of y∗
1 .
Given y2 in a neighborhood of y∗

2 , our task now is to evaluate the contribution to
the integral

(P1 ft )(y2) =
∫ ∞

−∞
ind

(
φ(y1, y2) − t

)
ρ(y1) dy1

fromaneighborhoodof y∗
1 . Thusweneed tofind the set of y1 values in a neighborhood

of y∗
1 for which φ(y1, y2) > t . Because of (15), the set is either empty, or is the open

interval with extreme points given by the solutions y1 of ζ(y1) = y2, i.e.,

y∗
2 + 1

2 (y1 − y∗
1 )

2 ζ ′′(y∗
1 ) (1 + o(1)) = y2,

implying

(y1 − y∗
1 )

2 = 2(y2 − y∗
2 )

ζ ′′(y∗
1 ) (1 + o(1))

= 2(y2 − y∗
2 )

ζ ′′(y∗
1 )

(1 + o(1)).

There is no solution for y2 < y∗
2 , while for y2 > y∗

2 the solutions are

y1 = y∗
1 ± c

√
y2 − y∗

2 (1 + o(1)),

with c := √
2/ζ ′′(y∗

1 ). Thus the contribution to P1 ft (y2) from the neighborhood of
y∗
2 is zero for y2 < y∗

2 , and for y2 > y∗
2 is

∫ y∗
1+c

√
y2−y∗

2 (1+o(1))

y∗
1−c

√
y2−y∗

2 (1+o(1))
ρ(y1) dy1

= �
(

y∗
1 + c

√
y2 − y∗

2 (1 + o(1))
)

− �
(

y∗
1 − c

√
y2 − y∗

2 (1 + o(1))
)

= c
√

y2 − y∗
2 (1 + o(1))(ρ(a+) + ρ(a−)) = O

(√
y2 − y∗

2

)
,

where o(1) → 0 and a± → y∗
1 as y2 − y∗

2 → 0+. Here we have used the fact that
� ∈ C1(R), since�′ = ρ ∈ C(R). This allowed us to expand� around y∗

1 using the
mean value theorem as follows:

�
(

y∗
1 + c

√
y2 − y∗

2 (1 + o(1))
)

= �(y∗
1 ) + c

√
y2 − y∗

2 (1 + o(1))ρ(a+)

for some a+ ∈ (y∗
1 , y∗

1 + c
√

y2 − y∗
2 (1 + o(1))), and similarly for �(y∗

1 −
c
√

y2 − y∗
2 (1 + o(1))) with a− ∈ (y∗

1 − c
√

y2 − y∗
2 (1 + o(1)), y∗

1 ). We conclude
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that there is a square-root singularity in P1 ft in the direction of the positive y2
axis, which is the direction of the unit vector z, which by assumption has a positive
inner product with ∇−1φ( y∗). �

Remark 1 Theorem1 gives specific conditions for the existence of a square-
root singularity after preintegration. However, under slightly different conditions
it can be shown, following a similar proof technique, that singularities of a dif-
ferent nature may also occur. The key driver of the nature of the singularity in
Theorem1 is the fact that (∂φ/∂y1)( y∗) = 0 and (∂2φ/∂y21 )( y

∗) 
= 0. If instead
(∂φ/∂y1)( y∗) = (∂2φ/∂y21 )( y

∗) = 0 but (∂3φ/∂y31)( y
∗) 
= 0, then (15) becomes

ζ(y1) = y∗
2 + 1

6 (y1 − y∗
1 )

3ζ ′′′(y∗
1 )(1 + o(1)). In this case, it is easy to see that there

will be a cube-root singularity at y∗, with behavior similar to Example4.

Remark 2 The assumption φ ∈ C2(Rd) can be weakened to φ continuously dif-
ferentiable and ∂2φ/∂y21 continuous in a neighborhood of y∗. On the other hand, it
is clear that strengthening the assumptions on the differentiability of φ and ρ will
neither remove the singularity nor change its nature.

Remark 3 We now return to consider the examples in Sect. 1.3 in the context of
Theorem1.

• For φ as in Example1, we have (∂φ/∂y1)(y1, y2) = −2y1, (∂2φ/∂y21 )(y1, y2) =
−2 
= 0, and ∇φ(y1, y2) = (−2y1, 1) 
= (0, 0). Thus (12) holds, e.g., with y∗ =
(0, 0) and t = φ( y∗) = 0, and P1 ft indeed displays the predicted square-root
singularity at y2 = 0, see Fig. 1.

• For φ as in Example2, we have (∂φ/∂y1)(y1, y2) = −2y1, (∂2φ/∂y21 )(y1, y2) =
−2 
= 0, and∇φ(y1, y2) = (−2y1, 2y2). Thus (12) holds, e.g., with y∗ = (0,±1)
and t = φ( y∗) = 0, and P1 ft indeed shows the predicted square-root singularities
at y2 = ±1, see Fig. 2.

• For φ as in Example3, we have the same derivative expressions as in Example2.
Thus (12) holds, e.g., again with y∗ = (0,±1), but now t = φ( y∗) = 1, and we
effectively recover Example2 with square-root singularities for P1 ft at y2 = ±1.
However, if we consider instead the point y† = (0, 0) and t = φ( y†) = 0, as in
Fig. 3, then we have ∇φ( y†) = 0 so the non-vanishing gradient condition in (12)
fails and Theorem1 does not apply at this point y†. In this case we actually observe
an absolute-value singularity for P1 ft at y2 = 0 rather than a square-root singu-
larity.

• For φ as in Example4, we have (∂φ/∂y1)(y1, y2) = 3y21 , (∂2φ/∂y21 )(y1, y2) =
6y1, and∇φ(y1, y2) = (3y21 ,−1) 
= (0, 0). It is impossible to satisfy both the first
and second conditions in (12) so Theorem1 does not apply anywhere. In particular,
at the point y† = (0, 0) and t = φ( y†) = 0, as in Fig. 4, we have (∂2φ/∂y21 )( y

†) =
0, and in consequence (given that the third derivative does not vanish) P1 ft has a
cube-root singularity at y2 = 0 rather than a square-root singularity.

The following example with d = 3 demonstrates concretely that, for d ≥ 3 (and
hence d − 1 ≥ 2), a square-root singularity is generically enough to prevent the
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preintegrated function from belonging to any of the mixed derivative spaces conven-
tionally assumed in QMC and SG convergence analysis.

Example 5 Consider

φ(y1, y2, y3) = 1 − y21 − (y2 − y3 − 1)2,

so (∂φ/∂y1)(y1, y2, y3) = −2y1, (∂2φ/∂y21 )(y1, y2, y3) = −2, and∇φ(y1, y2, y3) =
(−2y1,−2(y2 − y3 − 1), 2(y2 − y3 − 1)). Taking y∗ = (0, 0, 0) yields

t = φ( y∗) = 0,
∂φ

∂y1
( y∗) = 0,

∂2φ

∂y21
( y∗) = −2 
= 0, ∇φ( y∗) = (0, 2, −2) 
= 0.

Thus all three conditions of (12) are satisfied, and Theorem1 tells us that
(P1 ft )(y2, y3) as defined in (10) has a square-root singularity at (y2, y3) = (0, 0)
in any direction in R

2 that has a positive inner product with (2,−2), i.e., for any
direction in the half plane y2 > y3.

We now find P1 ft explicitly, by carrying out the preintegration of
ind(φ(y1, y2, y3)) with respect to y1. The positivity set for φ satisfies

1 − y21 − (y2 − y3 − 1)2 > 0 ⇔ |y1| <
√
1 − (y2 − y3 − 1)2,

provided that |y2 − y3 − 1| < 1 ⇔ 0 < y2 − y3 < 2. Thus

(P1 ft )(y2, y3) =

⎧⎪⎨
⎪⎩
0 if |y2 − y3 − 1| ≥ 1∫ √

1−(y2−y3−1)2

−
√

1−(y2−y3−1)2
ρ(y1) dy1 if 0 < y2 − y3 < 2,

(16)

where ρ is the standard normal density. Expanding ρ(y1) around 0, we have for
y2 − y3 small and positive that

(P1 ft )(y2, y3) ≈ 2ρ(0)
√
1 − (y2 − y3 − 1)2 ≈ 2ρ(0)

√
2(y2 − y3). (17)

Thus there is a square-root singularity at (y2, y3) = (0, 0) in any direction within the
half plane y2 > y3. Note that, in accordance with Theorem1, this is exactly the set
of directions z which have a positive inner product with ∇−1φ( y∗).

Finally, we come to consider the mixed partial derivatives of P1 ft , to see if that
function could be covered by standard QMC or SG error analysis. It is of course
possible to compute any mixed derivatives of P1 f using the expression (16), but the
resulting expressions are inevitably complicated. It is more instructive to study as a
surrogate the approximation given by (17). Thus ignoring the multiplying constants
we define

g(y2, y3) := √
y2 − y3 for 0 < y2 − y3 < 2.
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Then trivially we have

∂g

∂y2
(y2, y3) = 1

2
√

y2 − y3
and

∂2g

∂y3 ∂y2
(y2, y3) = −1

4
(y2 − y3)

−3/2.

Since it is easily seen that the latter expression is not integrable over the domain
0 < y2 − y3 < 2, it is manifest that g does not belong to any mixed derivative space
of integer order. Nor, similarly, does P1 ft belong to any such space.

As a real-world example, consider the displacement of a cantilever beam under
vertical and horizontal loads from [4] and which has also been studied in [16].

Example 6 The displacement of a cantilever beam is a random variable X given by

X = φ(Y) = 43

ωτY3

√
Y 2
1

ω4
+ Y 2

2

τ 4
, (18)

where Y1 is a random variable for the horizontal load, Y2 is a random variable for the
vertical load and Y3 is a random variable for Young’s modulus. For simplicity, we
assume each Yi is an independent standard normal random variable, Yi ∼ N(0, 1),
and  = 100, ω = 4, τ = 2 are constants.

The probability that the displacement is greater than t ∈ R is P[X ≥ t] =
E[ind(X − t)], which is given by the integral (1) with f = ft of the form (9) and
hence fits into the setting of this paper. In a related direction, in [16, Sect. 4.2]
L’Ecuyer and colleagues approximated the cumulative distribution function, F(t) =
P[X ≤ t] = 1 − P[X ≥ t], using randomized QMC after first performing preinte-
gration (referred to in that paper as “conditioning”). They separately performed
preintegration with respect to each of the three variables in turn, giving an analytic
formula for each and also presenting convergence results for subsequently applying
a randomized QMC rule. Here we consider the effect of the monotonicity condition
and relate this back to their results. Note that to be consistent with our notation, we
have relabelled the variables compared to [16] and we now treat φ in (18) as function
of the deterministic variable y ∈ R

3.
Consider preintegration with respect to y1. At y∗ = (0, 1, 1), we have

∂φ

∂y1
( y∗) = 0,

∂2φ

∂y21
( y∗) = 43τ

ω5
> 0, ∇φ( y∗) = 43

ωτ 3

⎛
⎝ 0

1
−1

⎞
⎠ 
= 0. (19)

Hence, condition (12) is satisfied and Theorem1 implies that P1 ft will have a
square-root singularity for t = φ( y∗) = 43/(ωτ 3) at y∗ = (0, 1, 1). (Although
φ /∈ C2(R3), it is C2 in a neighborhood of y∗, and so Theorem1 still holds as argued
in Remark2.) Indeed, in this case P1 ft is given by
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(P1 ft )(y2, y3) = 1 −
∫ ω2

τ2

√
y23−y22

− ω2

τ2

√
y23−y22

ρ(y1) dy1 ≈ 1 − 2ω2

τ 2
ρ(0)

√
y23 − y22 ,

where again ρ is the standard normal normal density. Thus, P1 ft has a square-root
singularity at y2 = y3 = 1.

From Theorem1 one might suspect, because t in the theorem has the particular
value t = φ( y∗), that singularities of this kind are rare. However, in the following
theoremwe show that values of t ∈ R atwhich singularities occur in P1 ft are often not
isolated. This is essentially because points at which (∂φ/∂y1)( y) = 0 are themselves
not isolated.

Theorem 2 Let φ ∈ C2(Rd), ρ ∈ C(R) and supp(ρ) = R, and assume that y∗ ∈ R
d

is such that

∂φ

∂y1
( y∗) = 0, ∇φ( y∗) 
= 0, and ∇ ∂φ

∂y1
( y∗) 
= 0, (20)

with ∇φ( y∗) not parallel to ∇(∂φ/∂y1)( y∗). Then for any t in some open interval
containing φ( y∗), there exists a point y(t) ∈ R

d in a neighborhood of y∗ at which

φ( y(t)) = t,
∂φ

∂y1
( y(t)) = 0, and ∇φ( y(t)) 
= 0. (21)

Moreover, if we assume also that (∂2φ/∂y21 )( y
∗) 
= 0, then the function (P1 ft )( y−1)

as defined in (10) has a square-root singularity at y(t)
−1 ∈ R

d−1 along any line in

R
d−1 through y(t)

−1 in any direction in R
d−1 that has a positive inner product with

∇−1φ( y(t)).

Proof It is convenient to define ψ( y) := (∂φ/∂y1)( y), which by assumption is a
real-valued C1(Rd) function that satisfies

ψ( y∗) = 0 and ∇ψ( y∗) 
= 0.

We need to show that for t in some open interval containing φ( y∗) there exists
y(t) ∈ R

d in a neighborhood of y∗ at which

φ( y(t)) = t, ψ( y(t)) = 0, and ∇φ( y(t)) 
= 0.

Clearly, we can confine our search for y(t) to the zero level set of ψ , that is, to the
solutions of

ψ( y) = 0, y ∈ R
d .

Since ∇ψ( y) is continuous and non-zero in a neighborhood of y∗, the zero level set
of ψ is a manifold of dimension d − 1 near y∗, whose tangent hyperplane at y∗ is
orthogonal to ∇ψ( y∗), see, e.g., [17, Chap. 5]. On this hyperplane, there is a search
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direction starting from y∗ for which φ( y) has a maximal rate of increase, namely the
direction of the orthogonal projection of ∇φ( y∗) onto the tangent hyperplane. This
is a non-zero vector because ∇φ( y∗) is not parallel to ∇ψ( y∗). Setting out from the
point y∗ in the direction of positive gradient, the value of φ is strictly increasing in a
sufficiently small neighborhood of y∗, while in the direction of negative gradient it
is strictly decreasing. Thus searching on the manifold for a y(t) such that φ( y(t)) = t
will be successful in one of these directions for t in a sufficiently small open interval
containing φ( y∗).

Under the additional assumption that (∂2φ/∂y21 )( y
∗) 
= 0, all the conditions of

Theorem1 are satisfied with y∗ replaced by y(t), noting that because φ ∈ C2(Rd),
the second derivative is also non-zero in a sufficiently small neighborhood of y∗.
This completes the proof. �
Remark 4 We now show that for φ as in Examples1–3 and 5, the singularities in
P1 ft , with ft as in (9), are not isolated, and accord with Theorem2. For Example4,
Theorem2 is not applicable.

• For φ as in Example1 we may choose y∗ = (0, 0), as in Remark3. Indeed, the
gradient of the first derivative with respect to y1 is ∇(∂φ/∂y1)(y1, y2) = (−2, 0),
which is not parallel to∇φ(y1, y2) = (−2y1, 1) for all (y1, y2) ∈ R

2. It follows that
(20) holds, e.g., at y∗ = (0, 0). Hence Theorem2 implies that for t in some interval
around φ( y∗) = 0 there is y(t) = (y(t)

1 , y(t)
2 ) in a neighborhood of y∗ = (0, 0)

such that φ( y(t)) = t and (21) holds. In particular, there is still a square-root
singularity in (P1 ft )(y2) at y2 = y(t)

2 . We confirm that this is indeed the case by
taking y(t) = (0, t) and by observing that, as is easily verified, (P1 ft )(y2) has a
square-root singularity at y2 = t for all real numbers t . This singularity in P1 ft is
similar to the singularity depicted in Fig. 1, but translated by t .

• For φ as in Example3 we can consider y∗ = (0,±1) as in Remark3. The gradient
of the first derivative with respect to y1 is ∇(∂φ/∂y1)(y1, y2) = (−2, 0), which is
not parallel to ∇φ(y1, y2) = (−2y1, 2y2) for all (y1, y2) ∈ R

2 with y2 
= 0. Thus
(20) holds, e.g., at y∗ = (0,±1). Theorem2 implies that for t in some interval
around φ( y∗) = 1 there is a point y(t) in a neighborhood of y∗ = (0,±1) such
that φ( y(t)) = t , (21) holds, and (P1 ft )(y2) has a square-root singularity at y2 =
y(t)
2 . Indeed, for any real number t > 0, taking y(t) = (0,±√

t) gives φ( y(t)) = t ,
and it can easily be verified that (P1 ft )(y2) has two square-root singularities at
y2 = ±√

t . In this case the behavior of P1 ft is similar to Fig. 2, with the location
of the singularities now depending on t .

• Since φ from Example2 is simply a translation of Example3 by −1, similar sin-
gularities exist for that case for t > −1.

• For φ as in Example4 the condition (20) never holds, since ∇(∂φ/∂y1)(y1, y2) =
(0, 0) whenever (∂φ/∂y1)(y1, y2) = 0. So no conclusion can be drawn from The-
orem2 in this case. It is no contradiction that, as is easily seen, there is a singularity
(of cube-root character) in (P1 ft )(y2) at y2 = t for every real number t .

• For φ as in Example5 the condition (20) is satisfied for y∗ = (0, 0, 0), with the two
gradients not parallel, thus Theorem2 is applicable. It is easily seen that the point
(0, y(t)

2 , y(t)
3 ) satisfies (21) for every t < 1 provided y(t)

2 − y(t)
3 = 1 ± √

1 − t .
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• For φ giving the displacement of a cantilever beam as in Example6, from the
calculation (19) it follows that condition (20) is satisfied for y∗ = (0, 1, 1) and
also that the gradients ∇φ( y∗) and ∇(∂φ/∂y1)( y∗) are not parallel. Thus, The-
orem2 applies. It is easily seen that, for all t > 0, condition (21) is satisfied for
(0, y(t)

2 , y(t)
3 ) with y(t)

2 = t and y(t)
3 = 43/(ωτ 3).

3 A High-Dimensional Example

Motivated by applications in computational finance, for a high-dimensional example
we consider the problem of approximating the fair price for a digital Asian option, a
problem that can be formulated as an integral as in (1) with a discontinuous integrand
of the form (9). When monotonicity holds, it was shown in [12] that preintegration
not only has theoretical smoothing benefits, but also that when followed by a QMC
rule to compute the (d − 1)-dimensional integral the computational experience can
be excellent. On the other hand, that paper provided no insight as to what happens,
either theoretically or numerically, when monotonicity fails. In this section, in con-
trast, we will deliberately apply preintegration using a chosen variable for which the
monotonicity condition fails. We will demonstrate the resulting lack of smoothness,
using the theoretical results from the previous section, and show that the performance
of the subsequent QMC rule can degrade when the preintegration variable lacks the
monotonicity property.

For a given strike price K , the payoff for a digital Asian call option is given by

payoff = ind(φ − K ),

where φ is the average price of the underlying stock over the time period. Under the
Black–Scholes model, the time-discretized average is given by

φ( y) = S0
d

d∑
k=1

exp

(
(r − 1

2σ
2)

kT

d
+ σ Ak y

)
, (22)

where y = (yk)
d
k=1 is a vector of i.i.d. standard normal random variables, S0 is the

initial stock price, T is the final time, r is the risk-free interest rate, σ is the volatility
and d is the number of time steps, which is also the dimension of the problem. Note
that in (22) we have already made a change of variables to write the problem in
terms of standard normal random variables, by factorizing the covariance matrix of
the Brownian motion as � = AA�, where the entries of the covariance matrix are
�k, = min(k, ) × T/d. Then in (22), Ak denotes the kth row of this matrix factor.

The fair price of the option is then given by the discounted expected payoff

e−rT
E[payoff] = e−rT

∫
Rd

ind(φ( y) − K )ρd( y) d y . (23)
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Letting f ( y) = ind(φ( y) − K ), this example clearly fits into the framework (9),
where φ is the average stock price (22), t takes the value of the strike price K and
each ρ is a standard normal density.

There are three popular methods for factorizing the covariance matrix: the stan-
dard construction (which uses the Cholesky factorization), Brownian bridge, and
principal components or PCA, see, e.g., [8] for further details. In the first two cases,
all components of thematrix A are positive, in which case it is easily seen by studying
the derivative of (22) with respect to y j for some j = 1, . . . , d,

∂φ

∂y j
( y) = S0

d

d∑
k=1

σ Ak, j exp

(
(r − 1

2σ
2)

kT

d
+ σ Ak y

)
,

that φ is monotone increasing with respect to y j no matter which j is chosen.
In contrast, for the PCA construction, which we consider below, the situation is

very different, in that there is only one choice of j for which φ is monotone with
respect to y j . This is because with PCA the factorization of � employs its eigende-
composition, with the j th column of A being a (scaled) eigenvector corresponding to
the j th eigenvalue labeled in decreasing order. Since the covariance matrix � has all
entries positive, the eigenvector corresponding to the largest eigenvalue can be scaled
to have all components positive. Thus, for j = 1 monotonicity of φ is achieved. On
the other hand, every eigenvector other than the first is orthogonal to the first, and
therefore must have components of both signs. Given that

Ak, j > 0 =⇒ exp(Ak, j y j ) →
{

+∞ as y j → +∞,

0 as y j → −∞,

Ak, j < 0 =⇒ exp(Ak, j y j ) →
{
0 as y j → +∞,

+∞ as y j → −∞,

it follows that for j 
= 1 there is at least one term in the sum over k in (22) that
approaches +∞ as y j → +∞ and at least one other term that approaches +∞ as
y j → −∞. Given that all terms in the sum over k in (22) are positive, it follows that
for the PCA case and j 
= 1, φ must approach +∞ as y j → ±∞, so is definitely
not monotone. Moreover, with respect to each variable y j the function φ is strictly
convex, since

∂2φ

∂y2j
( y) = S0

d

d∑
k=1

(σ Ak, j )
2 exp

(
(r − 1

2σ
2)

kT

d
+ σ Ak y

)
> 0 for all y ∈ R

d .

For definiteness, in the following discussion we denote by y2 the preintegra-
tion variable for which monotonicity fails, and denote the other variables by y−2 =
(y1, y3, . . . , yd). We now use the results from the previous section to determine the
smoothness, or rather the lack thereof, of P2 f when f ( y) = ind(φ( y) − K ). To do
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Fig. 5 Illustrations for digital Asian option in two dimensions

this we will use Theorems1 and 2, where with a slight abuse of notation we replace
y1 by y2 as our special preintegration variable.

First, note that we have already established that φ is not monotone with respect
to y2, and since φ is strictly convex with respect to y2, for a given y−2, there exists
a unique y∗

2 ∈ R such that (∂φ/∂y2)(y∗
2 , y−2) = 0. Since φ is strictly increasing

with respect to y1, it follows that ∇φ(y∗
2 , y−2) 
= 0. Furthermore, since (∂2φ/∂y22 )

(y∗
2 , y−2) > 0, Theorem1 implies that for K = φ(y∗

2 , y−2), the preintegrated func-
tion P2 f has a square-root singularity along any line not orthogonal to∇−2φ(y∗

2 , y−2),
with ∇−2 defined analogously to ∇−1 in Theorem1.

Furthermore, Theorem2 implies that this singularity is not isolated. To apply
Theorem2, we note that we have already established the first two conditions in
(20) (recall again that we now take y2 as the preintegration variable). We also have
(∂2φ/∂y22 )(y∗

2 , y−2) > 0, which implies ∇(∂φ/∂y2)(y∗
2 , y−2) 
= 0. Moreover, we

know that ∇(∂φ/∂y2)(y∗
2 , y−2) and ∇φ(y∗

2 , y−2) are not parallel, since the former
has a positive second component while the latter has a zero second component.

To visualize this singularity, in Fig. 5 we provide an illustration of the option
in two dimensions. (Note that we consider d = 2 here for visualiZation purposes
only; we have shown already that the singularity exists for any choice of d > 1.
Later we present numerical results for d = 256.) Figure5 gives a contour plot of
φ(y1, y2) − K (left), the zero level set of φ(y1, y2) = K (middle) and then the graph
of P2 f (right). As expected, we can clearly see that P2 f has a singularity that is of
square-root nature.

To perform the preintegration step P2 f in practice, note that since φ is strictly
convex with respect to y2, for each y−2 ∈ R

d−1, there is a single turning point y∗
2 ∈ R

for which (∂φ/∂y2)(y∗
2 , y−2) = 0 and φ(y∗

2 , y−2) is a global minimum. It follows
that there are at most two distinct points, ξa( y−2) ≤ ξb( y−2), such that

φ(ξa( y−2), y−2) = K = φ(ξb( y−2), y−2) .

Preintegration with respect to y2 then simplifies to
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(P2 f )( y−2) =
∫ ∞

−∞
ind(φ(y2, y−2) − K ) ρ(y2) dy2

=

⎧⎪⎪⎨
⎪⎪⎩

1 if φ(y∗
2 , y−2) ≥ K ,

∫ ξa( y−2)

−∞
ρ(y2) dy2 +

∫ ∞

ξb( y−2)

ρ(y2) dy2 otherwise,

=
⎧⎨
⎩
1 if φ(y∗

2 , y−2) ≥ K ,

�(ξa( y−2)) + 1 − �(ξb( y−2)) otherwise.

In practice, for each y−2 ∈ R
d−1 the turning point y∗

2 and the points of discontinuity
ξa( y−2) and ξb( y−2) are computed numerically, e.g., we use Newton’s method in our
numerical experiments.

We now look at how this lack of smoothness affects the performance of using a
numerical preintegration method to approximate the fair price for the digital Asian
option in d = 256 dimensions. Explicitly, we approximate the integral in (23) by
applying a (d − 1)-dimensional QMC rule to P2 f . As a comparison, we also present
results for approximating the integral in (23) by applying the sameQMC rule to P1 f .
Recall that φ is monotone in dimension 1 and, furthermore, it was shown in [12] that
P1 f is smooth.

For the QMC rule we use a randomly shifted lattice rule based on the gener-
ating vector lattice-32001-1024-1048576.3600 from [14] using N =
210, 211, . . . , 219 points. For each N , the final approximation is the average of 100
shifted QMC approximations corresponding to R = 100 independent random shifts.
The RMSE is then estimated using the sample standard error over the R indepen-
dent shifted approximations in the usual way. The parameters for the option are
S0 = $100, K = $110, T = 1, d = 256 timesteps, r = 0.1 and σ = 0.1. We also
performed a standard Monte Carlo approximation using R × N points and a plain
(without preintegration) QMC approximation using the same generating vector. All
methods use the PCA factorization in the formulation (22), so that the integrand is
consistent across the different experiments.

In Fig. 6, we plot the convergence of the standard error in terms of the total number
of function evaluations R × N . We can clearly see that preintegration with respect
to y2 produces less accurate results compared to preintegration with respect to y1,
with errors that are up to an order of magnitude larger for the higher values of N .
We also note that to achieve a given error, say 10−4, the number of points needs to
be increased tenfold. Furthermore, we observe that the empirical convergence rate
for preintegration with respect to y2 is N−0.9, which is sightly worse than the rate of
N−0.97 for preintegration with respect to y1. Hence, when themonotonicity condition
fails, not only does the theory for QMC fail due to the presence of a singularity, but
we also observe worse results in practice and somewhat slower convergence.

We also plot the error of standard Monte Carlo and QMC approximations, which
behave as expected and are both significantly outperformed by the two preintegration
methods.
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Fig. 6 Convergence in N
for different approximations
of the fair price for a digital
Asian option

4 Conclusion

If the monotonicity property (11) fails and f = ft is defined by (9) then we have
seen that generically there is a singularity in P1 f for some values of t , and under
known conditions this is true even for all values of t in an interval.

It should also be noted that the implementation of preintegration is more difficult
if monotonicity fails, since instead of a single integral from ξ( y−1) to ∞, as in (7),
there will in general be additional finite or infinite intervals to integrate over, all of
whose end points must be discovered by the user for each required value of y−1.

To explore the consequences of a lack of monotonicity empirically, we carried
out in Sect. 3 a 256-dimensional calculation of pricing a digital Asian option, first by
preintegrating with respect to a variable known to lack the monotonicity property,
and then with a variable where the property holds, with the result that both accuracy
and rate of convergence were observed to be degraded when monotonicity fails.

There is an additional problem of preintegrating with respect to a variable for
which the monotonicity fails, namely that because of the proven lack of smoothness,
the resulting preintegrated function no longer belongs to the space of (d − 1)-variate
functions of dominating mixed smoothness of order one. As a consequence, there
is at present no theoretical support for the use of QMC integration for this (d − 1)-
dimensional integral.

The practical significance of this paper is that effective use of preintegration is
greatly enhanced by the preliminary identification of a special variable for which the
monotonicity property is known to hold. The paper does not offer guidance on the
choice of variable if there is more than one such variable. In such cases it may be
natural to choose the variable for which preintegration leads to the greatest reduction
in variance, see [16, Sect. 2.4] for related work.
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Combined Derivative Estimators

Paul Glasserman

Abstract We discuss combinations of simulation-based derivative estimators using
infinitesimal perturbation analysis (IPA) and the likelihood ratio method (LRM). We
first provide a historical perspective on combinations of IPA and LRM and then turn
to connections with the generalized likelihood ratio (GLR) method. We re-derive
a GLR estimator for barrier options through a combination of IPA and LRM. We
then consider the behavior of a GLR estimator for a discrete-time approximation to a
diffusion process as the time step shrinks. We show that an average of low-rank GLR
estimators has a continuous-time limit, even though each individual estimator blows
up. The limit matches an estimator previously derived through Malliavin calculus
and also through a combination of IPA and LRM.

Keywords Sensitivity analysis · Simulation · Likelihood ratio method

1 Introduction

I first met Pierre in 1987, at the ORSA/TIMS conference in St. Louis. I was in my last
year of graduate school, attending amajor conference for the first time, and presenting
something on derivative estimation. I was pleasantly surprised by Pierre’s friendly
manner toward a random student; but I was even more surprised to learn of his own
ongoing work on derivative estimation, along with other topics in simulation and
dynamic programming. I have continued to value Pierre’s collegiality and openness,
his broad research interests and accomplishments, his work in fostering a community
of scholars, and our shared interest in derivative estimation for the past 34 years.

Several of Pierre’s papers have involved combinations, comparisons, and exten-
sions of derivative estimators. I will build on this theme and discuss some combina-
tions of infinitesimal perturbation analysis (IPA) and likelihood ratio method (LRM)
estimators. Pierre’s most recent work on derivative estimation considers the gener-
alized likelihood ratio (GLR) method introduced in Peng et al. [23]. I will discuss
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some examples relating GLR estimators to combinations of IPA and LRM estima-
tors. This paper’s main observation concerns an application of GLR in the setting of
a time-discretized diffusion process: averaging multiple low-rank GLR estimators
leads to a method that works in the continuous-time limit, even though each individ-
ual estimator blows up in the limit. This result uses a connection between the GLR
estimator and a combined IPA-LRM estimator. It also suggests a connection between
GLR and estimators derived using Malliavin calculus.

2 Derivative Estimation

This section provides some background on derivative estimation and discusses some
of Pierre’s contribution to the topic, with particular emphasis on combinations of
methods.

2.1 Background

Let V (θ) denote the output of a stochastic simulation depending on a parameters θ .
In addition to estimating the expectation v(θ) = E[V (θ)], we may be interested in
estimating the derivative v′(θ) for purposes of sensitivity analysis or optimization. If
the interchange of derivative and expectation in v′(θ) = E[V ′(θ)] is valid, then V ′(θ)

provides an unbiased estimator of v′(θ). Here, V ′(θ) should be understood as the
derivative of the simulation output with respect to θ , holding all other inputs fixed.
This is the basis for infinitesimal perturbation analysis (IPA) derivative estimation,
introduced in Ho and Cao [16] and Zazanis and Suri [31].

An alternative approach starts from a representation of the form

v(θ) =
∫

ν f (ν, θ) dν,

where f (·, θ) is the probability density of V (θ). Differentiating under the integral
leads to

v′(θ) =
∫

ν∂θ f (ν, θ) dν =
∫

ν
∂θ f (ν, θ)

f (ν, θ)
f (ν, θ) dν = Eθ [V · sθ (V )], (1)

where Eθ denotes expectation with respect to f (·, θ), and

sθ (ν) = ∂θ log f (ν, θ)
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is often called a score function. When the steps in this derivation are valid, V · sθ (V )

provides an unbiased estimator of v′(θ). This is the likelihood ratio method (LRM)
introduced in Glynn [11], Reiman and Weiss [27], and Rubinstein [28].

Putting the parameter in the path V (θ) leads to the IPA estimator V ′(θ); putting the
parameter in the density f (·, θ) leads to the LRM estimator.We can often move from
one representation to another through a change of variables. Rubinstein [29] referred
to a change of variables that moves the parameter from the path to the measure as
“pushing out.”

In practice, the simulation outputV is usually a function of input randomvariables,
and θ enters through the distributions of those inputs, inwhich case the score function
is computed from the distributions of the inputs, rather than directly through the
distribution of V . In the IPA perspective, this means that V ′(θ) is calculated through
the chain rule, differentiating V with respect to the inputs and the inputs with respect
to the parameter.

2.2 Combined Estimators

In [17] and [18], Pierre considered expectations of the form

v(θ) =
∫

g(ν, θ) f (ν, θ) dν,

with both a functional dependence on the parameter (through g) and a distributional
dependence (through f ). The arguments used above lead to a representation

v′(θ) =
∫

∂θg(ν, θ) f (ν, θ) dν +
∫

g(ν, θ)sθ (ν) f (ν, θ) dν

= Eθ [∂θg(V, θ) + g(V, θ)sθ (V )].

The result inside the expectation is an estimator that combines an IPA term ∂θg(V, θ)

and an LRM g(V, θ)sθ (V ), although Pierre used a slightly different classification.
Both terms require an interchange of derivative and integral; Pierre’s papers [17]

and [18] gave a unified treatment of the conditions for the interchange. Of course,
the general question of when such an interchange is valid is classical. The value of
the types of conditions in Pierre’s papers and related work lies in their applicability
to systems commonly studied through simulation, such as the queueing, reliability,
and inventory models analyzed in [17] and [18]. Generally speaking, the interchange
conditions for IPA derivatives are more restrictive than for LRM derivatives because
commonly used parametric densities tend to be smoother than the sample paths of
discrete-event systems and also smoother than the payoffs of option contracts.
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2.3 Second Derivatives

In [17], Pierre also considered the estimation of second derivatives. Second deriva-
tives are clearly useful in optimization; they are also routinely calculated in financial
applications, where first- and second-order derivatives are used in hedging options.

Combinations of IPA and LRM estimators arise naturally in estimating second
derivatives. Repeating the steps leading to (1) yields a pure-LRM estimator of v′′(θ)

of the form

V · s(2)
θ (V ), s(2)

θ (ν) = ∂2
θ log f (ν, θ) + (∂θ log f (ν, θ))2.

In other words, just as multiplying by sθ (V ) has the effect of differentiating once,
multiplying by s(2)

θ (V ) has the effect of differentiating twice.
The pure-IPA estimator V ′′(θ) is often uninformative, if it exists at all. Kinks in

the paths of discrete-event systems and option payoffs create discontinuities in the
first derivative V ′(θ), preventing further differentiation.

However, IPA and LRM can be fruitfully combined. Multiplying the IPA first
derivative V ′(θ) by the appropriate score function yields an IPA-LRM second deriva-
tive estimator; similarly, taking the pathwise derivative of the LRM estimator (1)
yields an LRM-IPA second derivative estimator.

Estimators of this form are derived and compared in the setting of interest rate
derivatives in Section 7.3.3 of Glasserman [9]. In that setting, the two hybrid second-
derivative estimators perform about equally well and have roughly one-tenth the
variance of the pure-LRM second-derivative estimator. The combined estimators
appear to benefit from the generally lower variance of IPA-based methods while
using LRM to expand their scope beyond first derivatives.

2.4 Finite Difference Estimators and IPA

A rough rule of thumb for the applicability of IPA is that V (θ) should be continuous
throughout an interval of θ values that does not depend on the stochastic inputs to
the simulation. Discontinuities in V (θ) are missed by V ′(θ) but affect v′(θ).

L’Ecuyer and Perron [21] showed that under conditions ensuring that IPAprovides
a consistent estimator, a properly implementedfinite difference approximation enjoys
the same convergence rate. In more detail, let V̄ n(θ) denote the sample mean of n
i.i.d. replications Vi (θ). Consider a finite difference estimator of the form

�n(θ) = V̄ n(θ + cn) − V̄ n(θ)

cn
.

The replications Vi (θ) and Vi (θ + cn) are implemented using common random num-
bers, meaning that all inputs other than θ are held fixed. L’Ecuyer and Perron [21]
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showed that taking cn = O(n−1/2) ensures that �n(θ) estimates v′(θ) with a root-
mean-squared error of O(n−1/2). This is the same order as the sample mean V̄

′
n(θ)

of IPA derivatives when IPA is unbiased. L’Ecuyer and Perron [21] proved simi-
lar results for central difference estimators and steady-state estimation problems.
Related results on the convergence rates of finite difference estimators appeared in
Glynn [12], Zazanis and Suri [32], and Glasserman and Yao [10].

Based on their comparison results, L’Ecuyer and Perron [21] concluded that IPA,
when applicable, can be viewed as an algorithmically efficient implementation of
finite differences. The potential efficiency gains are greater when the parameter θ

is a vector of dimension d. Applying finite differences to each coordinate requires
d + 1 separate simulations, and central differences require 2d simulations.

The overhead associated with IPA calculations can sometimes be dramatically
reduced using “adjoint methods” from the field of algorithmic differentiation
(Griewank andWalther [15]). To illustrate, consider a simulation algorithm described
through a recursion of the form

Xi+1 = φ(Xi , Zi+1),

where the Xi are d-dimensional, and the Zi are i.i.d. and vector-valued as well.
Suppose the parameter of interest is the initial state x0, and suppose V is a function
of Xn . Differentiating the recursion we get

Dx0Xi+1 = Dxφ(Xi , Zi+1) · Dx0Xi ,

where each Dx0Xi and Dxφ is a d × d matrix of partial derivatives. The initial matrix
Dx0X0 is the identity. The final IPA estimator is ∇V · Dx0Xn .

A forward implementation of this derivative involves n multiplications of d × d
matrices, followed by the vector-matrix product ∇V · Dx0Xn . An adjoint implemen-
tation stores the matrices Dxφ(Xi , Zi+1) and then evaluates the product

∇V · Dxφ(Xn−1, Zn) · · · Dxφ(X0, Z1)

from left to right, as n vector-matrix products, eliminating the need for any matrix-
matrix products.

The adjoint method was introduced to option pricing applications in Giles and
Glasserman [7]. The method includes many techniques beyond the simple example
given here, and it has found widespread adoption in financial applications; see for
example Capriotti and Giles [3]. The computational gains can be dramatic, partic-
ularly in calculating sensitivities of a small number of outputs to a large number
of parameters — in other words, when the dimension of θ is large relative to the
dimension of V .

The adjoint method provides an efficient implementation of IPA, but it does not
change the scope of applicability of IPA. In financial applications, the state evolution
(the recursion φ in the example above) is often continuous, and potential disconti-
nuities are often limited to the evaluation of V once a path has been generated. Giles
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[6] applies LRM at the final step to combine an adjoint implementation of IPA with
a discontinuous payoff. He shows that applying antithetic variates at the final step
can eliminate the leading order error term.

2.5 IPA and Randomized Score Functions

In some cases, LRM estimators can be derived as conditional expectations of IPA
estimators. We give a simple example. Suppose U is uniform on [0, 1] and

V (θ) = 1{U ≤ p(θ)},

for some p(θ) ∈ (0, 1)varying smoothlywith θ . The IPAderivativeV ′(θ) equals zero
wherever it exists and is therefore uninformative. If wemultiply V (θ) by |U − p(θ)|,
we make the dependence on θ continuous because the smoothing factor |U − p(θ)|
equals zero precisely at the discontinuity of V . If we then normalize the smoothing
factor by its conditional expectation to leave the original expectation unchanged, we
get

Ṽ (θ) = 1{U ≤ p(θ)} |U − p(θ)|
E[|U − p(θ)||V (θ)] = 1{U ≤ p(θ)} p(θ) −U

p(θ)/2
.

The normalization ensures that E[Ṽ (θ)] = E[V (θ)], so we can try to estimate v′(θ)

by applying IPA to Ṽ (θ). The IPA derivative is now

Ṽ ′(θ) = 1{U ≤ p(θ)}2p
′(θ)

p2(θ)
U.

As E[U |V (θ) = 1] = p(θ)/2,

E[Ṽ ′(θ)|V (θ)] = 1{U ≤ p(θ)} p
′(θ)

p(θ)
.

The expression on the right is an LRM estimator because the score function for the
Bernoulli random variable V (θ) is

sθ (V ) = 1{V = 1} p
′(θ)

p(θ)
+ 1{V = 0} −p′(θ)

1 − p(θ)
,

and the last term is zero on {U ≤ p(θ)}.
By multiplying the original output by a normalized smoothing factor, applying

IPA, and then taking a conditional expectation given the original output variable, we
arrived at the LRM estimator for the original problem. Extensions of this idea to
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Markov chains and other examples appear in Glasserman [8]. In all such examples,
the conditioning step implies that the LRM estimator has lower variance than the
IPA estimator; the derivative of the smoothing factor acts like a randomized score
function.

2.6 LRM Singularities

A well-known limitation of the likelihood ratio method is that its variance typically
increases with the simulation time-horizon. This property makes LRM generally
inapplicable with long-run average estimators of steady-state quantities.

L’Ecuyer and Glynn [20] and Glynn and L’Ecuyer [13] addressed this problem
by exploiting regenerative structure. When applicable, a regenerative representation
expresses a steady-state mean as a ratio of two finite-horizon expectations. A deriva-
tive estimator for the ratio can be derived by applying LRM to the numerator and the
denominator.

The source of the difficulty in applying LRM over long horizons is that the prob-
ability measures over the set of simulation paths at parameters θ and θ + h may be
mutually absolutely continuous for all finite horizons yet mutually singular over an
infinite horizon. Once the probability measures are mutually singular, the underpin-
ning for LRM breaks down.

A similar but distinct breakdown can occur in applying LRM to diffusion pro-
cesses. Such processes are often simulated through discrete-time approximations.
The probability measures over paths at different parameter values may be mutu-
ally absolutely continuous for all discrete time steps yet mutually singular in the
continuous-time limit. We return to this point in Section 4.

2.7 Generalized Likelihood Ratio Method

Pierre’s most recent work on derivative estimation has focused on the generalized
likelihood ratio (GLR) method, a general framework introduced in Peng et al. [23].
The GLR method is based on representations of the form

∂θ

∫
ν(g(x, θ), θ) f (x, θ) dx =

∫
ν(g(x, θ), θ)w(x, θ) f (x, θ) dx, (2)

for a suitable weight function w. Here, the output function ν depends on a transfor-
mation g of input variables x . Both ν and g may depend on θ , as may the density
f . The weight is derived by first considering sufficiently smooth ν and g for which
the derivative can be brought inside the integral, then transforming the derivative of
ν with respect to g to a derivative with respect to x , and then applying a multivariate
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integration-by-parts argument to move the derivative away from ν to producew. The
representation in (2) is then extended to non-smooth ν.

Peng et al. [24] extend the original method of Peng et al. [23] to allow the input
variables to be uniformly distributed, which is obviously an important case for many
applications. Peng et al. [25] and [26] develop variance reduction techniques for
GLR.

The input variable x in (2) is generally vector-valued, as is the transformation g.
The range of gmay have lower dimension than x , in which case GLR requires choos-
ing an invertible submatrix of the Jacobian of g with respect to x ; different choices
lead to different estimators. Section 4 develops an example in which averaging over
multiple such choices yields an estimator with a well-defined continuous-time limit,
addressing the singularity issue raised at the end of Section 2.6. The example also
suggests a connection between the GLR method and estimators derived using Malli-
avin calculus, as in Fournié et al. [5].

3 A Barrier Option Example

To lay groundwork for the continuous-time limit in Section 4, this section considers
an option pricing example, exploring connections between GLR and combined IPA-
LRM estimators.

3.1 The Option Pricing Setting

Pierre has made several contributions to simulation methodology for option pricing,
including in Avramidis and L’Ecuyer [1], L’Ecuyer [19], and Lemieux and L’Ecuyer
[22]. We use this setting to examine some combined derivative estimators.

A standard model in option pricing takes the underlying asset to be described by
a geometric Brownian motion. We simulate the underlying asset on a discrete-time
grid 0,�, 2�, . . . according to the recursion

Si+1 = Si exp(μ� + σ
√

�Zi+1), i = 1, 2, . . . , (3)

where Z1, Z2, . . . are independent standard normal random variables, and S0 = s0 >

0 is fixed, as are the parameters μ and σ > 0.
The payoff of the option takes the form V (S1, . . . , Sn) or simply V (Sn), with

expectation v(s0) = E[V ]. For hedging purposes, one is often interested in v′(s0).
An IPA estimator differentiates V with respect to the underlying Si and differentiates
the Si with respect to s0 through (3). If V has discontinuities, we may apply an LRM
estimator by noting that

log S1 ∼ N (log s0 + μ�, σ 2�), (4)
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and, given S1, the distribution of S2, . . . , Sn does not depend on s0. Thus, only the
distribution of S1 contributes to the score function. With s0 playing the role of the
parameter θ , the LRM estimator takes the form (as in Broadie and Glasserman [2])

s(S1)V (S1, . . . , Sn) = Z1

σ
√

�
V (S1, . . . , Sn).

The precise form of the score function will become clear using (11), below. Themain
point is that we moved the dependence on s0 from the path (through (3)) into the
distribution of S1 to be able to handle discontinuous payoffs.

3.2 The Barrier Option

One of the first examples of the GLR method in Peng et al. [23] is a barrier option.
The contract has the payoff (Sn − K )+ of a standard call option with strike price K ,
provided the underlying asset never breaches a barrier at H > K . The event that the
path of the underlying asset terminates above K without crossing H is given by

An = {Si < H, i = 1, . . . , n − 1} ∪ {K < Sn < H}, (5)

so we can write the payoff as

V = 1An · (Sn − K ). (6)

Write v(H) = E[V ] for the expected payoff, and consider the problem of esti-
mating v′(H), the derivative with respect to the barrier level H . The payoff in (6)
poses a challenge for derivative estimation: the payoff is piecewise constant in H ,
making IPA uninformative, and the distribution of S1, . . . , Sn has no dependence on
H , making LRM inapplicable.

3.3 A Combined IPA-LRM Estimator of Wang et al. [30]

To address these difficulties, we seek a change of variables that either smooths the
functional dependence on H or moves H into the measure, much as we did with s0
in (4). Set Ri = log(Si/H), so that

R1 = log(S0/H) + μ� + σ
√

�Z1, Ri+1 = Ri + μ� + σ
√

�Zi+1, i = 1, . . . , n − 1.
(7)
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Then the payoff V in (6) becomes

V = V (H) = 1{ max
i=1,...,n

Ri < 0}(HeRn − K )+. (8)

This representation has a continuous functional dependence on H and a distributional
dependence on H through the distribution of R1; the conditional distribution of
R2, . . . , Rn given R1 does not depend on H . Using IPA for the functional dependence
and LRM for the distributional dependence leads to an estimator of the form

sH (R1)V + ∂V

∂H
, (9)

where sH (R1) is the score function of R1 for parameter H .
To derive the score function for

R1 ∼ N (log(S0/H) + μ�, σ 2�), (10)

consider the general case
X ∼ N (a(θ), b2(θ)),

of a normal distribution depending on a parameter θ . Differentiating the log density
with respect to θ yields the score function

sθ (X) =
(
X − a(θ)

b2(θ)

) [
a′(θ) + b′(θ)

b(θ)
(X − a(θ))

]
− b′(θ)

b(θ)
. (11)

In (10), we have θ = H , a(H) = log(S0/H) + μ�, and b ≡ σ
√

�. Making these
substitutions, we get

sH (R1) = −Z1

Hσ
√

�
. (12)

This expression for sH (R1) uses the fact that we can recover Z1 from R1.
The IPA term in (9) captures the functional dependence on H in (8) and equals

V ′(H) = 1An · eRn .

Making this substitution in (9) and transforming back from R1, . . . , Rn to S1, . . . , Sn ,
we get the combined estimator

1An ·
[
(Sn − K )

−Z1

Hσ
√

�
+ Sn

H

]
. (13)

This is the SLRIPA estimator of Wang et al [30].
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3.4 GLR as a Combined IPA-LRM Estimator

Peng et al. [23] use the machinery of the generalized likelihood ratio method to
derive an alternative estimator. The final estimator is several lines long and difficult
to interpret. The estimator in (13) follows a simpler derivation and is comparatively
easier to interpret because the score function and the IPA term are recognizable in
the final expression. We seek a similar derivation and interpretation of the GLR
estimator.

Let R1, . . . , Rn−1 be as before, and redefine

Rn = Rn−1 + μ� + σ
√

�Zn + log(H/K )

log(H/K )
= log(Sn/K )

log(H/K )
; (14)

this transformation is used as part of the GLR derivation in Peng et al. [23]. The
payoff (6) becomes

V = 1{ max
i=1,...,n−1

Ri < 0}1{0 < Rn < 1}(eRn log(H/K ) − 1)K . (15)

As before, we will apply a combination of IPA and LRM of the form

sH (R1, . . . , Rn)V + ∂V

∂H
. (16)

To derive the relevant score function, note that R1 still has the distribution in (10),
the distribution of R2, . . . , Rn−1 given R1 has no dependence on H , and

Rn|R1, . . . , Rn−1 ∼ N

(
Rn−1 + μ�

log(H/K )
+ 1,

σ 2�

log2(H/K )

)
≡ N (a(H), b2(H)).

(17)
The score function is therefore the sum of the marginal score we derived previously
for R1 in (12) and the score for the conditional density of Rn . To apply the general
expression in (11)–(17), we note that

a′(H) = 1 − a(H)

H log(H/K )
,

b′(H)

b(H)
= − 1

H log(H/K )
.

The term in square brackets in (11) is therefore

1 − a(H)

H log(H/K )
− 1

H log(H/K )
(Rn − a(H)) = 1 − Rn

H log(H/K )
.

Using (14), the factor multiplying the square brackets in (11) is

Rn − a(H)

b2(H)
= Zn log(H/K )

σ
√

�
.
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Making these substitutions in (11) yields the score function for the conditional density
of Rn . Adding the score function in (12) for R1 yields the combined score

sH (R1, . . . , Rn) = − Z1

Hσ
√

�
+ Zn

Hσ
√

�
(1 − Rn) + 1

H log(H/K )
. (18)

The IPA term in (16) is given by

V ′(H) = 1{ max
i=1,...,n−1

Ri < 0}1{0 < Rn < 1}eRn log(H/K ) Rn

H
K

= 1An

Sn log(Sn/K )

H log(H/K )
. (19)

The final estimator combines (18) and (19) as in (16). A comparison with Peng et
al. [23] shows that the resulting expression (16) matches the GLR estimator derived
there.

This derivation shows that, in this example, the GLR estimator can be derived
through a simple combination of IPA and LRM. The only difference between the
derivation here and that in Sect. 3.3 is the choice of transformation Rn; the steps
are otherwise the same. A strength of GLR is its generality; a benefit of the IPA-
LRM derivation is that it makes the final estimator easier to interpret through the
representation in (16).

4 Approaching Continuous Time: Averaging Low-Rank
GLR Estimators

Consider now a more general scalar diffusion process Xt , t ∈ [0, T ], satisfying

dXt = μ(Xt ) dt + σ(Xt ) dWt , X0 = x0, (20)

where W is a standard Brownian motion, x0 is fixed, and μ(·) and σ(·) are differen-
tiable. We fix a time step � = T/n and simulate the discretized process

Xi+1 = Xi + μ(Xi )� + σ(Xi )
√

�Zi+1, (21)

where the Zi are independent N (0, 1) random variables. To simplify notation, we use
X for both the continuous-time process in (20) and its discrete-time approximation
in (21).
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4.1 Approximating Continuous-Time Sensitivities

Consider an expectation of the form v(x0) = E[V (Xn)], which we think of as an
approximation to E[V (XT )]. We are interested in the sensitivity v′(x0) to the initial
condition. If it is well-defined, the IPA estimator takes the form

V ′(Xn)
dXn

dx0
. (22)

Setting

Yi = dXi

dx0
,

and differentiating (21) we find that these state derivatives satisfy

Yi+1 = Yi + μ′(Xi )Yi� + σ ′(Xi )Yi
√

�Zi+1, (23)

with Y0 = 1.
If V has discontinuities, the IPA estimator is typically biased. We can derive

an LRM estimator by factoring the joint density of X1, . . . , Xn as f (x0, x1) · · ·
f (xn−1, xn), where f is the transition density for the Markov chain (21). Only the
first factor depends on x0. Moreover, X1 ∼ N (x0 + μ(x0)�, σ 2(x0)�). We thus
arrive at the LRM estimator

sx0(X1, . . . , Xn)V (Xn) = Z1

σ(x0)
√

�
V (Xn). (24)

This estimator solves the problem of discontinuous V , but it is clearly badly behaved
as� → 0 and does not have a meaningful continuous-time limit. This makes precise
the point we introduced at the end of Sect. 2.6.

Working directly in continuous time, and using tools from Malliavin calculus,
Fournié et al. [5] derived the estimator

V (XT ) · 1

T

∫ T

0

Yt
σ(Xt )

dWt , (25)

where Yt = dXt/dx0 satisfies

dYt = μ′(Xt )Yt dt + σ ′(Xt )Yt dWt , Y0 = 1.

The estimator in (25) is reminiscent of an LRM or GLR estimator, in the sense that
it multiplies the payoff by a stochastic weight, but the connection (if any) with (24)
is not immediately clear.

Chen and Glasserman [4] show that (25) can be derived as the result of averaging
combinations of IPA and LRM estimators. At one extreme, (22) treats x0 purely as
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a parameter of the path of the Xi . At the other extreme, (24) treats x0 purely as a
parameter of the density of X1. But we can consider an intermediate estimator that
treats x0 as a path parameter for X1, . . . , X j−1 and then considers the density of
Xn given X j−1. After dropping higher-order terms, this combination results in the
estimator

V (Xn) · Y j−1
Z j

σ(X j−1)
√

�
.

Averaging over all j = 1, . . . , n such IPA-LRM combinations yields (25) in the limit
as � → 0.

4.2 Averaging GLR Estimators

Here we take a different approach, based on the GLRmethod. It is natural to look for
a connection between GLR and Malliavin estimators: both use integration-by-parts
formulas based on divergence operators. The Malliavin calculus versions of these
terms are intended as generalizations of the classical counterparts used in GLR. We
also note that Gobet and Munos [14] show that averaging derivative estimators is
useful in the continuous-time context.

To put our setting in the notation of Peng et al. [23], we can write

Xn = g(x0, Z1, . . . , Zn),

with g implicitly defined through the recursion (21). The GLR estimator uses an
invertible submatrix of the Jacobian (with respect to the stochastic inputs) of this
transformation, and this produces an indeterminacy in the estimator when the Jaco-
bian does not have full rank. In our setting, Xn is scalar so the Jacobian is the gradient,
and the invertible submatrix reduces to the scalar

J̄ g = ∂g

∂z j
, (26)

for any j = 1, . . . , n. (Here and below, z1, . . . , zn are dummy variables, and
Z1, . . . , Zn are random variables at which they are evaluated.)

Theorem 2 of Peng et al. [23] gives, under appropriate conditions,

∂x0E[V (Xn)] = E[V (Xn)d j (x0, Z1, . . . , Zn)],

where, writing ϕ for the standard normal density,

d j (x0, z1, . . . , zn) =
−div

(
∂x0 g · J̄−1

g ϕ(z j )
)

/ϕ(z j ) = −∂z j

(
∂x0 g · J̄−1

g ϕ(z j )
)

/ϕ(z j ). (27)
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In our scalar setting, the divergence operator reduces to a partial derivative with
respect to z j .

To evaluate d j , we note that ∂x0g = ∂x0Xn = Yn , and we use (21) to write

J̄ g = ∂Xn

∂z j
= ∂Xn

∂X j

∂X j

∂z j
= ∂Xn

∂X j
σ(X j−1)

√
�.

The multiplicative form of the Y j recursion (23) yields

∂Xn

∂X j
= ∂Xn

∂Xn−1

∂Xn−1

∂X j
= Yn

Yn−1

∂Xn−1

∂X j
= Yn

Yn−1

Yn−1

Yn−2

∂Xn−2

∂X j
= · · · = Yn

Y j
.

Making these substitutions, we get

∂x0g · J̄−1
g = Yn

(
Yn
Y j

σ(X j−1)
√

�

)−1

= Y j

σ(X j−1)
√

�
.

Then, using ϕ′(z) = −zϕ(z),

d j = −∂z j

(
Y jϕ(Z j )

σ (X j−1)
√

�

)
/ϕ(Z j ) = Y j Z j − σ ′(X j−1)Y j−1

√
�

σ(X j−1)
√

�
, (28)

where we used (23) to get

∂z j Y j = σ ′(X j−1)Y j−1

√
�.

Using (23), the first term in the numerator of (28) becomes

Y j Z j = [1 + μ′(X j−1)� + σ ′(X j−1)
√

�Z j ]Y j−1Z j .

Making this substitution and simplifying, (28) becomes

d j = Y j−1Z j

σ(X j−1)
√

�
+ μ′(X j−1)Y j−1Z j

√
�

σ(X j−1)
+ σ ′(X j−1)Y j−1(Z2

j − 1)

σ (X j−1)

≡ Y j−1Z j

σ(X j−1)
√

�
+ ε j (�). (29)

Each such term is badly behaved for small �. But the choice of j was arbitrary;
averaging over all j = 1, . . . , n, and recalling that � = T/n, we get

1

n

n∑
j=1

Y j Z j

σ(X j−1)
√

�
= 1

T

n∑
j=1

Y j Z j

√
�

σ(X j−1)
≈ 1

T

∫ T

0

Yt
σ(Xt )

dWt . (30)
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The expression on the right is the Malliavin weight in (25).
To complete the argument, we need to justify dropping the ε j (�) in (29) and we

need to turn the approximation in (30) into a limit. Conveniently, the average of the
ε j (�) terms is precisely the error term in equation (19) of Theorem 3.1 of Chen and
Glasserman [4]. We can therefore apply Theorem 4.6 of Chen and Glasserman [4]
to conclude the following:

Theorem 1 Under the conditions of Theorem4.6 of [4], the averagedGLRestimator

V (Xn)
1

n

n∑
j=1

d j (x0, Z1, . . . , Zn)

converges in distribution to the Malliavin estimator (25), as n → ∞ with � = T/n.

Although we have leveraged Chen and Glasserman [4], the derivation here is
different: the estimator in Theorem 3.1 of Chen and Glasserman [4] is an average
of combined IPA and LRM estimators; here we have arrived at (30) by averaging
low-rank GLR estimators over alternative choices of “bases” for the low-rank repre-
sentations.

Malliavin calculus is often described as a stochastic calculus of variations that
provides a rigorous treatment of formal differentiationwith respect to dWt terms. The
approach developed here is similar in spirit because it differentiates with respect to
the Z j , which are the discrete-time counterparts of theBrownian increments. (Neither
IPA nor LRM differentiates with respect to the Z j .) This suggests the possibility of
a more systematic way to derive continuous-time derivative estimators as limits of
averages of GLR estimators.

5 Concluding Remarks

We have reviewed combinations and extensions of IPA and LRM derivative estima-
tors, a theme that dates to Pierre’s early work in L’Ecuyer [17] and continues to be
relevant to his recent work in Peng et al. [24]. Intriguing links between GLR and
other methods open questions for further investigation in advancing a unified view
of derivative estimation.

Acknowledgements I thank the editors for organizing this Festschrift and the reviewers for their
helpful comments.
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A Central Limit Theorem For Empirical
Quantiles in the Markov Chain Setting

Peter W. Glynn and Shane G. Henderson

Abstract We provide a new proof of a central limit theorem for empirical quantiles
in the positive-recurrent Markov process setting under conditions that are essentially
tight. We also establish the validity of the method of nonoverlapping batch means
with a fixed number of batches for interval estimation of the quantile. The conditions
of these results are likely to be difficult to verify in practice, and so we also provide
more easily verified sufficient conditions.

Keywords Quantile estimation · Harris processes · Regenerative processes ·
Markov chain Monte Carlo

1 Introduction

Given a real-valued random variable Y with cumulative distribution function (CDF)
F , the pth quantile q (for 0 < p < 1) is q = F−1(p) = inf{x : F(x) ≥ p}. The
problem of quantile estimation is, given p, to determine q = F−1(p).

We focus on the casewhere Y is a randomvariable associatedwith the steady-state
regime of a Markov chain. To be more precise, let X = (Xt : t ≥ 0) be a positive
(Harris) recurrent Markov chain on a general state space S in discrete or continuous
time, and denote the stationary distribution of X byπ . Let f : S → R be a real-valued
function defined on the state space S of X . We consider the problem of computing
the pth quantile q of the random variable Y = f (X0), where X0 has distribution π .
Under mild additional conditions, the pth quantile Qt of the empirical CDF
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F(·, t) = 1

t

∫ t

0
1( f (Xs) ≤ ·) ds (1)

converges to q almost surely. Our main result is a central limit theorem (CLT) for Qt .
We further show that this CLT can be leveraged to establish the validity of the non-
overlapping batch means procedure for reporting asymptotically valid confidence
intervals for q.

A CLT for empirical quantiles can be established by appealing to regenerative
theory. This is the approach taken in [15, 30, 39], for example, and indeed we use
this approach in this paper. We exploit the “1-dependent regenerative property” of
Harris processes to obtain our main results. In addition to smoothness conditions on
the target CDF at the quantile q, our main assumption is that the second moment of
the cycle lengths is finite. As we will show, one cannot expect the CLT to hold in
general if this condition is relaxed.

Since the conditions of our main result are hard to verify in practice, we also
provide more easily-verifiable conditions under which the required properties hold.
These conditions are Lyapunov drift criteria, together with a condition that ensures
that the target distribution is appropriately smooth at the quantile q.

Why are these particular results of interest to the simulation community? It is
known that any discrete-event simulation that is “well-posed”, in a certain precise
sense, can be modelled as a positive Harris recurrent Markov chain [20]. If the state
space of the simulation is continuous, as is often the case, then the analysis in this
paper is relevant. To buttress this point we provide an example in Sect. 6.

Another application area where this problem is of great interest is inMarkov chain
Monte Carlo (MCMC); see, e.g., [18], [16, Chap. 5], [4, Chap. XIII] and especially
[15]. In this setting, one is typically interested in exploring a given distribution π

that is known only up to a normalizing constant. A Markov chain may be produced
whose steady-state distribution is the given distribution π , and one then attempts to
infer properties of the distribution π from Markov chain simulations. Unlike most
work in MCMC, we neither assume nor require reversibility.

Quantile estimation has received a great deal of attention in the simulation com-
munity. In the case where the observations are i.i.d., [6] developed a number of
important results including bias expansions that expand on the general theory for
the i.i.d. case available in, e.g., [41, Sect. 2.3]. [31] derived large-deviations results
for quantile estimators and explored the use of stratification techniques in estimat-
ing quantiles. Other papers that explore the use of variance reduction techniques in
quantile estimation for i.i.d. observations include [19, 21, 28, 29, 37]. Additional
work that develops sufficient conditions for quantile estimators that employ variance
reduction techniques to satisfy a CLT includes [11, 38, 43].

In the case of estimating steady-state quantiles as in the present paper, work
includes [1], where sufficient conditions for the validity of the method of nonover-
lapping batch quantiles are presented, along with a practical algorithm for providing
a confidence interval for a quantile. Additional practical algorithms may be found
in [8, 10, 25]. Asymptotic results for the method of overlapping batch means are
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stated in [45]. In closely related work, [35] gives sufficient conditions for the quan-
tile estimator to satisfy a central limit theorem in the Markov-chain setting. The
sufficient conditions ensure that the chain is geometrically ergodic through the use
of Lyapunov drift criteria, along with additional conditions on the time-dependent
distribution of the chain. In contrast, our conditions are much weaker and we do
not require conditions on the time-dependent distribution. The sufficient conditions
of [35] permit a comparison of the bias and mean-squared error of 3 estimators of
steady-state quantiles in [36].

Perhaps the closest work to ours is [15], though that paper has a more practical
focus on estimationmethodswhile we strive forminimal conditions for the CLT. Ref-
erence [15] establishes the quantile CLT and describes how to estimate the variance
constant that appears in the CLT using both batch means and regenerative methods.
The central assumption there is polynomial ergodicity of an order strictly greater than
1, which implies that the length of regenerative cycles in Harris chains have a finite
(2 + ε) moment for some ε > 0 (see the proof of Theorem 5 in [15]), while we only
require a finite 2nd moment. Moreover, polynomially ergodic chains are necessarily
aperiodic; we do not require aperiodicity. Finally, [15] assumes independent regen-
erative cycles, yet some Harris chains arising in practice cannot have independent
cycles [27].

In early work, [7, 40] established CLTs and laws of the iterated logarithm for
empirical quantiles obtained from φ-mixing stochastic processes. Given that ergodic
Markov chains are strong mixing [5, 13] one could apply these results to the Markov
setting. However, we believe that the hypotheses of these results are difficult to verify
in practice. The assumptions of [46] are more readily verified and were employed in
the quantile estimation context by [1], but may require stronger conditions than does
our analysis. For example, in the single-server example in Section 6where we require
a finite second moment condition, [14] instead requires a finite moment-generating
function to verify a key assumption in [46]. Still, the machinery of [46] may be more
directly applicable to some stochastic processes than ours, so the two approaches are
complementary.

The remainder of this paper is organized as follows. Section 2 proves a CLT
for empirical quantiles under very general hypotheses. The key hypothesis there is
a uniform CLT for the empirical distribution function in a neighbourhood of the
true quantile. Section 3 proves a uniform CLT for 1-dependent sequences. Section 4
specializes the results of the previous sections to obtain the desired quantile CLT
for Harris processes in discrete or continuous time. Section 5 establishes the valid-
ity of non-overlapping batch means, partly through the development of a Bahadur-
Ghosh representation of the quantile estimator, which may be of independent inter-
est. Finally, Sect. 6 gives some sufficient conditions for the quantile CLT to hold, and
presents a small example.
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2 A Quantile Central Limit Theorem

Given a real-valued stochastic process (W (t) : t ≥ 0), let

F(·, t) = t−1
∫ t

0
1(W (s) ≤ ·) ds

be its empirical CDF. For a real-valued process (Wk : k = 0, 1, . . .) in discrete time,
define W (t) = W�t� and F(·, t) as above.

For any fixed x ∈ R, we say that F(x, ·) satisfies a CLT if there exist constants
σ 2(x) > 0, F(x) such that for any y ∈ R

P

(
t1/2[F(x, t) − F(x)]

σ(x)
≤ y

)
− �(y) → 0

as t → ∞, where � denotes the distribution function of a standard normal random
variable. If this CLT holds, then the pointwise convergence is uniform in y, i.e.,

sup
y

∣∣∣∣P
(
t1/2[F(x, t) − F(x)]

σ(x)
≤ y

)
− �(y)

∣∣∣∣ → 0

as t → ∞; see, e.g., [41, p. 18].
We say that F(·, ·) satisfies a CLT uniformly in the set N if

sup
x∈N

sup
y

∣∣∣∣P
(
t1/2[F(x, t) − F(x)]

σ(x)
≤ y

)
− �(y)

∣∣∣∣ → 0 (2)

as t → ∞.

Theorem 1 Fix q ∈ R and suppose that F(·, ·) satisfies a CLT uniformly in an open
neighborhood N of q. Suppose further that F(·) is differentiable at q, F ′(q) > 0,
σ 2(q) > 0 and σ 2(·) is continuous at q. Let p = F(q) and let Qt = F−1(p, t) =
inf{x : F(x, t) ≥ p} be the pth quantile of F(·, t). Let

G(y, t) = P

[√
t(Qt − q)

σ (q)/F ′(q)
≤ y

]
.

Then G(·, t) ⇒ � as t → ∞.

Proof We employ a similar proof to the one for empirical quantiles in the i.i.d. case
given in [41, p. 78]. Define qt = q + t−1/2σ(q)y/F ′(q). Then

G(y, t) = P[Qt ≤ qt ] = P[p ≤ F(qt , t)],

since for any cumulative distribution function H and arbitrary real x and u ∈ (0, 1),
H−1(u) ≤ x if and only if u ≤ H(x) [41, Lemma 1.1.4(iii)]. Now,



A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting 215

G(y, t) = P

[
t1/2

F(qt , t) − F(qt )

σ (qt )
≥ t1/2

p − F(qt )

σ (qt )

]

= P(U (qt , t) ≥ −yt ),

where

U (z, t) = t1/2(F(z, t) − F(z))

σ (z)
and yt = t1/2[F(qt ) − p]

σ(qt )
,

and so

�(y) − G(y, t) = P[U (qt , t) < −yt ] − (1 − �(y))

= [P[U (qt , t) < −yt ] − �(−yt )] + [�(y) − �(yt )]. (3)

We now show that the two bracketed terms in (3) converge to 0 as t → ∞.
For the first term in (3), for t sufficiently large that qt ∈ N ,

|P(U (qt , t) < −yt ) − �(−yt )| ≤ sup
x∈N

sup
−∞<w<∞

|P(U (x, t) < w) − �(w)|.

The uniform CLT assumption ensures that this term converges to 0 as t → ∞.
To show that the second term in (3) converges to 0, it suffices to show that yt → y

as t → ∞. Since F is differentiable at q,

F(qt ) − p = F(qt ) − F(q) = F ′(q)(qt − q) + o(qt − q),

where a quantity rt is said to be o(ht ) if rt/ht → 0 as t → ∞. Thus,

yt = F ′(q)t1/2(qt − q)

σ (qt )
= σ(q)y + o(1)

σ (qt )

as t → ∞. Since σ(qt ) → σ(q) > 0 as t → ∞, yt → y as t → ∞. �

3 A Uniform CLT for 1-Dependent Sequences

The key ingredient in Theorem 1 is the uniform CLT. In this section we establish a
uniformCLT for 1-dependent processes.We then apply this result to Harris processes
in Sect. 4.

Let Z(θ) = (Zn(θ) : n ≥ 1) be a stationary sequence of real-valued, 1-dependent,
mean 0 random variables for each θ ∈ �. Let

Sn(θ) =
n∑

i=1

Zi (θ).
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It is well known that if EZ2
1(θ) < ∞ and

η2(θ) = EZ2
1(θ) + 2EZ1(θ)Z2(θ) > 0

then as n → ∞, we have the CLT

sup
y∈R

∣∣∣∣P
(

Sn(θ)

η(θ)
√
n

≤ y

)
− �(y)

∣∣∣∣ → 0.

We seek a uniform (in θ ) version of this result, which requires a linking assumption.

A1 The family of random variables (Z2
1(θ) : θ ∈ �) is uniformly integrable.

Theorem 2 Let Z(θ) and η2(θ) be defined as above for all θ ∈ �. Suppose that
Assumption A1 holds and η2(θ) is bounded away from 0 for θ ∈ �. Then, as n → ∞,

sup
θ∈�

sup
y∈R

∣∣∣∣P
(

Sn(θ)

η(θ)
√
n

≤ y

)
− �(y)

∣∣∣∣ → 0.

We need some preliminary results before proving Theorem 2. First, we show that
in proving a uniform CLT, we can ignore terms that are uniformly small in θ . The
proof is an extension of that of the converging together lemma [41, p. 19] and omitted.

Lemma 1 Let Un(θ), Vn(θ),Wn(θ) and Xn(θ) be real-valued random variables
for all n ≥ 1 and all θ ∈ �. Suppose that for all n ≥ 1 and all θ ∈ �, Xn(θ) =
Un(θ)Vn(θ) + Wn(θ). Suppose that for all ε > 0,

lim
n→∞ sup

θ∈�

P(|Un(θ) − 1| > ε) = 0 and lim
n→∞ sup

θ∈�

P(|Wn(θ)| > ε) = 0, and

lim
n→∞ sup

θ∈�

sup
y

|P(Vn(θ) ≤ y) − G(y)| = 0

for some distribution function G. Then (Xn(·) : n ≥ 1) satisfies

lim
n→∞ sup

θ∈�

sup
y

|P(Xn(θ) ≤ y) − G(y)| = 0.

Lemma 2 is a special case of Theorem 18.1 and Corollary 18.3 of [9].

Lemma 2 Suppose that (Un : n ≥ 1) is an i.i.d. sequence of r.v.’s with mean 0 and
variance 1, and let N denote a standard normal random variable. Let g(x, a) =
x2 I (|x | > a), and Gn denote the distribution function of n−1/2 ∑n

i=1Ui . Then

1.

∣∣∣∣∣Eg
(

1√
n

n∑
i=1

Ui , a

)
− Eg(N , a)

∣∣∣∣∣ ≤ cδn, and

2. sup
y

|Gn(y) − �(y)| ≤ cδn,
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where the constant c does not depend on a, n, or the distribution of U1, and

δn = inf
ε∈[0,1]

(
ε + E[U 2

1 ;U 2
1 > nε2]) .

Let Z̃(θ) = (Z̃n(θ) : n ≥ 1) be an i.i.d. sequence of real-valued random variables
with Z̃1(θ) having the same distribution as Z1(θ) for all θ ∈ �. Define the variance
γ 2(θ) = EZ2

1(θ), and for n ≥ 1 let S̃n(θ) = ∑n
i=1 Z̃i (θ).

Lemma 3 (Uniform integrability assuming independence) Under the conditions of
Theorem 2, as n → ∞,

sup
θ∈�

E

[
S̃2n (θ)

nγ 2(θ)
; S̃2n (θ) > nγ 2(θ)an

]
→ 0

for any sequence of positive constants {an} with the property that an → ∞ as n →
∞.

Proof Fora > 0, define g(x, a) = x2 I (|x | > a), and letN denote a standard normal
random variable. Since EN 2 < ∞, Eg(N , an) → 0 as n → ∞. Part 1 of Lemma 2
implies that ∣∣∣∣∣Eg

(
S̃n(θ)√
nγ (θ)

, an

)
− Eg(N , an)

∣∣∣∣∣ ≤ cδn(θ),

where c is a constant that does not depend on an, n or θ and

δn(θ) = inf
ε∈[0,1]

(
ε + E

[
Z̃2
1(θ)

γ 2(θ)
; Z̃2

1(θ) > nε2γ 2(θ)

])
. (4)

We assumed that η2(θ) is bounded away from 0, and therefore so is γ 2(θ), since

η2(θ) = γ 2(θ) + 2EZ1(θ)Z2(θ) ≤ γ 2(θ) + EZ2
1(θ) + EZ2

2(θ) = 3γ 2(θ).

Let γ 2 > 0 be a lower bound on γ 2(θ) over θ ∈ �. It follows that the second term
in the infimum in (4) is bounded above by

γ −2
E[Z̃2

1(θ); Z̃2
1(θ) > nε2γ 2] = γ −2

E[Z2
1(θ); Z2

1(θ) > nε2γ 2].

Ifwenowchoose ε = ε(n) in such away thatnε2(n) → ∞ and ε(n) → 0 asn → ∞,
then A1 ensures that supθ∈� δn(θ) → 0 as n → ∞, proving the result. �
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Lemma 4 (Uniform integrability assuming 1-dependence) Under the conditions of
Theorem 2, as n → ∞,

sup
θ∈�

E

[
S2n (θ)

nη2(θ)
; S2n (θ) > nη2(θ)an

]
→ 0

for any sequence of positive constants {an} with the property that an → ∞ as n →
∞.

Proof We can write

Sn(θ) =
n∑

i=1,i odd

Zi (θ) +
n∑

i=1,i even

Zi (θ)

= S̃n(θ, 1) + S̃n(θ, 2) (say).

LetMn(θ) = max{|S̃n(θ, 1)|, |S̃n(θ, 2)|} so that S2n (θ) ≤ [2Mn(θ)]2.Now, |Sn(θ)| >

u implies that |S̃n(θ, i)| > u/2 for at least one of i = 1, 2,which is, in turn, equivalent
to Mn(θ) > u/2. Thus,

E

[
S2n (θ)

nη2(θ)
; S2n (θ) > nη2(θ)an

]
≤ E

[
4M2

n (θ)

nη2(θ)
; M2

n (θ) > nη2(θ)an/4

]

≤
2∑

i=1

E

[
4S̃2n (θ, i)

nη2(θ)
; S̃2n (θ, i) > nη2(θ)an/4

]
.

(5)

We now apply Lemma 3 to each of the summands in (5) to complete the proof. We
use the fact that each of the summands consists of essentially n/2 terms, and also
that γ 2(θ)/η2(θ) is bounded away from 0 and bounded above. �

Proof (of Theorem 2) We use the “big block, little block” argument (e.g., [12, Theo-
rem 7.3.1]) to reduce the problem for 1-dependent summands to one for independent
summands. The big blocks are sums of consecutive Zi (θ)s, which are separated by
small blocks of size 1 that ensure, together with 1-dependence, that the big blocks
are independent. When the big blocks grow at an appropriate rate with n, the result
follows. Letmn = �nα� be the size of the blocks, where α ∈ (0, 1). Let kn = �n/mn�
be the number of big blocks. For 1 ≤ j ≤ kn , define the j th big block to be

 j (θ, n) =
jmn−1∑

i=( j−1)mn+1

Zi (θ).
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Then for n ≥ 1,

Sn(θ) =
kn∑
j=1

 j (θ, n) +
kn∑
j=1

Z jmn (θ) +
n∑

i=knmn+1

Zi (θ)

= S′
n(θ) + S′′

n (θ) + S′′′
n (θ) say.

The hypothesis of 1-dependence ensures that for n sufficiently large, the  j (θ, n)s
are i.i.d. (in j). Furthermore, so are the Z jmn (θ)s provided that mn > 1, which is
again assured for n large enough. For any ε > 0 and n sufficiently large thatmn > 1,

P

( |S′′
n (θ)|

η(θ)
√
n

> ε

)
≤ ES′′

n (θ)2

nε2η2(θ)
≤ knγ 2(θ)

nε2η2
, (6)

where η2 > 0 is a lower bound on η2(θ) over θ ∈ �. Assumption A1 implies that
γ 2(θ) is bounded above, so that (6) converges to 0 uniformly in θ ∈ � as n → ∞.
Similarly, we can show that S′′′

n (θ) does not figure in the asymptotics (uniformly in
θ ∈ �). So by Lemma 1 it suffices to show a uniform CLT for n−1/2S′

n(θ)/η(θ). Let

v2
n(θ) = Var j (θ, n) = (mn − 1)η2(θ) − 2EZ1(θ)Z2(θ)

be the variance of the big blocks. Applying Part 2 of Lemma 2 to a normalized version
of S′

n(θ), we get

sup
y∈R

∣∣∣∣P
(

S′
n(θ)

vn(θ)
√
kn

≤ y

)
− �(y)

∣∣∣∣ ≤ cδn(θ),

where c is a constant that does not depend on n or θ , and

δn(θ) = inf
ε∈[0,1]

(
ε + E

[
2
1(θ, n)

v2
n(θ)

;2
1(θ, n) > knε

2v2
n(θ)

])
. (7)

Now choose ε = ε(n) in such away that knε2(n) → ∞ and ε(n) → 0 as n → ∞.
We then apply Lemma 4 to the second term in the infimum in (7), using the facts
that 1(θ, n) = Smn (θ) and v2

n(θ)/(mnη
2(θ)) → 1 as n → ∞ uniformly in θ . We

can then conclude that (7) converges to 0 uniformly in θ as n → ∞.
To complete the proof, observe that

S′
n(θ)

vn(θ)
√
kn

− S′
n(θ)

η(θ)
√
n

= βn(θ)S′
n(θ)

vn(θ)
√
kn

,

where βn(θ) → 0 as n → ∞ uniformly in θ . Thus,
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P

(∣∣∣∣βn(θ)S′
n(θ)

vn(θ)
√
kn

∣∣∣∣ > ε

)
≤ ES′

n(θ)2

knv2
n(θ)

β2
n (θ)

ε2
= β2

n (θ)

ε2
→ 0

as n → ∞, uniformly in θ . The result now follows from Lemma 1. �

4 A Quantile Central Limit Theorem for Harris Processes

We now specialize the preceding results to positive-recurrent Harris processes X
on state space S in both discrete and continuous time. These processes possess 1-
dependent structure that we exploit. Suppose that S is a complete, separable metric
space equipped with Borel sigma algebra S. We assume without further comment
that if X is a continuous-time process, then it is non-explosive and strong Markov,
and that its sample paths are right-continuous with left limits. (See [3, pp. 198–206,
407–410] for background.) Let Px and Ex be the probability and expectation over
path space when X0 = x . We first define a Harris chain in discrete time.

Definition 1 We say that X = (Xn : n = 0, 1, 2, . . .) is a Harris chain on (S,S) if
there exists a set C ∈ S, a γ > 0, a probability measure ϕ and an m ≥ 1 such that

A2 Px (Xm ∈ A) ≥ γ ϕ(A) for all x ∈ C and all A ∈ S, and
A3 Px (

∑∞
n=0 I (Xn ∈ C) = ∞) = 1 for all x ∈ S.

Harris processes in continuous time can be defined as follows.

Definition 2 We say that X = (Xt : t ∈ [0,∞)) is a Harris process on (S,S)

if there exists a probability measure ν on (S,S) such that whenever ν(A) > 0,
Px (

∫ ∞
t=0 1(Xt ∈ A) = ∞) = 1 for all x ∈ S.

AHarris process X in discrete or continuous time automatically possesses a unique
(up to a multiplicative constant) stationary measure π . If π(S) < ∞, then we can
normalize π to a probability and we then say that X is positive Harris recurrent.

Harris processes are regenerative. ForHarris chains (in discrete time), regeneration
times can be defined through the famous split-chain construction; see [33] for a
complete treatment. For Harris processes (in continuous time), regeneration times
can be defined using the fact that Harris processes in continuous time observed at the
event times of an independent homogeneous Poisson process are Harris chains (let us
call the resulting chain the sampled chain), and then using the split-chain construction
as discussed in [42]; see also [3, p. 199]. (Asmussen uses a non-standard definition
of Harris recurrence in continuous time, but the basic ideas are present.) Here we
sketch the key ideas behind this construction of regeneration times, as we will need
the construction later.

Let (�(i) : i ≥ 0) be the event times in a homogeneous Poisson process that is
independent of X , where�(0) = 0, and let N (t) = max{i ≥ 0 : �(i) ≤ t} for t ≥ 0
be the associated counting process. Define X̃i = X�(i) for i ≥ 0. Then X̃ = (X̃i :
i ≥ 0) is an embedded discrete-time Harris chain.
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Proposition 1 Let (X̃n : n = 0, 1, 2, . . .) be the sampled chain as constructed above
from a unit-rate Poisson process. Then we may assume that A2 holds with m = 1.

Proof Sample the Harris process X = (Xt : t ∈ [0,∞)) at the event times of a
Poisson process with rate 2 that is independent of X to obtain a sampled chain
X̂ = (X̂n : n = 0, 1, 2, . . .). The sampled chain X̂ then satisfies A2 for somem ≥ 1,
C and γ > 0. Thus, for all x ∈ C , Px (X̂m ∈ ·) ≥ γ ϕ(·), i.e.,

∫ ∞

0

2mtm−1e−2t

(m − 1)! Px (Xt ∈ ·) dt ≥ γ ϕ(·).

We can find some c > 0 so that

ce−t ≥ 2mtm−1e−2t

(m − 1)!
for all t ≥ 0, and it follows that for all x ∈ C ,

∫ ∞

0
e−t Px (Xt ∈ ·) dt ≥ γ

c
ϕ(·),

i.e., Px (X̃1 ∈ ·) ≥ (γ /c)ϕ(·) for all x ∈ C , as required. �

Turning to the construction of regeneration times, if the chain is to be initiatedwith
distribution ϕ then define T (0) = 0 (the “zeroth” regeneration time), set the number
of complete regeneration cycles � = 0, a counter of “attempted splits” n = 0, the
“wall clock time” t = 0 and generate X̃0 from ϕ. Otherwise, set T (−1) = 0, set the
number of complete regenerative cycles � = −1, the counter n = 0 and t = 0, and
generate X̃0 from the desired distribution of the process X at time 0. Next, generate
(X̃1, X̃2, . . . , X̃ N ), where N = inf{ j ≥ 0 : X̃ j ∈ C} is the (discrete) first hitting time
of the set C . Also generate the (continuous) time process X up to time �(N ) from
its appropriate conditional distribution. Next, independent of all else, set n = n + 1
and generate a Bernoulli random variable In , with P(In = 1) = γ . If In = 1, then
a regeneration occurs on the next (discrete-time) step, so set � = � + 1, set the �th
regeneration time T (�) equal to �(N + 1), the time of the next event in the Poisson
process beyond time �(N ), and generate X̃ N+1 according to ϕ. If In = 0, then
generate X̃ N+1 according to (P̃(x, ·) − γ ϕ(·))/(1 − γ ), where P̃ is the transition
kernel for the sampled chain and x = X̃ N . Then generate the (continuous-time)
intervening values (Xs : �(N ) < s < �(N + 1)) from the appropriate conditional
distribution given the endpoint values. Set the “current time” t = �(N + 1) and
repeat this process, thereby inductively constructing the continuous time process
and its regeneration times (T (k) : k ≥ 0).



222 P. W. Glynn and S. G. Henderson

In the remainder of this section we exploit the fact that Harris processes are
regenerative. In order to simultaneously treat Harris processes in both discrete and
continuous time, in the remainder of this section we view aHarris chain (Xn : n ≥ 0)
as a continuous-time process (Xt : t ≥ 0) where Xt = X�t�. Such a process is no
longer a Markov process, but it is regenerative.

For i ≥ 0, let τi = T (i) − T (i − 1) be the length of the i th regenerative cycle,
and define the i th cycle to be Wi = (XT (i−1)+s : 0 ≤ s < τi , τi ). As discussed in
[3], the cycles (W0,W1,W2, . . .) are 1-dependent and the cycles (W1,W2, . . .) are
identically distributed. This structure allows us to define the stationary measure π as
follows.

For a function g : S → [0,∞) define, for i ≥ 0, Yi (g) = ∫ T (i)
T (i−1) g(Xs) ds. Define

Yi (g) for signed g by splitting g into its positive and negative components. Now, for
A ∈ S, define π(A) = E[Y1(1(· ∈ A))]. Then π(S) = Eτ1, so that π has finite total
mass and the process is positive Harris recurrent if and only if Eτ1 < ∞. We now
restrict our attention to the positive Harris recurrent case, and normalize π to a
probability measure by redefining π(A) = E[Y1(1(· ∈ A))]/Eτ1. Also, for g : S →
R, define π(g) = ∫

S g(x)π(dx).
Now, let f : S → R and for real x and t > 0, let F(x, t) = t−1

∫ t
0 1( f (Xs) ≤ x) ds

be the empirical distribution function at time t . The strong law for positive Harris
recurrent processes (see, e.g., [3, p. 203]), asserts that F(x, t) → F(x) as t → ∞
almost surely, where

F(x) = π(1( f (·) ≤ x)) = E
∫ T (1)
T (0) 1( f (Xs) ≤ x) ds

Eτ1
.

Also, let Qt be the pth quantile associated with F(·, t) and q be the pth quantile of
F . Our goal in this section is a CLT for Qt .

For t ≥ 0, let �(t) = max{k : T (k) ≤ t} be the number of identically-distributed
cycles completed by time t and let λ = 1/Eτ1. Also, for i ≥ 1, define the cycle
quantity

Zi (x) =
∫ T (i)

T (i−1)
[1( f (Xs) ≤ x) − F(x)] ds.

Lemma 5 Suppose that Eτ 2
1 < ∞. Then

√
t(F(x, t) − F(x)) = 1√

t

�λt�∑
i=1

Zi (x) + R(x, t)

where limt→∞ supx P(|R(x, t)| > ε) = 0 for any ε > 0.
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Proof Observe that

t (F(x, t) − F(x)) =
∫ t

0
[1( f (Xs) ≤ x) − F(x)] ds

= O(τ0) +
∫ T (�(t))

T (0)
[1( f (Xs) ≤ x) − F(x)] ds + O(τ�(t)+1)

(8)

where O(x) denotes a value z such that |z| ≤ cx for some constant c > 0. We can
then write (8) as

�(t)∑
i=1

Zi (x) + O(τ0 + τ�(t)+1). (9)

Now, (Zi (x) : i ≥ 1) is a 1-dependent, identically distributed sequence of random
variables, and

VarZ1(x) = EZ2
1(x)

= E

(∫ T (1)

T (0)
[1( f (Xs) ≤ x) − F(x)] ds

)2

≤ E

(∫ T (1)

T (0)
|1( f (Xs) ≤ x) − F(x)| ds

)2

≤ Eτ 2
1 . (10)

From (9) we see that

R(x, t) = t−1/2O(τ0 + τ�(t)+1) + t−1/2
�(t)∑
i=1

Zi (x) − t−1/2
�λt�∑
i=1

Zi (x). (11)

The first term on the right-hand side of (11) does not depend on x , and furthermore,
converges almost surely to 0 as n → ∞; see, e.g., [33, p. 420]. So it suffices to study
the second and third terms on the right-hand side of (11). We use a modification
of a standard argument (see, e.g., [33, p. 420] or [12, p. 216] for the standard case)
that accounts for the 1-dependence of the sequence (Zi (x) : i ≥ 1) and our goal of
uniformity in x . Let ε and δ be arbitrary positive quantities. Then
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P

⎛
⎝

∣∣∣∣∣∣
�(t)∑
i=1

Zi (x) −
�λt�∑
i=1

Zi (x)

∣∣∣∣∣∣ > εt1/2

⎞
⎠

≤ P

⎛
⎝

∣∣∣∣∣∣
�(t)∑
i=1

Zi (x) −
�λt�∑
i=1

Zi (x)

∣∣∣∣∣∣ > εt1/2; |�(t) − λt | > δt

⎞
⎠

+ P

⎛
⎝

∣∣∣∣∣∣
�(t)∑
i=1

Zi (x) −
�λt�∑
i=1

Zi (x)

∣∣∣∣∣∣ > εt1/2; |�(t) − λt | ≤ δt

⎞
⎠

≤ P(|�(t) − λt | > δt) + P

(
�δt
max
k=1

∣∣∣∣∣
k∑

i=1

Zi (x)

∣∣∣∣∣ > εt1/2
)

≤ P(|�(t) − λt | > δt) + P

(
�δt
max
k=1

∣∣∣∣∣
k∑

i=1,i odd

Zi (x)

∣∣∣∣∣ > εt1/2/2

)

+ P

(
�δt
max
k=1

∣∣∣∣∣
k∑

i=1,i even

Zi (x)

∣∣∣∣∣ > εt1/2/2

)
(12)

≤ P(|�(t) − λt | > δt) + (δt + 1)VarZi (x)

ε2t/4
(13)

where (13) follows fromKolmogorov’smaximum inequality; see, e.g., [12, Theorem
5.3.1]. We add only over odd cycles or even cycles, so the terms in the sums in (12)
are independent, and there are a total of at most δt + 1 terms. Now choose δ = ε3,
so that the bound (13) becomes

P(|�(t) − λt | > δt) + 4(ε + ε−2t−1)VarZi (x) ≤ P(|�(t) − λt | > δt) + 4(ε + ε−2t−1)Eτ 21 .

This bound does not depend on x , and a standard renewal-theoretic result ensures
that �(t)/t → λ as t → ∞ almost surely and hence in probability. Since ε > 0 was
arbitrary, this completes the proof. �

The representation given in Lemma 5 is sufficient to obtain a CLT for F(x, ·) for
any fixed x . In particular, using a CLT for 1-dependent sequences and assuming that
Eτ 2

1 < ∞ we see that
√
t(F(x, t) − F(x)) ⇒ σ(x)N (0, 1) as t → ∞, where

σ 2(x) = EZ2
1(x) + 2EZ1(x)Z2(x)

Eτ1
.

To apply Theorem 1 we need σ 2(·) to be continuous in a neighborhood of q. To this
end we have the following result.

Lemma 6 Suppose that Eτ 2
1 < ∞ and that F is continuous at q. Then σ 2(·) as

defined above is continuous at q.
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Proof Since F(·) = Pπ ( f (X0) ≤ ·) is continuous at q, it follows that Pπ ( f (X0) =
q) = 0. But then, for all i ≥ 1,

0 = Pπ ( f (X0) = q) = E
∫ T (i)
T (i−1) 1( f (Xs) = q) ds

Eτ1
,

so that E
∫ T (i)
T (i−1) 1( f (Xs) = q) ds = 0. It immediately follows that Zi (x) → Zi (q)

as x → q almost surely for any i ≥ 1. Hence

Z2
1(x) + 2Z1(x)Z2(x) → Z2

1(q) + 2Z1(q)Z2(q)

as x → q almost surely. Furthermore, |Z2
1(x) + 2Z1(x)Z2(x)| ≤ τ 2

1 + 2τ1τ2 for any
x and E(τ 2

1 + 2τ1τ2) ≤ 3Eτ 2
1 < ∞. The dominated convergence theorem then gives

σ 2(x) = E(Z2
1(x) + 2Z1(x)Z2(x))

Eτ1
→ E(Z2

1(q) + 2Z1(q)Z2(q))

Eτ1
= σ 2(q)

as x → q as desired. �

We are now in a position to state and prove the main result of the paper.

Theorem 3 Suppose that Eτ 2
1 < ∞, F is differentiable at q with F ′(q) > 0 and

σ 2(q) > 0. Then, as t → ∞,

√
t(Qt − q)

σ (q)/F ′(q)
⇒ N (0, 1).

Proof Lemma 6 together with the assumption that σ 2(q) > 0 ensures that σ 2(·) is
bounded away from 0 in a neighborhood N of q. Furthermore, the random variables
(Z1(x) : x ∈ (−∞,∞)) are uniformly integrable, as can be seen from (10). These
observations, together with the representation given in Lemma 5 and Theorem 2
ensure that the uniform CLT holds, i.e.,

sup
x∈N

sup
y

∣∣∣∣P
(
t1/2[F(x, t) − F(x)]

σ(x)
≤ y

)
− �(y)

∣∣∣∣ → 0

as t → ∞. The result now follows from Theorem 1. �

Remark 1 The following example indicates thatwe cannot relax the assumption that
Eτ 2

1 < ∞. Let τ1, τ2, . . . be i.i.d. nonnegative random variables where 0 < Eτ1 < ∞
and Eτ 2

1 = ∞. For n ≥ 1 let T (n) = τ1 + · · · + τn and let T (0) = 0. For t ≥ 0 let
�(t) = sup{n : T (n) ≤ t} be the number of completed cycles by time t . Let Xt =
t − T (�(t)), so that X = (Xt : t ≥ 0) is the age process associated with the renewal
process (�(t) : t ≥ 0). Take f to be the identity function, and note that
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F(x) = E
∫ τ1
0 I (Xs ≤ x)

Eτ1
ds = E[x ∧ τ1]

Eτ1
,

where a ∧ b = min(a, b). To simplify things, we assume that τ1 > 1 a.s., so that for
x ∈ [0, 1], F(x) = x/Eτ1. Choose p ∈ (0, 1/Eτ1) so thatq = F−1(p) = pEτ1 < 1.
Then for y ∈ R and t sufficiently large that q + yt−1/2 < 1,

P(t1/2(Qt − q) ≤ y) = P(Qt ≤ q + yt−1/2)

= P(p ≤ F(q + yt−1/2, t)) (14)

= P(pt ≤ [q + yt−1/2]�(t) + Rt ), (15)

where Rt = (q + yt−1/2) ∧ Xt . Equality (14) follows from [41, Lemma 1.1.4], and
(15) since t F(x, t) = x�(t) + x ∧ Xt for x < 1. Now, since q = pEτ1,

P(t1/2(Qt − q) ≤ y) = P

(
pt3/2

�(t)
− pEτ1

√
t − Rt

√
t

�(t)
≤ y

)

= P

(
pt

�(t)

t − �(t)Eτ1√
t

− Rt
√
t

�(t)
≤ y

)

= P

(
pt

�(t)

1√
t

�(t)∑
i=1

(τi − Eτ1) + pt

�(t)

Xt√
t

− Rt
√
t

�(t)
≤ y

)
.

(16)

Now, t/�(t) → Eτ1 as t → ∞ a.s. Furthermore, the set of random variables (Xt :
t ≥ 0) is tight (see [24, Proposition 1] and [23, Proposition 9]), and so

pt

�(t)

Xt√
t

− Rt
√
t

�(t)
⇒ 0

as t → ∞. Thus, from the converging together lemma (e.g., [12, Theorem 4.4.6
and corollary]) and (16), t1/2(Qt − q) converges in distribution to a normal random
variable if and only if

t−1/2
�(t)∑
i=1

(τi − Eτ1) (17)

converges in distribution to a normal random variable. From [24], (17) converges
in distribution to a normal random variable if and only if Eτ 2

1 < ∞, so the desired
CLT does not hold. The other conditions of Theorem 3 are easily seen to hold for
this example. Thus, the condition Eτ 2

1 < ∞ is, in a certain sense, sharp.
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5 The Validity of Non-overlapping Batch-Means
Estimation

Theorem 3 establishes conditions under which the quantile estimator Qt is asymp-
totically normally distributed. One would like to leverage this result to provide con-
fidence intervals for q. Constructing such confidence intervals by directly estimating
the variance constant σ(q)/F ′(q) is difficult, because both terms in this expression
are challenging to estimate. Indeed, regenerative estimators ofσ(q) require the ability
to identify the cycle boundaries (T (i) : i ≥ 0), and this is, at best, extremely diffi-
cult in general discrete-event simulations [27]. Furthermore, the density term F ′(q)

requires some form of density estimator, and such estimators typically converge at a
rate that is slower than the canonical t−1/2 rate [44].

An alternative is the method of non-overlapping batch quantiles; see, e.g., [2, 35].
In this method, the sample path (Xs : 0 ≤ s ≤ t) is divided into b batches, with the
i th batch given by (Xs : (i − 1)t/b < s ≤ i t/b), i = 1, 2, . . . , b. Let Fi (·, t) denote
the empirical CDF based on the i th batch, so that

Fi (x, t) = b

t

∫ i t/b

(i−1)t/b
1( f (Xs) ≤ x) ds,

for all x ∈ R and all i = 1, 2, . . . , b. Let Qi (t) = F−1
i (p, t) be the estimator of the

p quantile based on the i th batch. Theorem 3 basically establishes that, for each i ,
Qi (t) is approximately normal. If, in addition, Qi (t) is asymptotically independent of
Q j (t) for i �= j , then standard confidence interval theory ensures that an approximate
100(1 − α)% confidence interval is given by

Q̄(t) ± tα,b−1
sb√
b
, (18)

where Q̄(t) = b−1 ∑b
i=1 Qi (t) is the average of the batch quantiles, s2b is the sam-

ple variance of Q1(t), Q2(t), . . . , Qb(t), and tα,b−1 is the 1 − α/2 quantile of a t
distribution with b − 1 degrees of freedom.

This procedure is rigorously justified through a joint CLT for (Qi (t) : i =
1, 2, . . . , b), which we provide in Theorem 4 below.

Quantile estimators are known to exhibit bias, with the bias being on the order of
the inverse of the runlength [6]. Accordingly, the estimator Q̄(t) has a bias that can
be expected to be approximately b times as large as that of the estimator Qt of the
quantile based on the entire length-t sample path. The coverage of the confidence
interval (18) can be expected to be improved if the average of the batch quantiles
Q̄(t) is replaced by Qt . The asymptotic validity of confidence intervals constructed
in this way is assured through the joint CLT, Theorem 4, and a result that establishes
that Qt and Q̄(t) are “close” in the sense that t1/2(Qt − Q̄(t)) ⇒ 0 as t → ∞. This
latter result is a direct consequence of Proposition 2 below, which gives a so-called
Bahadur-Ghosh representation of quantile estimators in the Markov chain setting.
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Our first result in this section provides a representation for the batch empirical
CDFs along the lines of Lemma 5. The proof follows almost exactly the same lines
as that of Lemma 5, using a vector version of Lemma 1, and so is omitted.

Lemma 7 If Eτ 2 < ∞ then for x ∈ R
b,

√
t

b

⎛
⎜⎜⎜⎝

F1(x1, t) − F(x1)
F2(x2, t) − F(x2)

...

Fb(xb, t) − F(xb)

⎞
⎟⎟⎟⎠ = 1√

t
b

⎛
⎜⎜⎜⎜⎝

∑l
j=1 Z j (x1)∑2l

j=l+1 Z j (x2)
...∑bl

j=(b−1)l+1 Z j (x2)

⎞
⎟⎟⎟⎟⎠ + R(x, t),

where l = �λt/b� and the vector-valued error term R(x, t) satisfies, for any ε > 0,

lim
t→∞ sup

x
P(‖R(x, t)‖ > ε) = 0.

The next result is a vector version of the uniform CLT, Theorem 2. The proof is
very similar to that of Theorem 2 and so we only provide a sketch of the proof.

Lemma 8 Let (q1, q2, . . . , qb) ∈ R
b and let Ni be an open neighbourhood of qi

for each i = 1, 2, . . . , b. Let Ñ = N1 × N2 × · · · × Nb. If Eτ 2 < ∞ and η(x) =
EZ2

1(x) + 2E[Z1(x)Z2(x)] is bounded away from 0 for x ∈ ∪b
i=1Ni , then

sup
x∈Ñ

sup
y∈Rb

∣∣∣∣∣P
(∑il

j=(i−1)l+1 Z j (xi )

η(xi )
√
l

≤ yi , i = 1, 2, . . . , b

)
−

b∏
i=1

�(yi )

∣∣∣∣∣ → 0

as t → ∞, where l = l(t) = �λt/b�.
Proof (Sketch) Within each batch, apply the “big block little block” argument to
obtain asymptotic (marginal) normality, as in the proof of Theorem 2 for each batch.
To obtain the desired asymptotic independence, drop the last cycle in each batch,
i.e., write the i th batch sum as

√
l − 1

l

∑il−1
j=(i−1)l+1 Z j (xi )

η(xi )
√
l − 1

+ Zil(xi )

η(xi )
√
l

and now apply the matrix version of Lemma 1. �

Theorem 4 Suppose that Eτ 2 < ∞. Suppose further that F(·) is differentiable at
q, F ′(q) > 0, σ 2(q) > 0 and σ 2(·) is continuous at q. For y ∈ R

b let

G(y, t) = P

(√
t/b(Qi (t) − q)

σ (q)/F ′(q)
≤ yi , i = 1, . . . , b

)
.

Then G(y, t) → ∏b
i=1 �(yi ) as t → ∞.
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Proof The proof is very similar to that of Theorem 1. Define

qt,i = q + σ(q)yi
F ′(q)

√
t/b

,

for i = 1, 2, . . . , b. Then

G(y, t) = P(Qi (t) ≤ qt,i , i = 1, 2, . . . , b)

= P(p ≤ Fi (qt,i , t), i = 1, 2, . . . , b)

= P(Ui (qt,i , t) ≥ −yt,i , i = 1, 2, . . . , b),

where

Ui (z, t) =
√

t

b

Fi (z, t) − F(z)

σ (z)
and yt,i =

√
t

b

F(qt,i ) − p

σ(qt,i )
.

Defining �̄(a) = 1 − �(a), we have that �(a) = �̄(−a), and so

G(y, t) −
b∏

i=1

�(yi ) = P(Ui (qt,i , t) ≥ −yt,i , i = 1, 2, . . . , b) −
b∏

i=1

�̄(−yt,i )

+
b∏

i=1

�(yt,i ) −
b∏

i=1

�(yi ).

The first line of the right-hand side converges to 0 by the uniform law of large
numbers. The second line converges to 0 because yt,i → yi as t → ∞. �

This is the desired multivariate CLT. Thus batch means using the average of the
batch quantiles is asymptotically valid.

Recall that if t1/2(Qt − Q̄(t)) ⇒ 0, then we can replace the average of the batch
quantiles, Q̄(t), in the joint CLT above with Qt , the quantile estimator based on the
entire sample path. We now establish the Bahadur-Ghosh representation

Qt = q − F(q, t) − F(q)

F ′(q)
+ R(t), (19)

where t1/2R(t) ⇒ 0 as t → ∞. Applying this representation to each batch, i =
1, 2, . . . , b yields

Qi (t) = q − Fi (q, t) − F(q)

F ′(q)
+ Ri (t),

and averaging gives



230 P. W. Glynn and S. G. Henderson

Q̄(t) = q − F(q, t) − F(q)

F ′(q)
+ 1

b

b∑
i=1

Ri (t)

= Qt − R(t) + 1

b

b∑
i=1

Ri (t)

which gives the desired result. It therefore remains to prove the Bahadur-Ghosh
representation. We first state a lemma due to [17], and then prove the representation.

Lemma 9 ([17]) Let (νt : t ≥ 0) and (ξt : t ≥ 0) be two stochastic processes sat-
isfying the following conditions.

1. The process (ξt : t ≥ 0) is tight, i.e., for all δ > 0 there exists M > 0 such that
P(|ξt | > M) ≤ δ.

2. For all y ∈ R and h > 0,

lim
t→∞P(νt ≤ y, ξt ≥ y + h) = lim

t→∞P(νt ≥ y + h, ξt ≤ y) = 0.

Then νt − ξt ⇒ 0 as t → ∞.

Proposition 2 Suppose that F is differentiable at q with F ′(q) > 0 and Eτ 2 < ∞.
Then the Bahadur-Ghosh representation (19) is valid.

Proof The essential elements of our proof are similar to those in [17] for the i.i.d.
case. Let y ∈ R be arbitrary.As in the proof of Theorem1, the events {t1/2(Qt − q) ≤
y} and

{ − t1/2(F(q + t−1/2y, t) − F(q + t−1/2y)) ≤ t1/2(F(q + t−1/2y) − p)
}

are identical.
The differentiability of F at q ensures that t1/2(F(q + t−1/2y) − p) = F ′(q)y +

o(1) as t → ∞. Furthermore,

t1/2(F(q + t−1/2y, t) − F(q + t−1/2y)) = t1/2(F(q, t) − F(q)) + V (t),

where the remainder term V (t) is given by

t1/2(F(q + t−1/2y, t) − F(q + t−1/2y) − F(q, t) + F(q)).

The proof will be complete if we show that V (t) ⇒ 0 as t → ∞. (To see why, take
νt = t1/2(Qt − q) and ξt = t1/2(F(q, t) − F(q))/F ′(q) + V (t)/F ′(q) in Lemma 9
above.)
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From Lemma 5, we can write

V (t) = t−1/2
�λt�∑
i=1

Wi (t) + R(t),

where the (mean-zero) cycle-term Wi (t) = Zi (q + t−1/2y) − Zi (q) and R(t) ⇒ 0
as t → ∞. Chebyshev’s inequality then gives that for arbitrary ε > 0,

P

(∣∣∣∣∣t−1/2
�λt�∑
i=1

Wi (t)

∣∣∣∣∣ > ε

)
≤ 1

ε2t

(�λt�EW 2
1 (t) + 2(�λt� − 1)E[W1(t)W2(t)]

)
.

(20)
Now, exactly as in Lemma 6, for any fixed i ,Wi (t) → 0 as t → ∞ a.s., and |Wi (t)| ≤
τi , and so dominated convergence ensures that the right-hand side of (20) converges
to 0 as t → ∞, thereby completing the proof. �

Remark 2 The Bahadur-Ghosh representation immediately provides a weak law of
large numbers for the quantile estimator Qt aswell as themeans to prove aCLT for Qt

based on the empirical CDF. It is natural to ask whywe did not use this representation
earlier in our development. An inspection of the proof of Proposition 2 shows that
the essential elements of the proof are the same as those we developed in earlier
sections, so it does not appear that there is anything to gain from doing so.

6 Sufficient Conditions

The assumptions of Theorems 3 and 4 are difficult to verify as stated. In this section
we provide sufficient conditions for some of those assumptions that are often more
easily verified in applications. Where possible, we try to give a unified treatment
of both discrete-time and continuous-time Harris processes. Let (Xt : t ≥ 0) be a
Markov process in discrete or continuous time as defined in Sect. 4. (Recall that in
continuous timewe assume that the process is non-explosive, strongMarkov, and has
sample paths that are right continuous with left limits.) We begin with the condition
that the regenerative cycle lengths have finite second moment, i.e., that Eτ 2

1 < ∞,
which can be verified through the use of drift criteria.

Definition 3 Let X = (Xt : t ≥ 0) be a Markov process on a complete, separable
metric space in discrete or continuous time. Let u : S → R and suppose that there
exists h : S → R such that M = (Mt : t ≥ 0) is a Px -local martingale for all x ∈ S,
where

Mt = u(Xt ) − u(X0) −
∫ t

0
h(Xs) ds, (21)
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and t is restricted to discrete or continuous time as appropriate. We then say that u
is contained in the domain D(A) of the generator A of X , and Au = h.

Suppose that in addition to A2 for discrete chains, or A2 with m = 1 for the
embedded chain for continuous-time processes, we also have the following, where
the set C is as in A2 for the sampled chain.

A4 There exists g1 : S → [0,∞) such that for all x ∈ S, and some b1 > 0,

Ag1(x) ≤ −1 + b11(x ∈ C).

A5 There exists g2 : S → [0,∞) such that for all x ∈ S and some b2 > 0,

Ag2(x) ≤ −g1(x) + b21(x ∈ C).

Assumption A4 implies that X is positive-Harris recurrent; see [33, Theorem 14.0.1]
for the discrete case and [34] for the continuous case. Assumptions A4 and A5 imply
a finite second moment of the regeneration times, i.e., that Eϕτ 2

1 < ∞. We prove the
continuous-time result; the discrete-time result follows essentially the same proof
with a modest modification since m in A2 cannot be assumed to equal 1.

Lemma 10 Suppose that A4 holds for the continuous-time process X. Let X̃ be the
sampled chain. Then, for all x,

Ex g1(X̃1) − g1(x) ≤ −1 + b1Px (X̃1 ∈ C). (22)

Proof Since g1 lies in the domain of the generator, (21) with u = g1 is a Px local
martingale for all x ∈ S. It follows from the observations on p. 311 of [32] that

e−t g1(Xt ) − g1(X0) +
∫ t

0
e−s(g1(Xs) − Ag1(Xs)) ds

is also a Px local martingale for all x ∈ S. Thus, since g1 ≥ 0, for a sequence of
stopping times On → ∞ as n → ∞ Px a.s.,

Ex [e−t∧On g1(Xt∧On )] + Ex

∫ t∧On

0
e−s(g1(Xs) − Ag1(Xs)) ds = g1(x). (23)

Now, A4 implies that g1(x) + 1 ≤ g1(x) − Ag1(x) + b1 I (x ∈ C) for all x ∈ S.
Hence
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Ex

∫ t∧On

0
e−s(g1(Xs) + 1) ds ≤ Ex

∫ t∧On

0
e−s(g1(Xs) − Ag1(Xs)) ds

+ b1Ex

∫ t∧On

0
e−s I (Xs ∈ C) ds

≤ g1(x) + b1Ex

∫ ∞

0
e−s I (Xs ∈ C) ds,

where, in the second inequality we used (23). Taking n → ∞ and then t → ∞,
monotone convergence gives

Ex

∫ ∞

0
e−sg1(Xs) ds + 1 ≤ g1(x) + b1Ex

∫ ∞

0
e−s I (Xs ∈ C) ds,

i.e., that Ex g1(X̃1) − g1(x) ≤ −1 + b1Px (X̃1 ∈ C). �

Proposition 3 Suppose that A4 and A5 hold. Then Eϕτ 2
1 < ∞.

Proof Recall that we have enlarged the path space of the Markov process X to
include an independent unit-rate Poisson process (N (t) : t ≥ 0) with event times
(�(n) : n ≥ 0) with �(0) = 0 and an i.i.d. sequence of Bernoulli random variables
(In : n ≥ 1) with P(I1 = 1) = γ .

Let Eϕ and Pϕ denote the expectation and probability on the enlarged probability
space when the chain X has initial distribution ϕ, so that a regeneration occurs at
time 0. For convenience, write τ for τ1. For n ≥ 0, let M(n) = ∑n

j=0 I (X̃ j ∈ C) be
the number of attempted regenerations by time n. Define the discrete-time stopping
time τ̃ = inf{n ≥ 0 : IM(n) = 1}. Under Pϕ , the regeneration time τ = �(τ̃ + 1).

From (22) and the comparison theorem [33, Theorem 14.2.2],

Ex τ̃ ≤ g1(x) + b1Ex

τ̃−1∑
j=0

h(X̃ j ),

where h(x) = Px (X̃1 ∈ C). Since I (τ̃ > j) is measurable with respect to G j =
σ(X̃0, . . . , X̃ j , I1, . . . , IM( j)), it follows that

Ex

τ̃−1∑
j=0

h(X̃ j ) =
∞∑
j=0

Px (τ̃ > j, X̃ j+1 ∈ C) = Ex

τ̃∑
j=1

I (X̃ j ∈ C).

Now, each time j that X̃ j ∈ C ,we regeneratewith probabilityγ , so that
∑τ̃

j=1 I (X̃ j ∈
C) is geometrically distributed with success probability γ and thus has mean γ −1.
We conclude that Ex τ̃ ≤ g1(x) + b1/γ .
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With that result in hand,

Eϕτ̃ 2 ≤ 2Eϕ

τ̃−1∑
j=0

(τ̃ − j)

= 2Eϕ

∞∑
j=0

Eϕ[(τ̃ − j)I (τ̃ > j)|G j ]

≤ 2Eϕ

τ̃−1∑
j=0

(g1(X̃ j ) + b1/γ )

= 2Eϕ

τ̃−1∑
j=0

g1(X̃ j ) + 2b1Eϕτ̃ /γ

= 2(Eϕτ̃ ) (Eπg1(X0)) + 2b1(Eϕτ̃ )/γ < ∞,

whereEπg1(X0) is finite by virtue ofA5 and [34, Theorem4.2]. Since τ = �(τ̃ + 1)
under Pϕ , Wald’s second moment identity then implies that Eϕτ 2 < ∞. �

The hypotheses A4 and A5 simplify when the chain X is V -uniformly ergodic
as is assumed in [35]. In fact, A4 and A5 are implied by A6 below; see, e.g., [33,
Lemma 17.5.1] and [22].

A6 For the set C defined in A2 there exist constants b, β > 0, and a function V :
S → [1,∞) such that for all x ∈ S,

AV (x) ≤ −βV (x) + bI (x ∈ C).

For the other hypotheses of Theorem 3 it is not clear exactly what form “easily
verifiable” conditions should take. Indeed, it appears that one may need to tailor the
conditions to a given application. It is difficult to imagine a practical application
where the condition σ 2(q) > 0 would be violated, so we content ourselves with an
example sufficient condition for the hypothesis that F is differentiable at q with
F ′(q) > 0. Recall that A2 and A4 imply that the chain X is positive Harris recurrent,
and therefore possesses a stationary distribution, so that F(y) = Pπ ( f (X0) ≤ y) is
well-defined. In what follows we assume that X is positive Harris recurrent.

Proposition 4 Suppose there exists a t > 0 such that for all y in an open neigh-
bourhood N of q and all x ∈ S,

P( f (Xt ) ∈ dy|X0 = x) = p(x, y)dy.

Suppose further that for each fixed x ∈ S, p(x, ·) is Lipschitz continuous in y ∈ N
with Lipschitz constant L(x), where L(·) is π -integrable. Then F is differentiable
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in N. If, in addition, p(x, q) > 0 for x in some set of positive π measure, then
F ′(q) > 0.

Proof The proof is very similar to that of Proposition 2 in [26]. Let B = (a, b] ⊆ N .
Then

F(b) − F(a) = Pπ ( f (Xt ) ∈ B)

=
∫
S
π(dx)P( f (Xt ) ∈ B|X0 = x)

=
∫
S

∫
B

π(dx)p(x, y)dy

=
∫
B

∫
S
π(dx)p(x, y)dy.

It follows immediately that F has a density ψ in N , where

ψ(y) =
∫
S
π(dx)p(x, y) (24)

at y ∈ N . Now, for h such that both y and y + h ∈ N ,

|ψ(y + h) − ψ(y)| =
∣∣∣∣
∫
S
π(dx)(p(x, y + h) − p(x, y))

∣∣∣∣ ≤ h
∫
S
π(dx)L(x).

(25)
Since L is π integrable, it follows that ψ is Lipschitz continuous in N . Since F
has a continuous density in N , we may conclude that it is differentiable (in fact,
continuously differentiable) in N with derivative ψ .

Finally, observe from (24) that the condition that p(x, q) > 0 for all x in a set of
positive π measure implies that ψ(q) = F ′(q) is positive at q. �

Proposition 4 basically requires that the t-step probabilities P( f (Xt ) ∈ dy|X0 =
x) have a density with respect to Lebesgue measure for all x . Typically this condition
will be easiest to verify for Harris processes in discrete time in the case where t = 1.
Example: Consider the problem of computing quantiles of the steady-state wait-
ing time distribution in the GI/G/1 queue. It is well-known that the sequence
X = (Xn : n ≥ 0) of customer waiting times in the FIFO single-server queue is a
Markov chain on state space S = [0,∞). In particular, X satisfies the Lindley recur-
sion [3, p. 23] Xn+1 = [Xn + Yn+1]+, where [x]+ = max(x, 0), Y = (Yn : n ≥ 1)
is an i.i.d. sequence with Yn+1 = Vn −Un+1, Vn is the service time of the nth cus-
tomer, andUn+1 is the interarrival time between the nth and (n + 1)st customer. Take
f (x) = x , so that we are interested in computing the quantiles of the steady-state
waiting time distribution. We now verify the key conditions of Theorem 3.

As in [3, p. 23], it is straightforward to show that if EY 2
1 < ∞ and μ = EY1 < 0,

then A4 and A5 are satisfied for the Markov chain X with g1(x) = 2x/|μ| and
g2(x) = 2x2/μ2. Now, for y > 0, we have that P(x, dy) = P(Y1 ∈ d(y − x)). So if
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Y1 has a Lipschitz continuous density with respect to Lebesgue measure and q > 0,
then Proposition 4 implies that the distribution function F is differentiable in a
neighbourhood of q. It remains to establish that F ′(q) > 0.

First, π({0}) = 1 − EV1/EU1 > 0, since EY1 < 0. Furthermore, since Y1 has a
continuous density and negative mean, P(Y1 > 0) > 0 then implies that for each 0 ≤
a < b < ∞, there exists an m = m(a, b) such that Pm(0, (a, b)) > 0. Therefore,
π((a, b)) ≥ π({0})Pm(0, (a, b)) > 0. Proposition 4 then implies that F ′(q) > 0.
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Simulation of Markov Chains with
Continuous State Space by Using Simple
Stratified and Sudoku Latin Square
Sampling

Rami El Haddad, Joseph El Maalouf, Rana Fakhereddine,
and Christian Lécot

Abstract Monte Carlo (MC) is widely used for simulating discrete time Markov
chains. Here, N copies of the chain are simulated in parallel, using pseudorandom
numbers. We restrict ourselves to a one-dimensional continuous state space. We
analyze the effect of replacing pseudorandom numbers on I := [0, 1) with stratified
random points over I 2: for each point, the first component is used to select a state and
the second component is used to advance the chain by one step. Two stratified sam-
pling techniques are compared: simple stratified sampling (SSS) and Sudoku Latin
square sampling (SLSS). For both methods and for N = p2 samples, the unit square
is dissected into p2 subsquares and there is one sample in each subsquare. For SLSS,
each side of the unit square is divided into N subintervals and the projections of the
samples on the side are distributed with one projection in each subinterval. Stratified
strategies outperform classical MC if the N copies are reordered by increasing states
at each step. We prove that the variance of SSS and SLSS estimators is bounded by
O(N−3/2), while it is bounded by O(N−1) for MC. The results of numerical exper-
iments indicate that these upper bounds match the observed rates. They also show
that SLSS gives a smaller variance than SSS.
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1 Introduction

A number of practical systems can be modeled as Markov chains with a large state
space. Fields of application are particles physics, telecommunications, queueing the-
ory, mathematical finance, etc. Inmany situations, analytic solutions are not available
and deterministic numerical methods are not practicable. Monte Carlo (MC) simu-
lation has become the classical way to solve such problems.

We consider a discrete time Markov chain with a one-dimensional state space.
The discrete case has been considered in a recent paper [4], and we turn now to
the case of a continuous state space. We restrict ourselves to R, for simplification
purposes. We also assume that only one random variate is used to advance the chain
by one step. The chain evolves according to the recurrence:

Xn+1 = ϕn+1(Xn,Un+1), n ≥ 0, (1)

whereU1,U2, . . . are i.i.d. uniform random variables over I := [0, 1), and ϕ1, ϕ2, . . .

are measurable functions R × I → R. In what follows, Pn denotes the distribution
law of Xn and Fn its cumulative distribution function. MC methods use pseudoran-
dom numbers as realizations of uniform random variables over I . The drawback is
that convergence can be slow. For example, we show below that the variance of the
MC estimator for any Fn behaves as O(N−1), if N copies of the chain are simulated
in parallel.

A possible step towards improving the accuracy of MCmethods is to apply quasi-
Monte Carlo (QMC) methods [3, 20]. Let d denote a dimension and λd be the
d-dimensional Lebesgue measure. For QMC integration over I d , small errors are
guaranteed if points with small discrepancy (quasirandom points) are used. Let |E|
denote the cardinality of a (finite) set E. The star discrepancy of a set U of N points
in I d is defined by

D�
N (U) := sup

J �

∣
∣
∣
∣

|U ∩ J �|
N

− λd(J
�)

∣
∣
∣
∣
,

where J � runs through all subintervals of I d anchored at the origin. This concept
may be adapted for a probability measure P on R

d : one defines the P-discrepancy
of a set X of N points in R

d as follows:

D�
N (X; P) := sup

J �

∣
∣
∣
∣

|X ∩ J �|
N

− P(J �)

∣
∣
∣
∣
,

where J � runs through all products of left-unbounded intervals.
QMC simulation of Markov chains has been proposed and analyzed in [13].

A number N = bm of paths are simulated in parallel. One chooses N states
x01 , x

0
2 , . . . , x

0
N with a small P0-discrepancy. To advance on the paths, a specific

low discrepancy sequence, so-called (0, 2)-sequence in base b (see [3, 20]), is used :
u1, u2, . . . From step n to n + 1, one utilizes the point unN+k (1 ≤ k ≤ N ) as follows:
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the first component chooses the chain and the second component determines the new
state. This procedure is efficient if the chains are reordered according to their states
at each step: xn1 ≤ xn2 ≤ · · · ≤ xnN . Numerical experiments show that to replace pseu-
dorandom numbers by quasirandom numbers, without an additional measure such
as reordering, is useless (see also [19]). The accuracy of this QMC method can be
estimated at step n by the Pn-discrepancy of the states: the theoretical bound in [13]
is of order O(N−0.5) when N chains are simulated; various numerical experiments
show that this discrepancy behaves between O(N−0.7) and O(N−0.8) (see [12]).

A randomized quasi-Monte Carlo approach (Array-RQMC) for simulating
Markov chains has been proposed and analyzed in [15–17]. For a one-dimensional
state space, with N copies of the chain, a bound for the variance of the estimator was
obtained of orderO(N−3/2); but one needs an independence assumption between the
random numbers used, which is not always satisfied in practice (see Sect. 3 of [17]).
A comparable result was obtained in [9]: in the context of particle filters, the authors
proved that the Array-RQMC estimator converges as o(N−1).

When the state space is higher-dimensional, say � or when more random variates
are needed to advance the chain, say d, then (� + d)-dimensional random samples
are used. The first � coordinates of the points match the states to the points and
the last d coordinates determine the next states. In addition, a multivariate sort is
employed to order the states. Array-RQMC methods in the multidimensional case
are studied in [1, 15, 18, 25]. The same problemwas addressedwithQMCmethods in
[6, 7, 12].

Variance reduction through stratified sampling was studied on experiments in
[5, 8] and theoretically analyzed for Markov chains with a discrete state space in [4].
In dimension two and for an integer p, we consider two kinds of stratified point sets
{xk : 1 ≤ k ≤ p2}.
• Simple stratified sampling (SSS) satisfies: if I 2 is divided into squares Jk of area
1/p2, there is one xk in each Jk .

• Sudoku Latin square sampling (SLSS) also satisfies: if I is divided into intervals
Hk of length 1/p2, then, for i = 1, 2, there is one projection xk,i in each Hk . An
example is shown on Fig. 1.

Simple stratified sampling has been introduced in [11] and further studied in [2].
Sudoku Latin square sampling is a special case of the orthogonal array based Latin
hypercube sampling of [26]. The context of this stratification is more thoroughly
detailed in [4, 5], where several references [21–24, 27] are discussed.

In the case ofMarkov chains with a one-dimensional discrete state space, we have
proved a bound for the variance of order O(N−3/2) for both stratified strategies and
this order is observed on numerical experiments [4]. In the present paper, we supple-
ment this analysis by consideringMarkov chains with a one-dimensional continuous
state space. We follow the same steps as in the discrete case, and obtain bounds of
the same order, which, in discrete or continuous cases, match the rates observed in
numerical experiments. One must notice that, in both cases, we bound the variance
of a Bernoulli random variable (Lemma 2) or the covariances of pairs of Bernoulli
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Fig. 1 A Sudoku Latin square sample of 42 points

random variables (Lemma 3). We prove the O(N−3/2) upper bound for the variance
of the SLSS method (Lemma 3 and Proposition 3) without making the independence
assumption of [17] (which is not satisfied for this scheme). One step of the proof
amounts to proving a bound of the same order for the SSS method, and we give it
separately (Lemma 2 and Proposition 2), for the sake of clarity, although this result
is not new.

In Sect. 2, we present three stochastic methods for simulatingMarkov chains with
a one-dimensional state space: standard MC, SSS and SLSS. In Sect. 3, we provide
bounds for the variance of the estimator of the cumulative distribution function. In
Sect. 4 we present the results of numerical experiments, with variousMarkov chains;
we compute the empirical variances of the estimators and compare them with our
theoretical bounds. Conclusions are drawn in Sect. 5.

2 Markov Chain Simulation with Stratified Sampling

Consider a chain with the recurrence given in (1). Denote by B+(R) the set of
nonnegative bounded measurable functions defined on R. For every s ∈ B+(R) we
have ∫

R

s(x)dPn+1(x) =
∫

R×I
s ◦ ϕn+1(x, u)dPn(x)du. (2)

For the numerical solution, we choose an integer N . We suppose that we approx-
imate (in a sense that will be precised later) the initial distribution P0 by a discrete
uniform probability distribution concentrated on a set of N deterministic points x0k
(the states),

P̂0 := 1

N

N
∑

k=1

δx0k .
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Here δx denotes the Dirac measure at x ∈ R. We advance the process: suppose that
Pn is approximated by (we are still using deterministic points):

P̂n := 1

N

N
∑

k=1

δxnk

and we want to find the new states at step n + 1. Following (2), an approximation
P̃n+1 of Pn+1 would satisfy, for every s ∈ B+(R):

∫

R

s(x)d P̃n+1(x) = 1

N

N
∑

k=1

∫

I
s ◦ ϕn+1(x

n
k , u)du. (3)

For 1 ≤ k ≤ N , let 1k denote the indicator function of Hk := [(k − 1)/N , k/N ). We
associate to any s ∈ B+(R) the following function of two variables:

Cn
s (u) :=

N
∑

k=1

1k(u1)s ◦ ϕn+1(x
n
k , u2), u = (u1, u2) ∈ I 2.

For v ∈ I , denote κ(v) := �Nv	 + 1, then Cn
s (u) = s ◦ ϕn+1(xnκ(u1)

, u2). It is easily
shown that ∫

R

s(x)d P̃n+1(x) =
∫

I 2
Cn
s (u)du. (4)

In the following sections, we present three stochastic algorithms to simulate (1). If
m is an integer, we denote [1,m] := {1, 2, . . . ,m}. The notation U ∼ U(E) means
that U is a random variable uniformly distributed over the set E. If w ∈ R, then sw
denotes the indicator function of the interval (−∞, w).

2.1 Classical Monte Carlo

For initialization, let {X0
k : 1 ≤ k ≤ N } be i.i.d. random variables with probability

distribution P0. Then, for any s ∈ B+(R),

E

[

1

N

N
∑

k=1

s(X0
k )

]

=
∫

R

s(x)dP0(x), (5)

and there exists some α0 > 0, with α0 ≤ 1/4 such that, for every w ∈ R,

Var

(

1

N

N
∑

k=1

sw(X0
k )

)

≤ α0

N
. (6)
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We suppose that we have generated a set of random variables {Xn
1 , X

n
2 , . . . , X

n
N },

which are realizations of the chains at step n. The transition from n to n + 1 acts
as follows: Let {Un+1

k : 1 ≤ k ≤ N } be independent random variables with Un+1
k ∼

U(I ). We replace the right-hand side of (4) with the followingMonte Carlo estimate:

X̂ n+1
s := 1

N

N
∑

k=1

Cn
s

(
k − 1

N
,Un+1

k

)

= 1

N

N
∑

k=1

s ◦ ϕn+1(X
n
k ,U

n+1
k ).

And we generate
Xn+1
k = ϕn+1(X

n
k ,U

n+1
k ),

so that

X̂ n+1
s =

∫

R

s(x)d P̂n+1(x).

2.2 Simple Stratified Sampling

We choose N = p2, for some integer p > 0. For initialization, let {Y 0
k : 1 ≤ k ≤ N }

be independent random variables. We assume the following.

1. For any s ∈ B+(R), (5) is satisfied by the Y 0
k .

2. There exists some β0 > 0 such that, for every w ∈ R,

Var

(

1

N

N
∑

k=1

sw(Y 0
k )

)

≤ β0

N 3/2
. (7)

This may be done by the inversion method as follows. We assume that P0 has
density f0. Let {V 0

k : 1 ≤ k ≤ N } be independent random variables, with V 0
k ∼

U(Hk). If Y 0
k := F−1

0 (V 0
k ), then (5) is satisfied and

Var

(

1

N

N
∑

k=1

sw(Y 0
k )

)

≤ 1

4N 2
.

We suppose that we have generated a set of random variables {Y n
1 ,Y n

2 , . . . ,Y n
N },

which are realizations of the chains at step n. The transition from n to n + 1 has
two steps: renumbering the chains and numerical integration.

(S1) The chains are relabeled so that Y n
1 ≤ Y n

2 ≤ · · · ≤ Y n
N . The technique was

initiated in the QMC context and used for simulation of Markov chains in
[13]; it guarantees theoretical and numerical convergence of the scheme.
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(S2) Consider a partition of I 2 into N squares: J� = I�1 × I�2 , where, for � =
(�1, �2) ∈ [1, p]2, I�1 := [(�1 − 1)/p, �1/p) and I�2 := [(�2 − 1)/p, �2/p).
Let {V n+1

� : � ∈ [1, p]2} be independent random variables, where V n+1
� =

(V n+1
�,1 , V n+1

�,2 ) ∼ U(J�). We replace the right-hand side of (4) with its simple
stratified estimate:

Ŷ n+1
s := 1

N

∑

�∈[1,p]2
Cn
s (V

n+1
� ) = 1

N

∑

�∈[1,p]2

N
∑

k=1

1k(V
n+1
�,1 )s ◦ ϕn+1(Y

n
k , V n+1

�,2 ).

And we generate

Y n+1
(�1−1)p+�2

= ϕn+1

(

Y n
κ(V n+1

�,1 )
V n+1

�,2

)

,

so that

Ŷ n+1
s =

∫

R

s(x)d P̂n+1(x).

The first projection V n+1
�,1 of V n+1

� is used for selecting the state at step n and
the second projection V n+1

�,2 is used for advancing the chain by one step. The
mapping between the p2 points and the N states is not necessarily one-to-one:
it is possible to choose the same state more than once and leave out some of
them. This differs from the SSS scheme used in [17, 18].

2.3 Sudoku Latin Square Sampling

We choose again N = p2, for some p > 0. Initialization is done as before: {Z0
k : 1 ≤

k ≤ N } are independent random variables. We assume the following.

1. For any s ∈ B+(R), (5) is satisfied by the Z0
k .

2. There exists some γ0 > 0 such that, for every w ∈ R,

Var

(

1

N

N
∑

k=1

sw(Z0
k )

)

≤ γ0

N 3/2
. (8)

As for simple stratified sampling, this may be done by inversion. We suppose that we
have generated a set of random variables {Zn

1 , Z
n
2 , . . . , Z

n
N }, which are realizations

of the chains at step n. The transition from n to n + 1 has two steps as above.

(S1) The chains are relabeled so that Zn
1 ≤ Zn

2 ≤ · · · ≤ Zn
N .

(S2) We consider the same partition of I 2: J�, � ∈ [1, p]2 as before. For � ∈
[1, p]2, let Wn+1

� = (Wn+1
�,1 ,Wn+1

�,2 ) be random variables, with
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Wn+1
�,1 := �1 − 1

p
+ σ n+1

1 (�2) − 1 +Un+1
�,1

p2
Wn+1

�,2 := �2 − 1

p
+ σ n+1

2 (�1) − 1 +Un+1
�,2

p2
.

Here, σ n+1
i , i = 1, 2, are random permutations of [1, p] and Un+1

� =
(Un+1

�,1 ,Un+1
�,2 ) ∼ U(I 2); all these random variables being independent. We

haveWn+1
� ∼ U(J�); in addition, the maps � → κ(Wn+1

�,1 ) and � → κ(Wn+1
�,2 )

are (random) bijections from [1, p]2 to [1, N ]. We replace the right-hand side
of (4) with its Sudoku Latin square estimate

Ẑn+1
s := 1

N

∑

�∈[1,p]2
Cn
s (Wn+1

�
) = 1

N

∑

�∈[1,p]2

N
∑

k=1

1k(W
n+1
�,1 )s ◦ ϕn+1(Z

n
k ,Wn+1

�,2 ).

And we generate

Zn+1
(�1−1)p+�2

= ϕn+1

(

Zn
κ(Wn+1

�,1 )
Wn+1

�,2

)

,

so that

Ẑ n+1
s =

∫

R

s(x)d P̂n+1(x).

As before, Wn+1
�,1 is used for selecting the state at step n and Wn+1

�,2 is used
for advancing the chain. Now, the mapping between the p2 points and the N
states is one-to-one: each state is chosen once.

3 Variance Bounds

We consider the three stochastic schemes previously introduced. For each of them,
we show that, for any s ∈ B+(R) and any n ≥ 0, the estimator of

∫

R
s(x)dPn(x) is

unbiased. Then, we prove that for anyw ∈ R and any n, the variance of the estimator
of

∫

R
sw(x)dPn(x) is bounded byO(N−1) for standardMonteCarlo and byO(N−3/2)

for both stratification strategies.

3.1 Classical Monte Carlo

In the following lemma, we focus on one step (from n to n + 1) of the algorithm and
we assume that the values xn1 , x

n
2 , . . . , x

n
N of Xn

1 , X
n
2 , . . . , X

n
N are given numbers.We

consider the estimator X̂ n+1
s of

∫

R
s(x)d P̃n+1(x).
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Lemma 1 For the classical Monte Carlo method, we have:

1. For any s ∈ B+(R),

E[X̂ n+1
s ] =

∫

R

s(x)d P̃n+1(x).

2. For any w ∈ R,

Var(X̂ n+1
sw ) ≤ 1

4N
.

Proof 1. We have

E[X̂ n+1
s ] = 1

N

N
∑

k=1

∫

I
s ◦ ϕn+1(x

n
k , u)du,

and the result follows from (3).
2. Each variable sw ◦ ϕn+1(xnk ,U

n+1
k ) is a Bernoulli random variable, with variance

≤ 1/4. Hence the result.
�

We then obtain a variance bound by using techniques employed in [17]. We
suppose from now on that P0 has density f0. In addition, we make the following
assumptions.

A1. For any x ∈ R, the mapping u ∈ I → ϕn+1(x, u) ∈ R is strictly increasing and
bijective; hence we can define a function y ∈ R → �n+1(x, y) ∈ I which is
strictly increasing and bijective, such that y = ϕn+1(x, u) ⇔ u = �n+1(x, y).

A2. For any x ∈ R, themapping y → �n+1(x, y) is continuously differentiable and
its derivative is bounded by an integrable function gn+1(x).

A3. For any y ∈ R, themapping x → �n+1(x, y) is continuously differentiable and
its total variation TV(�n+1(·, y)) is bounded by a constant Mn+1 (independent
of y). We denote �n+1(+∞, y) := lim

x→+∞�n+1(x, y).

Proposition 1 For the classical Monte Carlo method, the following holds.

1. For any s ∈ B+(R),

E

[

1

N

N
∑

k=1

s(Xn
k )

]

=
∫

R

s(x)dPn(x).

2. For any w ∈ R,

Var

(

1

N

N
∑

k=1

sw(Xn
k )

)

≤ αn

N
,

where αn+1 = M2
n+1αn + 1/4 (n ≥ 0).
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Proof 1. We prove the result by induction. The claim holds for n = 0 from (5). For
an arbitrary n ≥ 0,

Dn+1
s :=

∫

R

s(x)dPn+1(x) − 1

N

N
∑

k=1

s(Xn+1
k ) = Dn

s,1 + Dn
s,2,

where

Dn
s,1 :=

∫

R

∫

I
s ◦ ϕn+1(x, u)dudPn(x) − 1

N

N
∑

k=1

∫

I
s ◦ ϕn+1(X

n
k , u)du

and

Dn
s,2 := 1

N

N
∑

k=1

∫

I
s ◦ ϕn+1(X

n
k , u)du − 1

N

N
∑

k=1

s ◦ ϕn+1(X
n
k ,U

n+1
k ).

Since E[Dn
s,1] = 0 by the induction hypothesis and E[Dn

s,2] = 0 by item 1 of
Lemma 1, the result holds.

2. We proceed by induction on n, with the case n = 0 being given by (6). Let n ≥ 0
be arbitrary. As {Xn

1 , X
n
2 , . . . , X

n
N } and {Un+1

1 ,Un+1
2 , . . . ,Un+1

N } are independent,
we have also E[Dn

sw,1D
n
sw,2] = 0. Hence

Var

(

1

N

N
∑

k=1

sw(Xn+1
k )

)

= E[(Dn+1
sw )2] = E[(Dn

sw,1)
2] + E[(Dn

sw,2)
2]. (9)

For the first summand, we write

∫

R×I
sw ◦ ϕn+1(x, u)dudPn(x) =

∫

R

�n+1(x, w)dPn(x)

= �n+1(+∞, w) −
∫

R

∂�n+1

∂x
(x, w)Fn(x)dx,

and ∫

I
sw ◦ ϕn+1(X

n
k , u)du = �n+1(X

n
k , w).

This gives

Dn
sw,1 =

∫

R

(
∫

R

sx (y)dPn(y) − 1

N

N
∑

k=1

sx (X
n
k )

) (

−∂�n+1

∂x
(x, w)

)

dx

=
∫

R

Dn
sx

(

−∂�n+1

∂x
(x, w)

)

dx .
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Due to the first item of this proposition, we may write

E[(Dn
sw,1)

2] =
∫

R2
E

[

Dn
sx D

n
sx ′

] ∂�n+1

∂x
(x, w)

∂�n+1

∂x
(x ′, w)dxdx ′

≤
∫

R2
σ

(

1

N

N
∑

k=1

sx (X
n
k )

)

σ

(

1

N

N
∑

k=1

sx ′(Xn
k )

)

·
∣
∣
∣
∣

∂�n+1

∂x
(x, w)

∂�n+1

∂x
(x ′, w)

∣
∣
∣
∣
dxdx ′

≤ (TV(�n+1(·, w)))2 sup
x∈R

Var

(

1

N

N
∑

k=1

sx (X
n
k )

)

.

For the second summand in (9), item 2 of Lemma 1 implies:

E[(Dn
sw,2)

2] ≤ 1

4N
.

By using (9), the result is established by induction.
�

3.2 Simple Stratified Sampling

As for classical Monte Carlo, we first focus on one step of the algorithm and we
assume that yn1 , y

n
2 , . . . , y

n
N are given numbers. We suppose now that yn1 ≤ yn2 ≤

· · · ≤ ynN . We consider the estimator Ŷ n+1
s of

∫

R
s(x)d P̃n+1(x).

Lemma 2 For the simple stratified sampling method, we have:

1. For any s ∈ B+(R),

E[Ŷ n+1
s ] =

∫

R

s(x)d P̃n+1(x).

2. For any w ∈ R,

Var(Ŷ n+1
sw ) ≤ Mn+1 + 2

4N 3/2
.

Proof 1. We have

E[Ŷ n+1
s ] =

∑

�∈[1,p]2

N
∑

k=1

∫

J�

1k(v�,1)s ◦ ϕn+1(y
n
k , v�,2)dv�

= 1

N

N
∑

k=1

∫

I
s ◦ ϕn+1(y

n
k , v2)dv2,
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and the result follows from (3).
2. The function Cn

sw is the indicator function of the set

Jnw :=
N

⋃

k=1

Hk × [0,�n+1(y
n
k , w)). (10)

The variable Cn
sw (V n+1

� ) is a Bernoulli random variable, with expectation en+1
w,� =

Nλ2(J
n
w ∩ J�). Hence, Var(Cn

sw (V n+1
� )) ≤ 1/4 and Var(Cn

sw (V n+1
� )) = 0 if J� ⊂

Jnw or if J� ∩ Jnw = ∅. Therefore,

Var(Ŷ n+1
sw ) ≤ 1

4N 2

∣
∣{� ∈ [1, p]2 : J� �⊂ Jnw and J� ∩ Jnw �= ∅}∣∣ .

By the same reasoning as in the proof of Lemma 2 in [4], we obtain the bounds

∣
∣{� ∈ [1, p]2 : J� �⊂ Jnw and J� ∩ Jnw �= ∅}∣∣

≤ p
p

∑

�1=1

(

max
p(�1−1)<k≤p�1

�n+1(y
n
k , w) − min

p(�1−1)<k≤p�1
�n+1(y

n
k , w)

)

+ 2p

≤ pTV(�n+1(·, w)) + 2p, (11)

because we have yn1 ≤ yn2 ≤ · · · ≤ ynN . The result follows.
�

The proof of the next result is similar to the proof of Proposition 1.

Proposition 2 For the simple stratified sampling method, the following holds.

1. For any s ∈ B+(R),

E

[

1

N

N
∑

k=1

s(Y n
k )

]

=
∫

R

s(x)dPn(x).

2. For any w ∈ R,

Var

(

1

N

N
∑

k=1

sw(Y n
k )

)

≤ βn

N 3/2
,

where βn+1 = M2
n+1βn + (Mn+1 + 2)/4 (n ≥ 0).



Simulation of Markov Chains with Continuous State Space … 251

3.3 Sudoku Latin Square Sampling

As above, we first assume that zn1, z
n
2, . . . , z

n
N are given numbers and we suppose that

zn1 ≤ zn2 ≤ · · · ≤ znN . We consider the estimator Ẑ n+1
s of

∫

R
s(x)d P̃n+1(x). We make

the following additional assumption.

A4. For any y ∈ R, the mapping x → �n+1(x, y) is a piecewise monotonic func-
tion, with rn+1 pieces (this number is independent of y).

It then holds that Mn+1 ≤ rn+1.

Lemma 3 For the Sudoku Latin square sampling method, we have:

1. For any s ∈ B+(R),

E[Ẑ n+1
s ] =

∫

R

s(x)d P̃n+1(x).

2. For any w ∈ R,

Var(Ẑ n+1
sw ) ≤ (Mn+1 + 2)

(

2Mn+1 + rn+1 + 29

4

)
1

N 3/2
.

Proof 1. Since Wn+1
� ∼ U(J�), the argument is the same as in Lemma 2.

2. In the following, we encounter several summations with indexes �, �′,m,m ′ ∈
[1, p]2. To simplify notation, we omit writing [1, p]2. We have

Var(Ẑ n+1
sw ) = V0(Ẑ

n+1
sw ) + 1

N 2

∑

(�,�′):� �=�′
Cov

(

Cn
sw (Wn+1

� ),Cn
sw (Wn+1

�′ )
)

, (12)

where

V0(Ẑ
n+1
sw ) := 1

N 2

∑

�

Var
(

Cn
sw (Wn+1

� )
)

.

SinceWn+1
� ∼ U(J�) and the states are ordered, zn1 ≤ zn2 ≤ · · · ≤ znN , we have, as

in Lemma 2:

V0(Ẑ
n+1
sw ) ≤ Mn+1 + 2

4N 3/2
.

We split Var(Ẑ n+1
sw ) = V0(Ẑ n+1

sw ) + V1(Ẑ n+1
sw ) + V2(Ẑ n+1

sw ) + V3(Ẑ n+1
sw ), with

V1(Ẑ
n+1
sw ) := 1

N 2

∑

(�,�′):�1 �=�′
1∧�2=�′

2

Cov
(

Cn
sw (Wn+1

� ),Cn
sw (Wn+1

�′ )
)

,



252 R. El Haddad et al.

V2(Ẑ
n+1
sw ) := 1

N 2

∑

(�,�′):�1=�′
1∧�2 �=�′

2

Cov
(

Cn
sw (Wn+1

� ),Cn
sw (Wn+1

�′ )
)

,

V3(Ẑ
n+1
sw ) := 1

N 2

∑

(�,�′):�1 �=�′
1∧�2 �=�′

2

Cov
(

Cn
sw (Wn+1

� ),Cn
sw (Wn+1

�′ )
)

.

We introduce the N 2 squares J�,m = H�1,m1 × H�2,m2 , for (�,m) ∈ [1, p]4, where

H�i ,mi := [(�i − 1)/p + (mi − 1)/N , (�i − 1)/p + mi/N ), for i = 1, 2.

If Jnw is defined as in (10) (replacing the ynk with the znk ), the same reasoning as
in Lemma 2 leads to

V1(Ẑ
n+1
sw ) =

∑

�:J� �⊂Jn
w∧J�∩Jn

w �=∅

∑

�′ :�′
1 �=�1∧�′

2=�2

V1(�, �
′),

where

V1(�, �
′) := N

p − 1

∑

(m,m ′):m1=m ′
1∧m2 �=m ′

2

λ2(J�,m ∩ Jnw)λ2(J�′,m ′ ∩ Jnw)

−λ2(J� ∩ Jnw)λ2(J�′ ∩ Jnw).

Similarly,
V2(Ẑ

n+1
sw ) =

∑

�:J� �⊂Jn
w∧J�∩Jn

w �=∅

∑

�′ :�′
1=�1∧�′

2 �=�2

V2(�, �
′)

with

V2(�, �
′) := N

p − 1

∑

(m,m ′):m1 �=m ′
1∧m2=m ′

2

λ2(J�,m ∩ Jnw)λ2(J�′,m ′ ∩ Jnw)

−λ2(J� ∩ Jnw)λ2(J�′ ∩ Jnw)

and
V3(Ẑ

n+1
sw ) =

∑

�:J� �⊂Jn
w∧J�∩Jn

w �=∅

∑

�′ :�′
1 �=�1∧�′

2 �=�2
J
�′ �⊂Jn

w∧J
�′ ∩Jn

w �=∅

V3(�, �
′),

where

V3(�, �
′) := N

(p − 1)2
∑

(m,m ′):m1 �=m ′
1∧m2 �=m ′

2

λ2(J�,m ∩ Jnw)λ2(J�′,m ′ ∩ Jnw)

−λ2(J� ∩ Jnw)λ2(J�′ ∩ Jnw).
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We then follow the technical steps of the proof of Lemma 3 in [4] with the set Jnw.
By using (11), we obtain the bounds:

|V1(Ẑ
n+1
sw )| ≤ (Mn+1 + 2)(p(rn+1 + 1) − 1)

1

N 2
,

|V2(Ẑ
n+1
sw )| ≤ (Mn+1 + 2)(2p − 1)

1

N 2
,

|V3(Ẑ
n+1
sw )| ≤ (Mn+1 + 2)2(2p − 1)

1

N 2
.

This proves the result.
�

The proof of the next result is similar to the proof of Proposition 1.

Proposition 3 For the Sudoku Latin square sampling method, the following holds.

1. For any s ∈ B+(R),

E

[

1

N

N
∑

k=1

s(Zn
k )

]

=
∫

R

s(x)dPn(x).

2. For any w ∈ R,

Var

(

1

N

N
∑

k=1

sw(Zn
k )

)

≤ γn

N 3/2
,

where γn+1 = M2
n+1γn + (Mn+1 + 2)(2Mn+1 + rn+1 + 29/4) (n ≥ 0).

Remark 1 The constant involved in the O(N−3/2) bound of Var(Ẑ n+1
sw ) (SLSS) is

larger than the corresponding constant for Var(Ŷ n+1
sw ) (SSS). If β0 = γ0 (which is

satisfied if the Y 0
k and Z0

k are generated by inversion), this would suggest poorer
performance of SLSS choice, because then βn ≤ γn for any n. It is not the case in
the examples of Sect. 4 below. For bounding Var(Ẑ n+1

sw ), we use (12) and we bound
the absolute values of the covariances, without consideration of the signs. If some
covariances are negative, our upper bound of the variance is too loose.

4 Numerical Experiments

In this section, we compare the three approaches for the simulation ofMarkov chains
that we have analyzed: Monte Carlo, simple stratified sampling and Sudoku Latin
square sampling. We calculate the empirical variance of the estimators of

∫

R

s(x)dPn(x)
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that we have defined above, for some s. We plot this variance as a function of the
number N of simulated chains. If we assume a model K N−δ for the variance, the
rate δ can be estimated by linear regression and can be compared with the theoretical
bounds. We also compute the efficiency of each method, defined as the inverse of
the product of the variance and the CPU time [14]. For standard MC, the efficiency
does not depend on N . On the other hand, sorting the chains at each step of the
stratifiedmethods brings additional overhead. It requires anO(N log N ) effort, while
advancing the chains (excluding the renumbering) requires O(N ) time, as for MC.

In what follows, we denote by ϕ and� the density and the cumulative distribution
function of the standard normal distribution, respectively. The notation X ∼ N(0, 1)
means that the random variable X has density ϕ.

4.1 An Autoregressive Process

We consider the same simple autoregressive process of order one as in [15]. Let us
define a Markov chain over R which evolves according to the recurrence:

Y1 = Z1 and Yn+1 = 1
√

β2 + 1
(βYn + Zn+1), n ≥ 1,

where β ≥ 0 is a constant and Z1, Z2, . . . are i.i.d. standard normal random variables.
We have Yn ∼ N(0, 1) for every n. By setting Xn := �(Yn) and Un := �(Zn), the
recurrence may be written as in (1):

X1 = U1 and Xn+1 = �

(

1
√

β2 + 1
(β�−1(Xn) + �−1(Un+1)

)

, n ≥ 1,

whereU1,U2, . . . are i.i.d. uniform random variables over I . We have Xn ∼ U(I ) for
every n. We take β = 0.1. We estimate the probability that Xn > 0.5 for n = 100.
We replicate the calculation independently 500 times and we compute the sample
variance. Figure 2 shows the log10 of the variance as a function of log10 N on the
left and the log10 of the efficiency as a function of log10 N on the right, for N =
102, 202, . . . , 3002.

We find from the plots that SSS and SLSS give not only smaller variances than
standard MC (for the same N ), but also better efficiencies, and that SLSS is slightly
superior to SSS. The regression estimates of δ are given in the first row of Table 1.
They match the rates O(N−1) and O(N−3/2) established in Sect. 3 for MC and SSS
(or SLSS), respectively. This is a very simple problem since all the Xn are uniform
random variables over I . The variances of the stratification strategies are smaller
than those of the standard MC, even when few copies of the chain are simulated, and
the additional overhead due to sorting does not balance out the gain in variance.
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Fig. 2 Autoregressive process: sample variance (left) and efficiency (right) of 500 copies of the
calculation of P(X100 > 0.5) as a function of N (N = 102, 202, . . . , 3002) (log10-log10 scale)

4.2 A European Put Option

In the Black-Scholes model, under the risk-neutral measure, the asset price St at time
t is given by:

St = S0 exp((r − σ 2/2)t + σ Bt ), (13)

where r is the risk-free interest rate, σ the volatility parameter and B is a standard
Brownian motion. Let T be the maturity date and K the strike price. We want to
estimate the value of the put option, PO := e−rT

E[(K − ST )+]. To formulate the
problem as a Markov chain, we discretize the interval [0, T ] using observation times
0 = t0 < t1 < · · · < tN = T . The discrete version of (13) can be written as:

Stn+1 = Stn exp((r − σ 2/2)�tn+1 + σ(Btn+1 − Btn )), n ≥ 0,

where �tn+1 := tn+1 − tn . By setting Xn := Stn , this may be written as in (1):

Xn+1 = Xn exp((r − σ 2/2)�tn+1 + σ
√

�tn+1�
−1(Un+1)), n ≥ 0,

whereU1,U2, . . . are i.i.d. uniform random variables over I . This example is some-
how artificial: (1) the value of PO is given explicitly by the Black-Scholes formula,
so there is no need to estimate it; (2) if simulation is used, the value ST can be gener-
ated directly and there is no need to generate the intermediate values. Nevertheless,
the object comes from real life. We choose the following parameters: S0 = 100,
K = 120, r = 0.1, σ = 0.2, T = 1 and �tn+1 = T/P , with P = 100. We compare
the variances of the MC, SSS and SLSS estimators of PO: we replicate the calcula-
tion independently 500 times and we compute the sample variance. Figure 3 shows
log10 of the variance as a function of log10 N on the left and log10 of the efficiency
as a function of log10 N on the right, for N = 102, 202, . . . , 3002.
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Fig. 3 European put option: sample variance (left) and efficiency (right) of 500 copies of the
calculation of e−rT

E[(K − ST )+] as a function of N (N = 102, 202, . . . , 3002) (log10-log10 scale)

We clearly see that SSS and SLSS produce smaller variances than MC. When
comparing the results of SSS and SLSS, we see that the later approach outperforms
the former. The regression estimates of δ are given in the second row of Table 1. They
are comparable to the ratesO(N−1) andO(N−3/2) of the upper bounds demonstrated
in Sect. 3 for MC and SSS (or SLSS), respectively. Here, the additional sorting times
cause a degraded efficiency of SSS when N ≤ 900. The better convergence rate of
the stratified approach reestablishes a superior efficiency when the number of copies
is increased.

An example with a call option is described in [8].

4.3 Diffusion

We consider the initial value problem for the heat equation:

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t), x ∈ R, t > 0 and c(x, 0) = c0(x), x ∈ R,

with constant diffusion coefficient D > 0. We assume that the initial data satisfies
c0 ≥ 0 and

∫

R
c0(x)dx = 1. Then, for any t > 0, it holds that

∫

R
c(x, t)dx = 1. Let

G be the fundamental solution of the heat operator:

G(x, t) := 1√
4πDt

e−x2/4Dt , x ∈ R, t > 0.
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Then, for any τ ≥ 0,

c(x, t) =
∫

R

G(x − w, t − τ)c(w, τ)dw, x ∈ R, t > τ.

If �t is a time step, we denote tn := n�t and cn(x) := c(x, tn). It follows that

cn+1(x) =
∫

R

G(x − w,�t)cn(w)dw = 1√
2D�t

∫

R

ϕ

(
x − w√
2D�t

)

cn(w)dw.

Consequently, for any s ∈ B+(R),

∫

R

s(x)cn+1(x)dx =
∫

R×I
s(x + √

2D�t�−1(u))cn(x)dxdu.

We define the following Markov chain. Let X0 have probability density function c0
and let

Xn+1 = Xn + √
2D�t�−1(Un+1),

where Un+1 ∼ U(I ). This defines a random walk method: see [10] and [12, 19] in
a QMC context. As presented, the algorithm is artificial, since we know the exact
solution. Thismethod is a part of fractional step schemeswhenwe consider problems
involving a combination of convection, reaction and diffusion. We take D = 1 and
define c0 as the indicator function of the interval [−1/2, 1/2].We choose�t = 1/100
and T = 1. We compute the empirical variance (with M = 500 replications) of the
estimate of

∫ b
a c(x, T )dx , with a = 2, b = 4. Figure 4 shows log10 of the variance as

a function of log10 N on the left and log10 of the efficiency as a function of log10 N
on the right, for N = 102, 202, . . . , 3002.
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Fig. 4 Diffusion: sample variance (left) and efficiency (right) of 500 copies of the calculation of
∫ 4
2 c(x, T )dx as a function of N (N = 102, 202, . . . , 3002) (log10-log10 scale)
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Table 1 Estimation of the convergence rate δ of the sample variance: comparison of standard MC,
SSS, and SLSS for three examples and estimators

Experiment Quantity of interest MC SSS SLSS

Autoregressive
process

P(X100 > 0.5) 1.00 1.51 1.48

European put
option

e−rT
E[(K − ST )+] 1.01 1.62 1.44

Diffusion
∫ 4
2 c(x, T )dx 1.00 1.46 1.43

The SLSS approach gives smaller variances than classical MC (for the same N ),
and better efficiencies. In addition, SLSS is superior to SSS. The regression estimates
of δ are given in the third row of Table 1. They are near the orders of O(N−1) and
O(N−3/2) established in Sect. 3 for MC and SSS (or SLSS), respectively. One must
notice that our bounds do not prove that the SSS and SLSS variances are smaller than
the standard MC variance, for any N . It may be hoped that, if our bounds are tight,
then the stratification variances are below the MC variance, for large enough N ′s.
In this experiment, the variance of the SSS method is larger than the MC variance,
when the number of simulated copies is ≤400. This entails a lower efficiency. The
superiority of the SSS approach only appears when more than 3600 copies are used.
Note that the growth regime of the efficiency also depends on the programming
language and computer used.

Other experiments are reported in [5] and also in [4], where a supplementary
spatial step is used.

5 Conclusions

We consider stratifiedMCmethods forMarkov chainmodels with a one-dimensional
continuous state space. We assume that only one random variate is used to advance
the chain by one step. We provide upper bounds on the variance under different
samplingmethods: ordinaryMCand two stratified approaches, SSS and SLSS.When
N copies of the chain are simulated, the order is O(N−1) for MC and O(N−3/2) for
SSS and SLSS. This analysis complements a previous study for Markov chains with
discrete state spaces, where similar bounds are established. In numerical examples,
the variance rates match the orders of the theoretical upper bounds and we observe
that SLSS give smaller variance than SSS. The extension of the analysis to multi-
dimensional problems will be the subject of future work.
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Abstract Wepropose randomized quasi-Monte Carlo (RQMC)methods to estimate
expectations μ = E(g(Y ,W )) where Y is independent of W and can be sampled by
inversion, whereas W cannot. Various practical problems are of this form, such as
estimating expected shortfall for mixture models where W is stable or generalized
inverse Gaussian and Y is multivariate normal. We consider two settings: In the first,
we assume that there is a non-uniform random variate generation method to sample
W in the form of a non-modifiable “black-box”. The methods we propose for this
setting are based on approximations of the quantile function of W . In the second
setting, we assume that there is an acceptance-rejection (AR) algorithm to sample
from W and explore different ways to feed it with quasi-random numbers. This has
been studied previously, typically by rejecting points of constant dimension from
a low-discrepancy sequence and moving along the sequence. We also investigate
the use of a point set of constant (target) size where the dimension of each point is
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1 Introduction

Consider the problem of estimating the quantity

μ = E(g(Y ,W )) (1)

where g : Rd+1 → R is integrable and Y ∼ FY is a d-dimensional random vector
independent of the random variable W ∼ FW . For instance, if Y is multivariate
normal and W follows a generalized inverse Gaussian (GIG) distribution (see, e.g.,
[14] for an AR algorithm to sample from GIG distributions), we could be estimating
the expected shortfall of a generalized hyperbolic distribution; this is an important
class of multivariate distributions in risk management, see, e.g., [23].

The classical Monte Carlo (MC) estimator μ̂mc
n based on n samples for μ is given

by

μ̂mc
n = 1

n

n∑

i=1

g(Y i ,Wi ),

where (Y i ,Wi )
ind.∼ FY × FW for i = 1, . . . , n.

We assume that there is an easy way to sample from FY based on uniforms; e.g.,
basedon theRosenblatt transform [27].That is to say, assume there is a transformation
TY : (0, 1)d+k → R

d such that TY (U) ∼ FY for U ∼ Ud+k for constant k ≥ 0; if,
e.g., Y ∼ Nd(µ, �) then k = 0 and the function TY (u) is given by TY (u) = µ +
A(�−1(u1), . . . , �−1(ud))� where A is such that AA� = �.

In this paper, we investigate the following question:

How can a randomized quasi-Monte Carlo (RQMC) estimator for μ be constructed when
W cannot be sampled by inversion?

More precisely, we assume that the (always existing) quantile function F←
W (u) =

inf{x : FW (x) ≥ u} is intractable and instead we rely on other methods for non-
uniform random variate generation (NRVG), such as AR algorithms, where at first
glance it may seem hard to directly apply RQMC methods.

We investigate the above question under two sets of assumptions onwhat wemean
by the existence of a “NRVG” method for W .
1. Black-box case.Here, we assume that we have a (random) function RW : N → R

n

such that if RW (n) = W for W = (W1, . . . ,Wn) then Wi
ind.∼ FW for i = 1, . . . , n.

As such, we have a “black box” function that returns samples from FW of any
size. The underlying sampling method could be based on MCMC, machine learning
techniques or methods based on a stochastic representation (SR), among others. In
Sect. 2, we propose methods that estimate the quantile function F←

W , as well as re-
ordering strategies that make the output of RW mimick the behavior of the underlying
LDS. We also perform a numerical study comparing our methods. We highlight the
assumption that we have only access to RW , irrespective of whether or notW admits
a tractable density. If W does have a density that can be efficiently computed, other
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methods that approximate the quantile function using this additional information
may be better suited; see [5] for a popular method. There are, however, examples
where this is not the case: if W follows a stable distribution, sampling is easy based
on the stochastic representation derived in [1], but not even the density function can
be computed without numerical integration.
2. AR algorithms for W,where the proposal (or envelope) distribution and the accep-
tance decision can be sampled by inversion of uniforms. The main difference to the
black-box setting is that here, we do have access to the underlying sampling mech-
anism and can feed the AR sampler with a randomized low-discrepancy sequence
(LDS). AR algorithms are typically not popular in RQMC as it is possibly infinite-
dimensional. Smoothed rejection and weighted uniform sampling is considered in
[24], along with numerical results showing that these outperform AR sampling
in terms of convergence speed. It is shown in [28] that the F discrepancy, i.e.,
supx |Fn(x) − F(x)|, where Fn and F denote the empirical and theoretical distri-
bution function, of a sample obtained via AR is in O(n−α) for 1/2 ≤ α < 1. The
error convergence rate is improved by replacing the purely binary AR decision with
weights, called extended smoothed rejection. This circumvents integration of an indi-
cator function.Discrepancy properties of points produced by totally deterministicAR
methods, i.e., AR with a (non-randomized) Sobol’ sequence are derived in [29]. A
convergence result, error bounds and a numerical study for AR with RQMC is given
in [26]. What all previous references have in common is that they hold the dimension
of the LDS constant and effectively use a subset of size n of the first N points in the
sequence. We investigate, among other things, whether there is a difference between
holding d constant (and thereby skipping points in the sequence) or holding n con-
stant (thereby thinking of the first n points having potentially unbounded dimension).
This is the topic of Sect. 3.

To be clear, AR could even be an algorithm used within the black-box setting, but
given its prevalence, we choose to treat AR separately. We revisit this point at the
end of Sect. 3, where we combine ideas from both settings.

Section4 applies the methods presented in Sects. 2 and 3 to the problem of esti-
mating the price of a basket call option under a normal variance mixture copula
dependence. As mixing distributions, we use the inverse-gamma distribution (as its
known quantile function can be used as a benchmark) and the GIG distribution. In the
latter case, we also include the method based on numerical inversion of the density
in [5], which was shown to be efficient for the GIG in [21]. We perform the same
experiment with the aforementioned stable mixture, a model where the method in [5]
cannot be easily applied for sampling due to the lack of a tractable density. Section5
concludes the paper.
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2 Methods for the Black Box Setting

Recall that the classical MC estimator μ̂mc
n based on n samples for (1) can be written

as

μ̂mc
n = 1

n

n∑

i=1

g(TY (U i ),Wi ), (2)

where U i
ind.∼ U(0, 1)d+k is independent of W1, . . . ,Wn

ind.∼ FW obtained by calling

RW (n). To simplify the notation, we henceforth assume k = 0; the case k > 0 is
handled by replacing d by d + k in what follows. In order to be able to apply RQMC
to the problem, we first rewrite (1) as an integral over the unit hypercube. With a
change of variable, we obtain

μ =
∫

(0,1)d+1

g(TY (u1:d), Q(ud+1)) du, (3)

where u = (u1:d , ud+1) with u1:d = (u1, . . . , ud), and we use the function Q :
[0, 1] → R as a shorthand notation for the quantile function F←

W for the remain-
der of this paper.

If we were able to sample W via inversion, then RQMC sampling could be used
to estimateμ using the following approach: Let P̃b,n = {ub,1, . . . , ub,n} ⊆ [0, 1)d+1,
where ub,i = (ub,i,1, . . . , ub,i,d+1) for b = 1, . . . , B, denote B independent random-
izations of the first n points of the low-discrepancy sequence (LDS) used; here we
assume that the randomization is such that each ub,i ∼ U (0, 1)d+1. Then

μ̂
rqmc
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d), Q(ub,i,d+1)), b = 1, . . . , B, (4)

and an RQMC estimator for μ based on a total of nB points would be given by

μ̂
rqmc
B,n = 1

B

B∑

b=1

μ̂
rqmc
b,n .

The variance/error of μ̂
rqmc
B,n could then be estimated in the usual way; see [19].

However, we do not know Q, so the estimators μ̂
rqmc
b,n in (4) cannot be computed.

In this section, we propose two different methods to approximate μ̂
rqmc
b,n for b =

1, . . . , B. Both methods essentially replace Q by an estimate thereof.
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2.1 Methods Based on the Empirical Quantile Function

A simple ad-hoc method to approximate μ̂
rqmc
b,n could be to replace the Q values

by a random sample of FW obtained by calling RW (Bn). More precisely, let Wb,i

for b = 1, . . . , B, i = 1, . . . , n, denote the Bn iid samples from FW obtained by
calling RW (Bn). Replacing Q(ub,i,d+1) by Wb,i for b = 1, . . . , B, i = 1, . . . , n, is
then equivalent to replacing the last coordinate of the n points in P̃b,n by independent

U(0, 1) variates. With Wb,i = Q(Ub,i ) where Ub,i
ind.∼ U(0, 1), b = 1, . . . , B, i =

1, . . . , n, b = 1, . . . , B, we can write

μ̂
mc-rqmc
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d), Q(Ub,i ))), b = 1, . . . , B. (5)

From the inverse probability integral transform (see, e.g., [6, Theorem2.1]), we know
that Q(U ) for U ∼ U(0, 1) and Rn(1) have the same distribution, namely FW . As
such, unbiasedness of μ̂mc-rqmc

b,n (and therefore of (1/B)
∑B

b=1 μ̂
mc-rqmc
b,n ) forμ follows

immediately.
Note that only the first d coordinates of P̃b,n enter the estimation, so that the good

projection properties of coordinate d + 1 (and its interactions) are lost. Loosely
speaking, the last coordinate of the point set we are effectively using to integrate
the function g is unrelated with the first d. A better approach is to use the sampled
Wb,i to construct B empirical quantile functions Q̂n,b, b = 1, . . . , B, and replace
Q(Ub,i ) by Q̂n,b(ub,i,d+1) = Wb,(	nub,i,d+1
), where, for b = 1, . . . , B, we denote by
Wb,(i), i = 1, . . . , n, the order statistics of Wb,1, . . . ,Wb,n , soWb,(1) ≤ · · · ≤ Wb,(n).
We define

μ̂
b-eqf
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d),Wb,(	nub,i,d+1
)), b = 1, . . . , B,

where superscript “b-eqf” indicates that in each randomization b, the empirical quan-
tile function obtained in that randomization based on n samples is used (instead of
Q). That is, in each of the B randomizations (each of which requires n function
evaluations), estimate Q by its empirical quantile function Q̂n,b obtained from n
independent samples from FW via a call to the black-box function RW (n). This pro-
cedure is different from the one in [10] for distributions supported on [0, 1)s : They
do not sample using a black box NRVG to build an estimate of the empirical quantile
function, rather, they use the original low-discrepancy sequence to count the relative
number of elements below that value and use this number as the new point.

Note that as long as P̃b,n,d+1 = {ub,i,d+1 : i = 1, . . . , n} is properly stratified,
i.e., has exactly one point in each interval of the form [ j/n, ( j + 1)/n) for j ∈
{0, . . . , n − 1}, each Wb,i , i = 1, . . . , n will be sampled exactly once when using
P̃b,n,d+1 to sample the empirical quantile function Q̂b,n . Hence an alternative way
to describe the estimator μ̂

b-eqf
b,n that is useful from an implementation perspective is
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to realize that if the last coordinate of a given point ub,i is the j th smallest value
among those n last coordinates, we “stitch" Wb,( j) to that i th point. Hence the last
coordinate of P̃b,n is used to order the sampleWb,1, . . . ,Wb,n . Note that the problem
of concatenating two samples within an RQMC-based approach also appears in the
Array-RQMCmethod in [17, 20], where one needs to assign particles to points when
paths are propagated. Also note that if P̃b,n is a digitally shifted or scrambled Sobol’
point set with n = bk points or a randomly shifted rank-1 lattice, then P̃b,n,d+1 is
properly stratified; see [18].

The estimators μ̂
b-eqf
b,n for b = 1, . . . , B are independent and as long as P̃b,n,d+1 is

properly stratified, they are also unbiased, see Proposition1.
This alternative description gives rise to a slightly different estimator: Let

rn(ub,i,d+1) be the rank of ub,i,d+1 among ub,1,d+1, . . . , ub,n,d+1. We then define
the rank-based estimator as

μ̂b-rk
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d),Wb,(rn(ub,i,d+1))), b = 1, . . . , B. (6)

If P̃b,n,d+1 is properly stratified, then μ̂b-rk
b,n and μ̂

b-eqf
b,n coincide, and each sample

Wb,i is used exactly once. Otherwise, unlike μ̂
b-eqf
b,n , μ̂b-rk

b,n still uses everyWb,i exactly
once.

Proposition 1 Let b ∈ {1, . . . , B} and let P̃b,n,d+1 be properly stratified. Then μ̂b-rk
b,n

(and therefore μ̂
b-eqf
b,n ) is unbiased for μ.

Proof Let i ∈ {1, . . . , n}. We show that E(g(TY (ub,i,1:d),Wb,(rn(ub,i,d+1)),n)) = μ. By
definition, (ub,i,1, . . . , ub,i,d+1) ∼ U(0, 1)d+1, in particular, Y := TY (ub,i,1:d) ∼ FY

is independent of ub,i,d+1. Let rn(ub,i,d+1) = K (i) (a random variable) and note
that (K (1), . . . , K (n)) is a permutation of (1, . . . , n) chosen according to some
distribution (which may not be uniform because of the low-discrepancy properties
of P̃b,n). ThenWb,K (i) is an element chosen from the listWb,1, . . . ,Wb,n according to
some distribution, and the latter is an independent random sample from FW . Hence,
Wb,K (i) and Y are independent, (Y ,Wb,K (i)) ∼ FY × FW and the main claim follows
by linearity of the expectation. �

The previous methods can be thought of as approximating the quantile function
B times, each based on n samples obtained from the black box. In order to base our
simulation on a samplingmechanism closer to inversion and therebymimickingmore
closely the estimator in (4), we could instead construct a single rank-based quantile
function estimator based on the Bn outputs Wb,i , b = 1, . . . , B, i = 1, . . . , n. That
is, instead of reordering the n samplesWb,i , i = 1, . . . , n according to ub,i,d+1 in each
randomization b = 1, . . . , B, separately, we reorder the Bn realizations Wb,i , i =
1, . . . , n, b = 1, . . . , B, according to the ranks of the ub,i,d+1. That is, we construct
the estimator
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μ̂1:B-rk
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d),W(r Bn(ub,i,1))), b = 1, . . . , B, (7)

where r Bn(ub,i,d+1) = k if ub,i,d+1 is the kth smallest among the Bn uniforms
u1,1,d+1, . . . , u1,n,d+1, . . . , uB,1,d+1, . . . , uB,n,d+1.

We can replace the ranks by the empirical quantile function computed from
RW (Bn), and obtain as an analog of μ̂b-eqf the estimator

μ̂
1:B-eqf
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d),W(	nBub,i,1
)), b = 1, . . . , B,

for a sample W1, . . . ,WnB
ind.∼ FW obtained by calling RW (Bn). The superscript

“1:B-eqf” shall indicate that in all randomizations 1, . . . , B, the same quantile
function estimator is used. Note that μ̂

1:B-eqf
b,n are not independent anymore for

b = 1, . . . , B, the same applies to μ̂1:B-rk
b,n .

Here we note that Pierre L’Ecuyer and his collaborators have proposed very effi-
cient methods that combine conditional MC and RQMC to estimate quantile func-
tions associated with a simulation output; see [25]. Our setting here is different, as we
focus on estimating a univariate quantile function for the sole purpose of sampling.

2.2 Methods Based on a Generalized Pareto Approximation
in the Tail

The methods presented in the previous section are purely nonparametric and amount
to replacing the true quantile function Q by an empirical estimate thereof. Empirical
quantile functions typically estimate quantiles away from the tail with reasonable
accuracy; this does not hold for the tails ifW is unbounded. However, approximating
the tail of Q well is crucial for an effective RQMC procedure to outperform MC.

In the following, assume that W is supported on [0,∞) so that only the upper
tail needs to be estimated. Since this is typically the case in practice, this is a rather
weak assumption. If W is instead supported on R, the methods described here can
be applied to the positive and negative real line separately.

The main idea behind the methods presented in this section is the following:
Given a random sample from FW , estimate Q in the body (say, for u ∈ (0, 0.9)) by
interpolation of the empirical quantile function and in the (right) tail based on a fitted
generalized Pareto Distribution (GPD), which has a cumulative distribution function
(cdf)

Gξ,β(x) =
⎧
⎨

⎩
1 −

(
1 + ξ x

β

)− 1
ξ

, if ξ = 0,

1 − exp
(
− x

β

)
, if ξ = 0,
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where β > 0 and the support is x ∈ [0,∞) when ξ ≥ 0 and x ∈ [0,−β/ξ ] when
ξ < 0.

Let F be any cdf and let X ∼ F . Denote by Fu(x) = P(X − u ≤ x | X > u) the
excess distribution over the threshold u. Under weak assumptions, the Pickands–
Balkema-de-Haan Theorem (see [7, Theorem 3.4.13]) implies that for large enough
u one can approximate Fu by Gξ,β .

In practice, ξ and β are estimated from given data. With estimates of ξ, μ at hand,
we can compute G−1

ξ,β analytically, which, appropriately scaled, provides us with an
estimate of F−1. In what follows, assume FW fulfills the assumptions underlying the
Pickands–Balkema-de-Haan Theorem, and denote by gξ,β the density of Gξ,β . The
following algorithm returns a quantile function estimator Q̂ of Q.

Algorithm 1 Given W1, . . . ,Wn′
ind.∼ FW and α ∈ (0, 1), construct an estimator Q̂

for Q as follows:

1. Denote by W(1), . . . ,W(n′) the order statistics of W1, . . . ,Wn′ .
2. Let T = W(	n′α
) and denote by N = |{i ∈ {1, . . . , n′} : Wi > T }| the number of

exceedances over T . Let W̃i = W(	n′α
+i) − T for i = 1, . . . , N be the excesses.
Then maximize the log-likelihood function

l(ξ, β; W̃1, . . . , W̃N ) =
N∑

k=1

log gξ,β(W̃k)

with respect to ξ and β numerically over their ranges to obtain the MLEs ξ̂ and
β̂.

3. Return the function

Q̂(u) =
{

(1 − κ)W(�(n′+1)u�) + κW(�(n′+1)u�+1), if u ≤ α,

T + β̂

ξ̂

((
1−u
1−α

)−ξ − 1
)

, otherwise,

where κ = (n′ + 1)u − �(n′ + 1)u�.
Algorithm 1 does not give any error estimates, nor do we have an a-priori

guess of how large n should be. In order to obtain error estimates, one could use
Algorithm 1 to obtain M independent estimators Q̂m , m = 1, . . . , M , and esti-
mate the error using a CLT argument. That is, the (absolute) error of Q̂(u) =
(1/M)

∑M
m=1 Q̂m(u) for some fixed u ∈ (0, 1) may be estimated via 3.5/

√
M ×

σ̂ , where σ̂ = sd(Q̂1(u), . . . , Q̂M(u)). If Q̂m(u) − Q(u) follows approximately a
N(0, σ̂ 2/M) distribution, we could be 99.95% confident that the error is within
±3.5/

√
M × σ̂ ; given the tails of the distribution are approximated, this assumption

might be a bit optimistic.
With an error estimation procedure at hand, one can now construct the quantile

function iteratively until a pre-specified error tolerance for the estimated absolute
error is met. That is, one can specify knots u′

1, . . . , u
′
N ∈ (0, 1) and error tolerances
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ε1, . . . , εN > 0 and construct the quantile function with more and more points until
the error tolerance at all knots is met. The choice of knots and error tolerances can
be guided from the function g so that important subdomains have little error, or one
can put most of the knots uniformly between 0 and 1 and the remaining ones in the
tails. The main idea is summarized in the following algorithm.

Algorithm 2 Given n0 ∈ N, α ∈ (0, 1), NRVG RW , knots u′
1, . . . , u

′
N ∈ (0, 1), error

tolerances ε1, . . . , εN > 0, maximum number of iterations imax, B ∈ N, construct an
estimator Q̂ for Q as follows:

1. Set i = 1, and Sb = {} for b = 1, . . . , B.
2. Repeat

a. For b = 1, . . . , B,
i. Set Sb = Sb ∪ {RW (n0)}.
ii. Call Algorithm1with input sample Sb to construct an estimated quantile

function Q̂b.
b. For k = 1, . . . , N set ek = 3.5/

√
B × sd(Q̂1(u′

k), . . . , Q̂B(u′
k)) as the esti-

mated error at knot u′
k .

c. Set i = i + 1.

Until ek ≤ εk for k = 1, . . . , N or i > imax.
3. Return the estimated quantile function Q̂eqf-gpd(u) = (1/B)

∑B
b=1 Q̂b(u).

The input argument imax determines the maximum number of iterations allowed
in case convergence cannot be achieved. Note that the superscript “eqf-gpd” shall
indicate that the (interpolated) empirical quantile function is used in the body and a
GPD approximation in the tail. For an implementation, in any iteration i > 1, results
from the previous iterations should be reused; for instance, the MLE (ξ̂ , β̂) from a
previous iteration can be used as a starting value for the maximization of the log-
likelihood function in the next iteration. In practice one could also return the Q̂b,
b = 1, . . . , B, so that for any u ∈ (0, 1) one can compute Q̂(u) along with an error
estimate.

Given an estimated quantile function, say Q̂eqf-gpd, an RQMC estimator for μ

from (1) is given by

μ̂
eqf-gpd
B,n = 1

B

B∑

b=1

μ̂
eqf-gpd
b,n , (8)

where

μ̂
eqf-gpd
b,n = 1

n

n∑

i=1

g(TY (ub,i,1:d), Q̂eqf-gpd(ub,i,d+1)), b = 1, . . . , B,

and the inputs ub,i,d+1 and ub,i,1:d are as in the previous section. In contrast to the
estimators from Sect. 2.1, computing this estimator requires a two-stage procedure:
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Fig. 1 Estimated and realized absolute and relative errors when estimating the quantile function
of IG(1.2, 1.2) using Algorithm 2 with n0 = 7500, B = 20

First, Algorithm 2 needs to be applied to compute the estimated quantile function
Q̂eqf-gpd, whichwill then, in the second stage, be treated as the “true quantile function“
when computing the estimator μ̂eqf-gpd.

Example: Inverse-gamma. ConsiderW ∼ IG(1.2, 1). We use n0 = 7500, B = 20,
and uniform knots between 0.01 and 0.95 with relative error tolerance 0.025, one
knot at 0.99 with relative error tolerance 0.075 and and another knot at 0.999 with
relative error tolerance 0.1. The algorithm needed 10 iterations until convergence,
so a total of 1 350 000 realizations of W . The approximation is very accurate and
the true quantile lies within the approximated error bounds. This can be seen from
Fig. 1, which displays realized and estimated absolute and relative errors.

Example: Expected shortfall of portfolio under a multivariate t distribution.
The multivariate t distribution is a normal variance mixture distribution and falls
into the general framework of this paper, if we assume that the quantile function of
an inverse-gamma distribution is not available. We do this to compare our methods
with the “best possible” estimator from (4). Let µ ∈ R

d and � = AA� for some
covariance matrix �. Then X ∼ td(ν,µ, �) has stochastic representation

X = µ + √
WY , (9)

where W ∼ IG(ν/2, ν/2) independent of Y ∼ Nd(0, �). For a continuous random
variable L ∼ F withE(|L|) < ∞ and level α ∈ (0, 1) small, expected shortfall is the
mean conditional loss ESα(L) = E(L | L > F−1

L (α)). In our simulation, we assume
that L = 1�X where X ∼ td(ν, 0, �); it follows from the closedness of normal vari-
ance mixtures that L ∼ t1(ν, 0, 1��1). The value of μ = ESα(L) := E(g(Y ,W ))

is known in closed-form; see [23, Example 2.15]. This allows us to estimate the
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Fig. 2 Mean squared errors as a function of n (left) and variances as a function of d (right) when
estimating ES0.95(L) for L = 1�X where X ∼ td (ν, 0, �)

mean squared error (MSE) and compare it with the variance. For a range of values
of the total number of function evaluations, we report in Fig. 2 the mean squared
error (MSE) and variance for various methods, each estimated by using M = 50
independent copies of the estimators, each of which is based on B = 20 repetitions.
The numbers in brackets are the estimated regression coefficients; if the estimate is
α̂, it means that the MSE as a function of the sample size n is in O(n−α). Here and
in what follows, we use a digitally shifted Sobol’ sequence as implemented in the R
package qrng; see [13]. Note that generating Sobol’ points is faster than generating
pseudo-random numbers using the Mersenne Twister, which is the default random
number generator inR. All RQMCbased estimators, includingMC-RQMC from (5),
outperformMC, though MC-RQMC gives only a moderate variance reduction. This
is in contrast to b-rk, which for small n gives MSE similar to inversion, which we
recall would not be available in a realistic setting where Q is unknown.

3 Combining AR with RQMC

Rather than working with a “black-box” RVG RW , we assume in this section that
W can be sampled using AR and explore how we can apply RQMC in this set-
ting. Recall from (3) that we are interested in estimating μ = E(g(Y ,W )), so
we need n samples (Y i ,Wi ) where Wi ∼ FW . When using AR, there is no a-
priori bound on how many uniforms are needed, so we have an a priori infinite-
dimensional integration problem: If TAR denotes theAR transformation, we canwrite
μ = E(h(U)) = E(g(TY (U1:d), TAR(U (d+1):∞)) with U ∼ U(0, 1)∞ and h appro-
priately defined. The integrand h is a non-monotone and discontinuous function
of its input uniforms, a result from the acceptance decision. This can diminish the
variance reduction effect of RQMC over MC.
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Fig. 3 Schematic description of AR-n. Gray coordinates in the same row correspond to rejected
coordinates

Fig. 4 Schematic description of AR-d with consecutive (top) and blockwise (bottom) coordinate
assignment. Gray coordinates in the same row correspond to rejected coordinates

We assume that W has density fW over (a, b) ⊆ R, we use the proposal den-
sity f having the same support (a, b) with quantile function F−1, and that c =
supx∈(a,b) fW (x)/ f (x) < ∞.

A major difference between the application of RQMC and MC is that with the
former, we need to carefully assign which coordinate of the points is used to sample
which random variable, and there is typically more than one way to do so. As in the
previous section, we assume that the first d coordinates u1:d of u ∈ (0, 1)∞ are used
to sample from FY . Algorithms 3 and 4 describe two ARmethods to sample n copies
of (Y ,W ); a schematic description is given in Figs. 3 and 4. The former method,
henceforth referred to as AR-n, always uses coordinates {d + 1, d + 2} in the AR
part, and moves along the index i . If a point is rejected, just like the point in row
i = 1 in Fig. 3, the algorithm tries again with point i + 1. That is, when sampling
n points we move along the index of a randomized LDS with constant dimension
d + 2. In contrast, Algorithm 4 (AR-d) samples the i th point by moving along the
coordinates {d + 1, d + 2, d + 3, . . . } of the i th point in the sequence until it is
accepted; see the top of Fig. 4, where we assume that coordinates d + 2 j − 1 and
d + 2 j for j = 1, 2, . . . are used for sampling from the proposal and sampling from
the AR decision, respectively. Another possibility to assign the coordinates for the
AR part is to consider two blocks of size M (chosen so that, with high probability, M
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trials are sufficient to accept a point), where the coordinates in the first block are used
for the sampling in Step 2(a)i and the coordinates in the second block determine the
acceptance decision in Step 2(a)ii. This version of AR-d is illustrated at the bottom
of Fig. 4.

Algorithm 3 (AR-n) Let {u1, u2, . . . , } ⊂ (0, 1)d+2 be a randomized LDS. Sample
n copies of (Y ,W ) as follows.

1. Set j = 1, On = {}.
2. For i = 1, . . . , n,

a. Repeat
i. Compute W = F−1(u j,d+1) and set U = u j,d+2.
ii. If U > fW (W )/(c f (W )) set j = j + 1 Else

Set On = On ∪ {(TY (u j,1:d ,W )}
Set j = j + 1 and break;

3. Return On .

The main difference between AR-n and AR-d is that in the former approach,
points in the sequence are skipped, and, effectively, a subset of size n of the first
N > n points in the sequence is used to integrate g, whereas in AR-d we always use
the first n points in the sequence and move along the coordinates.

Algorithm 4 (AR-d) Let {u1, u2, . . . , un} ⊂ (0, 1)∞ be a randomized low discrep-
ancy point-set. Sample n copies of (Y ,W ) as follows.

1. Set On = {}.
2. For i = 1, . . . , n,

a. For j = 1, 2, . . . ,
i. Compute W = F−1(ui,d+2 j−1).
ii. If ui,d+2 j ≤ fW (W )/(c f (W )):

A. Set On = On ∪ {(TY (ui,1:d ,W )}
B. Break.

3. Return On .

A potential advantage of AR-d over AR-n for numerical integration is that it
really only uses the first n points of the LDS rather than a subset of the first N > n
points in the sequence. In order to highlight this point, assume that our integrand
does not depend on W and that n = 2k . When estimating μ based on AR-d, we will
then use the first 2k points of the underlying LDS and keep all its good projection
properties. In contrast, using AR-n, we only use a subset of size 2k of the first
N > 2k points, thereby potentially loosing some of the good projection properties
of the LDS. This point is illustrated in Fig. 5, where we first sample (Wi ,Yi1,Yi2)
where Yi j ∼ N(0, 1), j = 1, 2, and Wi ∼ �(1.2, 1) for i = 1, . . . , n = 27, and then
set U i = (FW (Wi ),�(Yi1),�(Yi2)) for i = 1, . . . , n. By the probability integral
transformation, U i ∼ U(0, 1)3. Note that if we had used inversion to sample the
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Wi , the points would be exactly the original LDS. Note how Sobol’-d gives a point
set with better marginal uniformity than Sobol’-n, which is also confirmed in the
histogram of the first standardized coordinate in Fig. 6. Note that if we had 2k bins
with k ≤ 7 we would see a flat histogram on the right-hand side of this figure; here
and it what follows, we use the AR samplers for the Gamma distribution from [2,
15] for ν > 1 and ν < 1, respectively.

Next, we show in Propositions2 and 3 that both algorithms produce point sets
with the correct distribution.

Proposition 2 Each x ∈ On produced by Algorithm 3 has distribution FY × FW .
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Proof It suffices to show that the two numbers used to sample from the proposal
and the acceptance decision are independent U(0, 1) random variables. The rest
follows from the correctness of the AR algorithm; see, e.g., [8] for a proof. Let
x = (Y ,W ) ∈ On . Then there is a j ∈ {1, 2, . . . } such thatW = F−1(U1) andU2 ≤
fW (W )/(c f (W )) whereU1 = u j,d+1 andU2 = u j,d+2 satisfyU1,U2

ind.∼ U(0, 1) by

the randomization of the LDS. �

Proposition 3 Each x ∈ On produced by Algorithm 4 has distribution FY × FW .

Proof Since we assumed that the chosen LDS is randomized so that each ub,i ∼
U (0, 1)d+1, the coordinates ui,d+ j used in Step 2(a)i and 2(a)ii are independent
U(0, 1) for j ≥ 1. The claim follows from the correctness of the AR algorithm. �

Our investigation of AR-d was motivated by the argument that AR corresponds
to infinite-dimensional integration; see [9, pp. 62–63], who also notes that “potential
drawback of AR methods, compared with the inverse transform method, is that
their outputs are generally neither continuous nor monotone functions of the input
uniforms.” We can address the monotonicity by using the rank transformations from
the black box setting in Sect. 2: that is, we re-order the outputs W1, . . . ,Wn so that
their order matches the ordering of u1,d+1, . . . , un,d+1. If n = 2k , this is exactly the
b-rk method from Sect. 2 applied with the output of AR-d as a “black box”. Note that
this makes the AR-d output monotone in coordinate d + 1 of the underlying LDS.
Note that with AR-n, we always use ui,d+1 for some i to sample from the envelope
via inversion, so that the monotonicity in this coordinate is already given.

Expected shortfall example continued. We perform the same example as in
Sect. 2.2, but this time, using the AR based methods instead of the black-box setting.
See Fig. 7. All AR based methods outperform pure MC and MC-RQMC, and the
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Fig. 7 Mean squared errors as a function of n (left) and variances as a function of d (right) when
estimating ES0.95(L) for L = 1�X where X ∼ td (ν, 0, �)
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convergence speed of AR-n and AR-d, 1:B-rk are almost as high as for the method
“inversion”, which we recall would not be available in a realistic setting.

4 Application: Basket Option Pricing

Consider the problem of estimating the value of a Basket call option with strike K ,
whose payoff with maturity T = 1, can be expressed as

μbskt = e−r
E

⎛

⎝max

⎧
⎨

⎩
1

d

d∑

j=1

Sj − K , 0

⎫
⎬

⎭

⎞

⎠ ;

we assume that the dependence of the log-normal assets Sj , j = 1, . . . , d, is modeled
via a t-copula. As such, the assets Sj have stochastic representation

Sj = F−1
LN (Uj ), Uj = Ftν (X j ), j = 1, . . . , d, X ∼ td(ν, 0, �);

here,� is a correlationmatrix. The t copula is one of the most widely used copulas in
risk management; see, e.g., [4] for more. Pricing basket options is a popular problem
to perform RQMC experiments; see, e.g., [16]. The value of μbskt is not known, so
we look at the estimated variances for the following methods:

• MC: Use MC for W and Y ;
• MC-RQMC: use MC for W and RQMC for Y , i.e., compute μ̂mc-rqmc in (5).
• AR-d: Use Algorithm 4, i.e., sample W based on AR whilst moving along the
coordinates of a point in the LDS until acceptance.

• AR-n: Use Algorithm 3, i.e., sample W based on AR whilst moving along the
index of the point in the LDS until acceptance.

• AR-d, b-rk: Use AR-d in each repetition b and additionally reorder the n
samples W1,b, . . . ,Wn,b according to u1,b,d+1, . . . , un,b,d+1 for b = 1, . . . , B.

• AR, 1:B-rk: Use AR-d and sort all the sample W1,1, . . . ,Wn,B according to
u1,1,d+1, . . . , un,B,d+1.

• b-rk: Treat RW as black-box and compute μ̂b-rk
b,n from (6) for b = 1, . . . , B.

• 1:B-rk: Treat RW as black-box and compute μ̂1:B-rk
b,n from (7) for b = 1, . . . , B.

• eqf-gpd: First, build gpd based estimate Q̂ using samples obtained from the
black box RW , then treat it as true Q and proceed with inversion; seeμ̂eqf-gpd in (8).

• inversion: Compute the inversion based estimator μ̂
rqmc
b,n from (4) for b =

1, . . . , B using the true quantile function.

The last method “inversion” is not available in a realistic setting like the stable
example at the end of this section, but is included here to compare our methods with
the best possible one. All methods (except for MC) sample the multivariate normal
random vector Y based on inversion of a digitally shifted Sobol’ sequence.
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Fig. 8 Variances when estimating μbskt under a t copula with ν = 2.2 dof, r = 0.01, σ = 0.2
(volatility for all stocks) as a function of n

The results in Fig. 8 indicate that using RQMC for sampling Y gives at least
a modest variance reduction. Furthermore, treating the sampler as a black box and
reordering theW samples as described in Sect. 2 gives further variance reduction. On
the right hand side we see the ARmethods from Sect. 3 which all give lower variance
than the black-box methods; this makes sense as we are directly manipulating the
sampler with some rank reordering, outperform AR-n.

Next, we alter this example so that we end up with a model where the quantile
function of W is not as easily available as the quantile function of the inverse-
gamma distribution (via qgamma()). To this end, we replace the t copula with a
GIG-mixture copula. A random vector X has a GIG-mixture distribution if it follows
the stochastic representation (9) with W ∼ GIG(β, λ); see [14] for a definition and
an AR algorithm.

The marginal distribution functions Fj of X j needed to compute the copula sam-
ple are not known, so we denote by F̂j (x) = (n + 1)−1 ∑n

i=1 1{Xi j≤x} the empir-
ical distribution function of X j , and instead compute the pseudo observations
U i = (F̂1(Xi1), . . . , F̂d(Xid)) for i = 1, . . . , n.

In this example, we also include the method runuran, implemented in the R
package with the same name [22]. By using the density function as input, it approx-
imates the distribution function numerically and builds an approximation of the
quantile function using splines; see [5]. It was demonstrated in [21] that this method
works well for the GIG distribution.

Figure9 shows estimated variances as a function of n (left) and the number of
assets d (right); the lines for the methods runuran, eqf-gpd, 1:B-rk and b-rk are
overlapping. These are the best methods in terms of estimated variance. All RQMC
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Fig. 9 Variances when estimating μbskt under a GIG mixture copula with λ = 0.5, β = 0.3, r =
0.01, σ = 0.2 (volatility for all stocks) as a function of n

Table 1 Average run times in seconds (top) and estimated efficiencies (bottom) when computing
various estimators with sample size n = 20 × 212 to estimate μbskt under a 9-dimensional GIG
mixture copula with β = 0.3 and λ = 0.5

Runuran eqf-
gpd

1:B-rk b-rk AR-n AR-d AR-d,
b-rk

AR-d,
1:B-rk

MC-
RQMC

MC

CPU 0.342 3.965 0.545 0.545 0.541 0.530 0.532 0.553 0.548 0.542

REff 7.32 0.63 4.60 4.62 2.70 2.54 4.72 4.52 1.61 1.00

based methods outperform MC and MC-RQMC gives the smallest variance reduc-
tions while AR-d and AR-n yield a modest variance reduction.

In thefirst rowofTable1,we showaverage run-times (in seconds)whencomputing
various estimators when n = 20 × 212 and d = 9. All methods, with the exception
of eqf-gpd and runuran, take roughly the same time. Recall that with eqf-gpd, the
idea is to estimate the quantile function Q once only using RW , and then use it as
a true quantile function for all subsequent simulations.The runuran method is the
fastest. The second row of Table1 shows relative efficiencies. The efficiency of a
method is defined by (CPU ·Var)−1 and we prefer methods with large efficiency.
We estimate these efficiencies and standardize them by the efficiency of pure MC.
Method “eqf-gpd”, due to its long run time, is the least efficient method, while
the runuran method is most efficient, though we remark that it is the only method
displayed that had access to the density function of W . The black box methods
1:B-rk and b-rk substantially outperformMC-RQMC, giving support for this simple
re-ordering scheme. The re-ordering also helps the AR-based methods.
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Fig. 10 Variances when estimating μbskt under a stable mixture copula with α = 0.6, β = 1 and
γ = cos((π/2)α)1/α , r = 0.01, σ = 0.2 (volatility for all stocks) as a function of n. (*) The exper-
iment for “inversion” was only performed up to n = 2 × 104, so the regression coefficient was
computed using a smaller sample than the other coefficients

Table 2 Average run times in seconds (top) and estimated efficiencies (bottom) when computing
various estimators with total sample size n = 20 × 210 to estimate μbskt under a 7-dimensional
stable mixture copula with α = 0.9, β = 1 and γ = 1

Inversion eqf-gpd 1:B-rk b-rk MC-RQMC MC

CPU 23.8 4.4 0.4 0.4 0.4 0.4

REff 0.06 0.33 3.64 3.59 1.26 1.00

Finally, we repeat the same experiment with the only change being that now we
assume that W follows a stable distribution; see [1] for a sampling algorithm for the
stable distribution. Note that not even the density of a stable distribution can be easily
computed, hindering the applicationof numerical integration schemes to approximate
the quantile function. In our simulation, we use the R package stabledist; see
[3]. We use the function rstable() as a “black box” NRVG and the function
qstable() to compare against the inversionmethod; note that it relies onnumerical
integration. The results are displayed in Fig. 10, where we used the parameters α =
0.6, β = 1 and γ = cos((π/2)α)1/α for the stable distribution so that the support is
[0,∞). Due to numerical problems with qstable() it was only used for sample
sizes up to 2 × 104. See Table2 for run times: For the chosen sample size, even
our eqf-gpd method is faster than inversion. Our rank based methods are the most
efficient methods in this example.
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5 Conclusion

We explored the question how RQMC can be applied to estimate μ = E(g(Y ,W ))

when all components but one can be sampled via inversion, and the remaining one
W by calling a NRVG only. Our proposed algorithms in the black box setting were
motivated by the fact that RQMC works best when combined with inversion, so that
our methods aim at mimicking this observation by exploiting the sample to estimate
the quantile function. In Sect. 3, we assumed the existence of an AR algorithm, and
motivated an AR-d algorithm that samples along the coordinates rather than moving
along the sequence. Our numerical results indicate that RQMC can still provide a
substantial variance reduction when combined with a NRVG. In particular we saw
that the re-ordering methods outperform MC-RQMC (where we merely combine
RQMC with pseudo-random sampling of W ). Furthermore, we saw that moving
along the coordinates as we do in AR-d can give better results than the previously
proposed AR-nmethods.With themethods in this paper at hand, we could extend the
algorithms in [11, 12] to estimate various quantities related to multivariate normal
variance mixture distributions, such as the distribution function. Furthermore, we
plan to address some questions of computational nature, such as exploring efficient
implementations of AR-d based on point sets that are easily extensible in the number
of coordinates, such as Korobov rules based on well-chosen generators a; see [18].
Finally, this paper mostly focused on numerical comparisons of different RQMC-
based algorithms based on digitally shifted Sobol’ sequences. In the near future we
plan to study settings under which it might be possible to obtain theoretical results
demonstrating the superiority of our proposedRQMC-basedmethods (perhaps based
on scramblings rather than shifts) over MC.
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A Generalized Transformed Density
Rejection Algorithm

Wolfgang Hörmann and Josef Leydold

Abstract Transformed density rejection is a very flexible method for generating
non-uniform random variates. It is based on the acceptance-rejection principle and
utilizes a strictly monotone map that transforms the given density into a concave
or convex function. Hat function and squeezes are then constructed by means of
tangents and secant. We present a new method that works for arbitrary one time
continuously differentiable densities. It requires together with the log-density and
its derivative a partition of the domain into subdomains that contain at most one
inflection point. This improves a previous method of the authors in which also the
second derivative is required. We show how the algorithm can be applied to generate
from theGeneralized InverseGaussian distribution, from theGeneralizedHyperbolic
distribution and from the Watson distribution. The new algorithm can also generate
random variates from truncated distributions without problems.

Keywords Non-uniform random variate generation · Black-box algorithm ·
Transformed density rejection · Adaptive rejection sampling

1 Introduction

Monte Carlo methods and stochastic simulation are very powerful tools for com-
puting metric values in models. A crucial step is the sampling of uniform random
numbers and non-uniform random variates. For the latter acceptance-rejection sam-
pling is often used. Then anupper bound h (calledhat function) andoptionally a lower
bound s (called squeeze) has to be found that satisfy 0 ≤ s(x) ≤ f (x) ≤ h(x). Hat
function h must be some multiple of a density function that allows for easy sampling
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from (typically by inversion) and squeeze s may be used to reduce the computational
expense of evaluating f . Once values of h and s have been found, to generate a value
of X from a distribution with density f , the following steps are necessary:

1. Generate a random variate X with density proportional to h.
2. Generate a (0, 1) uniform random number, U .
3. If U h(X) ≤ s(X), then return X .
4. If U h(X) ≤ f (X), then return X .
5. Otherwise, try again.

Although executing the five steps above is simple, the challenge in implementing
acceptance-rejection sampling is in finding appropriate functions h and s. There exist
many papers proposing such functions especially tailored for standard distributions,
see, e.g., [9] for an extensive survey.

Devroye [8] discussed a different approach and proposed a general method to
construct hat functions that works for all distributions with log-concave densities.
Notice here that the given density need not be normalized. That is, any multiple of a
density (with unknown proportionality factor) can be used. Gilks and Wild [11] use
tangents and secants of the log-density to construct hat and squeeze functions, resp.
Thus the hat distribution is a mixture of truncated exponentially distributed random
variates with disjoint domains. Hence sampling by inversion is fast and simple. The
interval boundaries are computed as the intersection points of the tangents. The initial
subdivision is then refined by adaptive rejection sampling (ARS).

Hörmann [12] generalized this idea for the class of T -concave distributions. A
density f is called T -concave if the transformeddensity f̃ = T ◦ f is concave,where
T : (0,∞) → R is a differentiable andmonotonically increasing transformation. If f
is T -concave, the tangent t̃(x) = α + βx to f̃ is greater than f̃ for all x in the domain
of f , making the function t (x) = T−1

[
t̃(x)

] = T−1 (α + βx) a hat function to f .
He also suggested a class of Box-Cox-like transformations where again sampling
from the hat distribution by inversion is quite cheap, see Table1. We want to note
here that a Tc-concave density is also Tc1 -concave for every c1 ≤ c. Furthermore, we
need c > −1 for unbounded intervals as otherwise the integral of the hat function is
unbounded. For a detailed discussion we refer to [13].

Table 1 The family Tc of transformations. FT denotes the antiderivative of T−1
c

c Tc(x) T−1
c (x) FT (x) F−1

T (x)

> 0 xc x1/c c
c+1 x

(c+1)/c
( c+1

c x
)c/(c+1)

0 log(x) ex ex log(x)

< 0 −xc (−x)1/c − c
c+1 (−x)(c+1)/c − (− c+1

c x
)c/(c+1)

−1/2 −1/
√
x 1/x2 −1/x −1/x

−1 −1/x −1/x − log(−x) − exp(−x)
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Similarly, if f is T -concave, the secant to the transformed density, r̃ , can be used
to construct the squeeze function, s, for the density in a given interval. Evans and
Swartz [10] show that the opposite applies (in that tangents are used to construct
the squeeze function and secants are used to construct the hat function) when f is
T -convex.

It is quite obvious that this approach works for an arbitrary distribution with
differentiable density when we partition its domain into intervals where the density
is either T -concave or T -convex. For unbounded sub-intervals it is required that the
density is T -concave. Although it is not necessary to use the same transformation in
each subdomain, identifying these intervals requires the inflection points of f̃ , which
are often difficult to obtain.

For that reason Botts [5] relaxed the requirement of knowing the exact position
of the inflection points. He proposes a method requiring a subdivision into intervals
where the transformed density is either concave, convex, or has exactly one inflection
point. For the latter case, he introduces an additional transformation and compiles a
new sampling algorithm.

This idea has been simplified by [6]. It avoids the necessity of an additional
transformation and relaxes the rather strong properties of the densities. Instead the
user has to provide an implementation of the second derivative of the (log-) density. A
ready-to-use version of the proposed algorithm is provided asR package Tinflex,
see [14].

A closer look at the Tinflex algorithm reveals that it is enough to know the sign
of the second derivative. In this contribution we thus show how to develop a method
that only requires the transformed density and its derivative for constructing hat and
squeeze in a reliable way at the expense of a slightly increased complexity of the
setup part of the generator. We are convinced that from a mathematical point of view
it is clear that an algorithm with less input is more elegant and preferable. Also we
can assume that most users will be glad to have to supply only two functions instead
of three. It is certainly true that numeric or automatic derivation could be used to
reach that aim of more convenience for the user. But of course that depends also on
the experience the user has with software for numeric or automatic derivation and
is able to use it correctly. And there remains the fact that for numerically difficult
densities like, e.g., for the generalized hyperbolic (GH) distribution (see Sect. 5.1)
the computational burden of the set-up step is reduced by removing the necessity
of the second derivative. It is also likely that for such numerically difficult densities
the new version of Tinflex is numerically more robust. In addition this approach
allows for a more user-friendly implementation of the sampling algorithm. It works
also without problem for generating very fast from densities truncated to an arbitrary
interval. This is not a simple task as exhibited in [3].

The paper is organized as follows: In Sect. 2 we shortly summarize the sampling
method from [6]. In Sect. 3we present the proposed improvement. Section4 compiles
the entire algorithm, and in Sect. 5 we demonstrate how to apply the new algorithm to
generate from the Generalized Inverse Gaussian distribution, from the Generalized
Hyperbolic distribution and from the Watson distribution.
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2 Transformed Density Rejection with Inflection Points

In this section we summarize the method of [6] and restate the main result in Theo-
rem1 that is more suitable for our purpose. Moreover, a review of the given proofs
show that the conditions for density f can be relaxed as following.

(C1) Density f and thus transformed density f̃ are continuous and piece-wise twice
continuously differentiable.

(C2) There is only a finite number of points where f̃ ′′ does not exist. Around each
of these points either f̃ ′ is monotone or f̃ ′′ changes sign. This excludes trans-
formed densities like f̃ (x) = e−|x | while f̃ (x) = 3

√
x does work.

(C3) We are given a partition of the domain with finitely many breaking points
−∞ ≤ b0 < b1 < · · · < bn < bn+1 ≤ ∞ where the following holds:

(C3a) In each bounded interval [bi , bi+1] of the partition the closures of the sets
{x : f̃ ′′(x) ≤ 0} and {x : f̃ ′′(x) ≥ 0} are connected or empty.

(C3b) In each unbounded interval (−∞, b1] or [bn−1,∞), f̃ must be concave and
strictly monotone.

Observe that Condition (C3a) holds when there is at most one inflection point in
[bi , bi+1] as stated in the original paper. However, (C3a) also allows transformed
densities which are linear on subdomains. Another consequence is that there exists a
point y∗ ∈ (bl , br ) that separates subdomains [bl , y∗] and [y∗, br ]where f̃ is convex
and concave, resp., whenever both sets are non-empty. Condition (C3b) is required
as otherwise we cannot create a hat function with bounded integral.

Now let [bl , br ] be an interval in the domain of density f .We denote the tangent of
the transformed density f̃ in the boundary points by t̃l(x) = f̃ (bl) + f̃ ′(bl)(x − bl)
and t̃r (x) = f̃ (br ) + f̃ ′(br )(x − br ), resp. Its secant is denoted by r̃(x) with slope

R = f̃ (br ) − f̃ (bl)

br − bl
. (1)

In general we use a tilde ~ to denote functions in transformed scale.
The algorithm is based on the following proposition that immediately follows

from [6, Theorems 1 and 2].

Theorem 1 Let [bl , br ] be a bounded closed interval where f̃ satisfies Condi-
tion (C3a). Then it belongs to one of the eight types that are listed in Table2. There
are no other types.

The inequalities in Table2 allow to determine the type of the interval and to create
hat function and squeeze. For types (IVa) and (IVb) both tangents can be used. In [6]
the one where f̃ is larger in the respective construction points bl and br is proposed.
Figure1 illustrates three of the possible types.
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Table 2 Types of intervals [bl , br ]

Type f̃ ′ and R f̃ ′′ Squeeze and hat

Ia f̃ ′(bl ), f̃ ′(br ) ≥ R f̃ ′′(bl ) ≤ 0 ≤ f̃ ′′(br ) t̃r (x) ≤ f̃ (x) ≤ t̃l (x)

Ib f̃ ′(bl ), f̃ ′(br ) ≤ R f̃ ′′(bl ) ≥ 0 ≥ f̃ ′′(br ) t̃l(x) ≤ f̃ (x) ≤ t̃r (x)

IIa f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) f̃ ′′(bl ) ≤ 0 ≤ f̃ ′′(br ) r̃(x) ≤ f̃ (x) ≤ t̃l (x)

IIb f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) f̃ ′′(bl ) ≥ 0 ≥ f̃ ′′(br ) r̃(x) ≤ f̃ (x) ≤ t̃r (x)

IVa f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) f̃ ′′(bl ), f̃ ′′(br ) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃l (x), t̃r (x)

IIIa f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) f̃ ′′(bl ) ≤ 0 ≤ f̃ ′′(br ) t̃r (x) ≤ f̃ (x) ≤ r̃(x)

IIIb f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) f̃ ′′(bl ) ≥ 0 ≥ f̃ ′′(br ) t̃l(x) ≤ f̃ (x) ≤ r̃(x)

IVb f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) f̃ ′′(bl ), f̃ ′′(br ) ≥ 0 t̃l(x), t̃r (x) ≤ f̃ (x) ≤ r̃(x)

Fig. 1 Intervals of types (Ia), (IIa), and (IIIa) from Table2

Remark 1 Notice:

• Transformed density f̃ is concave near bl in types (Ia), (IIa), (IIIa) and (IVa) and
convex otherwise. It is concave near br in types (Ib), (IIb), (IIIb), and (IVa) and
convex otherwise.

• The types in Table2 are determined by R and the values of f̃ ′ and f̃ ′′ at boundary
points bl and br .

• Tangents t̃l and t̃r do not intersect in [bl , br ] if and only if the interval is of type
(Ia) or (Ib).

• Tangents t̃l and t̃r and secant r̃ form a triangle in [bl , br ]with the intersection point
of the tangents above the secant if and only if the interval is of type (IIa), (IIIb),
or (IVa); and below if and only if the interval is of type (IIb), (IIIa), or (IVb).

• In intervals of type (IVa) and (IVb), f̃ ′′ cannot change sign and thus f̃ is concave
and convex, resp., in [bl, br ].
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It is then straightforward to construct a sampling routine on interval [bl, br ]. Let

h̃ = α + β(x − x0) ,

be the linear hat function for f̃ where x0 is either bl or br . When the tangent serves
as the hat function to f̃ , α = f̃ (x0) and β = f̃ ′ (x0), and when the secant serves as
the hat function to f̃ , α = f̃ (x0) and β = R. The area below the hat then becomes

Ah =
∫ br

bl

h(x) dx =
∫ br

bl

T−1
c (α + β(x − x0))dx

= 1

β
[FT (α + β(br − x0)) − FT (α + β(bl − x0))] ,

(2)

where FT denotes the anti-derivative of T−1
c . The (non-normalized) CDF, H(x), of

the density proportional to h then is given by

H(x) =
∫ x

a
T−1
c (α + β(t − x0))dt

= 1

β
[FT (α + β(x − x0)) − FT (α + β(a − x0))] .

Notice that H(br ) = Ah . Thus the inverse H−1(u) for u ∈ [0, Ah] is then given by

H−1(u) = x0 + 1

β

[
F−1
T (βu + FT (α + β(a − x0))) − α

]
. (3)

Remark 2 When x0 is very close to a maximum or another point where f̃ ′ (x0) ≈ 0,
then formula (3) becomes sensitive to numerical errors. Then one should replace the
exact formula by approximations which are accurate up to the resolution of the
floating point numbers, see [6] for details.

Remark 3 When c �= 0 there might be a problem when using tangents to construct
hat or squeeze functions. If t̃ has a root in the corresponding interval, then t̃ cannot be
transformed back into a valid hat or squeeze function. It is then necessary to further
subdivide the corresponding interval as described below.

The performance of an acceptance-rejection method can be measured by means
of the rejection constant defined as the ratio of the area below the hat function
and the area below the density. It gives the expected number of iterations of the
acceptance-rejection loop for getting one (accepted) random variate. An advantage
of transformed density rejection as described here is that the rejection constant is
bounded by the ratio

ρ = area below hat

area below squeeze
. (4)



A Generalized Transformed Density Rejection Algorithm 289

It even allows to estimate the required number of (usually expensive) evaluations
of f̃ which is approximately given by ρ − 1, see [13]. If ρ is close to one than the
marginal generation time hardly depends on the given density.

Another advantage of this method is that ρ can be made as close to 1 as requested
by the user. Indeed for the twice continuously differentiable densities with bounded
domain we find

ρ = 1 + O(1/N 2) (5)

when we have N intervals of equal length, see [6].
There exist some methods to find non-overlapping intervals of the domain which

result in arbitrary small values of ρ − 1. One starts with any subdivision that sat-
isfies Condition (C3). Then this subdivision can be refined by means of adaptive
rejection sampling (ARS) as proposed by [11] where rejected points are used to split
the corresponding interval into two parts until the requested value of ρ is reached.
Alternatively we can iteratively subdivide intervals where the area between hat and
squeeze is above some threshold value during the setup, see [15]. We propose to use
the“arc-mean” of the boundaries of interval (bi−1, bi ) for splitting intervals:

parc = tan
(
1
2 (arctan(bi−1) + arctan(bi ))

)
(6)

where arctan(±∞) is set to ±π/2, see also [13, Sect. 4.4.6].
It is then straightforward to compile an algorithm based on the above principles.

In Algorithm 4 in Sect. 3 below we present the entire algorithm that makes use of
the proposed improvements.

3 Determine Signs of Second Derivatives

We can see from Table2 that we need the sign of f̃ ′′ at the two boundary points
only in order to distinguish between types (IIa), (IIb) and (IVa) as well as between
types (IIIa), (IIIb) and (IVb). There is no necessity to compute its exact value. So we
propose amethod that characterizes these types reliably when only the first derivative
is available. Again the conditions of Sect. 2 must be satisfied. We discuss two cases:

Case 1: We subdivide an interval of known type and determine the types of the
two subintervals. This is useful when the signs of f̃ ′′ are given for the boundaries of
the initial intervals and we have to split an interval in order to improve the hat and
squeeze. This scenario seems plausible as the user already needs a rough estimate
for the inflection points.

Case 2: No such information is given and we have to determine the type of the
interval without evaluating the second derivative.

For this purpose we first summarize some basic properties of concave and convex
functions. In particular we will make use of properties (a) and (b).
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Lemma 1 Let f̃ be a piece-wise C2-function on domain [b1, b2] such that Condi-
tion (C2) holds.

(a) Point p∗ ∈ (bl, br ) is an inflection point of f̃ if and only if p∗ is an extremal
point of its derivative f̃ ′.

(b) Derivative f̃ ′ ismonotonically decreasing (increasing) if and only if f̃ is concave
(convex).

(c) Function f̃ is concave (convex) if and only if f̃ ′′(x) ≤ 0 ( f̃ ′′(x) ≥ 0) for all
x ∈ [b1, b2].

(d) Let t̃(x) be a tangent of f̃ .
If f̃ is concave, then f̃ (x) ≤ t̃(x) for all x ∈ [b1, b2].
If f̃ is convex, then f̃ (x) ≥ t̃(x) for all x ∈ [b1, b2].

(e) Let t̃(x) = f̃ (x0) + f̃ ′(x0)(x − x0) be the tangent in x0.

If f̃ (y) ≤ t̃(y) for some y > x0, then f̃ ′(x0) ≥
(
f̃ (y) − f̃ (x0)

)
/ (y − x0).

If f̃ (y) ≤ t̃(y) for some y < x0, then f̃ ′(x0) ≤
(
f̃ (y) − f̃ (x0)

)
/ (y − x0).

By our assumptions the sign of the second derivative can be determined by triples
of points as stated in the next proposition.

Lemma 2 Let f̃ be a piecewise C2-function on domain [b1, b2] such that Condi-
tions (C2) and (C3a) hold. Let b1 ≤ p1 < p2 < p3 ≤ b2.

(a) If f̃ ′(p2) ≤ min{ f̃ ′(p1), f̃ ′(p3)}, then f̃ ′′(p1) ≤ 0 ≤ f̃ ′′(p3).
If f̃ ′(p2) ≥ max{ f̃ ′(p1), f̃ ′(p3)}, then f̃ ′′(p1) ≥ 0 ≥ f̃ ′′(p3).

(b) If f̃ ′(p1) ≤ f̃ ′(p2) ≤ f̃ ′(p3), then f̃ ′′(p2) ≥ 0.
If f̃ ′(p1) ≥ f̃ ′(p2) ≥ f̃ ′(p3), then f̃ ′′(p2) ≤ 0.

Proof By our assumptions there is at most one point or interval where f̃ ′ is extremal
in the open interval (b1, b2). If f̃ ′(p2) ≤ min{ f̃ ′(p1), f̃ ′(p3)}, then there is exactly
one minimum (interval) of f̃ ′ in (p1, p3) and hence f̃ ′ is decreasing near p1 and
increasing near p3. Thus (2) follows.

If f̃ ′(p1) ≤ f̃ ′(p2) ≤ f̃ ′(p3), then f̃ ′ is either monotonically increasing, or has
a minimum in subinterval (p1, p2), or has a maximum in (p2, p3). In all cases f̃ ′ is
increasing around p2 and hence f̃ ′′(x2) ≥ 0 as claimed in (2). �

These elementary tools now enable us to determine f̃ ′′ at the boundary points
of the intervals. In Sect. 3.1 we look at the case where no additional information is
available. In Sect. 3.2 we split intervals of given types and determine the types of the
corresponding subintervals.
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3.1 Initial Intervals

Theorem 2 Let f̃ be a piecewise C2-function on domain [bl , br ] such that Condi-
tions (C2) and (C3a) hold. Let bl < p < br be some point. Then one of the cases in
Table3 holds. No other cases are possible. The properties of the combined types in
cases (3.3.3) and (4.3.3) are listed in Table4.

Proof Let p∗ ∈ [bl, br ] denote the possible inflection point of f̃ (or one of the points
that separate the subdomains where f̃ is concave and convex, resp.).

Obviously one of cases (1), (2), (3), or (4) must hold. According to Table2 cases
(1) and (2) determine types (Ia) and (Ib), resp.

Case (3):We have f̃ ′(bl) ≥ R ≥ f̃ ′(br ). Then byTable2 interval [bl , br ] is of type
(IIa), (IIb), or (IVa). In order to distinguish between these cases we look at f̃ ′(p).
If f̃ ′(p) ≤ f̃ ′(br ) = min{ f̃ ′(bl), f̃ ′(br )} (case 3.1), then f̃ ′′(bl) ≤ 0 ≤ f̃ ′′(br ) by

Table 3 Determination of interval types by means of transformed density f̃ and its derivative f̃ ′.
Point p ∈ (bl , br ) must be an interior point. Symbol (IIIa | IVb) + (IIIb | IVb) means that we have
to split the interval at point p into the two subintervals [bl , p] and [p, br ]

Case f̃ ′ and R f̃ (p) Type

(1) f̃ ′(bl ), f̃ ′(br ) ≥ R (Ia)

(2) f̃ ′(bl ), f̃ ′(br ) ≤ R (Ib)

(3) f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) —

(3.1) f̃ ′(p) ≤ f̃ ′(br ) (IIa)

(3.2) f̃ ′(p) ≥ f̃ ′(bl ) (IIb)

(3.3) f̃ ′(bl ) ≥ f̃ ′(p) ≥ f̃ ′(br ) —

(3.3.1) f̃ (p) > t̃l(p) (IIb)

(3.3.2) f̃ (p) > t̃r (p) (IIa)

(3.3.3) f̃ (p) ≤ t̃l (p), t̃r (p) (IIb | IVa) + (IIa | IVa)

(4) f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) —

(4.1) f̃ ′(p) ≤ f̃ ′(bl ) (IIIa)

(4.2) f̃ ′(p) ≥ f̃ ′(br ) (IIIb)

(4.3) f̃ ′(bl ) ≤ f̃ ′(p) ≤ f̃ ′(br ) —

(4.3.1) f̃ (p) < t̃l(p) (IIIa)

(4.3.2) f̃ (p) < t̃r (p) (IIIb)

(4.3.3) f̃ (p) ≥ t̃l (p), t̃r (p) (IIIa | IVb) + (IIIb | IVb)
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Table 4 Combined types of intervals [bl , br ]

Type f̃ ′ and R f̃ ′′ Squeeze and hat

IIa | IVa f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) f̃ ′′(bl ) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃l(x)

IIb | IVa f̃ ′(bl ) ≥ R ≥ f̃ ′(br ) f̃ ′′(br ) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃r (x)

IIIa | IVb f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) f̃ ′′(br ) ≥ 0 t̃r (x) ≤ f̃ (x) ≤ r̃(x)

IIIb | IVb f̃ ′(bl ) ≤ R ≤ f̃ ′(br ) f̃ ′′(bl ) ≥ 0 t̃l (x) ≤ f̃ (x) ≤ r̃(x)

Lemma2(2) and thus [bl , br ] is of type (IIa). Analogously, if f̃ ′(p) ≥ f̃ ′(bl) =
max{ f̃ ′(bl), f̃ ′(br )} (case 3.2), then [bl, br ] is of type (IIb).

Otherwise, we have f̃ ′(bl) ≥ f̃ ′(p) ≥ f̃ ′(br ) (case 3.3) and by Lemma2(2)
f̃ ′′(p) ≤ 0. We then compare f̃ ′(p) to the values of the two tangents t̃l(p) and t̃r (p).
Againwe have three subcases. If f̃ (p) > t̃l(p) (case 3.3.1), then f̃ cannot be concave
in [bl, p] and thus inflection point p∗ is contained in subinterval [bl , p]. In particular
we find f̃ ′′(bl) ≥ 0 ≥ f̃ ′′(p) and 0 ≥ f̃ ′′(br ) which implies that [bl , br ] is of type
(IIb). Similarly, if f̃ (p) > t̃r (p) (case 3.3.2), then we have f̃ ′′(p) ≤ 0 ≤ f̃ ′′(br ) and
thus [bl, br ] is of type (IIa).

Otherwise we have f̃ ′(bl) ≥ R ≥ f̃ ′(br ), f̃ ′(bl) ≥ f̃ ′(p) ≥ f̃ ′(br ), f̃ ′′(p) ≤ 0,
and f̃ (p) ≤ min{t̃l(p), t̃r (p)} (case 3.3.3). In this case we split the given interval
into subintervals [bl, p] and [p, br ]. There is at most one (inflection) point y∗ in each
subinterval. Hence f̃ is either concave in [bl , p] (type IVa) or there is an inflection

point with f̃ ′′(bl) ≥ 0 ≥ f̃ ′′(p). As f̃ (p) ≤ t̃l(p) we then have Rl = f̃ (p)− f̃ (bl )
p−bl

≤
f̃ ′(bl). We also have Rl ≥ f̃ ′(p) since otherwise we had type (Ia) and f̃ ′′(bl) < 0.
Consequently, if there is an inflection point we have type (IIb). Thus we have type
(IVa) or (IIb). We denote this combined type by (IIb | IVa). Similarly we find that
[p, br ] is of type (IIa | IVa).

Case 4 with f̃ ′(bl) ≤ R ≤ f̃ ′(br ) follows analogously to case 3. �

Remark 4 Note that as we do not use f̃ ′′ we can not decide where f̃ is concave or
convex in the cases 3.3.3 and 4.3.3 of Table3. This can only occur for intervals of the
starting partition. We therefore always have to split intervals of the starting partition
for which f̃ is convex or concave. Nevertheless, it is still possible to use tangents
and secants for creating hat and squeeze in such intervals.

3.2 Splitting Intervals

Once we have information about the sign of f̃ ′′ at bl and br we can derive its sign at
possible cutting points when we want to refine the partitioning of the domain. The



A Generalized Transformed Density Rejection Algorithm 293

Table 5 Signs of f̃ ′′ at cutting points c and cδ = c + δ for each type of interval

Type Splitting point

Ia, IIa, IIIa f̃ ′′(bl ) ≤ 0 ≤ f̃ ′′(br ), f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(c) ≤ 0

Ib, IIb, IIIb f̃ ′′(bl ) ≥ 0 ≥ f̃ ′′(br ), f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(c) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≤ 0

IVa f̃ ′′(bl ), f̃ ′′(br ) ≤ 0 ⇒ f̃ ′′(c) ≤ 0

IVb f̃ ′′(bl ), f̃ ′′(br ) ≥ 0 ⇒ f̃ ′′(c) ≥ 0

IIa | IVa f̃ ′′(bl ) ≤ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≥ 0, f̃ ′′(br ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(c) ≤ 0

IIIb | IVb f̃ ′′(bl ) ≥ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(c) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≤ 0, f̃ ′′(br ) ≤ 0

IIb | IVa f̃ ′′(br ) ≤ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(c) ≥ 0, f̃ ′′(bl ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≤ 0

IIIa | IVb f̃ ′′(br ) ≥ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(c) ≤ 0, f̃ ′′(bl ) ≤ 0

following proposition allows to calculate the sign of f̃ ′′ at a cutting point c. The
type of the two subintervals then can be determined by means of the derivatives of
f̃ ′ at the new boundary points and the slope R of the secant according to Tables2
and 4. However, it might be necessary to shift a given cutting point to some point
cδ = c + δ for some small δ > 0.

Theorem 3 Let f̃ be a piecewise C2-function on domain [bl , br ] such that Condi-
tions (C2) and (C3a) hold. Assume that the signs of f̃ ′′(bl) or f̃ ′′(br ) are known.
Then the signs of f̃ ′′ at points bl < c < cδ < br are determined as given by Table5.

Proof For the proof we restate these implications in Table6 in a more condensed
“raw” form. Table5 then follows immediately from the characterizations of the cor-
responding types. Condition “ f̃ ′′(bl) ≤ 0” in Table6 means (in abuse of language)
that f̃ is either concave on [bl, br ] or there exists a y ∈ (bl , br ) such that f̃ is concave
on [bl, y∗] and convex on [y∗, br ]. Analogously for the other three cases. Because
of Condition (C3a) one of these cases applies.

Case (1)—corresponds to types (Ia), (IIa), (IIIa), (IVa), and (IIa | IVa): As f̃ ′ is
concave near bl there is at most one minimum (or interval of minimums) and no
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Table 6 Signs of f̃ ′′ at cutting points c and cδ = c + δ

(1) f̃ ′′(bl ) ≤ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≤ 0, f̃ ′′(cδ) ≥ 0, f̃ ′′(br ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≤ 0, f̃ ′′(c) ≤ 0

(2) f̃ ′′(bl ) ≥ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≥ 0, f̃ ′′(c) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≥ 0, f̃ ′′(cδ) ≤ 0, f̃ ′′(br ) ≤ 0

(3) f̃ ′′(br ) ≤ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≥ 0, f̃ ′′(c) ≥ 0, f̃ ′′(br ) ≤ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≤ 0, f̃ ′′(br ) ≤ 0

(4) f̃ ′′(br ) ≥ 0, f̃ ′(c) ≤ f̃ ′(cδ) ⇒ f̃ ′′(cδ) ≥ 0, f̃ ′′(br ) ≥ 0

f̃ ′(c) ≥ f̃ ′(cδ) ⇒ f̃ ′′(bl ) ≤ 0, f̃ ′′(c) ≤ 0, f̃ ′′(br ) ≥ 0

maximum of f̃ ′ in interior (bl, br ). Now if f̃ ′(c) ≤ f̃ ′(cδ), then f̃ ′(cδ) ≤ f̃ ′(br )
and hence f̃ ′′(cδ) ≥ 0 by Lemma2(2). Moreover, f̃ ′′(br ) ≥ 0 as f̃ ′′ cannot change
sign in [cδ, br ]. Otherwise we have f̃ ′(c) ≥ f̃ ′(cδ). Then f̃ ′(bl) ≥ f̃ ′(c) and hence
f̃ ′′(c) ≤ 0 by Lemma2(2).
Cases (2)–(4) follow completely analogously. �

Remark 5 The exact value of shifting δ is not crucial as we are only interested in
the sign of f̃ ′′(c) in opposition to methods for numerical derivation. Although we
want to replace our choice of cutting point c by one which is quite close, δ need
not be very small so that we can avoid possible round-off errors. So, e.g., the choice
δ = |br − bl |/1000 is fine.

4 The Algorithm

Now we can compile an algorithm that is based on the results of this paper. Algo-
rithm 1 presents Algorithm Tinflex-2 when c = 0, i.e., when Tc(x) = log(x). It
is obvious that this algorithm can easily be generalized for arbitrary transformations
Tc from Table1. It is quite straight-forward to compute Tc( f (x)) and its derivative
from f (x) or log( f (x)) and their corresponding derivatives.

For c < 0, however, onemust check whether a tangent results in a valid (bounded)
hat function. Otherwise, the corresponding interval has to be split. This can be imple-
mented by setting the area in such intervals to Ah,i = ∞. Although one should also
check that f̃ is concave and strictly monotone in the possibly unbounded intervals
(−∞, b1] and [bn−1,∞) of the given starting partition, in practice it is only necessary
that there is at most one inflection point of f̃ within each of them. It is then quite
easy to detect an inflection point in one of these unbounded intervals since then the
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Algorithm 1: Algorithm Tinflex-2

Input: Log-density f̃ with domain (bl , br ) and its derivative f̃ ′
together with partition bl = b0 < b1 < . . . < bn−1 < bn = br
that satisfy Conditions (C1)–(C3);
maximal accepted value for ρmax.

Optional: Types of intervals [bi , bi+1].
Output: Random variate X with density f .

// Setup: Initial intervals
1 for i = 0, . . . , n do
2 Compute f̃ (bi ) and f̃ ′(bi ).
3 forall the intervals [bi , bi+1] do
4 Determine type of interval using Table 3 (if not provided).

5 Compute intercepts α and slopes β of hat h̃i and squeeze s̃i using Tables 2 and 4.
6 Compute area Ah,i below hat and area As,i below squeeze using formula (2).

// Setup: Derandomized adaptive rejection sampling
7 repeat
8 Ah ← ∑

Ah,i and As ← ∑
As,i .

9 Ā ← (Ah − As)/(# intervals).
10 forall the intervals with (Ah,i − As,i ) > Ā do
11 Split interval using “arc-mean” (6).
12 Determine type of interval using Tables 5, 2 and 4.
13 Compute hat, squeeze and areas for the two new intervals.

14 until Ah/As ≤ ρmax.

// Generation
15 loop
16 Generate J with probability vector proportional to (Ah,1, Ah,2, . . .).
17 Generate X with density prop. to hJ using formula (3).
18 Generate U ∼ U (0, 1).
19 if U h(X) ≤ s(X) then // evaluate squeeze
20 return X.

21 else if U h(X) ≤ exp( f̃ (X)) then // evaluate density
22 return X.

23 else
24 Repeat.

construction of a hat function fails. In such cases, we set Ah,i = ∞, and in the next
cycle of derandomized adaptive rejection sampling (Steps 7–14), the interval will be
split.

An advantage of the proposed algorithm is that the intervals can be treated inde-
pendently from each other, i.e., we virtually have distinct and possibly different
densities within each of the mutually exclusive intervals which make up the domain.
The proposed algorithm thus allows (mostly) arbitrary values of c which may differ
on different intervals of the starting partition. Another advantage of the proposed
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algorithm is that it works for any multiple of a density of f . There is thus no need to
compute a normalization constant.

Also note that Step 16 can be executed in constant time (i.e., independent of the
number of intervals) by means of the alias method or the guide table method, see,
e.g., [13, Sect. 3].

It is also possible to replace Steps 7–14 (derandomized adaptive rejection sam-
pling) by adaptive rejection sampling.However, in opposition to themethod proposed
by [11] a rejected point is usually not a good choice for splitting an interval. So we
suggest to use the point from (6) instead in the interval.

We have coded a proof-of-concept implementation of Algorithm Tinflex-2
and added a ready-to-use version to our R package Tinflex [14].

Algorithm Tinflex-2 is well suited for the fixed parameter setting where we
wish to simulate a large number of IID draws from the same density. In particular the
marginal generation times hardly depend on the distribution when ρ is (very) close
to 1.

A drawback of Algorithm Tinflex-2 is its time consuming setup step. Thus it
may not be the first choice in the dynamic parameter setting where parameters of the
distribution are changed from one call of the generator to the next. But it is possible
to choose a rather large value of ρ and thus reduce the overhead of the setup part at
the expense of increased marginal generation time. In addition one may start with
few initial intervals and continue with adaptive rejection sampling. In fact, Gilks and
Wild [11] have invented ARS for this dynamic parameter case required for Gibbs
sampling, but we have not implemented ARS in our R package.

5 Applications

The main advantage of Algorithm Tinflex-2 is that it can generate from arbitrary
distributions with continuous densities. It is only necessary to provide a function
that evaluates the log-density and its derivative together with a starting partition into
intervals that all include at most one inflection point of the transformed density.
We here illustrate the use of Tinflex-2 applying it to some practical relevant
distribution families for which random variate generation is difficult. A first main
result is that Tinflex-2 worked without problem for all distributions we tried. In
addition we observed that for c = −0.5 the sampling is significantly faster than for
c = 0.

Botts et al. [6] discuss how Tinflex can be used to generate from the Generalized
Inverse Gaussian (GIG) distribution. They explain especially how the mode and the
minimum of the log-concavity can be used to form the starting partition for the set-up
of Tinflex. In this contribution we show three more examples. In Sect. 5.1 we apply
themethod to the GeneralizedHyperbolic distributionwhich is important in financial
simulations but has a rather cumbersome density. In Sect. 5.2 we discuss the problem
of truncated distributions. And finally we present in Sect. 5.3 an example from spatial
statistics.
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5.1 Generalized Hyperbolic Distribution

The Generalized Hyperbolic (GH) distribution introduced by Barndorff-Nielsen [1]
is a very flexible distribution family with semi-heavy tails. It is the mean-variance
mixture of a normal and aGIGdistribution and popular especially for returnmodeling
in finance. Its density is proportional to

f (x) = eβ(x−μ)
Kλ−1/2

(
α
√

δ2 + (x − μ)2
)

(√
δ2 + (x − μ)2/α

)1/2−λ
,

where Kν(.) denotes the modified Bessel function of the third kind. Maybe that
complicated density is the reason why there seems to be no rejection algorithm
for the GH-distribution available in the literature. Instead most authors suggest to
generate GH variates using its mean-variance-mixture representation. It is clear that
this generation can not be very fast as a variate of the GIG distribution, a normal
variate and a square root are necessary for that approach.

We find it remarkable that our new algorithm Tinflex-2 can be applied to the
GH distribution family to realize a direct generation algorithm. First it is necessary
to implement the log-density of the GH distribution and its derivative. This requires
the derivative of the modified Bessel function of the third kind, which is equal to
Kν(x)′ = −Kν−1(x) − (ν/x)Kν(x). It is possible to show that for c = −0.5 the
transformed density f̃ (x) is concave everywhere or can have on one or both sides
of the mode a single interval where f̃ (x) is convex. To find the starting partition
without using the second derivative it is easiest to use a numeric search algorithm
that finds the minimum of the slope of secants of f̃ ′. If that minimum is positive the
transformed density f̃ is concave and we can use the mode and an arbitrary point
right and left of the mode as starting partition. If the minimum of the slopes of the
secants is negative on one or both sides of the mode the points where these minima
are attained can be used together with the mode to form the starting partition.

To test the random variates generated with Tinflex-2 extensively we used
c = −0.5 and ρmax = 1.001. For 3850 different parameter values we made the chi-
square test with sample-size one million. The histogram of those 3850 P-values (see
Fig. 2) confirms that the P-values follow the uniform distribution and thus implies
that the generated samples follow the correct distribution.

For c = −0.5, ρ = 1.001 and a sample of size ten million the generation time,
including the set-up, is on our standard laptop around 0.36 s, compared to 0.5 s for
the standard R-command rnorm(). And this speed of Tinflex-2 for generating
from the GH distribution is not influenced by the GH-parameters selected. This is
worth to note as it is not the case for GH generation methods based on the GIG
generator of Dagpunar [7]. There the running times become extremely slow when
|λ| < 0.5 and parametersα and δ are (very) close to 0. But also for all other parameter
settingswehave tested the execution time for generating a sample of size tenmillion is
above 1.6 s for the R-librariesghyp,fBasics and GeneralizedHyperbolic.
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Fig. 2 P-values of
Chi-Square tests for 3850
different parameter settings,
each with n = 106

We can conclude that using Tinflex-2 we can generate large samples from the
GH distribution at least 4 times faster than using the standard algorithm suggested
in the literature.

5.2 Truncated Distributions

One general advantage of transformed density rejection is that it can be used easily
for truncated distributions. To generate truncated random variables from the GH
distribution we can use directly the approach explained in Sect. 5.1 above. It is only
necessary to find a starting partition of the truncation interval such that each sub-
interval holds at most one inflection point of the transformed density. Clearly that can
be done using the starting partition PR thatwas obtained for thewhole real line by first
removing from PR all points that are not in the truncation interval and then adding the
lower and upper border of the truncation interval to the remaining points. That means
of course that if no point of PR is in the truncation interval the starting partition for
the truncated distribution is only the truncation interval itself. Note that this allows
to generate without any problems from the truncated GH distribution with arbitrary
truncation intervals.Weobserved in our experiments that the generation of samples of
size ten million from the truncated GH-distribution takes, like for the non-truncated
case, approximately 0.36 s. Our stable implementation of the log-density of GH and
its derivative allows us to generate from truncation intervals in the far tails with
extremely small probabilities. For example for λ = .3, α = .2, β = 0.02, δ = .01
and μ = 0 we generated large samples of the GH-distribution for several different
truncation intervals including the interval (1000, 1005). We are not aware of any
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paper or software that describes the efficient generation of random variates from the
GH-distribution truncated to arbitrary intervals.

We also generated large samples from the truncated normal and from the truncated
gamma distribution with shape parameter larger than one and different truncation
intervals. As expected there occurred no problems and generating tenmillion variates
takes less than 0.35 s; again clearly less than generating from the normal distribution
(0.5 s) or from the gamma distribution (between 0.66 and 1.1 s) using the usual
R-commands. That the efficient generation of truncated standard distributions is
practically relevant and not trivial to achieve, can be seen from two recent papers of
Botev and L’Ecuyer [3, 4] implemented in R package TruncatedNormal [2].

5.3 Watson Distributions

The Watson distribution is used in the modeling of axially symmetric data in spatial
statistics. A random unit length vector X in R

d has a Watson distribution with con-
centration parameter κ ∈ R and mean direction parameter µ ∈ R

d (with ‖µ‖2 = 1)
if its density is proportional to f (x) ∝ exp

(
κµ′x

)
. We refer to [16] and the literature

cited therein for more details. For sampling from this multivariate distribution we

can use the identity that for µ = (0, . . . , 0, 1), X =
(√

1 − W 2Y,W
)
, where Y is

uniformly distributed on the hypersphere orthogonal to µ and W has log-density

g(w) = κw2 + d − 3

2
log

(
1 − w2)

on domain [0, 1]. It is straightforward to verify that g(w) has at most one inflection
point and thus Tinflex-2 can be applied with its domain as starting partition.
Sablica et al. [16] have already shown that the predecessor from [6] can be used for
this purpose. However, the new version works as well with about the same marginal
running time (which is quite similar to the two examples above) but has a simpler
user interface.

6 Conclusions

The algorithm presented in this paper is a user-friendly adaptive acceptance-rejection
algorithm. It is user-friendly in the sense that hat and squeeze functions of f are
constructed automatically without the user having to know the exact location of the
inflection points of the transformed density. The only input required from the user is
the transformation Tc (in practice in most cases c = 0 or c = −0.5), the log-density
and its derivative and a partition of the domain of f such that the transformed density
does not have more than one inflection point in any of the sub-intervals. The new
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algorithm improves themethod of [6] in the sense that there is no necessity to compute
and implement the second derivative of the (log-) density. Our experiments show that
the new algorithm is well suited to generate random variates from the Generalized
InverseGaussian distribution, from theGeneralizedHyperbolic distribution and from
the Watson distribution. Also random variates from truncated distributions can be
generated without problems.
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Fast Automatic Bayesian Cubature Using
Sobol’ Sampling

Rathinavel Jagadeeswaran and Fred J. Hickernell

Abstract Automatic cubatures approximate integrals to user-specified error toler-
ances. For high dimensional problems, it is difficult to adaptively change the sampling
pattern to focus on peaks because peaks can hide more easily in high dimensional
space. But, one can automatically determine the sample size, n, given a reasonable,
fixed sampling pattern. This approach is pursued in Jagadeeswaran and Hickernell,
Stat. Comput., 29:1214–1229, 2019, where a Bayesian perspective is used to con-
struct a credible interval for the integral, and the computation is terminated when
the half-width of the interval is no greater than the required error tolerance. Our
earlier work employs integration lattice sampling, and the computations are expe-
dited by the fast Fourier transform because the covariance kernels for the Gaussian
process prior on the integrand are chosen to be shift-invariant. In this chapter, we
extend our fast automatic Bayesian cubature to digital net sampling via digitally
shift-invariant covariance kernels and fastWalsh transforms. Our algorithm is imple-
mented in the MATLAB Guaranteed Automatic Integration Library (GAIL) and the
QMCPy Python library.

Keywords Adaptive multivariate cubature · Probabilistic numerics · Digital nets ·
Stopping criteria · GAIL · QMCPy

1 Introduction

Cubature, or numerical multivariate integration, is the problem of inferring a numer-
ical value for a definite integral,
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μ := μ( f ) :=
∫

[0,1]d
f (x) dx, (1)

when no closed-form analytic expression exists or is easily available. Typically,
values of f are accessible through a black-box function routine. Our goal is to
construct a cubature, μ̂n = μ̂n( f ), depending only on integrand values at the nodes
{xi }ni=1, and determine the n that satisfies the error criterion

|μ − μ̂n| ≤ ε (2)

with high probability. This article extends the fast Bayesian cubature ideas presented
in [12] to digital sequences [8].

Cubature is a key component of many problems in scientific computing, finance
[10], statistical modeling, imaging [14], uncertainty quantification, and machine
learning [11]. The original form of the integral may require a suitable variable trans-
formation to become (1). This process is addressed in [1, 6, 15, 22, 23].

Following theBayesian numerics approach of [3, 7, 19, 20] and others, we assume
that our integrand, f , is an instance of a Gaussian process, GP(m, s2Cθ ), and con-
struct a probabilistic error bound for μ via a Bayesian credible interval. Here, the
random function f has constant mean, m, and covariance kernel s2Cθ , where s is a
positive scale factor, andCθ : [0, 1]d × [0, 1]d → R is a symmetric, positive-definite
kernel parameterized by θ . The parameter θ may affect the shape or smoothness of
Cθ . The integrand is sampled until the credible interval becomes small enough to
satisfy (2) with high probability.

Our approach to fast Bayesian cubature [12] relies on two key points:

(i) Choosing covariance kernels, Cθ : [0, 1]d × [0, 1]d → R, for which the sym-
metric, positive definite Gram matrices,

Cθ = (
Cθ (xi , x j )

)n
i, j=1 ,= (Cθ ,1, . . . ,Cθ ,n), (3)

have an eigenvalue-eigenvector decomposition of the form1 Cθ = V�θVH/n,
where

V may be identified analytically, (4a)

The first row and column of V are 1, (4b)

Computing VH b requires only O(n log n) operations ∀b, and (4c)∫
[0,1]d

Cθ (t, x) dt = 1 ∀x ∈ [0, 1]d, (4d)

and

1 The presence of 1/n in the eigenvalue-eigenvector decomposition arises from the assumption that
the first column of V is 1. It could be removed by assuming that the first column of V is 1/

√
n. The

superscript H denotes the complex conjugate transpose [2].
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(ii) The hyperparameters of the Gaussian process—m, s, and θ—are tuned to
increase the likelihood that f is a typical integrand and not an outlier.

We call the transformation b �→ VH b a fast Bayesian transform. Our earlier work
[12] focuses on lattice nodes and shift-invariant kernels. In that context the compu-
tation of VH b is a one-dimensional fast Fourier transform. This chapter focuses on
digital sequences, such as Sobol’ sequences [24], and covariance kernels that are dig-
itally shift-invariant. In this case the computation of VH b is a fast Walsh-Hadamard
transform.

The next section summarizes the key formulae from [12]. Section3 extends fast
Bayesian cubature to digital nets and digital-shift invariant kernels defined in terms
of Walsh functions. Section4 presents numerical experiments that illustrate these
ideas.

2 Bayesian Cubature

As noted above, we assume the integrand, f , is an instance of a real-valued stochastic
Gaussian process, i.e., f ∼ GP(m, s2Cθ ). Let y = (yi )ni=1 = (

f (xi )
)n
i=1 denote the

vector of sampled integrand values. In [12] we introduce three methods for resolv-
ing the hyperparameters: empirical Bayes (EB), full Bayes (full), and generalized
cross-validation (GCV). Under assumptions (4a)–(4d) for the covariance kernel and
sampling sites, it is shown in [12, Theorem 2] that the credible interval for the integral
takes the form

P f [|μ − μ̂n| ≤ errCI] = 99%,

where

μ̂n = 1

n

n∑
i=1

yi = ỹ1, where yi = f (xi ), (5)

ỹ := VH y, where ỹ is the fast transform of y,

λθ :=
⎛
⎜⎝

λθ ,1
...

λθ ,n

⎞
⎟⎠ = VHCθ ,1,

where Cθ ,1 is the first column of the Gram matrix (3),

s2EB = 1

n2

n∑
i=2

|̃y2i |
λθ ,i

,

s2GCV = 1

n

n∑
i=2

|̃y2i |
λ2

θ ,i

[
n∑

i=1

1

λθ ,i

]−1

,
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σ̂ 2
full = 1

n(n − 1)

n∑
i=2

|̃y2i |
λθ ,i

(
λθ ,1

n
− 1

)
,

θEB = argmin
θ

[
log

(
n∑

i=2

|̃y2i |
λθ ,i

)
+ 1

n

n∑
i=1

log(λθ ,i )

]
, (6a)

θGCV = argmin
θ

[
log

(
n∑

i=2

|̃y2i |
λ2

θ ,i

)
− 2 log

(
n∑

i=1

1

λθ ,i

)]
. (6b)

errCI,x = errx = 2.58sx

√
1 − n

λθx,1
, x ∈ {EB,GCV}, (7a)

errCI,full = tn−1,0.995σ̂full > errEB. (7b)

In the formulas for the credible interval half-widths, θ is assumed to take on the
values θEB or θGCV as appropriate. There is no suitable θ full.

Our Bayesian cubature algorithm doubles the sample size until the width of the
credible interval is small enough. Doubling the sample size allows us to retain the
preferred structure of the sample sites. The Bayesian cubature steps are detailed in
Algorithm 1.

Algorithm 1: Automatic Bayesian Cubature
Input: a generator for the sequence x1, x2, . . .; a black-box function, f ; an absolute error

tolerance, ε > 0; the positive initial sample size, n0; the maximum sample size nmax
1 n ← n0, n′ ← 0, errCI ← ∞;
2 while errCI > ε and n ≤ nmax do
3 Generate {xi }ni=n′+1 and sample { f (xi )}ni=n′+1;
4 Compute θ by (6a) or (6b);
5 Compute errCI according to (7a) or (7b);
6 n′ ← n, n ← 2n′;
7 Sample size to compute μ̂n , n ← n′;
8 Compute μ̂n , the approximate integral, according to (5);
9 return μ̂n, n, and errCI;

We recognize that multiple applications of our credible intervals in one run of the
algorithm is not strictly justified. However, if our integrand comes from themiddle of
the sample space and not the extremes, we expect our automatic Bayesian cubature
to approximate the integral within the desired error tolerance with high probability.
The examples in Sect. 4 support that expectation.
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The credible intervals in our automatic algorithm are homogeneous with respect
to the function data. If they are valid for some integrand, f , they are also valid for
the integrand a f for any constant a.

3 Digital Nets and Walsh Kernels

The previous section does not mention which sequences of data sites and kernels
satisfy assumptions (4a, 4b, 4c, 4d). We demonstrate in [12] that rank-1 lattice points
and shift-invariant kernels do so. In this section, we give another example, namely
digital sequences and digitally shift-invariant kernels based on Walsh functions. For
completeness, we define digital sequences, digitally shift-invariant kernels, and the
fast Walsh-Hadamard transform.

3.1 Digital Sequences

The first example of a digital sequence was proposed by Sobol’ [24], and it is also
the most popular digital sequence. This chapter focuses on digital sequences in base
2, which includes Sobol’ sequences.

Definition 1 Let ( )2 denote the base 2 or binary expansion of a number. For any non-
negative integer i = (. . . i3i2i1)2, define

−→ı = (i1, i2, . . . )T as the∞ × 1vector−→ı of
its binary digits. For any point z = (0.z1z2 . . .)2 ∈ [0, 1), define −→z = (z1, z2, . . . )T

as the ∞ × 1 vector of its binary digits. LetG1, . . . ,Gd denote predetermined ∞ ×
∞ generator matrices whose elements are zeros and ones. A digital sequence in base
2 is {z1, z2, z3, . . . }, where each zi = (zi1, . . . , zid)T ∈ [0, 1)d is defined by

−→z i+1,� = G�
−→ı (mod 2), � = 1, . . . , d, i = 0, 1, . . . .

For any non-negative integers m and τ , the set {zτ2m+1, . . . , z(τ+1)2m+1} is a digital
net in base 2.

It is common to index digital sequences starting with 0, whereas our data sites
and matrices are indexed starting with 1. To keep our notation consistent, we define
zi+1 in terms of −→ı .

Digital sequences have a group structure under digit-wise, element-by-element
addition modulo the base, which we denote by ⊕ and which also corresponds to an
exclusive-or in base 2. Here and in what follows we ignore the cases of measure
zero for which the ⊕ operation leads to a binary representation ending in an infinite
string of ones. The following lemma summarizes some important properties of digital
sequences.
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Lemma 1 Let {zi }∞i=1 be a digital sequence in base 2 as defined in Definition 1.
Choose any digital shift � ∈ [0, 1)d , and define the sequence of nodes {xi }∞i=1 by
digitwise addition, xi = zi ⊕ �. Then for all i, j ∈ N0,

xi+1 ⊕ xi+1 = 0, xi+1 ⊕ x j+1 = x j+1 ⊕ xi+1 = zi+1 ⊕ z j+1 = z(i⊕ j)+1.

Therefore, {zi }∞i=1 is a group. Moreover, the digital net {zi }2mi=1 is a subgroup for
m ∈ N0.

The proof follows from Definition 1, and can be found in [21].
Digital sequence generators can be chosen by number theory, as are those of

Sobol’ [24] and Niederreiter and Xing [17] (see also [8, Chap. 8]), or they can be
chosen by computer search [8, Chap. 10]. The original generator matrices may be
scrambled using linear matrix scrambling [16].

3.2 Covariance Kernels Constructed Via Walsh Functions

The digitally shift invariant kernels required for fast Bayesian cubature using digital
nets are constructed via Walsh functions, again specializing to base 2. The one-
dimensional Walsh functions in base 2 are defined as

walk(x) := (−1)k0x1+k1x2+··· = (−1)〈
−→
k ,

−→x 〉, k ∈ N0, x ∈ [0, 1),
〈−→k ,

−→x 〉 := k0x1 + k1x2 + · · · .

where again
−→
k is a vector containing the binary digits of k, and−→x is a vector contain-

ing the binary digits of x . Note that by this definition, walk(x ⊕ t) = walk(x)walk(t).
These Walsh functions can be used to construct a covariance kernel for univariate

integrands as follows

Cθ (x, t) = Kθ (x ⊕ t), Kθ (x) := 1 + ηωr (x), θ = (r, η),

ωr (x) :=
∞∑
k=1

walk(x)

22r�log2 k�
, r ∈ N, η ∈ (0, 1)

ωr (x� ⊕ t�) =
∞∑
k=1

walk(x)walk(t)

22r�log2 k�
.

The symmetric, positive definite property ofCθ (x, t) follows from its definition. This
kernel is digitally shift invariant because

Cθ (x ⊕ 
, t ⊕ 
) = Kθ (x ⊕ 
 ⊕ t ⊕ 
) = Kθ (x ⊕ t) = Cθ (x, t).

This follows because 
 ⊕ 
 = 0 for any 
 ∈ [0, 1).
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Fig. 1 Walsh kernel of order
r = 1 in dimension d = 1.
This figure can be
reproduced using
plot_walsh_kernel.m

The parameter r is a measure of the digital smoothness of the kernel, which does
not correspond to ordinary smoothness. An explicit expression is available for ωr in
the case of order r = 1 (see [18]):

ω1(x) = 1 − 6 × 2�log2 x�−1.

Figure1 shows Cθ (x, t) for order r = 1 and various values of η in the interval [0, 1).
Unlike the shift-invariant kernels used with lattice nodes, Walsh kernels are discon-
tinuous and piecewise constant.

Covariance kernels for multivariate integrands defined on [0, 1)d are constructed
as tensor products:

Cθ (x, t) = Kθ (x ⊕ t), (8)

Kθ (x) =
d∏

�=1

[1 + η�ωr (x�)], η = (η1, . . . , ηd), θ = (r, η). (9)

For multidimensional kernels, smaller η� for � ∈ (1, . . . , d) implies less variation in
the amplitude of the kernel in dimension �. The parameter vector θ now is of dimen-
sion d + 1. One might also choose η1 = · · · = ηd = η, in which case the parameter
vector θ = (r, η) has dimension two.

3.3 Eigenvector-Eigenvalue Decomposition of the Gram
Matrix

For fast Bayesian cubature to succeed, the digital net data sites (Sect. 3.1) and the
covariance kernels (Sect. 3.2) must match in a way to satisfy conditions (4a, 4b, 4c,
4d). To do this, we notice that the eigenvectors of the Gram matrix defined in (3) are
the columns of the Walsh-Hadamard matrices, defined as follows:
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H0) = 1, H(1) =
(
1 1
1 −1

)
, H(2) = H(1) ⊗ H(1) =

⎛
⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ , . . .

H(m) = H(m−1) ⊗ H(1) =
(
H(m−1) H(m−1)

H(m−1) −H(m−1)

)
= H(1) ⊗ · · · ⊗︸ ︷︷ ︸

m times

H(1) , (10)

where ⊗ is Kronecker product. Note that the Walsh-Hadamard matrices are sym-
metric.

Lemma 2 Let {xi }2mi=1 be nodes from a digitally shifted digital net in base 2, and let
the covariance kernel take the form of (8). Then, for m = 1, 2, . . . the Gram matrix,
C(m)

θ = (
Cθ (xi , x j )

)2m
i, j=1 = (

K (xi ⊕ x j )
)2m
i, j=1 is a 2 × 2 block-Hankel matrix [2,

Definition 3.1.3], and all the sub-blocks and their sub-sub-blocks, etc. are also 2 × 2
block-Hankel. Moreover, C(m)

θ H(m) = H(m)�
(m)

θ , where �
(m)

θ is the diagonal matrix

of eigenvalues of C(m)

θ .

Proof. First define the following matrices using the notation from Lemma 1:

C(m,τ )

θ = (
K (xi ⊕ x j+τ2m )

)2m
i, j=1

= (
K (zi⊕ j+τ2m+1)

)2m−1
i, j=0, m, τ = 0, 1, . . . .

This implies that C(m+1,τ )

θ , has the following block structure:

C(m+1,τ )

θ

=
( (

K (zi⊕ j+τ2m+1+1)
)2m−1
i, j=0

(
K (zi⊕( j+2m )+τ2m+1+1)

)2m−1
i, j=0(

K (z(i+2m )⊕ j+τ2m+1+1)
)2m−1
i, j=0

(
K (z(i+2m )⊕( j+2m )+τ2m+1+1)

)2m−1
i, j=0

)

=
(

C(m,2τ)

θ C(m,2τ+1)
θ

C(m,2τ+1)
θ C(m,2τ)

θ

)
, (11)

since for i, j = 0, . . . , 2m − 1, it follows that

i ⊕ ( j + 2m) = (i ⊕ j) + 2m = (i + 2m) ⊕ j,

(i + 2m) ⊕ ( j + 2m) = (i ⊕ j) + (2m ⊕ 2m) = i ⊕ j.

The proof of (11) follows by induction. Note that for the case m = 1 and τ =
0, 1, . . .

C(1,τ )

θ =
(

C(0,2τ)

θ C(0,2τ+1)
θ

C(0,2τ+1)
θ C(0,2τ)

θ

)
=

(
Kθ (z2τ+1) Kθ (z2τ+2)

Kθ (z2τ+2) Kθ (z2τ+1)

)
,
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which has the desired Hankel property. Note also the eigenvectors of C(1,τ )

θ are the
columns of H(1) since

C(1,τ )

θ H(1) =
(
Kθ (z2τ+1) + Kθ (z2τ+2) Kθ (z2τ+1) − Kθ (z2τ+2)

Kθ (z2τ+2) + Kθ (z2τ+1) Kθ (z2τ+2) − Kθ (z2τ+1)

)

= H(1)

(
Kθ (z2τ+1) + Kθ (z2τ+2) 0

0 Kθ (z2τ+1) − Kθ (z2τ+2)

)
︸ ︷︷ ︸

�
(1,τ )

θ

.

Now assume that C(m,τ )

θ is 2 × 2 block-Hankel matrix with all its sub-blocks and
sub-sub-blocks, etc. also 2 × 2 block-Hankel for τ = 0, 1, . . .. Then by (11), the
same holds for C(m+1,τ )

θ for τ = 0, 1, . . ..
Moreover, the hypothesized eigenvectors ofC(m+1,τ )

θ can also be verified by direct
calculation under the induction hypothesis:

C(m+1,τ )

θ H(m+1)

=
(

C(m,2τ)

θ C(m,2τ+1)
θ

C(m,2τ+1)
θ C(m,2τ)

θ

) (
H(m) H(m)

H(m) −H(m)

)

=
([C(m,2τ)

θ + C(m,2τ+1)
θ ]H(m) [C(m,2τ)

θ − C(m,2τ+1)
θ ]H(m)

[C(m,2τ+1)
θ + C(m,2τ)

θ ]H(m) [C(m,2τ+1)
θ − C(m,2τ)

θ ]H(m)

)

=
(
H(m) H(m)

H(m) −H(m)

)(
�

(m,2τ)

θ + �
(m,2τ+1)
θ 0

0 �
(m,2τ)

θ − �
(m,2τ+1)
θ

)

︸ ︷︷ ︸
�

(m+1,2τ)

θ

.

Noting that C(m+1)
θ = C(m+1,0)

θ completes the proof.

The theoretical results of this chapter can be summarized as follows:

Theorem 1 Any symmetric, positive definite, digitally shift-invariant kernel of the
form (9) scaled to satisfy (4d), whenmatchedwith digital sequence data sites, satisfies
assumptions (4a, 4b, 4c, 4d). The fast Walsh-Hadamard transform performs the fast
Bayesian transform, b �→ VH b , in O(n log n) operations.

Proof. Lemma 2 establishes that covariance kernels of the form (8) matched with
shifted digital net data sites satisfy the fast Bayesian cubature assumptions

• (4a), since V is the Walsh-Hadamard matrix,
• (4b), since the first column and row of the Walsh-Hadamard matrix consist of all
ones, and

• (4d), since all Walsh functions but the zeroth integrate to zero.

What remains to be shown is (4c), namely how VH b = Hb can be calculated in
O(n log n) operations for arbitrary b.
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The computation of b̃
(m) = H(m)b(m) is done iteratively inwhatwe show to bem2m

operations, where H(m) is 2m × 2m . The proof proceeds by induction. For the case

m = 0, the Hadamard matrix H(0) is the scalar 1, and b̃
(0) = H(0)b(0) = b(0), which

requires no arithmetic operations. Now, assume that H(m)b(m) requires m2m opera-

tions, and let b(m+1) = (b(m)T
U , b(m)T

L )T . Let b̃
(m+1) = H(m+1)b(m+1), b̃

(m)

U = H(m)b(m)
U ,

and b̃
(m)

L = H(m)b(m)
L . It follows from the definition of the Walsh-Hadamard matrix

that

b̃
(m+1) = H(m+1)b(m+1) =

(
H(m) H(m)

H(m) −H(m)

)(
b(m)
U

b(m)
L

)
by (10)

=
(
H(m)b(m)

U + H(m)b(m)
L

H(m)b(m)
U − H(m)b(m)

L

)
=

(̃
b

(m)

U + b̃
(m)

L

b̃
(m)

U − b̃
(m)

L

)
.

Thus, to compute b̃
(m+1)

requires two matrix multiplications by H(m), at a cost of
m2m each, plus an addition and a subtraction of vectors of length 2m , for a total cost
of 2 × m2m + 2 × 2m = (m + 1)2m+1, which is exactly what is hypothesized. Since

b̃
(m) = H(m)b(m) requires m2m = n log2(n) operations to compute, assumption (4c)

is satisfied. This completes the proof of Theorem 1. �

4 Numerical Experiments

The Bayesian cubature algorithm described here, using the digitally shift invariant
kernel in (8)with order r = 1 and theBayesian lattice cubature algorithmdescribed in
[12] have been coded as cubBayesNet_g and cubBayesLattice_g, respec-
tively, in GAIL [4]. We illustrate our algorithm for three common examples, which
are also discussed in [12]. The first example evaluates a multivariate Gaussian proba-
bility, the second example is Keister’s function [13], and the final example is pricing
an Asian arithmetic mean option. For each example we are able to find the true inte-
gral value, μ, either by analytic computation, or by running a numerical algorithm
with a very small error tolerance.

The nodes used in cubBayesNet_g are the randomly scrambled and shifted
Sobol’ points supplied by MATLAB’s Sobol’ sequence generator. Four hundred dif-
ferent error tolerances, ε, are randomly chosen such that log(ε)has a uniformdistribu-
tion. Although log(ε) is uniformly chosen, the times are stratified since the number of
samples must be a power of 2. For each integral example, each ε, and each stopping
criterion—empirical Bayes, full Bayes, and generalized cross-validation—we ran
cubBayesNet_g. For each run, the execution time is plotted against |μ − μ̂n|/ε.
We expect |μ − μ̂n|/ε to be no greater than one, but hope that it is not too much
smaller than one, which would indicate that the stopping criterion is too conserva-
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tive. Throughout the experiments we use η1 = · · · = ηd = η. All the tests were run
in MATLAB version 2019b running on Intel i7-7700HQ.

4.1 Multivariate Gaussian Probability

This integral is formulated as in [12] following the variable transformation introduced
by Alan Genz [9]. The problem is originally three-dimensional but is transformed
to a d = 2 dimensional problem. The simulation results are summarized in Figs. 2,
3, and 4. In all cases, cubBayesNet_g returns an approximation within the pre-
scribed error tolerance. For ε = 10−5 with the empirical Bayes stopping criterion,
cubBayesNet_g takes about 3 s as shown in Fig. 2 whereas using a Matérn ker-
nel requires 30 s to obtain the same accuracy as shown in [12]. This highlights the
speed-up possible using fast Bayesian cubature.

The algorithm cubBayesNet_g uses MATLAB’s fast Walsh transform. This
is slower than MATLAB’s fast Fourier transform, which is implemented in com-
piled code. This may help explain why cubBayesLattice_g is faster than
cubBayesNet_g for this example. Also, cubBayesLattice_g uses higher
order kernels whereas higher order digitally shift-invariant kernels are inappropriate
for these examples. On average, cubBayesLattice_g uses n ≈ 16,000 samples
for ε = 10−5, whereas cubBayesNet_g uses n ≈ 32,000 samples. Amongst the
three stopping criteria for cubBayesNet_g, GCV achieves an acceptable approx-
imation faster than others and is also less conservative.

Fig. 2 Multivariate normal probability examplewith empirical Bayes stopping criterion.Algorithm
meets the error threshold for all the ε randomly chosen in [10−5, 10−2]
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Fig. 3 Multivariate normal probability example with the full-Bayes stopping criterion. Algorithm
meets the error threshold for all the ε randomly chosen in [10−5, 10−2]

Fig. 4 Multivariate normal probability example with the GCV stopping criterion. Algorithmmeets
the error threshold for all the ε randomly chosen in [10−5, 10−2]

4.2 Keister’s Example

This multidimensional integral function comes from [13] and is inspired by a physics
application:

μ =
∫
Rd

cos(‖t‖) exp(−‖t‖2) dt =
∫

[0,1]d
fKeister(x) dx,

where

fKeister(x) = πd/2 cos
(‖�−1(x)/2‖) ,
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Fig. 5 Keister example using the empirical Bayes stopping criterion. Algorithm meets the error
threshold for all the ε randomly chosen in [10−4, 10−1]

Fig. 6 Keister example using the full-Bayes stopping criterion. Algorithmmeets the error threshold
for all the ε randomly chosen in [10−4, 10−1]

and � is the component-wise standard normal distribution. The true value of μ can
be calculated iteratively in terms of quadrature as found in [12, Sect. 5.2].

Figures5, 6 and 7 summarize the numerical tests for this case for dimension
d = 4 and order r = 1. The cubBayesLattice_g algorithm in [12] uses a much
smoother kernel than that used here. This explainswhycubBayesNet_g usesmore
samples than cubBayesLattice_g on average. As observed from the figures,
the GCV stopping criterion, in Fig. 7 achieves the results faster than the others but it
is less conservative which is also the case with the multivariate Gaussian example.
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Fig. 7 Keister example using the GCV stopping criterion. Algorithm meets the error threshold for
all the ε randomly chosen in [10−4, 10−1]

4.3 Asian Option Pricing

The price of financial derivatives can often bemodeled by high dimensional integrals.
We refer to the formulation of the fair price of the option as in [12], where the
underlying asset is described in terms of a discretized geometric Brownian motion.

Figures8, 9 and 10 summarize the numerical results for the option pricing exam-
ple using the values for time horizon T = 1/4 of a year, d = 13 time steps, initial
asset price of S0 = 100, interest rate of 0.05 per year, volatility of σ = 0.5 per
root year, and strike price of K = 200, the same as used in the experiments with
cubBayesLattice_g [12]. This integrand has a kink caused by the max func-
tion, so lattice rules cannot perform better, even if the integrand were to be peri-
odized. We observe that cubBayesNet_g is more efficient in terms of the number

Fig. 8 Option pricing using the empirical Bayes stopping criterion. The 33 hollow stars at the
higher time indicate that the half-width of the credible interval did not meet the error threshold ε

before reaching maximum n
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Fig. 9 Option pricing using the full-Bayes stopping criterion. The 41 hollow stars indicate the
half-width of the credible interval did not meet the error threshold ε before reaching maximum n

Fig. 10 Option pricing using the GCV stopping criterion. The 35 hollow stars indicate the half-
width of the credible interval did not meet the error threshold ε before reaching maximum n

of samples used than cubBayesLattice_g. For the error tolerance, ε = 10−3,
cubBayesLattice_g uses n ≈ 220 samples, whereas cubBayesNet_g uses
n ≈ 217 samples.

4.4 Discussion

As shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10, our algorithm computed the integral
within user specified thresholdwith some exceptions. The exceptions occurred for the
option pricing example due to the complexity and higher dimension of the integrand,
the small tolerance, and the limit on the sample size. This indicates that fast Bayesian
cubature may suffer in such cases and that further study is needed. Also notice that
our algorithm cubBayesNet_g, finished within 40s per run for the multivariate
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Gaussian and Keister examples for the smallest tolerance as shown in Figs. 2, 3, 4,
5, 6 and 7. Option pricing took little above 100s per run due to the complexity of
integrand as shown in Figs. 8, 9 and 10.

A noticeable aspect from the plots of cubBayesNet_g is how close the error
bounds are to the true error in many cases. This shows that the cubBayesNet_g’s
error bounding is not too conservative.

In nearly all of the examples, the ratio |μ − μ̂n|/ε is closer to one for the Bayesian
net cubature in contrast to the Bayesian lattice cubature. A possible reason is that the
periodization transform speeds the convergence in the latter case and our data based
error bounds are unable to capture this smaller error.

5 Conclusion and Future Work

We have extended our fast automatic Bayesian cubature to digital net sampling via
digitally shift-invariant covariance kernels and fast Walsh transforms. Implemen-
tation of our algorithm cubBayesNet_g, is available in the Guaranteed Auto-
matic Integration Library (GAIL) [4] and Quasi-Monte-Carlo Software in Python
(QMCPy) [5]. We demonstrated cubBayesNet_g using three example integrands
compared with cubBayesLattice_g. One major advantage of this algorithm,
unlike the cubBayesLattice_g developed in [12], is that the integrand does not
have to be periodic. However, unlike cubBayesNet_g, cubBayesLattice_g
is more efficient for smoother, periodic functions when using sufficiently smooth and
periodic covariance kernels.

The cubBayesNet_g in the current implementation uses only the first order
kernel and digital nets. Accuracy and speed of the algorithm could be improved
by using higher order digital nets and smoother digitally shift-invariant covariance
kernels. This could help with the smoother integrands. This is a promising direction
for future work.

For higher dimensions, both Bayesian cubature algorithms sometimes fail to pro-
duce an acceptable answer within a reasonable amount of time. This seems to be
related to an excessive amount of time required to identify the optimal shape param-
eter θ . The root of the problem and its resolution is a matter for future investigation.
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Rendering Along the Hilbert Curve

Alexander Keller, Carsten Wächter, and Nikolaus Binder

Abstract Based on the seminal work on Array-RQMC methods and rank-1 lattice
sequences by Pierre L’Ecuyer and collaborators, we introduce efficient deterministic
algorithms for image synthesis. Enumerating a low discrepancy sequence along the
Hilbert curve superimposed on the raster of pixels of an image, we achieve noise
characteristics that are desirable with respect to the human visual system, especially
at very low sampling rates. As compared to the state of the art, our simple algorithms
neither require randomization, nor costly optimization, nor lookup tables.We analyze
correlations of space-filling curves and low discrepancy sequences, and demonstrate
the benefits of the new algorithms in a professional, massively parallel light transport
simulation and rendering system.

Keywords Quasi-Monte Carlo methods · Hilbert curve · Array-RQMC · Low
discrepancy sequences · Rank-1 lattice sequences · Image synthesis

1 Introduction

In photorealistic image synthesis by light transport simulation, the colors of each
pixel are an integral of a high-dimensional function. While the functions to integrate
are square-integrable and hence of finite energy, they contain discontinuities that
cannot be predicted efficiently. In practice, the pixel colors are estimated by Monte
Carlo and quasi-Monte Carlo methods sampling light transport paths that connect
light sources and cameras and summing up the contributions.
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As a consequence of sampling, images appear noisy when the number of samples
is insufficient. This is quite common when images need to be synthesized rapidly
for real-time applications and when convergence is slow due to the intricacies of the
functions to integrate. Depending on the characteristics of the noise in the image,
filtering may efficiently improve image quality.

The success of image compression algorithms and compressive sensing methods
clearly indicates that the pixels of an image are not independent integrals. One way
to account for the correlation of pixels is to consider image synthesis an integro-
approximation problem [12].

In this article we propose a new way of synthesizing images as a sequence of
correlated integrals such that noise is less perceivable by the human visual system.We
therefore review the state of the art in addressing perceived image error in computer
graphics in Sect. 2 and introduce our new deterministic algorithm for image synthesis
by enumerating a low discrepancy sequence along the Hilbert Curve in Sect. 3. We
then explore extensions for progressive image synthesis in Sect. 4 and discuss the
results in Sect. 5 before drawing the conclusions.

For the scope of our article, it is sufficient to understand that the mapping of a
vector of the low discrepancy sequence to a light transport path is the same across all
discussed methods and that methods only differ in which vector of a low discrepancy
sequence is assigned towhat pixel. This abstraction allows for reproducing the results.
For the experiments, we use the Iray light transport simulation and rendering system
[19]. For the details we refer to [4, 7, 15, 19] and extensive background information
in [27]. A recent survey of sampling methods in computer graphics is [17], while the
latest research focuses on low discrepancy sequences with good low-dimensional
projections [25, 26].

2 Visual Error in Image Synthesis

The human visual system is quite capable of recovering information from noisy
images, and computer graphics has been taking advantage of that since its early days
[5]. Using the same set of samples across the pixels to synthesize an image may
result in disturbingly visible aliasing artifacts. Hence, inspired by the arrangement
of receptors in a monkey’s retina [30], a huge body of work around sampling patterns
with blue noise characteristics emerged. Especially at low sampling rates and in low
dimensions, these patterns have been attractive since they are close to the ideal of
reconstructing precisely as long as the assumptions of the sampling theorem are
fulfilled. At the same time, aliases are mapped to noise, which is very amenable to
the human visual system.

For long, an important detail had not been considered explicitly: blue noise charac-
teristics of samples do not matter much for a single pixel integral but when observing
an ensemble of neighboring pixels. Only recently, it was found that optimizing the
parameters of a Cranley-Patterson rotation per pixel applied to one generic set of
samples can dramatically improve the perceived image quality although the �2-error
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remains about the same [10]. Subsequent work extends the optimization to scram-
blings of the Sobol’ sequence [13]. The visual improvements have been attributed to
blue noise characteristics.

Since the �2-error between a reference image and different sampling schemes
remains about the same, the improvement in perceived image quality must be in the
the distribution of the error and how the samples are correlated across the pixels [2].

Based on the family ofArray-RQMCmethods [21] introduced by Pierre L’Ecuyer,
we propose simple deterministic quasi-Monte Carlo algorithms that result in sim-
ilar visual improvements without optimization. In addition, an explanation for the
improvements beyond blue noise characteristics is offered. Our approach benefits
from the improved uniformity of low discrepancy sequences observed when simu-
lating Markov chains [21, 29] by ordering their states by proximity in world space.
Instead of sorting, we explore orders provided by space filling curves in screen space.

3 Enumerating Pixels Along the Hilbert Curve

Given the resolution of an image to synthesize, a deterministic low discrepancy
sequence, and a number of samples to be drawn per pixel, our deterministic algorithm
to enumerate the samples per pixel starts by selecting the resolution of the Hilbert
curve (see Fig. 1) to match the image resolution.We therefore determine the smallest
power of two that is larger or equal to the maximum of the image resolution in
horizontal and vertical direction. Enumerating the pixels along the Hilbert curve,
for each pixel we draw the selected samples from the low discrepancy sequence in
contiguous blocks. Pixels outside the image are simply skipped.

Fig. 1 The Morton, Hilbert, Moore, and Peano space-filling curves on a pixel grid. As the Hilbert,
the Moore, and the Peano curve only pass through neighboring pixels, they realize shortest routes
of visiting all pixels in the sense of the Traveling Salesman problem. The pixels highlighted in dark
green exemplify the number of segments (colored) of each space-filling curve entering the 3 × 3
neighborhood. This number of segments is depicted for each pixel and its maximum is smallest for
the Hilbert and Moore curves. Enumerating a low discrepancy sequence along a space filling curve,
a smaller number of segments implies longer contiguous segments of the low discrepancy sequence
used in the 3 × 3 neighborhood, which improves uniformity
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As shown in Fig. 5, this simple algorithm performs astonishingly well in com-
parison to using the first two dimensions of the same low discrepancy sequence to
sample the pixels of the imagemapped to the unit square [12].While both approaches
expose about the same �2-error as argued in [10], sampling along the Hilbert curve
results in noise that is much more uniformly distributed across the image, especially
visible at low sampling rates.

The human visual system always tries to detect scale invariant features and unfor-
tunately finds such in the non-uniformities of noise, too. As such features are not
related to the actual image content, they are perceived as disturbing artifacts. If,
however, the noise is uniform, it is less likely misinterpreted and consequently noise
is not perceived as much. As a result, one may argue that the eye is filtering the
noise by integrating over areas of uniform noise in the image. While the blue noise
sampling approaches mentioned in the previous section rely on this phenomenon,
our new approaches are deterministic and do not require optimization.

Enumerating low discrepancy sequences along space filling curves by spatial
proximity [29] suggests that contiguous blocks of samples from a low discrepancy
sequence are spatially close and hence improve local uniformity. Similarly, using
a variant of the Morton curve (see Fig. 1) combined with scrambling to enumer-
ate pixels [2] results in an error more uniformly distributed across the image. The
observable improvements are supported by the fact that the low discrepancy of a point
sequence is preserved when enumerated along the Hilbert curve [11]. In addition, we
can adopt an argument from [21, Sec.3.2]: Considering an image as a line of pixels
as enumerated along the Hilbert curve and assuming the function to be integrated
along the pixel to have a gradient bounded by K , the total variation is bounded by
K times the length of the Hilbert curve, which in turn bounds the integration error
by the Koksma-Hlawka inequality [23]. While the Hilbert, Moore, or Peano curve
achieve a shortest route to connect all pixels, the Morton curve fails to do so, which
explains parts of its inferiority. On a historical note, both [29] and [2] mention the
Hilbert curve but used the Morton curve and hence cannot not take advantage of the
above argument. As compared to the Morton and Peano curve, both the Hilbert and
Moore curve expose a smaller maximum number of curves segments in the 3 × 3
neighborhood of a pixel (see Fig. 1), resulting in more consecutive samples of the
low discrepancy sequence in the neighborhood, which improves uniformity locally.

In computer graphics, gradientsmaybebounded in parts of the integration domain.
However, such parts usually cannot be identified efficiently. Yet, Fig. 5 clearly shows
that in such smoother regions of an image the noise is much more uniformly dis-
tributed when using the proposed algorithm. The human visual system takes advan-
tage of these local improvements.
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3.1 Correlation in Space-Filling Curves

We show that the correlation patterns visualized in Fig. 2 emanate from enumerating
radical inverses [23] along a space-filling curve. A radical inverse

φb : N0 → Q ∩ [0, 1)
i =

∞∑

k=0

ak(i)b
k �→

∞∑

k=0

ak(i)b
−k−1 (1)

maps a non-negative integer to the unit interval by reflecting its digits ak(i) in base b
at the decimal point. The Halton sequence is an example of an infinite-dimensional
low discrepancy sequence. Each dimension is a radical inverse, where all the bases

Fig. 2 The numbers on the edges shared by neighboring pixels are the difference of pixel indices
enumerated along the depicted space-filling curve. Along the curve, this difference is one and
implicitly represented by the imprinted curves. Diagrams in a column belong to the named space-
filling curve. From top to bottom, the rows show the differences for the radical inverses φ2, φ3,
and φ5, while the shade of each pixel represents the value of the radical inverse of the pixel index.
As can be seen, the differences contain symmetries and repetitive patterns, which result in visible
correlations in the pixel shades. For curves in base b = 2, it is easy to spot a checker-boarding effect.
For the Peano curve, symmetries along the diagonal may be observed. Besides this illustration of
the principle, structures may be more visible at higher resolutions, see Fig. 3
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Fig. 3 From top to bottom, the rows display the values of the radical inverses φ2, φ3, and φ5 as
gray values, and all previous three superimposed by assigning them to the RGB channels of an
image. The columns indicate the space filling curve used for enumeration. The resolution for the
Morton, Hilbert, and Moore curves in base b = 2 is 64 × 64 pixels, while for the Peano curve
in base b = 3 we display 81 × 81 pixels. For the eye it is easy to spot regular structures that are
caused by correlations between the single low discrepancy sequences and the space filling curves.
Superimposing them as in the bottom row, it becomes harder to identify the correlations with the
Moore and Hilbert curves

are relatively co-prime. The uniformity of the simple construction can be improved
by applying a permutation to the k-th digit ak(i) of the index i represented in base b
before radical inversion. Zaremba [31] has been successful with the simple permu-
tation πb(ak(i)) := (ak(i) + k) mod b, while later on Faure [8] developed a more
general set of permutations improving upon Zaremba’s results.

Now taking a look at theMorton curve inFig. 2, it becomesobvious that theMorton
index is either odd or even per column of pixels. As a consequence, computing the
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radical inverse φ2 of this index, which amounts to bits reversal of the index, results
in φ2 < 1

2 in even columns and φ2 ≥ 1
2 in odd columns [2, Sect. 3.1]. Similarly, the

second least significant bit of the Morton index is on and off along the rows of
pixels. This correlation results in striping artifacts along rows and columns of pixels,
especially visible at one sample per pixel as shown in Fig. 3.

Other space-filling curves expose correlations, too, the reason being that the differ-
ences of indices of pixels are deterministic and correlated. Figure 2 shows the index
differences larger than one for neighboring pixels. While the Hilbert and Moore
curves are in base b = 2, they expose correlations with φ3 and higher bases. For
example, stripes are visible along lines of differences that are a multiple of the radi-
cal inverses’ base 3. Similarly, the Hilbert curve has many adjacent pairs of pixels,
whose difference of indices is 3. Radical inverses in these pixels in base b = 3 hence
are correlated. The larger such clusters, the more prominent is the visible artifact.

While correlations are to be expected when the base of the low discrepancy
sequence and the space filling curve are not co-prime, correlation structures may
become visible whenever the differences of the pixel indices along a space filling
curve are correlated to the base of the low discrepancy sequence in a regular way.

Owen scrambling [24] may resolve these correlations, because it recursively par-
titions the unit interval and randomly swaps the partitions independently. For the
case of the Morton curve, Ahmed [2] developed a scrambling scheme, where it is
sufficient to apply the recursive random swapping procedure to the index of the pixel
along the Morton curve. The algorithm amounts to applying random permutations
to the contiguous block of indices belonging to each quadrant along the hierarchy of
the Morton curve.

As exemplified in Fig. 4, even recursive scrambling cannot remove all correlation
artifacts. For example, in base b = 2, the recursive structure of scrambling corre-
lates with the block structure of the Morton, Moore, and Hilbert curves. Yet, visible
correlation artifacts are attenuated. Note that for the most significant bit both digit
scrambling and Owen scrambling are identical. No matter how or whether this bit is
scrambled, consecutive pixels along a space filling curve are hence larger and less
or equal to 1

2 . In contrast to the Morton curve, this guarantees a good uniformity of
values in the neighborhood of each pixel for the Hilbert, Moore, and Peano curves.
For the example of base b = 5, scrambling may attenuate the visible structures and
yet cannot resolve the correlations of the base of the radical inverse and the difference
of pixel indices as shown in Fig. 2.

3.2 Blue-Noise Dithered Sampling

While some correlations are visible in low dimensions and at low sampling rates,
sampling light transport paths requires many more dimensions. Figure 3 illustrates
that already overlaying the first three radical inverses as RGB values hides most of
the disturbing artifacts.
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Fig. 4 While scrambling may attenuate visible correlations between pixels, it cannot completely
remove the correlations. The first row shows φ2 with random digit scrambling and the second row
shows φ2 with Owen scrambling. The bottom row shows φ5 improved according to Faure [9]. As
compared to Fig. 3, scrambling φ2 does not at all help when used with the Morton curve and still
leaves some visible lines indicative of the quadrant structure of the Hilbert and Moore curves. For
the example of φ5, scrambling helps most for the correlations when using the Peano curve but does
not dramatically attenuate the artifacts when using the other space filling curves

The maps in Fig. 3 resemble the maps used for blue-noise dithered sampling [10]
and may be used for the same purposes. As opposed to the optimization process
required to create blue-noise dither maps, enumerating low discrepancy sequences
along a space-filling curve allows one to approximate the desired spectral properties
by just selecting components without the restriction to low dimension and without
the need to store lookup tables. This approach is partially explored in Sect. 4.1.

4 Progressive Image Synthesis

Progressive image synthesis continues samplingwithin a given sample or time budget
or terminates sampling once a selected image quality has been reached [19]. In what
follows, we discuss extensions of the consistent algorithm of the previous section to
enable adaptive sampling.
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4.1 Deterministic Cranley-Patterson Rotation

Similar to the algorithmdetailed in Sect. 3, a low discrepancy sequence is enumerated
along the Hilbert curve at one sample per pixel. The vector of the low discrepancy
sequence assigned to a pixel then is used to perform a deterministic Cranley-Patterson
rotation [6]. This way, the same sequence of samples may be used across all pixels,
however, shifted individually.

The Cranley-Patterson rotation is implemented as component-wise addition mod-
ulo one. Yet, using one and the same low discrepancy sequence for both shifting and
sampling may expose visible correlation artifacts at low sampling rates. This is the
case when enumerating the improved Halton sequence [9] along the Hilbert curve to
shift the same sequence per pixel. While Cranley-Patterson rotations work with any
point set, they work best with a point set designed for the unit torus such as rank-1
lattices and rank-1 lattice sequences [14]. For results, see Fig. 5.

4.2 Randomization

Array-RQMC algorithms [21] randomize the low discrepancy sequence for each iter-
ation. This approach is straightforward to apply to the algorithm in Sect. 3: for each
pass, the low discrepancy sequence is randomized and the results are accumulated
until the termination by an empirical error criterion is triggered or a given time bud-
get expires. The repeated randomization will eventually average out the correlation
artifacts in the rendered frame.

While randomizing the low discrepancy sequence and accumulating results is
unbiased and allows for unbiased variance estimation, some uniformity and hence
convergence speed is sacrificed. Therefore, we aim at a deterministic and consistent
algorithm,which in addition is simpler to execute and reproduce onmassively parallel
computer systems [15, 19].

4.3 Contiguous Segments of one Low Discrepancy Sequence

Progressive sampling may be implemented by iterating the algorithm in Sect. 3.
To increase the uniformity of the samples in a pixel, one approach is to double the
sampling ratewith each iteration. Randomizing the low discrepancy sequence freshly
for each iteration, the scheme is unbiased, see Sect. 4.2.

A deterministic variant of the algorithm sequentially consumes the points of the
low discrepancy sequence along the space filling curve according to the selected
number of samples per pixel along the iterations. The segment lengths drawn from
the sequence then are a multiples of the length of the selected space filling curve. In
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Fig. 5 Photorealistic image synthesis using one low discrepancy sequence across the image plane
(left column, [12]), drawing samples from one low discrepancy sequence while enumerating the
pixels along theHilbert curve to shift an extensible lattice for sampling inside a pixel (middle column,
Sect. 4.1) and in contiguous blocks to directly sample inside a pixels (right column, Sect. 4.4). The
top image has been rendered using 100,000 samples per pixel, while the insets from top to bottom
were rendered at 1, 4, 16, and 64 samples per pixel, respectively. Themore uniformly distributed and
less splotchy appearance of the sampling noise is especially visible in areas that at higher sampling
rates appear smooth, like the table top or the back rests. The difference in quality is clearly visible
on a computer screen and may be difficult to reproduce in print. The reader may need to vary
the distance of observation. As all methods are consistent, the observable differences vanish with
an increasing number of samples per pixel. Nevertheless, the improvement very much matters in
settings, where only a small number of samples are affordable, such as in real-time rendering
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two dimensions, the length is a quadratic power of the base of the selected space-
filling curve.

For the example of base two, segment lengths amount to multiples of powers of
two. Hence, for a specific pixel, samples drawn from a radical inverse in base b = 2
are spaced in multiples of powers of two, which will reveal correlation artifacts
as visualized in Fig. 2. Depending on the combination of space filling curve and
component of the low discrepancy sequence, samples may even not be distributed
uniformly, as explained in Sect. 3.1. Omitting the components of the low discrepancy
sequence that correlate with the space-filling curve may help, but as revealed in
Sect. 3.1, there may be multiple components with correlations.

The issues of leapfrogging low discrepancy sequences have been encountered in
parallelizing quasi-Monte Carlomethods [1, 20]. Their remedy has led to the concept
of partitioning low discrepancy sequences into multiple low discrepancy sequences,
which we explore next.

4.4 Partitioning one Low Discrepancy Sequence

Partitioning a low discrepancy sequence into a finite number of low discrepancy
sequences has been introduced in [18] for the purpose of parallel quasi-Monte Carlo
methods: One dimension of a low discrepancy sequence is used for partitioning,
while the remaining dimensions are used for quasi-Monte Carlo integration. We use
the principle to develop a simple consistent algorithm for rendering along the Hilbert
curve.

Let φb(i) be the component of a low discrepancy sequence to be partitioned into
N = bm low discrepancy sequences and let xi be the points of that low discrepancy
sequence without the component used for partitioning. Then the integers

�N · φb(i)� = �bm · φb(i)� =
⌊
bm ·

∞∑

k=0

ak(i)b
−k−1

⌋
,

form a permutation of {0, . . . , N − 1} that repeats every N points. Selecting N as
the length of a space filling curve and b its base, each pixel with index j along the
space-filling curve is assigned the sequence of points

Pj =
{
xl·N+φ−1

b ( j/N ) : l ∈ N0

}
⇔ Pφ−1

b ( j/N ) = {
xl·N+ j : l ∈ N0

}

of the original low discrepancy sequence xi , which results in an overall consistent
deterministic quasi-Monte Carlo method [15, Sect. 1.1].

As the offset φ−1
b ( j/N ) is constant per pixel, omitting the inverse of the permu-

tation �bm · φb(i)� and instead assigning

Pj = {
xl·N+ j : l ∈ N0

}
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simplifies the implementation: Now contiguous blocks of the low discrepancy
sequence are enumerated along the space-filling curve, and we have the additional
benefit of locally improved uniformity as described in Sect. 3 and illustrated in Fig. 1.

Combining theHilbert curve and the improvedHalton sequence [9] for progressive
image synthesis, we have b = 2 and use φ2 to partition the low discrepancy sequence
into N = 22n low discrepancy sequences, one for each pixel along the Hilbert curve.
The algorithm uses the pixel index j along the Hilbert curve as offset into the low
discrepancy sequence xi and leapfrogs from there with a stride of N , which is simple
to execute on a massively parallel computer system, like for example a GPU cluster
[3, 18, 19].

5 Results and Discussion

TheHilbert curve has been applied in computer graphics before.Rendering images by
enumerating pixels along the Hilbert curve improves performance by higher cache
hit rates due to the locality properties of the Hilbert curve. The visual benefits of
half-toning by dithering along the Hilbert curve have been recognized in [28].

Our new algorithms benefit from these findings. They are a special case of Array-
RQMC that does not require sorting because we rely on the bijection between pixels
and the space-filling curves. As indices can be computed directly, neither lookup
tables nor additional memory for lookup tables are required.

Our focus is on deterministic algorithms, as these can be reliably parallelized
and results are exactly reproducible [15]. We use an improved variant of the Halton
sequence [9] in the experiments. The implementation of fitting elementary intervals
to the pixel raster [12] is involved and requires 64-bit signed integers to run Euclid’s
algorithm for the Chinese remainder theorem. This computation is not required for
the algorithms in Sects. 3 and 4.4 that are straightforward to implement. Shifting a
rank-1 lattice sequence [14] by the Halton sequence enumerated along the Hilbert
curve (see Sect. 4.1) is even simpler and practical with only two 32-bit integer
indices. We employ an extensible lattice constructed by primitive polynomials [16].
To assess the visual differences of the classic [12] and the two new progressive
sampling approaches, their results are compared at low sampling rates in Fig. 5.

The most prominent advantage of the new algorithms is inherited from Array-
RQMC: As illustrated in Fig. 1, the Hilbert curve has the smallest number of curve
segments in the neighborhood around a pixel. Hence more consecutive samples are
used locally, which makes better use of the uniformity of a low discrepancy sequence
across pixels as compared to other space-filling curves.Hence, the noise in the images
is more uniformly distributed noise at low sampling rates.

Our methods achieve a quality comparable to methods that require optimiza-
tion [10, 13], are available for any number of dimensions, are simpler than other
approaches that sample along space-filling curves [2], are deterministic, and are
consistent.



Rendering Along the Hilbert Curve 331

We have not yet explored the potential of selecting or reordering the dimensions of
low discrepancy sequences. This is an interesting direction of future research that has
been initially explored for rank-1 lattices in computer graphics [22]. Furthermore,
it is worth investigating the many other possible combinations of low discrepancy
sequences and space-filling curves with respect to their visual quality and conver-
gence speed.

6 Conclusion

Based on the seminal work on Array-RQMC [21], we introduced simple determin-
istic consistent rendering algorithms that at low sampling rates produce noise char-
acteristics that are very amenable to the human eye. Key to the algorithms are the
preservation of discrepancy when enumerating low discrepancy sequences along the
Hilbert curve and the principle of partitioning one low discrepancy sequence into
multiple. It appears that the correlation of samples across pixels via low discrepancy
may be more relevant to the eye than their independence.
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Array-RQMC to Speed
up the Simulation for Estimating
the Hitting-Time Distribution to a Rare
Set of a Regenerative System

Marvin K. Nakayama and Bruno Tuffin

Abstract Estimating the distribution of the hitting time to a rarely visited set of
states presents substantial challenges. We recently designed simulation-based esti-
mators to exploit existing theory for regenerative systems that a scaled geometric
sum of independent and identically distributed random variables weakly converges
to an exponential random variable as the geometric’s parameter vanishes. The result-
ing approximation then reduces the estimation of the distribution to estimating just
the mean of the limiting exponential variable. The present work examines how ran-
domized quasi-Monte Carlo (RQMC) techniques can help to reduce the variance
of the estimators. Estimating hitting-time properties entails simulating a stochastic
(here Markov) process, for which the so-called array-RQMCmethod is suited. After
describing its application, we illustrate numerically the gain on a standard rare-event
problem. This chapter combines ideas from several areas in which Pierre L’Ecuyer
has made fundamental theoretical and methodological contributions: randomized
quasi-Monte Carlo methods, rare-event simulation, and distribution estimation.

Keywords Rare event simulation · Distribution estimation · Randomized
quasi-Monte Carlo

1 Introduction

Monte Carlo (MC) simulation provides a primary tool to estimate the probabil-
ity of rare events or related indicators [27]. The extensive related literature focuses
mainly on estimating themean of a relevant random variable, but its distribution pro-
vides valuable additional information. For example, suppose amanufacturer wants to
specify an appropriate length of a warranty. While the product’s mean time to failure
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(MTTF) yields some relevant details, more useful are the random failure time’s quan-
tiles (i.e., inverse distribution). Setting the warranty length to, say, the 0.9-quantile
leads to 10% of products resulting in warranty claims.

Distribution determination of a hitting time, especially related to a rare event
(e.g., system failure), poses numerous challenges. But when the simulated stochastic
process is regenerative [10], existing theory [11] shows that the hitting time to a
rare set converges weakly to an exponential random variable if the probability to hit
the rare set before regenerating converges to zero. This suggests approximating the
hitting-time distribution by an exponential, reducing distribution estimation to esti-
mating just its mean, which is broadly covered in the rare-event simulation literature.
Our papers [4, 5] present two MC estimators exploiting such approximations. The
exponential estimator directly applies this idea, further employing measure-specific
importance sampling (MSIS) [6] to efficiently estimate the mean. The other is the
convolution estimator, which first applies an exponential approximation to the dis-
tribution of the geometric sum of cycle lengths (i.e., the times elapsing between
successive regenerations) completed before the first visit to the rare set, and then
convolves this with the distribution of the hitting time given that it occurs in a cycle.

This chapter investigates how randomized quasi-Monte Carlo (RQMC) can be
used to improve the accuracy of the above estimators and the potential associated
gains. By distributing the sample points more evenly than independent sampling on
the considered domain, RQMC methods can reduce the variance of estimators and
even increase the convergence speed to the true value [13]. A naive implementation of
RQMC to simulate a stochastic process entails generating sequences whose dimen-
sion is at least the number of transitions in a simulated path, which is typically large
or even unbounded. But RQMCoften performs poorly in large or infinite dimensions.
Array-RQMC [16, 17, 20] has been designed precisely to simulate Markov chains
while retaining the power of RQMC, the dimension of the generated sequences being
“just” the required number of random values to simulate a single step of the chain.
Basically, array-RQMC simulates in parallel a set of realizations of a Markov chain
and makes use of a “sorting function” to reorder the chains according to their states
after each simulation step. We describe the array-RQMC implementations of the
exponential and convolution estimators and illustrate numerically the gains that can
be derived from it.

Interestingly, this work combines several research interests of Pierre L’Ecuyer:
rare-event simulation [14, 15]; RQMC techniques [13], among which array-RQMC
[16, 17, 20] is specifically designed by Pierre and his coauthors to simulate Markov
chains; and distribution determination [1, 21].

The remainder of this chapter unfolds as follows. Section2 reviews the exponential
and convolution estimators devised in [4]. Section3 recalls array-RQMC simulation
methods and how it can be implemented for our problem. As an illustration, we apply
the approach in Sect. 4 to a standard rare-event problem in the literature: the hitting
time to a large buffer threshold in an M/M/1 queue. Finally, Sect. 5 concludes the
paper and provides further research directions to pursue on these ideas.
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Fig. 1 Illustration of the
notation used to represent
and analyze regenerative
processes, where M = 3

2 Regenerative-Simulation-Based Estimators
of the Distribution of the Hitting Time to a Rarely Visited
Set

2.1 Assumptions and Notations

For R+ denoting the set of nonnegative real numbers, we consider, for ease of expo-
sition, a positive recurrent Markov chain (X (t) : t ∈ R+) defined on a discrete state
space S. Our goal is to estimate the cumulative distribution function (cdf) F of the
hitting time T = inf{t ≥ 0 : X (t) ∈ A} of a subset A of S, as well as the q-quantile
ξ = ξq = F−1(q) = inf{t : F(t) ≥ q} of F (or of T ) for some q ∈ (0, 1).

Define regeneration times 0 = �0 < �1 < · · · (always existing with our assump-
tions of discrete S and recurrence: it suffices to consider return times to a fixed
state as regeneration times) and τk = �k − �k−1, the length between regenera-
tion k − 1 and regeneration k for k ≥ 1. The process “probabilistically restarts”
at each regeneration time �k . The process between successive regenerations is
called a cycle, the k-th cycle being (X (�k−1 + s) : 0 ≤ s < τk). The couples
(τk, (X (�k−1 + s) : 0 ≤ s < τk) : k ≥ 1) are independent and identically distributed
(i.i.d.), and let τ denote a generic copy of τk . Let Tk = inf{t ≥ 0 : X (�k−1 + t) ∈ A}
be the first hitting time to A after regeneration time �k−1. We further define
M = inf{i ≥ 1 : Ti < τi } − 1 as the number of cycles completed before first hit-
ting A. As the cycles are i.i.d., M obeys a geometric distribution with parameter
p = P(T < τ) and support starting from 0; i.e., P(M = k) = (1 − p)k p for each
k ∈ {0, 1, 2, . . .}.

We can express

T = S + V ≡
M∑

i=1

τi + TM+1, (1)

where the regenerative property ensures the geometric sum S = ∑M
i=1 τi is indepen-

dent of V = TM+1. Define G as the cdf of S, and H the cdf of V . Note that H is the
conditional cdf of T1, given T1 < τ1. Figure1 illustrates the notation, with the state
space S on the vertical axis and A the subset above the horizontal dashed line.
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2.2 Exponential Limit

We consider a rare-event setting where the probability p to reach A before regener-
ation is small. To examine the asymptotic properties of estimators as the probability
shrinks, we index the model and all notation by a rarity parameter ε > 0, such that
p ≡ pε → 0 as ε → 0. But when unambiguous, we will omit the index ε to sim-
plify notation. Two well-known rare-event contexts having pε → 0 as ε → 0 are the
following [7]:

• Stable queueing system: For a single-server queue with first-in-first-out discipline,
wewant to estimate the distribution of the hitting time T to a large buffer size buffer
size b ≡ bε = �1/ε�. Specifically, X (t) denotes the total number of customers in
the system at time t ≥ 0, and the state space is S = {0, 1, 2, . . .}. Thus, the hitting
time is T = inf{t ≥ 0 : X (t) ∈ A} withA = Aε = {bε, bε + 1, . . . }. For a G/G/1
queue, regenerations occur when a customer arrives to an empty system, which we
assume occurs at time t = 0. In our numerical illustrations with an M/M/1 queue,
returns to any fixed state constitutes a regeneration sequence, where we take the
fixed state to be 0 and X (0) = 0. The transition kernel does not depend on ε, and
rarity arises from bε being large for small ε, and [28] shows that pε → 0 as ε → 0.

• Highly reliable Markovian system (HRMS) considered in dependability analysis:
The system consists of components of different types, each having a specified
redundancy. Each component is subject to failures and repairs, all being exponen-
tially distributedwith rates depending on the component type. Failure propagations
can occur, i.e., a component failure can cause others to simultaneously fail. A state
x ∈ S specifies the number of components failed of each type, as well as any
other necessary information (e.g., about queueing of failed components waiting
for repair) so that the resulting stochastic process on state space S is a Markov
chain. The entire system is considered down (i.e., in A) when specified combina-
tions of components are currently failed. We may want to estimate the distribution
of the hitting time to A when all components are operational at time t = 0. Rar-
ity comes from failure rates being small (depending on ε) with respect to repair
rates, leading to probabilistically long hitting times, and [29] provides conditions
ensuring that pε → 0 as ε → 0.

Letμε = Eε[Tε] be the mean hitting time, withμε → ∞ as ε → 0. Then existing
limit results (see [10, 11]) show that if pε → 0 as ε → 0, then the normalized
random variable Tε/με converges weakly to an exponential, i.e., for t ∈ R and t+ =
max(t, 0),

lim
ε→0

Pε(Tε/με ≤ t) = 1 − e−t+ . (2)

2.3 Exponential Estimators with Monte Carlo (MC)

From the limiting behavior (2), we can write for fixed small ε > 0
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Fε(t) = Pε(Tε < t) = Pε(Tε/με < t/με) ≈ 1 − e−t+/με ≡ F̃ε(t). (3)

Thus to compute the cdf of hitting time T (dropping now the subscript ε to ease
notation, as we will often but not always do in the following), we asymptotically
need to know “just” its mean. (This is analogous to the central limit theorem (CLT),
where the asymptotic normal cdf is fully specified through simply its mean and
variance). Estimating themeanμ has been extensively studied in the literature. Doing
this by averaging i.i.d. copies of T can be time-consuming because generating each
observation of T typically entails lengthy simulations (e.g., many transitions) for
small ε. Instead, we exploit the regenerative structure to rewrite μ as (see [6])

μ = E[T ∧ τ ]
P(T < τ)

≡ ζ

p
, (4)

where x ∧ y = min(x, y). The key point is that (4) expresses μ in terms of cycle-
based quantities, ζ and p, each of which can be estimated by simulating only cycles.
The numerator ζ = E[T ∧ τ ] in (4) can usually be estimated well by crude Monte
Carlo, while the denominator p = P(T < τ) is a small probability for which rare-
event simulation techniques have to be applied for efficient estimation. Measure-
specific importance sampling [6] employs independent simulations to estimate the
numerator and denominator using crude simulation (CS) and importance sampling
(IS), respectively. Given a computation budget of simulating n cycles in total to
estimate μ, MSIS allocates a proportion γ ∈ (0, 1) (resp., 1 − γ ) of the budget for
CS (resp., IS). More specifically,

• We use nCS ≡ γ n cycles to estimate the numerator ζ in (4) by CS via

ζ̂n = 1

nCS

nCS∑

i=1

Ti ∧ τi (5)

from nCS independent observations Ti ∧ τi (1 ≤ i ≤ nCS) generated using the orig-
inal system dynamics, denoted by P.

• Because CS is unlikely to observe the event T < τ when p is small, MSIS instead
estimates the denominator p in (4) using nIS ≡ (1 − γ )n cycles generated using IS.
IS entails simulating under another probability measure P′ rather than the original
measure P, where P′ is chosen so that T < τ is more likely and can depend on ε.
Letting I(·) be the indicator function, we apply a “change of measure” to write

p = E[I(T < τ)] =
∫

I(T < τ) dP =
∫

I(T < τ)L dP′ = E
′[I(T < τ)L],

with L = dP/dP′ the likelihood ratio, and E
′ denotes expectation under measure

P
′. An unbiased estimator of p is then
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p̂n = 1

nIS

nIS∑

i=1

I(T ′
i < τ ′

i )L
′
i , (6)

for i.i.d. copies (I(T ′
i < τ ′

i ), L
′
i ), i = 1, 2, . . . , nIS, of (I(T < τ), L) under P′.

The resulting MSIS estimator of the mean μ in (4) is the ratio estimator

μ̂n = ζ̂n

p̂n
. (7)

The proportion γ can be selected during a presimulation run tominimize the variance
per unit of computational budget of μ̂n (see [6] for details). To summarize [4]:

Definition 1 The exponential estimator of the cdf F(t) of T is

F̂exp,n(t) = 1 − e−t+/μ̂n . (8)

For fixed q ∈ (0, 1), the exponential estimator of the q-quantile ξ = F−1(q) is
ξ̂exp,n = F̂−1

exp,n(q) = −μ̂n ln(1 − q).

As a notational convention, for an unknown parameter (e.g., F), we use a tilde to
signify a non-simulation approximation (e.g., F̃ε in (3)) based on aweak-convergence
result, as in (2). A hatted variable (e.g., F̂exp,n) denotes a simulation estimator.

The exponential estimators in Definition 1 result from approximating the true
cdf F by F̃ε in (3), with (2) showing that the approximation becomes exact as
the rarity parameter ε → 0. But any actual system has a small but fixed ε > 0,
which typically leads to F̃ε = F . Because the exponential estimators are estimating
quantities related to the approximation F̃ε and not the actual F , the estimators have
bias that does not vanish as the computing budget n → ∞. For example, for fixed
ε > 0 and t > 0, we have that as n → ∞, F̂exp,n(t) ≡ F̂exp,n,ε(t) converges almost
surely to F̃ε(t) = 1 − e−t/με , not to F(t).

For fixed ε > 0, the exponential estimators obey CLTs as n → ∞, but the CLTs
will employ centering constants computed from F̃ε rather than F . For example,
for fixed ε > 0 and t > 0, the exponential cdf estimator satisfies

√
n[F̂exp,n(t) −

F̃ε(t)] ⇒ N(0, ψ2
t ) as n → ∞ for an asymptotic variance ψ2

t ≡ ψ2
t,ε that can be

derived using the delta method, where ⇒ denotes weak convergence andN(a, b2) is
a normal random variable withmean a and variance b2. Similarly, for fixed ε > 0 and
q ∈ (0, 1), the exponential q-quantile estimator also obeys a CLT (as n → ∞) with
centering constant ξ̃ε ≡ −με ln(1 − q) rather than the true q-quantile ξ = F−1(q).
Based on these two CLTs, we can then provide confidence intervals (CIs) for the
true values F(t) and ξ , but the CIs are biased from fixing ε > 0, so the coverage
probabilities will converge to 0 as n → ∞. A CI may still have reasonable coverage
when the estimator’s bias makes a negligible contribution to its mean square error.
This may be difficult to determine in practice, as quantifying the bias is nontrivial,
but may occur for large (but not too large) n and fixed small ε > 0.
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2.4 Convolution Estimators with Monte Carlo

Rather than directly approximating the cdf F by an exponential, as done for the
exponential estimator, we instead can use the decomposition T = S + V in Eq. (1),
leading to expressing the cdf F as the convolution

F = G 	 H, recalling that S ∼ G and V ∼ H are independent, (9)

where (G 	 H)(t) = ∫
H(t − y) dG(y). Typically, the exponential limit (2) for the

scaled hitting time arises from S (scaled by its mean η = E[S] = E[M] · E[τ | τ <

T ]) converging weakly to an exponential as ε → 0; e.g., see [11, Theorem 3.2.5].
Thus, for small ε > 0, we approximate G(y) by G̃exp(y) ≡ 1 − e−y+/η. As before
with the exponential estimator in (8), the approximation reduces estimation of the
cdfG to estimating just its mean η. WritingE[M] = (1 − p)/p andE[τ | τ < T ] =
E[τI(τ < T )]/(1 − p) suggests estimating η = (1/p)E[τI(τ < T )] by

η̂n = 1

p̂n nCS

nCS∑

i=1

τiI(τi < Ti ),

where we can employ the same CS and IS cycle data from (5) and (6) used for the
exponential estimator. This then yields the MSIS estimator of G in (9) as

Ĝexp,n(t) = 1 − e−t/η̂n . (10)

Estimating the cdf H of V in (9) also requires rare-event simulation techniques.
As H(x) = P(T ≤ x | T < τ) = P(T ≤ x, T < τ)/p, a change of measure gives

H(x) = 1

p
E[I(T ∧ τ ≤ x, T < τ)] = 1

p
E

′[I(T ∧ τ ≤ x, T < τ) L].

Applying IS produces a sample (T ′
i ∧ τ ′

i , I(T
′
i < τ ′

i ), L
′
i ), i = 1, 2, . . . , nIS, of (T ∧

τ, I(T < τ), L) under P′ from nIS cycles (as for the exponential estimator), leading
to

Ĥn(x) = 1

p̂n nIS

nIS∑

i=1

I(T ′
i ∧ τ ′

i ≤ x, T ′
i < τ ′

i )L
′
i (11)

as an estimator of H . Convolving the two distributions Ĝexp,n from (10) and Ĥn from
(11), [4] obtains the following estimator of cdf F in (9).

Definition 2 The convolution estimator of the cdf F(t) is

F̂conv,n(t) = (Ĝexp,n 	 Ĥn)(t) = 1 − 1

p̂n · nIS
nIS∑

i=1

I(T ′
i < τ ′

i ) L
′
i e

−(t−(T ′
i ∧τ ′

i ))
+/η̂n .
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The convolution estimator of the q-quantile ξ = F−1(q) is ξ̂conv,n = F̂−1
conv,n(q),

which typically requires numerical methods to compute.

The basis of the convolution estimators is the weak convergence of the geometric
sum Sε in (1) (scaled by its mean) to an exponential as ε → 0, which can hold even
when the exponential limit for Tε = Sε + Vε in (2) does not. This can happen when
Vε is not “negligible” compared to Sε , as occurs, e.g., for the model described in [23,
Section5]. By explicitly taking into consideration the contribution of Vε to Tε , the
convolution estimator can then have smaller bias than its exponential counterpart, as
seen in Fig. 5 of [5].

Constructing (biased, as discussed in the last paragraph of Sect. 2.3) CIs based
on the convolution estimators requires that the estimators obey corresponding CLTs
(with centering constants derived from G̃exp 	 H rather than G 	 H ), which we have
not yet established (but are working on). This statement even applies for batching
CIs, as they also rely on an underlying CLT for each batch. A complication in
establishing such CLTs is that in contrast to, e.g., the exponential cdf estimator in
(8), the convolution cdf estimator is not simply a function of sample means, so the
delta method does not directly apply.

3 Array-RQMC Implementation
of Regenerative-Simulation-Based Estimators
of Quantiles

3.1 RQMC and Array-RQMC

Quasi-Monte Carlo (QMC) is a deterministic numerical integration method (usually
considered over the s-dimensional unit cube [0, 1]s without much loss of gener-
ality) to approximate an integral I ≡ ∫

[0,1]s f (x) dx of a given function f . QMC
approximates I by an average of evaluations of f overm values from a deterministic
sequenceP = (θi )1≤i≤m of points from [0, 1]s ; i.e., the QMCestimator of the integral
is 1

m

∑m
i=1 f (θi ). The sequence P of points is designed to “evenly” cover the space

[0, 1]s and is known as a low-discrepancy sequence. The most common construc-
tions are lattice points and digital nets, including Sobol’ sequences [2, 25]. Error
bounds exist [25] under restrictive assumptions, showing that the QMC error shrinks
at a rate in O(m−1(logm)s) as m → ∞ (and sometimes even faster), better than
the O(m−1/2) convergence rate of MC’s root-mean-square error. (For non-negative
functions g1 and g2, “g1(m) = O(g2(m)) asm → ∞” means there are positive con-
stants c andm0 such that g1(m) ≤ cg2(m) for allm ≥ m0.) But applying such bounds
is impractical: they are very difficult to compute and can be extremely loose for a
given integrand f or a given value of m. RQMC, which has several advantages over
QMC, randomizes the sequence P such that each point of the sequence is uniformly
distributed over [0, 1]s but the points are correlated and keep the low discrepancy to
gain the improved convergence rate with respect to MC [13]. We can apply a central
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limit theorem on r → ∞ i.i.d. randomizations to obtain a confidence interval for I
(see [24] for conditions).

QMC and RQMC efficiency is sensitive to the problem’s dimension s (or actually
to the effective dimension representing the number of coordinates encompassing
“most of the variability” of the problem; see [26] for more details). But in a naive
implementation of (R)QMC to simulate paths of a Markov chain, the dimension
s corresponds to the maximum length of a simulated path, which can be large,
even infinite in many cases (as when generating paths up to an unbounded hitting
time). In most such situations, RQMC is typically considered useless, yielding no
improvement with respect to MC except if the effective dimension is small, which
happens only in restricted cases.

To cope with this dimensionality issue, the array-RQMC method has been
designed in [16] and further developed in [17] to adapt RQMC to the simulation
of Markov chains. As a randomization of the deterministic QMC version presented
in [12], array-RQMC simulates aMarkov chain (X j , j ≥ 0) defined on a state space
S as follows. It assumes a total ordering function h of states in S. Let the initial state
X0 be distributed according to some distribution ν0. (In our regenerative setting
of Sect. 2, we will assume that ν0 is degenerate, so there is a single fixed starting
state, but we recall here the nondegenerate-ν0 version introduced in [16] for sake of
generality.) Transitions of the chain are defined by the stochastic recurrence

X j = ϕ(X j−1,Uj ), ( j ≥ 1), (12)

for a given transition kernel ϕ, where Uj (independent for different j) is a ran-
dom vector uniformly distributed over [0, 1)d , meaning that d uniforms are used to
simulate a single transition step.

While MC typically simulates n chains sequentially and independently, array-
RQMC instead generates m chains in parallel, simulating the j th step of all the m
paths in a negatively correlated way (to reduce the variance in the estimation) before
moving to the next step for each path. For i = 1, 2, . . . ,m, let (Xi, j : j = 0, 1, 2, . . .)
be the i th path generated, with Xi, j as the state visited after the j th step. To begin,
m initial states Xi,0 (for i = 0, . . . ,m) are generated from the initial distribution ν0
using an RQMC point set Pm,0 = {U0,0, . . . ,Um−1,0} in [0, 1)d0 (that is, at most d0
uniforms are used to generate an initial state); from the property of RQMC points
being well distributed over the space, this results inm “well spread” (according to ν0)
initial points for the m chains. The m chains are then sorted (say in increasing order
of their state) according to h. Then for the transitions from step j − 1 to step j (for
j ≥ 1), the next state for each of the m chains is sampled from the previously sorted
ones. An RQMC point set Pm, j = {U0, j , . . . ,Um−1, j } in [0, 1)d independent from
previous RQMC point sets is used such that for all i ∈ {1, . . . ,m}, the transition of
the i-th (ordered) chain is generated using the i-th point of Pm, j :

Xi, j = ϕ(Xi, j−1,Ui, j ).
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And again the states are re-ordered according to h. The process is iterated up to the
end of the paths. If the chains have different stopping times, the below algorithm
ignores those terminated paths (and not simulated anymore) and their states are
specified as ∞ (an absorbing state used to indicate that those simulated paths have
already reached the stopping time.)

The algorithm can therefore be described as follows for a discrete-time Markov
chain, whichwewill later modify (at the end of Sect. 3.2) to handle a continuous-time
Markov chain, as needed for the array-RQMC convolution estimator:

Array-RQMC algorithm [16]:
1 (Initialization).
Generate a RQMC point set, P0 = {U0,0, . . . ,Um−1,0} ⊂ [0, 1)d0 ;
∀ i ∈ {0, 1, . . . ,m − 1}, generate Xi,0 from Ui,0;
2 (Simulate chains).
Simulate in parallelm copies of the chain, numbered 0, . . . ,m − 1, as follows:

For ( j = 1; X0, j−1 < ∞; j++)
Generate an RQMC point set Pm, j = {U0, j , . . . ,Um−1, j } ⊂ [0, 1)d

(independent of previous ones);
For all non-terminated chains i , let Xi, j = ϕ j (Xi, j−1,Ui, j );
For terminated chains (i.e., stopping time reached), set Xi, j = ∞;
Sort (and renumber) the chains for which Xi, j < ∞ by increasing

order of their states (based on the ordering function h);
(The sorted states X0, j , . . . , Xn−1, j result in an estimator F̂j

of the cdf Fj of the chain at the j th step X j .)
3 (Output).
Return the estimator obtained from the m generated paths.

The algorithm simulates each transition step across the m chains according to an
RQMC point set with good coverage properties over the sampling space. The re-
ordering helps to obtain an empirical cdf of the random variable X j at the ( j − 1)-th
step of the chain, so that the RQMC point set at step j is actually generating step- j
values from this empirical cdf, from a (d + 1)-dimensional point set where the first
coordinate of the i-th point is i/m and the d other coordinates Ui, j (see [16, 17]).

But the main advantage of using array-RQMC with respect to traditional RQMC
techniques is that the dimension of the RQMC point sets is max(d, d0) for array-
RQMC, as compared to d0 + d × τ ′ for traditional RQMC, where τ ′ is an upper
bound (possibly infinite) for the stopping time τ . Hence, array-RQMC drastically
reduces the dimension, from which efficiency improvements can be expected. Actu-
ally it is shown in [16, 17] that if stratified sampling is used, the variance of a mean
estimator can be O(m−3/2) as m → ∞, much faster than the O(m−1) for MC. In
fact, [17, 20] present numerical results that suggest variances can even shrink as
O(m−2).

We can easily obtain a confidence interval by considering r ≥ 2 independent
replications (i.e., randomizations) of groups of m chains.

The algorithm is sensitive to the choice of ordering function h. When the state
space S is a (one-dimensional) subset of R, the states have a natural order. But
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difficulties arise for state spaces of higher dimension, for which it may not be obvious
how to design an effective ordering of the states. This issue is related to that of
defining an importance function for the levels in the splitting technique in rare-event
simulation [15]: an effective ordering is problem-specific, depending on both the
stochastic model and on what is being estimated.

3.2 Array-RQMC Exponential and Convolution Estimators

We explain now how we propose to apply array-RQMC to the exponential and
convolution estimators of Sect. 2. Recall that we start in a fixed regenerative state so
the initial distribution ν0 in the array-RQMC is degenerate; no sampling is required
to specify the initial state. We start with the exponential estimator in Definition 1 of
Sect. 2.3. Recall that this estimator exponentiates the ratio of the estimators ζ̂n and
p̂n in Eq. (7), with ζ̂n an average over nCS cycles and p̂n averaging over nIS cycles,
where nCS and nIS may differ. For array-RQMC, we propose to consider a set of (a
fixed number) m chains generated in parallel and to apply rCS and rIS independent
randomizations of groups of m chains for estimating ζ and p, respectively, from (4).
Because (R)QMC methods often work best for point sequences P of certain specific
sizes (e.g., powers of 2), the array-RQMC exponential estimator specifies the same
number m of chains for CS and IS, but the randomizations for CS and IS allow
for unequal allocations (i.e., different rCS and rIS). By applying independent sets of
replications to estimate ζ and p,we are able to estimate the variance of the exponential
estimator and construct a (biased; see the discussion at the end of Sect. 2.3) confidence
interval based on a CLT (with 1 − e−t/μ as the centering constant due to the bias
from fixing ε > 0 in (3)), provided rCS → ∞ and rIS → ∞.

Formally, denote by ζ̂ (k)
m (k ∈ {1, . . . , rCS}) and p̂(k)

m (k ∈ {1, . . . , rIS}) as the esti-
mators of ζ and p respectively for the k-th independent group of cycles sampled
from array-RQMC. Specifically, we have

ζ̂ (k)
m = 1

m

m∑

i=1

T (k)
i ∧ τ

(k)
i

with T (k)
i ∧ τ

(k)
i the minimum of the hitting time and cycle length for the i-th gen-

erated array-RQMC chain of the k-th independent replication of groups under crude
simulation. Also, we get

p̂(k)
m = 1

m

m∑

i=1

I(T
′(k)
i < τ

′(k)
i )L

′(k)
i ,
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with I(T
′(k)
i < τ

′(k)
i ) and L

′(k)
i as the indicator of hitting A before regenerating and

the likelihood ratio, respectively, for the i-th generated array-RQMC chain of the
k-th independent replication of groups under IS.

The estimators of ζ , p and mean hitting time μ are then

ζ̂ aRQMC
m,r = 1

rCS

rCS∑

k=1

ζ̂ (k)
m , p̂aRQMC

m,r = 1

rIS

rIS∑

k=1

p̂(k)
m , μ̂aRQMC

m,r = ζ̂ aRQMC
m,r

p̂aRQMC
m,r

,

from which the array-RQMC exponential estimator of the cdf F(t) of T is

F̂aRQMC
exp,m,r (t) = 1 − e−t/μ̂aRQMC

m,r . (13)

From the independent replications of groups of m parallel chains, we can obtain
variance estimators of ζ̂ aRQMC

m,r , p̂aRQMC
m,r , and μ̂aRQMC

m,r , leading to a (biased) CI for
F(t) derived similarly to what is done for MC in [4] from the CLT described in
the last paragraph of Sect. 2.3, where an estimator of the asymptotic variance ψ2

t
can be computed from the sample variances of ζ̂ (k)

m , k = 1, 2, . . . , rCS, and p̂(k)
m ,

k = 1, 2, . . . , rIS.
We specify an allocation of the r = rCS + rIS independent groups of chains

between the crude and IS simulations with rCS = γ ′r and rIS = (1 − γ ′)r for a
user-specified constant γ ′ ∈ (0, 1). From a pre-simulation, we can choose γ ′ with
the goal to minimize the work-normalized variance [14] of the mean-hitting-time
estimator μ̂aRQMC

m,r , similarly to what is done for MC [4, 6]. The optimal allocation
parameter γ ′ for array-RQMC can differ from γ for MC in Sect. 2.3.

As explained in the last paragraph of Sect. 2.4, providing a CI (evenwith batching)
using the convolution estimator requires a CLT, which we have not yet established
for MC (although we are currently working on it). If we then decide to forgo a
CI based on the convolution estimator, then we could just consider a single group
(i.e., r = 1) to decompose the full budget n = r × m = m into mCS and mIS with
mCS + mIS = m. But then the convolution estimator has an unfair advantage over
the exponential estimator with the same total budget because the former is based on
a larger QMC point sequence (and QMC has faster convergence than MC, which
corresponds to the randomizations). As such, our numerical experiments in Sect. 4
construct the convolution estimator with the same allocation (with rCS and rIS) that
is used for the exponential estimator.

As studied in [17, 20], the efficacy of array-RQMC depends critically on the
choice of the ordering function h, but we do not pursue that issue here. When the
state space S is a one-dimensional subset of R, as in the M/M/1 example that we
will study numerically in Sect. 4, there is a natural ordering of states, which can be
effective.

Recall also that d is the number of uniforms employed to simulate a single transi-
tion step in (12). The exponential estimator in Definition 1 requires estimating only
the mean μ in (4), so discrete-time conversion [3, 9] can be applied. Specifically,
to estimate μ, we need to generate only the embedded discrete-time Markov chain
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(DTMC), replacing the exponential holding times in each successive state visited
by its conditional mean (given the DTMC). In addition to reducing the number of
uniforms needed to generate each transition, discrete-time conversion (as a form of
conditionalMonte Carlo) also reduces (asymptotic) variance. Thus, generating a path
of the DTMC typically has d = 1 in (12), as a single DTMC step requires only a
single uniform, even if for some applications using d > 1 may lead to more efficient
implementations. But for the convolution estimator, discrete-time conversion cannot
be applied when estimating the cdf H in (11) since it further requires the actual expo-
nential holding times in each state visited. Thus, the number of uniforms needed to
generate each transition is in this case d ′ = d + dg , where dg stands for the number
of uniforms to generate the random holding time once the new state is selected. In our
examples, wewill typically have dg = 1, those times being exponentially distributed,
generated from the inversion procedure of a single uniform.

4 Numerical Illustration of the Gain on the Simulation
of an M/M/1 Queue

To study the effectiveness of array-RQMC, consider the simulation of an M/M/1
queue, also studied in [16], with arrival rate λ = 1.0 and service rate μ′ = 4.0. For
the process (X (t) : t ∈ R+) with X (t) denoting the total number of customers in the
system at time t and X (0) = 0, our goal is to estimate quantiles and the cdf F of
the hitting time T to a given buffer size N . As in [4], we apply MSIS, where the IS
swaps the arrival and service rates, an approach known to be efficient when using the
ratio estimator (7) of the mean hitting time as the buffer size increases, and therefore
hitting times typically increase too. As explained in Sect. 3.2, the exponential and
convolution estimators will use r = rCS + rIS independent sets of randomizations
of m parallel chains to estimate the variances of ζ̂ aRQMC

m,r and p̂aRQMC
m,r and obtain a

(biased; see the last paragraph of Sect. 2.3) confidence interval. All the results are
each time compared with theMC exponential and convolution estimators with a total
of n = m × r MSIS cycles.

Our experiments test different sets of RQMC point sets, among classical ones:

• Sobol’ with a left matrix scrambling (named Matousěk scrambling [22]);
• Randomly-shifted lattice rule [18, 31] with lattice points selected using [19];
• (The same) Randomly-shifted lattice rule plus baker’s transformation [8];
• Randomly-shifted Sobol’ sequence (often yielding good numerical results, see for
example [30]).

Table1 displays the outputs for three different quantiles F−1(q) (when q = 0.1,
0.5 and 0.9). For constructing the exponential estimator, array-RQMC uses r = 100
independent randomizations ofm = 214 parallel chains, comparedwith r × m cycles
for MC. To simplify the following discussion about array-RQMC, we will focus
on the exponential estimator (but similar comments also apply to the convolution
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Fig. 2 Standard deviation of array-RQMC exponential estimators as a function of m = 2k , for the
M/M/1 queue with λ = 1.0 and μ′ = 4.0 when estimating q-quantiles of hitting times to N = 10
with r = 128. For MC, we consider n = m × r

estimator). The array-RQMC exponential q-quantile estimator applies array-RQMC
to independently estimate ζ by CS and p by IS to handle the ratio μ from (4). The
performance of an array-RQMC estimator depends critically on the choice of the
ordering function h (Sect. 3), which should be tailored for the particular estimand.
We could try to select different h for ζ and p (see [15, 17] for discussions on this),
taking into account, e.g., the accumulated “reward” (time already spent for CS or
accumulated likelihoood ratio for IS) to which an approximation of the remaining
reward is appended. But our experiments instead simply had that CS and IS used
the same ordering function h (the number of customers in the system), which gave
similar results.

Column 5 of Table1 shows that compared to MC for the same total number of
cycles generated, array-RQMC drastically reduces the variance of the estimators for
each quantile level q. The variance-reduction factor (i.e., ratio of variances for MC
and array-RQMC) is always well over 100, with the specific amount depending on
the randomization technique and choice of the low-discrepancy sequence. For this
example, the array-RQMC variances differ by up a factor of 4, withMatousěk scram-
bling and randomly shifted Sobol’ sequence themost effective. From the numerically
computed exact quantile values 4.91036e+04 for q = 0.1, 3.230287e+05 for q = 0.5
and 1.073074e+06 for q = 0.9, we see that array-RQMC estimators are more accu-
rate than MC ones, and all competitive. Convolution estimators are accurate as well,
expected to reduce the existing bias with respect to exponential ones [4, 5].

Figure2 displays in a log-log scale the standard deviation of the exponential esti-
mators in terms of m = 2k with fixed r = 128 for the various array-RQMCmethods
as well as for MC with n = r × m total cycles. We display only the results for the
q = 0.1 quantile since all other quantiles have the same curve up to a multiplicative
constant.
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Table 1 Results for theM/M/1 queue with λ = 1.0,μ′ = 4.0 when estimating q-quantiles F−1(q)

of hitting times to N = 10.We consider r = 100 andm = 214 for RQMCand a total of r × m cycles
for MC. Exact values are 4.91036e+04 for q = 0.1, 3.230287e + 05 for q = 0.5 and 1.073074e+06
for q = 0.9

q Method Exp. Est. Conf. Interval Variance Conv. Est.

0.1 MC 4.9056e+04 (4.8990e+04,
4.9121e+04)

1.12e+03 4.9146e+04

0.1 Matousěk
scrambling

4.9102e+04 (4.9099e+04,
4.9104e+04)

2.08e+00 4.9102e+04

0.1 Lattice-shift 4.9104e+04 (4.9099e+04,
4.9110e+04)

7.81e+00 4.9105e+04

0.1 Lattice-shift +
baker

4.9104e+04 (4.9099e+04,
4.9109e+04)

5.66e+00 4.9100e+04

0.1 Sobol-shift 4.9102e+04 (4.9099e+04,
4.9105e+04)

2.14e+00 4.9101e+04

0.5 MC 3.2273e+05 (3.2230e+05,
3.2316e+05)

4.85e+04 3.2330e+05

0.5 Matousěk
scrambling

3.2303e+05 (3.2301e+05,
3.2305e+05)

8.98e+01 3.2301e+05

0.5 Lattice-shift 3.2305e+05 (3.2301e+05,
3.2309e+05)

3.38e+02 3.2303e+05

0.5 Lattice-shift +
baker

3.2305e+05 (3.2302e+05,
3.2308e+05)

2.45e+02 3.2300e+05

0.5 Sobol-shift 3.2303e+05 (3.2301e+05,
3.2305e+05)

9.25e+01 3.2300e+05

0.9 MC 1.0721e+06 (1.0706e+06,
1.0735e+06)

5.36e+05 1.0740e+06

0.9 Matousěk
scrambling

1.0731e+06 (1.0730e+06,
1.0731e+06)

9.91e+02 1.0730e+06

0.9 Lattice-shift 1.0731e+06 (1.0730e+06,
1.0733e+06)

3.73e+03 1.0731e+06

0.9 Lattice-shift +
baker

1.0731e+06 (1.0730e+06,
1.0732e+06)

2.70e+03 1.0730e+06

0.9 Sobol-shift 1.0731e+06 (1.0730e+06,
1.0732e+06)

1.02e+03 1.0730e+06

All array-RQMC estimators are of the same order of magnitude and outperform
the MC one. Larger m yields greater variance reduction with respect to MC, as
expected due to the benefit of the generated sequences’ low discrepancy.

The log-log curves in Fig. 2 are close to linear. It is interesting to investigate the
convergence rate of the standard deviation in terms of m. A standard procedure for
convergence-rate estimation ofQMCandRQMCmethods applies log-log regression.
Assume that the standard deviation σm as a function of m satisfies σm ≈ am−b for
some a, b > 0, which is equivalent to
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Table 2 Log-log regression corresponding to values of Fig. 2 for the standard deviation of array-
RQMC and MC exponential estimators as a function of m, on the M/M/1 queue model with λ =
1.0, μ′ = 1.0 when estimating q-quantiles for of hitting times to N = 10. For MC, we consider
n = r × m

Method q = 0.1

MC 3702 × m−0.4965

Matousěk scrambling 7943 × m−0.9055

Lattice-shift 7068 × m−0.8971

Lattice-shift + baker 6615 × m−0.8902

Sobol-shift 8470 × m−0.8969

ln(σm) ≈ ln(a) − b ln(m).

Applying a classical regression for the values of m = 2k with k ∈ {6, 7, . . . , 19} in
Fig. 2 leads to the regression coefficients in Table2.

The table verifies them−0.5 convergence of MC. For all array-RQMC techniques,
the standard deviation shrinks at about rate m−0.9, much faster than MC.

From the known exact values for this M/M/1 model, Fig. 3 displays in a log-
log scale the error of the exponential and convolution estimators in terms of m
with r = 128 fixed for the various array-RQMC methods as well as for MC with
n = r × m (r × m is also used for all convolution estimators). Each plotted point is
the average of the absolute errors obtained over K = 10 independent replications to
smooth the curves with respect to drawing the error for a single replication.

Figure3 shows that all array-RQMCtechniques are of the sameorder ofmagnitude
of accuracy, and order(s) of magnitude better than the corresponding MC accuracy.
Also, for the “extreme” quantiles with q = 0.1 and q = 0.9, asm = 2k increases, the
array-RQMC errors for the estimators seem to stabilize and converge to a positive
(even if small) value, which results from the rarity parameter ε > 0 being fixed in (3)
because N is fixed. This suggests that the standard deviation is becoming negligible
with respect to bias for the exponential estimation, meaning that the bias for the
exponential estimator is larger than for the convolution estimator; this is more visible
when q is small, e.g., for q = 0.1 (see also [5, Fig. 5]). (Also see the related discussion
forMC in the last two paragraphs of Sect. 2.3.) The stabilizing constant seems smaller
for the convolution estimators than for the exponential ones, indicating a smaller bias
for the convolution estimator. As noted before for MC in the penultimate paragraph
of Sect. 2.4, the convolution estimator more explicitly accounts for the contribution
of V to R = S + V in (1) than the exponential estimator.
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Fig. 3 Errors of the various exponential and convolution estimators as a function of m, for the
M/M/1 queue with λ = 1.0, μ′ = 4.0 when estimating q-quantiles for of hitting times to N = 10
with r = 128. For MC, we consider n = m × r . Each plotted point is the average of K = 10
independent replications
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5 Conclusions

Estimating distributions of hitting times by simulation presents substantial chal-
lenges, especially when related to rarely visited sets. We previously designed [4, 5]
MCmethods to estimate distributions and quantiles of hitting times in a regenerative
context, when hitting the rare set before regeneration is rare. Based on the limiting
behavior of a geometric distribution converging to an exponential as when the suc-
cess probability tends to zero, [4, 5] design two “simple” estimators using previous
importance sampling designed to compute means.We proposed in this paper to com-
bine the estimators with array-RQMC, a simulation method simulating paths of the
Markov chain in parallel and distributing the sample points to cover more efficiently
the space, hence reducing variance. We have illustrated on a standard example that
the combination can reduce the variance by several orders of magnitude.

There are nevertheless several questions warranting further study. As noted in the
last two paragraphs of Sect. 2.3, variance is not the only component of the simulation
error. There is also bias coming from the exponential approximations, which become
exact as the rarity parameter ε → 0 in, e.g., (2), but in practice we always have a
fixed ε > 0, resulting in bias in (3). Since array-RQMC can substantially reduce the
variance, bias may significantly contribute to the estimator’s mean-squared error, and
increasing the sample size will not eliminate this source of bias. Thus, increasing the
number m of parallel chains in array-RQMC can provide benefits up to a point, but
eventually, bias from fixed ε > 0 becomes the dominant issue. This issue deserves
further study. Also, array-RQMC efficiency depends on the dimension of the state
space S and of the RQMC point set. More investigations on this are required.
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Foundations of Ranking & Selection
for Simulation Optimization

Barry L. Nelson

Abstract In addition to his voluminous and profound research accomplishments,
Pierre L’Ecuyer is an extraordinary educator; this includes expository talks and
papers, especially in the area of pseudorandom-number generation. This paper is
written in that same spirit, covering the foundations of ranking & selection for sim-
ulation optimization; simulation optimization is also an area of exceptional accom-
plishment for Pierre.

Keywords Ranking & selection · Stochastic optimization · Bayesian
optimization · Multi-armed bandits · Parallel simulation

1 Introduction

Suppose that we have the ability to simulate k = 4 different system designs that
use redundancy to be resistant to system failure. Let Y (x) be the time to failure of
design type x = 1, 2, 3, 4. Your job, as the analyst, is to use the simulation to find
x� = argmaxxE[Y (x)], the system design leading to the largest mean time to failure.
How would you do this?

The field of ranking& selection (R&S) provides procedures that “solve” problems
of this type. Features we might like in a R&S procedure include controlling the
number of simulation replications automatically; providing statistical guarantees of
correctness; being appropriate for large as well as small numbers of systems, k; the
facility to exploit modern parallel computing; and to do all of this computationally
and statistically efficiently.

The field of simulation optimization (SO)—of which R&S is a part—attacks
stochastic optimization problems in which the objective function is some property of
the output of a stochastic, often dynamic and non-stationary, simulation. Critically,
the property of interest can only be estimated by simulating instances (feasible solu-
tions, system designs), and those simulations may be computationally expensive. All
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SO algorithms are subject to three sources of error: They may fail to simulate the
optimal solution; they may fail to recognize the best solution that was simulated; and
they may report an optimistic (biased) estimate of the performance of the solution
that they do select. R&S is the only class of SO algorithms that controls all three
sources of error, but at the cost of simulating all system designs: R&S procedures
are exhaustive SO algorithms designed specifically to control statistical error.

R&SoriginatedwithRobert Bechhofer (Cornell) and Shanti Gupta (Purdue) in the
1950s to address biostatistics problems such as finding the most efficacious of three
drug treatments and a placebo. See [1, 13]. The problem characteristics assumed by
early R&S procedures include a small number of treatments, k; normally distributed
responses; relatively equal (maybe even known) variances; and a requirement to
be easy to implement, for instance by applying treatments to batches of subjects
rather than sequentially (e.g., one subject at a time and waiting for the results before
deciding the next treatment to apply).

At the 1983 Winter Simulation Conference David Goldsman (Georgia Tech) pre-
sented a tutorial on R&S [12], and organized a session with Bechhofer and Gupta,
arguing that R&Swas useful for optimizing simulated systems. The simulation com-
munity quickly embraced this paradigm, but had more expansive objectives than the
founders, includingmuch larger numbers of “treatments” (simulated system designs)
k; non-normal (nominal) output data; significantly unequal variances across systems;
and intentionally induced dependence across systems due to the use of common ran-
dom numbers. In addition, since data are generated by computer simulations that are
easily controlled, simulation researchers and practitioners were not concerned with
how complex or sequential the R&S procedure is as long as it is effective (selects the
best system design) and computationally efficient (generates as few simulation repli-
cations as possible, since the simulation was assumed to be more computationally
expensive than the overhead of the R&S procedure).

R&S has been a theoretical and practical success for simulation: There is sup-
porting theory, including asymptotic regimes for non-normal data and effective use
of “statistical learning.” Further, R&S has been routinely applied to real problems,
partly because R&S procedures are included in commercial simulation software. Of
course there is a R&S problem-size limit, since all system designs must be simulated.
Therefore, much of the research effort in R&S for simulation has been dedicated to
extending this limit via enhanced statistical efficiency to reduce simulation effort and
parallel computing to speed up execution. See [2, 21] for earlier surveys.

This paper is a significant extension of [27], and a companion to the online mas-
terclass “Ranking & Selection for Simulation Optimization” at http://users.iems.
northwestern.edu/~nelsonb/RSMasterclass.html. The web site contains R code for
all of the R&S procedures described here along with slides, videos and self-paced
exercises supporting this tutorial. The purpose of the masterclass and this paper
is to present foundations and broad themes in R&S for SO, rather than details or
new results. In Sect. 2 we set up the R&S problem. Section3 describes the “normal
means” case, the most widely studied and solved R&S problem. Exploiting parallel

http://users.iems.northwestern.edu/protect unhbox voidb@x penalty @M  {}nelsonb/RSMasterclass.html
 27195 47240 a 27195 47240 a
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computing in R&S is discussed in Sect. 4. Some formulations beyond normal means
are presented in Sect. 5. Finally, in Sect. 6 we briefly contrast R&S with the related
field of multi-armed bandits.

2 Set Up

For much of the paper the following set up applies. The true system performance
parameters (which are unknown) are μ(1) ≤ μ(2) ≤ · · · ≤ μ(k − 1) ≤ μ(k), and
we refer to system k, or any system tied with system k, as “the best.” For system
x we can estimate μ(x) with a consistent estimator; for instance, when μ(x) is the
expected value we may employ the sample mean of n(x) replications:

Ȳ (x) = 1

n(x)

n(x)∑

j=1

Y j (x)

where Y j (x) is the j th independent and identically distributed (i.i.d.) replication from
system design x . We will focus on selecting the best mean, but consider other per-
formance measures in Sects. 5–6. The R&S procedure ultimately returns something
like x̂� = argmaxx∈{1,2,...,k}Ȳ (x) as the selected system. We consider two categories
of objectives for the R&S procedure:

1. Fixed Precision: Simulate until a prespecified level of inference is achieved,
ideally a probability of correct selection (PCS), defined as Pr{̂x� = k} ≥ 1 − α.Since
this can be computationally impossible, for instance if there are ties for the best, a
compromise such as one of the following is accepted, where δ > 0 is a user-specified
parameter:

• Indifference zone: PCS = Pr {̂x� = k | μ(k) − μ(k − 1) ≥ δ} ≥ 1 − α, where “|
μ(k) − μ(k − 1) ≥ δ” indicates that the guarantee is only for problems in which
the means satisfy this inequality. That is, the best system is highly likely to be
selected when there is at least a minimum separation between the best and second-
best system.

• Good selection: PGS = Pr {μ(k) − μ(̂x�) ≤ δ} ≥ 1 − α. That is, a system with
no more than a specified optimality gap is highly likely to be selected.

• Top m: Pr {̂x� ∈ [k, k − 1, . . . , k − m + 1]} ≥ 1 − α. That is, one of the m best
systems is highly likely to be selected.

• Subset: Find Ŝ ⊆ {1, 2, . . . , k} such that Pr{k ∈ Ŝ} ≥ 1 − α. That is, a subset
(ideally small) is returned that is highly likely to contain the best system.

These are typically frequentist guarantees to be achieved as efficiently as possible.

2. Fixed Budget: Obtain as strong an inference as possible within a given compu-
tation budget, often formulated as minimizing some expected loss for the chosen
system design, E[L(̂x�, k)]:
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• 0-1 Loss: Minimize the posterior probability of incorrect selection, Pr{̂x� �= k|H}.
• Opportunity cost: Minimize the posterior expected optimality gap, E[μ(k) −

μ(̂x�)|H].
The inference is typically Bayesian in nature, and H includes the entire history of
simulation runs performed and outputs obtained until the budget is exhausted. We
will consider both fixed-precision and fixed-budget perspectives in this chapter.

3 The Normal Means Case

The most widely studied case assumes that from system x we can obtain
Y1(x),Y2(x), . . . that are i.i.d. normally distributed with mean μ(x) and variance
σ 2(x), denoted N(μ(x), σ 2(x)). Further it may be possible to induce Cov(Y (x),
Y (x ′)) �= 0 if we use common random numbers. Since so much research effort has
been expended on this problem, it is reasonable to ask, is normally distributed out-
put actually relevant for simulation problems? Fortunately, the answer is frequently
“yes.” Each output Y is often the average of many more basic outputs, e.g., daily
average customer waiting time is the average of many individual customers’ waiting
times.Also, the sample sizes prescribed byR&Sprocedures are often large, sowe can
group or “batch” outputs to obtain approximate normality. And many normal-means
procedures are asymptotically valid for non-normal data, as discussed in Sect. 3.8.

Initially we will assume that we can only simulate one system at a time, and
then later we parallelize simulations. One-system-at-a-time procedures are often
observation-efficient, but may not be computationally efficient in parallel.

3.1 The Indifference-Zone (IZ) Formulation

One of the most well-known IZ procedures is due to [35]:

Rinott’s Procedure

1. Choose confidence level 1 − α, initial sample size n0 ≥ 2 and indifference zone
parameter δ > 0. Set h = h(k, 1 − α, n0), a constant that depends on the number
of systems, desired confidence level and the initial sample size.

2. For each system x = 1, 2, . . . , k do the following:

a. Simulate n0 replications and compute the sample variance S2(x).

b. Compute N (x) =
⌈
h2S2(x)

δ2

⌉

c. Simulate max{0, N (x) − n0} additional replications from system x .
d. Compute the sample mean of all N (x) replications, Ȳ (x).

3. Choose x̂� = argmaxx Ȳ (x).
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Rinott’s procedure assumes that the outputs are i.i.d. normally distributed, have
unknown and possibly unequal variances, and are independent across systems. The
last assumption implies using distinct random number seeds for each system’s sim-
ulation. Rinott guarantees

PCS = Pr{̂x� = k| μ(k) − μ(k − 1) ≥ δ} ≥ 1 − α.

Belowwewill outline howRinott-like procedures provide this guarantee. The param-
eter δ is often interpreted as the “smallest practically significant difference.”

Rinott is easy to implement, and because it requires no coordination among sys-
tems it is easy to parallelize. However, it is pessimistic: it assumes the means are in
the “slippage configuration” μ(1) = μ(2) = · · · = μ(k − 1) = μ(k) − δ. This pes-
simisim leads tomore simulation than necessary to achieve the desired PCS for many
problems in which the means are more favorably spaced. What happens if there are
other good (closer than δ) systems? It turns out that Rinott also has a 1 − α good
selection guarantee, which means selecting a system within δ of the best; this happy
fact was not known until more recently [28].

Notice that the sample size N (x) grows as h2/δ2. How does h(k, 1 − α, n0) grow
with the number of systems k? Answer: too fast to be practical for really large k, so
other strategies (described later in this section) are needed for that case.

Rinott-like procedures achieve their guarantee based on some version of the fol-
lowing argument. Since we assume μ(k) − μ(x) ≥ δ, x �= k, we have

Pr
{
Ȳ (k) > Ȳ (x)

}

= Pr
{
Ȳ (k) − Ȳ (x) > 0

}

= Pr
{
Ȳ (k) − Ȳ (x) − [μ(k) − μ(x)] > −[μ(k) − μ(x)]}

≥ Pr
{
Ȳ (k) − Ȳ (x) − [μ(k) − μ(x)] > −δ

}
.

The statistic Ȳ (k) − Ȳ (x) − [μ(k) − μ(x)] has mean 0, so we can find the number
of replications needed to provide the desired probability guarantee considering only
δ and the variances.

This formulation—where we want PCS ≥ 1 − α when μ(k) − μ(x) ≥ δ and we
assume the slippage configuration—has been dominant in frequentist R&S because
it frees the probability statement from dependence on the true means. There are
two challenges: When μ(k) − μ(x) � δ the slippage assumption does not exploit it
to gain efficiency, which is particularly critical when k is large. And when μ(k) −
μ(x) < δ for some inferior system x , we would like a “good selection” guarantee,
which Rinott provides, but this is not the case for all IZ procedures; see Sect. 3.6.
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3.2 R&S Based on “Statistical Learning”

The following ideas for R&S are based (formally or informally) on Bayesian rea-
soning. See [10] for a more complete tutorial.

Frequentist reasoning goes like this: μ(1), μ(2), . . . , μ(k) are fixed performance
measures and probability statements (e.g., PCS, PGS) are with respect to repeated
independent experiments on the same problem. Bayesian reasoning starts from the
premise that we have uncertainty about the problem itself (e.g., which system is the
best) that we characterize via a prior probability distribution, and we then reduce our
uncertainty by running simulation experiments and updating our prior distribution
to a (more informative) posterior (after experiment) distribution using Bayes’ rule.
Typically the experiment-then-posterior-updating cycle is done repeatedly for many
iterations.

In R&Sour prior on the truemeans, and perhaps additional aspects, of the problem
is

μ(1), . . . , μ(k)︸ ︷︷ ︸
your problem

∼ M(1), . . . , M(k).︸ ︷︷ ︸
r.v.’s with a“prior” distribution

After observing (x, Y j (x)), we update our knowledge based on the conditional (“pos-
terior”) distribution of [M(1), . . . , M(k)] given the entire history, denoted by H. A
generic, fixed-budget, Bayesian R&S procedure is given below. In this procedure
x ( j) denotes the system we choose to simulate on iteration j of the procedure.

Generic Bayesian R&S

1. For x ∈ {1, 2, . . . , k}, set n(x) = 0, Ȳ (x) = null, H0 = ∅, j = 0.
2. x ( j) = π(H j ) and simulate Y j+1(x ( j)) [policy π(·) based on the posterior dis-

tribution].

3. Update n(x ( j)) = n(x ( j)) + 1 and Ȳ (x ( j)) = 1

n(x ( j))

∑

i : x (i)=x ( j)

Yi+1(x
(i))

H j+1 = H j ∪ {(x ( j),Y j+1(x ( j)))
}
.

4. If the budget is exhausted then return x̂� = argmaxx Ȳ (x), otherwise j = j + 1
and go to 2.

Clearly the key aspect is the policy π(·). Often the policy is expressed as some
sort of “acquisition function” a, for instance

π(H) = argmaxx �=x̂� a(x, x̂�) = argmaxx �=x̂� E
[
max

{
0, M(x) − M (̂x�)

}∣∣H
]
(1)

which is the system design with the largest posterior expected value of improvement
over the current sample best. Ideally a is chosen to learn “optimally,” meaning as
efficiently as possible, but the policy also has to be computable, which often means
it cannot look too many steps ahead.

Gaussian processes provide a very useful framework for this sort of approach,
often based on two fundamental results:
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1. If Z ∼ N(0, 1) then E [max{0, μ + σ Z}] = μ�
(μ

σ

)
+ σφ

(μ

σ

)
where � and

φ are the cdf and density of Z , respectively.
2. If (Z1, Z2) ∼ BVN(μ1, μ2, σ

2
1 , σ 2

2 , ρ) then Z1 ∼ N(μ1, σ
2
1 ), and

Z1|Z2 = z ∼ N

(
μ1 + ρ

σ1

σ2
(z − μ2), σ 2

1 (1 − ρ2)

)

︸ ︷︷ ︸
“learning”

.

The acquisition function in (1) is known as the complete expected improvement
(CEI) policy [36]. When the posterior is the normal distribution, then using the first
fundamental fact we have

CEI(x, x̂�) = (m(x) − m (̂x�))�

(
m(x) − m (̂x�)√

Var(x, x̂�)

)

+√Var(x, x̂�)φ

(
m(x) − m (̂x�)√

Var(x, x̂�)

)

where m(x) = E(M(x)|H), Var(x, x̂�) = Var(M(x) − M (̂x�)|H). The second fact
can be exploited to compute the means and variances, conditional on H. The CEI
policy has been shown empirically to make rapid progress toward the best system.

3.3 A Convergence-Rate Perspective

Suppose that the best system is unique: μ(k) > μ(k − 1). Then as long as all the
n(x) → ∞, even if not all equal, wewill eventually correctly select x̂� = k due to the
strong law of large numbers. But what is the best way to get to ∞? For the purposes
of this section it will be useful to employ the notation Ȳ x (n(x)) for the sample mean
of n(x) replications from system x , μx = μ(x) and σx = σ(x), and further to let
n(x) = βx N where βx ≥ 0,

∑
x βx = 1 and N is the total replication budget. The

question then becomes, what choice of β1, β2, . . . , βk makes limN→∞ Pr{̂x� �= k}
go to 0 the fastest?

One way to answer this question is via a large-deviation principle (LDP). Let
Z1, Z2, . . . , ZN be i.i.d. (μ, σ 2). If Z has finite log moment generating function,
then for z > μ

lim
N→∞

1

N
ln[Pr{Z̄(N ) > z}] = −I (z)

where I (·) is a rate function that depends on the distribution of Z . This LDP can be
interpreted as

Pr{Z̄(N ) > z} ≈ e−N I (z) for largeN .
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Translating to R&S, we want to choose β1, β2, . . . , βk to maximize the smallest of
the rates of decay of the pairwise probabilities of incorrect selection (PICS)

PICSx = Pr{Ȳ x (βx N ) − Ȳ k(βk N ) > 0} ≈ exp(−N I (0, βx , βk))

where I (0, βx , βk) indicates that the rate function depends on the allocation βx , βk .
[11] showed that if the outputs are normally distributed then the LDP rate-optimal
allocation satisfies

(
βk

σk

)2

=
∑

x �=k

(
βx

σx

)2

(μx − μk)
2

σ 2
x

βx
+ σ 2

k
βk

= (μx ′ − μk)
2

σ 2
x ′

βx ′
+ σ 2

k
βk

, ∀x, x ′ �= k.

Unfortunately, this expression involves quantities that we do not know, and just plug-
ging in estimates does not give the best possible rate (things get harder for unknown
distributions because estimating LDP rates is difficult). Fortunately, [5] showed that
a slight modification of the CEI policy from the previous section, called mCEI, is
asymptotically equivalent to the rate-optimal allocation! This result is remarkable
because CEI comes from unrelated reasoning: the Bayes-optimal allocation of the
next simulation run if that run will be your last. Figure1 illustrates the mCEI pro-
cedure’s allocation in a five-system problem over 150 iterations. Notice that system
x = 4, which is the true best, also receives the most replications.

Fig. 1 Illustration of
allocations from mCEI in a
R&S problem with k = 5
systems. Each • represents a
replication

0 50 100 150

1
2

3
4

5

iteration

x
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Another popular policy that is in the same spirit as mCEI is optimal computer
budget allocation (OCBA), which is derived through aBayesian-inspired approxima-
tion to the posterior PCS. OCBA uses plug-in estimates and nonlinear optimization
to allocate batches of replications. Although it does not achieve the rate-optimal
allocation in the limit, it is quite effective empirically. See [3].

3.4 Doing Better Than “Rate Optimal”

The asymptotically optimal allocation focuses on the endgame, as sample sizes get
large, and is not necessarily the best allocation for finite N . After all, we do not
need to drive PICS to 0 to be highly confident of selecting the best. Further, in the
rate-optimal allocation all βx > 0, which means that all systems remain in play until
we stop, which may imply a lot of computational overhead on each step, especially
if k is large. Also, the rate-optimal allocation does not provide a way to do fixed-
precision stopping. And finally, one-system-at-a-time allocation is becoming less
and less attractive as it becomes easier and easier to simulate p > 1 systems or
replications in parallel.

Often (especially when k is large) there are many bad systems we can completely
eliminate from further consideration quickly. This is one way to beat rate-optimal
for finite N . There are two basic strategies:

• Screen & select: Get a small number of replications from all system designs,
create a subset Ŝ that still contains the best, then apply an efficient R&S procedure
to the remainder. This usually requires splitting the α error between subset and
selection so that Pr{k ∈ Ŝ} ≥ 1 − α/2.

• Continuous screening: Iteratively replicate, eliminate, replicate, eliminate and so
on until one system remains. This usually requires tracking all pairwise compar-
isons and controling the overall error via (for instance) the Bonferroni inequality.
But even for a single pairwise comparison we need results that allow “multiple
looks” at the data for continuous screening.

3.4.1 Screening

We begin with a basic subset selection (screening) procedure from [30] for systems
simulated independently:

Basic subset selection

1. Simulate n(x) ≥ 2 replications from system x , set t (x) = t
(1−α)

1
k−1 , n(x)−1

the

(1 − α)
1

k−1 quantile of the t distribution with n(x) − 1 degrees of freedom, for
x = 1, 2, . . . , k.

2. Calculate the sample means Ȳ (x) and sample variances
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S2(x) = 1

n(x) − 1

n(x)∑

j=1

(
Y j (x) − Ȳ (x)

)2

for x = 1, 2, . . . , k, and also for all x �= x ′ compute

W (x, x ′) =
(
t (x)2

S2(x)

n(x)
+ t (x ′)2

S2(x ′)
n(x ′)

)1/2

.

3. Form the subset

Ŝ = {x : Ȳ (x) ≥ Ȳ (x ′) − W (x, x ′) for all x ′ �= x
}
.

The following reasoning is behind many subset selection procedures:

Pr{k ∈ Ŝ}
= Pr

{
Ȳ (k) ≥ Ȳ (x) − W (k, x), x �= k

}

= Pr
{
Ȳ (k) − Ȳ (x) − [μ(k) − μ(x)] ≥ −W (k, x) − [μ(k) − μ(x)], x �= k

}

≥ Pr
{
Ȳ (k) − Ȳ (x) − [μ(k) − μ(x)] ≥ −W (k, x), x �= k

}
.

Notice that the statistic Ȳ (x) − Ȳ (x ′) − [μ(x) − μ(x ′)] has mean 0 for all x �= x ′,
allowing the W (x, x ′)’s to be derived to give the desired probability based only on
their variances. The survivors of subset selection can then be passed on to something
like an IZ R&S procedure; see for instance, [30].

3.4.2 Fully Sequential Screening

The downside of using subset selection for screening, then applying IZ R&S to
the survivors to select the best, is that the effectiveness of subset selection depends
on the choice of sample size n(x), and a good choice of n(x) depends on the true
means and variances of the outputs, which are unknown. A natural generalization
is to do many rounds of subset selection, perhaps only stopping when there is one
system remaining. Fully sequential, eliminating procedures do just that. Many such
procedures are built on modeling the simulation output process as Brownian motion,
a continuous-time, continuous-state stochastic process we review next.

Let {B(t); t ≥ 0} be standard Brownian motion (BM). Then

1. B(0) = 0.
2. {B(t); t ≥ 0} is almost surely continuous.
3. {B(t); t ≥ 0} has independent increments: B(t) ⊥ B(t + s) − B(t).
4. B(t) − B(s) ∼ N(0, t − s), 0 ≤ s ≤ t .
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An important generalization is BM with drift δt defined as B(t; δ) = B(t) + δt .
Therefore, σB(t; δ/σ ) = σB(t) + δt has drift δt and variance σ 2t . The relation-
ship between BM with drift and R&S is as follows: Consider the sum of pair-
wise differences between the best system k and some other system x : Dx (r) =∑r

j=1(Y j (k) − Y j (x)), with σ 2
kx = Var(Y j (k) − Y j (x)), δkx = μ(k) − μ(x), and all

outputs normally distributed. Then

{Dx (r); r = 1, 2, . . .} D= {σkxB(r; δkx/σkx ); r = 1, 2, . . .} . (2)

That is, we can represent the cumulative pairwise-differences of two systems’ outputs
(one being the best) as scaled Brownian motion with positive drift but monitored
only at integer times. The following fundamental result relates the crossing times
and probabilities of Brownian motion observed continuously, and only at integer
times:

Theorem 1 ([17]) Suppose δ > 0, and we have a continuous function g(t) ≥ 0 for
all t ≥ 0. Let

Td = min{r : |B(r; δ)| ≥ g(r), r = 1, 2, . . .}
Tc = min{t : |B(t; δ)| ≥ g(t), t ≥ 0}.

Then Tc ≤ Td a.s. and Pr{B(Td; δ) ≤ −g(Td)} ≤ Pr{B(Tc; δ) ≤ −g(Tc)}.
Thus, if crossing −g(t) is an undesirable event—such as causing us to eliminate the
true best system—then such an event is even less likely if we only observe the process
at integer times. A lot is known about the probability of BM crossing boundaries of
the form±g(t). This, along with Theorem 1 facilitates designing regions that control
the probability of a selection error.

The relationship in (2) applies to synchronized, pairwise differences. Reference
[14] noted that the BM model can also extend to unequal samples sizes on a non-
integer time scale via

[
σ 2(k)

n(k)
+ σ 2(x)

n(x)

]−1 [
Ȳ (k) − Ȳ (x)

] D= B

([
σ 2(k)

n(k)
+ σ 2(x)

n(x)

]−1

;μ(k) − μ(x)

)
.

(3)
Illustration: Paulson’s Procedure

Because fully sequential, eliminating procedures have been so important in R&S
we take a deep dive into Paulson’s Procedure [32], a fully sequential IZ procedure
for known, common variance.

Paulson’s Procedure

0. Set S = {1, 2, . . . , k}, choose λ ∈ (0, δ), set a = σ 2

δ−λ
ln
(
k−1
α

)
and set r = 0.

1. Set r = r + 1. Simulate Yr (x), ∀x ∈ S.
2. Mark systems � ∈ S for elimination if



364 B. L. Nelson

min
x∈S

⎧
⎨

⎩

r∑

j=1

(Y j (�) − Y j (x))

⎫
⎬

⎭ < min{0,−a + λr}.

3. Remove all marked systems from S.
4. If |S| = 1 then stop and select system S as best; else go to Step 1.

Paulson’s procedure tries to be observation efficient by attempting to eliminate
systems after each additional replication. Notice that elimination decisions are highly
coordinated, and require looking at

(|S|
2

)
pairwise differences. Paulson guarantees

Pr{select k | μ(k) − μ(k − 1) ≥ δ} ≥ 1 − α, but the guarantee is not clear when
there are systems closer than δ. The extension to unknown and unequal variances
is not hard; as an illustration the case of unknown common variance σ 2 will be
presented later. The procedure ends by or before step N + 1 = �a/λ� + 1.

The large-deviation result supporting Paulson is as follows:

Theorem 2 Suppose Z1, Z2, . . . are i.i.d. N(, σ 2) with  < 0. Then for any con-
stant a > 0

Pr

⎧
⎨

⎩

r∑

j=1

Z j > a for some r < ∞
⎫
⎬

⎭ ≤ exp

(
2a

σ 2

)
.

Notice that since  < 0 we expect the sum to drift down; this large deviation
result bounds the probability it drifts up more than a. In the IZ formulation, we
believe that Y j (x) − Y j (k) has negative drift of at least −δ for all x �= k. Attacking
the pairwise differences we would like to choose a to obtain

Pr{keliminated} ≤
k−1∑

x=1

Pr{x eliminates k} =
k−1∑

x=1

Pr{ICSx } ≤ α.

Proof. We consider the probability that system x �= k incorrectly eliminates system
k in isolation.

Pr{ICSx } ≤ Pr

⎧
⎨

⎩

r∑

j=1

(Y j (k) − Y j (x)) < −a + λr some r ≤ N + 1

⎫
⎬

⎭

= Pr

⎧
⎨

⎩

r∑

j=1

(Y j (x) − Y j (k) + λ) > a some r ≤ N + 1

⎫
⎬

⎭

≤ Pr

⎧
⎨

⎩

r∑

j=1

(Y j (x) − Y j (k) + λ) > a some r < ∞
⎫
⎬

⎭

≤ exp

(
2(μ(x) − μ(k) + λ)a

2σ 2

)
≤ exp

(
(−δ + λ)a

σ 2

)
= α

k − 1
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where the last step follows becausewe set a = σ 2

δ − λ
ln

(
k − 1

α

)
. A common choice

for the slope is λ = δ/2. �

There are a number of ways of improving on Paulson’s Procedure, including (a)
accomodating unknown and unequal variances (see Sect. 3.7); (b) exploiting tighter
Brownian-motion large-deviation results (notice the result we used protected system
k for all r < ∞; see [19]); (c) facilitating variance-dependent sampling so that sys-
tems with low variance need to be simulated less (see [14]); (d) providing a PGS
guarantee for when μ(k) − μ(k − 1) < δ (see Sect. 3.6); (e) avoiding breaking up
into paired comparisons and usingBonferroni’s inequality (see [6]); and (f) exploiting
common random numbers (see Sect. 3.5).

3.5 Common Random Numbers

R&S procedures that employ pairwise comparisons can often be “sharpened” by
using common random numbers (CRN) because

Var(Y (x) − Y (x ′)) = Var(Y (x)) + Var(Y (x ′)) − 2Cov(Y (x),Y (x ′))

and CRN tends to make Cov(Y (x),Y (x ′)) > 0 [29]. However, to fully realize the
CRN effect requires n(x) = n(x ′) so that replications can be paired.

As an illustration, the impact of CRN on subset selection (Sect. 3.4.1) is that

W (x, x ′) =
(
t (x)2

S2(x)

n(x)
+ t (x ′)2

S2(x ′)
n(x ′)

)1/2

becomes

W (x, x ′) =
(
t2
S2(x, x ′)

n

)1/2

where S2(x, x ′) = S2(x) + S2(x ′) − 2̂Cov(x, x ′) and ̂Cov(x, x ′) is the estimated
covariance. Thus, positive covariance should make it more difficult for inferior sys-
tems to remain in the subset because the boundary is tighter. Similarly, the impact on
Paulson’s Procedure (Sect. 3.4.2) with equal, known variance σ 2 and CRN-induced
correlation ρ > 0 is that the elimination boundary has intercept

a = σ 2(1 − ρ)

δ − λ
ln

(
k − 1

α

)
rather than a = σ 2

δ − λ
ln

(
k − 1

α

)
.

Again, positive covariance shouldmake itmore difficult for inferior systems to remain
in the subset because the elimination boundary is narrower.
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Simulation languages have random number “streams” that map to starting seeds
that are very far apart; therefore, we can assign a unique stream to each random
process and replication to enhance the impact of CRN [22, 29].

3.6 “Good Selection”

The IZ-PCS paradigmPCS = Pr {̂x� = k | μ(k) − μ(k − 1) ≥ δ} ≥ 1 − α has been
themost widely adopted in practice. Typically, δ is chosen as the “smallest practically
significant difference,”whichmaynot be close to theactual differencesμ(k) − μ(x).
In fact when k is large we expect several “good” systems, and very many inferior
ones. Thus, guaranteed probability of good selection

PGS = Pr
{
μ(k) − μ(̂x�) < δ

} ≥ 1 − α

is more meaningful than PCS because it can be interpreted as an acceptable bound
on the optimality gap.

Empirical experience suggests that procedures with an IZ-PCS guarantee also
provide a PGS guarantee; however, counterexamples can be created. IZ procedures
without elimination (e.g., Rinott) can often be shown to guarantee PGS, but elimi-
nation makes proving PGS difficult. An excellent comprehensive reference is [7]. A
condition that insures both PCS and PGS is stated in the following theorem:

Theorem 3 ([28]) Suppose a R&S procedure creates μ̂(1), μ̂(2), . . . , μ̂(k) that
guarantee Pr{μ̂(k) > μ̂(i), ∀i �= k | μ(k) − μ(k − 1) ≥ δ} ≥ 1 − α. Then if

⎛

⎜⎜⎜⎝

μ̂(k)
μ̂(k − 1) − μ(k − 1) + (μ(k) − δ)

...

μ̂(1) − μ(1) + (μ(k) − δ)

⎞

⎟⎟⎟⎠

has the same distribution as estimators would have had in the corresponding slippage
configure problem, then the procedure also guarantees PGS ≥ 1 − α.

Normally distributed output procedures like Rinott that do not adapt to the sample
means often satisfy the conditions of this theorem. Unfortunately, lack of adaptation
also tends to lead to inefficiency.

Reference [37] make an adjustment to Paulson’s procedure so that it provides a
good-selection guarantee. Recall that Paulson eliminates system � if for some other
system x we have

∑r
j=1(Y j (�) − Y j (x)) < −a + λr . Instead, [37] use the condition∑r

j=1(Y j (�) − Y j (x) + δ) < −a + λr . Notice that when μ(k) − μ(�) < δ, the sum
of differences

∑r
j=1(Y j (�) − Y j (k) + δ) still has positive drift. Thus, good systems

should survive to the end, where [37] then select the sample-best system.
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A Bayesian “good selection” R&S procedure stops when it has collected enough
output so that there is a system x̂� for which

Pr{M (̂x�) > M(x) − δ, ∀x �= x̂� | H} ≥ 1 − α.

This is computable under some assumptions, but if not then it can be approximated
or bounded. The interpretation is that “With probability at least 1 − α the random
problem from your space of priors is one for which the fixed system x̂� is good.”
This contrasts with the frequentist perspective: The random system x̂� chosen by the
procedure has probability at least 1 − α of being good for this fixed problem [7].

3.7 Unknown Variances

As a general rule, neither known nor equal variances can be assumed in simulation
R&S problems. For procedures that break into pairwise differences the variance of
each pairwise difference can be estimated separately, which is also helpful for using
CRN.

A useful result that sits behind many R&S procedures is this: If Z1, Z2, . . . , Zn0
are i.i.d. N(μ, σ 2) then Z̄ is independent of S2. Thus, using a “first-stage” S2 to
calibrate the additional simulation needed does not introduce bias. If done cleverly,
we can derive the PCS conditional on S2 and then uncondition. Not surprisingly,
using estimated σ 2 increases E(sample size) relative to known variance [26].

Illustration: Unknown Common Variance Paulson Recall in Paulson that we

set λ = δ/2 and a = 2σ 2

δ
ln

(
k − 1

α

)
, assuming σ 2 was known. Suppose we esti-

mate σ 2 from an initial simulation of n0 replications from each system by

S2 = 1

k(n0 − 1)

k∑

x=1

n0∑

j=1

(Y j (x) − Ȳ (x))2.

We will exploit two useful facts:

k(n0 − 1)S2

σ 2
∼ χ2

d with d = k(n0 − 1) and E
[
exp(tχ2

d )
] = (1 − 2t)−d/2

when χ2
d is a chi-squared random variable with d degrees of freedom. The approach

we take is to set a = ηS2/δ and see what η needs to be to get the desired PCS.
In the proof of Paulson’s procedure we used a large-deviation result to show that

for fixed a and λ = δ/2

Pr{ICSx } ≤ exp

(
− δ

2σ 2
a

)
.
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With a = ηS2/δ, to obtain Pr{ICSx } ≤ α/(k − 1) we need η to satisfy

Pr{ICSx } = E
[
Pr{ICSx | S2}] ≤ E

[
exp

(
− δ

2σ 2

ηS2

δ

)]

= E

[
exp

(
− η

2d︸ ︷︷ ︸
t

dS2

σ 2︸︷︷︸
χ2
d

)]
=
(
1 − −2η

2d

)−d/2

= α

k − 1
.

Solving for η gives

η =
(

α

k − 1

)−2/d

− 1.

Notice that the independence of Ȳ and S2 is critical.
Paulson is great for illustrating concepts, but the limitation to equal variances and

no common random numbers makes it rarely used in simulation. There are many
descendants, with one of the most statistically efficient and robust being KN [19],
which uses a tighter Brownianmotion result; allows unequal variances and CRN; has
been shown to be asymptotically valid for non-normal output data (discussed below);
and has been implemented in commercial simulation languages and in parallel.

3.8 A Note on Asymptotic Analysis

Asymptotic analysis of R&S procedures is useful in at least three contexts:

1. Establishing that a procedurewill workwhen core assumptions such as normality
are violated (typically as δ → 0 in a way that also makes the problem harder).

2. Comparing the efficiency of procedures that are difficult to evaluate in finite
samples (typically as 1 − α → 1 so that behavior becomes deterministic).

3. Comparing the efficiency of procedures with estimated variances relative to their
known-variance counterparts (typically as δ → 0 drives n0 → ∞).

Setting 1 helps explain why normal-theory IZ procedures seem to work well more
generally, while Setting 2 is often the only way (other than empirically) to compare
procedures that eliminate systems.

For Setting 1 ameaningful limit is essential: Ifμ(k) − μ(x) is fixed, then as we let
δ → 0 for procedures with sample size proportional to 1/δ2, we have PCS → 1 for
almost any kind of data by the strong law of large numbers. Reference [20] letμ(k) =
μ and μ(x) = μ − δ for x �= k. Notice that as δ → 0 the sample size goes to ∞ but
the problem itself also gets harder. Is this a relevant setting? If δ � μ(k) − μ(x) then
any system design is acceptable. If δ � μ(k) − μ(x) then a procedure will tend to
simulate so many replications that it will select the best. Thus μ(x) = μ(k) − δ is
the critical regime.
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ForR&Sprocedures based onBrownianmotion, a key tool for asymptotic analysis
via Setting 1 is

Theorem 4 (Donsker’s Theorem) If Y1,Y2, . . . are i.i.d. (μ, σ 2) with σ 2 < ∞ then
as N → ∞ ∑�Nt�

j=1 Y j − Ntμ

σ
√
N

D−→ B(t), 0 ≤ t ≤ 1.

TheusualCentral Limit Theoremdrops out at t = 1.Donsker’sTheoremgoes further,
stating that very general i.i.d. output processes, standardized the right way, look like
Brownian motion as we get more and more data. In many IZ R&S procedures we
can take Y j = (Y j (x) − Y j (x ′)), and letting δ → 0 drives the sample size to∞when
N ∝ 1/δ2.

4 Parallel R&S

The future of simulation, and certainly simulation optimization, is parallel comput-
ing. Simulation languages have already been redesigned to run in the cloud, where
computer time is “rented.” For instance, the commercial product Simio automati-
cally exploits multi-core/multi-thread personal computers, and its portal version can
recruit up to 10,000 processors from Microsoft Azure to run simulations in parallel.

The availability of cheap, easy-to-use parallel computing greatly extends the R&S
limit in terms of problem size, k. However, since one may have to pay for the ser-
vice, the focus of “efficiency” in R&S shifts from being observation-efficient to being
computationally efficient as measured by wall-clock or rental time. Thus, it may be
acceptable to waste simulation-generated replications to avoid idling processors and
get the R&S problem solved faster. Factors such as heterogeneous processors, com-
munication delays, processor failures, etc. that may disrupt the usual synchronization
in R&S procedures now become relevant.

To describe parallel R&Swe assume amaster-worker paradigm: 1Master process
performing calculations and generating new jobs, and pWorker processes executing
simulation and calculation jobs. While not the only possible architecture, it is a
common one. The following framework for parallel R&S is based on [15].

We represent a R&S procedure as a sequence of jobs generated by the Master,
J = {Jj : 1 ≤ j ≤ M}, where Job j is an ordered list

Jj ≡ {(Q j , j ,U j )︸ ︷︷ ︸
simulate

, (P j ,C j )︸ ︷︷ ︸
calculate

}.

The components of job j are

• Q j ⊆ {1, 2, . . . , k} indices of systems to be simulated;
•  j = {x j } how many replications to take from each system x ∈ Q j ;
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• U j (optional) the assigned block of random numbers;
• C j the list of non-simulation calculations or operations to perform; and
• P j the list of jobs that must complete before executing the calculation C j .

Using this computational paradigm, most of the (non-parallel) R&S procedures pre-
sented so far look something like the Nominal R&S Procedure below.

Nominal R&S Procedure

1. Until fixed-precision or fixed-budget ending condition reached, do
2. For � = 1, 2, . . .

a. Execute simulation jobs for non-eliminated or active systems:

J� = [{(system i, 1 rep), (∅)}, . . . , {(system j, 1 rep), (∅)}, . . .]

b. Execute a comparison job using the results from Step 2a.

J ′
� = {(∅), (all jobs in J�,C�)}

where C� performs calculations on all non-eliminated or active systems.
The nominal procedure enforces many of the assumptions necessary for both small-
sample and asymptotic analysis by “synchronized coupling.” To directly parallelize
it, the Master could spread job J� out among the p workers, but then many workers
may be idle while waiting for the coupled Step 2b to complete. Such issues do not
arise in a single-processor setting.

Why not just use the outputs from the simulation jobs as soon as they complete,
rather than waiting? [24] address this question, and shows that new statistical issues
arise. Recall there are p + 1 processors, consisting of 1 Master and p Workers, and
suppose that all simulation jobs are assigned by theMaster to aWorker in round robin
fashion as follows: system 1, 2, . . . , k, 1, 2, . . . . An eliminated system is removed
from the remaining list. Let Z j (x) be the input sequence—the result of j th replication
from alternative x requested by theMaster—with execution and communication time
Tj (x). Similarly, let Y j (x) be the corresponding output sequence, meaning the j th
output from alternative x returned to the Master. If the R&S procedure uses each
output as soon as it is available to theMaster, then the following new statistical issues
arise.

1. The procedure is working with random sample sizes at each comparison step,
rather than prescribed numbers of replications.

2. The Y j (x), j = 1, 2, . . . are not i.i.d. To see this, suppose k = 1, Z j (x) =
Tj (x) ∼ Expon(μ(x)). Then it can be shown that E(Y j (x)) =
μ(x)

(
1 −

(
1 − 1

p

) j
)

because jobs with short execution times return to the

master sooner.
3. There is a subtle dependence among systems’ outputs caused by elimination of

some systems impacting the number of replications of other systems.
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Thus, parallelization takes some careful thought, not only from a computer science
point of view, but also with respect to the statistical validity of the R&S procedure.

4.1 New Measures of Efficiency

How do we define “efficiency” in this new parallel paradigm?

• Let 0 < Tj < ∞ be the wall-clock time Job Jj finishes, so that the ending time of
the procedure is Te(J) = max j=1,2,...,M Tj .

• Let c(p, s) be the cost to purchase p processors for s time units.

With these definitions we can define revised “efficient” objectives.

Fixed Precision:

Achieve a statistical guarantee while being cost efficient:

minimizep,J E[βt Te(J)︸ ︷︷ ︸
time

+βc c(p, Te(J))︸ ︷︷ ︸
cost

]

s.t. Pr{G (̂x�, k)︸ ︷︷ ︸
good event

} ≥ 1 − α.

Fixed Budget: Minimize a loss for the selected system within a budget:

minimizep,J E[L(Gc (̂x�, k), J)︸ ︷︷ ︸
loss from bad event

]

s.t. c(p, Te(J))︸ ︷︷ ︸
cost

≤ b.

Notice that for both fixed-precision and fixed-budget formulations, the decision vari-
ables are the number of processors to rent p and the jobs to execute J. For fixed
precision it is possible that we would only have one of βt or βc to be non-zero,
depending on whether the time to reach a decision or the rental cost to reach a
decision is most important.

To the best of our knowledge no R&S procedure has yet been created that directly
attacks one of these formulations. Table1 cites much of the existing literature on
parallel R&S, divided into fixed-budget vs. fixed-precision, and load balancing to
enforce standard non-parallel assumptions vs. a uniquely parallel paradigm.Consider
for instance [24], and its “phantom clock.” The underlying procedure is KN, a fully
sequential procedure that uses pairwise sums of differences. Reference [24] note that
even when the input and output sequences are not the same, if the procedure only
makes comparisons at times t when

∑t
j=1(Y j (k) − Y j (x)) =∑t

j=1(Z j (k) − Z j (x))
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Table 1 Selected parallel R&S literature

R&S Procedure Load balancing (Standard
assumptions)

Comparison timing (Relaxed
assumptions)

Fixed-precision Simple divide and conquer [4]

Vector-filling procedure [24] Asymptotic parallel selection [24]

Good selection procedure [31] bi-PASS [34]

Strategic updating [38]

Fixed-budget Parallel OCBA [25]

Asynchronous OCBA/KG [18] bi-PASS [34]

then the order of return from the workers does not matter. Strictly enforcing this is
load balancing. Instead, [24] insert a “phantom job” at the end of each round-robin
job cycle (1, 2, . . . , k, ph, 1, 2, . . . , k, ph, . . .), and then only compare systemswhen
a phantom job returns to the Master. They show that by doing this the sums of
differences are only out of sync by an asymptotically negligible amount.

4.2 New Objectives

Does insuring a prespecified PCS or PGS continue to make sense if k is very large?
For instance, if k > 1,000,000 systems, is it sensible or even computationally feasible
to identify the single best or near-best with high probability? In such a problem we
expect many bad systems, but also a lot of good ones. Trying to achieve PCS or
PGS, which are family-wide statements, in such a setting runs counter to approaches
in large-scale statistical inference of controlling “error rates” [8]. Specifically, to
control PCS requires more and more effort per system as k increases. As we argue
below, rates such as “false discovery” can be attained with little or no “k effect.”

But why apply R&S for such large-k problems anyway? Surely so many systems
arise from combinations of more basic decision variables, which suggests using a
search algorithm rather than exhaustive simulation. However, from a practical per-
spective, the key is to actually solve the problem in some effective way. As discussed
earlier, R&S is the only SO technique that can control all sources of error. There-
fore, if parallel computing extends the R&S limit enough to encompass a problem,
it makes sense to use it.

This motivates consideration of new goals for parallel R&S:

• More scalable—but still useful and understandable—error control than PCS or
PGS. As an example we discuss Expected False Elimination Rate (EFER), which
is the fraction of good systems eliminated.

• Avoid procedures with coupled operations and synchronization, to facilitate paral-
lelization. As an example we describe parallel adaptive survivor selection (PASS),
and a specific instance bisection-PASS (bi-PASS).
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For some known constant μ�, that we call the “standard,” let Sx (n) =∑n
j=1(Y j (x) − μ�) =∑n

j=1 Y j (x) − nμ�. Suppose we have a non-decreasing func-
tion gx,α(·) ≥ 0 with the property that

Pr{Sx (n) ≤ −gx,α(n), some n < ∞}
{≤ α, μ(x) ≥ μ�

= 1, μ(x) < μ�.

Finally, let G = {x : μ(x) ≥ μ�}, which we refer to as the “good systems.” Consider
the following parallel procedure:

Parallel Survivor Selection (PSS)

1. Given a standard μ�, an increment n and a budget.
2. LetW = {1, 2, . . . , p} be the set of available workers; Q = {1, 2, . . . , k} the set

of surviving systems; and n(x) = 0 for all x ∈ Q.
3. Until the budget is consumed, do

a. While there is an available worker inW, do in parallel:
i. Remove a system x ∈ Q and assign to available worker w ∈ W
ii. j = 1
iii. while j ≤ n

SimulateYn(x)+ j (x). If Sx (n(x) + j) ≤ −gx,α(n(x) + j) then eliminate
system x and break loop. Else j = j + 1.

iv. If x not eliminated then return to Q = Q ∪ {x} and n(x) = n(x) + n.
v. Release worker w to available workers W.

4. Return Q.

Reference [33] show that EFER = E[|G ∩ Qc|]/|G| ≤ α. That is, the expected
fraction of good systems eliminated by the procedure is no greater than α. Critically,
the function g depends only on x and α, but not k.

The generic boundary function g(·) needs to insure that driftless Brownianmotion
(μ(x) = μ�) crosses with probability no more than the EFER α, while Brownian
motion with negative drift (μ(x) < μ�) crosses with probability 1. Reference [9]
note that driftless Brownian motion grows to ∞ at rate O(

√
t log log(t)), while BM

with negative drift goes to −∞ at rate O(t). Thus g(·) needs to be between these
two; they suggest g(t) = √[c + log(t + 1)](t + 1), then tuning c to get the desired
error control α. The function gx,α also includes time scaling by σ 2

x or an estimate
of it.

PSS requires no coupling and keeps the workers constantly busy; it could per-
haps be made more efficient by making n depend on the system. Of course, the
decoupling occurs because the standard μ� is known. However, the EFER is still
controlled at≤ α, and elimination still occurs with probability 1, if we replaceμ� by
μ�(n) ≤ μ� where μ�(n) ↑ μ�, because a system eliminated by a smaller standard
would also have been eliminated by a larger standard, and a system protected from
a larger standard would also be protected from a smaller one. This suggests trying
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to learn a standard that achieves our objectives empirically, which is called Parallel
Adaptive Survivor Selection.

Generically, we define the standard to be μ� = s(μ1, μ2, . . . , μk, μ
+). Some

examples of possibly interesting standards are

• Protect the best or ties: μ� = μk .
• Protect the top m: μ� = μk−m+1.
• Protect the best and everything as good as a known μ+: μ� = min{μ+, μk}.
The key is to learn the standard’s value in a way that still avoids coupling and does
not affect the EFER. bi-PASS uses the standard

μ̄ = 1

|Q|
∑

x∈Q
Ȳ (x)

the average of the sample means of the current survivors. Thus, the standard acts
like a bisection search. Under some conditions it can be shown that the EFER is
still ≤ α. Notice also that updating μ̄ is fast for the Master, and can occur whenever
replications are returned from the Workers.

4.3 Parting Thoughts

Computer science issues really matter in parallel R&S: There is not one, unique
parallel architecture, and customizations can be valuable. Message passing via MPI
is conceptually easy, but unexpected behavior can occur, and passing messages does
take time. Processors may be heterogeneous, and results can be lost. Memory may be
shared or not. The overhead to load a simulation onto a processor can be substantial,
so one also needs to consider the fixed cost to set up a simulation, as well as marginal
time per replication. And management of pseudorandom numbers can be tricky, e.g.,
if we want to use CRN.

However, when a simulation optimization problem can be treated as a R&S prob-
lem then it can be “solved” and all three errors can be controlled. High-performance,
parallel computing extends the “R&S limit” but introduces new statistical and com-
putational problems. Standard assumptions may be violated, and “cost” no longer
equals the number of replications.

5 Other Formulations

Although our focus has been on the best-mean problem with normally distributed
outputs, theR&S literature ismuchbroader.ManyR&Sprocedures have been created
for specific non-normal data; e.g., Poisson. R&S procedures have also been created
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for other performance measures; e.g., probabilities and quantiles. Selecting the sys-
tem that is most likely to be the best is called “multinomial selection,” which may
make sense for one-shot decisions. Selecting the best system better than a standard
(either system or constant value) has also received attention. See [1].

The Holy Grail is a R&S procedure that works for virtually any performance
measure (mean, probability, quantile) and output data distribution (normal, non-
normal). Let θ(x) be the generic performance measure, and θ̂ (x) a point estimator.
Two insights make an omnibus procedure possible:

1. If we can construct estimators θ̂ (x) of parameters θ(x) such that

Pr
{
θ̂ (x) − θ̂ (k) − (θ(x) − θ(k)) ≤ δ, ∀x �= k

} ≥ 1 − α (4)

then
PGS = Pr{θ(k) − θ (̂x�) ≤ δ} ≥ 1 − α.

2. Given a sample of output data, we can estimate the achieved probability in (4)
using bootstrapping, and then increase the sample size until it is ≥ 1 − α.

Suppose we have N replications from each of the k systems, and let x̂� =
argmaxx θ̂ (x), the sample best. Then the bootstrap estimate of PGS based on B
bootstrap samples is

̂PGS = 1

B

B∑

b=1

∏

x �=x̂�

I
{
θ̂ (b)(x) − θ̂ (b)(̂x�) − [θ̂ (x) − θ̂ (̂x�)

] ≤ δ
}

where θ̂ (b)(x) comes from independent bootstrap samples of size N and I(·) is the
indicator function. Theomnibus procedure is to increase N (generatemore simulation
output) until this bootstrap estimate is≥ 1 − α. Reference [23] showed this approach
to be asymptotically valid under very mild conditions on the data as δ → 0.

As an illustration suppose θ(x) is the mean.

Simulation output: [Y1(x), . . . ,YN (x)] → Ȳ (x), x = 1, 2, . . . , k, with x̂� =
argmaxx Ȳ (x) the current sample best with N replications.

Bootstrap: Resample the simulation outputs B times with replacement to get[
Y (b)
1 (x), . . . ,Y (b)

N (x)
]

→ Ȳ
(b)

(x), x = 1, 2, . . . , k, b = 1, 2, . . . , B.

Estimate PGS:

̂PGS = 1

B

B∑

b=1

∏

x �=x̂�

I
{
Ȳ

(b)
(x) − Ȳ

(b)
(̂x�) − [Ȳ (x) − Ȳ (̂x�)

] ≤ δ
}

.

Notice that we can incorporate CRN by bootstrapping vectors of replications, where
each vector contains one replication from each of the k systems generated using
CRN.
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6 Multi-armed Bandits

“Multi-armed bandit” is a slang name for slot machines. To play a slot machine one
inserts a coin or token and pulls the machine’s mechanical “arm.” Typically the coin
is lost (negative reward), but occasionally the machine “pays out” a positive reward.
A slot machine player would like to find the machine among many with the highest
payout while losing as little money as possible. In the state of Illinois the percentage
payback from slot machines in 2017 ranged from 89–92.5%, so in the long run you
lose (thus the name “bandit”). But the slot machine paradigm provides a structure
for thinking about optimal sequential decision making.

Multi-armed bandit (MAB) procedures address the problem of learning via exper-
imentation which of k possible decisions leads to the greatest accumulated reward.
Clearly there is a connection between R&S and MAB, and the procedures look sim-
ilar, but they are not the same. The usual objective of MAB is to minimize “regret”
(defined below) whenmaking repeated decisions, while R&S attempts to identify the
best system to implement. Most MAB procedures are intended for online use, while
R&S is offline simulation optimization. MAB and R&S have different standards for
“good procedure performance” and different assumptions about the reward/output
data. R&S procedures tend to be more willing to waste observations on inferior sys-
tems so as to reduce the overall number of observations needed to make a correct
selection, while MAB, which accumulates rewards, attempts to avoid the regret of
choosing decisions with suboptimal rewards while searching for the best decision.
A good overview reference is [16]. There is no denying that “multi-armed bandit” is
a cooler name than “ranking & selection,” but both have their roles.

In a bitmore detail, “online”meansmaking decisions in real time,with a stochastic
reward after each decision, while “offline” means running a computer experiment to
select a system and then implementing the selection in the real world. There is no
reward associated with the R&S experiment, although there is a computational cost
for running simulation.

The term“regret” refers to the shortfall in rewards that are obtained relative towhat
could have been attained by making the best decision, while PCS refers to getting the
best choice in the end, not how one gets there. MAB tends to evaluate procedures via
their probability complexity, while R&S evaluates procedures via their finite-time
effort. MAB tends to assume sub-Gaussian (even bounded) reward distributions;
R&S often assumes normally distributed output. MAB typically assumes a finite
budget, and R&S often desires fixed precision.

In the classical stochastic MAB formulation, using our R&S notation, the deci-
sions or “arms” are x ∈ {1, 2, . . . , k}, with unknown reward distribution Fx having
expected valueμ(x) for making decision x . Let It be the decision chosen on opportu-
nity t , and Yt (It ) ∼ FIt the associated stochastic reward. Using this notation, Table2
defines regret, expected regret, and pseudo-regret. Loosely, the goal is to pick a pol-
icy for selecting It that minimizes regret or expected regret; since neither of these is
achievable, pseudo-regret is a stand-in. Onewell-knownMABprocedure is the upper
confidence bound (UCB) policy: At the end of decision opportunity t , construct an
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Table 2 MAB definitions of “regret.”

Regret Rn = max
x

n∑

t=1

Yt (x) −
n∑

t=1

Yt (It )

Expected regret rn = E(Rn)

Pseudo-regret r̄ n = max
x

E

[
n∑

t=1

Yt (x) −
n∑

t=1

Yt (It )

]

UCB for each decision’s mean, μ(x). On opportunity t + 1, play the arm with the
largest UCB. This is sometimes referred to as “optimism in the face of uncertainty”
since one selects the decision with the largest apparent upside.

Clearly all forms of regret are non-decreasing in the number of decisions n that one
makes; a good MAB procedure tries to have regret increase at the slowest possible
rate. A building block result for pseudo-regret is the following:

r̄ n = nμ(k) −
n∑

t=1

E(μIt )

= nμ(k) −
k∑

x=1

μ(x)E(# times played arm x thru turn n)

=
k∑

x=1

(μ(k) − μ(x))E(# times played arm x thru turn n).

One then derives an upper bound on the rate at which the
E(# times played arm x thru turn n) increases as the number of decisions n increases
for x �= k. This bounds the rate at which r̄ n increases. Note that this bound is neither
an estimate of the pseudo-regret r̄ n nor a statistical guarantee. But it does say that
as you play you accumulate regret no faster than the derived rate.

MAB procedures are frequently quite simple to implement, which makes them
attractive, and of course many problems require online solutions (e.g., if you do
not have the luxury of a simulation model of the world). However, for simulation
optimization used to design systems, the R&S formulation tends to be more efficient
and attacks the relevant objective.
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Where are the Logs?

Art B. Owen and Zexin Pan

Abstract The commonly quoted error rates for QMC integration with an infinite
low discrepancy sequence is O(n−1 log(n)r )with r = d for extensible sequences and
r = d − 1 otherwise. Such rates hold uniformly over all d dimensional integrands of
Hardy-Krause variation one when using n evaluation points. Implicit in those bounds
is that for any sequence of QMC points, the integrand can be chosen to depend on
n. In this paper we show that rates with any r < (d − 1)/2 can hold when f is held
fixed as n → ∞. This is accomplished following a suggestion of Erich Novak to
use some unpublished results of Trojan from the 1980s as given in the information
based complexity monograph of Traub, Wasilkowski and Woźniakowski. The proof
is made by applying a technique of Roth with the theorem of Trojan. The proof is non
constructive and we do not know of any integrand of bounded variation in the sense
of Hardy and Krause for which the QMC error exceeds (log n)1+ε/n for infinitely
many n when using a digital sequence such as one of Sobol’s. An empirical search
when d = 2 for integrands designed to exploit known weaknesses in certain point
sets showed no evidence that r > 1 is needed. An example with d = 3 and n up to
2100 might possibly require r > 1.

Keywords Discrepancy · Koksma-Hlawka inequality · Quasi-Monte Carlo ·
Trojan’s theorem

1 Introduction

In this article, we study the asymptotic error rates for integration by quasi-Monte
Carlo (QMC) as n → ∞while f is fixed.Most of the error upper bounds inQMC are
based on fooling functions fn that, given n integration points, are poorly integrated.
By contrast, most of the published empirical results follow the integration error for a
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single integrand f as n increases. The upper bounds have us play against an adaptive
adversary choosing an unfavorable fn at each sample size n instead of keeping f
fixed as n → ∞. The error bounds that we describe inmore detail below are typically
O(log(n)r/n) where r can be as large as the dimension of the integrand’s domain.
These bounds can be enormous and, to our knowledge, there has never been an
integrand exhibited where a standard QMC point set is shown to need r > 1. That
raises the question of whether r > 1 is simply a consequence of the adversarial
formulation. The alternative is that some function f is a ‘persistent fooling function’
causing large errors for infinitely many n. In an earlier version of this article we
posed a question about whether any integrand of bounded variation in the sense of
Hardy and Krause (BVHK) on [0, 1]d for any d � 1 has an integration error above
c log(n)r/n for infinitely many n with r > 1 and c > 0 using a digital sequence such
as Sobol’s for the integration points. For background on bounded variation in the
sense of Hardy and Krause or in the sense of Vitali, we refer the reader to [18].

We owe a great debt to Erich Novak who pointed us to some unpublished work
of Trojan described in detail in Chapter 10 of the information based complexity
monograph of Traub, Wasilkowski and Woźniakowski [25]. Trojan’s work is about
very general problems of computing linear operators on Banach spaces based on the
values of n → ∞ linear functionals. He shows that the adversarial worst case conver-
gence rate is also very nearly the attained rate for some specific problem instances.
In the QMC context, that work pertains to a single integrand f as the number n of
evaluation points diverges to infinity. A consequence of that work is that for any
infinite sequence of integration points, there are indeed integrands in BVHK[0, 1]d
with an absolute error larger than c log(n)(d−1)/2/(n log log(n)) infinitely often, for
any c > 0. Furthermore, those integrands are present within a reproducing kernel
Hilbert space (RKHS) on a certain unanchored space. They are dense in that space,
though this does not mean that the usual Gaussian processes on such spaces give
them positive measure. We only get r = (d − 1)/2 logarithmic factors instead of d
or d − 1 of them. The explanation is that we use an L2 bound just like Roth [21]
used in getting a lower bound on star discrepancy. A different analysis might yield
larger r . The log log(n) factor in the denominator can be replaced by a sequence that
diverges more slowly.

We have not been able to construct a function in BVHK[0, 1]d that provably needs
r > 1 powers of log(n) for a Sobol’ sequence [24] or the Halton [9] sequence, even
when exploiting known weaknesses of commonly used QMC sequences. So, we are
left to wonder: where are the logs?

An outline of this paper is as follows. Section 2 presents some results from the
QMC literature and introduces notation on some QMC sequences. Section 3 proves
ourmain result described above on existence of persistent fooling functions. Section 4
looks at the case d = 1 to exhibit some example functions requiring r = 1 for the
van der Corput sequence: f (x) = 1[0,2/3)(x) and f (x) = x . Section 5 computes
error for some d = 2 dimensional problems. The Halton and Sobol’ points there
are closely related to van der Corput points, yet two dimensional generalizations
of the problematic integrands from Sect. 4 fail to show a need for r > 1. In fact
some of the empirical results are more consistent with an O(1/n) error. Section 6
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computes a local discrepancy δ(z) for Sobol’ nets with d = 2, 3 and 1 � m � 100
where all components of z equal 2/3 chosen because 2/3 is difficult to approximate
by dyadic rationals. It also includes d = 4 for 1 � m � 50. The cases with d > 2 are
the closest we have found to needing r > 1 but are inconclusive. Section 7 discusses
these results.

Before we begin, we mention a note on our notation. The event that A occurs is
commonly written as 1A or 1A in works on probability. Because our expressions for
A will include subscripts we make use a nonstandard 1{A}. For instance

1{xi j < yi } =
{
1, xi j < yi
0, else.

We find this clearer than the Iverson notation [xi j < yi ] and more readable than
having the event description within a subscript.

2 Background

From the Koksma-Hlawka inequality [10] combined with convergence rates for the
star discrepancy [15], we get the widely quoted convergence rates for the error in
quasi-Monte Carlo integration of a function f : [0, 1]d → R. An integrand f of
bounded variation in the sense of Hardy and Krause, written f ∈ BVHK[0, 1]d , can
be integrated with error O(n−1(log n)d−1) using n function evaluations. If we must
use the first n points of an infinite sequence, then the rateO(n−1(log n)d) is attainable.
This article is mostly about the infinite sequence version. Both of these rates are often
written O(n−1+ε) where ε can be any positive constant but log(n)d � nε for many
use cases of interest.

For high dimensional problems, such powers of log(n) are enormous and then
there is genuine uncertainty about whether O(n−1(log n)d) is better than the root
mean squared error (RMSE) of O(n−1/2) from plainMonte Carlo (MC) at practically
relevant n. These rates omit three implied constants: one in the star discrepancy (see
[7] for information), one in the total variation of f and the third one is the standard
deviation of f . These unknown constants contribute to uncertainty about the n at
which QMC would outperform MC. A further complication is that the Koksma-
Hlawka bound is for a worst case integrand. The situation is quite different in Monte
Carlo (MC) where the rate σn−1/2 holds for all finite n making it simultaneously
a guide to how accuracy progresses for a single integrand of variance σ 2 and the
RMSE formula (upper and lower bound) for all integrands of variance σ 2.

That observed errors for realistic n and large d do not follow a trend like log(n)d/n
was reported by Schlier [22] among others. That work also found that the variance of
f (x) was more useful than its total variation in explaining the empirical accuracy of
QMC integration on test functions, despite the fact that proved theoretical bounds for
QMC error use total variation and variance does not require any of the smoothness
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that QMC relies on. Many papers include empirically estimated convergence rates
for individual f found by fitting a regression model for log error versus log(n). See
for instance L’Ecuyer [12]. We do not see results that look like a large power of
log(n) is present.

Thismismatch between empirical results and theoretical ones is troubling. Empiri-
cal results alone don’t give enough confidence that theywill apply to future problems.
Similarly, bounds that are favorable (but asymptotic) or unfavorable (but worst case)
could also fail to provide a reliable guide to attained accuracy. This mismatch has
brought practical difficulties. For instance, the logarithmic powers in the Koksma-
Hlawka bound led Bratley, Fox and Niederreiter [1] to limit their software to d � 12.

For some randomizations of digital nets the RMSE is O(n−1/2) whenever f ∈
L2[0, 1]d [17] and is also O(log(n)(d−1)/2/n) under further smoothness conditions
[16, 19, 28]. In such cases the large powers of log(n) are subject to a simultaneous
O(n−1/2) bound that limits how much worse randomized QMC can be compared to
MC for finite n. It would be interesting to know whether something like that also
holds for plain QMC. Perhaps the coefficient of log(n)r/n is ordinarily very small,
or the effect is only relevant for impractically large n or perhaps not even present
for most commonly investigated integrands. For a survey of randomized QMC see
L’Ecuyer and Lemieux [13].

We conclude this section by describing (t,m, d)-nets and (t, d)-sequences using
the formulation from Niederreiter [14]. Let b � 2 be an integer. For k =
(k1, . . . , kd) ∈ N

d
0 and c = (c1, . . . , cd) ∈ Z

d
0 with 0 � c j < bk j the half open hyper-

rectangle

E(k, c) =
d∏
j=1

[ c j
bk j

,
c j + 1

bk j

)
(1)

is called an elementary interval in base b. It has volume b−|k| where |k| = ∑d
j=1 k j .

We define its indicator function as

Ik,c(x) = Ik,c(x; b) = 1{x ∈ E(k, c)}.

For integers m � t � 0, b � 2, n = bm and d � 1 the points x0, . . . , xn−1 ∈
[0, 1]d are a (t,m, d)-net in base b if

1

n

n−1∑
i=0

Ik,c(xi ) =
∫

[0,1]d
Ik,c(x)dx = b−|k|

holds for all elementary intervals with |k| � m − t . Other things being equal, smaller
t are better and t = 0 is best, but the choices of d, b, and m impose a lower bound
on the possible t which may rule out t = 0. The minT project of [23] tracks the best
known values of t as well as some lower bounds on t .
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In this paper we emphasize infinite sequences. The sequence xi ∈ [0, 1]d for
integers i � 0 is a (t, d)-sequence in base b if xrbm , . . . , x(r+1)bm−1 is a (t,m, d)-net
in base b for all m � t and all integers r � 0. These are extensible (t,m, d)-nets in
that the first b� points of a (t, d)-sequence form a (t,m + �, d)-net for any integer
� � 1. Themost used (t, d)-sequences are the (0, d)-sequences in prime bases p � d
of Faure [6] and the (t, d)-sequences in base 2 of Sobol’ [24].

We will make special use of the van der Corput sequences in base b � 2. These
are (0, 1)-sequences in base b. If we write the natural number i = ∑∞

k=1 ikb
k−1 with

digits ik ∈ {0, 1, . . . , b − 1}, then the sum only has K (i) < ∞ nonzero terms and we
then set xi = ∑K (i)

k=1 b
−kik . This sequence has star discrepancy D∗

n = O(log(n)/n).
For n = bm it is a left endpoint rule containing points i/n for 0 � i < n and so it
has D∗

n = 1/n by [15, Theorem 2.6]. The original van der Corput sequence in base
b = 2 is from [26].

3 Proof of the Lower Bound

We begin with a general theorem on worst-case errors. Later we specialize it to the
QMC setting.

Theorem 1 Let (F, ‖ · ‖) be a Banach space and S be a linear functional on F. For
a sequence of continuous linear functionals Ln on F, define

Nn( f ) = (L1( f ), . . . , Ln( f )), and

rn = sup
{|S( f )| ∣∣ f ∈ F, Nn( f ) = 0, ‖ f ‖ � 1

}
.

Then for any sequence of mappings φn from R
n to R, there exists f ∈ F such that

lim sup
n→∞

|S( f ) − φn(Nn( f ))|
(log log n)−1rn

= +∞. (2)

Proof This follows from Theorem 2.1.1 in Chap. 10 of [25] who cite unpublished
work by Trojan. �

We will set F to be some reproducing kernel Hilbert space (RKHS) contained in
BVHK[0, 1]d , S( f ) to be

∫
[0,1]d f ( y) d y and Nn( f ) to be ( f (x0), . . . , f (xn−1)). We

note that evaluation at xi is a continuous linear functional in anRKHS.As the theorem
suggests, we can use rn/ log log n as a lower bound on the asymptotic convergence
rate achievable by all functions in BVHK[0, 1]d , so it remains to determine a lower
bound on rn .

To derive such a lower bound, we will apply the proof techniques used in Roth’s
lower bound on the L2 discrepancy. See Chen and Travaglini [2] for a nice summary.
Dick, Hinrichs and Pillichshammer [4] use this strategy to prove that the worst-case
error of any equal-weight quadrature rule is lower bounded by �(n−1(log n)(d−1)/2)
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when F is the RKHSwith kernel K (x, y) = ∏d
j=1(1 + min(x j , y j )).Wozniakowski

[27] points out that the same strategy still works if the equal weight require-
ment is removed. Below we illustrate Roth’s technique by showing that rn =
�(n−1(log n)(d−1)/2) if F is chosen to be the RKHS with kernel

K (x, y) =
d∏
j=1

(4
3

+ 1

2

(
x2j + y2j − x j − y j − |x j − y j |

))
. (3)

This is the unanchored space introduced in [3]. It has the inner product

( f, g) (4)

=
∑

u⊆{1,...,d}

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂ |u| f
∂ yu

( y) d y−u

)( ∫
[0,1]d−|u|

∂ |u|g
∂ yu

( y) d y−u

)
d yu

where ∂ |u| f /∂ yu is the partial derivative of f taken once with respect to each y j with
j ∈ u. Any f belonging to this RKHS has mixed partial derivative ∂ |u| f /∂ yu ∈ L2

for any u ⊆ {1, . . . , d}, so f belongs to BVHK[0, 1]d using Eq. (5) and Proposi-
tion 13 of [18].

Letting 1 ∈ F be the function equal to 1 for all y ∈ [0, 1]d , it is straightforward
to verify that

( f, 1) =
∫

[0,1]d
f ( y) d y = S( f ).

In other words, the function 1 is the Riesz representation of integration over [0, 1]d .
Moreover, by the reproducing property ( f, K (xi , ·)) = f (xi ). Therefore

rn = sup
{|S( f )| | f ∈ F, f (x0) = · · · = f (xn−1) = 0, ‖ f ‖ � 1

}
= sup

{|( f, 1)| | f ∈ F, ( f, K (x0, ·)) = · · · = ( f, K (xn−1, ·)) = 0, ‖ f ‖ � 1
}
.

This is the well-known least squares projection problem. The maximizer is propor-
tional to the projection of 1 into the orthogonal complement of the linear span of
{K (x0, ·), . . . , K (xn−1, ·)}. Therefore

rn = min
a0,...,an−1

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥.

Now we prove that ‖1 − ∑n−1
i=0 ai K (xi , ·)‖ = �(n−1(log n)(d−1)/2) for any choice

of a0, . . . , an−1, including ai = 1/n as used in QMC.

Theorem 2 Let K be the kernel (3) for the unanchored RKHS. For any points
x0, . . . , xn−1 ∈ [0, 1]d and any weights a0, . . . , an−1 ∈ R
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∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ � Ad

(log n)(d−1)/2

n
(5)

holds for some positive number Ad independent of n.

Proof Because the function 1 is the Riesz representation of integration over [0, 1]d ,
(1, 1) = ∫

[0,1]d 1 d y = 1, and

(K (x, ·), 1) =
d∏
j=1

∫ 1

0

4

3
+ 1

2

(
x2j + y2j − x j − y j − |x j − y j |

)
dy j = 1.

Therefore

(
1 −

n−1∑
i=0

ai K (xi , ·), 1
)

= (1, 1) −
n−1∑
i=0

ai (K (xi , ·), 1) = 1 −
n−1∑
i=0

ai .

On the other hand,

∣∣∣(1 −
n−1∑
i=0

ai K (xi , ·), 1
)∣∣∣ � ‖1‖ ×

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ =

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥,

so we get the first lower bound

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ �

∣∣∣1 −
n−1∑
i=0

ai
∣∣∣. (6)

Nextwe evaluate ‖1 − ∑n−1
i=0 ai K (xi , ·)‖2 directly. If we ignore all summands except

for u = {1, . . . , d} in (4), we get

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥2

�
∫

[0,1]d

( n−1∑
i=0

ai
∂d K (xi , y)
∂y1 · · · ∂yd

)2

d y

=
∫

[0,1]d

( n−1∑
i=0

ai

d∏
j=1

(y j − 1{y j > xi j })
)2

d y (7)

where xi j is the j th component of xi .
The left hand side of (7) is a squared norm in the RKHS while the right hand

side is a plain L2 squared norm. To provide a lower bound, we construct a function
h satisfying
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[0,1]d

h( y)2 d y = O((log n)d−1), and

∫
[0,1]d

h( y)
( n−1∑

i=0

ai

d∏
j=1

(y j − 1{y j > xi j })
)
d y = �

( (log n)d−1

n

)
,

neither of which involve the RKHS inner product, so the function h does not have to
be in the RKHS.

Define E(k, c) to be the d-dimensional interval from (1) with b = 2, that is

E(k, c) =
d∏
j=1

[ c j
2k j

,
c j + 1

2k j

)

where k = (k1, . . . , kd) ∈ Z
d and c = (c1, . . . , cd) ∈ Z

d satisfy k j � 0 and 0 �
c j < 2k j . Given k, we define |k| = ∑d

j=1 k j . For a given vector k, the 2|k| elementary
intervals E(k, c) partition [0, 1)d into congruent sub-intervals.

For each E(k, c), define Uk,c( y) by

Uk,c( y) =
{

(−1)
∑d

j=1 1{2k j y j−c j<1/2}, y ∈ E(k, c)

0, else.

If we partition E(k, c) into 2d congruent sub-intervals, by splitting each side
[c j/2k j , (c j + 1)/2k j ) at its midpoint, then the value of Uk,c( y) is constant on each
such sub-interval. Sub-intervals of E(k, c) that share a d − 1 dimensional face have
the opposite sign for Uk,c( y).

It is straightforward to verify that
∫
[0,1]d Uk,c( y)Uk′,c′( y) d y = 0 if k 
= k′ or c 
=

c′. It is trivially true if E(k, c) ∩ E(k′, c′) = ∅. If instead E(k, c) ∩ E(k′, c′) 
=
∅, then there must be some j with k j < k ′

j and observe that as a function of y j ,
Uk,c( y)Uk′,c′( y) equals 1 on a 1/2k j+1-length interval and equals −1 on an adjacent
1/2k j+1-length interval, so the integration over variable j always returns 0. Then for
any set P of (k, c) pairs,

∫
[0,1]d

( ∑
(k,c)∈P

Uk,c( y)
)2

d y =
∑

(k,c)∈P

∫
[0,1]d

Uk,c( y)2 d y =
∑

(k,c)∈P

2−|k|. (8)

Now let P = {x0, . . . , xn−1} and choosem so that 2n � 2m < 4n. For any k with
|k| = m, define the set Pk to be

Pk = {c | E(k, c) ∩ P = ∅}.

For each c ∈ Pk,



Where are the Logs? 389

∫
[0,1]d

Uk,c( y)
d∏
j=1

(y j − 1{y j > xi j }) d y = 1

4m+d
.

Because there are 2m intervals associated with k, the cardinality of Pk is at least
2m − n � n. Hence

∫
[0,1]d

( ∑
c∈Pk

Uk,c( y)
) d∏

j=1

(y j − 1{y j > xi j }) d y � n

4m+d
. (9)

Now we define
h( y) =

∑
k:|k|=m

∑
c∈Pk

Uk,c( y).

The number of kwith |k| = m is the number ofways to partitionm into d nonnegative
ordered integers, which equals

(m+d−1
d−1

)
. Equation (8) and 2n � 2m < 4n imply that

∫
[0,1]d

h( y)2 d y =
∑

k:|k|=m

∑
c∈Pk

2−m �
∑

k:|k|=m

1 =
(
m + d − 1

d − 1

)
� Cd(log n)d−1

for some positive number Cd independent of n. On the other hand, Eq. (9) implies
that

∫
[0,1]d

h( y)
d∏
j=1

(y j − 1{y j > xi j }) d y �
(
m + d − 1

d − 1

)
n

4m+d
� cd(log n)d−1

n

for another positive number cd independent of n.
By the Cauchy-Schwarz inequality and Eq. (7)

∫
[0,1]d

h( y)
( n−1∑

i=0

ai

d∏
j=1

(y j − 1{y j > xi j })
)
d y

�
(∫

[0,1]d
h( y)2 d y

) 1
2
( ∫

[0,1]d

( n−1∑
i=0

ai

d∏
j=1

(y j − 1{y j > xi j })
)2

d y
) 1

2

�
(∫

[0,1]d
h( y)2 d y

) 1
2 ∥∥∥1 −

n−1∑
i=0

ai K (xi , ·)
∥∥∥

which provides the lower bound
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∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ � (Cd(log n)d−1)−

1
2
cd(log n)d−1

n

n−1∑
i=0

ai

=
(

cd

C1/2
d

n−1∑
i=0

ai

)
(log n)(d−1)/2

n
.

Combining the above lower bound with Eq. (6) we get

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ � max

(∣∣∣1 −
n−1∑
i=0

ai
∣∣∣,( cd

C1/2
d

n−1∑
i=0

ai

)
(log n)(d−1)/2

n

)
.

For λ > 0,

min
a∈R

max(|1 − a|, λa) = λ

λ + 1

so that

∥∥∥1 −
n−1∑
i=0

ai K (xi , ·)
∥∥∥ � cd(log n)(d−1)/2/(nC1/2

d )

1 + cd(log n)(d−1)/2/(nC1/2
d )

and we let Ad = (cd/C
1/2
d )/(1 + cdMd/C

1/2
d ) for Md = supn∈N log(n)(d−1)/2/n. �

Corollary 1 For any sequence of points (xi )i�0 in [0, 1]d , there exists a function f
in the RKHS with kernel defined by (3) such that

lim sup
n→∞

∣∣ ∫[0,1]d f (x) dx − 1
n

∑n−1
i=0 f (xi )

∣∣
(n log log n)−1(log n)(d−1)/2

= +∞

Proof Apply Theorem 1 with the lower bound on rn from Theorem 2. �

4 Discrepancy and the Case of d = 1

Let x0, x1, . . . , xn−1 ∈ [0, 1]. The local discrepancy of these points at α ∈ [0, 1] is

δn(α) = 1

n

n−1∑
i=0

1{xi < α} − α

and the star discrepancy is D∗
n = sup0�α�1 |δn(α)|. No infinite sequence xi can have

D∗
n = o(log(n)/n). Using results from discrepancy theory we see below that there

are specific values ofα forwhich D∗
n = �(log(n)/n). For those values 1{x < α} − α
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is a persistent fooling function. We show below that f (x) = x is also a persistent
fooling function for the van der Corput sequence.

The set of α ∈ [0, 1] with |δn(α)| = o(log(n)/n) has Hausdorff dimension 0 for
any sequence (xi )i�0 ⊂ [0, 1]. See [8]. So r = 1 is not just available for d = 1 it is
the usual rate for functions of the form f (x) = 1{x < α}.

For xi taken from the van der Corput sequence, and α = ∑∞
k=1 ak/2

k for bits
ak ∈ {0, 1}, Drmota, Larcher and Pillichshammer [5] note that n|δn(α)| is bounded
as n → ∞, if and only if α has a representation with only finitely many nonzero ak .
Further, letting

hα(m) = #{k < m | ak 
= ak+1}

their Corollary 1 in our notation has

lim
m→∞

1

2m
#
{
1 � n � 2m | nδn > (1 − ε)hα(m)

} = 1 (10)

for any ε > 0. The base 2 representation of 2/3 is 0.10101 · · · and so h2/3(m) = m.
It follows that f (x) = 1{x < 2/3} has |μ̂n − μ| > c log(n)/n infinitely often for
some c > 0. Even more, the fraction of such n among the first N = 2m sample sizes
becomes ever closer to 1 as m → ∞.

If we average the local discrepancy over α we get

∫ 1

0
δn(α) dα = 1

n

n∑
i=0

xi − 1

2

which is the integration error for the function f (x) = x that we study next. In our
study of f (x) = x , we use sample sizes n with base 2 expansion 10101 · · · 101. That
is, for some L � 1

n = nL =
L∑

�=0

4�.

The first few values of nL are 1, 5, 21, 85, 341, 1365, and 5461.

Proposition 1 For integers 0 � i < n, let xi be the i’th van der Corput point in base
2. Then

n−1∑
i=0

xi =
∞∑
k=1

2−k−1n� + (2−kn − 22−k−1n� − 1)+. (11)

Proof As i increases from 0, the k’th digit of xi comes in alternating blocks of 2k

zeros and 2k ones, starting with zeros. For 0 � i < r2k+1 with an integer r � 0, the
k’th digits sum to r2k because there are r complete blocks of 2k ones. The number
of ones among ik for 0 � i < n is then
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2k2−k−1n� + (n − 2k+12−k−1n� − 2k)+

where z+ = max(z, 0). The first term counts ones from 2−k−1n� complete blocks
of 2k+1 indices. That leaves an incomplete block of n − 2k+12−k−1n� indices i of
which the first 2k , should there be that many, must be 0s. Any indices past the first
2k are ones providing the second term above. To complete the proof, the k’th digits
have a coefficient of 2−k in xi and summing over digits yields (11). �

The sum over k in (11) only needs to go as far as the number of nonzero binary
digits in n − 1. For larger k, both parts of the k’th term are zero.

Proposition 2 For L � 0, let nL = ∑L
�=0 4

�. For integers i � 0 let xi be the van
der Corput points in base 2 and for n � 1 let μ̂n = (1/n)

∑n−1
i=0 xi . Then

lim sup
L→∞

nL

log(nL)
|μ̂nL − 1/2| > c

if 0 < c < 1/(8 log(2)).

Proof We need K (nL) = 2L − 1 base 2 digits to represent nL . We can write nL =∑L
�=0 2

2�. Then for 1 � k � 2L − 1,

2−k−1nL� =
⌊
2−k−1

L∑
�=0

22�
⌋

= 2−k−1nL −
(k−1)/2�∑

�=0

22�−k−1.

Next let

θk ≡
(k−1)/2�∑

�=0

22�−k−1 = 2−k−1
(k−1)/2�∑

�=0

22� = 2−k−1 4
(k+1)/2� − 1

3

and then

(2−knL − 22−k−1nL� − 1)+ = (2−knL − 2−knL + 2θk − 1)+ = (2θk − 1)+

Because θk < 1/3 we have (2θk − 1)+ = 0. Using Proposition 1,

1

nL

nL−1∑
i=0

xi = 1

nL

K (nL )∑
k=1

2−k−1nL� = 1

nL

K (nL )∑
k=1

2−k−1nL − θk

= 1

2
− 2−K (nL )−1 − 1

nL

K (nL )∑
k=1

θk .
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Fig. 1 Both panels show the scaled error n|μ̂n − μ| versus n for the first 214 points of the van der
Corput sequence. The top panel has the integrand f (x) = x and the values for n = nL are indicated
with open circles. The bottom panel has the integrand f (x) = 1{x < 2/3} and the values n = ñL
are indicated

Now because θk � θ2 = 1/8, |μ̂nL − 1/2| � K (nL)/(8nL) and so

nL

log(nL)
|μ̂nL − 1/2| � K (nL)

8 log(nL)
>

1

8

2L − 1

(L + 1) log(4)
→ 1

4 log(4)
,

completing the proof. �

We can see why the sample sizes nL give unusually inaccurate estimates of the
integral of x in the van der Corput sequence. Those values of n consistently miss
getting into the ‘ones block’ for digit k.

Figure 1 shows some empirical behavior of the scaled errors for the two inte-
grands we considered in this section. The scaled error there is essentially the number
of observations by which the count of points in [0, 2/3) differs from 2n/3. It is
n|δn(2/3)| which is the customary scaling in the discrepancy literature.

The integrands x and 1{x < 2/3} both have total variation one. It would be
interesting to know what integrand of total variation one has the largest value for
lim supn→∞ n|μ̂n − μ|/ log(n) in the van der Corput sequence.

For integration, it is advisable to use n = bm for m � 0 in the van der Corput
sequence. Then the Koksma-Hlawka inequality gives us |μ̂bm − μ| = O(1/bm) as
m → ∞ for any f of boundedvariation on [0, 1]because the vanderCorput sequence
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has D∗
bm = b−m = 1/n. Any (t, d)-sequence for d = 1 has D∗

bm = O(1/n). For d =
1, bounded variation in the sense of Hardy and Krause reduces to the familiar one
dimensional notion of bounded variation. As a result a log power r > 0 can apply to
the limit as n → ∞ through positive integers but not as n = bm for m → ∞.

5 Empirical Investigations for d = 2

This section reports on an empirical search for an integrand with errors that
are �(log(n)r/n) for some r > 1 when using a sequence of points with D∗

n =
O(log(n)2/n). We know from Sect. 3 that this is attainable for 1 < r < 3/2 and
not ruled out for 3/2 � r < 2. We search using some knowledge of the weaknesses
of the van der Corput points for the functions from Sect. 4.

The search must take place with d � 2 and so d = 2 is the natural first place
to look for a problematic integrand. It is clear that the integrand should not be
additive because then integrating it involves a sumof two one dimensional integration
problems where we know that r > 1 is not needed. We look at two generalizations
of the van der Corput sequence. The first is the Halton sequence for d = 2. In that
sequence, xi1 is the van der Corput sequence in base 2 and xi2 is the van der Corput
sequence in base 3. The second sequence is the Sobol’ sequence in base 2. It has t = 0
and like the Halton points, the first component xi1 is the van der Corput sequence in
base 2. For n = 2m , the second component xi2 of the Sobol’ sequence is a permutation
of the first n elements of the van der Corput sequence.

We look first at the scaled error n|μ̂n − μ| for f (xi ) = (xi1 − 1/2)(xi2 − 1/2).
This integrand has integral zero and two dimensional Vitali variation of one. It inte-
grates to zero over each component of x when the other component is fixed at any
value. It has no nonzero ANOVA component of dimension smaller than 2. Each of
the factors is a persistent fooling function for the van der Corput points.

For the Halton sequence, the scaled error equals 1/4 when n = 1 and it remains
below 1/4 for 2 � n � 220. It repeatedly approaches 1/4 from below. Figure 2 shows
the scaled errors for this product integrand for both Halton and Sobol’ points for
n < 219. Every 10’th value is shown to control the file size. For both constructions
we see no evidence that the error is �(log(n)r/n) for r > 1. In fact, what is quite
surprising there is the apparent O(1/n) error rate, which is then better than what the
van der Corput sequence attains for f (x) = x .

By plotting only 219 points instead of all 220 it becomes possible to see something
of the structure within the triangular peaks for the Sobol’ points. The linear scale
for n (versus a logarithmic one) shows a clear repeating pattern consistent with an
O(1/n) error rate. Whether or not the errors are O(1/n), this integrand is not a
promising one to investigate further in the search for an integrand needing r > 1.

Another challenging integrand for van der Corput points was 1{x < 2/3}. For
the Sobol’ points we then take f (x) = ∏2

j=1(1{x j < 2/3} − 2/3) for d = 2. Once
again we have removed the additive contribution to the integrand that we know is
integrated at the log(n)/n rate making it easier to discern the effect of the bivariate
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Fig. 2 The panels show scaled errors n|μ̂n − μ| versus n for the integrand f (x) = (x1 − 1/2)(x2 −
1/2) on [0, 1]2 and every tenth n. The top panel is for Halton points and the bottom one is for Sobol’
points

component. For Halton points, we do not use 2/3 as that has a terminating expansion
in base 3 that defines the second component of the x i .Weuse f (x) = (1{x1 < 2/3} −
2/3)(1{x2 < 3/5} − 3/5) for Halton points because 3/5 does not have a terminating
expansion in base 3 that could make the problem artificially easy. Both of these
functions have two dimensional Vitali variation equal to one, just like

∏2
j=1(x j −

1/2). Figure 3 shows the scaled errors n|μ̂ − μ|/ log(n). The logarithmic scaling
in the denominator is there so that a value of r > 1 would give an infinite series of
new records. We don’t see many such new records for n � 222 for either of the two
test cases. These integrands were designed to exploit weaknesses in the Sobol’ and
Halton sequences and they did not produce the appearance of errors growing faster
than log(n)/n. It remains possible that errors grow like log(n)r/n for r > 1 but with
the records being set very sparsely. The situation is quite different from Fig. 1 in the
one dimensional case where we see a steady sequence of record values with a fractal
pattern in the empirical errors.

There are some other integrands that could be difficult for QMC. A badly approx-
imable irrational number θ is one where the distance between nθ and Z is above c/n
for some c > 0 and all integers n � 1. For instance, θ = √

2 − 1 is badly approx-
imable. An integrand like

∏d
j=1(1x j<θ − θ) could pose a challenge toQMCmethods,

but some exploration with Halton and Sobol’ points was inconclusive: there was no
empirical indication that r > 1 would be required. Another potentially difficult inte-
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Fig. 3 The panels show scaled errors n|μ̂n − μ|/ log(n) versus n > 1. The top panel has
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f (x) = (1{x1 < 2/3} − 2/3) × (1{x2 < 3/5} − 3/5) for Halton points

grand is
∏d

j=1(x
θ
j − 1/(1 + θ)) for 0 < θ < 1. Partial derivatives of this integrand

with respect to a subset of components x j are unbounded. That would make them
fail the sufficient conditions for scrambled nets to attain O(n−3/2+ε) RMSE in [16,
19, 28]. These integrands did not show a need for r > 1.

Next,we consider the function f (x) = 1{x1 + x2 < 1}. This integrand has infinite
Vitali variation over [0, 1]2. Therefore it also has infinite Hardy-Krause variation and
so the Koksma-Hlawka bound degenerates to+∞. Because f is Riemann integrable
we know that μ̂n → μn if D∗

n → 0. Finding that r > 1 for this f would not provide
an example of a BVHK function needing that r > 1. It remains interesting to seewhat
happens because the case is not covered by QMC theory without randomization.

Figure 4 shows scaled errors for this integrand, using an exponent of r = 1 for
log(n). Every tenth value is used to control the file size. There is a striking difference
between the results for Sobol’ points versus Halton points.We see a few approximate
doublings of the scaled error for Sobol’ points even when using r = 1. This does not
prove that we need r > 1 here; perhaps we saw the last doubling or perhaps similar
jumps for larger n arise at extremely sparse intervals. It does serve to raise some
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Fig. 4 This shows scaled errors n|μ̂n − μ|/ log(n) versus n > 1 for every tenth n. The integrand is
1{x1 + x2 < 1} which has infinite Vitali variation on [0, 1]2. The upper curve is for Sobol’ points.
The lower curve is for Halton points. There is a reference line at scaled error of zero

additional questions. For instance, why are Halton points so much more effective
on this integrand, and to which other integrands of unbounded variation might that
apply? For smooth integrands, Sobol’ points commonly perform much better when
n is a power of two than otherwise. Here, those sample sizes did not bring much
better outcomes.

6 Very Large m for Sobol’ Nets

If the need for r > 1 is only evident for very large n then we might fail to detect it
by computing μ̂n . If we restrict to sample sizes n = 2m for m � 0 then we can use
properties of the generating matrices of Sobol’ sequences to compute the scaled error
n|μ̂ − μ| for very large n when f is the indicator function of a set [0, a). The first
n = 2m Sobol’ points form a (t,m, s)-net in base 2 for which the Koksma-Hlawka
boundgives a rate ofO(n−1 log(n)d−1). As a resultwemust look tod = 3or larger for
a problem that needs r > 1 for these values of n.We choose a = (2/3, 2/3, . . . , 2/3)
of length d as 2/3 is difficult to approximate in base 2.

We can partition [0, 2/3)d into a countable number of elementary intervals in base
2. The number of points of the digital net x0, . . . , xbm−1 that are in E(k, c) equals
the number of solutions i ∈ {0, 1}m to a linear equation C i = amod 2 for a matrix
C ∈ {0, 1}|k|×m that takes the first k j rows from the j’th generating matrix of the
digital net, for j = 1, . . . , d and some a ∈ {0, 1}m . See [20] for a description and a
discussion of how to find the number of such points. For our Sobol’ points we use
the direction numbers from Joe and Kuo [11].

To make the computation finite, we replace [0, 2/3)d by [0, am)d where am =
2m(2/3)�/2m . For a ∈ (0, 1), let μ(a) = ad and μ̂(a) = (1/n)

∑n−1
i=0 1xi∈[0,a)d .

Then
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Fig. 5 The panels show the signed scaled error n(μ̂ − μ) for a Sobol’ sequence when f =∏d
j=1 1x j<2/3. The panels have d = 2, 3, 4. The sample sizes go to 2100 for d = 2, 3 and to 250 for

d = 4. The computed values differ from the true ones by at most d for all m

0 � μ
(2
3

)
− μ(am) =

(2
3

− am
) d−1∑

j=0

(2
3

) j
ad− j−1
m �

(2
3

)d−1 d

n
.

The number of the first n Sobol’ points that belong to [0, 2/3)d \ [0, am)d is at most
d. Therefore

0 � μ̂(2/3) − μ̂(am) � d/n.

Now

n(μ̂(2/3) − μ(2/3)) − n(μ̂(am) − μ(am))

= n(μ̂(2/3) − μ̂(am) − n(μ(2/3) − μ(am))

∈ [−(2/3)d−1d, d] ⊆ [−4/3, d]

so the absolute error in using n((μ̂(am) − μ(am)) instead of n((μ̂(2/3) − μ(2/3))
is at most d.

Figure 5 shows the results for d = 2, 3, 4. For d = 2 we see strong linear trend
lines in the scaled error consistent with needing r = 1. For d = 3, 4 the trend is not
obviously linear but it does not have a compelling and repeating r > 1 pattern even
at n = 250 for d = 4 or n = 2100 for d = 3.

7 Discussion

We have shown that for any ε > 0 and any d � 1 and any infinite sequence of
points xi ∈ [0, 1]d and any c > 0 there exist functions in BVHK[0, 1]d where the
QMC error exceeds c(log n)r/n infinitely often when r < (d − 1)/2. For d = 1 we
can easily construct such functions for r = 1 using results from discrepancy theory.
We don’t know of any specific examples with r > 1 and simple multidimensional
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generalizations of the functions needing r = 1 for d = 1 did not show an apparent
need for r > 1 when d = 2. The best candidates we saw for the Sobol’ sequence
are f (x) = ∏d

j=1 1{x j < 2/3} for d = 3 or 4 but we have no proof that they require
r > 1.

One surprise is that comparing Figs. 1 and 2 we see an error for f (x) =
(x1 − 1/2)(x2 − 1/2) that appears to be O(1/n)while the one dimensional function
f (x) = x has error�(log(n)/n) (theoretically and also empirically over small n). A
second surprise is that for a two dimensional function of unbounded variation we see
very different behavior for Sobol’ and Halton points in Fig. 4. The error for Sobol’
points appears to grow faster than log(n)/n while that for Halton points is far lower
and might even grow at a different rate. Neither of these surprises contradict known
theory but it is odd to see the two dimensional problem apparently easier to solve
than a corresponding one dimensional one and it is also odd to see Halton points
appear to be so much more robust to unbounded variation than Sobol’ points.

So, where could the logs be? It is possible that they are only practically important
for enormous n, or what is almost the same thing, that they are present with a very
tiny implied constant. It is also possible that the commonly investigated integrands
have error O(log(n)/n) even for d � 2.
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Network Reliability, Performability
Metrics, Rare Events and Standard
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Gerardo Rubino

Abstract In this chapter, we consider static models in network reliability, that cover
a huge family of applications, going way beyond the case of networks of any kind.
The analysis of these models is in general #P-complete, and Monte Carlo remains
the only effective approach. We underline the interest in moving from the typical
binary world where components and systems are either up or down, to a multi-
variate one, where the up state is decomposed into several performance levels. This
is also called a performability view of the system. The chapter then proposes a
different view of Monte Carlo procedures, where instead of trying to reduce the
variance of the estimators, we focus on their time complexities. This view allows
a first straightforward way of exploring these metrics. The chapter focuses on the
resilience, which is the expected number of pairs of nodes that are connected by at
least one path in the model. We discuss the ability of the mentioned approach for
quickly estimating this metric, together with variations of it. We also discuss another
side effect of the sampling technique proposed in the text, the possibility of easily
computing the sensitivities of these metrics with respect to the individual reliabilities
of the components. We show that this can be done without a significant overhead of
the procedure that estimates the resilience metric alone.

Keywords Network reliability · Network performability · Rare events · Monte
Carlo · Sensitivity analysis

1 Introduction

Network reliability refers to a large family of random graph-based models used in
multiple areas of science and technology, for different types of analysis [2]. The
reference case, and the one with which we will work in this chapter, is when we use
them to analyze a communication network composed of a set V of nodes connected
by a set E of edges (undirected links, no loops). The graph G = (V,E) is called the
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underlying graph in themodel.Weare then interested in the communications between
nodes usingpaths.GraphG is assumed tobe connected.With each link i weassociate a
given fixed probability ri , and the interpretation is that with probability 1 − ri the link
is removed from the graph. More formally, with each link i we associate a Bernoulli
or Binary random variable (r.v.) Xi with parameter ri ; this means that Xi ∈ {0, 1} and
that ri = P(Xi = 1). We call ri the (elementary) reliability of link i and Xi the state
of link i . Observe that there is no explicit time variable. That is why we call these
models static [17]. We see the system at a “typical” point in time, or at a specific
instant of interest, possibly at infinity, but there is no stochastic process in the model.
Denote by m = |E| the number of edges. Then, and always referring to the reference
model, we assume that the m r.v.s X1, . . . , Xm are independent.

With this setting, we build a random graph G with values in the set of partial
subgraphs of G (that is, G has the same nodes as G and a subset of G’s edges).
Observe that there are 2m points in G’s space of values. Informally, in a realization
of G edge i ∈ E exists with probability ri . More formally, we define the distribution
of G by the following expression: for any subset E of E,

P
(
G = (V, E)

) = �i∈Eri� j /∈E (1 − r j ).

Using this randomobject,we can definemany connectivity-basedmetrics quantifying
different properties of G related to its capability to transport something (information,
some fluid, …) from some nodes to other nodes in the model. By far, the most used
one is the so-called source-to-terminal reliability defined as follows: two different
nodes are fixed, say s and t , and the metric is Rs,t = P(s and t are connected in G),

that is, the probability that s and t belong to the same connected component
of G. This is also called the 2-terminal reliability, or simply the s-t-reliability.
Another widely used metric is the all-terminal reliability, Rall, defined by Rall =
P(all nodes are connected in G), that is, the probability that G is connected (that
it has a single connected component). Formally, we usually code the fact that the
selected property holds by 1 and that it doesn’t hold by 0, and we call system’s state
that random number.

There are many variations around this melody. Instead of looking at the connec-
tions between two nodes s and t or between all pairs of nodes, we can define a
K -terminal reliability RK concerning a given subset K of nodes; the corresponding
definition is

RK = P(all nodes in K belong to the same connected component of G).

The connectivity criteria can be more complicated. For instance, we can define the
distance-based 2-terminal reliability with parameter d, Rd;s,t , where d ≥ 1 is an
integer, by

Rd;s,t = P(s and t are connected in G by at least a path having length ≤ d),
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and similarly for Rall or RK [6]. A different extension consists of associating a
non-negative integer ks with node s for all s ∈ V and defining a new metric as the
probability that there are min{ks, kt } elementary edge-disjoint paths between nodes s
and t , for all s and t [12]. All these metrics can also be defined in a similar model
where the nodes and not the edges, have random states, or both nodes and edges are
random, on directed graphs, instead of undirected ones, etc. Recently, some works
appeared which remove the independence assumption concerning the state variables
[3, 21].

The evaluation of all these reliability metrics is, in general, a computational hard
problem [22]. Formally, it belongs to the #P–complete class, a family of NP–hard
problemsnot known tobe in NP .A#P-complete problem is equivalent to counting the
number of solutions to an NP-complete one. For this reason, #P–complete problems
are, at least, as hard as NP–complete ones. Even in very restricted classes of graphs,
the computation of the beforementionedmetrics remains in this complexity class. For
instance, it is shown in [16] that the computation of the source-to-terminal reliability
is in the #P–complete class even when the graph is planar (in fact, s, t-planar) and
has vertex degrees at most equal to three. From a practical point of view, this means
that a graph with, say, more than one hundred elements (nodes, lines) can not be
exactly evaluated (except for special cases). An efficient alternative is then to use
a Monte Carlo method, the topic of this chapter. The standard version consists of
generating an N -sample of G, say G1, . . . , G N , and to estimate the reliability metric,
say Rs,t , using the standard estimator

R̂s,t = 1

N

N∑

n=1

1
(
s and t connected in Gn

)
, (1)

where 1(P) is equal to 1 if the predicate P is true, 0 if it is false. In many cases, this
approach can handle medium and large size models, but, of course, it has its own
problem, namely the fact that its efficiency is sensitive to the numerical values of
data (the ri s). In particular, this standard procedure (sampling N times graph G and
checking the property used to define the desired metric on each realization) becomes
of no use in the rare event case, that is, when the system reliability metric is (very)
close to one. Unfortunately, this is often the interesting case.

For the reader unfamiliar with the area, let us finally comment that the specific
source-to-terminal model has a huge application area in the dependability analysis
of many kinds of systems. The general literature is rich in examples. Let us just
mention [20], where bounds of the metric Rs,t are proposed, applied to the analysis
of critical control subsystems of a modern aircraft.

There is a very large literature in the network reliability area. A good review of
the main concepts and results is [2], and an older and classical text, [14]. Another
already mentioned survey is ours [17]. Specifically in the Monte Carlo side, some
papers by Pierre L’Ecuyer and co-authors are [4, 5, 13]. See also [19] on the rare
event side, in particular Chap.7, or [8] for many technical aspects.
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In the sequel of this chapter, we explore in Sect. 2 the interest of using performa-
bility metrics to quantify the capacity of a network to provide service in spite of
failures (or equivalent events) of its components, and we focus on one of them,
called resilience. Then, in Sect. 3, we discuss the estimation of the resilience using
the naiveMonte Carlo approach. After commenting the rare event problem, we show
that it is possible to be efficient in the use of the naive, or standard, or crude estimator,
by means of a smarter implementation (this extends old work presented in [11]). In
Sect. 4, we illustrate the use of the previously discussed implementation, andwe show
that it allows exploring other types of metrics, written as variations on the resilience
idea. We also show that the same approach makes straightforward to evaluate also
the gradient of the resilience with respect to the elementary reliabilities, with almost
no overhead (extension to ideas presented in [18]). Section5 concludes the chapter.

2 Performability Metrics and Resilience

Quantitative analysis of systems is mainly done following two different viewpoints.
Either we assume the system perfect (that is, we ignore its possible failures and
repairs) and we focus on measures related to the work it does, on the properties of
the service it provides, or we ignore the latter and we focus on those possible failures
and repairs, and try to analyze different related properties of the system. Around
the 80s appeared another idea, in general a much more complex one, where we
look simultaneously, that is, in the same model, at both sides of systems’ behavior.
Following the pioneering work done by Meyer [15], we call it performability. We
will consider this view here, based on the reference model presented before.

So, we have an undirected graph G = (V,E) assumed to be connected and with
no loops, with n nodes and m edges (the underlying graph), and our standard prob-
abilistic setting parameterized by the elementary reliabilities r1, . . . , rm . Consider
now the Rall metric, widely used to quantify the ability of the network to support
communications between all pairs of nodes. It measures a binary property, an all-
nothing one, the probability that all nodes can communicate. But for the system
manager, or for the users, the fact that, for instance, a single node is isolated, making
that among the total number n(n − 1)/2 of pairs of nodes, only n − 1 of them can’t
communicate, is very different than the situation where many links are failed making
that just a few pairs of nodes can talk to each other (possible none of them if all links
are failed). A way of measuring this is by directly looking at the number of pairs that
can communicate.

We thus define the central r.v. of this chapter,

NCP = number of pairs of nodes that can communicate in G.

The analysis of this r.v. provides a much richer information about the capacity of
the network to provide communications between its nodes. We will focus on its
expectation in the sequel.
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2.1 The Resilience Metric

The expectation of NCP has been called resilience in some works [23], in the same
context as in this chapter. It has been explored in a few other works [1, 9], always in
the setting discussed here. So, formally, the resilience Res of our model is

Res = E(NCP). (2)

Observe first that we have the following immediate properties:

• 0 ≤ NCP ≤
(

n

2

)
= n(n − 1)

2
;

• P(NCP = 0) = �i∈E(1 − ri );

• P

(
NCP =

(
n

2

))
= Rall;

• Res|∀i in E, ri =0 = 0, Res|∀i in E, ri =1 =
(

n

2

)
.

We can normalize the metric, dividing E
(
NCP

)
by

(n
2

)
, thus leading to an index

in [0, 1]. The scaled resilience of the network, ResScaled, is then ResScaled =
2Res/

(
n(n − 1)

)
.

Let us provide first a few simple examples, assuming, to simplify the presentation,
that we are in the i.i.c. case, meaning independent and identical components (here,
we refer to the links) with common elementary reliability r .

Bridge. Take first a bridge, as depicted in Fig. 1. Using brute force (listing all 25

possible links’ states), we get Res = r
(
5 + 8r − 14r3 + 7r4

)
.

Paths. Consider now a path with n nodes (thus, with n − 1 edges), n ≥ 2. Denote
by Resn its resilience. Conditioning on the state of any of the 2 extreme edges, we
can verify, after some algebra, that

Resn = r
[
n(1 − r) − (1 − rn)

]

(1 − r)2
= r

[
n − 1 − r(n − rn−1)

]

(1 − r)2
.

A few first values: (Res1 = 0,) Res2 = r , Res3 = 2r + r2, Res4 = 3r + 2r2 + r3.

Fig. 1 The bridge topology
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Rings. Last, consider a ring with n ≥ 3 nodes (or n ≥ 2 if we accept the multigraph
corresponding to the n = 2 case). Denote again Resn its resilience. Conditioning on
the state of any of its links, we obtain

Resn = nr

(
1 − rn−1

1 − r
− n − 1

2
rn−1

)
.

A few first values of Resn: (Res1 = 0,) Res2 = 2r − r2, Res3 = 3r + 3r2 − 3r3,
Res4 = 4r + 4r2 + 4r3 − 6r4.

2.2 Some Properties of Resilience

The “first moment principle” says that if X ≥ 0 is an integer r.v., then it holds
that P(X > 0) ≤ E(X). Applied to E

(
NCP

)
, this means that 1 − �i∈E(1 − ri ) ≤

Res. However, this is not very good, because Res is, in general, > 1, and 1 −
�i∈E(1 − ri ) is ≤ 1.

Now, simply by definition,
(n
2

)
Rall ≤ Res ≤ (n

2

)
, which are better bounds, espe-

cially in the rare event case. For the scaled resilience, we have Rall ≤ ResScaled ≤ 1.
Now, define the r.v.

Ys,t = 1
(
there is a path connecting nodes s and t

)
.

We have Rs,t = P(Ys,t = 1) = E(Ys,t ) and also

NCP =
∑

all nodes s,t,s<t

Ys,t ,

from which, taking expectations, we have the following important relation, making
the connection between this performability approach and the classical binarymetrics:

Res =
∑

all nodes s,t,s<t

Rs,t . (3)

Conditioning with respect to the state Xi of any edge i , we can write

Res(G) = E(NCP(G) | Xi = 1)ri + Res(Gd
i )(1 − ri ), (4)

where we use the notation Res(H) to make explicit the fact that we define the metric
on graph H , and where Gd

i is the graph obtained by removing edge i from G. If
Gc

i denotes the graph obtained by contracting edge i in G, here we don’t have the
usual fact that Res(Gc

i ) coincides with E(NCP(G) | Xi = 1), a relation that holds for
classical metrics such as Rs,t . This makes that Relation (4) is less useful than for
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standard metrics, where it is the basis of the most powerful approach for their exact
numerical analysis. This is because of the more complex relation between Res(Gc

i )

and Res(G). This issue is out of the scope of this paper, so, we will not pursue
commenting it here.

In the rest of this paper, we will look at the evaluation of this expectation using
Monte Carlo.

3 Using Standard Monte Carlo for Resilience-Based
Analysis

First of all, consider reliability metrics such as Rs,t or Rall (or any of their many
variations). Since these metrics are typically close to 1, it is better to work with the
complementary events and target the corresponding unreliability values, which we
will denote here by γ (for instance, 1 − Rs,t , or 1 − Rall). The fact that now the
target γ is close to 0 makes clear that the correct way to look at the quality of these
estimations is through the analysis of relative errors and not absolute ones.

3.1 The Standard Estimator

Estimating an unreliability metric such as 1 − Rs,t or 1 − Rall, say generically γ =
1 − R, and using the standard or crude estimator, means sampling the following r.v.:

γ̂ = 1

N

N∑

n=1

Y (n),

where Y (1), . . . , Y (N ) are N independent copies of the Binary r.v. Y equal to 1 if the
considered connectivity property doesn’t hold, and to 0 otherwise (Y is the comple-
mentary of what we called the system’s state). We have E(γ̂ ) = E(Y ) = γ (that is,
γ̂ is unbiased). A pseudo-code corresponding to this estimator is as follows:

Algorithm A // naive implementation of standard Monte Carlo
// goal: network unreliability

// the connectivity property used is denoted here CP
set counter to 0;
execute N times:

sample G;
if the CP doesn’t hold: counter + +

return counter/N

Using the states of the links X1, . . . , Xm , this means that we repeat N times the
following: for each link i ∈ E, we sample a Binary r.v. having parameter ri , and we
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put the result in xi ; then, we remove from the underlying graph G those links j such
that x j = 0; next step is to execute a procedure to check the connectivity property
used, for instance, to check if the obtained partial graph of G is connected or not; at
the end, we return the number of times the graph wasn’t connected divided by N ,
which is an estimator of γ = 1 − Rall.

Observing first that we have V(γ̂ ) = γ (1 − γ )/N , the corresponding standard
confidence interval is

(
γ̂ ∓ z(ε)

√
γ̂ (1 − γ̂ )/(N − 1)

)
, where 1 − ε is the confidence

level, or ideal coverage probability, with

z(ε) = �−1
(
1 − ε

2

)
, �(x) = 1√

2π

∫ x

0
e−t2/2dt

(e.g., z(0.05) ≈ 1.96 for a confidence level of 95%). The quantity γ̂ (1 − γ̂ )/(N − 1)
is proportional to half the confidence interval length (the proportionality constant
being z(ε)), and can thus be interpreted as an absolute error. The ratio

√
γ̂ (1 − γ̂ )

N − 1
γ̂

=
√

1 − γ̂

(N − 1)γ̂
≈ 1√

N γ̂

can then be seen as an estimation of the (statistical) relative error we have, and we
conclude by saying that it goes to ∞ as the rarity of the event of interest increases,
that is, as γ → 0. This formally show that as the system’s failure becomes rarer, the
estimation procedure becomes less accurate, and this happens without any bound.

The point to be made next is that the estimator γ̂ can be computed in a more
efficient way, especially in the frequent case where the ri s are all close to 1, and this
leads to efficient estimations, because what matters is to have a small product “mean
running time × variance of the estimator” [7]. This is the topic developed in next
subsection.

3.2 The Standard Estimator Efficiently Implemented
in the Rare Event Case

Imagine we implement the standard estimator of γ as follows. Instead of sampling G
a huge number N of times and checking the connectivity property on each sample,
we sample N times each Xi and put the N results in column i of a big table. The
table has m + 1 columns, one for each link plus a last one for the complement of the
system’s or network’s state, and N rows. Then, we read the table by rows and we fill
the last (m + 1)th column checking the system’s state. Since, of course, we will not
implement such a table, we will call it the virtual table from now on.

Now, assume for a moment that N = ∞, and consider column i . Since ri is
usually close to 1, the column has a majority of 1s. The position of its first 0 is a
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geometric r.v. Fi with values in the strictly positive integers and distribution given by
P(Fi = h) = rh−1

i (1 − rh),h ≥ 1.Thediscrete point process definedby the positions
of the different 0s in that column is a Bernoulli process, where the distance between
consecutive 0s (and from the first 0 and an auxiliary initial and empty row 0 in
the table) are independent copies of Fi . Now, let F = min{F1, . . . , Fm} be the first
row where there is at least one 0 in the first m columns. We have that the r.v. F
is also geometric, with values on the integers ≥ 1, and law given by P(F = �) =
q�−1(1 − q), � ≥ 1, where q = r1r2 · · · rm . And in the same way as for column i , if
we look at those rows in the infinite virtual table where at least one link is down,
the distance between consecutive rows with that property are the points of a discrete
Bernoulli process with parameter q (that is, if Uk is the kth such row, then the
sequence (U1, U2 − U1, U3 − U2, . . .) is i.i.d. with the law of F . The interest of this
type of description of the estimation procedure is that the statistical properties of the
estimator used are those of the standard one, in particular, the variance.

This suggests a different way of implementing the standard estimator of γ . Sam-
ple F and add the obtained value to a first register rows. In the first F − 1 rows of
the table, we have only 1s in the first m columns, so, the r.v.s Y1, . . . , YF−1 are 0
(technically, we assume coherent systems [17], so, they are always up if all the com-
ponents are up). It remains to see what happens with the F th row. For that purpose,
we must sample the Xi s, but now knowing that there is at least one zero in the vector
of links’ states. Consider the natural ordering 1, 2, . . . , m of the network’s links,
denote by Z the r.v. “number of zeros in the vector of links’ states”, and by J the
index of the first zero in that vector. We have then the following immediate result:
for j = 1, 2, . . . , m,

P(J = j | Z ≥ 1) = r1r2 · · · r j−1(1 − r j )

1 − r
. (5)

Then, we sample from this distribution, obtaining some j ∈ E, we set the states of
links 1, 2, . . . , j − 1 to 1 and that of link j to 0, and we independently sample the
states of links j + 1, . . . , m using their original Binary distributions with parameters
r j+1, . . . , rm respectively. Once known the states of all the links, we check if the con-
nectivity property used holds or not. In the latter case, we increase a second register
counter. We repeat the procedure, sampling a new value from F’s law, obtaining
some integer f ≥ 1, adding it to rows, and repeating the conditional sampling of
the links knowing that there is at least a 0 in the vector of links’ states, until updat-
ing counter. We stop the process when we reach the condition rows ≥ N , and we
return the estimation counter/N . In pseudo-code, this gives Algorithm B.

Algorithm B // 2nd implementation of standard Monte Carlo
// goal: network unreliability

// the connectivity property used is denoted here CP
rows = 0; counter = 0;
while rows < N: // main loop

f = sampleFrom(F);
rows + = f ;
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if rows ≤ N:
conditionally sample vector of links’ states;
if CP doesn’t hold: counter + +

// end of main loop
return counter/N

Recall that the instruction “sample vector of links’ states” means
sampling first J using (5), obtaining some value j , then setting X1 = X2 = · · · =
X j−1 = 1, X j = 0, and sampling each remaining state variable Xk , for k = j +
1, . . . , m, according to the Binary law with parameter rk , and independently from
each other.

Complexity analysis. Consider first Algorithm A. Sampling G needs �(m) in com-
putation time. Testing the connectivity property used has a cost O(n + m) in most
of the cases mentioned in the chapter, in particular, for the resilience (see below)
and since m ≥ n − 1 because the underlying graph is connected, we can also write
it O(m). Since we iterate N times, the total mean computational cost is O(Nm).

In Algorithm B, we will sample from F , for large N (almost always the case),
on average, N/E(F) times. We have E(F) = (1 − q)−1. The conditional sampling
procedure of (5) plus the test of the selected connectivity property costs O(m), so,
the total average computational cost is O(N (1 − q)m). The time reduction in B with
respect to the naive implementation of A is, then,

Nm

N (1 − q)m
= 1

1 − q
.

This approach alone is modest in time reduction, but it can be improved (see below,
in Sect. 3.4).

Remark 1 Observe that what we are doing is somehow inspired by a conditional
Monte Carlo technique. The interest of the type of implementation of the estimation
procedure followed here is thatwe can see it as a different algorithm for the evaluation
of the standard estimator, and this can be useful, as shown below. It will be exploited
for quickly exploring other possiblemetrics of the resilience type, and also to estimate
sensitivities (gradients). The central interest in the conditioning we used is that its
effect can be seen as a significant reduction in the sampling process of the standard
estimator, but not on the estimator’s variance, in the execution time instead.

Let us come back first to the estimation of the resilience.

3.3 Estimating the Resilience

Recall that the resilience is defined as the expected number of pairs of nodes that
can communicate, in the random graph G, E(NCP) (Relation (2)). Observe that if
the graph is connected, we have NCP = n(n − 1)/2. Suppose now that it is not, and
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let NCC be the number of connected components of G. Denote the associated node
sets as S1, . . . , SNCC and their cardinalities byC1, . . . , CNCC .We then obviously have

NCP =
NCC∑

h=1

(
Ch

2

)
(6)

where
(h

k

) = 0whenh < k. Since computingNCC and the cardinalitiesC1, . . . , CNCC

needs only a DFS (Depth First Search) or a BFS (Birth First Search) [10] on G, the
cost of computing NCP is O(m). So, the procedure for estimating Res is basically
the same in both Algorithms A and B: the only change to do is that instead of check-
ing one of the considered connectivity properties, we have just to decompose G
into its connected components and use (6). For instance, the resilience version of
Algorithm B is as follows.

Algorithm Bbis // 2nd implementation of standard Monte Carlo
// goal: network resilience

rows = 0; sum = 0;
while rows < N: // main loop

f = sampleFrom(F);
if rows + f ≤ N:

sum + = ( f − 1)n(n − 1)/2;
conditionally sample vector of links’ states with (5);
find the connected components of G;
sum + = NC P of G using (6)

else
sum + = (N − f )n(n − 1)/2

rows + = f
// end of main loop

return /N

Formally, we are using the standard estimator

R̂es = 1

N

N∑

n=1

Res(n),

where Res(n) is Res(Gn). A confidence interval for Res with confidence level of,
say, 95%, is then given by (R̂es ∓ 1.96 S), where S2 is the standard estimator of the
variance of R̂es. We have

S2 = 1

N (N − 1)

N∑

n=1

NCP(n)2 − 1

N − 1
R̂es

2
.
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3.4 Improving Algorithm B

Assume you know, for instance, the breadth b of the underlying graph, that is, the
size of a mincut of minimal size (a set of edges whose removal disconnects the
graph [10]). This number can be computed using a max flow algorithm such as
Edmonds-Karp’s, and its cost is polynomial in (n, m). For instance, suppose that
b = 2. This means that to transform G into an unconnected graph by removing edges,
youmust remove at least 2 edges. Thismeans that instead of checking the connectivity
property used when there is at least one zero in the row of the virtual table, or instead
of decomposing G into its connected components in the resilience case, we can first
just count how many zeros we have, and if the number is less than b, we know
that the current realization of G is connected, so, NCP is equal to n(n − 1)/2. This
will make a supplementary gain in performance, needing only to compute the graph
breadth, which is a one shot polynomial task, executed only at the beginning. The
corresponding algorithm is presented again in pseudo-code, this time for estimating
the resilience.

Algorithm C // 3rd implementation of standard Monte Carlo
// goal: network resilience

b = breadthOf (G);
rows = 0; sum = 0;
while rows < N: // main loop

f = sampleFrom(F);
if rows + f ≤ N then

sum + = ( f − 1)n(n − 1)/2;
conditionally sample vector of links’ states with (5);
if its # of zeros is ≤ b then

sum + = n(n − 1)/2
else

find the connected components of G;
sum + = NC P of G computed using (6)

else
sum + = (N − f )n(n − 1)/2

// end of main loop
return sum/N

For the improvement in reducing the computing time of the estimation process,
let us wait until next section, where some numerical illustrations are given.

Comment. The way we presented Algorithm C is to underline that it improves
version B (or Bbis). But it can be simplified, by redefining the r.v. F . Instead of
being the first row of the virtual table with at least 1 zero, we can define it as the first
row of the virtual table with at least b zeros. This means then to use again Algorithm
B but with this new conditioning. There are other possibilities, using a covering tree
of G, or several ones, etc. To discuss the idea here we will just keep the very simple
idea of counting the 0s in the vector of links’ states, that is enough to describe the
methodology. More on this in Sect. 4, but let us look now at sensitivities.
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3.5 Sensitivity Analysis

The last element of the discussion given in this chapter concerns the sensitivity
analysis of resilience. This means computing the gradient of Res seen as a function
of the N variables r1, . . . , rm , that is, the partial derivatives ∂Res/∂ri for all i ∈ E.
This subsections builds on the results presented in [18], extended to handle the
resilience concept.

Define

σi = ∂Res

∂ri
and σs,t;i = ∂ Rs,t

∂ri
.

Denote, similarly as for the reliability metrics,

Resc
i = Res(G | Xi = 1) ( �= Res(Gc

i ))

and
Resd

i = Res(G | Xi = 0) = Res(Gd
i ).

Then, the next result is the first step toward the estimation of the gradient of the
resilience.

Proposition 1 We have

σi = Resc
i − Res

1 − ri
= Res − Resd

i

ri
.

Proof. Let us show the steps to prove the first equality. The second one is similar.
In (3) we stated the basic identity

Res =
∑

all nodes s,t,s<t

Rs,t .

Taking partial derivatives with respect to ri , we get

σi =
∑

all nodes s,t,s<t

σs,t;i .

In [18], we proved that

σs,t;i = Rc
s,t;i − Rs,t

1 − ri
= Rs,t − Rd

s,t;i
ri

. (7)

Using the first equality, we have
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σi =
∑

all nodes s,t,s<t

σs,t;i

=
∑

all nodes s,t,s<t

Rc
s,t;i − Rs,t

1 − ri

= 1

1 − ri

(
∑

all nodes s,t,s<t

Rc
s,t;i −

∑

all nodes s,t,s<t

Rs,t

)

= Resc
i − Res

1 − ri
.

The second equality follows when using the second one in (7). �

Now, in the same paper [18], it was shown that

σ̂s,t;i = Xi − ri

ri (1 − ri )
Ys,t

is an unbiased estimator of σs,t;i .

Remark 2 Observe that these estimators fit precisely the idea of having at our
disposal the virtual table filled with the values of the states of all links and the
corresponding value of NCP, at each iteration of the standard method. Actually, the
idea of seeing a conditional Monte Carlo approach as described here appeared at
the same time that we developed the estimators of sensitivities of classical network
reliability metrics of the type presented in the chapter.

Observe that evaluating σ̂s,t;i adds almost no overhead to the estimation of the
reliability metrics considered (classical or of the performability type).

Based on previous result, we have the following one.

Theorem 1 The expression

σ̂i = Xi − ri

ri (1 − ri )
NCP

defines an unbiased estimator of σi .

Proof. In a straightforward manner,

σ̂i = Xi − ri

ri (1 − ri )

∑

all nodes s,t,s<t

Ys,t

= 1

ri (1 − ri )

(
∑

all nodes s,t,s<t

Xi Ys,t − ri

∑

all nodes s,t,s<t

Ys,t

)

.

Taking expectations, and using the fact that E(Xi Ys,t ) = ri Rc
s,t;i , we get
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E(̂σi ) = 1

ri (1 − ri )

(
∑

all nodes s,t,s<t

ri Rc
s,t;i − ri Res

)

= Resc
i − Res

1 − ri
= σi ,

by means of the result of Proposition 1. �

As we can see, the estimator σ̂i consists basically of sampling simultaneously the
states of the links and the NCP variable, something explicit in the virtual table. So,
estimating the sensitivities of the resiliencewith respect to the elementary reliabilities
in the system is straightforward following the same approach as for the resilience
itself. Next section gives a few examples and discusses other possible resilience-
like metrics easily analyzed using the procedure we have described, including the
sensitivities.

4 Examples and Discussions

In this section, to simplify the presentation we will only consider the i.i.c. case (inde-
pendent and identical components) in the models, that is, the case of homogeneous
links, all sharing the same elementary reliability, denoted here by r .

Toprovide a few illustrations of previous results, let us consider themodel depicted
by its underlying graph in Fig. 2.

This network has n = 21 nodes and m = 26 links. Its breadth is b = 2. The
expected reduction in the execution time, using the basic Algorithm B and written
as a factor, is 1 − q, q = rm = r26. Taking r = 0.9999 we obtain a time reduction
denominator of ≈ 385. Using the breadth (Algorithm C), we have b = 2. The sup-
plementary factor to add is P(Z ≥ 2 | Z ≥ 1), where Z denotes the number of zeros
in a row, a Binomial r.v. with P(Z = z) = (m

z

)
(1 − r)zrm−z . The supplementary fac-

tor is then P(Z ≥ 2 | Z ≥ 1) = P(Z ≥ 2)/P(Z ≥ 1), and P(Z ≥ 1) = 1 − P(Z =
0) = 1 − q, so, the new global average time reduction factor becomes P(Z ≥ 2) =
1 − rm − mrm−1(1 − r) ≈ 3.2448 · 10−6, which corresponds to a denominator of
about 300, 000. This shows that the time reduction can be considerable even when
using such a simple conditioning. The accelerations we observed in practice have

Fig. 2 A widely used Arpanet topology in network reliability, from the history of this famous
communication network
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Fig. 3 A covering tree on the Arpanet model of Fig. 2

been lower than the theoretical factors, probably due to the implementations of the
algorithms we had, but in all cases they were important. Using only Algorithm Bbis,
in the case of r = 0.999, we got accelerations of several hundreds, depending on the
tools used (C code, python alone, python with numpy). The accelerations were
higher using the breadth, but there are other possibilities in the same spirit and still
more powerful. Let us give another example here.

Assume we computed a covering tree of the underlying graph, that is, a tree
sharing with the underlying graph all its nodes. If we denote the tree as T = (V,E′)
the probability that all its links are up is

∏
i∈E′ ri . In case of that event, we know

that NCP = n(n − 1)/2, so, we can use the event to get a better reduction factor
than 1 − q = 1 − rm . The sampling of the links’ states conditioned to the fact that
all links in the covering tree are working is straightforward, only the links out of the
tree must be sampled. In the Arpanet model given in Fig. 2, the gain is modest. See
first a covering tree of this graph in Fig. 3.

In the case of Algorithm B with r = 0.9999, we had a time reduction factor of
about 385. Using a covering tree, always in the i.i.c. case, the factor changes to
about 1 − r20 ≈ 500. If the graph is more dense, we can have several edge-disjoint
covering trees and considering their union we can reach much higher reductions in
time. We can also use mincuts with the same purpose. This will not be explored
further here, we intend to show only the general principles.

In the general heterogeneous case, when the elementary reliabilities are not nec-
essarily all equal, we can look for covering trees with minimal total weight, where
the weight of the tree is the product of the reliabilities of its links. For that purpose,
we can use standard graph algorithms such as Prim’s or Kruskal’s (see any good
reference in the area, such as [10]). Both have complexity O(m lnm) where m is the
number of edges in the graph.

Concerning sensitivities, we only illustrate the main interest in their evaluation,
a point underlined already in [18]. Consider the example in Fig. 4.

We see that, from the connectivity point of view and when we have an i.i.c. model
(homogenous links), the link {4, 5} is the most important one, the first one to improve
if possible. For example, in the case of r = 0.999, we have the estimations given in
Table1.

This illustrates well the fact that the order induced on the links by the gradient
of the resilience is a much more robust result than the metric itself. Of course, the
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Fig. 4 Two bridges
connected by a “bridge” link

Table 1 A few sensitivities of the resilience, on the model depicted in Fig. 4. In the estimations,
the absolute error is less than half the last significant digit (confidence level: 95%)

edge {1, 2} {2, 3} {4, 5}
sensitivity 7.01 10−3 3.79 10−5 16.0

Table 2 Some values of resilience as r increases. Same accuracy as in Table1

r 0.91 0.95 0.99 0.995 0.999 0.9999

Res 199.8 207.2 209.9 209.977 209.9991 209.999989

example has been chosen to amplify the effect of having links playing a more critical
role than the others, but the phenomenon is visible in any model.

Let us come back now at our resilience estimation. Considering theArpanetmodel
previously shown, the resilience gets pretty close to its maximal value as r gets close
to 1. Some examples are given in Table2.

For the Arpanet model used, since we have n = 21 nodes, the maximal possible
resilience is

(n
2

) = 210. We observe that the resilience gets very close to that value,
which is expected (the rare event effect). This leads to consider other ideas for
differentiating situations. For instance, a way of measuring how a network reacts
face to failures, is seeing what happens when there is no more total connectivity in
the model. This means looking at the mean number of communicating pairs when the
graph is unconnected. If we denote by NCC the number of connected components
of our random graph G, observe first that the best situation is when there is only one
component, a connected graph, and the worst is when no link is working and we have
as many connected components as there are nodes, that is, NCC = n. So, we have
NCC ∈ {1, 2, . . . , n}, and on the borders, P(NCC = 1) = P(NCP = (n

2

)
) = Rall and

P(NCC = n) = P(NCP = 0) = ∏
i∈E(1 − ri ).

Now, a metric capturing what happens when the graph is not connected is the
conditional resilience

E(NCP | NCC ≥ 2).

Let us illustrate this with some numerical examples. In Table3 we show the mean
number of connected components E(NCC), and the two resiliences just discussed.
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Table 3 Three metrics on the Arpanet, i.i.c. case (homogeneous links). All the shown digits are
correct (confidence level: 95%)

r 0.91 0.95 0.99 0.995 0.999

E(NCC) 1.251 1.073 1.0027 1.00066 1.000026

E(NCP) 199.8 207.2 209.9 209.977 209.9991

E(NCP | NCC ≥
2)

160.3 167.6 174.5 175.2 175.5

The values of the conditional resilience are more separated than those of the
unconditional one. But our tools allow us to make other trials. For example, take as
central variable the number of pairs of nodes that can communicate using at least
two edge-disjoint paths. This is related to bi-connectivity in graphs, and we will
not developed the point here, but evaluating this variable needs to decompose the
graph G into its bi-connected components (also a linear computation, using a DFS
or a BFS, see again [10], for example). Denoting our variable as NCP2, we can look
at the metric E(NCP2 | NCC ≥ 2). We will not pursue these illustrations here. The
goal is to show that evaluating these types of metrics is pretty straightforward, and
only needs to be able to compute the corresponding graph analysis.

In the Appendix we provide analytical expressions to all the quantities described
here in the case of a bridge, that can be useful to check algorithms and to observe
behaviors.

5 Conclusions

In this chapter we first discuss the interest of moving to performability-like metrics
in network reliability. This allows to distinguish several performance levels when
different components fail, capturing the capacity of the system to continue to work
but possibly in degraded modes. We center the chapter around one of these met-
rics, called resilience, that has not received yet much attention in the literature. In
telecommunications, the word is being used with the same spirit but in other contexts
and associated with it, there are other technologically-oriented definitions.

Then, we considered exploring these metrics with Monte Carlo. We proposed to
see the standard or crude Monte Carlo procedure differently, leading to a way of
implementing it with much less computational effort when components, and then
systems, are highly reliable. This is just a different look at a conditional Monte
Carlo approach, but it allows testing in a straightforward manner estimators for these
performability metrics. Moreover, and this is how this viewpoint on standard Monte
Carlo developed,we can evaluate also the sensitivities of all thesemetricswith respect
to the (elementary) reliabilities of the systems’ components, and with a very small
overhead with respect to the cost of the metric evaluation itself.
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In future work, we will explore appropriate ways of conditioning, depending on
the metric considered, and the properties of the types of metrics we discuss here, as
well as their possible uses in the area.

Appendix

For checking purposes, we put here analytical expressions of all the objects con-
sidered in Sect. 4 of the chapter, in the case of the bridge model. They are obtained
basically by brute force, given the small size of the model.

• On the number of connected components NCC, NCC ∈ {1, 2, 3, 4}:
– P(NCC = 1) = Rall = r3(8 − 11r + 4r2)
– P(NCC = 2) = 2r2(1 − r)2(5 − 4r) = 10r2 − 28r3 + 26r4 − 8r5

– P(NCC = 3) = 5r(1 − r)4

– P(NCC = 4) = (1 − r)5

– E(NCC) = 4 − 5r + 2r3 + r4 − r5

• On the number of communicating pairs NCP, NCP ∈ {0, 1, 2, 3, 6}:
– P(NCP = 0) = (1 − r)5

– P(NCP = 1) = 5r(1 − r)4

– P(NCP = 2) = 2r2(1 − r)3

– P(NCP = 3) = 2r2(1 − r)2(4 − 3r)

– P(NCP = 6) = Rall = r3(8 − 11r + 4r2)
– E(NCP) = 5r + 8r2 − 14r4 + 7r5

– E(NCP | NCC ≥ 2) = r(5 + 18r − 17r2)
1 + 2r + 3r2 − 4r3

• On the number of pairs communicating through at least 2 edge-disjoint paths:

– NCP2 ∈ {0, 3, 6}
– P(NCP2 = 0) = (1 − r)(1 + r − r2 + 3r3 − 2r4)
– P(NCP2 = 3) = 2r2(1 − r)2

– P(NCP2 = 6) = r4(3 − 2r)

– E(NCP2) = 6r2(1 − 2r + 4r2 − 2r3)

– E(NCP2 | NCC ≥ 2) = 6r2

1 + 2r + 3r2 − 4r3

• Sensitivities of the resilience:

– W.r.t. links {1, 2}, or {1, 3}, or {2, 4}, or {3, 4}: 1 + 3r + r2 − 12r3 + 7r4;
– w.r.t. link {2, 3}: 1 + 4r − 4r2 − 8r3 + 7r4.
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