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Abstract There are two main methods of constructing survival trees. The first 
method is based on measures of heterogeneity of survival functions in individual 
nodes, while the second method uses intranodal differentiation determined by the 
likelihood function or the partial likelihood function as a criterion for the division. 
The Kaplan–Meier estimator is used to estimate the survival curve for individuals 
located at terminal nodes. The prediction of survival probabilities for a given indi-
vidual based on the thus obtained conditional Kaplan–Meier curve does not consider 
their characteristics, which were omitted in the construction of the divisions and in 
some cases may lead to conclusions that are too general. Then, the solution may be 
to use the direct adjusted survival curve, for the construction of which all explana-
tory variables included in the Cox model are used. In this article, we compare these 
two survival prediction methods, paying attention to the limitations and advantages 
of each. The empirical analysis was carried out with the use of data from the 2018 
Labor Force Survey for Poland. The economic activity of women around retirement 
age was examined. 

Keywords Survival trees · Direct adjusted survival curves · Kaplan–Meier 
curves · Women’s employment 

1 Introduction 

Prediction in the survival analysis is based on the estimation of the survival function 
or the cumulative hazard function. Non-parametric methods are most often used to 
determine the estimators of these functions. The two basic ones are the Kaplan– 
Meier method (Kaplan and Meier 1958) and the Nelson-Aalen method (Aalen 1978; 
Nelson 1972). One important limitation of these methods is that covariates which 
may affect the duration of an individual in a definite state are not considered when 
constructing the survival function estimators. Therefore, these functions are most
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often determined for groups of individuals designated by the categories of a specific 
qualitative variable. In this approach, the other characteristics of the individuals are 
not considered at all. The simultaneous influence of many factors on the duration 
of an individual in a definite state can be accounted for using parametric and semi-
parametric models (Blossfeld and Rohwer 1995). 

Machine learning methods are increasingly being used to describe the relation-
ships between the characteristics of an individual and their duration in a definite 
state; among them the most popular are the survival trees (Zhou and McArdle 2015). 
Tree construction for censored survival data cannot be immediately transferred from 
classification or regression tree algorithms due to the lack of a natural measure of 
homogeneity within the node. The concept of survival trees was first described in 
(Gordon and Olshen 1985). The authors of this work point out the simplicity of 
the proposed methods, while noting that their assumptions concern only the trace-
ability of conditional duration distributions under the condition of certain explanatory 
variables. 

The purpose of recursive splitting methods used to construct trees for censored 
survival data is to divide the population into homogeneous groups with regard to the 
duration of individuals in a definite state. There are two main methods of constructing 
survival trees based on the maximization of heterogeneity between nodes (Molinaro 
et al. 2004). The first one is based on measures of heterogeneity between nodes 
(Ciampi et al.  1986; De Rose and Pallara 1997), among them the log-rank test statistic 
is the most frequently used (Peto and Peto 1972; Klein and Moeschberger 2006). The 
second method is based on the CART algorithm (the Classification and Regression 
Tree (CART) algorithm) (Breiman et al. 1984) and the likelihood or partial likelihood 
function (Davis and Anderson 1989; Al-Nachawati et al. 2010). 

Both types of survival tree models allow not only to define groups of individ-
uals like each other in terms of survival time but can also be used to determine the 
probability of duration of individuals in a definite state. The prediction of survival 
probabilities of an individual obtained in this way depends on their individual char-
acteristics. However, in the case of trees, whose structure is based on the comparison 
of survival curves determined with the Kaplan–Meier estimator, it is not possible 
to include time-dependent variables in their construction. This restriction does not 
apply to trees based on Cox regression (Cox 1972; Cox and Oakes 1984). They 
enable the prediction of survival probabilities for individuals characterized by both 
time-independent and time-dependent covariates. However, this approach also has a 
certain limitation, as it requires verification of the assumption of proportional hazards. 

The prediction of survival probabilities based on the survival trees is performed by 
determining the survival function for the terminal nodes (leaves). If the distributions 
of explanatory variables omitted in the construction of a given leaf are not uniform in 
the selected groups, such approach may lead to erroneous conclusions. Then, a better 
solution may be to use the semi-parametric Cox model and the direct adjusted survival 
curves for prediction of survival probabilities (Chang et al. 1982; Gail and Byar 1986; 
Zhang et al. 2007). In the case of prediction of survival probabilities based on the 
adjusted survival function, all the characteristics of the individuals included in the 
model are considered, but this approach also requires verification of the assumption
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of proportional hazards. This study compares the results obtained with the use of 
two types of survival trees and the adjusted survival function. The aim of the study 
was to indicate the advantages and limitations of these prediction methods in the 
survival analysis as well as to analyze the discrepancy in the results obtained with 
these methods. Moreover, to increase the accuracy of prediction, we extended the 
algorithm proposed of Al-Nachawati et al. (2010) by introducing multiple splits in 
the process of construction of survival trees. The duration of employment of women 
aged 51–70 was considered as a reference problem. 

2 Theoretical Backgrounds 

In the survival analysis, the basic function used to describe the duration of an 
individual in a definite state is the survival function: 

S(t) = P(t < T ) (1) 

where T denotes the variable describing the time until the event occurs. The most 
common estimator of the survival function, also used in this work, is the Kaplan– 
Meier estimator (Kaplan and Meier, 1958). It is given by the following formula: 

S
∧

(t) =
∏

j :t j <t

(

1 − 
d j 

n j

)

(2) 

where d j denotes the number of events that occurred at t j and n j is the number of 
individuals at risk of the event until t j . 

The comparison of survival curves estimated by the Kaplan–Meier method is the 
basis for the construction of many survival trees (Ciampi et al. 1986; De Rose and 
Pallara 1997). The construction of trees of this type is based on the algorithm of 
recursive division of the multidimensional feature space into disjoint subsets due to 
differences in the survival time of the considered individuals. The log-rank test, called 
the Mantel-Cox test (Klein and Moeschberger 2006), is most often used to compare 
the survival distribution in the selected groups. The division of the feature space is 
made into two disjoint areas in a recursive manner, until the whole space is divided 
into many areas differentiated by the survival distribution. A detailed description of 
the tree construction algorithm of this type can be found in the work of LeBlanc and 
Crowley (1993). The prediction of survival probabilities with the use of such model 
of the survival tree consists in determining the survival function for each terminal 
node using the Kaplan–Meier method. 

There is also the second type of survival trees (Davis and Anderson 1989; Al-
Nachawati et al. 2010), the construction of which is based on Cox regression (Cox 
1972; Cox and Oakes 1984). Let x = [x1, . . . ,  xk]T denote a vector of covariates
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and β = [β1, . . . , βk] a vector of estimated model parameters. Then, for the Cox 
proportional hazards model, the hazard is given by the following formula: 

h(t |x) = h0(t)exp(xβ) (3) 

where h0(t) denotes baseline hazard. 
Let us assume that for each jth, j = 1, . . . ,  N individual t j signifies their survival 

time and ν j is a censoring variable, which takes the value 1, for event-affected 
individuals and 0 for censorship. Let x jq  for q = 1, . . . ,  p denote qth question for 
jth individual. Then the hazard function h j (t) for jth individual and qth question x jq  
is given by the following formula: 

h j (t) = h0(t)exp
(
bq x jq

)
(4) 

where bq denotes the unknown coefficients. Each explanatory variable can be used 
to split the parent node with a certain probability. This probability is determined 
by testing the global null hypothesis β = 0 in a semi-parametric regression model. 
The construction of the tree in this study was carried out according to the algorithm 
proposed by Al-Nachawati et al. (2010), with the difference that multiple, not only 
binary splits were considered. 

The algorithm for constructing a survival tree based on Cox regression can be 
represented as follows: 

Step 1. Estimate the Cox proportional hazards regression model using the forward 
technique, considering all covariates available in the data set. Find the variable with 
the smallest p-value. 

Step 2. The first split is made based on the variable identified in step 1, but for a 
categorical variable with more than two levels, a multiple split is used, and the levels 
are not linked. 

Step 3. For each subgroup of individuals located in each of the nodes created in 
step 2, the Cox model is estimated. A forward technique determines a covariate, 
based on which the next split of each node is made. 

Step 4. Repeat step 3 for the obtained nodes as long as there is a statistically 
significant covariate determined by the forward technique or the previously defined 
stop criterion, taking into account, for example, the size of the tree, is not met. 

To derive the prediction of survival probabilities based on this model of the survival 
tree, similar to the previously considered tree, the survival function is determined for 
each terminal node by the Kaplan–Meier method. 

An alternative to the Kaplan–Meier method of determining the survival function 
is the Cox regression approach (Cox 1972; Cox and Oakes 1984), which enables 
the determination of the survival function separately for each group of individuals 
characterized by a specific set of their features. In the semi-parametric Cox model, 
the formula for the survival function is as follows:
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S(t) = [S0(t)]exp(xβ) (5) 

where S0(t) is the baseline survival function corresponding to the baseline hazard 
h0(t). The baseline survival function S0 can be presented using the cumulative hazard 
function H0 as follows: 

S0(t) = exp(−H0(t)) (6) 

where H0(t) = ∫ t 
0h0(u)du, t ≥ 0. The estimator of the survival function S(t) 

presented in this way has the following form: 

S
∧

(t) =
[
S
∧

0(t)
]exp

(

xβ
∧)

(7) 

where β
∧

=
[
β
∧

1, . . . , β
∧

k

]
denotes the estimator of the parameter vector β and S

∧

0 is the 

estimator of a baseline survival function, which is given by the following formula: 

S
∧

0(t) =
∏

u|t(u)<t 

⎛ 

⎝1 − du
∑

l∈R(t(u))exp
(
xl β

∧)

⎞ 

⎠ (8) 

where du , u = 1, 2, . . . ,  m is the number of observations, for which the event 
occurred at the moment t(u), u = 1, 2, . . . ,  m, and R

(
t(u)

)
, u = 1, 2, . . . ,  m, denotes a 

hazard set. The hazard set includes all individuals for which the survival or censoring 
time is greater than tu . 

Let j now denote an individual belonging to the ith group, then the observed 
values for this individual can be described by

{
ti j  , vi j  , xi j

}
, i = 1, 2, . . . ,  K , j = 

1, 2, . . . ,  ni , where ti j  is the observed time, vi j  = 0, when censoring occurs and 
vi j  = 1 otherwise, and xi j  denotes the covariates vector. Then, the survival function 
at the moment t, for an individual from the i-th group with values of variables x, has 
the following form (Chang et al. 1982; Gail and Byar 1986; Zhang et al. 2007): 

S
∧

i (t; x) = exp
{
−H

∧

0i (t)exp
(
xβ

∧)}
(9) 

The general formula for the direct adjusted survival curve is. 

S
∧

i (t) = 
1 

n 

n∑

l=1 

exp
{
−H

∧

0i (t)exp
(
xl β

∧)}
(10) 

where n = ∑K 
i=1ni .
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In this study, the obtained survival function was compared to the survival functions 
obtained by the Kaplan–Meier method with the use of two types of survival trees. 
Moreover, with the use of all the methods presented in this section, it is possible to 
determine the probability of a definite event occurring for the examined individuals 
and those on which the model was not trained. 

3 Empirical Examples 

3.1 Data 

The study used a data set from the Labor Force Survey (LFS). The research sample 
consisted of women who were examined for two consecutive quarters of 2018 
(samples 75–77 and 79–81). Women aged 51–70 who had ever worked after 2011 
were selected for the study. There were 9,540 women who met these criteria. 

In survival analysis, the dependent variable is time T, i.e., the variable representing 
the waiting time until the occurrence of an event. In our study, T denotes the time until 
employment termination. More precisely, at the time of the study, 60.22% of women 
were still working—in the study they were considered as censored individuals. For 
these women, the time was calculated as the number of months from 2011 or from 
starting work, if it was started after 2011, until the second survey. For women who 
were no longer working at the time of the study, the time was calculated as the number 
of months from 2011 or from the moment of starting work, if it was started after 
2011, until the moment they stopped working. For these women, the event occurred. 
Moreover, considering the statutory retirement age for women in Poland in the study, 
which is 60 years, we defined the Age_group variable to distinguish women who 
have not yet reached the retirement age and those who have already reached that 
age. Table 1 presents the other characteristics of the women, which were considered 
in the construction of the survival trees and the direct adjusted survival curves. In 
addition, in the table, apart from the variable name, its abbreviated name used in the 
survival trees is given in parentheses.

3.2 Survival Trees 

In the first stage of the research, a survival tree with a maximum depth of 4 was 
constructed based on the data set presented in point 3.1. and using R software. The 
tree was constructed with the ctree function available in the partykit package. The 
resulting tree is shown in Fig. 1. Based on the obtained results, it can be concluded that 
the greatest impact on the termination of the employment relationship of the studied 
women was reaching retirement age, education, and the type of employment.
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Table 1 Sample characteristics 

Variable Description Levels Proportion [%] 

Age_group (Age) Age group of women at 
the time of the survey 

1 = from 51 to 59 years old  53.44 

2 = from 60 to 70 years old  46.56 

Education (Edu) Level of education 1 = higher 23.82 

2 = post-secondary or 
secondary 

36.24 

3 = basic vocational or 
primary school 

39.94 

Marital_status (Mar) Marital status 0 = unmarried, a widower, 
a widow, separated or 
divorced 

27.41 

1 = married 72.59 

Place_residence (Res) Class of place of 
residence during the 
survey 

1 = city of 100 thousand 
residents and more 

37.51 

2 = city to100 thousand 
residents 

30.41 

3 = rural areas 32.08 

Employment (Emp) Type of employment 1 = salaried employee 79.88 

2 = self-employed or 
helping family member 

20.12 

Institutions 
(Ins) 

Institution (company) 
that is a place of work 

1 = no information 20.12 

2 = private 39.48 

3 = public 40.40 

Elderly_person 
(Eld) 

The presence of elderly 
person over 75 years old 
in the household 

0 = no 91.43 

1 = yes 8.57

In the second stage of this study, with the use of SAS software, the semi-parametric 
Cox model was estimated using the forward technique for all characteristics presented 
in Table 1, previously verifying the assumption of proportional hazards. The esti-
mation results of this model are included in Table 2, while the summary of the 
forward selection in Table 3. As a result of the forward technique, it was found that 
the covariate that has the greatest impact on economic activity is the age of women 
(Table 3). Therefore, it was the first covariate that was used to split the data. Conse-
quently, the observations in the root were divided into two sets. Two separate Cox 
proportional hazard models were then estimated using a forward technique for these 
two received sets of observations using all available women characteristics, except 
for the age variable, again selecting the most important variable for each of the 
received sets. For both nodes this is education. Since this covariate has three levels, 
the observations in each of these two nodes were divided into three sets, and then on 
each of the extracted sets, the Cox proportional hazard model was re-estimated using 
a forward technique to determine the covariates against which subsequent divisions
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Fig. 1 The decision tree based on the log-rank test (Tree 1)

were made until the tree reached a given depth 4. As a result of such splits, a tree was 
obtained, as shown in Fig. 2. For each node, the number of observations for which 
the event occurred (1) and censored (0) was given. 

For the construction of the second tree, all the covariates available in the data set 
were used; however, the covariates that had the greatest impact on the duration of

Table 2 Estimated parameters, standard error, p-value, and hazard ratio for covariates in the model 

Covariate Parameter estimate Standard error p-value Hazard ratio 

Age group of women at the time of the survey (ref. from 60 to 70 years old) 

From 51 to 59 years old −1.7662 0.0399 <0.0001 0.171 

Level of education (ref. basic vocational or primary school) 

Higher −0.9449 0.0545 <0.0001 0.389 

Post-secondary or 
secondary 

−0.3284 0.0369 <0.0001 0.720 

Class of place of residence during the survey (ref. rural areas) 

City of 100 thousand 
residents and more 

−0.1068 0.0445 0.0163 0.899 

City to 100 thousand 
residents 

−0.0197 0.0421 0.6400 0.981 

The presence of elderly person over 75 years old in the household (ref. yes) 

No −0.2007 0.0627 0.0014 0.818 

Institution (company) that is a place of work (ref. public) 

No information −0.2537 0.0509 <0.0001 0.776 

Private 0.2874 0.0382 <0.0001 1.333
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Table 3 Summary of forward selection 

Step Covariate Number included Chi-square Pr > ChiSq 

1 Age group of women at the time of the 
survey 

1 2509.7365 <0.0001 

2 Level of education 2 428.4950 <0.0001 

3 Institution (company) that is a place of work 3 139.9721 <0.0001 

4 The presence of elderly person over 75 years 
old in the household 

4 10.5880 0.0011 

5 Class of place of residence during the survey 5 6.8367 0.0328 

Fig. 2 The decision tree based on Cox regression (Tree 2)

employment of the studied women were the covariates describing their age, educa-
tion, and the type of employment. These are the same covariates that were used to 
construct the first tree. 

3.3 Survival Function Estimation 

The presented models of survival trees make it possible to distinguish groups of 
women for whom there are differences due to the duration of the employment rela-
tionship; however, in line with the purpose of this chapter, the focus was on comparing 
the prediction of survival probabilities obtained with the use of both survival trees 
using the direct adjusted survival curve. This paper presents the estimates of the 
survival function using the Kaplan–Meier method based on the results obtained from 
models of survival trees for women with the most and least frequent characteristics 
in the data set. The obtained functions were compared to the direct adjusted survival 
curve. This curve is the averaged survival function for the individuals that occurred
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in the data set under consideration. This means that the survival curves are averaged, 
not the values of the variables (Zhang et al. 2007). 

Figure 3 shows the estimates of the survival curves for women with the most 
common characteristics in the data set, i.e., women who simultaneously met the 
following conditions: they had not yet reached retirement age, had basic vocational 
or primary school education, were married, lived in a city with over 100,000 residents, 
worked as salaried employees in a public institution (company), and there were no 
persons over 75 in their households. Based on the obtained curves, it can be seen 
that each of the methods considered in this paper gave similar results. Moreover, it 
can be concluded that the probability that a woman with such characteristics will 
not terminate the employment relationship in the next 8 years is approximately 0.75. 
The curves start to decrease faster after about 7 years, which means that after this 
period the chances of staying in employment decrease faster and faster. 

Figure 4 shows the estimates of the survival curves for women with the least 
common features in the sample, i.e., women who have already reached retirement 
age, have higher education, are not married, live in a city up to 100,000 residents, 
are self-employed or help with family enterprises; moreover, in the households of 
these women there were people over 75 years of age. It can be seen from the obtained 
curves that the curves determined by the Kaplan–Meier method based on the models 
of survival trees are the same. This is because in both models the women under
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Fig. 3 The comparison of the curve obtained with the Kaplan–Meier method based on trees and 
the direct adjusted survival curve for women with the most common characteristics in the sample 
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consideration ended up in the terminal node defined in the same way. Moreover, 
there are clear differences between the so estimated survival curve and the direct 
adjusted survival curve, which considers all the characteristics of these women, 
not only those that influenced their allocation in the terminal node in the models 
of the trees under consideration. Based on the adjusted survival function, it can 
be concluded that the probability that a woman with such characteristics will not 
terminate the employment relationship in the next 8 years is approximately 0.55. 
However, based on decision tree models, this probability is 0.75. Because these 
women already reached their retirement age, it can be assumed that the prediction 
of duration probability in professional activity obtained with the use of the direct 
adjusted survival curves is more accurate. To verify this assumption, the accuracy of 
the prediction was assessed using the Schemper and Henderson measure (Schemper 
and Henderson 2000). Based on the obtained values for this measure, it can be 
concluded that considering the probability of the duration of economic activity of all 
the characteristics of these women may improve its accuracy.

4 Summary and Conclusions 

This study compares the prediction of survival probabilities methods used in the anal-
ysis of survival. With the use of these methods, the probability of employment dura-
tion of women approaching or exceeding the retirement age was predicted, consid-
ering their individual characteristics. Moreover, based on the results obtained from 
two types of survival trees, the determinants of economic activity of older women 
were identified. Our contribution to the research on the economic activity of elderly 
women in Poland is the identification of the hierarchy of factors that stimulate or 
limit their staying in the labor market. It was shown that the greatest impact on the 
professional activity of these women, apart from age, had education and type of 
work. On the other hand, professional decisions were less influenced by such char-
acteristic as marital status, place of residence, and the presence of a person aged 75 
+ in the household. Considering the large impact of education on the termination of 
employment by older women, to keep these women in the labor market, it is worth 
paying attention to raising their qualifications, or even changing them. On the other 
hand, the large impact on the employment of women of variables related to the type 
of work performed and the employment institution may indicate their expectations 
regarding working conditions are particularly important. 

The idea behind the construction of survival trees is to group individuals according 
to their survival time (LeBlanc and Crowley 1993). In this study, the use of the survival 
trees to identify the characteristics that define homogeneous groups of women in 
terms of their duration in employment as well as the variables that most affect this 
time. However, it has been shown that in the case of prediction of survival prob-
abilities, in some cases, it is better to use the direct adjusted survival curves than 
survival trees. In addition, Cox regression-based methods enable the construction of 
a predictive model with both time-independent and time-dependent covariates.
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A significant limitation of machine learning methods adapted to censored data is 
the problem with assessing their accuracy in prediction of survival probabilities. In 
the case of survival trees, there is a discussion about assessing the quality of a survival 
model in terms of predictive accuracy, and none of the measures proposed so far has 
been widely adopted (Zhou and McArdle 2015). The most frequently used measure 
of predictive accuracy in survival analysis is the one proposed by Schemper and 
Henderson (Schemper and Henderson 2000), which is based on the survival function 
estimated without considering additional characteristics and after considering them. 
Therefore, it enables the assessment of the accuracy of the prediction of survival 
probabilities from the point of view of the selection of explanatory variables. In the 
case of survival trees, the method of selecting explanatory variables results from the 
selected recursive partitioning algorithm. In the presented study, four variables were 
used for the construction of the tree with a depth of 4, based on the comparison of 
Kaplan–Meier survival curves, and in the case of the tree based on Cox regression, 
all variables. 
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