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Abstract Outliers have a significant negative impact on the data quality, data anal-
ysis results. If a large dataset contains only few outliers it is essential to identify 
them and then remove them (e.g., for credit card transactions only some of them 
will be fraudulent) or not. The paper presents an application of ensemble learning 
for symbolic data as a tool for outlier detection, where the DBSCAN (density-based 
SCAN) algorithm is applied. In the empirical part ensemble learning and single 
DBSCAN algorithm is used to detect outliers in an unbalanced data sets. The results 
show that ensemble approach can be efficiently used to detect outliers in symbolic 
data sets. 
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1 Introduction 

Outliers have a significant negative impact on the data quality. According to Hawkins 
(1980), an outlier is an observation that deviates so much from the other observa-
tions in the dataset as to arouse suspicious that it was generated by some different 
mechanism than other data entities. 

Detection of outliers is a fundamental issue in data analysis, its main goal is to 
detect and remove anomalous objects from the data. Because the technology changes 
rapidly, number of databases and their size grows over time. 

There are many different methods for outlier detection than can be used, starting 
from the simplest ones to more complex ones like feature bagging, subsampling, 
rotated bagging, isolation forests, outrank method, the approach proposed by Nguyen 
et al. (2010) (see, for example, Aggrawal 2013, 2015; Aggrawal and Sathe 2017; 
Nguyen et. al. 2010).
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Usually outlier detection algorithms are seen as statistical models of data that 
allow identify objects that do not fit the model, whereas the aim of the distance-
based approaches is to measure the distance between data. In such case, outliers are 
the data for which the distance is greater than given threshold (see, for example, 
Aggrawal 2013, 2015; Zhang 2013). One of such distance-based algorithms is the 
DBSCAN (density-based spatial clustering algorithm for applications with noise) 
algorithm. 

Ester et al. (1996) have proposed a density-based algorithm for discovering clus-
ters for classical data. This algorithm groups together points that have many neighbors 
and also detects outliers that are left in low-density subregions. In 1998, Sander et al. 
have proposed a generalized version of DBSCAN—the GDBSCAN. The generalized 
algorithm can cluster objects as well as spatially extend objects according to both their 
spatial and non-spatial attributes (Sander et al. 1998). Compello et al. (2013) have  
proposed a hierarchical version of DBSCAN. In 1999, Ankrest et al. proposed the 
OPTICS algorithm that extends the ideas of DBSCAN (Ankrest et al. 1999). Other 
DBSCAN extensions are SUBCLU and PreDeCon (Jahirabadkar, Kulkarni 2013; 
Kailing et al. 2004). Both use similar subspace clustering ideas that are similar to 
those of DBSCAN. WaveCluster (Sheikholeslami et al. 1998) is another modification 
of DBSCAN. It uses the wavelet transform to the dimension space and unfortunately 
is applicable only to low-dimensional datasets. DenClue (Hinnburg and Keim 1998) 
is another efficient algorithm that uses information about density to cluster objects. 

The paper presents an application of ensemble learning for symbolic data as a 
tool for outlier detection, where the DBSCAN algorithm is applied. Also it analyzes 
how DBSCAN’s initial parameters impact the number of detected outliers and the 
clustering quality itself. It is also the first paper that deals the problem of outlier 
detection with application of DBCSAN for symbolic unbalanced data sets. 

In the empirical part of this paper, ensemble learning and single DBSCAN algo-
rithm with different distance measures is used to detect outliers in an unbalanced 
data sets. The paper presents also an impact of the parameters that are essential for 
DBSCAN on the outlier detection and partition quality (in terms of Silhouette index). 

2 DBSCAN Ensemble for Symbolic Data 

In the classical data, each object is described by a set of single-valued variables. Such 
situation allows to describe objects as a vector of quantitative or qualitative measure-
ments where each column represents a variable. However, the classical approach may 
be too restrictive to represent more complex data. In order to take into consideration 
uncertainty and variability of the data, we must assume sets of categories or intervals 
with frequencies or weights. This kind of data representation has been studied in the 
Symbolic Data Analysis (SDA). 

In symbolic data analysis, each symbolic object can be described by following 
variables (Bock and Diday 2000; Billard and Diday 2006; Diday and Noirhomme-
Fraiture 2008; Noirhomme-Fraiture and Brito 2011):
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1. Quantitative (numerical) variables: 

• numerical single-valued, 
• numerical multi-valued, 
• interval variables, 
• histogram variables. 

2. Qualitative (categorical) variables: 

• categorical single-valued, 
• categorical multi-valued, 
• categorical modal. 

Examples of symbolic variables with their realizations are presented in Table 1. 
As the objects in the symbolic data analysis are described by non-classical vari-

ables, we can describe any type of phenomena in a more detailed way. However, 
symbolic data representation requires to apply special distance measures, methods, 
and algorithms that can deal with complex data. 

DBSCAN algorithm that will be used in the empirical part of this paper has 
several advantages over traditional partitioning techniques, like possibility to detect 
non-spherical shapes of clusters, groups of different size, and robustness against 
outliers. But sometimes the DBSCAN algorithm can lead to large number of clusters 
and the interpretation of such results can be difficult. Some authors suggest to use 
clustering visualization methods as the support for DBSCAN (Nowak-Brzezińska 
and Xięski 2014).

Table 1 Examples of symbolic variables with realizations 

Symbolic variable Realizations Variable type 

1 2 3 

Price of a new car  (in PLN) <27,000, 38,000>; <35,000, 
50,000> 
<20,000, 30,000>; <25,000, 
37,000> 

Interval-valued (non-disjoint 
intervals) 

Engine’s capacity (in ccm) <1000, 1200>; <1300, 1400> 
<1500, 1800>; <1900, 2200> 

Interval-valued (disjoint 
intervals) 

Chosen car color {red, black, green, blue} Categorical multi-valued 

Preferred car {Toyota (0.3); Volvo (0.7)} 
{Audi (0.6), VW (0.4), Skoda 
(0.05)} 

Categorical modal 

Distance traveled <10, 20> (0.65); <21, 30> 
(0.35) 

Histogram 

Sex {M; F} Nominal 

Number of customers (0, 1, 2, 3, …) Ratio 

Source Own elaboration 
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The DBSCAN algorithm for symbolic data requires to select two initial parame-
ters: ε and minPts. The  ε parameter controls how similar are the objects in the same 
group. The mintPts is the minimal number of objects that are needed to form a cluster. 
The minPts value can be derived from the number of dimensions in the data set (D) 
as minPts ≥ D + 1. If minPts = 1, every data point will be a cluster. When minPts 
≤ 2, the results will be the same as for hierarchical clustering with the single metric, 
with the dendrogram cut at height of ε. So  minPts should be at least 3. Larger minPts 
values are useful for data sets with noise and larger data sets. In general, minPts 
should be equal or greater than data dimensionality (number of variables). Sander 
et al. (1998) suggest to use minPts that is twice bigger than number of variables. 

The ε can be found by using a k-distance graph (see Sander et al. 1998 for further 
details) and plotting the distance to the k = minPts. If  ε are too small, a large part of 
the data set will not be clustered. Too large values will merge almost all data points. 

There are also other proposals in the literature that deal with the problem of 
parameter selection for DBSCAN. Some of them use differential evolutions, some 
propose to detect sharp distance increases generated by a function which computes 
a distance between each element of a data set and its kth nearest neighbor others 
propose to use some other clustering algorithm as the initial tool (see, for example, 
Starczewski et al. 2020; Karami and Johansson 2014; Chen et al. 2019). 

For the DBSCAN algorithm also a suitable distance measure for symbolic data is 
needed. In the paper, three of them will be compared (Gatnar and Walesiak 2011): 

1. Normalized Ichino-Yaguchi distance (unweighted): 

d(Ai , Ak) = q

⎡
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, vi j  , vk j  —symbolic variables, ⊕—Cartesian 
sum, ⊗—Cartesian product, ||—length of a symbolic interval-valued variable or 
number of elements in a symbolic categorical multi-valued variable, Vj —domain 
of a symbolic variable, γ ∈ ⎡

0, 1 2
⎤

. 
2. Normalized de Carvalho distance based on description potential: 

d(Ai , Ak) =
⎡

π |Ai ⊕ Ak | − π |Ai ⊗ Ak | + γ (2π |Ai ⊕ Ak | − π |Ai | − π |Ak |)
⎤

π
(

AE
) , 

(2) 

where: AE—maximum object according to the description potential, π ( Ai )— 
description potential of a symbolic object, other elements like in Eq. 1. 

3. Second normalized de Carvalho distance that is based on description potential:



Outlier Identification for Symbolic Data … 57

d( Ai , Ak) =
⎡

π |Ai ⊕ Ak | − π |Ai ⊗ Ak | + γ (2π |Ai ⊕ Ak | − π |Ai | − π |Ak |)
⎤

π (Ai ⊕ Ak) 
, 

(3) 

where all elements as in Eq. 3. 
Other distances for symbolic data are described in Bock and Diday (2000), Gatnar 

and Walesiak (2011). 
The ensemble learning, in general, means aggregation of results of many different 

models into one model that reaches better results. Such an idea was successfully 
applied both in supervised and unsupervised approaches for classical and symbolic 
data. However, this idea can be also used to detect outliers (see, e.g., Aggrawal and 
Sathe 2017). For all distance measure computations the R package symbolicDA will 
be applied (see: Walesiak et. al. 2018). 

In this paper, two different symbolic distance measures, minPts’ and ε, are used 
to obtain one ensemble model that allows to detect outliers in more precise way. The 
results of the ensemble model will be compared to single models. 

3 Simulations and Their Results 

To check if the DBSCAN for symbolic data can be a suitable tool for outlier detection 
in real data sets, unbalanced symbolic data sets were prepared for experiments with 
application of cluster.Gen function from clusterSim algorithm (Walesiak 
and Dudek 2020): 

1. Data set I that contains 100 symbolic objects in three elongated clusters 
of equal size and 10 outliers in two dimensions. The observations in each 
cluster are independently drawn from bivariate normal distribution with means 
(0, 0), (1.5, 7), (3, 14) and covariance matrix

∑(

σ j j  = 1, σ  jl  = −0.9
)

. 
2. Data set II that contains 190 symbolic objects and 20 outliers in four clus-

ters of following sizes (70, 40, 30, 30) that are described by three vari-
ables. The observations are drawn from multivariate normal distribution 
(−4, 5, −4), (4, 14, 5), (14, 5, 14), (5, −4, 5) and identity variance matrix ∑, 
where σ j j  = 1(1 ≤ j ≤ 3) and σ jl  = 0(1 ≤ j /= l ≤ 3). 

3. Data set III that contains 180 observations five clusters of following sizes 
(20, 30, 40, 50, 50) that are not well separated and 20 outliers in two dimen-
sions. The observations are independently drawn from bivariate normal distribu-
tion with means (5, 5), (−3, 3), (3, −3), (0, 0), (−5, −5) and identity covariate 
matrix

∑(

σ j j  = 1, σ  jl  = 0.9
)

. 
4. For the DBSCAN algorithm, the following initial parameters have been assumed: 
5. As we have two or three variables in the data sets then minPts will be equal to 3, 

5, and 7. 
6. The ε was selected by using a k-distance graph (see Sander et. al. 1998) and 

plotting the distance to the k = minPts.



58 M. Pełka

7. Table 2 presents the results for the minPts values for all distances that were taken 
into consideration in this research. 

The larger the number of minPts parameter in the model, the greater the number 
of detected outliers and better clustering quality. Similar results were reached for 
classical data by Nowak-Brzezińska and Xsięski (2017), p. 65.

Table 2 Results of simulations—minPts parameter 

Dataset minPts 3 5 7 

Normalized Ichino-Yaguchi distance 

I No. of clusters 2 3 3 

No. of outliers out of 10 8 out of 10 9 out of 10 

Clustering quality* 0.3564 0.4776 0.5662 

II No. of clusters 3 4 4 

No. of outliers 11 out of 20 17 out of 20 17 out of 20 

Clustering quality* 0.3112 0.4432 0.5201 

III No. of clusters 4 5 6 

No. of outliers 5 out of 15 10 out of 15 11 out of 15 

Clustering quality* 0.2212 0.3555 0.4110 

Normalized de Carvalho distance based on description potential 

I No. of clusters 2 3 3 

No. of outliers 6 out of 10 9 out of 10 9 out of 10 

Clustering quality* 0.4356 0.5680 0.5680 

II No. of clusters 3 4 4 

No. of outliers 12 out of 20 18 out of 20 18 out of 20 

Clustering quality* 0.3523 0.4767 0.4767 

III No. of clusters 4 6 6 

No. of outliers 7 out of 15 10 out of 15 12 out of 15 

Clustering quality* 0.4405 0.4703 0.5309 

Second version of the normalized de Carvalho distance based on description potential 

I No. of clusters 2 3 3 

No. of outliers 6 out of 10 9 out of 10 9 out of 10 

clustering quality* 0.4457 0.5774 0.6102 

II No. of clusters 3 4 4 

No. of outliers 11 out of 20 18 out of 20 18 out of 20 

Clustering quality* 0.3106 0.4817 0.4817 

III No. of clusters 4 6 6 

No. of outliers 7 out of 15 10 out of 15 12 out of 15 

Clustering quality* 0.4612 0.4745 0.5509 

*—measured by Silhouette index 
Source Own elaboration 
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In the case of the minPts parameter normalized de Carvalho distances perform 
usually better, in terms of clustering quality, than normalized Ichino-Yaguchi 
distance. 

Table 3 presents the results for the ε parameter for all distances.
If the parameter ε is small then larger number of outliers is being detected and 

better clustering quality is archived in general. The choice of a distance measure is 
quite important and usually normalized de Carvalho distances perform better than 
normalized Ichino-Yaguchi distance. 

Table 4 presents the results for aggregated model.
When considering an ensemble model for each datasets, minPts and ε values, 

we can see that aggregated models allow to detect more existing outliers and their 
quality is also better. 

4 Final Remarks 

The DBSCAN algorithm can be easily applied for the symbolic data case. The only 
thing that differs it from the classical version of the DBSCAN is the distance measure 
for symbolic data. 

When looking at the DBSCAN’s parameters—minPts (minimal number of data 
points to form a cluster) and ε (maximum distance for objects in a cluster), both 
have significant impact on the clustering results—both in terms of clustering quality 
and number of outliers that have been detected. Higher minPts values lead to larger 
number of outliers in the data and also to higher clustering quality (that was measured 
by Silhouette index). However, higher ε values lead to lower number of clusters and 
less outliers and usually worse clustering quality. So selection of initial parameters 
can lead to different clustering results. Similar results were obtained by Nowak-
Brzezińska and Xsięski (2014) for classical data sets with outliers. 

Ensemble approach that uses information from different models (three different 
distance measures, three different minPts values, and three different ε values) allows 
to save some time on initial parameters tuning and as the most important fact it leads 
to better clustering results in terms of clustering quality and number of detected 
outliers in unbalanced datasets.
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Table 3 Results of simulations—ε parameter 

Dataset ε 0.2873 0.6073 0.9021 

Normalized Ichino-Yaguchi distance 

I No. of clusters 3 3 3 

No. of outliers 6 out of 10 4 out of 10 4 out of 10 

Clustering quality* 0.5456 0.4243 0.4375 

II No. of clusters 4 4 3 

No. of outliers 15 out of 20 11 out of 20 10 out of 20 

clustering quality* 0.5082 0.4553 0.4023 

III No. of clusters 5 4 4 

No. of outliers 12 out of 15 10 out of 15 9 out of 15 

Clustering quality* 0.5210 0.4521 0.3532 

ε 0.4032 0.6443 0.9827 

Normalized de Carvalho distance based on description potential 

I No. of clusters 3 3 3 

No. of outliers 7 out of 10 5 out of 10 4 out of 10 

Clustering quality* 0.6532 0.5102 0.4874 

II No. of clusters 4 4 3 

No. of outliers 16 out of 20 13 out of 20 11 out of 20 

Clustering quality* 0.6081 0.4652 0.4001 

III No. of clusters 5 4 4 

No. of outliers 13 out of 15 11 out of 15 9 out of 15 

Clustering quality* 0.5287 0.4987 0.3493 

ε 0.3002 0.6758 0.9928 

Second version of the normalized de Carvalho distance based on description potential 

I No. of clusters 3 3 3 

No. of outliers 8 out of 10 6 out of 10 5 out of 10 

Clustering quality* 0.6232 0.5457 0.5108 

II No. of clusters 4 4 3 

No. of outliers 15 out of 20 13 out of 20 10 out of 20 

Clustering quality* 0.5083 0.4655 0.4027 

III No. of clusters 5 4 4 

No. of outliers 13 out of 15 12 out of 15 9 out of 15 

clustering quality* 0.5297 0.5211 0.3490 

*— measured by Silhouette index 
Source Own elaboration
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Table 4 Results of 
simulations—distances and 
all models 

Aggregated model I II III 

No. of clusters 3 4 6 

No. of outliers 9 out of 10 17 out of 20 13 out of 15 

Clustering quality* 0.6732 0.5476 0.6927 

*—measured by Silhouette index 
Source Own elaboration
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