
Alexander G. Haslberger   Editor 

Advances 
in Precision 
Nutrition, 
Personalization 
and Healthy Aging



Advances in Precision Nutrition, 
Personalization and Healthy Aging



Alexander G. Haslberger 
Editor 

Advances in Precision 
Nutrition, Personalization 
and Healthy Aging



Editor 
Alexander G. Haslberger 
Department of Nutritional Sciences 
University of Vienna 
Vienna, Austria 

ISBN 978-3-031-10152-6 ISBN 978-3-031-10153-3 (eBook) 
https://doi.org/10.1007/978-3-031-10153-3 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9699-537X
https://doi.org/10.1007/978-3-031-10153-3


Foreword 

The fast advances in nutritional research and the translation of the progress 
into practical approaches for health promotion and disease prevention in the last 
decades were amazing. The way from the first dietary guidelines to the analysis 
of molecular pathways of nutritional regulation, such as the role of mutations, 
epigenetics, microbiota and metabolites, rapidly resulted in the possibilities for a 
precision nutrition. 

Nutrition is a global science that originally was envisaged to biologically anal-
yse and integrate the processes related to food transformation into energy and 
nutritious components for cell functions and homeostasis. It is now evident that 
such physical, chemical and metabolic reactions participate in human develop-
ment to ensure life expectancy and well-being, with a growing and inseparable 
relevance for personal, population and planetary health. Nowadays, nutritional 
challenges and nutritionist’s interests are being focused on health and wellness 
involving physical, emotional, intellectual, cognitive, spiritual, environmental and 
occupational facets. Moreover, according to the newer emerging health scenar-
ios, food intake should be assessed in relationship with social, satisfaction, satiety, 
security, safety and sustainable dimensions. In this context, two apparently alterna-
tive approaches, one derived from a global public health perspective and another 
derived from a precision-personalised nutrition paradigm, should be harmonised 
and deliberated since they are complementary to each other, and as such, per-
sonalised, participative, preventive and predictive strategies are all needed in 
order to maintain a healthy status as well as to prevent and manage diseases 
(Martínez-González et al. 2021). 

The present book covers many important recent aspects in this area, starting 
from an analysis of trends to the scientific background in genetics, epigenetics, 
microbiota, metabolomics, neurology and healthy ageing to methods of the anal-
ysis of big data derived data, clinical praxis, emerging new products between 
nutrition and nutraceuticals plus consumers aspects with omics technologies and 
bigdata/bioinformatic tools supported on machine learning approaches. 

I know Alexander Haslberger now for many years from research cooperation 
and his scientific work. He is driven by a strong motivation for basic science but 
also for an ethical, social and environmentally responsible translation of scientific 
progress into praxis. His work with big international organisations such as WHO 
trained his view for international and global requirements.
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I also know many other authors for their brilliant scientific work in this area. 
I think the present book will give stimulating new views on developments in this 

area for readers from the relevant sciences but also for all citizens and consumers 
interested in the developments of personalised health prevention and nutrition with 
precision perspectives to compute all available phenotype- and genotype-related 
factors and determinants at all age stages. 

Madrid, Spain 
May 2022 

Prof. J. Alfredo Martínez 
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ABSTRACT 

The transition from undernutrition to overnutrition in many parts of the world 
as well as the integration of the fast developments of molecular biology has 
strongly impacted nutritional sciences. Especially the increasing understanding 
of interactions between genetics, epigenetics, microbiota, the immune system, 
and nervous system and consequences from lifestyle and the exposome has 
paved the way for the need to understand individually highly different metabolic 
responses to foods and nutritional needs. 

Often nutrition is seen as a rather complex field between natural sciences and 
translational sciences, focusing on highly complex molecular pathways as well 
as challenging epidemiological surveys, considering difficult interactions between 
nutrition and various lifestyle factors.
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“Although food and nutrition have been studied for centuries, modern nutri-
tional science is surprisingly young. The first vitamin was isolated and chemically 
defined in 1926. Research on the effects on nutrition in non-communicable chronic 
diseases, such as cardiovascular disease, diabetes mellitus, obesity, and cancers, is 
even more recent, accelerating over the past two or three decades and especially 
after 2000” (Mozaffarian et al. 2018). 

However, to understand some tensions in the development of modern nutrition 
research one needs to consider early nutritional concepts: Anaxagoras (500– 
428 bc), a Greek philosopher, mentioned that “foods we eat contain components 
that were needed for the growth of the body”. He believed that “everything is in 
everything, at all times”, and physical characteristics (hair, nails, flesh, etc.) were 
generated from foods that contained those same substances. Plato’s (428/427– 
348/347 bc) idea of a healthy diet consisted of a balance of cereals, fruits, 
vegetables, dairy products, with a strong emphasis on moderate consumption of 
meat and wine. His belief was that excess food from one source would lead 
to future ailments (Medieval European Nutrition, Health Ahoy, n.d.; Mozaffarian 
et al. 2018; Pléh 2012). 

But already vacillating between concepts of nature and nurture Hippocrates 
believed that “those who are constitutionally very overweight are more susceptible 
to die earlier than those who are thin” and he recognised that “when people ate 
mainly a fresh, plant-based diet, they developed fewer diseases”. Therefore, he 
recommended that: “Let food be your medicine, and let medicine be your food” 
(Skiadas and Lascaratos 2001). 

In the Middle Ages, e.g. Hildegard von Bingen chose herbal remedies for heal-
ing diseases (principle of subtility) so that “there would be no difference between 
remedies and foods”. “Everything that is good for the body is a remedy”. The 
organism as a whole is nourished and strengthened. St. Hildegard put it very sim-
ply: “Your food shall be your remedy”. https://www.st-hildegard.com/en/, Liber 
subtilitatum diversarum naturarum creaturarum, H. v. Bingen, 11 Jhd. She has spelt 
as the best of all grains (Fig. 1.1). 

One might suggest that already in the antique concepts of nutrition differen-
tiated between foods for growth of the body and foods for health and disease 
prevention. These tensional views seem to remain until now. 

By the mid-twentieth century all major vitamins had been isolated and syn-
thesised. But war- and poverty-related severe energy and nutrient deficiency with 
millions of children dying drew the attention to dietary reference intakes to pre-
vent malnutrition and diseases. The first recommended dietary allowances (RDAs) 
were a result of those concerns, when the League of Nations, British Medical 
Association, and the US government separately commissioned scientists to gener-
ate new minimum dietary requirements to be prepared. In 1941, these first RDAs 
were announced at the National Nutrition Conference on Defence, providing new 
guidelines for total calorie intake and needs of selected nutrients (Harper 2003; 
National Nutrition Conference for Defense 1941). Lately, WHO has now drawn

https://www.st-hildegard.com/en/
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Fig. 1.1 Hildegard von Bingen, Physica. Liber subtilitatum diversarum naturarum creaturarum 
“Engane Lebenssmiddl soin engane Heilmiddl sei” 1310 https://de.m.wikipedia.org/wiki/Datei:Ild 
egarda_di_bingen,_physica,_renania,_1310_ca._%28ashburnham_1323%29.jpg 

together the dietary evidence linked to both chronic diseases of adulthood and mal-
nutrition (New concepts of a balanced diet, n.d., https://www.who.int/news-room/ 
fact-sheets/detail/healthy-diet). 

In Europe the European Food Safety Authority (EFSA) published the dietary 
reference values (DRVs) first in 1993 and updates these since then (https://www. 
efsa.europa.eu/en/topics/topic/dietary-reference-values). DRVs include the average 
requirement (AR), the population reference intake (PRI), the adequate intake (AI), 
and the reference intake range for macronutrients (RI). These reference values 
are not recommendations for individuals but support professionals on amounts 
of nutrients needed for health prevention and for establishing dietary guidelines. 
In Germany, Austria, and Switzerland, the D-A-CH reference values for nutrient 
intake are the basis for the practical implementation of a nutritious diet. They 
also specify quantities for the daily intake of energy and nutrients. Individualised 
reference value tables allow people in certain life situations, such as pregnancy 
and breastfeeding, to search for specific reference values and have them displayed 
(https://www.dge.de/wissenschaft/referenzwerte/tool/). 

To be of help to consumers, reference values need to be translated into food-
based dietary guidelines which have to consider cultural differences, dietary 
pattern, and evidence of the relationship between diet and health. Currently, 
more than 100 countries worldwide have developed food-based dietary guidelines 
(https://www.fao.org/nutrition/education/food-dietary-guidelines/en/). 

First approaches of established general nutritional guidelines included per-
sonalised concepts. The USA had its first new food pyramid in 1992. Named 
“MyPyramid”, it was designed in accordance with the US Dietary Guidelines for

https://de.m.wikipedia.org/wiki/Datei:Ildegarda_di_bingen,_physica,_renania,_1310_ca._%28ashburnham_1323%29.jpg
https://de.m.wikipedia.org/wiki/Datei:Ildegarda_di_bingen,_physica,_renania,_1310_ca._%28ashburnham_1323%29.jpg
https://www.who.int/news-room/fact-sheets/detail/healthy-diet
https://www.who.int/news-room/fact-sheets/detail/healthy-diet
https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values
https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values
https://www.dge.de/wissenschaft/referenzwerte/tool/
https://www.fao.org/nutrition/education/food-dietary-guidelines/en/
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Americans and jointly published in April 2005 by the US Department of Health 
and Human Services (HHS) and the US Department of Agriculture (USDA). These 
guidelines are “the cornerstone of federal nutrition policy and education” and are 
based on “what experts have determined to be the best scientific knowledge about 
diet, physical activity and other issues related to what [Americans] should eat and 
how much physical activity [they] need”. Following an extensive public campaign 
USDA announced that, “MyPyramid is about the ability of Americans to person-
alize their approach when choosing a healthier lifestyle that balances nutrition and 
exercise”. Central to the campaign was a web-based tool, now modified to MyPlate 
available at https://www.choosemyplate.gov/ when a person enters her/his age, sex, 
body weight and height, and activity level into the online form a “personalised” 
MyPlate Plan is created. This plan lists the recommended number of daily serv-
ings for five food categories—grains, vegetables, fruits, dairy products, and protein 
sources like seafood, meat, eggs, and pulses—along with recommendations for 
foods that should be consumed in limited amounts (added sugar, saturated fat, 
and sodium). It further delineated information on food groups as well as shopping 
assistance. Elderly get support like “What’s On Your Plate? Smart Food Choices 
for Healthy Aging” (https://www.nia.nih.gov/health/healthy-eating). 

With 11 million deaths, 255 million disability-adjusted life years (DALYs) 
attributable to poor dietary pattern, (GBD 2019; http://ghdx.healthdata.org/gbd-
2019), it is important to have achievable dietary recommendations. 

Currently, nutritional recommendations and traditional nutritional intervention 
approaches are being replaced by personalised strategies. However, there is a need 
for evidence to support efficiency and additional benefits of precision nutrition 
beyond traditional dietary interventions. Discussions notice that dietary guide-
line reflects the daily intake required to meet the nutritional needs of 97.5% of 
the healthy population; i.e. they are not geared to specific individual needs or to 
sick people (2021). The European Food Safety Authority (EFSA) recognises that 
“physiological requirements vary between individuals depending on genetic and 
epigenetic differences, age, sex [and] physiological status”; however, it is assumed 
that nutrient requirements follow a normal distribution (EFSA 2010). 

1.1 The Rise of Molecular Nutrition 

Understanding of nutritional requirements was heavily influenced by developments 
in molecular biology especially the Human Genome Project (1990–2003) showing 
the role of the multiple genes involved in metabolisms. But even more, projects 
like the 1000 Genome Project, launched 2008, provided a detailed catalogue of 
human genetic variation and boosted the search for candidate genes for personal 
metabolic specificities or diseases (Project Consortium et al. 2010). 

Consequently, multiple genome wide association studies (GWAS) aimed to 
identify associations of genotypes with phenotypes by testing for differences in the 
allele frequency of genetic variants between individuals who are ancestrally similar 
(Uffelmann et al. 2021) but differ phenotypically. Data derived from these GWAS

https://www.choosemyplate.gov/
https://www.nia.nih.gov/health/healthy-eating
http://ghdx.healthdata.org/gbd-2019
http://ghdx.healthdata.org/gbd-2019
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built the basis for genetic testing concepts for disease susceptibilities as well as 
for individualised nutritional advice. Unfortunately, many commercial companies 
adopted the technically easy and cheap methods for analysis of single nucleotide 
polymorphisms (SNPs) to provide direct to consumer analysis and nutritional 
counselling. In Figure 1.2 this is still under severe critiques because of method-
ological shortcomings, small meaningfulness because of low generally penetrance 
of SNPs, missing information about epigenetics, microbiota or metabolomics, and 
insufficient data interpretation and direct consumer contact. (Prasad et al. 2016; 
Hodge and Greenberg 2017). 

Lately, the upcoming of findings from epigenetics demanded the need to under-
stand gene environment interactions, especially the role of the exposome, for 
understanding our metabolisms. The epigenomic profile for a certain phenotype 
is often a result of the complex interplay between multiple genetic and environ-
mental factors. This complex interaction poses an enormous challenge to visualise 
and interpret data. Furthermore, due to the dynamic nature of the epigenome, it 
is critical to determine causal relationships from the many correlated associations 
(Cazaly et al. 2019) (Fig. 1.3). 

Fig. 1.2 Major GWAS discoveries for adiposity traits. Findings of genome wide association stud-
ies (GWAS) (Goodarzi 2018)
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Fig. 1.3 Pillars to understanding the functional impact of epigenetics data. The epigenetic links 
need to be made with sequence variants in genetics as well as changes in transcriptomics. Wieder-
holung zum Text. GWAS—genome wide association studies; EWAS—epigenome wide associa-
tion studies; meQTL—methylation quantitative trait loci; eQTL—expression quantitative trait loci; 
TWAS—transcriptome wide association study (Cazaly et al. 2019) 

Especially the studies of Jirtle et al. showing the possibility to resolve toxin 
induced epigenetic mutations with nutritional component even trans-generationally 
(Dolinoy et al. 2007) encouraged the exploration of epigenetically active dietary 
compounds as prevention or intervention in health care (Remely et al. 2015). 
Understanding the impact of epigenetics on intermediate phenotypes, for exam-
ple metabolomics and proteomics, may ultimately help to explain aetiology of 
diseases and help drug discovery. 

Additional evidence for the central role of epigenetics in ageing modified by 
various diets comes from experiments using the epigenetic clocks (Fig. 1.4). It 
is well established that the DNA methylation landscape of normal cells under-
goes a gradual modification with age, termed as “epigenetic drift” indicating the 
biological age. Effects from specific diets, such as caloric restriction, fasting, 
or Mediterranean diet on the epigenetic clock, can be seen using CpG methy-
lation analysis and algorithms of the epigenetic clock (Fransquet et al. 2019; 
Orozco-Solis and Sassone-Corsi 2014; Quach et al. 2017). 

In the meantime, several epigenetic clocks have been established even claiming 
to indicate ageing risks. 

In the last two centuries additionally the huge impact of highly different per-
sonal GI microbiota and their biologically active metabolites on our metabolisms 
broadened the view on nutritional regulation and needs (Fig. 1.5). Tracing per-
sonal different responses to diets to the metabolic activities of microbiota even 
established concepts for nutritional advice (Zeevi 2015). 

Around 2010 the first “1,000 days of life” theory developed as was boosted by 
the findings of a prenatal establishment of GI microbiota and their interaction with 
the prenatal immune system and epigenetics. This time spanning roughly between 
conception and one’s second birthday has been established to be a unique period
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a 

b 

Fig. 1.4 a Factors that either negatively or positively affect epigenetic ageing. Epigenetic age-
ing as determined with DNA methylation clocks is accelerated in consequence of several diseases 
and further negatively affected by some concomitant conditions of certain lifestyles. On the other 
hand, there are some hereditary and environmental factors that are associated with slowed epige-
netic ageing (Klutstein et al. 2022), b two first epigenetic clocks predicting chronological age were 
both reported in 2013 by Horvath et al. and Hannum et al. Hannum’s clock was developed on 656 
people aged from 19 to 101 years old using whole blood samples. The model requires input of gen-
der and body mass index. Methylation was measured using Illumina Infinium HumanMethylation 
450 BeadChip assay, a high-density DNA methylation array with single CpG site resolution. The 
test was devised on a group of 482 people. First tests were performed taking approx. 485,000 CpG 
markers into account. It was then fine-tuned to a set of 71 markers showing strong methylation-age 
relationship. Interestingly, these markers are located near genes involved in age-related diseases 
(Klutstein et al. 2022; Topart et al. 2020)
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Fig. 1.5 Variations in the microbiome mediate differential effects of the environment on metabolic 
homeostasis. Multiple host and environmental factors contribute to interindividual variations in the 
microbiome. This, in turn, leads to a person-specific microbiome regulation of metabolic home-
ostasis. SCFA—short-chain fatty acids; TMAO—trimethylamine-N-oxide; MetS—metabolic syn-
drome (Shapiro et al. 2017) 

of opportunity when the foundations of optimum health, growth, and neurode-
velopment across the lifespan are established. Imprinting of the immune system, 
the epigenetic system, and microbiota occurs in this time. Maternal nutrition and 
maternal microbiota have a central influence on these developments (Fuhler 2020).

The microbiota develops according to the needs of the host over the lifespan. 
A good balance of gut bacteria early in life influences our health, an imbal-
ance—called dysbiosis—is associated with the development of various diseases 
(IBS, allergies, DM, obesity). Factors that influence the microbiota of the new-
born include: maternal vaginal and intestinal microbiota, mode of delivery, infant 
diet, antibiotic use, gestational age, siblings, pets, and hygiene. There is a large 
potential of maternal nutrition during gestation and lactation on the maternal gut, 
breast milk, and the infant gut microbiota. Dietary fibre intake of the breastfeeding 
women influences the production of short-chain fatty acids by intestinal bacteria 
causing an increase in regulatory T-cells and protection against respiratory dis-
eases. In addition, the mother’s diet could influence the oligosaccharide profile 
of breast milk. Observational studies indicate an association between maternal 
nutrition and the milk microbiome (Fig. 1.6).
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Fig. 1.6 Interrelation between maternal and neonatal nutrition, gut microbiota, and epigenetics 
during the first 1000 days of life (Indrio et al. 2017; Akagawa et al. 2021; Sindi et al. 2021; 
Kapourchali et al. 2020)
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Fig. 1.6 (continued)
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Intergenerational transmission of obesogenic microorganisms is also discussed. 
Also, the definition of the hallmarks of ageing contributed to the understand-

ing of ageing (Fig. 1.7). Presumably epigenetic consequences of nutrition and 
food ingredients on the regulation of crucial genes of many hallmarks such as 
DNA stability and repair, senescence, telomere attrition, or mitochondrial functions 
emphasise the importance of nutrition epigenetic interactions. 

Moreover, the concept of the crucial importance of the benefit of anti-oxidative 
activities of food ingredients is being modified by the understanding of the need of 
small doses of reactive oxygen species (ROS) for triggering activation of health-
promoting genes. The upcoming of concept of mitohormesis might deeply change 
aspects of nutritional requirements. Promoting health and lifespan by increased 
levels of reactive oxygen species (ROS) (Martinvalet and Walch 2022; Ristow and 
Schmeisser 2014) (Fig. 1.8). 

Fig. 1.7 Hallmarks of ageing
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Fig. 1.8 Mitohormetic response. ROS and other mitochondrial toxicants are well known to cause 
the development of a mitohormetic response, when presented at low values. In fact, a small harm-
ful effect will boost a response of overdrive; i.e. the cell will try to elevate mitochondrial activity 
to combat the injury, whether by increasing mitochondrial numbers and active respiratory com-
ponents, to mitophagic (removing the more damaged units) and fission (increasing the number 
of mitochondria, while diminishing their overall surface area per unit, thus increasing  Δ  ψ and 
ATP generation) events. However, this is a tough balancing act to pull through, for the tipping 
point where activity rapidly decreases can be easily traversed, resulting in the more commonly 
known toxic effects of ROS and other mitochondrial toxicants. B. The role of cAMP on mito-
chondrial metabolism and mitohormesis. cAMP signalling affects mitochondrial homeostasis and 
metabolism, for it can result in an increase in NAD+ and the activation of sirtuin 1 (SirT1), 
which deacetylates (and thus hyperactivates) peroxisome proliferator-activated receptor gamma 
coactivator-1α (PGC-1α), the master regulator of mitochondrial biogenesis, leading to elevated 
mitochondrial numbers and thus increased overall cellular mitochondrial activity. Similarly, cAMP 
can lead to the activation of SirT3 within the mitochondrial matrix, leading to the deacetylation of 
several proteins, resulting in the elevation of mitochondrial activity (Palmeira et al. 2019) 

Lifestyle-nutrition interactions with metabolism came at the centre of interest 
with the EPIC project. The European prospective investigation into cancer and 
nutrition (EPIC 1992–2000) study was one of the largest cohort studies in the 
world, with more than half a million (521,000) participants. EPIC was designed 
to investigate the relationships between diet, nutritional status, lifestyle and envi-
ronmental factors, and the incidence of cancer and other chronic diseases. https:// 
epic.iarc.fr/index.php. 

An enormous amount of nutritional studies showed the interaction between 
nutrition and incidence of diseases such as cancer or metabolic diseases and con-
cluded, e.g. that “cancer is a preventable disease that requires major lifestyle 
changes” (Anand et al. 2008). 

The European NUGO project established 2004 (Baccini et al. 2008) focused 
on the promotion of molecular nutrition research in Europe and the development 
and promotion of mechanistic research in nutrition, food, and health by appli-
cation of omics technologies also looking for translational aspects. H. Daniel 
pointed out that “health is considered as a key market driver. When taken into 
the food and nutrition sector, the key question is, how health-promotion can be

https://epic.iarc.fr/index.php.
https://epic.iarc.fr/index.php.
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achieved at the level of the individual and the foods consumed. What can be pre-
dicted is that a wide range of web-based health services will become available 
within the next years and those will also employ numerous electronic devices 
that allow assessment of food intake and measurements of a variety of lifestyle 
parameters (exercise, sleep, leisure time) and health indicators (blood pressure 
and glucose level, metabolite profiles, etc.)”. https://www.ncl.ac.uk/media/www 
nclacuk/humannutritionresearchcentre/files/Newcastle2016HDaniel.pdf. 

1.2 The Way to Personalisation 

The work of a broad number of international organisations and studies paved the 
way to personalised medicine and personalised nutrition. However, the need for a 
preventive, personal health care including the use of markers which indicate the 
development of pathologies that allow intervention already before the development 
of symptoms has been seen since the seventies of the last century (Merchant 1978). 

“The EU hosted international project Public health Genomics (PHGEN) aimed 
to European best practice guidelines for quality assurance, provision and use of 
genome-based information and technologies” to support the Member States (and 
other relevant stakeholders) to more efficiently and effectively work together at 
European level in addressing the challenges deriving from emerging genome-based 
information and technologies and to prepare for the paradigm shift of person-
alised health care in time (Brand, n.d.; Gutierrez-Ibarluzea 2013; The Public Health 
Genomics European Network (PHGEN), n.d.). 

Starting in 2006, mainly aspect from hereditary genetic diseases was addressed, 
but at the end of the project 2012, PHGEN appreciated the importance to include 
gene environment interactions. PHG chairman Ron Zimmern summarised as a 
vision for public health: “In essence, personalised prevention refers to efforts to 
prevent disease at the level of the individual; this complements rather than replaces 
classic, population-based public health efforts, but recognises that the most accu-
rate and effective predictive prevention for an individual is based on their unique 
biological, environmental and behavioural risk factors, and their personal situ-
ations, preferences and drivers. Biological risk can be assessed using genomic 
and other biomarkers” https://www.phgfoundation.org/blog/towards-personalised-
prevention. 

The special role of biomarkers for the prevention, assessment, and management 
of developing diseases is now broadly accepted (Chow et al. 2017; International 
Programme on Chemical Safety, n.d.; Mahaman et al. 2022; Sweeney et al. 2021). 

The paradigm shift from reactive to predictive preventive and personalised 
medicine was discussed in medicine in the early twenty-first century: paradigm and 
anticipation—EPMA position paper 2016 (Golubnitschaja et al. 2016) (Fig. 1.9). 

The establishment of reliable markers and the understanding of lifestyle, 
genetic, and epigenetic interactions forced the way of medicine into precision or 
personalised medicine. “According to the precision medicine initiative, precision 
medicine is an emerging approach for disease treatment and prevention that takes

https://www.ncl.ac.uk/media/wwwnclacuk/humannutritionresearchcentre/files/Newcastle2016HDaniel.pdf.
https://www.ncl.ac.uk/media/wwwnclacuk/humannutritionresearchcentre/files/Newcastle2016HDaniel.pdf.
https://www.phgfoundation.org/blog/towards-personalised-prevention.
https://www.phgfoundation.org/blog/towards-personalised-prevention.


14 P. Rust and A. G. Haslberger

Fig. 1.9 Towards preventive personalised medicine (Golubnitschaja et al. 2016) 

into account individual variability in genes, environment, and lifestyle for each 
person”. “This approach will allow to predict more accurately which treatment 
and prevention strategies for a particular disease will work in different groups of 
people. It is in contrast to a one-size-fits-all approach, in which disease treatment 
and prevention strategies are developed for the average person, with less consid-
eration for the differences between individuals” (What Is Precision Medicine?: 
MedlinePlus Genetics, n.d.). 

Especially in the field of cancer the analysis of molecular markers of samples 
from liquid biopsies allows even the identification of subclones in tumours and 
allows personalised treatment beyond general tissue-oriented therapies (Amelio 
et al. n.d.) (Fig. 1.10). The benefit of combining genetic mutation-analysis epige-
netic Mi RNA and CpG methylation analysed with self-learning algorithm’s for 
early cancer detection was recently shown (Tomeva et al. 2022). 

Fig. 1.10 Markers, liquid biopsy (Giannopoulou et al. 2019)
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Fig. 1.11 Personalised ageing. Ageotypes (Ahadi et al. 2020) 

Another evidence for the use of personalised approaches comes from the omics 
wide analysis of markers within the hallmarks of ageing and the identifications of 
personal specific mechanisms which drive accelerated ageing. Recently personal 
metabolism-specific ageing pattern has been identified and addressed as age types 
by deep longitudinal profiling (Ahadi et al. 2020) (Fig. 1.11). 

In parallel to medicine also in nutritional sciences developed the concept of 
personalised nutrition based on biomarkers. Whereas there is some discussion to 
what extent the term precision medicine and personalised medicine are overlapping 
personalised nutrition and precision nutrition are yet at the centre of interest in 
nutritional research (de Toro-Martín et al. 2017; González-Muniesa and Alfredo 
Martínez 2019; Tuncay and Ergoren 2020) and discussions about methodological 
needs for nutritional advice, financial, ethical, and legal considerations for public 
health systems (Árnason 2012; de Toro-Martín et al. 2017; Food4Me: The Ethical 
and Legal Challenges of Personalised Nutrition|Eufic, n.d.; González-Muniesa and 
Alfredo Martínez 2019). 

The EU-funded Food4Me project performed a multi-centre study to show that 
an internet delivered personalised nutrition advice could improve people’s lifestyle. 
The project envisaged (Celis-Morales et al. 2017) advice on personalised nutri-
tion at three levels: the person’s diet only, the diet combined with knowledge of 
the person’s phenotype (measurable traits, such as physical and biochemical mea-
surements, e.g. height, weight, or cholesterol level), and the diet, phenotype and 
genotype.
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For this Food4Me developed a novel, internet delivered, food frequency ques-
tionnaire for dietary analysis. The new method that included a digital photographic 
atlas was used to quantify food intake, took approximately 20 min to complete, 
and was validated in 2 peer-reviewed studies. https://www.eufic.org/en/healthy-liv 
ing/article/personalised-nutrition-food4me-project/https://cordis.europa.eu/project/ 
id/265494/reporting. 

The results of these analyses imply that attitudes towards personalised nutrition 
appear to be primarily driven by perceptions of benefit and how achievable it is to 
access or adopt (Celis-Morales et al. 2017). 

Personalised nutrition at the individual level requires costly and time-consuming 
collection of information, as well as models that are capable of accurately gener-
ating personalised advice for the individual. A more feasible approach may be 
to personalise diets at the group level. Recent studies indicated that individuals 
may be grouped according to unique metabolic responses to foods and dietary 
changes. Grouping individuals based on similarities in their metabolic phenotype, 
metabotypes, is a novel concept; however, different definitions and concepts for 
metabotypes are under development. The underlying idea behind metabotyping 
is to identify metabolic phenotypes based on factors such as diet, anthropomet-
ric measures, clinical parameters, metabolomics data, and the gut microbiota. “An 
optimal diet can then be tailored to fit each metabotype specifically” (Palmnäs 
et al. 2020) (Fig. 1.12). 

There is a discussion whether people with a high risk for certain diseases 
such as cardiometabolic diseases have special metabotypes (Adams et al. n.d.; 
Grabowski 2020; Hillesheim and Brennan 2020; O’Donovan et al. 2015, 2017; 
Palmnäs et al. 2020; Riedl et al. 2017). The results of various studies suggest 
that an optimised metabotype approach is capable of delivering targeted nutritional

Fig. 1.12 Metabotyping and group-based nutrition in the context of the conventional population-
based guidelines and personalised nutrition (Palmnäs et al. 2020)

https://www.eufic.org/en/healthy-living/article/personalised-nutrition-food4me-project
https://www.eufic.org/en/healthy-living/article/personalised-nutrition-food4me-project
https://cordis.europa.eu/project/id/265494/reporting.
https://cordis.europa.eu/project/id/265494/reporting.
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counselling to healthy adults and is very comparable to individualised counselling. 
With this information an optimised metabotype approach could be effective in 
changing diet quality. Clearly metabotyping and group-based nutrition want to 
enter conventional population-based guidelines and personalised nutrition.

Caution in the claim of benefits of personalised nutrition comes from reviews 
that scientific evidence is mostly based on observational studies with a low level of 
reproducibility. However, personalisation is likely to enable sustained behavioural 
change (Ordovas et al. 2018). 

1.3 Consequences of Personalisation 

The change of lifestyle mostly needed for improved nutrition is still a central 
problem due to social and economic aspects (Ekpanyaskul and Padungtod 2021; 
Lichtenstein et al. 2006). A study in Middle Eastern immigrants reports that 
facilitators for lifestyle modifications (LSM) are connected to presence of family 
support. Identification of sociocultural barriers and facilitators for LSM is crucial 
for successful health promotion (Olaya-Contreras et al., n.d.) (Fig. 1.13). 

Methods for improving long-term adherence to lifestyle changes have been 
studied in Mexican Americans (Foreyt et al., n.d.) and included self-monitoring, 
cognitive restructuring, stress management, and social support (Fig. 1.14). 

The European Union-funded PROTEIN project (PeRsOnalised nutriTion for 
hEalthy livINg) consortium produces a novel adaptable mobile application based 
on sound nutrition and physical activity advice from experts in their field, accessi-
ble to all population groups, with differing health outcomes, whose behaviour can

Fig. 1.13 Barriers to lifestyle changes
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Fig. 1.14 Improving 
lifestyle changes 

be tracked with a variety of sensors and health hazard perception (Wilson-Barnes 
et al. 2021).

Another approach to personalised nutrition could be strategies to compose indi-
vidualised mixtures of bioactive, foods components, according to the results of an 
analysis of markers and an identification of molecular pathways at risk, e.g. in the 
area of healthy ageing. In Figure 1.15 especially information about individual very 
different bioavailability, different fermentation of nutraceuticals to biologically 
active metabolites or epigenetic regulation is of central importance for person-
alised precise interventions. Personally different responses to fasting and fasting 
mimetics were shown, for example, using sirtuin-inducing plant compounds (Lilja 
et al. 2020, 2021). 

Clearly there is a need to develop foods and additives for specific consumer 
groups at risk. Unfortunately, these developments are hampered by often unsub-
stantiated health claims of industry or difficult, often confusing and internationally 
diverse regulations for marketing and labelling. This can often only be dealt by 
big industries and so contributes to monopolisation and the loss of innovative 
approaches e.g. the combination of pharmaceutical compounds with food additives. 

In summary nutrition, in parallel to medicine, is moving towards personali-
sation where still a number of obstacles and requirements need to be overcome 
such as educating health professionals to correctly interpret genetic and epigenetic 
data, creating ways to motivate positive behaviour change in patients, and cor-
rectly implementing personalised nutrition into practice. It is necessary to collect 
real world data on food intake, physical and social behaviour which the “digital 
environment” enables as never before. Personalised nutrition needs more compre-
hensive phenotyping and improved algorithms based on artificial intelligence to
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Fig. 1.15 Personalised additives following analysis of markers of healthy ageing 

predict the effect on an individual’s diet on management, https://doi.org/10.1002/ 
mnfr.202200077. Furthermore, ethical and legal guidelines, as well as standardised 
regulations for tests, need to be put in place to assure patients health is not being 
harmed (Ferguson et al. 2016) (Fig. 1.16). 

The way to a preventive personalised health care also addresses the aspects 
of the upcoming understanding of salutogenesis, a health approach focusing on 
factors that support human health and well-being, rather than on factors that cause 
disease (pathogenesis). More specifically, the “salutogenetic model is concerned 
with the relationship between health, stress, and coping” (Lindström and Eriksson 
2005) and strongly relates to nutrition, dealing with challenges to healthy eating 
in a health-promoting manner (Swan et al. 2015). 

The objective of the present work is to deepen the understanding of progress 
and obstacles in the development of personalised precision nutrition. Especially 
the progress in different areas in the establishment of markers and their integra-
tion into a holistic concept of preventive personalised health care is discussed. 
Developments in genetics, epigenetics, microbiota, metabolomics, and their analy-
sis in improved algorithms are shown. Challenges in the interpretation of markers 
are discussed. Consequences for possible personalised improvements of nutrition 
and lifestyle such as exercise and practical implementation conclude the book.

https://doi.org/10.1002/mnfr.202200077
https://doi.org/10.1002/mnfr.202200077
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Fig. 1.16 Achievements already made and challenges faced by personalised nutrition (Prasad 
et al. 2016) 
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ABSTRACT 

Among the main challenges in nutrition research are development of strate-
gies for providing dietary solutions that help people adjust their dietary needs 
and behavior at every stage of their life. An appropriate diet will maintain the 
body in good health and therefore prevent chronic diseases associated with

M.-C. L. de Las Hazas · A. Dávalos (B) 
Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies 
(IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain 
e-mail: alberto.davalos@imdea.org 

M.-C. L. de Las Hazas 
e-mail: mcarmen.lopez@imdea.org 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
A. G. Haslberger (ed.), Advances in Precision Nutrition, Personalization 
and Healthy Aging, https://doi.org/10.1007/978-3-031-10153-3_2 

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10153-3_2\&domain=pdf
mailto:alberto.davalos@imdea.org
mailto:mcarmen.lopez@imdea.org
https://doi.org/10.1007/978-3-031-10153-3_2


26 M.-C. L. de Las Hazas and A. Dávalos

dietary excess. Personalized nutrition is a novel approach that recommends 
food choices and eating patterns that meet individual needs and follow per-
sonal preferences. Over the last century, nutrition research has progressively 
incorporated small bodies of knowledge into the puzzle of personalization, 
including considering diet as a treatment for different diseases, biochemical 
markers, anthropometric markers, food frequency questionnaires, nutrigenetic 
and nutrigenomic information, and incipient nutritional genetic risk scores. 
Other factors will also need consideration, such as food sustainability, environ-
mental protection, food security, cultural variations, allergies and intolerances, 
among others. This greatly complicates the matter of promoting personalized 
nutrition. Recent research aimed at predicting individual response to a nutri-
ent includes use of deep phenotyping (i.e., through continuous postprandial 
monitoring), microbiota, and epigenetic data that will shape future precision 
nutrition approaches. Despite advances in personalized nutrition, many obsta-
cles and challenges remain before its full benefits can transition from bench 
side to bedside. For instance, it requires specialized healthcare professionals, 
competitive costing, and potential customers ready to understand and accept 
new nutritional approaches. This chapter is an overview of how individualiza-
tion has been shaping approaches to personalized nutrition including its social 
impact, business and value creation, social concerns, ethical and legal con-
cerns, communication, and consumer attitudes toward personalized nutrition. 
Overall, developing precision nutrition must integrate biology, environment, 
and lifestyle. Although biology may remain fairly constant throughout life, 
both environment and lifestyle change constantly through epigenetic mecha-
nisms. Moreover, integrating these data for every period of life will require 
new resources for large-scale data analysis, such as artificial intelligence and 
machine learning algorithms. 

2.1 Introduction 

Nutrition impacts public health through the prevention and treatment of differ-
ent disorders and the promotion of well-being. Recent increases in many chronic 
diseases (i.e., CVD, cancer, neurodegenerative diseases, etc.) have been linked to 
unbalanced diets and inadequate physical exercise. The ancient saying “you are 
you eat” remains valid today since diet is now known to impact the expression of 
genes that regulate critical metabolic pathways. 

Nutrition research integrates biological approaches ranging from the molecular 
to epidemiological to explore the relationship between eating patterns, nutritional 
status, and development of chronic disease. The biggest challenge in nutrition, 
however, is how to apply healthy eating and lifestyle patterns to improve health 
in any given individual. Traditionally, nutritional condition management has been
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associated with the application of dietary recommendations based on population-
based, prospective cohort, and intervention studies (Becerra-Tomás et al. 2021; 
López-González et al. 2021). Dietary recommendations are normally developed 
generically for a population and consist of advice to follow a certain type of diet 
(i.e., low fat diet, Mediterranean Diet, etc.). Communicating this advice to the 
general population can take many forms although it is often done with an image 
such as the food pyramid. Approaches of this kind often have a limited impact 
on the frequency of individuals in a population developing healthy dietary habits. 
Another factor to consider is that not all dietary patterns are indicated for all people 
(Corella et al. 2007). Ideally, dietary approaches need to be designed for a specific 
individual based on their personal situation, considering factors such as weight, 
age, gender, and phenotypic information such as anthropometry, biochemical and 
metabolic analysis, and physical activity levels (Gibney and Walsh 2013). Taking 
these into account can increase diet compliance (Celis-Morales et al. 2017a). 

Technological advances and sequencing of the human genome in 2001 opened 
the possibility of analyzing immense amounts of biological data and identify-
ing significant genetic associations that can facilitate disease treatment (Cordero 
and Ashley 2012). Whole-genome sequencing analyses found that just 1% of the 
genome contains variations such as single nucleotide polymorphism (SNPs), copy 
number variations (CNVs), and other structural variants (Auton et al. 2015). This 
discovery has allowed researchers to begin understanding individual responses to 
dietary interventions. Identification of how diet, genotype, and their interaction 
influences individual response, and predispose people to developing disorders, such 
as obesity, inflammation, dyslipidemia, and oxidative stress, has opened myriad 
possibilities (Hesketh 2012) for diet personalization. Among these are nutrigenet-
ics and nutrigenomics. Both are promising multidisciplinary fields that focus on 
studying the interactions between nutritional factors, genetic factors, and health 
outcomes (Ordovas 2004). Nutrigenetics focuses on how genotype influences the 
body metabolic response to nutrients and on the risk of nutrition-related diseases. 
Nutrigenetics also assess the variations in complex metabolic responses to specific 
individual nutrients as assessed by genome-wide association studies (GWASs). 
Nutrigenomics addresses the effect of nutrition (including macro-, micro- and anti-
nutrients) on gene expression, the proteome and the metabolome (Ferguson et al. 
2016) (Fig. 2.1). In this sense, functional genomics aims to determine how the 
individual components produce a particular phenotype.
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Fig. 2.1 Interplay of nutrigenetics and nutrigenomics and their integrative nutritional biomarkers 
in developing personalized nutrition 

Integrating the knowledge generated in different omic areas (e.g., genomics, 
transcriptomics, proteomics, metabolomics and even metagenomics) requires 
bioinformatics to manage and interpret the functional genomics. New therapeu-
tic tools are also needed to integrate functional genomics and design personalized 
approaches to manage the prevention and treatment of chronic diseases. Use 
of genetic information to predict an individual’s response to a certain diet or 
product has transformed the traditional concept of nutrition. Specific dietary rec-
ommendations can be generated for individuals based on their response to dietary 
components, an approach called “personalized nutrition.” It is an important ele-
ment of personalized medicine and tries to establish nutritional recommendation 
guidelines for specific subgroups based on individual parameters (Ferguson et al. 
2016). Understanding an individual’s response (or lack thereof) to a dietary inter-
vention is supported by quantifying their response to a nutrient(s) based on the 
interactions between metabolic, genetic, environmental, and social factors together 
with biological and cultural variations, including food preferences, allergies, and 
intolerances (San-Cristobal et al. 2020). 

Nutrigenomics data can be applied to explore new mechanisms of action and 
biomarkers, as well as identify early symptoms and pivotal points of disease 
progression as parts of an individual’s response to lifestyle intervention. Dif-
ferent genes and polymorphisms have been identified as critical regulators of 
metabolism. Therefore, when interpreted together with an individual’s family clin-
ical history, phenotypic data and social and personal habits, implementation of
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genetic risk scores can help healthcare providers to develop novel approaches to 
personalized/precision nutrition. 

The inclusion of different epigenetic data (i.e., DNA methylation, miRNAs) 
will contribute to identify those epigenetic factors that influence the response to a 
dietary intervention and is affected by the interindividual variability. For instance, 
the modulation of circulating miRNAs after a dietary treatment (Mantilla-Escalante 
et al. 2021, 2019) or as response of a bioactive compound intake (Nuñez-Sánchez 
et al. 2015; Tomé-Carneiro et al. 2016) may serve as novel dietary tools to modu-
late epigenetic markers (Dávalos and Fernández-Hernando 2013). Indeed, certain 
miRNAs from diet may resist the gastrointestinal (GI) tract playing a role in the 
regulation of GI tract physiology and impact on host gene expression (Zhang et al. 
2012; Pozo-Acebo et al. 2021) where they may produce a biological function 
(Pozo-Acebo et al. 2021; Dávalos et al. 2020). 

In this scenario, a personalized dietary intervention based on those factors that 
affect epigenetic parameters has been identified. For instance, Casas-Agustench 
identified that the type of lipid consumed during pregnancy affects on offspring 
development and their susceptibility to metabolic disorders (Casas-Agustench et al. 
2015). 

One of the best examples to illustrate the existence of personalization in the 
diet is maternal milk. Maternal milk is the natural precision nutrition as it varies 
in its composition between (i) individuals; (ii) the time of the day; (iii) the stage 
of lactation; and in response to maternal nutrition and interindividual variation. It 
also changes its composition during feeding; for instance, the foremilk contains 
higher amounts of carbohydrates and lower content of fats; meanwhile, the hind-
milk resembles cream, and it has higher fat content and is lower in carbohydrates. 
Moreover, recent evidences show that they also provides extracellular RNAs (i.e., 
miRNAs) that influence important biological processes in neonatal (Tomé-Carneiro 
et al. 2018). 

The International Society of Nutrigenetics/Nutrigenomics states that person-
alized nutrition can be applied at three levels (Fig. 2.2). It begins with dietary 
recommendations based on eating pattern (i.e., eat more vegetables) through data 
collected by dietary recall, food diaries, and/or food frequency questionnaires. An 
individual’s phenotypic data are then quantified using anthropometric measure-
ments (i.e., body mass index—BMI) and blood biomarkers such as cholesterol and 
fatty acids to provide more detailed recommendations. Finally, inclusion of genetic 
information contributes to identifying those genetic variants that may impact an 
individual’s response (Ferguson et al. 2016). One challenge in this approach is to 
study genotype–phenotype associations to better understand interindividual vari-
ability and thus more accurately tailor dietary approaches to individuals (Tracy 
2008). Randomized clinical trials have shown that personalized nutrition is more 
effective than general nutritional advice in terms of changing eating habits and 
treating obesity (Celis-Morales et al. 2017a; Nielsen and El-Sohemy 2014). It 
is also more effective at changing perceptions and behaviors because specific 
recommendations are based on personalization (Roke et al. 2017; Nielsen et al. 
2014).
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Fig. 2.2 Levels of advice in the development of a personalized nutrition approach 

Precision nutrition approaches also seek to tailor treatments to an individual 
by including their lifestyle and environment. To date, the terms “personalized 
nutrition” and “precision nutrition” have been used randomly and almost inter-
changeably, but there is active debate as to what each should refer to. Precision 
nutrition is often understood to imply the use of quantitative genetics data and 
in-depth health profiling. 

Personalized nutrition uses dietary data alongside biochemical, physiological, 
metabolomic, and genetic markers to accurately predict an individual’s response 
to diet, calculate their specific nutritional requirements, and determine their risk of 
diet-related disease. Collecting much of this data requires new technologies, and 
innovations will probably continue in the field. This approach also influences con-
sumer’s knowledge, perceptions, and attitudes, inducing different behaviors and 
consequently adding value to specific products and opening different business 
models (Rodgers and Collins 2020). In addition to the above elements, the pre-
cision nutrition approach factors in lifestyle (i.e., physical activity), environmental 
factors (i.e., exposome and others), continuous metabolite monitoring (i.e., contin-
uous glucose monitoring), and continuous health-parameter monitoring (i.e., hearth 
rate, blood pressure, etc.). All these data are incorporated (i.e., via machine learn-
ing algorithms and/or artificial intelligence) to accurately propose the precise diet 
most adequate for an individual at a given time in their life. This is done based on 
their nutritional needs and the results of large-scale dataset analysis and is aimed 
at providing them the most appropriate possible diet and consequently reducing 
their risk of diet-related diseases. 

This chapter is an evaluation of the evolution of personalized nutrition and a 
summary of the challenges and possibilities of its use in the general population 
that includes a discussion of recent shifts in nutrition research and practice that 
have led toward personalization.
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2.2 Evolution of Nutrition Science in the 20th Century 
Toward Personalization 

Use of dietary therapy to treat different diseases began in the early 1900s when 
physiologists developed multiple approaches that became the foundations of cur-
rent nutritional knowledge (Fig. 2.3). For instance, in 1908, Garrod considered 
alkaptonuria as a “hereditary error of metabolism” (Piro et al. 2010), and Addis 
designed a treatment for glomerulonephritis (or Bright’s disease) using an individ-
ualized low-calorie, low-salt, and low-protein content diet (Bland 2019). Building 
on this base, in 1940s, Pauling described the biochemical importance of nutrition 
and the genetic uniqueness of specific nutrients (Bland 2019). 

Modern nutrition science is considered to have begun when Christiaan Eijman 
won the 1929 Nobel Prize in Physiology or Medicine for his isolation of thiamine 
(vitamin B1) in 1926. His discovery was built on previous research such as the 
report that the hulk of unprocessed rice protected chickens against a beriberi-like 
condition (Mozaffarian et al. 2018). With the advent that vitamins are essential 
to the organism to avoid serious deficiency diseases, the first half of the twenti-
eth century saw research was focused on the discovery, isolation, and synthesis 
of essential micronutrients to reduce the prevalence of many deficiency diseases. 
Working in the laboratory of Williams, Pauling discovered pantothenic acid, folic 
acid, and pyridoxine (vitamin B6). In later years, Pauling’s work supported the 
role of vitamin C in decreasing the duration and severity of cold symptoms (Paul-
ing 1970). The pharmaceutical market and government agencies responded by 
focusing on single nutrients and specific disease states. 

Fig. 2.3 Timeline of milestones in the development of personalized nutrition. The initial 
description and major advances in the understanding of the role diet play in development and 
treatment of different pathologies at an individual level. PN: personalized nutrition 
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The concept of personalization in nutrition began to appear in the work of 
Williams, who in 1948 introduced the concept of “biochemical individuality” and 
in 1965 the concept of “genetotrophic disease;” this is defined as a disease that 
occurs in an individual if the diet fails to provide a sufficient supply of one or more 
nutrients that are required at higher levels due to unique genetic needs (Williams 
1950, Williams and Pelton 1965). In 1968, Pauling established the term “ortho-
molecular nutrition,” defined as the science of improving and maintaining human 
health through the use of natural substances nutritious for the human organism. In 
this conception, if each cell of the body receives the optimal nutrients it requires to 
function properly, the organism’s internal environment will be able to control cer-
tain diseases. This makes it is possible to prevent and treat many forms of disease 
via administration of optimal amounts of nutritious substances (Pauling 1968). 

Another factor in development of nutrition science has been the discovery of 
diseases associated with genetic variants. A prime example is phenylketonuria 
(PKU), an autosomal recessive disorder of phenylalanine metabolism in which 
phenylalanine accumulation produces brain dysfunction (Van Spronsen et al. 
2021), which was described in 1934 by Følling (1934). Discovery of PKU helped 
to better understand how nutrients and/or diet affect human health. Dietary treat-
ment of PKU was developed in 1953 by Bickel et al. (Bickel et al. 1953), and 
screening to identify the disease in the population-based newborns, using dried 
blood spot (DBS) cards, was developed in 1963 by Guthrie and Susi (1963). 

As nutrition science was burgeoning in the mid-20th century, so was the inci-
dence of obesity. The increased prevalence of obesity began during the Nutritional 
Transition of the 1950s and derived from economic and social changes. The 
combination of reduced physical activity with modulation of eating patterns pro-
duced greater body mass index and consequently increased the prevalence of many 
chronic diseases (i.e., CVD) (Popkin 2015). At the time, it was believed that the 
principal cause of obesity was intake of fats and later of refined sugars (Keys 
et al. 1984; Kearns et al. 2016; Johns and Oppenheimer 2018). The food indus-
try responded by developing new dietary products with reduced fat, saturated 
fats, cholesterol, and sugar contents, as well as others fortified with micronutri-
ents. Technologies were developed that focused on reducing saturated fats such 
as partial hydrogenation of vegetable oils (Mozaffarian et al. 2018). Large cohort 
studies and intervention and randomized clinical trials have generated evidence of 
the impact of following certain dietary regimes and of specific nutrients on non-
communicable diseases (Mahmood et al. 2014; Martínez-González et al. 2014; 
Jacobs and Tapsell 2013). This knowledge helped in developing improved dietary 
guidelines and recommendations to follow certain healthier dietary patterns, such 
as traditional Mediterranean or vegetarian diets. These did not appear to affect 
the obesity pandemic, which continues unabated, and more recent research has 
identified overnutrition as the main contributor to this condition (Mozaffarian 
2017).
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2.2.1 Nutrition in the Post-genomic Era 

Decoding of the human genome and consequent development of new technologies 
gave rise to nutritional genomics in 2009. It is an approach intended to facilitate 
the mechanisms involved in an individual’s response to diet and to evaluate the 
variables affecting their organism (Ozdemir et al. 2009). The advent of nutrige-
netics helped to augment the kind of recommendations that could be made based 
on genomic and biometric parameters. Indeed, 2012 saw the market expand with 
the introduction of a nutrigenetic test (Home—Genetic Testing Registry). These 
tests have tended to focus on genotype or genomics sequence-based analyses in 
search of biomarkers to incorporate into personalized diets. However, identification 
of variations at the proteome, metabolome, or epigenome levels will be important 
to developing more robust personalized diets and will allow monitoring of the 
organism’s functioning at different life stages (Fig. 2.1). 

Future progress in the science of PN will need to focus on the role of nutrition 
throughout the lifespan and address diet-related conditions through multifaceted 
interventions that go beyond just choosing healthy foods (Rodgers and Collins 
2020). The fact that SNPs cannot explain different diseases such as obesity drove 
development of research aimed at quantifying the contribution of genetic varia-
tions to a wide range of phenotypes (i.e., fat mass and obesity-associated FTO 
gene) (JC, 2017). Consequently, there is currently a strong focus on decipher-
ing the roles of certain SNPs, the interactions between gene variants or epistasis 
(Gratten and Visscher 2016), and interactions between the environment (Huang 
and Hu 2015), gut microbiota, gene expression modulation, the proteome, and the 
metabolome. In recent years, the effects of epigenetic modifications (i.e., histone 
acetylation, DNA methylation, miRNA expression) in health are gaining increas-
ing importance. An excellent example is the case people who suffered through 
the Dutch Hunger Winter between 1944 and 1945; in early life, they manifested 
epigenetic dysregulation of the IFG2 gene which persisted throughout their lives 
(Heijmans et al. 2008). 

Development of algorithms and application of statistical methods (i.e., mul-
tivariate techniques) allows integration of immense quantities of data and their 
translation into phenotypic and genotypic data and thus assessment of potential 
associations between eating patterns and metabolic outcomes that can then be 
used to generate recommendations for nutrient intake (Özdemir and Kolker 2016). 
These algorithms are a series of decision trees that lead from a specific phenotypic 
and/or genotypic characteristic to a concise recommendation for altering nutrient 
intake. This profound characterization of interindividual body response to a dietary 
stimulus will help in estimating dietary effects. For instance, Zeevi et al. developed 
an algorithm to predict individual postprandial glycemic response based on dietary 
habits, physical activity, anthropometrics, blood parameters, and gut microbiota 
(Zeevi et al. 2015). The PREDICT 1 study also assessed postprandial metabolic 
responses in a clinical setting and at home and found that gut microbiome had a 
greater influence than did meal macronutrients for postprandial lipemia but not for 
postprandial glycemia (Berry et al. 2020a), while genetic variants had a modest
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impact on glucose or postprandial predictions. In agreement with Zeevi study, the 
PREDICT 1 study also suggest that microbiome composition was predictive for a 
large panel of cardiometabolic blood markers (Asnicar et al. 2021). 

New techniques will still need to be developed to assess health parameters 
using non-invasive and cost-effective samples. The multidisciplinary approaches 
of modern nutrition science will help to decipher the role of whole food, individ-
ual nutrients, social and sociocultural patterns, and genome/microbiome variation 
between individuals (Berry et al. 2020b; Toro-Martín et al. 2017). In the future, 
personalized nutrition practices may benefit from seamless planning of life sci-
ences funding, research, and practice agendas that move from “farm to clinic to 
supermarket to society,” and from “genome to proteome to metabolome” (Özdemir 
and Kolker 2016). 

2.2.2 New Horizons in Personalized Nutrition 

The National Institutes of Health (NIH) has launched a 2020–2030 Strategic Plan 
for NIH Nutrition Research that aims to increase biomedical research focused on 
the role of diet in diseases. Within this framework, the NIH provided an initial 
investment of $150 million for a large cohort study designed to answer key ques-
tions regarding what, when and how people should eat to promote health across 
the lifespan and how food may act as medicine (Rodgers and Collins 2020). The 
NIH Strategic Plan will contribute to deciphering the multidimensional approach 
of personalized nutrition and precision nutrition. For example, this will permit to 
identify different nutritional scores that can screen deeply and assess the influ-
ence of genetic variations. However, for effective personalized/precision nutrition 
to function, the research community will also need to focus on how nutrition advice 
is delivered in specific populations, preferably including all three approaches of 
personalization (Fig. 2.2). In this context, the use of nutrigenetic tests that target a 
limited number of SNP is a reality in the market today but will probably dramat-
ically increase with other novel SNPs and the inclusion of valid nutritional GRS. 
They will be probably incorporated into all the features necessarily to translate 
precision nutrition to the market. 

2.3 Individualization and Food Choices Based 
on Personalized/Precision Nutrition and Involvement 
of Diet in Chronic Diseases 

The use of biomarkers to follow compliance with a given dietary regime will 
improve characterization of individual’s diet. Metabolomics can help to identify 
different compliance biomarkers useful in exploring their health effects and identi-
fying how microbial metabolites derived from food intake also mediate significant 
gut microbial metabolic activity (Ulaszewska et al. 2020). The food metabolome
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is that portion of the human metabolome derived directly from digestion and bio-
transformation of foods and their constituents. It represents a considerable and 
still largely unexploited source of novel dietary biomarkers that can be used to 
generate highly detailed and accurate measurements of dietary exposure. In depth, 
evaluation of the results will contribute to discovering different molecules and 
dietary factors associated with diseases (Scalbert et al. 2014). The interactions 
between the host and its gut microbiota are highly dynamic and complex but 
still largely unknown; they constitute a crucial framework for researching the gut-
microbe-metabolic axis (Lamichhane et al. 2018). For instance, a study by Liu 
et al. found that the host can modulate the microbiome thorough miRNA secre-
tion, which may provide an opportunity for modulation of the gut microbiome by 
miRNAs (Liu et al. 2016). Indeed, diet shapes gut microbiota composition and 
specific dietary patterns (i.e., Mediterranean Diet) are associated with beneficial 
microbiome-related metabolic profiles (Filippis 2016). In contrast, consumption 
of red meat is associated with alterations in gut microbiota that contribute to the 
development of CVD (Mei et al. 2021). Profiling gut microbiota is receiving more 
attention in nutritional intervention studies, and the composition and diversity of 
gut microbiota have been identified as potential risk factors for development of 
various chronic diseases (Ridaura et al. 2013). 

Metabolic phenotyping—grouping people based on their metabolic characteris-
tics—is a relatively new research field which may have great value in personalized 
nutrition. In longitudinal studies, metabotyping has shown that metabotypes may 
be associated with cardiometabolic risk factors and diet-related diseases, while its 
application in interventions can identify metabotypes with differential responses 
(Hillesheim and Brennan 2020). 

The Food4Me study addressed the delivery of phenotype-based personalized 
nutrition. Participants were randomly distributed into four groups: (1) Non-
personalized diet; (2) PN-based individual dietary intake; (3) PN including 
individual intake and phenotypic data (glucose, total cholesterol, carotenoids, w-3 
index, characterization of 32 fatty acids, and vitamin D; and (4) group 3, plus geno-
typic data (MTHFR, FTO, TCF7L2, APOE E4, FADS1 genes). Dietary data were 
collected using a validated FFQ (Forster et al. 2014). Based on twenty-seven fast-
ing metabolic markers measured by DBS, including cholesterol, individual fatty 
acids, and carotenoids, three metabotypes were aggregated from 180 randomly 
selected participants. Dietary advice encompassed characteristics of the metabo-
type and the decision trees, which include dietary factors not captured by the 
metabolites (total cholesterol, triacylglycerol, high-density lipoprotein cholesterol 
and glucose), as well as self-measured anthropometric characteristics (O’Donovan 
et al. 2015). When the appropriateness of the targeted dietary advice was compared 
with the individualized dietary advice, the resulting match was excellent (average 
match of 82%) and provided the same dietary message in both groups (O’Donovan 
et al. 2017). Further, research is still clearly needed to understand the biological 
mechanisms underlying the individual responses, especially detailed studies exam-
ining the underlying biology responsible for different metabotypes and deciphering 
the role of genetics and the microbiome (Hillesheim and Brennan 2020).
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The use of deep phenotyping—comprehensive analysis of phenotypic abnor-
malities in which the individual components of the phenotype are monitored—to 
monitor different metabolic parameters will contribute to characterizing individual 
response, variability of symptom manifestations, etc. (Tracy 2008). An advantage 
of stratifying by metabolic profile is that it facilitates design of better nutrition 
advice focused on the individual. Very few studies have implemented extensive 
phenotyping (Zeevi et al. 2015; Berry et al. 2020a, 2020b). One example is the 
Maastricht study, an epidemiological study aimed at identifying pathophysiology 
and associated metabolic disturbance by monitoring 1000 individuals using tra-
ditional and advanced phenotyping (Schram et al. 2014). Wider phenotyping of 
humans and the possibility of monitoring health status through identification of 
individual profile metabotypes still needs to be explored via nutritional intervention 
studies if responses to nutrients are to be predicted. 

Genetic risk scores (GRSs) are used to evaluate dietary interactions and may 
facilitate selection of more individualized and effective nutritional therapy by 
developing personalized, genotype-based approaches. In one study, a GRS was 
developed to predict obesity through analysis of a set of sixteen genetic variants 
associated with obesity and lipid metabolism (Table 2.1) (Goni et al. 2015). Other 
studies have used even larger sets of variants (i.e., 63 obesity-associated variants) 
to produce dietary recommendations aimed at reducing BMI in the United States 
(Casas-Agustench et al. 2014). Another approach has focused on intake of sugar-
sweetened beverages, fried foods, and saturated fatty acids to evaluate the obesity 
risk score (Casas-Agustench et al. 2014; Olsen et al. 2016; Qi  2014; Qi et al.  
2012; Brunkwall et al. 2016). These are just a few examples, but the general idea 
behind widespread GRS usage is to personalize treatment by incorporating dif-
ferent parameters into an analysis, for example, physical activity and circadian 
rhythms (i.e., analysis of CRY1, PLIN1, CLOCK) (Toro-Martín et al. 2017) or gut  
microbiomics (Bassaganya-Riera et al. 2021). 

Chronic diseases generally manifest in highly variable ways between individu-
als and are associated with complex multifactorial variables, some as yet unknown. 
For instance, obesity is a complex multifactorial phenotype; interindividual vari-
ation in such phenotypes is thought to result from the action of multiple genes 
and environmental factors. Different strategies are therefore required to understand 
these diseases, such as identifying the role of specific genes in energy balance 
and adipose tissue biology. Other required techniques are genome-wide linkage 
scans to identify regions of interest and evaluation of the tissue-specific gene 
expression profile to compare lean versus obese individuals (Loos and Bouchard 
2003). The epigenetic marks (DNA methylation, circulating miRNAs) involved 
in disease progression will also need to be developed (Mantilla-Escalante et al. 
2021; Mantilla-Escalante 2019; Samblas et al. 2019; Kornfeld et al. 2013; Carmen 
Martínez-Jiménez et al. 2018; Aganzo et al. 2018). This can be done using a “di-
etary signature” created with genomic and epigenomic tools (i.e., transcriptomics, 
proteomics, metabolomics, miRNomics) and will help to identify the specific genes 
and proteins influenced by specific nutrients. In this context, it would be particu-
larly useful to develop tools capable of incorporating the entire biological system
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Table 2.1 Genotype of the 16 SNPs included in the GRS. Adapted from Goni et al. (2015) 

Gene SNP Major/minor alleles 

FTO rs9939609 T/A 

MC4R rs17782313 T/C 

MTHFR rs1801133 C/T 

PPARA rs1800206 C/G 

PPARG rs1801282 C/G 

APOA5 rs662799 T/C 

APOE rs429358 T/C 

APOE rs7412 C/T 

LIPC rs1800588 C/T 

PLIN1 rs894160 G/A 

NOS3 rs1799983 G/T 

GCKR rs1260326 C/T 

LPL rs328 C/G 

CELSR2 rs12740374 G/T 

CETP rs1800777 G/A 

LIPG rs4939883 C/T 

and monitoring all potential alterations in homeostasis. Deep phenotyping will 
contribute to better characterization of certain diseases and consequently improve 
evaluation of intervention outcomes. A major limitation of this technique is its high 
cost, need for trained professionals, and use of expensive omics tools. Improve-
ment in different omics overtime will allow creation of customized diets based 
on the capacity of omics to identify and stratify the metabolites that contribute to 
modulating a certain health condition. Indeed, incorporation of different genetic 
outcomes will make for better precision in personalization even though many fac-
tors (Fig. 2.2) must be considered when designing individualized dietary regimes 
(Toro-Martín et al. 2017). 

Advances in genomic sciences have clearly permitted a better understanding of 
the role of genetic variants and epigenetic signatures, as well as gene expression 
patterns, in the development of diverse chronic conditions (Ramos-Lopez et al. 
2017). Various issues still need to be resolved before PN can come to fruition. For 
example, it is vital to confirm that PN interventions really do produce behavioral 
changes beyond those experienced in response to conventional dietary recommen-
dations (Jinnette et al. 2021). Data from PN interventions indicate that phenotypic 
data, and the psychological, social, economic, and cultural factors that influence 
eating patterns have positive effects in designing PN recommendations (Jinnette 
et al. 2021), and should thus be considered when applying a widespread PN pro-
gram in the general population. Another factor is that even though inclusion of 
genetic testing with dietary recommendations does promote positive changes in 
dietary habits (Horne et al. 2018; Celis-Morales et al. 2017b), this response is not
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equal in males and females. In fact, previous studies, including Food4me, indicate 
that females are more receptive to participation in nutrition studies than males, 
which can be explained by females’ greater interest in health and nutrition (Jin-
nette et al. 2021; Livingstone et al. 2020, 2016). Socioeconomic status can also 
impact changes in eating and physical activity, meaning PN should focus on a 
wide range of social and behavioral factors in addition to genotypic analysis. 

The data available to date suggest that improving PN dietary recommendations 
and ensuring that it is used in real life (not just in controlled trials) will require 
analysis of the added value associated with its implementation and the way in 
which nutrition professionals adopt and manage this new approach. Before scien-
tific research on PN can be translated into daily clinical care, studies are needed 
identifying the strengths and limitations affecting consumers, exploring policies to 
protect personal information, and studying legal and ethical aspects. 

2.4 Translating Personalized Nutrition for Society 

The obesity pandemic has highlighted the acute need to develop novel approaches 
to reduce the incidence of different disorders and their treatment. Present dietary 
habits clearly need to be healthier. 

Various studies have found that customized dietary advice is more effective than 
generic advice, leading to improvements in dietary behaviors and other associated 
parameters (Celis-Morales et al. 2017a; Aganzo et al. 2018). In a sub-study of the 
SMART trial, designed as 24-month randomized clinical trial of behavioral treat-
ment for weight loss, participants receiving personalized advice attained 1.83 kg 
lower weights than those receiving “one-size-fits-all” information (Ambeba et al. 
2015). In another study, inclusion of genotypic information did not motivate indi-
viduals to change their dietary behavior (Marteau et al. 2010). The Food4Me study 
found that even though tests were done for the fat mass and obesity-associated 
gene (FTO), transcription factor 7-like 2 gene (TCF7L2), apolipoprotein E4 
genotype (ApoE4), desaturase decoding gene (FADS1), and methylenetetrahydro-
folate reductase gene (MTHFR), participating individuals, were still unmotivated 
to change their behavior (Celis-Morales et al. 2017a). Why this occurs is still 
unknown; apparently, lifestyle habits are difficult to change. 

In personalized nutrition, dietary recommendations will be prescribed at an indi-
vidual level, but they need to be easy to follow, to translate into society, and to 
communicate to the public. For instance, a simple recommendation is to eat five 
fruits a day even though recommendations will be managed in response to a spe-
cific phenotype or genome (i.e., caffeine intake, PUFAs, systolic blood pressure, 
etc.). In theory, once a person is aware of their genotype, they will be more aware 
of what they eat and when they eat it. Perhaps, dietary intake will not change 
in the long term, but at least, the perception and behaviors related to specific 
recommendations can change (Roke et al. 2017). 

Nutrigenomics and nutrigenetics will drive the food manufacturing and service 
industries to develop different products that consider personal taste, preferences,
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cultural habits, and the need to fulfill personalized dietary recommendations (Kuss-
mann and Fay 2008). Many online tools already exist for collecting dietary intake 
data and producing dietary recommendations, but whether or not these contribute 
to improving eating patterns still requires validation (Ryan et al. 2015). 

Few dietary interventions have focused on studying the effect of PN advice 
based on different phenotypic and genotypic characteristics. Among them, the 
Food4Me study focused on evaluating whether different dietary recommenda-
tions based on dietary pattern, phenotypical values, or genotype produced better 
compliance compared to traditional dietary advice (Celis-Morales et al. 2017a). 

In the context of Food4Me study, results generally indicated that after 6 months, 
nutritional recommendations via the Internet induced greater compliance with 
healthier diets in the PN and lifestyle approach than conventional dietary rec-
ommendations. Effectiveness almost doubled when recommendations was further 
personalized by including individual dietary behavior. In concrete terms, par-
ticipants reduced their consumption of red meat, saturated fat and salt, and 
increased their folate intake, producing significant improvements in dietary habits 
(Celis-Morales et al. 2017a). 

Adding different biomarkers and/or genetic data to the recommendations pro-
duced no added value for diet quality but did act as a predictor of dietary 
intervention response (Celis-Morales et al. 2017a). Indeed, identification of phe-
notypes which are responsive to dietary recommendations may help to understand 
why this occurs, and then, this knowledge can be used to further enhance effec-
tiveness of the dietary strategy. For instance, basal levels of circulating cholesterol 
contribute to classifying participants as responders or non-responders to dietary 
recommendations based on changes in cholesterol levels from baseline to month 6 
(Kirwan et al. 2016). It was also found that the FTO genotype risk had a greater 
effect on a reduction of body weight and waist circumference in risk carriers than 
in non-risk carriers across different levels of personalized nutrition (Celis-Morales 
et al. 2017b). In summary, the potential use of metabolic and genetic profiles in 
identifying a person’s response to an intervention could be crucial in developing 
precision nutrition. 

2.4.1 Social Impact Regarding PN 

Based on the complex and diverse individual characteristics influencing the factors 
affecting dietary interventions (i.e., dietary behavior), different nutrition science 
strategies have been developed to produce personalized dietary interventions more 
probable to impact societal dietary habits. One example is the introduction of new 
concepts that contribute to modifying the perceptions and impact of diet and its 
role in society (i.e., sustainable diet) (Clark et al. 2019). Integration of PN into 
society needs to incorporate (i) technical support using new technologies, devel-
opment of new science and innovative tools, identification of obstacles and fears 
among the population; (ii) political motivation to include nutrition and health
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Fig. 2.4 Network of the personalized nutrition system map. Adapted from: eu: Food4Me (2015) 

issues in the public healthcare system; and (iii) commercial efforts to familiar-
ize consumers with PN. A transition process will occur in which modification of 
dietary eating patterns is supported by economic incentives, development of new 
tools and methods that highlight the interaction between nutrition and gene molec-
ular data, and strong social pressure (Fig. 2.4). The most effective approach will 
involve collaboration between the public and private sectors (Bassaganya-Riera 
et al. 2021). The research community has advanced in PN development, but its 
widespread implementation in society is only feasible if public and private agents 
function as an integrated network. 

2.4.1.1 New Data Collecting and Sampling Tools 
A primary question in nutrition science is how to overcome the biases surround-
ing to nutrient intake. Anthropometric, dietary habits, and food intake data are 
important to collect for many reasons, including (i) development of nutritional 
recommendations; (ii) identifying nutrigenomic associations, and (iii) finding com-
pliance biomarkers. They are also required for individualization and creating 
automatic diagnostic and monitoring tools for healthcare systems. 

Although at the experimental stage, the concept of a Web-based study was intro-
duced by Hercberg et al. (2010) as a prospective study (ongoing) and is expected 
to recruit ≈500,000 study participants in France. This study focuses on the rela-
tionship between nutrition and health and dietary patterns over the long term. All 
the data is to be collected remotely, will be digitized, and compared to a nation-
ally representative survey (Andreeva et al. 2016). Similar intake was observed in 
both cohorts (electronic and survey) for carbohydrates, total lipids, protein, and
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total energy, but intake of fruits and vegetables, fiber, certain vitamins, and min-
erals was higher in the e-cohort. Alcoholic and non-alcoholic beverage intake was 
lower in the e-cohort. Real differences in intake, mode effects, and volunteer bias 
may each contribute to explaining the findings. These results suggest that new 
tools are needed to collect data and sample while avoiding volunteer bias. The 
Food4Me study used a similar Web-based model approach, as described above. 
These two studies are examples of the feasibility of new data collecting and sam-
pling tools. Because they are relevant to bringing nutritional personalization to the 
general public, better tools are still needed. 

Recent years have seen the introduction of different electronic data collecting 
tools for extensive phenotyping which may be useful in personalized nutrition. 
Mobile applications (apps) are in development to measure body parameters such 
as blood pressure, blood glucose concentration, sleep quality, heart rate, energy 
expenditure, and exercise intensity, among others (Lieffers and Hanning 2012). 

Sample collection also poses a problem, and new tools will be needed before 
PN can become common. A common and cost-effective tool are DBS cards. They 
provide many scientific advantages are low cost and facilitate logistics (Deep et al. 
2012). Analyses using DBS can provide data on health markers and nutritional 
status and can be used as compliance biomarkers for food intake data, i.e., vitamin 
E (Hoeller et al. 2016), carotenoids (Rubió et al. 2020), dietary phenols (Las Hazas 
et al. 2016), and even genomic and epigenomic biomarkers, etc. Sampling via DBS 
is currently limited due to the challenge of validating measurements and verifying 
comparability with traditional venous blood samples. In the future, DBS may also 
be employed to identify different phenotypic and epigenetic biomarkers. 

2.4.2 PN-Associated Business and Value Creation Models 

The high prevalence of obesity and chronic diseases in our societies represents 
an immense potential market for personalized nutrition services. These can range 
widely from the analytical sphere (e.g., tools, diagnostics, interpretation algo-
rithms) to direct attention (shops, restaurants, wellness and sport centers, medical 
services, leisure, education, etc.) and other commercial services. To foment per-
sonalized nutrition services, new value creation models for PN need to be designed 
to augment consumer’s perception of the role of food in health and the envi-
ronment. These models should integrate different key points such as personal 
coaching principles, new technological tools that permit self-sampling diagnos-
tics, and monitoring of lifestyle and food intake. The Food4Me project explored 
different business models and value creation concepts to merge insights from this 
process with emerging insights on scientific, technical, consumer, legal and ethical 
aspects.
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One example of these potential markets is the recent expansion in the genetic 
testing market. This flood of new information may trigger potentially rapid behav-
ioral changes intended to control adverse factors (Guasch-Ferré et al. 2018) 
although the scientific evidence supporting response to clinical recommendations is 
open to debate, and the extent of behavioral modifications after genetic information 
disclosure is unclear. 

2.4.3 Social Concerns and Their Impact on PN Development 

As personalized nutrition evolves, so will people’s concerns about it. These 
include (i) the strength of using individual genetic information for personaliz-
ing dietary advice; (ii) extensive diagnostic testing may constitute a cost barrier 
to PN compliance; (iii) the perceived improbability of creating truly individual-
ized nutritional recommendations (the most realistic approach is to identify large 
groups of individuals [nutritypes] with a similar profile for which a set of nutri-
tional recommendations may function); (iv) developing personalized food products 
is economically unfeasible; (v) changes in product and dietary recommendations 
make the market skeptical of developing the required products; (vi) facilitating PN 
implementation in society could provide some benefits; (vii) consumers will have 
varying abilities to understand PN which could generate confusion and/or fear, 
and (viii) the perception of PN as a dietary health opportunity is not self-evident. 
All these aspects will need to be clarified for consumers before PN’s benefits can 
become more generalized. 

2.4.3.1 Ethical and Legal Concerns 
Personalized nutrition services require personal health data, which raises new eth-
ical, legal, and social issues. Personal data management should handle different 
issues of consumer or patient protection, but the patient or consumer will still 
have to assess the potential benefits of using the service and the risks of providing 
personal health or lifestyle data. 

The increasing availability and affordability of genetic testing has prompted 
many consumers to purchase direct-to-consumer genetic tests and then bring their 
reports in for interpretation (Horne et al. 2021). Most of these kinds of genetic tests 
have minimal analytical or scientific validity and limited clinical utility. However, 
they also have different ethical, legal, and social implications (Horne et al. 2021). 
Despite their limited validity, genetic tests are increasingly popular, and, in the 
United States, for instance, the market is growing steadily (San-Cristobal et al. 
2013). 

Unlike traditional nutritional recommendations, PN has different associated 
legal issues involving individual rights. Various guidelines and regulatory frame-
works affect PN services. Identifying the relevant legal norms applicable to PN, 
and the resulting barriers and requirements, has been approached by evaluating 
typical PN business models considering current legal requirements adopted, or
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soon to be adopted, by the EU or its member states, and/or international legal 
instruments, where they exist. 

2.4.4 Consumer Attitudes Toward Personalized Nutrition 

Another critical issue is consumer acceptance of personalized nutrition, especially 
since the data generated by PN may involve certain risks. The use and storage 
of an individual’s genetic information as part of nutrigenomics generates differ-
ent societal concerns. This information is highly personal, and it is therefore vital 
to know how these data are managed and how they could impact on individual’s 
privacy. Consumer acceptance of new technologies affects perceptions of disease 
risk and responses to the application of personalized nutrition. Indeed, application 
of personalized nutrition phenotypic data, even when not involving genetic differ-
ences, raises privacy issues. Characterizing a phenotype requires sensitive personal 
information such as family and personal history, psychological well-being, and 
environment, social, and lifestyle practices. 

Genomics has great potential in healthcare systems, but individuals’ response 
to this treatment poses a challenge. Despite the extensive scientific research sup-
porting it, individual motivation remains the principal challenge to successful 
implementation of personalized diets (Fallaize et al. 2013). In this sense, atti-
tudes toward personalized nutrition may influence behavioral intention regarding 
its adoption and the potential success of marketing a personalized nutrition ser-
vice. Furthermore, consumer’s perceptions of its benefits can also influence how 
much they will be willing to pay for personalized nutrition recommendations. This 
is why careful communication about personalized nutrition is crucial to attracting 
individuals who could benefit from it but do not perceive those potential benefits 
(Stewart-Knox et al. 2013). 

There is also debate about the willingness of consumers to pay more for the 
required additional analyses needed to generate Personalized Nutrition recommen-
dations. They will need to consider their perceived risks, benefits, and self-efficacy, 
as well as their attitude about personalized nutrition and their behavioral intention 
to adopt it (Fig. 2.5). 

Among the main results of the Food4Me is that consumers will pay for PN 
nutritional recommendations. Indeed, they are willing to pay up to 50% extra com-
pared to regular services for analyses such as blood collection, DNA collection, 
and dietary advice (Poínhos et al. 2014). The main predictor of a positive attitude 
toward complying with PN is the motives for food choice. However, consumers’ 
readiness to acquire greater knowledge about their health may not result in an 
intention to modulate their eating patterns. Negative attitudes toward PN compli-
ance may be even stronger, particularly in terms of higher food price, sensory 
appeal, and familiarity (Nielsen et al. 2014; Stewart-Knox et al. 2008). 

Personalized nutrition may be able to motivate changes in a population, but it is 
clear that intense feedback for individual patients is what positively effects nutri-
tion self-efficacy scores (Stewart-Knox et al. 2008). When comparing between the
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Fig. 2.5 Psychological determinants of personalized nutrition in European countries. Adapted 
from: Poínhos et al. (2014) 

different approaches to personalized nutrition services in Food4Me participants, 
those based on an individual’s current diet seem to be sufficient to elicit adequate 
changes in eating habits. Moreover, as consumers are more exposed to individual-
ized/personalized medicine, they will probably become more positive toward the 
potential benefits of personalized nutrition (Celis-Morales et al. 2017a). 

Communication will be an important aspect of introducing PN to the general 
public. Once ethical and legal concerns are resolved, and/or new legislation comes 
into effect regulating this specific aspect of human health regulation, promotion 
of PN can facilitate its widespread implementation. Given the multiple ways, peo-
ple now access information and communicate; a key concern for PN will be to 
determine the best way to coach (traditional face-to-face interviews, Web-based 
interaction, chatbot interaction, or others) consumers into improving their eating 
patterns and attaining a level of personalized nutrition without fear of sharing 
personal genetic data, and other biomedical data, with public/private institutions. 
Social media applications may impact health behavior and so need to be consid-
ered when communicating for PN purposes. For instance, a study of Twitter found 
it influenced food-related behavior and attitudes, suggesting its potential impact in 
social health (Vydiswaran et al. 2020).
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2.5 Future Outlook 

The long-term effects caused by changes in food intake and lifestyle following 
administration of personalized advice are still unclear, but these approaches will 
need long-term support for participants/customers to generate sustainable changes. 
Models and studies to test how this can be achieved need to be developed. These 
may include, for example, novel reward systems to maintain interest and moti-
vate participation by health insurers or other healthcare providers in the business. 
Again, collaboration between the public and private sectors will be vital to its 
functioning. 

Non-invasive or minimally invasive monitoring devices (wireless continuous 
monitoring systems) will become important tools in future nutrition research and 
in developing precision nutrition approaches. These devices will also allow imple-
mentation of novel study designs and enable large-scale studies without the need to 
bring volunteers into study centers. They will also provide immediate feedback to 
study participants on changes in body functions, which could increase compliance 
and foster motivation, especially in scenarios of lifestyle interventions. Nutritional 
genetic risk scores will facilitate diet personalization, but stronger GRS needs to 
be created that can combine both nutrigenetic data and whole-genome sequenc-
ing data from precision medicine initiatives that truly predict the risk of common 
human diseases associated with diet. Algorithms to manage large-scale datasets 
that combine genetic, genomic, epigenetic, environmental, and other data types 
will be needed to integrate these data and individualize nutrition. 

2.6 Concluding Remarks 

Personalized nutrition will need to incorporate nutrigenomic knowledge as 
well as other lifestyle parameters such as physical activity, gut microbiomics, 
metabolomics and exposome habits at every stage of life. Myriad individual char-
acteristics that may influence dietary eating patterns or behavior must also be 
incorporated, including cultural variations, allergies, and intolerances, many of 
which may have as yet unknown multigenic origins. For personalization to be 
effective, consumers will need to adopt positive attitudes and receptiveness toward 
usage of widespread genomics data in nutrition, accompanied by a positive social 
impact. New business and value creation models will also be needed, social, ethical 
and legal concerns addressed, communication implemented and consumer attitudes 
toward personalized nutrition refined. Personalized nutrition is aimed at modifying 
behavioral changes at every life stage much more effectively than one-size-fits-all 
diet strategies.
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ABSTRACT 

Precision nutrition takes advantages of omics technologies allowing investi-
gating genome-wide genetic and epigenetic variants, and the global levels of 
messenger RNAs, proteins and metabolites, with the final goal to personalize the 
diet according to the individual’s biological needs, in order to promote healthy 
aging and reduce the risk of age-related diseases. Nutritional genomics is a 
broad discipline encompassing nutrigenetics that aims to clarify how individu-
als respond to nutrients according to their genetic background; nutrigenomics 
that investigates changes in gene expression levels and the resulting levels 
of proteins and metabolites induced by dietary factors, and nutriepigenomics 
that studies the epigenetic changes induced by nutrients. These disciplines
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provide complementary results to better personalize the diet according to the 
individual’s integrated metabolism. After describing several examples of nutri-
genetics, we will focus on the increasing evidence of interactions between 
dietary/nutritional factors and the epigenome that starting from the intrauter-
ine life, can regulate gene expression levels and metabolic demands, potentially 
resulting in disease development later in life. 

3.1 Introduction 

Recently, research in nutrition is strongly oriented, as well as medicine in gen-
eral, toward personalized nutrition that is a form of precision nutrition that takes 
into account inter- and intra-individual differences, in the field of genomics, 
metabolomics, proteomics and microbiota, in order to tailor the diet accord-
ing to the individual’s biology (Mullins et al. 2020). Differences exist in the 
genetic profile between individuals and specific ethnic groups, and these affect 
nutrient requirements, metabolism, and response to nutritional and dietary inter-
ventions (Ferguson et al. 2016). Evolutionary studies have revealed that humans 
genetically adapted to their ancestral diets and local environments, resulting in 
population-based differences in allele frequencies of common single nucleotide 
polymorphisms (SNPs) of genes required for the metabolism of some of the most 
common nutrients (Mullins et al. 2020). Nutrigenetics was conceived as the dis-
cipline pertaining to the interaction of nutritional and genetic factors that may 
play a role in disease etiology (Brennan and Mulligan 1975). Indeed, the main 
goal of nutrigenetics is to investigate how the inter-individual genotypic vari-
ability, particularly SNPs, influences an individual’s response to dietary intake 
(Marcum 2020). The advent of high-throughput omics technologies has rapidly 
allowed to obtain genome-wide data in an affordable manner, leading to the 
discovery of many genetic variants associated with nutrient absorption and uti-
lization, lipid metabolism, and fat accumulation that in turn can lead to gene–diet 
interactions of relevance for human diseases (Mullins et al. 2020). Omics means 
“global”, and the omics technologies of genomics, epigenomics, transcriptomics, 
proteomics and metabolomics, coupled to the study of the individual’s micro-
biome, have led to the development of nutrigenomics. Albeit many definitions 
of nutrigenomics exist in the literature, the broadest views it as a branch of sci-
ence that uses high-throughput omics technologies to investigate the impact of diet 
and nutrition on gene expression levels (Brennan and de Roos 2021). Epigenetic 
mechanisms, including DNA methylation and histone tail modifications, do not 
alter the underlying DNA sequence, but regulate the chromatin structure and gene 
expression levels. The increasing evidence that the expression levels of several 
genes depends on epigenetic mechanisms, and that most of them are regulated 
by dietary/nutritional factors, has led to the development of the fields of nutriepi-
genetics and nutriepigenomics. Nutriepigenetics investigates mechanisms through



3 Precision Nutrition from the View of Genetics and Epigenetics 53

which nutrients and dietary patterns may lead to epigenetic modifications result-
ing in changes in the expression levels of specific genes. Nutriepigenomics uses 
whole genome approaches for the same purpose (Ferguson et al. 2016). Nutritional 
genomics is the broad term encompassing nutrigenetics (the study of the differ-
ent effects of nutrients according to our genetic constitution), nutrigenomics (the 
study of how nutrients may affect gene expression and the resulting levels of pro-
teins and metabolites), and nutriepigenomics (the study of how nutrients change 
the chromatin structure and gene expression levels, without changing the DNA 
sequence) (Camp and Trujillo 2014). However, nutrigenetics, nutrigenomics, and 
nutriepigenomics complement each other providing a comprehensive picture of an 
individual’s integrated metabolism, with the final goal of optimizing individual’s 
health through a personalized nutrition, and the terms nutritional genomics and 
nutrigenomics are often used synonymously (Camp and Trujillo 2014; Marcum 
2020). 

3.2 Nutrigenetics and Nutrigenomics 

Nutritional genetics or nutrigenetics investigates the impact of genetic variation on 
an individual’s response to dietary intake, especially in terms of how genetic vari-
ation influences the metabolic state and risk for disease (Marcum 2020). Despite 
that two genomes can differ in SNPs, insertions and deletions of short DNA 
fragments (INDELs), copy number variants (CNVs), and larger rearrangements 
denoted structural variants (SVs), most of the nutrigenetics studies have focused 
on SNPs (Mullins et al. 2020). 

Interesting examples in nutrigenetics are genetic polymorphisms in alco-
hol dehydrogenase 1B (ADH1B) and cytochrome P450 1A2 (CYP1A2) genes 
that influence alcohol and caffeine metabolism, respectively. Particularly, the 
mutant alleles rs1229984 and rs2066702 of ADH1B are associated with increased 
rates of ethanol metabolism and reduced risk of alcohol dependence, while the 
rs762551SNP of CYP1A2 results in three genotypes (C/C, C/A and A/A) leading 
to slow (C/C and C/A) and rapid (A/A) caffeine metabolizers (Mullins et al. 2020). 

Methylenetetrahydrofolate reductase (MTHFR) is one of the most important 
enzymes in folate metabolism and converts 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate, the methyl donor for the remethylation of homocysteine to 
methionine, this latter required for the production of S-adenosylmethione (SAM), 
the universal intracellular methyl donor compound. The most well-known SNP of 
MTHFR, namely, rs1801133, results from a transition mutation from C to T at 
nucleotide 677 (c.677C > T), and the homozygous genotype (T/T) is responsible 
for a reduction of up to 70% in MTHFR enzymatic activity (Ueland et al. 2001). 
An important factor influencing MTHFR protein activity in homozygous T/T car-
riers is the availability of dietary folates. MTHFR works as a dimer protein and 
physiological levels of folate stabilize the dimer, but the MTHFR 677 T allele ren-
ders the enzyme thermolabile, particularly in homozygous (T/T) individuals that
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are prone to dimer destabilization under conditions of reduced folate bioavailabil-
ity (Martínez-Frías 2008). The MTHFR 677TT genotype has been often linked 
to hyperhomocysteinemia and impaired DNA methylation, and associated with 
increased risk of various human conditions, including pregnancy complications 
(Coppedè 2021a), congenital disorders such as neural tube defects (Tabatabaei 
et al. 2020), Down syndrome (James et al. 1999; Coppedè et al. 2010) and con-
genital heart disease (Liu et al. 2020), autism spectrum disorders (Wei et al. 2021), 
and age-related diseases including cancer (Wang et al. 2021), cardiovascular dis-
eases (Chita et al. 2020), and Alzheimer’s disease (AD) (Coppedè et al. 2012; Yi  
et al. 2019). 

Genes involved in lipid metabolism have often been linked to an increased 
risk for cardiovascular and neurological complications (Ordovas 2009; Liu et al. 
2013). One of best examples is the APOE gene coding apolipoprotein E (ApoE). 
Apolipoproteins are proteins associated with lipid particles, which mainly func-
tion in lipid transport from one tissue or cell type to another. In peripheral tissues, 
ApoE is primarily produced by the liver and macrophages, and mediates choles-
terol metabolism in an isoform-dependent manner. In the central nervous system 
(CNS), ApoE is mainly produced by astrocytes, and transports cholesterol to 
neurons via ApoE receptors, which are members of the low-density lipoprotein 
receptor (LDLR) family (Liu et al. 2013). Two SNPs (rs429358 and rs7412) within 
the APOE gene generate three common alleles of the APOE gene, namely ε2, ε3, 
and ε4, with reported worldwide frequencies of about 8.4%, 77.9%, and 13.7%, 
respectively (Liu et al. 2013). The APOE ε4 allele represents the major genetic risk 
factor for AD. Indeed, one copy of ε4 increases AD risk by ~threefold and two 
copies by ~12-fold. The common ε3 allele is neutral, while the ε2 allele seems 
to confer protection against AD. The APOE ε4 allele contributes to AD patho-
genesis by impairing microglial responsiveness, lipid transport, synaptic integrity 
and plasticity, glucose metabolism, and cerebrovascular integrity and function. It 
also promotes amyloid-β (Aβ) aggregation, and influences tau pathology and tau-
mediated neurodegeneration (Yamazaki et al. 2019). In addition, the APOE ε4 
allele is associated with an increase in LDL-cholesterol levels and with increased 
risk of cardiovascular diseases (Khalil et al. 2021). 

Several variants in obesity-related genes can affect weight gain or loss in geneti-
cally predisposed subjects (Martinez et al. 2008; Vitolo et al. 2017). One of the best 
examples is represented by rs9939609 in the fat mass and obesity-associated (FTO) 
gene that predisposes carriers of the minor allele to weight gain and increased risk 
of obesity (Da Silva et al. 2018). 

These are only some of several examples of nutrigenetics pertaining to SNPs 
affecting the individual’s metabolic activities and risk of human diseases, and many 
more can be found in the literature (Ferguson et al. 2016; Mullins et al. 2020). 
Haplotypes are groups of gene variants, often SNPs, which are physically close 
to each other on the same DNA strand, and can be more reliable in predicting 
protein function and activity than a single SNP. For example, rs1801133 (c.677C 
> T) and rs1801131 (c.1298A > C) of the MTHFR gene are in strong linkage 
disequilibrium, resulting in common and less frequent haplotypes. Particularly, the
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rare 677 T/1298C haplotype seriously impairs protein stability and activity, being 
often prenatally lethal in homozygosis (Ulvik et al. 2007). 

Genetic variants alone do not explain all the complexity of gene-nutrients inter-
actions and their relevance for healthy aging or disease, and nutrigenomics is the 
discipline that uses omics approaches to understand how dietary factors influence 
gene expression levels and the resulting levels of proteins and metabolites, com-
bining transcriptomics, proteomics, metabolomics, and other omics technologies 
(Ferguson et al. 2016; Marcum 2020). Within this context, increasing evidence 
reveals that investigators take advantage of nutriepigenetics/nutriepigenomics tech-
nologies to complement nutrigenetics/nutrigenomics approaches, combining data 
on gene variants, epigenetic modifications, and gene expression levels to better 
characterize the inter-individual variability in the response to dietary factors. For 
example a recent genome-wide methylation study in 1250 individuals, showed 
that alterations of the one-carbon metabolism, resulting from interaction between 
plasma homocysteine and the MTHFR c.677C > T polymorphism, are associ-
ated with site-specific changes in DNA methylation affecting gene expression 
levels (Nash et al. 2019). Similarly, associations between vitamin B6 deficiency, 
MTHFR genotypes, and global DNA methylation levels, were observed in preg-
nant women (La Merrill et al. 2012), and riboflavin supplementation altered global 
and gene-specific DNA methylation levels in adults with the MTHFR 677TT geno-
type (Amenyah et al. 2020a). The next sections of this chapter further explain the 
complex interplay between dietary factors and the epigenome. 

3.3 Epigenetic Mechanisms 

Epigenetic mechanisms include DNA methylation and hydroxymethylation that 
regulate gene expression levels; numerous post-translational modifications of 
histone tail aminoacids, including acetylation, methylation, phosphorylation, ubiq-
uitylation and sumoylation, overall regulating the chromatin structure, and the 
regulation of gene expression levels mediated by short and long non-coding RNA 
molecules (ncRNAs). Among these, DNA methylation is one of the most exten-
sively studied and consists of the addition of a methyl group to the DNA mediated 
by DNA methyltransferases (DNMTs), resulting in gene silencing when occur-
ring in the promoter region. SAM, which is generated within the methionine-cycle 
of one-carbon metabolism, is the methyl donor compound for DNA methylation. 
Therefore, DNA methylation is sensitive to the bioavailability of dietary folates 
and related B-group vitamins and nutrients working as methyl donor compounds 
or cofactors in the one-carbon metabolic pathway (Coppedè 2021b). However, as 
further discussed in the next paragraphs, the different epigenetic mechanisms work 
in concert to adapt gene expression levels in response to the cellular metabolic 
demands. Indeed, most of the enzymes that add or remove the epigenetic marks 
are in turn regulated by intracellular metabolites, and several metabolic genes, 
such as those involved in lipid, glucose, one-carbon, and redox metabolism are 
regulated by epigenetic mechanisms (Coppedè 2021b) Fig. 3.1.
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Fig. 3.1 A bidirectional crosstalk between the nuclear and mitochondrial genomes allows a coor-
dinated regulation of gene expression levels according to metabolic demands and is mediated by 
one-carbon metabolites and redox cofactors that regulate the activity of several epigenetic enzymes 

3.4 The DOHaD Theory: The Importance of the Maternal 
Diet in Animal and Human Models 

The epigenome is an important target for changes induced by environmental 
factors such as nutrition, chemical pollutants, early traumatic experiences, temper-
ature changes, and exercise (Feil and Fraga 2012). It is important to underline that 
the effect of the environment on the epigenome does not concern only the period 
after birth, but is able to influence in an incisive way also the development in utero. 
It is believed that the mother’s lifestyle and environmental conditions during preg-
nancy can have long-term effects on the health of the offspring. The molecular 
mechanisms with which maternal influence would act is likely mediated by epige-
netic modifications, able to interfere with the fetal programming of genes linked to 
diseases with adult onset (cancer, degenerative diseases, autoimmune disorders…), 
in accordance with the theory of embryo-fetal origins of diseases (Developmental 
Origins of Health and Disease, DOHaD), proposed by David Barker in the early 
2000s (Barker et al. 2002; Barker 2007). Interesting results have been obtained 
with different animal and human models regarding the influence of the maternal 
diet on the offspring. In the Agouti mouse model maternal supplementation during
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pregnancy with donors of methyl groups can change the phenotype of the progeny 
by interfering with the expression of a gene responsible for coat color (and other 
phenotypic traits) (Waterland and Jirtle 2003). In fact, given the direct relation-
ship between the folate metabolic pathway and DNA methylation mechanisms, 
alterations in nutritional status can directly influence DNA methylation patterns. 
In particular, methyl group donor nutrients such as methionine, folic acid, betaine, 
and choline have been implicated in the alterations of methylation patterns, as 
these nutrients are directly correlated with the biosynthesis of SAM, the precursor 
necessary for DNA methylation. In general, supplementation with methyl group 
donors appears to increase global methylation levels, while deficiency is associated 
with global hypomethylation. Among the genes that are affected by folate levels, 
there are many correlated with carcinogenesis, with inflammatory processes, with 
fetal growth and development. For example, deprivation of the essential amino 
acid methionine and folate deficiency are associated with liver and colon cancer in 
animals and humans. A recent randomized trial has shown that dietary fat composi-
tion also influences DNA methylation in adipocytes. Many studies have shown that 
metabolic syndrome and related disorders are linked to epigenetic changes detected 
in peripheral blood DNA (Feinberg 2018). Another model to investigate the effects 
of maternal diet on the epigenome regards nonhuman primates. A high fat diet 
(35% fat) was established that produced obesity in pregnant monkeys (macaques). 
In comparison with animals with a control diet (13% fat), the offspring of the 
obese monkeys were obese. Moreover epigenetic changes were identified in the 
liver of the obese offspring (hyperacetylation of fetal hepatic tissue), which was 
associated with the high fat diet (Aagaard-Tillery et al. 2008). Numerous studies 
suggest that maternal diet in pregnancy can influence child neurodevelopment. For 
instance maternal adherence to a Mediterranean diet was associated with favorable 
neurobehavioral outcomes in early childhood and with differences of CpG methy-
lation of imprinted genes, such as MEG3 and IGF2 (House et al. 2018). Also 
the paternal diet before mating, was found to induce intergenerational metabolic 
reprogramming in a Drosophila model. A 2 days of sugar rich diet intervention 
in fathers elicits obesity in offspring. Paternal sugar acts desilencing chromatin-
state-defined domains in both mature sperm and in offspring embryos (Öst et al. 
2014). 

Although most of the scientific evidence is based to date on animal mod-
els, also epidemiological studies on humans are starting to emerge. Pioneering 
work relating the influence of maternal lifestyle on embryonic epigenetic program-
ming was performed on a cohort of individuals exposed prenatally to severe food 
restrictions due to famine in the winter 1944–45 (the so-called “Dutch famine of 
1944–45”), which six decades later showed hypomethylation of the gene encoding 
the insulin-like growth factor 2 (IGF2) compared to non-exposed control subjects, 
or to siblings born before or after that winter, from the same mothers, but not 
subject to dietary restrictions during pregnancy (Heijmans et al. 2008). Notably, 
in utero exposure to famine had life-long effects on health, resulting in impaired 
glucose tolerance and increased risk of obesity, coronary heart disease, atherogenic 
lipid profile, hypertension, microalbuminuria, schizophrenia, antisocial personality
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Fig. 3.2 Epigenetic effects from environmental exposures during life course and transgenerational 
consequences 

and affective disorders (Kyle and Pichard 2006). These data are among the few 
that clearly demonstrate a link between early environmental exposure, specifically 
nutrition, DNA methylation, and long-term phenotype determination (Fig. 3.2). 

3.5 Epigenetic Mechanisms and Nutrients 

It is now known that environmental factors, including nutrients, are able to mod-
ulate the biochemical reactions underlying the epigenetic modifications. In the 
previous paragraphs we mentioned the role of folate pathway, but manifold are the 
influences of environmental factors on the main epigenetic processes such as his-
tone tail modifications and DNA methylation. External factors, including nutrition, 
exercise and the gut microbiome, regulate histone methylation and acetylation by 
modulating the intracellular pools of metabolites, including SAM and acetyl-CoA 
that are employed by histone methyltransferases (HMTs) and histone acetyltrans-
ferases (HATs), respectively. The activity of histone demethylases (HDMs) is 
supported by α-ketoglutarate (αKG), which can be derived from dietary glutamine, 
and is inhibited by the limited oxygen availability during hypoxia. Ketone bod-
ies and short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate 
can provide acyl-CoA precursors for histone acylation, also inhibiting directly the 
activity of histone deacetylases (HDACs) (Dai et al. 2020). 

Furthermore, in a more global vision, recent studies indicate that metaboli-
cally regulated epigenetic modifications include a broad spectrum of enzymatic 
and non-enzymatic modifications on histone, DNA and RNA molecules beyond 
the “canonical” methylation and acetylation marks (Dai et al. 2020). 

Several links exist between epigenetic mechanisms and the intracellular 
metabolic reactions, and several enzymes involved in the folate metabolic pathway
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or catalyzing histone tail modifications require FAD or NAD cofactors (Coppedè 
2021b). Moreover, several metabolic enzymes that typically localize to the cyto-
plasm or mitochondria can also be found in the nucleus. These include enzymes 
required for glycolysis, citric acid cycle, SAM synthesis, and nucleotide synthe-
sis. Inside the nucleus, these enzymes can either supply metabolites to regulate 
chromatin structure or induce direct modifications of histones and transcription 
regulators (Li et al. 2018). In addition, the expression levels of several enzymes 
participating in glucose, lipid or one-carbon metabolism, are regulated by their 
promoter methylation levels, strengthening evidence of a bidirectional crosstalk 
between metabolic and epigenetic pathways to tightly regulate gene expression 
levels according to metabolic demands (Coppedè 2021b). For example, using a 
cohort of more than 200 elderly individuals, we observed that circulating folate 
levels correlate with MTHFR promoter methylation levels (Tannorella et al. 2015). 
Moreover, in the same cohort we observed that MTHFR methylation levels also 
correlate with polymorphisms of genes involved in one-carbon metabolism, sup-
porting the need to include genetic data in nutriepigenetic investigations (Coppedè 
et al. 2019). Investigations involving hundreds or even thousands of individuals 
have shown that dietary intake of folate, vitamin B12, and other methyl donor com-
pounds correlate with peripheral blood genome-wide methylation levels (Amenyah 
et al. 2020a). Moreover, also the Mediterranean diet was associated with differen-
tial whole genome methylation levels, and in particular with the methylation levels 
of genes related to inflammation and immunocompetence (Arpon et al. 2016). 

3.6 Epigenetic Mechanisms of Antioxidants 

Many complex diseases, if not even all those investigated, have been found 
displaying epigenetic dysregulation. Extending from the paradigm of cancer, epi-
genetic dysregulation was identified in a plethora of complex disorders including 
immunological, metabolic (such as obesity and type 2 diabetes) infectious diseases, 
cardiovascular diseases, and human infertility. Particularly epigenetic regulation is 
critical for the normal development and functioning of the human brain. Indeed, 
epigenetic abnormalities have been frequently detected in neurodegenerative dis-
eases, such AD, Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 
and also in psychiatric diseases including schizophrenia, major depressive dis-
order or post-traumatic stress disorders (Berdasco and Esteller 2019). Evidence 
for increased oxidative damage in AD and PD neuronal and peripheral tissues 
was supported by studies in animal models and peripheral blood cells of living 
patients since the last decade of the past century (Flint Beal 1997; Migliore et al. 
2005). Antioxidant therapies have been proposed since long time to slowing the 
progression and limiting the extent of neuronal cell loss in neurodegenerative dis-
eases. Moreover antioxidant dietary compounds have been demonstrated to have 
the capacity to combat oxidative stress in many studies involving diverse chronic 
diseases, besides neurodegenerative diseases, such as cancer, cardiovascular dis-
ease, chronic obstructive pulmonary disease, type 2 diabetes (Beetch et al. 2020),
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and inflammation (Ramos-Lopez et al. 2021). Studies have suggested the antioxi-
dant therapeutics could potentially mimic the physiological actions of the natural 
antioxidant defense system, resulting in slower aging and prolongation of lifespan. 

Many dietary antioxidants, including catechins, flavonoids, anthocyanins, stil-
benes and carotenoids, which demonstrate benefits in the prevention and/or support 
of therapy in chronic diseases are able to reverse altered patterns of DNA methy-
lation in chronic diseases. They remodel the DNA methylation patterns through 
multiple mechanisms, including regulation of epigenetic enzymes and chromatin 
remodeling complexes (Remely et al. 2015; Vahid et al. 2015; Beetch et al. 2020). 

Among natural antioxidants there are plant-derived polyphenols. For instance 
resveratrol (3,5,4'-trihydroxystilbene) is a polyphenol present mainly in black 
grapes and its derivatives, blackberries, peanuts, and peanut products. There is 
evidence that resveratrol is a potent antioxidant and possesses pleiotropic actions, 
exerting its activity through various molecular pathways. Experimental data asso-
ciated with epigenetics changes indicate that resveratrol exhibits the capacity to 
modulate several neurodegenerative pathways, reducing the expression of genes 
crucial for age-related diseases. Among these pathways there are inhibition of 
DNMT activity; activation of SIRT1; regulation of acetylation of histones (H1, 
H3, H4) and non-histones chromatin protein (FOXO, p53, Ku70, PPAR, PGC- 1α, 
NF-κβ), regulation of HDAC and HAT activities; modulation of miRNAs, such as 
the upregulation levels of specific miRNA (for a review see Griñán-Ferré et al. 
2021). 

3.7 Aging, Epigenetics, Nutrition 

Increases in oxidative stress, mitochondrial dysfunction, inflammation, apoptosis 
as well as epigenetic modifications have been linked to accelerate aging (Griñán-
Ferré et al. 2020). An emerging field of epigenetics is represented by the epigenetic 
clock, which provides a measure of epigenetic age (also known as “biological 
age”), based on the DNA methylation levels evaluation at 353 CpG sites, called 
“Horvath epigenetic clock”. The DNAmAge clock is computed from some sites 
that increase and others that decrease methylation with age (Horvath 2013). Inves-
tigating how the estimated epigenetic age differs across individuals of the same 
chronological age can help to determine the impact of endogenous or exoge-
nous stress factors on biological aging and in the onset of diseases (Levine et al. 
2018). Perhaps, the most exciting feature of epigenetic biomarkers is that epi-
genetic changes are reversible, raising the prospect that DNA methylation age 
estimates might thus be useful for identifying or validating anti-aging interven-
tions. In a pilot randomized clinical trial on a total of 43 healthy adult males 
of 50–72 years, a potential reversal of epigenetic age using a diet and lifestyle 
intervention was recently achieved (Fitzgerald et al. 2021). The 8-week treatment 
program included diet, sleep, exercise and relaxation guidance, and supplemental 
probiotics and phytonutrients. Both changes in blood biomarkers were obtained 
(increased mean serum 5-methyltetrahydrofolate and decreased mean triglycerides)
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together with a DNAmAge of those in the treatment group decreased by an aver-
age 1.96 years by the end of the program (Fitzgerald et al. 2021). Other similar 
randomized clinical trials or cross sectional studies have shown that vitamin D3, 
folic acid and vitamin B12, carotenoids, fish, and tocopherol, are among dietary 
factors associated with a reduced DNAmAge (for a review see Amenyah et al. 
2020b). 

3.8 The Importance of the Gender in Precision Nutrition 
Medicine 

In a study mentioned above significant associations of maternal periconceptional 
adherence to the Mediterranean diet both with positive neurodevelopmental phe-
notypes in offspring as well as with differential methylation of CpGs in the control 
regions of imprinted genes were found (House et al. 2018). However some associa-
tions varied by sex: either sex-specific differences in the methylation of imprinted 
control regions as well as behavioral differences (decreased odds of depression, 
anxiety, atypical, and Autism Spectrum Disorder found in females) (House et al. 
2018). 

In general gender differences in food choices, in energy and nutrient intakes are 
certainly predictable. However these aspects have not yet been fully investigated 
in the human populations. The need to including a gender dimension in clini-
cal studies and practice is increasingly felt, especially nowadays with a growing 
interest in precision medicine, which has been defined as “an emerging approach 
for disease treatment and prevention that takes into account individual variabil-
ity in genes, environment, and lifestyle for each person” (https://medlineplus.gov/ 
genetics/understanding/precisionmedicine/definition/) and, as such, this approach 
must necessarily include the gender. As well as until now the majority of drug 
therapies are not yet optimized for both genders, also in the nutritional field, the 
modern dietary recommendations are based on studies conducted predominantly 
among males. The different efficacy of drugs, as likely of nutrients, in women 
and men is certainly due to biological differences that may be caused by sex-
specific gene expression, likely triggered by sex-specific epigenetic modifications. 
Certainly, there are many factors involved in general in gender differences. A sig-
nificant proportion of human imprinted genes are realistically involved, as well 
as altered expression of critical regions, due for instance to a skewed inactiva-
tion of the X-chromosome in females, or to the presence of genes that escape 
to X-inactivation or to a deregulation of miRNAs located on the X-chromosome. 
Moreover, the expression of specific genes can be modified epigenetically by many 
intracellular (hormones) or extracellular environmental factors, including dietary 
factors (Migliore et al. 2021).

https://medlineplus.gov/genetics/understanding/precisionmedicine/definition/
https://medlineplus.gov/genetics/understanding/precisionmedicine/definition/
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3.9 Concluding Remarks 

As an important constituent of precision medicine, precision nutrition focuses 
on the individual rather than groups of people, and assumes that many inherited 
and chronic metabolic diseases might be prevented or managed through person-
alized nutritional intervention because each person may have a different response 
to specific foods and nutrients (Chen and Wang 2016). In the present chapter we 
discuss several examples showing how inherited genetic variants can result in inter-
individual metabolic differences ultimately leading to a different response to foods 
and nutrients, and how these differences can increase the risk of various diseases in 
carriers of certain metabolic genotypes. Moreover, we have largely discussed how 
foods and nutrients are able to modulate the expression levels of hundreds different 
genes through epigenetic mechanism. These gene-nutrient interactions occur pre-
conceptionally, resulting in epigenetic changes in the gametes, as well as during 
pre- and post-natal life and, in combination with other person’s variables, includ-
ing gender, genetic variants, ethnicity, gut microbiome, environmental exposures, 
and lifestyles, can either slow the aging process in certain individuals or result in 
accelerated aging and increased burden of age-related diseases in others. Therefore, 
nutrigenetics/nutrigenomics and nutriepigenetics/nutriepigenomics offer comple-
mentary approaches to better understand the integrated metabolic response to foods 
and nutrients with the final goal to personalize the diet according to the individual’s 
demands. 
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ABSTRACT 

There is a growing body of evidence on the importance of the gut microbiome 
in human health and disease. Diet is a main factor that can alter the microbiome 
in ways that are beneficial to the host. However, the individual gut microbiome 
is like a fingerprint: it is unique to each person, and there is no universal recom-
mendation for a healthy diet. This increases the need for microbiome-oriented 
precision nutrition research. Only in this way can the complex interplay between 
host, diet, and gut microbiome be understood and, in a next step, put into prac-
tice. Here, we summarize the emerging topics in the field of the human gut 
microbiome and show how to use and generate valuable research results in 
microbiome-oriented precision nutrition research.
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4.1 Introduction 

“What works for you–unfortunately doesn’t work for me!”—facing this challenge 
on a daily basis, modern medical research was forced to develop new strate-
gies for improving healthcare outcomes. A new field was born—the so-called 
precision medicine (Ginsburg and Phillips 2018) or P4 medicine—predictive, pre-
ventive, personalized, and participatory. It’s main goals are to define biomarkers 
for early diagnosis of chronic degenerative diseases (prediction), identify at-risk 
individuals, so they can take proper action at early stages (prevention), stratify the 
patients using their personal metadata (personalization) and incorporate patient-
centric data, incl. patient experiences and values into the decision-making process 
(participation) (Younesi and Hofmann-Apitius 2013). 

At the same time, the growing interest in nutrition as a main driver of personal 
and public health (Nutrition and Public Health 1950; Lenoir-Wijnkoop et al. 2013) 
turned it into a target of health promotion and therapeutic strategies (Ross et al. 
2012). 

However, the high complexity of the subject and the lack of one-size-fits-all 
formula increased the need for integrative solutions in this field. Analogous to 
precision medicine, the term “precision nutrition” (PN) established itself as a mul-
timodal approach for the generation of personalized nutrition advice, adopting the 
common methods of precision medicine (Zeisel 2020). 

The development of both precision medicine and nutrition is based on col-
lection, analysis, and interpretation of highly diverse biological data, including 
genomic and other types of omics data from different body sites, vital parame-
ters, information about lifestyle, and personal preferences as well as many others 
(Schüssler-Fiorenza Rose et al. 2019). In fact, recent advances in DNA sequenc-
ing and computational tools for data analysis have enabled the in-depth study of 
the human genome, as well as the study of the so-called “second genome”—the 
microbiome (Knight et al. 2018). 

Indeed, microbiome research has received increasing attention over the past 
decade. Although its importance for human health has been well known for a 
long time (Milestones in Human Microbiota Research 2019), there was no suf-
ficient method for its in-depth analysis. Only with the introduction of the first 
next-generation high throughput sequencing, was there finally a method to explore 
this, what was then called “black box”. One development led to another, and 
the microbiome-related research underwent rapid expansion (NIH Human Micro-
biome Portfolio Analysis Team 2019). However, the first challenge was finding an 
appropriate definition of the term microbiome to set clear research goals in this 
field. 

According to the Human Microbiome Project Consortium, the human micro-
biome is the “collection of all the microorganisms living in association with
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the human body” (Human Microbiome Project 2019). These communities, espe-
cially the gut microbiome, mainly consist of bacteria (Qin et al. 2010), and in 
smaller amounts of archaea, eukaryotes, and viruses. Along with this definition, 
which describes the microbiome from a host/microorganism point of view, there 
are also definitions from an ecological (the entire community of microorganisms, 
inhabiting specific niche, for example, the gut) and a method-driven perspective 
(the entire genome/proteome/transcriptome/metabolome of these microorganisms). 
In contrast, the term “microbiota” covers only the microorganisms in a defined 
environment, without their metabolites or structural elements (Berg et al. 2020; 
Marchesi and Ravel 2015). In this sense, the term microbiome is the more compre-
hensive one, reflecting the functionality of the microorganisms and the interaction 
with their environment. Therefore, when talking about the microbiome, both the 
composition and the activity should be considered, and both the genotype and the 
phenotype of the microbiome should be incorporated for further interpretations. 

4.2 The Human Gut Microbiome—(Un)limited Possibilities 
for Improving Human Health 

In a study published in 1977, the total number of procaryotic and eukaryotic micro-
bial cells was estimated to be 1014, which is equal to the number of host cells by 
factor 10 (estimated to be 1013) (Savage 1977). Later, in 2016, Sender et al. 2016 
proposed a new calculation method and showed that the bacterial count is of the 
same order as the number of human cells. However, both estimations are based 
on a “standard adult male”, so they can vary across sex, age, or health condition 
(Sender et al. 2016; Sender et al. 2016). More importantly, most of these micro-
bial cells (about 99%) reside in the colon and about half of daily wet stool mass 
is composed of bacteria (Stephen and Cummings 1980). 

These and other findings from the last century (Dworkin et al. 2012; Farré-
Maduell et al. 2019) increased the interest in the bacterial communities of the 
intestine, not only because of their tremendous abundance, but also because of 
the gut itself. The gut is the largest immunological (GALT—Gut Associated Lym-
phatic Tissue) and endocrine (EECs—enteroendocrine cells) organ in the human 
body. It fulfils a chemical, physical and immunological barrier function against 
pathogens, regulates the nutrient intake and has a dense innervation (ENS—enteric 
nervous system) (Michael Denbow and Chapter, 2015; Gunawardene et al. 2011; 
Sasselli et al. 2012). Also, the epithelial cells in a healthy gastrointestinal tract 
(GIT) undergo high turnover rates (Sender and Milo 2021). 

The hypothesis that the gut microbiome may have a role in maintaining the 
gut homeostasis, encouraged the gut microbiome research, resulting in many new 
insights into the mechanisms of interaction between intestinal bacteria and the 
mucus layer (Sicard et al. 2017; Ouwerkerk et al. 2013). Furthermore, gut microbes 
are involved in the immune regulation (Wells 2011; Miquel et al. 2015; Liu et al.
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2017; Lathrop et al. 2011; Peterson et al. 2015), nutrient utilization (Cockburn 
et al. 2015; Flint et al. 2012), vitamin synthesis (LeBlanc et al. 2013; Cooke 
et al. 2006), production of neurotransmitters (Strandwitz et al. 2019; Strandwitz 
2018), postprandial blood sugar response (Zeevi et al. 2015), calorie extraction 
(Turnbaugh et al. 2006), and other metabolic processes (see Fig. 4.1). These facts 
support the assumption of a bi-directional microbiome—host interaction, which 
is fundamental for the so-called holobiont concept (see Box 1) (Bordenstein and 
Theis 2015). 

Fig. 4.1 Functions of the gut microbiota
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Box 1 Definitions of holobiont, mutualism and commensialism, Alpha-
and Beta-diversity and Pan-Microbiome 

Moreover, the gut microbiome undergoes dynamic shifts in response to 
changing environmental conditions. Lifestyle modifications in physical activity
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(Scheiman et al. 2019; Mohr et al. 2020; Grosicki et al. 2019) or circadian 
rhythm (Carasso et al. 2021), as well as drug intake (Klünemann et al. 2021; 
Liou et al. 2019; Jakobsson et al. 2010), alcohol consumption (Ames et al. 2020; 
Roy et al. 2020), tobacco smoking (Prakash et al. 2021), pet adoption (Levin et al. 
2016; Kates et al. 2020), social relationships like partnerships and siblings (Dill-
McFarland et al. 2019), travel (Devkota 2020; Rasko 2017), water consumption 
(Hansen et al. 2018; Zhou et al. 2021), or seasonality (Davenport et al. 2014) are 
known to have an impact on the gut microbiome composition (see Fig. 4.2). How-
ever, the habitual diet is the most prominent factor that shapes and alters the gut 
microbiome—both short-and long-term (David et al. 2014; Arumugam et al. 2011; 
Wu et al. 2011; Lilja et al. 2021). Therefore, studying changes in the gut micro-
biota in response to diet is a promising tool for improved outcomes in precision 
nutrition research. 

Fig. 4.2 Factors, influencing the gut microbiome
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4.3 Exploring the Human Gut Microbiome: Start Low Go 
Slow—Advances in Microbiome Research 

The dynamics of the gut microbiome described above contribute to host genetic 
adaptation (Bäckhed et al. 2005; Suzuki and Ley 2020) and can extend the host 
evolutionary potential by shifting host phenotype (Henry et al. 2021). While most 
of the gut bacteria are commensals, more precisely: mutualists (see Box 1) (Bäck-
hed et al. 2005), there are also some potentially harmful bacteria, which may have 
negative impact on the host when their population growth rate goes high (Shin 
et al. 2015; Baron 1997). These and other findings raise the primary question in 
gut microbiome research: what is the definition of a healthy gut microbiome? 

4.3.1 Eubiosis versus Dysbiosis 

While dysbiosis is a gut microbiome pattern linked to a host disease state charac-
terized by unwanted activation of the inflammasome (Zheng et al. 2020; Ley et al. 
2006; Manichanh et al. 2006; Cani et al. 2012; Quévrain et al. 2016; Vieira-Silva 
et al. 2019; Filippis et al. 2021; Bolte et al. 2021) or dominance of other patho-
logical mechanisms (Hertel et al. 2019; Koeth et al. 2019; Ghoshal et al. 2016), 
the state of “eubiosis”, or “healthy state” of the gut is still not clearly defined 
(Shanahan et al. 2021). 

With this purpose in mind, two working groups, provided two different 
approaches as an answer to this question in 2012. First, Bäckhed et al. 2012 pro-
posed a conceptual interpretation of the healthy microbiome, outlining its two main 
characteristics: Stability, or the ability of the microbial community to resist change 
under stress conditions and resilience, or the ability of a community to return to a 
balance state after experiencing stress-related perturbation (Bäckhed et al. 2012). 
Second, the Human Microbiome Project Consortium published results of large-
scale genomic data of 242 healthy male and female adults from five major areas 
of the human body, incl. the lower gastrointestinal tract (The Human Microbiome 
Project Consortium 2012a, 2012b). The main goal of the study was to create a 
roadmap of the microbial metacommunity in humans and to understand the inter-
play between host and microbiome in health and disease (Turnbaugh et al. 2007). 
Another important issue that both groups are focusing on is the Core Microbiome 
as an essential compositional part of the individual and collective microbiome in 
a given habitat. In theory this “set of genes” is responsible for vital functions of 
the host and it usually remains stable during life. Shortly before, the results of 
the MetaHIT project had been published (European Metagenomics of the Human 
Intestinal Tract project). By analyzing a cohort of 124 Europeans, the scientists 
were able to identify a total of 1000–1500 species (Qin et al. 2010). Eighteen of 
these species were present among all samples, including F. prausnitzii, Roseburia 
intestinalis, species of Ruminococcus, and Bacteroides genus—all bacteria, known 
to be involved in complex carbohydrate degradation (Flint et al. 2012; Townsend 
et al. 2020). Additionally, a recently published genome-wide association study



74 P. Dikarlo et al.

merged cross-sectional data of 21 different cohorts and showed that from a total of 
410 bacterial genera, nine only where present in ≥95% of the samples (Kurilshikov 
et al. 2021). Again, among these bacteria are various complex polysaccharides 
degrading genera such as Faecalibacterium, Roseburia, Ruminococcus, Blautia, 
and Bacteroides, outlining the evolutionary importance of the gut microbiome in 
nutrients utilization. 

Consequently, the next logical question is: If we all have a similar micro-
biome—it is necessary to integrate microbiome data into PN research? 

First, the simple prevalence of certain bacteria in the gut does not provide informa-
tion about its abundance (relative or absolute). As an example, individuals can be 
clustered into three different enterotypes depending on the relative predominance 
of only three genera: Prevotella, Ruminococcus, and Bacteroides (Arumugam et al. 
2011). The relative predominance of these genera is associated with co-abundance 
of other bacterial taxa (for instance due to cross-feeding (Rios-Covian et al. 2015)), 
which confirms the complex qualitative and quantitative interplay within a commu-
nity and underlines a necessity for studying the whole community. As mentioned 
before, enterotypes are also linked to long-term dietary patterns, outlining the 
role of daily diet for shaping the gut microbiome (Fig. 4.2) (Wu et al. 2011). 
In contrast, further investigations based on quantitative profiling contradicted the 
taxonomic trade-off between Bacteroides and Prevotella—enterotype. In addition, 
another, low-count Bacteroides Enterotype (B2) was proposed, which is prevalent 
in patients with Crohn’s disease (Vandeputte et al. 2017). This suggests imple-
mentation of different workflows in different clinical settings, dependent on the 
scientific issue. 

Second, nine genera clearly do not represent the whole diversity of the gut micro-
biome. Also, the perception of certain enterotypes is an ambitious effort to stratify 
individuals depending on their predominant taxa (Costea et al. 2018). However, 
these findings do not give information about the whole picture. In contrast, diver-
sity (for example as diversity index) implies overall species richness and evenness 
of the sample and can be measured with different approaches (DeJong 1975; 
Hagerty et al. 2020). Diversity is also linked to different health conditions and lab-
oratories parameters (Turnbaugh et al. 2009; Zhernakova et al. 2016), with some 
controversial outcomes (Jiang et al. 2015; Paulsen et al. 2017). Additionally, other 
methods exist that also take functional bacterial characteristics into account (gene 
ontology-based clustering) (Arumugam et al. 2011; Manor et al. 2020). 

Third, the same genera, or even the same species are associated with different 
phenotypes. One prominent example is the Prevotella genus. As it seems, they 
are predominant not only in people with high-carbohydrate diets or diets rich in 
agricultural products (Wu et al. 2011; Yatsunenko et al. 2012), but also in HIV-
positive or RA–patients and are involved in inflammatory processes (Dillon et al. 
2014; Scher et al. 2013). Moreover, distinct species within Prevotella ssp. com-
pete for similar plant derived polysaccharides (Gálvez et al. 2020). The Prevotella 
copri complex, with currently 106 identified genomes, seems to have a different
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phenotype in omnivores and vegetarians (Filippis et al. 2019; Tett et al. 2021). 
A comprehensive review (Tett et al. 2021) discusses in detail the hallmarks of 
Prevotella genus. In fact, these arguments are pointing toward the importance of 
functional profiling of the bacteria. Along with this, personal metadata and host 
phenotype should be included into interpretation and subsequent decision-making 
process. 

Fourth, the gut microbiome is changing. There are measurable changes both on 
a daily basis (Vandeputte et al. 2021) and in a long-term perspective (Faith et al. 
2013). On the one hand, the gut microbiome is known to be involved in healthy 
aging (Biagi et al. 2010a, 2010b; Claesson et al. 2012; Wilmanski et al. 2021). On 
the other hand, some specific daily fluctuations are linked to unfavorable metabolic 
alterations of the host (risk of type 2 diabetes) (Reitmeier et al. 2020). Only by 
consequent measurements, for example as a part of longitudinal studies, we can 
understand which impact these fluctuations in alpha-diversity may have on human 
health (see Box 1). 

Fifth, the evidence in the microbiome field is expanding. Currently, a lot of asso-
ciations and reproducible correlations between alteration of gut microbiome and a 
disease state can be demonstrated, some of them with causal explanation (Quévrain 
et al. 2016; Koeth et al. 2019), but many of them—without (Turnbaugh et al. 2009; 
Zhernakova et al. 2016; Dao et al. 2016). Additionally, the phylogenetic diversity 
of a human gut is still undefined, as results of newly published study are show-
ing (Almeida et al. 2019). Also, together with bacteria and archaea, a small part 
of the gut microbiome consists of fungi, viruses, phage, etc., which are still not 
sufficient explored (Nash et al. 2017; Auchtung et al. 2018). Future research goals 
should clarify the human gut pan-microbiome and the causal relationships between 
genotype and phenotype (see Box 1). 

Sixth, the knowledge about the microbiome connection to other organ systems sup-
ports the holistic approach in medicine. “All disease begins in the gut” (Hippocrates) 
but, as we know, it doesn’t stay there. New research confirms the existence of gut-
brain (Valles-Colomer et al. 2019), gut-liver (Jian et al. 2021 Jan; Zhang et al. 
2021), gut-heart (Koeth et al. 2019; Wang et al. 2011), and other types of gut— 
organ axes (Arrieta et al. 2015; Salem et al. 2018). This again points toward the 
important role that PN plays in the support and maintenance of the general health 
of each individual. 

Seventh, understanding inter- and intraindividual metabolic heterogeneity is one of 
the main goals of precision medicine and precision nutrition (Zeisel 2020). Further 
investigation of the compositional and functional spectrum of the microbiome may 
be the missing part, which completes the big picture (hologenome). 

All these and other facts are rising the next key questions in PN research: how 
to conduct a gut microbiome targeted study in order to gain valuable results?
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4.4 The Microbiome Study in PN Research—Important 
Aspects (see Figs. 4.3 and 4.4, Box  2) 

Despite rapid advances in high throughput sequencing (HTS) technologies and 
software development for analysis of metagenomic data, study outcomes in micro-
biome research have relative low reproducibility. A variety of different methods 
and high discrepancy in workflow between the laboratories may lead to differ-
ent results, even for the same samples. Furthermore, various sources of bias can 
negatively affect the final outcome. In fact, each step in this multimodal process, 
from sample collection to completion of a microbiome profile, is simultaneously 
a potential source of bias (Hiergeist and Gessner 2018). Therefore, one of the cur-
rent efforts in the microbiome field is to understand why these failures happen, as 
well as to propose strategies for error management and error prevention. 

Box 2 Definitions of OTU (Operational Taxonomic Unit), ASV, 16s rDNA sequenc-
ing, WGS and RNA sequencing



4 Precision Nutrition from the View of the Gut Microbiome 77

Fi
g
. 4
.3
 
Pr
oc
es
s 
flo

w
: f
ro
m
 s
am

pl
e 
to
 r
ep
or
t



78 P. Dikarlo et al.

Fig. 4.4 Conducting a gut 
microbiome-oriented study in 
PN research: 
decision-making process
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4.4.1 Setting Standards in the Microbiome Field 

With the increasing interest in the human microbiome and microbiome research, 
projects like HMP/MetaHit Consortium or The Microbiome Quality Control 
project, took on the challenge of setting standards in this area (The Human Micro-
biome Project Consortium 2012b)1 2 . Additionally, new methods, protocols, and 
bioinformatic tools are regularly evaluated and summarized in comprehensive 
reviews with guidance for best practices, which can support a researcher in the 
decision-making process (Knight et al. 2018; Allaband et al. 2019; Shakya et al. 
2019; Whon et al. 2021). However, these reviews are not clearly linked to micro-
biome studies in precision nutrition research, so here we want to emphasize again 
the most important points in a PN-context: 

1. Sample 

There is lots of evidence about the differences between so-called mucosa associ-
ated microbiome (MAM) and luminal microbiome (LM). Because of the variable 
environmental conditions, microbes with distinct metabolism are located in the 
lumen or in the mucosal surface of the intestine (Ringel et al. 2015; Eckburg et al. 
2005). Both luminal and mucosa associated microbiome are undergoing alterations 
in a disease state, for instance obesity, inflammatory bowel disease or liver cir-
rhosis (Dong et al. 2017; Derrien et al. 2004; Everard et al. 2013; Shen et al. 
2021). Nevertheless, because of the feasibility and non-invasive sampling, most of 
the current evidence is based on analysis of fecal samples. In contrast, to study 
MAM, a biopsy from a defined intestinal area should be taken. Usually this is 
performed during endoscopy, after intake of laxatives, which can lead to system-
atic bias of the results (Tropini et al. 2018). Rectal swabs have been suggested 
as an alternative, but in this case only a rectal sample is analysed, without other 
bowel regions (Shen et al. 2021). Other suggested sampling techniques are laser 
capture microdissection (LCM) or luminal brushing (Tang et al. 2020). In sum-
mary, to understand the microbiome–mucosal barrier interactions and the influence 
of nutrition on intestinal communities, it is vital to study the compositional and 
functional characteristics of the MAM, along with LM. Research areas of great 
interest are diseases with evidence of altered intestinal epithelial homeostasis such 
as colon cancer, inflammatory bowel disease (IBD), celiac disease, and many oth-
ers (Ramezani et al. 2021; Gitter et al. 2001; Schumann et al. 2012). In any case, 
the study of the MAM in PN research is not an either/or question but will be an 
additional MAM—test useful for my findings—question.

1 https://www.sanger.ac.uk/resources/downloads/bacteria/metahit/. 
2 https://www.mbqc.org/. 

https://www.sanger.ac.uk/resources/downloads/bacteria/metahit/
https://www.mbqc.org/
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Other details of the sample collection that may affect the results are sample 
size (depends mainly on analysis method) and preservation/storage/shipping con-
ditions (conservation/freezing of the sample is needed to prevent further growth of 
facultative aerobic bacteria (McDonald et al. 2018)). 

2. Sequencing Method 

For phylogenetic and functional profiling of the gut microbiome three types 
of omics technologies are commonly used: metataxonomics (or marker gene 
sequencing, such as 16 s rRNA-gene sequencing), metagenomics (whole genome 
sequencing or WGS), and metatranscriptomics (see Info box 1). The three of them 
have positives and negatives. Which of them should be used in certain case depends 
on the study goal and the resources available. For an instance, 16s rDNA Sequenc-
ing is suitable for confirmatory studies, focusing on phylogenetic changes in the 
bacterial community, as well as overall diversity (alpha and beta) (Knight et al. 
2018). Consider the following case: Scientists want to prove the effect of a novel 
diet with whole-foods on overweight and obese individuals. A control group with 
a similar structure in terms of anthroposophical characteristics and everyday habits 
is also planned. Based on the literature, the scientists decide to measure the change 
in the ratio of Firmicutes to Bacteroidetes (or F to B ratio as a primary research 
goal) (Turnbaugh et al. 2006; Ley et al. 2006). They want to find out whether these 
phyla change over time. Additionally, they want to measure alpha-diversity (Turn-
baugh et al. 2009) and see if other phyla, e.g., proteobacteria, are also affected. 
In this case, 16s rDNA sequencing is perfectly adequate, first because of the low 
cost pro run. In this way, more resources can be used elsewhere, e.g., for recruit-
ing more participants. Secondly, because the results have hight correlation rate 
with genomic content when done correctly (Knight et al. 2018). This is made 
possible by a variety of quality control tools, based on 16s rDNA data, as well 
as by regularly updated databases for 16s rDNA sequences (only if the technical 
implementation has been carried out correctly) (Quast et al. 2013; Parks et al. 
2018). 

Turning back to the thought experiment: after analyzing the data, the results 
are not sufficient. After testing for normal distribution, the Wilcoxon rank sum 
test (non-parametric) is used to test for significance (Pan 2021). Unfortunately, 
there are no significant changes in the F to B ratio between intervention and control 
group. However, the scientists can see a positive tendency in favor of the novel diet. 
In addition, the group of responders has a higher Prevotella to Bacteroides ratio, 
whereas in the non-responder group Bacteroides genus dominates over Prevotella 
genus within Bacteroidetes phylum (Roager et al. 2014; Hjorth et al. 2019). 

Therefore, the researchers conduct a multivariate analysis (ANOVA) showing 
that the “responder” group is more likely to be associated with a high variable 
plant-based diet (more than 30 different plant-based products per week), high in 
fiber, than a medium variable (20–30 different plant-based products) or a low vari-
able (less than 20 different plant-based products per week)—lower in fiber. To 
predict the functional potential of the samples, an additional bioinformatic tool is
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implemented (PICRUSt2) (Douglas et al. 2020). The researchers want to know 
which substrates exactly promote the higher Prevotella abundance, so they decide 
to use MetaCyc as a reference database (Caspi et al. 2014). After running the 
analysis, an increased carbohydrate metabolism can be shown in both groups 
(responder and non-responder in comparison to control). To find out how gen-
era abundances correlate with different diet carbohydrates, a Spearman correlation 
analysis is performed. While the abundance of Prevotella genus is related to simple 
and complex carbohydrates, the abundance of Bacteroides genus is very slightly 
related to complex carbohydrates and plant derivates (Wu et al. 2011). 

These results are very intriguing, so the researcher decide to go further and 
to use metagenomic (whole genome sequencing) approach to achieve high tax-
onomic resolution on species level (which is not sufficient with 16s rDNA seq.), 
as well as to build a potential functional profile of the samples. EggNOG map-
per (Cantalapiedra et al. 2021) is used for functional annotation and CAZy 
database (Drula et al. 2021) is used for detailed classification of the carbohydrate-
active enzymes, present in the samples. In addition, the participants’ metadata 
and daily food frequency questionnaires are carefully examined with nutrition 
software allowing the different types of dietary fiber to be categorized and 
attributed to changes in the gut microbiome. In-depth correlation analysis of CAZy 
enzyme families and abundance of bacterial genera shows two cluster of glycosyl 
hydrolases—Prevotella-annotated and Bacteroides-annotated glycosyl hydrolases. 
Furthermore, the distinct CAZy profile of responder with high abundance of Pre-
votella copri complex suggests metabolic adaptation of different Prevotella species 
to different substrates from the diet (Aakko et al. 2020). In order to understand this 
interaction in real time, the scientists perform a metatranscriptomic (RNA seq) 
analysis after a tightly controlled dietary intervention with daily changes in dietary 
fiber composition and amount in the participants’ diets. In this way, the com-
bined metatranscriptomic and metagenomic analysis shows the viability in gene 
expression on strain level within the Prevotella complex in response to different 
fibers and in context of the individual microbiome composition. Additionally, the 
scientists note an enrichment of gene expression of the beneficial bacteria Bac-
teroides thetaiotaomicron after pectin-rich meals (Townsend et al. (2020); Porter 
et al. 2018). Furthermore, the scientists use this data to train a machine learning 
model for prediction of metabolic response to different fiber types so that they can 
create personalized advice. 

In the end, the researchers conclude that their novel whole-foods diet is bene-
ficial for individuals with initially higher Prevotella to Bacteroides rates, although 
for optimal results the exact composition of dietary fiber should be customized 
based on the individual’s metagenomic profile using a predictive model (Oh and 
Zhang 2020). 

This hypothetical case shows how a possible decision-making process can pro-
ceed, and in which cases the different sequencing techniques can be applied. 
It is important to note the differences in the results obtained with the various 
methods and the subsequent use of the data without compromising scientific cor-
rectness. Furthermore, this case underlines the diversity of bioinformatics tools,
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which enables a high interoperability of the data obtained. In this way, even more 
information can be extracted from the data. 

3. Bioinformatic Pipeline 

In fact, various criteria can be used to evaluate the different bioinformatic pipelines 
in microbiome research. Apart from the sequencing method, criteria such as: 

• reference database (is it updated or not, size, manual), 
• graphic interface and/or command line, 
• system requirements (e.g., RAM, size of pipeline/tool), 
• time (how long does it take to run an analysis), 
• single or paired reads, 
• costs (open source or paid), 
• options for customization and 
• ease of implementation 
• influence the final decision. 

For example, one important part of the pipeline is the reference database for 
taxonomic profiling of the sample. Features such as the number of reference 
sequences and taxonomies describe the size of the database. Even more impor-
tant, however, is the regular update rate of the database. In fact, Greengenes is the 
largest database for 16s rDNA, but it has not been updated since 2013 (McDon-
ald et al. 2012). As already mentioned, there are still many undiscovered bacteria 
species (Almeida et al. 2019). Therefore, other databases such as GTDB 89 or 
Silva 138 are used more frequently today because of their regular updates (Quast 
et al. 2013; Parks et al. 2018). Furthermore, implementation of additional tools 
for functional prediction such as PICRUSt, or databases like CAZy are working 
with different datasets (input/output). Therefore, when planning a study, consider-
ation should be given to what type of data is needed for the intended analysis (16s 
rDNA/metagenomic/metaproteomic data, etc.). 

4. Study Population 

Even before we ask ourselves what (sample) and how (method) to test, we need to 
know who (study population) we are testing. As discussed above, the gut micro-
biome composition and functionality are influenced by various lifestyle factors, 
as well as by different anthropometrical factors such as body mass index (BMI), 
age, sex, and genetics (Biagi et al. 2010a, 2010b; Claesson et al. 2012; Wilman-
ski et al. 2021; Cuesta-Zuluaga et al. 2019; Scepanovic et al. 2019; Nie et al. 
2020; Goodrich et al. 2014). The selection of a highly homogeneous group of 
people, as well as strongly controlled study setting can reduce bias and confound-
ing, however, strict dietary plans and comprehensive food frequency questionnaires 
in interventional studies are often a burden for the participants and can reduce the 
feasibility and external evidence of the study. This can lead to a lot of missing



84 P. Dikarlo et al.

data, which prevents meaningful data analysis, or to results that are not relevant 
at all, so that they cannot be put into practice. Therefore, efforts should be made 
to develop and validate a customer-friendly data collection tools (e.g., wearables 
and apps) and to devise strategies for comprehensive data analysis. Alternatively, 
different nutritional scores (HEI (Krebs-Smith et al. 2019), MEDAS (Hebestreit 
et al. 2017), etc.) are being developed to summarize the results and form dif-
ferent clusters, but their practicality is limited as they can show a trend but not 
enable a highly personalized recommendation. Nevertheless, they are an impor-
tant component of retrospective studies in which dietary habits are based only on 
the information provided by the participants. This leads to the next challenge in 
microbiome-oriented PN research, namely 

5. Big Data Analysis 

High throughput sequencing technologies generate large, complex, and multi-
dimensional datasets. As already discussed, they are generated by 16S rRNA 
Amplicon, metagenomics, metatranscriptomics, or other omics technologies, for 
instance, metaproteomics. As a result, this data is put into tables with read 
counts or relative abundances. The predominant data structure in microbiome 
projects is a feature table, that displays the distribution of different features (e.g., 
OTUs/ASVs/taxonomic levels, etc.) to samples in the form of counts or relative 
abundance (Callahan et al. 2017). Typical characteristics of microbiome data are: 

• Compositionality: are made up of relative proportions of a defined unity (library 
size) (Gloor et al. 2017). 

• High Dimensionality: Mostly due to a high number of OTUs or taxa (Xia et al. 
2018). 

• Sparsity: absence of numerous taxa across samples results in an abundance of 
zeros within feature tables (Pan 2021). 

These characteristics pose particular challenges for the processing, visualization, 
and statistical analysis of microbiome data. As discussed before, the aim of 
microbiome-oriented PN research is to investigate metabolic heterogeneity, based 
on the relationship between environmental conditions, interventions, clinical, and 
biological parameters, as well as microbiome composition and phenotype. For 
this purpose, various methods can be used. Classical methods, for instance dif-
ferent parametric and non-parametric tests such as t-test, ANOVA (parametric) or 
Wilcoxon rank sum test, Kruskal-Wallis test (non-parametric) can be used to com-
pare continuous variables between groups (alpha-, beta-diversity-indices, relative 
abundance of taxa). Here, the significance is mostly determined by q-values (p-
values that are adjusted for multiple hypotheses testing). Additionally, multivariate 
methods can be used to examine the association between the microbiome and 
covariates on a compositional community level. The benefit is, that multiple vari-
ables can be examined simultaneously, focusing on the whole composition, not on 
a single taxa. In addition, naturally occurring interaction in a microbiome dataset
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can be identified. These methods are based on a distance metric (e.g., Unifrac, 
Bray-Curtis dissimilarity), e.g.: 

• PERMANOVA (like ANOVA but for multivariate data). 
• ANOSIM. 
• Mantel’s test. 

Further strategy for analyzing microbiome data is the compositional analysis. Due 
to the compositional nature of microbiome data, common statistical methods can 
lead to spurious correlations. Therefore, Aitchison proposed a log-ratio transfor-
mation, to account for the issue of a fixed sample size (Aitchison 1986). After 
log-ratio transformation, other multivariate methods can be applied to composi-
tional data. In fact, Aitchison distance (Euclidean distance of centred log-ratio 
transformed abundances) can serve as a more robust alternative to other beta-
diversity metrics, such as Bray-Curtis dissimilarity, weighted, or unweighted 
Unifrac. 

4.4.2 Visualizing Methods in Microbiome Research 

Another important aspect of big data analysis is data visualization. In fact, visual-
ization methods can strongly influence decision-making processes and accelerate 
discovery rates (Park et al. 2021). 

In case of microbiome research, differences in microbial diversity between a 
multitude of samples cannot be visual by a standard scatterplot, as a microbial 
feature table consists of many dimensions. Therefore, to reduce dimensions and to 
graphically display microbiome data, different ordination methods can be applied. 
Ordination methods try to find axes in a multidimensional space that account for 
the maximum amount of variance in a dataset. Most used visualization methods 
are: 

• Principal coordinate analysis (PCoA): Uses distance matrix as input. Distance 
matrix can be calculated with any given beta-diversity metric (Jaccard-Indey, 
Bray-Curtis, Unifrac). 

• Principal component analysis (PCA): Uses feature table directly as input. The 
input can also be log-ratio corrected to account for compositionality. 

Of course, this is only a brief overview of the most used data analysis methods in 
microbiome research. More sophisticated statistical models such as machine learn-
ing or deep learning techniques have been developed over the years and enable the 
analysis of huge data sets. A recent comprehensive review discusses the widely 
used methods in precision nutrition research (Kirk et al. 2021).
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4.5 From the Clinical Trial to the Personal Recommendation: 
Putting the Individual Pieces of the Puzzle Together 

All the steps mentioned so far have one goal: the generation of a personalized 
recommendation. A common approach is to take the data of healthy people as a 
reference and see if and where the individual gut flora deviates greatly. In this way, 
the targets of the planned intervention are defined. Personal metadata, diseases, 
allergies, etc., must be included in the decision-making process. However, person-
alization is just one aspect of the precision nutrition. Personalized solutions from a 
purely medical perspective are often not feasible in practice, due to unwillingness 
of the consumers to carry out the intervention. Various factors may play a role here, 
such as lack of discipline and motivation, but also inadequate guidance from health 
professionals, a conflict with personal preferences such as diet (vegan/vegetarian), 
religious requirements (kosha, no alcohol, etc.), and many others. Therefore, par-
ticipation, or integration of the consumer’s needs in the decision-making process 
could be a powerful tool to enhance adherence to the intervention. This can be 
pursued through questionnaires or personal interviews, but the important point is 
to understand the consumer’s personal goals and wishes in order to find an appro-
priate solution to their problem and prioritize the individual steps together with 
them. This type of consumer-centered approach aims to achieve better results with 
long-lasting positive behavioral changes. Additionally, as the gut microbiome tests 
are a snapshot, close monitoring is required to ensure regular evaluation of the 
measures taken and to be able to intervene if necessary. 

4.6 Conclusion 

Insights into the complex interplay between host, environment and microorganism 
are constantly improving with advances in technology and software develop-
ment. In addition, tools for data collection, processing, and analysis are becoming 
more precise, enabling better health outcomes at lower costs. Consumer-centered 
approaches view each person as a unique being with own values and preferences 
and seek personalized solutions with high compliance for optimal health outcomes. 
However, there is much more to be done. Looking at precision nutrition as a pro-
cess rather than a target of perfect stratification, one of the main goals in this field 
is to optimize and validate the different processes and force improvements with-
out putting consumers at risk. With flexibility, constant evaluation, and appropriate 
error management, this is possible. 
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ABSTRACT 

Aging is a multifactorial biological process manifested by different characteris-
tic changes at the molecular and cellular level affecting multiple physiological 
functions and immune competence. While varying enormously between indi-
viduals, aging and its underlying mechanisms increase the susceptibility to 
many diseases. Research focusing on individual aspects of disease pathologies 
and aging has shown the huge importance of epigenetic regulation and micro-
bial metabolites beyond hereditary genetic dispositions. Epigenetic mechanisms, 
but also microbiota and their metabolites reflect impacts of lifestyle and nutri-
tion. Epigenetics and microbiota therefore provide some of the most accurate 
biomarkers of healthy of premature aging such as the epigenetic clock. These 
developments suggest that the ‘one-size-fits-all’ concept in medicine as well as 
in nutrition is no longer sufficient to narrow the gap between health span and 
life span. Integrating and combining data from different platforms (genome-
DNA sequence, transcriptome, proteome, metabolome, and epigenome) leads 
to a better understanding of the basis of complex diseases and paves the way 
toward personalized medicine and personalised nutrition. Consumer organiza-
tions will have to find a delicate balance between safety, use of modern concepts 
of precise nutrition as well as quite divergent expectation of different consumer 
groups. 

5.1 Healthy Aging 

Aging is a complex multifactorial biological process manifested by a gradual 
decline of normal physiological functions. Although different characteristic age-
dependent changes at the molecular and cellular level are well known to date, 
process and rates vary enormously between individuals. This has a central impor-
tance, when it comes to human health. Aging and its underlying mechanisms 
increase the susceptibility to many diseases, including cancer, metabolic disor-
ders, such as diabetes, cardiovascular disorders, and neurodegenerative diseases. 
Aging-associated diseases may be a reason why recently aging is addressed as a 
curable, preventable disease in the extended life span debate by some scientists 
(Faragher 2015; Gems 2011). 

Modern molecular biology has summarized major molecular mechanisms, hall-
marks of aging, which determine biological aging. These hallmarks are especially: 
genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, 
deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion, and altered intercellular communication (Fig. 5.1; López-Otín 
et al. 2013). Presumably, especially, aging microbiota should be considered as 
an additional hallmark. Cellular senescence, reflecting organismal senescence, is a 
specialized process resulting in an irreversible growth arrest and possibly evolved
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Fig. 5.1 Hallmarks of aging (López-Otín et al. 2013) 

as an endogenous anticancer mechanism. Although it is essential in some physio-
logical events, it proves to be detrimental in a variety of age-related diseases. With 
advancing age, senescent cells accumulate in tissues and organs, and subsequently 
promote the aging process, largely through their complex senescence-associated 
secretory phenotype (SASP) displaying highly inflammatory activities (Campisi 
2013). 

5.1.1 Genetics and Healthy Aging 

Research into longevity and in particular in genetic factors driving healthy aging 
has progressed rapidly in recent years. Although genome-wide association stud-
ies (GWAS) have emerged recently indicating several gene loci correlated to key 
human aging traits (Melzer et al. 2020), the genetic basis has been mainly studied
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in model organisms and resulted in a considerably number of genes and muta-
tions with relevance for lifetime. Especially, the nematode Caenorhabditis elegans 
with a single-gene mutation in Daf-2 became famous for an enhanced lifetime 
(Braeckman and Vanfleteren 2007; Kenyon et al. 1993). Daf-2 encodes a tyrosine 
kinase receptor in C. elegans and is homolog in sequence and structure to the 
human receptor protein that responds to insulin. Daf-2 normally controls many 
other genes, which in turn regulate a variety of physiological processes at different 
stages in life (Pal and Tyler 2016a). 

There is evidence that insulin signaling is involved in longevity as the insulin 
pathway plays a role in diseases like diabetes and cancer. Insulin resistance at the 
cellular level is a key feature of type II diabetes. Mutations in the pathways of 
insulin/IGF-1 receptors have been associated with the dysregulation of growth in 
cancers. The risk of both, diabetes and cancer, increases with age. Possibly Daf-
2 controls aging because it controls many other genes involved in aging (Adams 
2008). 

Although previous studies may have overestimated the extent of genetic heri-
tability of longevity, many common age-related disorders such as cardiovascular 
disease, Alzheimer’s disease, or type-2 diabetes have a substantial heritable com-
ponent. Furthermore, GWAS have also analyzed genetic variants across groups of 
older individuals and younger control individuals and identified various loci asso-
ciated with longevity such as in the APOE, GPR78, or the FOXO3A gene (Melzer 
et al. 2020). 

5.1.2 Epigenetics and Healthy Aging 

Among the hallmarks of aging, epigenetic alterations represent crucial mechanisms 
which seem to interfere with most other hallmarks. A large number of studies have 
shown that epigenetic processes not only accompany but strongly affect aging 
and age-related diseases. By definition, ‘epigenetics represents the reversible her-
itable mechanisms that occur without any alteration of the underlying DNA 
sequence’ (Fig. 5.2; Fymat 2017). Epigenetic mechanisms play a crucial role in 
normal development and function of the organism as they regulate the accessibility 
and therefore activity of genes. 

Epigenetics connects the genotype with the phenotype and provides an expla-
nation why the pattern of aging is different between two genetically identical 
individuals, such as identical twins (Brunet and Berger 2014a; Martin 2005; Sar-
gent 2010). Although longevity studies on the human population have shown that 
genetic factors may explain a fraction (16–30%) of the differences in life spans, 
the majority of the remainder of variation is thought to have arisen through epige-
netic drift during lifetime (Herskind et al. 1996; Muñoz-Najar and Sedivy 2011; 
Poulsen et al. 2007; Morris et al. 2019). 

Various environmental stimuli, including diet or lifestyle, cause differential 
alterations of epigenetic information. However, epigenetic patterns are reversible
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Fig. 5.2 Epigenetic mechanisms (Fymat 2017) 

and therefore constitute a potential target for therapeutic and/or nutritional inter-
ventions, in contrast to genetic changes, which are mostly still irreversible. 
Accordingly, understanding the role of epigenetic changes that happen during 
aging is a promising way to delay aging and age-related diseases (Pal and Tyler 
2016b). 

Types of epigenetic information: There are different types of epigenetic regulation 
occurring at various levels including DNA methylation, chromatin remodeling, and 
transcription of noncoding RNAs (ncRNAs). (Brunet and Berger 2014b; Feser and 
Tyler 2011; Gelato and Fischle 2008; Lazarus et al. 2013; O’Sullivan and Karlseder 
2012). All together, they comprise our epigenome which provides the molecular 
basis for the regulation of gene expression and DNA stability. 

5.1.2.1 The Epigenetic Clocks 

Among all epigenetic mechanisms, DNA methylation is the most researched epi-
genetic mark. Changes in DNA methylation patterns have been shown to occur 
with advancing age and thus may be a fundamental mechanism that drives human 
aging. This specific age-dependent modifications in the genome have been recently 
used for age evaluation, developing so called epigenetic clocks (Fig. 5.3). Referred 
to specifically as ‘DNA methylation age’ (DNAmAge), they provide an accurate 
estimate of age across a range of tissues, and at different stages of life, and are 
some of the most promising biomarkers of aging. DNAmAge has also permitted 
the identification of individuals who show substantial deviations from their actual
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chronological age, and this ‘accelerated biological aging’ has been associated with 
unhealthy lifestyle or nutrition, as well as age-related disorders as frailty, can-
cer, diabetes, cardiovascular diseases (CVD), and dementia (Woodcox 2018). In 
the last few years, studies furthermore reported a significant association between 
increased DNAmAge and mortality risk, underlying the close correlation between 
DNA methylation and healthy aging (Woodcox 2018). 

In the meantime, several epigenetic clocks have been established additionally 
including proteins and enzymes even claiming to indicate aging risks (Fig. 5.4). 
However, recently, some discussion on the reliance of epigenetic clocks emerged 
(Drew 2022). 

Fig. 5.3 Epigenetic clocks adopted from (Pal and Tyler 2016a; Xiao et al. 2019) 

Fig. 5.4 Development of epigenetic clocks from the assessment of the biological age to the pre-
diction of life span (Horvath 2013; Hannum et al. 2013; Klutstein et al. 2022; Topart et al. 2020)
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5.1.3 Histones and Healthy Aging 

Changes in chromatin structure are a common feature during aging. The main 
protein components of chromatin are histones, which bind to DNA and function 
as ‘anchors’ around which the strands are wound (Bowman and Poirier 2015). 
Consequently, modifications in histones also provide a major regulator for chro-
matin functions affecting crucial processes including cell-cycle progression, DNA 
replication, and transcription as well as tissue specification. 

Histone tails extend from the nucleosomal core into the nucleoplasm and con-
stitute sites of posttranslational modifications (Fenley et al. 2018) In general, 
histones can undergo multiple types of modifications, among which acetylation, 
methylation, phosphorylation, and ubiquitination are the best known. The differ-
ent modifications can even ‘communicate’ and influence each other’s presence 
(Molina-Serrano et al. 2019). Moreover, changes of chromatin state seem to inter-
fere with other epigenetic processes such as DNA methylation (Pal and Tyler 
2016a; Fig. 5.5). 

Acetyltransferases (HATs) and histone deacetylases (HDACs) alter the posi-
tive charge of the histone resulting in a modified affinity between histones and 
DNA, and thus undertake a critical task in regulating gene expression (Legube and 
Trouche 2003). 

One of the earliest models of epigenetic aging was the ‘heterochromatin loss 
model of aging’ (Bernadotte et al. 2016; Haithcock et al. 2005; Wilson 2005). 
This model suggested that ‘the loss of heterochromatin that accompanies aging 
leads to changes in global nuclear architecture and the expression of genes resid-
ing in those regions, directly or indirectly causing aging and cellular senescence’. 
Increasing evidence supports this theory, and the gradual loss of heterochromatin

Fig. 5.5 Epigenetic changes during aging (Pal and Tyler 2016a) 
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during lifetime has been observed across many model organisms to date (Pal and 
Tyler 2016a; Anton and Leeuwenburgh 2013). 

Consequently, there are projects focusing on life span expansion strategies 
through histone modulation. In this regard, research focusing on histone acety-
lation could show that treatment with histone HDAC inhibitors shortens life span, 
whereas chemical activation or overexpression of SIR2 or sirtuins has the abil-
ity to extend life span in different models (Anastasiou and Krek 2006; Dillin 
and Kelly 2007; Finkel et al. 2009; Guarente 2011; Guarente and Guarente 2007; 
Haigis and Sinclair 2010; Hall et al. 2013; Longo and Kennedy 2006; Morris 
2013). Plant derived sirtuins have drawn specific attention in mimicking fasting 
and its beneficial effects on health, and potentially longevity. (https://doi.org/10. 
31989/ffhd.v10i10.752). 

5.1.4 Noncoding RNAs (NcRNAs) and Aging 

NcRNAs are the most recent players in the epigenetics field, influencing obviously 
all biological processes. It is now widely accepted that approximately 60–90% of 
the human genome is transcribed. Noncoding RNAs (ncRNAs) are RNA molecules 
that are not translated; thus, they do not have any apparent protein-coding roles. 
NcRNAs differ both in length and mechanisms of biogenesis and functions. The 
role of ncRNAs covers a wide range of functions within various cellular processes: 
They affect biogenesis and stability of other RNAs, regulate gene expression and 
chromatin packaging, and are involved in multiple other physiological and also 
pathological processes, including senescence (Fig. 5.6; Sidler et al. 2017; Wagner 
2019). 

Fig. 5.6 miRNAS, aging, senescence (Williams et al. 2017)

https://doi.org/10.31989/ffhd.v10i10.752
https://doi.org/10.31989/ffhd.v10i10.752
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Disruption of ncRNA function has been implicated in numerous disease such 
as cancer, neurodegenerative disorders, cardiovascular disorders, and aging (Huarte 
2015; Li et al.  2019; Ren et al. 2018; Toomey et al. 2016; Soriano-Tárraga et al. 
2019). One of the most prominent examples in the area of aging is microRNA 
(miRNA) lin-4 and its pro-aging target miRNA lin-14. Loss of function of lin-4 
shortens life span, whereas overexpression of lin-4 extends life span. In contrast, 
knocking down lin-14 extends life span. However, the majority of miRNAs are 
down-regulated with age (Goodall et al. 2019; Huan et al. 2018; Kinser and Pincus 
2020; McGregor and Seo 2016; Soriano-Tárraga et al. 2019; Abdelmohsen et al. 
2013; Szafranski et al. 2015). 

Until recently, most of the studies focused on short ncRNAs such as miRNAs 
spanning that between 18 and 24 nucleotides, but the functional importance of 
long ncRNAs (lncRNAs) with transcript lengths over 200 nucleotides is attracting 
growing interest, as they are described to be more complex and act more spe-
cific than other ncRNAs. Meanwhile, thousands of lncRNAs have been identified; 
however, most of their functions and their role in the pathophysiology of diseases 
are still a subject of investigation. However, increasing evidence suggests their 
regulating role in senescence-associated processes (Jin et al. 2019). 

5.1.5 Aging of the Immune System (I.S.) and Epigenetics 

Aging is associated with reduced immune functions which lead to a higher to 
infections. Changes in both, the innate and adaptive immune system, occur in 
aging. This reduction of the immune competence is associated with low-grade 
chronic inflammation (inflammaging) and the senescence-associated inflammatory 
phenotype, characterized by high levels of circulating cytokines and chemokines. 
This inflammatory state accelerates the age-related immune dysfunction. Stem 
cell diversity also reduces during lifetime with an exponential increase in the 
occurrence of clonal hematopoiesis (Keenan and Allan 2019). 

The thymus, where T-cells develop, begins to involute at puberty due to 
age-related changes that affect both T-cell progenitors and the thymic microenvi-
ronment. Decreased hematopoietic activity in the bone marrow means that B-cell 
lymphopoiesis also decreases with age. DNA damage promotes cellular senes-
cence. DNA repair mechanisms and clearance mechanisms of damaged cells by 
the innate immune system are impaired with aging. The reduced clearance of 
senescent cells results in an accumulation of genomically damaged and inflamma-
tory cells in all tissues of the body, including the immune system. Age-associated 
changes in DNA methylation have been reported in a number of human immune 
cell types including monocytes, CD4+ and CD8+ T-cells, and stem cells. Many of 
these changes appear to be cell type-specific (Fig. 5.7; Allis and Jenuwein 2016; 
Briceño et al. 2016; Busslinger and Tarakhovsky 2014; Cambier 2005; Chambers 
et al. 2007; Keenan and Allan 2019).
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Fig. 5.7 Dysfunctions of the aged I.S. (Keenan and Allan 2019) 

5.1.6 Neurodegenerative Diseases, Aging, and Epigenetics 

One frequent problem of human aging is neuroinflammation, neurodegeneration, 
and reduced brain function (Gruendler et al. 2020). Premature death of neurons 
is considered to be a major aspect of neurodegenerative diseases. Accumulating



5 Personalized Nutrition for Healthy Aging, A Review 107

evidence indicates a correlation of epigenetic mechanisms and neurodegenerative 
disorders. Several transcription factors have been identified to be involved in epi-
genetic remodeling in the brain. The transcriptional repressor REST (Repressor 
Element-1 Silencing Transcription factor), e.g., is a key modulator of the neuronal 
epigenome (Basavarajappa and Subbanna 2021; Zhang et al. 2019). 

Studies of neurodegenerative processes often address the regulation by ncR-
NAs. Whereas, some of the miRNAs correlate with neuroprotection; others clearly 
contribute toward neurodegenerative diseases and/or aging. miR-107 and miR-650 
are even under discussion as markers for Alzheimer disease (AD). 

There are higher levels of miR-34 in samples collected from AD patients. The 
pro-survival factor BCL2 and the anti-aging deacetylase SIRT1 both are seen as 
targets of miR-34, and the expression of SIRT1 correlates inversely with miR-34 
expression, revealing a potential mechanism for miR-34 function in the aged brain. 
Similarly, another miRNA, miR-144, seems to be enriched in aged brains and may 
also contribute to age-associated neurodegeneration through down-regulation of 
key protective factors. 

Histone modifications and DNA methylation have also been linked to func-
tions of glial cells and the neuronal cell death in neurodegenerative diseases and 
impaired cognition, associated with neurodegeneration (Hwang et al. 2017). 

5.1.7 Microbiota and Healthy Aging 

The human gut microbiome is composed of several different phyla, including 
Bacteroidetes, Firmicutes, and Actinobacteria (Eckburg et al. 2005). It plays 
a central role in many physiological and immunological processes, e.g., in the 
defense against pathogens and in the development of immune and intestinal bar-
rier functions (West et al. 2015). Furthermore, it is involved in many aspects of 
the metabolism, including the production of bile acids, lipids, vitamins, choline, 
and polyamines (Nicholson et al. 2012). 

Microbiota are especially involved in the breakdown of indigestible polysac-
charides (fermentation of resistant starch, oligosaccharides, and inulin), whereby 
energy for the host is obtained from foods that are absorbed but not digested by 
the host (Flint et al. 2012; Holscher 2017). 

According to the 16S ribosomal DNA sequencing data of faecal samples, indi-
vidual gut microbiota show distinct profiles, and this inter-individual variation 
is greater in older adults. Longitudinally, gut microbiota of healthy adults are 
relatively stable after establishment early in life, within three years after birth. 
Recently, it became clear that the community structure of the intestinal microbiota 
and metabolism of the mother shifts during pregnancy (Koren et al. 2012), and that 
microbes colonize the amniotic fluid, the umbilical blood cord, and the placenta, 
indicating maternal microbial colonization of the fetus in utero (D’argenio 2018) 
with important consequences for healthy further development. The ‘1000 days 
of life’ theory developed by this findings of the prenatal establishment of GI
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microbiota and their interaction with the prenatal immune system and the epi-
genetic system. This time spanning roughly between conception and one’s second 
birthday has been established to be a unique period of opportunity when the foun-
dations of optimum health, growth, and neurodevelopment across the life span are 
established. Therefore, maternal nutrition and maternal microbiota have a central 
influence on these developments (Fuhler 2020). 

Microbiota respond to diets, the social and physical environment, lifestyle, and 
aging mainly via metabolites, especially short chain fatty acids (SCFAs), which 
strongly correspond with the epigenome. SCFAs are also a main element of the 
‘gut–brain axis’ which connects the gut microbiome with the central nervous sys-
tem. Recently, it was shown that bacterial cell wall derived muropeptides from the 
gut could reach the brain and are recognized by the pattern recognition receptor 
NOD2, thus regulating neurons this way. This suggests that the brain may sense 
changes in gut bacteria as a measure of food intake (Gabanyi et al. 2022). 

In humans, diets have been shown to affect microbiota diversity rapidly. Diets 
containing higher amounts of carbohydrates derived from cooked grains contribute 
to higher numbers of bifidobacterium. Diets providing higher amounts of fiber 
from fruits lead to enrichment of Lachnospira (Wilmanski et al. 2021). Consump-
tion of a plant protein diet, based on glycated pea proteins, significantly increases 
the levels of commensal lactobacilli and bifidobacteria and elevates short-chain 
fatty acid production in humans (Szczyrek et al. 2021). 

The long-term consumption of complex carbohydrates, especially dietary fibers, 
has been shown to promote the Prevotella genus (Simpson and Campbell 2015; 
Vinke et al. 2017). 

In contrast, a high intake of dietary fat (mainly saturated fatty acids) is asso-
ciated with reduced microbiota richness and diversity in both adults and infants 
(Wolters et al. 2019). The consumption of omega-3 polyunsaturated fatty acids 
(PUFAs) leads to an increased abundance of several butyrate-producing bacte-
ria, in line with the known anticancer and anti-inflammatory effects of omega-3 
PUFAs (Freitas and Campos 2019) In humans, a long-term animal protein-rich 
diet is associated with the Bacteroides enterotype (de Moraes et al. 2017; Fan  
et al. 2020). 

Changes in the GI microbiota distribution have crucial consequences on the 
metabolites of the microbiota. SCFAs are products of the breakdown of dietary 
fibers by the mostly anaerobic gut microbiota. They enter the circulation from the 
gut and have multiple beneficial roles in energy metabolism. Acetate is discussed 
to reduce serum cholesterol and triglyceride levels, propionate can lower glucose 
levels (Byrne et al. 2015; Hernández et al. 2019; Wolever et al. 1996) Butyrate 
can increase insulin sensitivity and modulate the expression of crucial mediators 
of the gut–brain axis, which ae also involved in the regulation of appetite (Byrne 
et al. 2015; Fluitman et al. 2018; Wolever et al. 1996; Silva et al. 2020). 

SCFAs play their regulatory role by binding to different G-coupled protein 
receptors (GCPRs). The free fatty acid receptor 3 (FFAR3), for example, has 
been linked to regulating insulin secretion and appetite, which suggests the impor-
tance of SCFAs in satiety and energy balance control. Butyrate and propionate
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are non-competitive HDAC inhibitors. This exhibits their role in epigenetic gene 
regulation by influencing histone acetylation. SCFAs are also involved in regulat-
ing immunity, by suppressing the production of proinflammatory mediators and 
enhancing the release of anti-inflammatory cytokines (Li et al. 2017; Fig. 5.8). A 
negative correlation between promotor methylation of the FFAR3 gene and BMI 
was shown. Both type-2 diabetic and obese individuals showed lower methylation 
in comparison to lean controls. 

To what amount SCFAs are transported from the gut to the brain is still under 
discussion as the fast binding of SCFAs to their G-protein-coupled receptors 
(GPR41, GPR34) makes the assumption of SCFA production and SCFA blood 
concentrations, e.g., from analysis in feces difficult. Also, a large number of other 
biologically active metabolites are produced by GI microbiota, such as gamma 
aminobutyric acid (GABA) which plays a key role in anxiety and depression dis-
orders microbiota (Dhakal et al. 2012; Duranti et al. 2020), and GABA was shown 
to diminish with increasing age (Mazzoli and Pessione 2016). 

Also, bile acids, which relate the GI-microbiome, absorption, distribution, 
metabolism, and excretion of nutrients and sense the intestinal contents, been 
shown to be reduced with aging (Frommherz et al. 2016; Shulpekova et al. 2022). 

Studies of fecal samples from individuals in different age groups suggest drastic 
age-related changes in the gut microbiota composition and diversity (Hippe et al.

Fig. 5.8 Short-chain fatty acid (SCFA)-receptor-mediated pathways and their effects on host 
energy metabolism in peripheral tissues. Gut microbes can ferment dietary fiber into SCFAs, which 
induce an array of G-protein-coupled receptor-mediated signaling pathways that are essentially 
implicated in host energy homeostasis in multiple tissues (Li et al. 2017) 
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Fig. 5.9 Microbiota structure and producers of SCFAs in aging (Hippe et al. 2011) 

2011; Fig. 5.9). The gut microbiota of the elderly becomes more variable with 
advancing age. For instance, the three bacterial families in the core microbiota are 
less abundant in older age groups, while certain health-associated species become 
more abundant in older age. In older age (over ~80 years), healthy individuals 
show continued microbial drift toward a unique compositional state, whereas this 
drift is absent in less healthy individuals. Retaining a high bacteroides dominance 
into older age, or having a low gut microbiome uniqueness measure, predicts a 
decreased survival fitness (Wilmanski et al. 2021). 

Reflecting changes of microbiota structure strong age-related changes in 
the metagenomics of SCFA production have been observed. Frequencies of 
genes encoding SCFA production and those involved in carbohydrate breakdown 
decrease, while genes involved in protein breakdown increase. The reduced fre-
quency of genes for short-chain fatty acid production is also associated with frailty. 
Thus, the short-chain fatty acids strongly modulate healthy aging (Den Besten et al. 
2013). 

Recently, results of metagenomic data analysis demonstrate the importance of 
the high abundance of Akkermansia and the butyrate biosynthesis pathway in 
aging. Oral administration of Akkermansia ameliorated the senescence-related phe-
notype in the intestinal systems in aged mice and extended the health span (Shin 
et al. 2021). 

In conclusion, diet regulates microbiota composition and is the biggest con-
tributor to SCFA production. Therefore, personalized nutrition has to benefit from 
incorporating microbiota information into their recommendations. 

5.1.8 Individual-Specific Aging 

The conventional medical concept of ‘one-size-fits-all’ to our aging population is 
widely considered to be no longer sufficient to narrow the gap between health 
span and life span. (Garmany et al. 2021; Olshansky 2018) A striking argument
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Fig. 5.10 Ageotypes, adapted from Ahadi et al. (2020) 

for the use of personalized approaches in the aging biology comes from the omics-
wide analysis of markers within the hallmarks of aging and the identifications of 
personal-specific mechanisms which drive accelerated aging. Recently, individual 
metabolism-specific aging patterns have been identified by deep longitudinal pro-
filing. These so called ageotypes may allow to assess personal aging on a molecular 
level, also reflecting the individual lifestyle and medical history (Fig. 5.10; Ahadi 
et al. 2020). Thus, adapted and personalized interventions on this basis could be 
more beneficial in preventing and treating age-related disorders (Ordovas et al. 
2018). 

5.2 Ways to Personalization 

An organism’s complex trait composition is the product of the interaction of 
genetic, epigenetic, and environmental impacts. Figure 5.10 Genetic mechanisms 
controlling complex traits are ‘Mendelian’ in their transmission pattern. However, 
epigenetic contributors, by contrast, do not follow these Mendelian inheritance 
principles. Epigenetically driven phenotypic variation (EPV) explains why the 
same genotype can yield distinct phenotypes. EPV results predominantly from 
developmental responses to the environment, termed ‘phenotypic plasticity’. Stud-
ies suggest that phenotypic plasticity is triggered preferentially during critical
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windows of high sensitivity including embryonic development and growth phases 
(Panzeri and Pospisilik 2018). 

5.2.1 Missing Heritability 

Multiple studies focused on understanding the genotype–phenotype interaction, 
and moreover, the discovery of causative mutations is underlying different dis-
eases. During the past 16 years, genome-wide association studies have identified 
hundreds of genetic variants such as single nucleotide (SNPs) or allelic polymor-
phisms associated with complex physiological traits and diseases. Most variants 
identified so far confer relatively small increments in risk and explain only a 
small proportion of the expected heritable fraction (Manolio et al. 2009). This 
discrepancy between the amount of variance explained by specific genetic fac-
tors identified in genome-wide association and twin-estimated heritability is also 
known as ‘missing heritability’, a perpetuating problem of human genetic research. 
Therefore, many different explanations for the ‘missing heritability’ have been pro-
posed: (1) that complex traits are highly polygenic and affected by many rare 
variants; (2) that twin studies have overestimated heritability (Youngid 2019). 
However, recently, it has become increasingly clear, that epigenetic programs, 
which are systematically missed by conventional DNA sequencing, may account 
for a significant fraction of the ‘missing heritability’. 

Environmental or nutritional factors interact with complex traits, such as those 
associated with height, stature, or metabolism of food. Furthermore, some of these 
factors have been shown to be epigenetically inherited (Lacal and Ventura 2018). 
Environmental factors can include aspects such as stress, but also microbiome 
composition. In this case, the influence is reciprocal: Our nutrition and genet-
ics shape the composition of microbiota, and thus our own environment. Either 
way, interactions between genes and lifestyle exist in human, and importantly, a 
given genetic susceptibility is modifiable by lifestyle (Riggs and Porter 1996). 
Epigenetics so bridges the gap between genotype and phenotype and paves a 
way for a new understanding of the interplay of genes and environment includ-
ing nutrition, lifestyle, or social environment. Thus, environment can influence 
the phenotypic variation directly on a molecular level. The ability of environ-
mental epigenetics to alter phenotypic and genotypic variation, directly, can also 
significantly impact natural selection. Neo-Lamarckian concepts can thus facilitate 
neo-Darwinian evolution (Haslberger 2009; Skinner 2015). 

5.2.2 Markers Enable a Personalized Pre- and Intervention 

Biomarkers are a central tool to assess biological changes due to age, disease, or 
treatment in a patient and thus play a crucial role for personalized health preven-
tion. As the main focus is to establish correlations between changes of biomarkers 
and diseases, research into biomarkers started to be developed primarily in medical
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areas addressing cancer or neurological disorders. However, experiences in these 
fields were rapidly translated to other areas, especially metabolic diseases, and are 
applied to prevention and treatment options such as personalized nutrition. The 
main benefits of most biomarkers are that they are non-invasive (blood samples) 
and have the potential to offer early personalized screening for diseases. Although 
the focus of personalized medicine is on genomic research, the exposome, all non-
genetic internal and external influences that are determining a person’s health play 
a crucial role in disease development (DeBord et al. 2016). 

In the context of cancer research, there are various biomarkers addressing the 
different levels of carcinogenesis: starting with genetic markers to altered gene 
expression, protein status and the metabolic level. Genetic mutation markers are 
mostly relevant in hereditary diseases, whereas epigenetic-based markers have a 
function in both, inherited and sporadic diseases. Epigenetic biomarkers can be 
advantageous as they provide information on the patient’s genetic and environ-
mental background (García-Giménez et al. 2017). Whereas e.g. metabolic markers 
mostly reflect short time responses to stimuli, epigenetic markers condense effects 
from longer periods. 

In general, epigenetic biomarkers address the mechanisms of epigenetics, CpG 
methylation, histone modification, and noncoding RNAs. Especially, the various 
forms of noncoding RNAs are increasingly used in the area of complex dis-
eases, or for metabolic or aging-related mechanisms. Analysis of sets of miRNAs 
is usually done using next-generation sequencing (NGS) platforms. 

Recently, cell-free DNA (cfDNA) offers an exciting new class of biomarkers. 
cfNDA, which is often released into the blood after tissue destruction received 
a special importance as biomarkers in the area of early detection, staging, and 
specification of cancer (Huang et al. 2021; Fig. 5.11). 

Liquid biopsy markers include circulating tumor cells (CTCs), tumor-derived 
cell-free DNA (ctDNA) carrying tumor-specific mutations or CpG methylation, as 
well as tumor-specific miRNAs. Liquid biopsy provides specific information about 
tumor sub-populations, enabling personalized therapies (i.e., precision medicine) 
(Snow et al. 2019). 

While liquid biopsy is becoming a routine analysis in precision medicine for 
cancer, cfDNA is started to be used in areas of autoimmunity, metabolic patho-
genesis (Bronkhorst et al. 2019), and to detect age-related epigenetic changes 
(Epigenetics of Aging Poster activemotif.com). 

Epigenetic markers are more and more used as reliable, stable markers condens-
ing nutrition and lifestyle effects over longer time periods. They can so be explored 
to predict the responsiveness to dietary prescriptions and guide effects of nutrition 
and lifestyle modifications. Analysis of epigenetic marks detected, e.g., the effect 
of nutritional treatments on weight loss and changes in metabolic profiles (Sam-
blas et al. 2019). Furthermore, methylation levels of circadian genes correlated 
with the magnitude of weight loss and circulating blood lipids after a nutritional 
program based on a Mediterranean dietary pattern (Samblas et al. 2016). Methy-
lation patterns of appetite-regulatory genes were also found to be associated with 
the success in weight loss or the risk of weight regain (Crujeiras et al. 2013).

http://www.activemotif.com
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Fig. 5.11 Liquid biopsy obtained from peripheral blood is composed of different tumoral com-
ponents such as circulating tumor cells (CTCs), circulating cell-free DNA (cfDNA) and miRNAs. 
These elements can be isolated for the identification of various tumor-specific genomic aberra-
tions including point mutations, copy number variations, structural rearrangements, or epigenetic 
patterns (Palacín-aliana et al. 2021) 

Reductions of body fat and serum lipids were related to changes in the methyla-
tion status of genes involved in inflammatory response and fatty acid metabolism 
(Panchal and Brown 2020). 

A specific importance in the analysis of dietary patterns and cancer metabolism 
is given to metabolomic markers. Studies applied multivariate methods to identify 
panels of metabolites that discriminate between high and low scores within or 
between dietary patterns. This represents an important approach because a panel of 
metabolites would be expected to best capture the multidimensionality of complex 
dietary patterns (Guasch-Ferre et al. 2018). 

Interestingly, based on metabolite profiles from urine and plasma, including 
creatinine, branched-chain amino acids, and sarcosine, it was possible to iden-
tify metabolite patterns which classify participants according to sex with >90% 
accuracy (Rist et al. 2017). 

5.3 Developments of Precision Medicine 

Hippocrates already emphasized the importance of individualizing medical care, 
proclaiming ‘It is more important to know what sort of person has a disease than 
to know what sort of disease a person has’. From this point of view, personalized 
medicine seems to have always been within the scope of medical practice and 
research (Baird 1990; Juengst 2000; Pokorska-Bocci et al. 2014).
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The idea of personalized medicine was first introduced by Roger William in the 
1950s. It became more attainable only in the early 2000s, when the human genome 
was mapped, and scientists could study the subtle individual genomic differences. 

Recent genetic knowledges allow to anticipate drug response, enable 
more targeted therapies, and can help to choose more beneficial treat-
ment in particular cases, whereas conventional medicine can only develop 
blockbusters. https://www.technologynetworks.com/drug-discovery/articles/the-fut 
ure-of-pharma-beyond-blockbusters-332181. 

The hope is that prescriptions could be tailored to an individual’s specific 
molecular characteristics, and that this more accurate prescription will replace the 
current ‘one-size-fits-all’ paradigm of drug development and usage. 

Precision medicine is certainly driven by improvements in cancer biology. Per-
sonalized cancer therapy is a treatment strategy centered on the ability to predict 
which patients are more likely to respond to specific (cancer) therapies. This 
approach is founded upon the idea that tumor biomarkers are associated with 
patient prognosis and tumor response to therapy (Fig. 5.12; Henry and Hayes 
2012; How Are Biomarkers Used to Treat Cancer? | MD Anderson Cancer Cen-
ter, n.d.; Shigeyasu et al. 2017). Integration of markers from these omics level is 
a central development in precision medicine (Fig. 5.13; Nebbioso et al. 2018). 

Fig. 5.12 Personalized cancer therapy and markers. http://www.novomics.com/eng/Research/pre 
cision.asp

https://www.technologynetworks.com/drug-discovery/articles/the-future-of-pharma-beyond-blockbusters-332181
https://www.technologynetworks.com/drug-discovery/articles/the-future-of-pharma-beyond-blockbusters-332181
http://www.novomics.com/eng/Research/precision.asp
http://www.novomics.com/eng/Research/precision.asp
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Fig. 5.13 Integrating and combining data from different platforms (genome-DNA sequence, tran-
scriptome, proteome, metabolome, and epigenome) lead to a better understanding of the basis of 
cancer and paves the way toward personalized medicine (Nebbioso et al. 2018) 

Ethical and Social Aspects 
The fast increase in the understanding of molecular disease mechanisms is rapidly 
changing the practice of health care from reactive to preventive. Traditional medicine 
could mostly only offer a delayed intervention on an already existing disease; con-
tinues testing using molecular markers and the increased use of wearable health 
devices will allow a centralized collection of personal health information, bioinfor-
matic analysis, and the prediction of risks of developing diseases. This can help to 
prevent the development of diseases by taking appropriate preventive actions (Lu 
et al. 2020; Ming et al. 2020; Vijayan et al. 2021). 

Unfortunately, personalized medicine is also associated with an increased risk of 
discrimination. The improved possibility of dividing up the population into groups 
(persons with an identified disease risk, good vs. non-responders to interventions), 
which often coincides with ethnic different disease susceptibilities, may lead to 
increase inequalities in access to health care. This would be particularly concerning 
in insurance-based health care. This could lead to call into question the principles of 
fairness, solidarity, and justice on which many healthcare systems are based. It could 
further increase inequalities which are already faced by some socially disadvantaged 
groups (Menzel 2012). 

The strongly increased possibilities to acquire many disease-specific predictive 
information could lead to create a new class of individuals: the ‘pre-patients’ or
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‘potential patients’. This would challenge the standard concept of disease, since 
health would not be opposed to illness, but to the risk of illness, which would be the 
new concern of medical practice. 

5.4 Development of Personalized Precision Nutrition 

In parallel to the development of precision medicine, precision nutrition follows 
similar concepts to improve serious metabolic problems. With nutrition-related 
diseases such as diabetes mellitus type II and obesity on the rise, it is for many 
experts unclear if the current efforts made to combat these diseases are effective 
or will be effective in the future. 

Dietary guidelines are an extremely important instrument, but even a very recent 
overview ‘A Global Review of Food-Based Dietary Guidelines’ (Herforth et al. 
2019) addresses the problem of important regional disparities, where certain food 
groups, e.g., meat, particularly red meat, are treated differently across countries. 
Another problem of dietary guidelines is that they reflect the daily intake required 
to meet the nutrient requirements of 97.5% of the healthy population, meaning 
they are not geared toward specific individual needs or toward sick individuals. 
The European Food Safety Authority (EFSA) acknowledges that ‘the physiologi-
cal requirement varies between individuals dependent upon genetic and epigenetic 
differences, age, sex [and], physiological state (Agostoni et al. 2010)’. 

The field of personalized preventative nutrition tries to incorporate these 
factors to better advise patients on their nutritional needs (Biesiekierski et al. 
2019) So, personalized precision nutrition is based on the idea that individual-
izing nutritional advice, products, or services will be more effective than more 
generic approaches (de Toro-Martín et al. 2017; Fig. 5.14). 

Personalization can be based on: ‘Biological evidence of differential responses 
to foods/nutrients dependent on genotypic or phenotypic characteristics and the 
analysis of current behavior, preferences, barriers, and objectives and subsequent 
delivery of interventions, which motivate and enable each person to make appro-
priate changes to his or her eating pattern’ (Adams et al. 2020; Biesiekierski et al. 
2019; de Toro-Martín et al. 2017; Ordovas et al. 2018). 

Presumably, personalized nutrition developed from nutrigenetics. SNPs have 
been used to identify a patient’s individual genetic need and disease risk and pro-
vide the basis to build individualized diets and therapies. Indeed, single nucleotide 
variants are by far the most widely studied genetic variation in the field of preci-
sion nutrition. The risks (usually expressed as odds ratios) associated with common 
alleles are <2.0, and for continuous traits such as body mass index (BMI) usually 
<0.1 standard deviation (SD), e.g., the most strongly associated variants associated 
with type-2 diabetes (the variant in TCF7L2) and coronary heart disease (the vari-
ant near CDKN2A/B) confer risks, of approximately 1.4 per risk allele. The variants 
most strongly associated with BMI and height do so with per allele effects of 0.1
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Fig. 5.14 Precision nutrition features and their relationships. PA: Physical activity (de Toro-
Martín et al. 2017) 

SD (approximately 0.4 kg/m2) and 1 cm, respectively. Most of the variants confer 
much smaller effects than these examples (Frayling 2014). 

Many studies have combined information from multiple associated SNPs, but 
even when combined, the variants rarely provided sufficient statistical power to 
offer any predictive value, e.g., the 40 strongest type-2 diabetes variants have a 
receiver operator curve (ROC) area under the curve (AUC) value of 0.63, ‘where 
0.5 is the same as flipping a coin and 0.8 is considered clinically useful’. How-
ever, there are some common diseases where directly genotyping sets of common 
variants could be useful to individual patients (Frayling 2014). 

In this sense, several SNPs have been associated with common chronic dis-
eases through interactions with the intakes of macro and micronutrients or with the 
consumption of particular foods and dietary patterns. Common variants in genes 
regulating homocysteine metabolism, such as methylenetetrahydrofolate reductase 
(MTHFR), and methionine synthase (MTR), have been linked to increased risk for 
breast cancer in individuals with low intakes of folate, vitamin B6, and vitamin 
B12 (Jiang-hua et al. 2014). Also, vitamin D status can be influenced by sev-
eral polymorphisms in vitamin D pathway genes. SNPs in the vitamin D receptor 
(VDR) gene affecting vitamin D availability have been associated with osteoporo-
sis predisposition (Banjabi et al. 2020). SNPs in genes encoding lipid proteins 
such as apolipoprotein C3 (APOC3) and apolipoprotein A1 (APOA1) conferred 
a higher risk of metabolic syndrome in subjects with a Western dietary patter 
(Hosseini-Esfahani et al. 2015). Significant interactions between the genetic risk 
score and diets on metabolic traits have been shown (Alsulami et al. 2020). 

However, the solely use of SNPs only for personalized nutrition has been crit-
ically discussed because they are mainly based on correlation between gene and
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disease, and they do not include interactions between genes and environmental fac-
tors, ‘and lastly they fail to explain their heritability’ (Khalilisamani et al. 2022; 
López-Cortegano and Caballero 2019; Zuk et al. 2012). 

5.4.1 Personalized Nutrition and Nutriepigenetics 

Way of nutrition as well as multiple bioactive food components has been shown to 
influence epigenetic modifications and thus modulate gene expression. This is an 
important field what nutriepigenetics investigates. It studies the interaction between 
nutrients and epigenetic modification, questioning what effect they may have on 
health outcomes. Unfortunately, literature not always differentiates between the 
term nutrigenetic, nutrigenomic or nutriepigenetics, and nutriepigenomics in a har-
monized way. Often, literature even includes both genetic and epigenetics under 
nutrigenomics. 

Complex interactions among nutritional factors and DNA methylation, covalent 
histone modifications, and noncoding RNAs, including microRNAs (miRNAs), 
have been observed in obesity, dyslipidemia, T2DM, NAFLD, cancer, and CVD. 
The anti-inflammatory effects of consuming a Mediterranean diet were related 
to hypermethylation of proinflammatory genes (Casas et al. 2016; Padin et al. 
2019; Stromsnes et al. 2021). The administrations of polyunsaturated fatty acids 
positively modulated the expression of several miRNAs, which suppressed onco-
genic and lipogenic genes (Moradi Sarabi et al. 2018). The anticancer properties of 
resveratrol, epigallocatechin-3-gallate, curcumin, sulforaphane, and genistein have 
been associated with some epigenetic modifications including hypomethylation 
and acetylation of tumor suppressor genes and an increase in miRNAs targeting 
oncogenes. Apple polyphenols prevented diet-induced obesity by regulating the 
methylation status of genes involved in lipid metabolism (Boqué et al. 2013). Cur-
cumin was found to exert protective effects against liver injury and heart failure 
through modulating DNA methylation patterns and histone modifications of key 
genes (Hassan et al. 2019). 

Calorie restriction, high fat, low protein, single nutrient (SN) conditions 
are sensed by the cell through signaling pathways like TOR, Ras, AMPK, or 
PI3K/AKT, promoting changes on the epigenome. Histone modifications can be 
so seen as an intersection between diet and longevity (Molina-Serrano et al. 2019; 
Fig. 5.15). 

Different micronutrient deficiencies such as folate, vitamin A, vitamin B, 
potassium, iron, and selenium correlated with hypermethylation of tumor suppres-
sor genes (Cuenca-Micó and Aceves 2020). Dietary methionine restriction could 
improve insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, 
and autophagy in diabetes (Yin et al. 2018). 

Multiple bioactive nutrients are known for their epigenetic activities (Bautista-
García et al. 2017; Fig. 5.16). The use of epigenetic-active food ingredients in 
a preventative personalized nutrition therefore may provide an easy and inex-
pensive approach to prevent and potentially cure certain diseases (Tiffon 2018).
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Fig. 5.15 Schematic representation depicting the hypothesis that histone modifications act as an 
intermediate between diet and longevity. Calorie restriction (CR), high fat (HF), low protein (LP), 
single nutrient (SN) conditions are sensed by the cell through signaling pathways like TOR, Ras, 
AMPK, or PI3K/AKT, promoting changes on the epigenome (Molina-Serrano et al. 2019) 

The reversible feature of epigenetic marks has encouraged the design of spe-
cific nutritional interventions targeting epigenetic alterations that might have a 
significant impact on preventing and treating human chronic diseases (Tollefsbol 
2014). Based on this evidence, the introduction of epigenetic-active dietary com-
pounds into the diet could serve as an effective strategy for reducing metabolic 
and aging-associated comorbidities (Asif et al. 2020; Mahmoud 2022). 

5.4.2 Personalized Nutrition and Gene Expression 

Food ingredients but also specific diets can directly affect gene expression, e.g., by 
interaction with signaling pathways. But, food ingredients may be also be metabo-
lized, and intermediates may affect gene expression or alter cell signaling pathways 
involved in gene expression (Berná et al. 2014). 

As seen for pharmaceuticals, metabolization of food ingredients has been shown 
to be highly individual, e.g., with respect to genetics, ethnicity, physical exercise, 
structure of GI-microbiota or age (Chaleckis et al. 2016; Kastenmüller et al. 2015; 
Martin et al. 2019; Olafuyi et al. 2021; Sato et al., n.d., 2003). 

Even effects of ambient conditions such as cool temperature were shown to 
alter brown fat and human metabolism (Cool Temperature Alters Human Fat and 
Metabolism | National Institutes of Health (NIH), n.d.). 

On the other hand, gene expression profiles have been used to predict the 
responsiveness to nutritional treatments. It has been reported that, prior to the
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Fig. 5.16 Epigenomic roles of bioactive nutrients (Bautista-García et al. 2017) 

consumption of a low-fat diet, adipose gene expression profiling was able to dif-
ferentiate responders from non-responders, as well as serve as a weak predictor of 
subjects predisposed to lose weight (Mutch et al. 2007). Also, the analysis of gene 
expression in subcutaneous adipose tissue revealed that genes regulating fatty acid 
metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were differ-
entially regulated during a low-calorie diet between weight maintainers and weight 
regainers after weight loss (Armenise et al. 2017; Mutch et al. 2011). Adipose tis-
sue transcriptome even reflects variations between subjects with continued weight 
loss and subjects regaining weight 6 mo after caloric restriction independent of 
energy intake (Márquez-Quiñones et al. 2010). 

5.4.3 Personalized Nutrition and Microbiota-Epigenetic 
Interactions 

The fast technological progress in the analysis of GI microbiota, their structure, 
and functions have severely influenced the understanding of personal mecha-
nisms of metabolisms. Zeevi et al. conducted various studies on the prediction 
of glycemic response in combination with microbiota composition and personal-
ized nutrition (Fig. 5.17). They showed that the post-prandial glucose response 
(PPGR) varied significantly in individuals when consuming the same standardized
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Fig. 5.17 a High variability in PPGRs between individuals consuming the same meal; b Opposite 
PPGRs in different individuals consuming the same meal (Zeevi et al. 2015) 

meal. Opposite PPGR was also found in different individuals consuming the same 
meal. The different PPGRs were associated with individual microbiota composi-
tion. Taxa such as the Enterobacteriaceae were positively linked to PPGR; the 
same taxa have been associated with poor glycemic control and metabolic syn-
drome. An algorithm containing the patients’ clinical and microbial data could 
predict PPGRs and proved that personalized nutrition interventions can improve 
glycemic responses. Until now, many groups conclude that personalized dietary 
interventions including microbiota data and predictive algorithms allow health pro-
fessionals to more precisely tailor interventions toward their patients’ individual 
needs (de Toro-Martín et al. 2017; Ordovas et al. 2018). 

Personal Variability of Gut Microbiomes 
The α-diversity (intra-individual) is a predictor of the extent of microbiota com-
position change upon the short-term consumption of different protein sources (red 
meat, white meat, and nonmeat sources) in healthy subjects. Importantly, changes 
are also highly variable between individuals, without strong population-level trends 
(Lozupone et al. 2012; Yeoh et al. 2019). 

Although response to fibers has a common trend within the general population, 
heterogeneous and highly personalized shifts in the human microbiota have also been 
detected in response to carbohydrates, including dietary fiber (Leeming et al. 2019; 
Modrackova et al. 2021), resistant starches, and carbohydrate-containing prebiotics. 
Consumption of a high-fiber weight-stabilization or weight-loss diet in obese indi-
viduals affects the intestinal microbiota composition with significant interpersonal 
variation (Salonen 2014; Wang et al. 2016). Targeted prebiotics may be a way to 
alter the obese gut microbiome in humans (She et al. 2021). 

Although fecal butyrate levels generally increase upon indigestible carbohydrate 
consumption, the response also varies widely among individuals (McOrist et al. 
2011). The microbiome response to dietary carbohydrates can be predicted from
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Fig. 5.18 Diet changes the gut microbiome composition and function in a person-specific man-
ner, which is associated with the specific pre-intervention microbiome profile. Diet also results in 
highly individualized variation in host responses (for example, glycemic response), which can be 
accurately predicted by the host’s unique microbiome signatures. By utilizing both aspects, person-
alized nutritional strategies can be developed in order to modify an individual’s microbiome and 
further improve the response to a specific diet (Kolodziejczyk et al. 2019) 

the baseline microbial diversity and the role of the gut microbiome in predicting 
responses to diet can be used for the development of precision nutrition models 
(Hughes et al. 2019; Jardon et al. 2022). Especially, the level of particular bacterial 
species may be a predictor of the response to particular diets (Kolodziejczyk et al., 
n.d.; Fig. 5.18). 

5.5 Omics Approaches and Data Integration 

Experiences from various OMIC layers, such as genetic, epigenetic, gene expres-
sion, metabolic or microbiota, have been shown to give information about personal 
responses to foods and nutrition as well as personal requirements for diets. In many 
situations, there will also be interactions between molecular pathways involving 
elements of these layers. 

Recent advances in the development of high-throughput sequencing and differ-
ent ‘omics’ technologies now allow quantitative analyses of biological molecules 
at multiple levels, and how they change with aging. The use of next-generation 
sequencing has paved the way for data integration: Through the same technology, 
it is today possible to investigate genetics, different aspects of genomics or protein 
binding (ChipSeq), and the transcriptome (RNAseq).
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Different information can so be represented by similar data formats and data 
sources: This offered opportunities for further development of the omics and a 
boost to develop new integration methods and approaches (Dato et al. 2021). 

High-throughput approaches require proper data normalization and data quality 
control. e.g., the understanding of the aging process is not possible without taking 
into account molecular interactions (or ‘interactome’) occurring among different 
components of the biological system (proteins, lipids, nucleic acids, etc.) as well as 
how they affect physiological parameters associated with aging (i.e., ‘physiome’) 
(Randhawa and Kumar 2021). 

Multi-layered networks have been proposed as a powerful tool used to establish 
the necessary connection between different types of information: It does provide 
a natural way to represent the structure of a biological system, and the relation-
ships between different layers in the network may represent effects which cannot 
be described just by statistical correlations (Lee et al. 2020). Tensor decomposi-
tion has also been proposed as a powerful method to infer relationships between 
different biological descriptors. A tensor is a multi-dimensional array (Kolda and 
Bader 2009). Machine learning (ML) approaches have been proven to be extremely 
powerful in the re-analysis of large datasets collected in the past, allowing an 
unprecedented capacity for data integration, and providing new insights. The use 
of feature selection and a combination of support vector machines (SVMs) and 
random forest (RF) allowed to mine the combined datasets of different aging pop-
ulation studies and enabled the integration of lifestyle, laboratory, and clinical data 
(Fig. 5.19; Dato et al. 2021; Gomez-Cabrero et al. 2021). 

5.5.1 Translation of Personalized Precision Nutrition into Praxis 

Personalized nutrition is based on the idea that individualizing nutritional advice, 
products, or services will be more effective than more generic approaches. Per-
sonalized nutrition can be applied in two broad areas: Firstly, for the dietary 
management of people with specific diseases or those who need special nutri-
tional support, for example, in special life phases like pregnancy or old age, and, 
secondly, for the development of more effective interventions for improving public 
health. Individuals may also wish to use personalized nutrition to achieve personal 
goals/ambitions that are less directly related to health, for example, to deal with 
preferences for and/or dislikes of specific foods, to attempt to achieve a desired 
body size or shape, or for competitive sports (Ordovas et al. 2018). 

Unlike with medication, dietary changes require individuals to make daily, 
sometimes hourly, choices. The adoption of these lifestyle changes, including 
changes in dietary patterns, is highly dependent on effective collaboration with 
participants who are being helped to take responsibility for their behavior, and, 
ultimately, health. Increasing technology is available that can motivate healthy eat-
ing. However, such applications usually adopt a ‘one-size-fits-all’ approach that is 
biased toward specific cultures or population subgroups. More emphasis is needed 
to develop behavioral approaches that will best motivate particular individual
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Fig. 5.19 Data integration in aging research. A schematic representation of the process of data 
integration from public databases and other sources in aging and age-related diseases. The main 
data sources are represented in the ‘input’ panel (Dato et al. 2021) 

and cultural groups. There may be benefits in moving from a decision frame-
work based on health professionals’ perspectives of effectiveness to one of shared 
decision-making. An intervention based on shared decision-making between the 
provider and the recipient becomes personalized and may increase acceptance and 
adherence (Ordovas et al. 2018). 

The Food4Me Study was a EU funded randomized controlled trial (RCT) 
involving >1600 participants from seven European countries. The project stud-
ied the effects of internet-based personalized nutrition advice on lifestyle changes. 
Their recent 6-month randomized control trail compared behavioral changes 
in individuals who received personalized nutrition (PN) advice or conventional 
dietary advice. Personalized nutrition advice was further categorized in individual 
diet intake, individual diet intake and phenotypic data and individual diet intake, 
phenotypic genotypic data and medical practice. 

The study asked two key questions: Is personalized nutrition more effec-
tive in changing diet than a conventional one-size-fits-all approach? Does the 
basis used for personalization matter? (With particular interest in the benefit of 
personalization based on phenotypic and genotypic characteristics). 

After 6 months, the answer was clear. Personalization of dietary advice assisted 
and/or motivated consumers to eat a healthier diet and follow a healthier lifestyle 
(in comparison with ‘impersonal’ (conventional) dietary advice) (Celis-Morales 
et al. 2017).
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The ‘Healthy Eating Index’ (Colby et al. 2020; Kasper et al. 2016) was used as 
the global measure of ‘healthfulness’ of eating patterns, and change was measured 
after 3 and 6 months. 

Personal nutrition was not only more effective in improving lifestyle changes 
compared to conventional advice but also more effective than a conventional one-
size-fits-all approach. 

Personal precision nutrition aims to prevent and manage chronic diseases by 
tailoring dietary interventions or recommendations to one or a combination of an 
individual’s genetic and epigenetic background, microbiota structure, metabolic 
profile, and environmental exposures. With adequate scientific evidence, nutritional 
tests can provide an early screening opportunity and could increase the demand 
for health-related consultations and screenings, which will help prevent disease 
Fig. 5.20. (https://doi.org/10.3390/jcm8071065). 

In addition, mobile apps and wearable devices facilitate real-time assessment 
of dietary intake and provide feedback which can improve glycemic control and 
diabetes management. By integrating these technologies with big data analytics, 
precision nutrition has the potential to provide personalized nutrition guidance for 
more effective prevention and management of complex metabolic diseases such as 
type-2 diabetes (Wang and Hu 2018; Fig. 5.21). 

Further, developments of personalized nutrition include the education of health 
professionals to correctly interpret genetic and epigenetic data, creating ways to 
motivate positive behavior change in patients and to correctly implementing per-
sonalized nutrition into medical practice. Ethical, and legal guidelines, as well as

Fig. 5.20 Guiding global best practice in personalized nutrition based on genetics: the develop-
ment of a nutrigenomics care map. DTC direct-to-consumer; HCP health care provider; SMART 
specific, measurable, attainable, relevant, and time-based (Horne et al. 2022) 

https://doi.org/10.3390/jcm8071065
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Fig. 5.21 Precision nutrition for prevention and management of type-2 diabetes (Wang and Hu 
2018) 

standardized regulations for tests will need to be established (Fig. 5.22; Ferguson 
et al. 2016). 

Fig. 5.22 Achievements already made and challenges faced by personalized nutrition (Ferguson 
et al. 2016)
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5.5.2 Personalization or Stratification, Metabotypes 

Personalized nutrition at the individual level requires not only the comprehensive 
collection of information, which is both costly and demanding, but also models 
that are capable of accurately generating personalized advice for the individual. 
A somehow easier approach may be to personalize diets at the group level. More 
recent studies have suggested that individuals may be grouped according to unique 
metabolic responses to foods and dietary changes. Grouping individuals based on 
similarities in their metabolic phenotype—that is metabotypes—is a novel con-
cept, and different definitions have been used (Fig. 5.23). The underlying idea 
behind metabotyping is to identify metabolic phenotypes based on factors such 
as diet, anthropometric measures, clinical parameters, metabolomics data, and the 
gut microbiota. Diets for specific metabotypes are presently developed predict-
ing that an optimal diet can then be tailored to fit each metabotype specifically 
(Garcia-Perez et al. 2020; Hillesheim et al. 2020). 

It is under discussion, however, if people with a high risk for certain diseases 
such as cardiometabolic disorders have special metabotypes (Grabowski et al. 
2020; Hillesheim et al. 2020; Palmnäs et al. 2020; Riedl et al. 2020). The results of 
some studies suggest that an optimized metabotype approach is capable of deliv-
ering targeted nutritional counselling to healthy adults and is very comparable to 
individualized counselling. 

The next step would be to determine whether the optimized metabotype 
approach is effective in changing diet quality (Hillesheim and Brennan 2020). 
Clearly, metabotyping and group-based nutrition wants to enter conventional 
population-based guidelines and personalized nutrition. 

In conclusion, the way to personalized precision nutrition developed from sim-
ple genetic SNP testing to addition of lifestyle and environmental data, epigenetic, 
microbiota, and metabolic markers already reflecting impacts of lifestyle and nutri-
tion to the integration of data from markers of multiple OMICS. Caution in the

Fig. 5.23 Metabotyping and group-based nutrition in the context of the conventional population-
based guidelines and personalized nutrition (Palmnäs et al. 2020) 
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claim of benefits of personalized nutrition comes from the review that scientific 
evidence is mostly based on observational studies with a low level of reproducibil-
ity. But still, personalization may need sustained change in behavior. (https://doi. 
org/10.3390/jcm8071065). 

5.5.3 Personalized Precision Nutrition and Consumer Aspects 

Consumer attitudes toward molecular tests aiming to reveal the risks of a predispo-
sition to various illnesses have already been examined by several papers. Consumer 
acceptance of nutrigenomics-based personalized nutrition, however, has only been 
examined by a few. The most important motivator to have a genetic test done 
was the consumers’ own health and the health of their family members. Whereas, 
early genetic testing, especially direct-to-consumer testing, encountered substantial 
criticism, modern ways of a personalized precision nutrition have reflected these 
restrictions and therefore get a much broader approval (Reinders et al. 2020). 

Consumer attitude and behavioral change: A systematic review analyzed con-
sumer attitudes toward direct-to-consumer genetic testing (DTC-GT). DTC-GT 
showed that there is generally low awareness of DTC-GT in the general population 
even though most study participants had high education levels. Nevertheless, par-
ticipants in most studies were interested in knowing their disease risk, especially 
if they were parents (to know their child’s risk) or if they had a higher disease 
risk (e.g. family history). Interest increased when the test results were positive and 
decreased with price of genetic testing and knowing the risks of DTC-GT (less reg-
ulated and accurate results). It was also found that participants preferred genetic 
testing to be performed by a health professional, instead of it being marketed 
toward consumers (Covolo 2015). 

The impact of genetic testing results on lifestyle changes is fragmentary. Some 
individuals expressed concern and the intention to change their lifestyle, while 
others showed indifference to the test results even though they were at a higher 
risk for disease. Moderate lifestyle changes could be observed though a 3 month 
follow up showed no impact on user behavior. Furthermore, one-year follow-ups 
showed no difference in concern compared to individuals who were not tested for 
disease risk (Ruhl et al. 2019). 

Related to genetic tests, considerable concerns were consistently raised about 
internet privacy, data security, data use, and data destiny; participants articulated 
their fears about the potential for information to be used by companies for commer-
cial gain or to fall into the hands of insurers, employers, or government agencies. 
In contrast with the more numerous research studies examining consumer judge-
ments related to genetic tests, only, a few studies examined consumer preferences 
for genetic-based personalized nutrition. Based on both qualitative and quantitative 
studies, consumers usually show positive attitudes toward genetic-based personal-
ized nutrition; about one third to a half of respondents would use a service of this

https://doi.org/10.3390/jcm8071065
https://doi.org/10.3390/jcm8071065
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kind and would follow a personalized diet although there are significant interna-
tional differences in this area. Costs and benefits of personalized nutrition turned 
out to be of primary importance in consumer judgements (Szakály et al. 2021). 

A driver of personalized nutrition is the increasing awareness of consumers of 
their individuality. Personalized nutrition fits well into the current marketing trend 
of moving the consumer company relationship from the mass model toward a 
customized model. Consumer goods have become increasingly personalized, par-
ticularly during the second half of the twentieth century. Individualized products 
appeal to today’s sophisticated consumers and allow them to feel empowered (van 
der Lans et al. 2016). 

A special ethical question concerns how access to personalized nutrition could 
be ensured for lower-income classes which could have a greater need for it but 
lack the means adopt it. 

Trust of consumers in advice of scientific bodies is rather commuting depending 
on upcoming new findings often challenging established thinking, personal priority 
of values such as animal welfare or unsubstantiated public news. In 2019, the 
American Society for Nutrition (ASN) commissioned an independent Advisory 
Committee to look specifically at the public’s trust in nutrition science and the 
factors that can influence it. These areas include (Fig. 5.24): 

However, there is also a group of often well-educated and informed consumers 
who seem to prefer personal studies of literature and personal experience rather 
than to believe in opinions and advice of scientific bodies which may be influ-
enced by stake holder groups. An extreme form of this development is biohacking 
which has gone viral in many social groups. Internet followers of biohacking read 
that Twitter CEO Jack Dorsey experienced the benefits of fasting intermittently 
and drinking ‘salt juice’ each morning. Even ‘dopamine fasting’ received inter-
est. These are all types of biohacking, a broad term for a lifestyle that is growing 
increasingly popular, and not just in Silicon Valley, where it really took off. 

Biohacking—also known as DIY biology—“is a term that can cover a huge 
range of activities, from performing science experiments on experimental organ-
isms to tracking the personal diet to optimize the own biology” https://daveasprey. 
com/beginners-guide-to-biohacking-101/. 

Biohackers experiment on their own bodies with the hope of boosting their 
physical and cognitive performance. They form one branch of transhuman-
ism, believing that human beings can and should use technology to augment 
and evolve performance. https://www.medicaldevice-network.com/analysis/med 
ical-biohacking/. 

Hot topics of the biohacking community are the optimization of lifestyle habits, 
modulation of daily routines, nutrition, and metabolism, fasting, ketogenic diets, 
cognitive performance, sleep, brain health, nootropics, nutraceutical, etc., in com-
bination with usage of biosensing wearables, genetic analysis, and lab based of 
information. Biohacking is certainly a tool of a generation that is used to look for 
information in the Web and in social networks, often neglecting scientific sources 
of information.

https://daveasprey.com/beginners-guide-to-biohacking-101/
https://daveasprey.com/beginners-guide-to-biohacking-101/
https://www.medicaldevice-network.com/analysis/medical-biohacking/
https://www.medicaldevice-network.com/analysis/medical-biohacking/
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• Conflict of interest and objectivity. Consumers are more trusting when they 

believe scientists are acting independently of financial gain. Any conflicts of 

interest, as well as, personal bias/beliefs, business associations or personal 

relationships should be fully disclosed. 

• Standards of scientific rigor and reproducibility. Consumers want to know that 

the quality of the research is extremely thorough and accurate, but this can be 

especially difficult with nutrition science as many individuals hold “unscientific 

beliefs” about food. 

• Transparency. Transparency in communicating the scientific process is one of the 

keys to increasing public trust in science. This requires acknowledgment of all 

funders, beneficiaries, and opponents of the research and its outcomes. It’s also 

vital to state all potential biases and competing interests that influence the overall 

research and interpretation of outcomes. 

• Equity. Typically, in the U.S., inequities in health research center around the lack 

of women, specific age groups and under-represented income or ethnic groups in 

clinical research and trials. A lack of equity can undermine trust. 

• Information dissemination (education, communication and marketing). The 

strong and ever-increasing evidence that links food to health is generating a 

growing interest in nutrition and retail dietitians can advance consumer trust with 

educational efforts that help link science and decision-making. ASN recommends 

helping individuals increase their critical thinking and reasoning skills when it 

comes to scientific information and the ability to critically evaluate the media. In 

addition, dietitians should continue using multiple educational touch points (i.e.: 

social media, website and community events), to provide meaningful advice and 

tools that help consumers make sound dietary decisions based on science. 

Fig. 5.24 Are consumers losing trust in science? | Retail dietitians business alliance 

5.5.4 Consumer Supporting Organizations in Between Multiple 
Interests, Discussion 

Many consumers certainly rely on government and expert committees approved 
concepts, guidelines, and products. The general believe in dietary guidelines and 
nutrition pyramids is high and developments into personalized ways of thinking 
are picked up only step by step depending on convincing personal advantages. On 
the other side, many consumers strongly believe that everyone must find out the 
best way, concept, the best technology, the best product for himself. The adherence 
in devices from regulatory-based expert committees and guidelines suiting for all 
seems to be somehow limited in this group. A broader understanding of epigenetic
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principles by consumers may result in an increased interest and use of epigenetic 
tests and a better acceptance compared to genetic testing only. 

Despite public advertising in their engagement in sustainability and social 
competence, industry must orient their developments and products on economic 
success. Whereas, profound risk assessment and management in new develop-
ments and products is generally broadly accepted; rigid regulation often result in 
monopolization and draw backs in health-supporting opportunities. Engagement of 
industry in preventive, personalized nutrition, and disease prevention will depend 
on public interest and the believe of consumers into personal advantages of these 
developments. 

Consumer organizations will have to find a delicate balance between serv-
ing consumer groups with their rather diverse thinking’s as well as the need for 
research and development. In contrast, basis sciences need to be free of market-
ing aspects. Therefore, the development of a personalized, precision health care 
and nutrition needs to be driven by solid science and an improved communication 
about advantages and needs between consumer groups, research, and industry. 
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Grabowski M, Barski J, Liśkiewicz D (2020) [Metabolic phenotyping in the development person-
alized nutrition]. Postepy Biochemii 66(2). http://doi.org/10.18388/PB.2020_329 

Gruendler R, Hippe B, Sendula Jengic V, Peterlin B, Haslberger AG (2020) Nutraceutical 
approaches of autophagy and neuroinflammation in Alzheimer’s disease: a systematic review. 
Molecules (Basel, Switzerland) 25(24). http://doi.org/10.3390/molecules25246018 

Guarente L (2011) Sirtuins, aging, and medicine. N Engl J Med 364(23):2235–2244. http://doi.org/ 
10.1056/NEJMra1100831 

Guarente L, Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 
72:483–488. http://doi.org/10.1101/sqb.2007.72.024 

Guasch-Ferre M, Bhupathiraju SN, Hu FB (2018) Use of metabolomics in improving assessment 
of dietary intake. Clin Chem 64(1):82. https://doi.org/10.1373/CLINCHEM.2017.272344 

Haigis MC, Sinclair DA (2010) Mammalian Sirtuins: biological insights and disease relevance. 
Annu Rev Pathol 5(1):253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250 

Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, Gruenbaum Y, Liu J (2005) 
Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci U 
S A 102(46):16690–16695. https://doi.org/10.1073/pnas.0506955102 

Hall JA, Dominy JE, Lee Y, Puigserver P (2013) The Sirtuin family’s role in aging and age-
associated pathologies. J Clin Investig 123(3):973–979. https://doi.org/10.1172/JCI64094 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, Klotzle B, Bibikova M, Fan JB, 
Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide 
methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367. 
https://doi.org/10.1016/J.MOLCEL.2012.10.016 

Haslberger A (2009) Epigenetics and human health: linking hereditary, environmental and nutri-
tional aspects. Wiley-VCH 

Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, Yang C (2019) Curcumin as 
an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet 10. 
http://doi.org/10.3389/FGENE.2019.00514 

Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140. https://doi.org/10.1016/J. 
MOLONC.2012.01.010 

Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E (2019) A 
global review of food-based dietary guidelines. Adv Nutr (Bethesda, Md.) 10(4):590–605. 
http://doi.org/10.1093/ADVANCES/NMY130 

Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate 
in body weight control and insulin sensitivity. Nutrients 11(8). http://doi.org/10.3390/NU1108 
1943 

Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW (1996) The heritability 
of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum 
Genet 97(3):319–323. https://doi.org/10.1007/BF02185763 

Hillesheim E, Brennan L (2020) Metabotyping and its role in nutrition research. Nutr Res Rev 
33(1):33–42. https://doi.org/10.1017/S0954422419000179

https://doi.org/10.1515/BC.2008.048
https://doi.org/10.1511/2011.91.278
https://doi.org/10.1511/2011.91.278
http://doi.org/10.1007/S11357-021-00334-0
http://doi.org/10.3390/ijms20123097
http://doi.org/10.18388/PB.2020_329
http://doi.org/10.3390/molecules25246018
http://doi.org/10.1056/NEJMra1100831
http://doi.org/10.1056/NEJMra1100831
http://doi.org/10.1101/sqb.2007.72.024
https://doi.org/10.1373/CLINCHEM.2017.272344
https://doi.org/10.1146/annurev.pathol.4.110807.092250
https://doi.org/10.1073/pnas.0506955102
https://doi.org/10.1172/JCI64094
https://doi.org/10.1016/J.MOLCEL.2012.10.016
http://doi.org/10.3389/FGENE.2019.00514
https://doi.org/10.1016/J.MOLONC.2012.01.010
https://doi.org/10.1016/J.MOLONC.2012.01.010
http://doi.org/10.1093/ADVANCES/NMY130
http://doi.org/10.3390/NU11081943
http://doi.org/10.3390/NU11081943
https://doi.org/10.1007/BF02185763
https://doi.org/10.1017/S0954422419000179


5 Personalized Nutrition for Healthy Aging, A Review 137

Hillesheim E, Ryan MF, Gibney E, Roche HM, Brennan L (2020) Optimisation of a metabotype 
approach to deliver targeted dietary advice. Nutr Metab 17(1):1–12. https://doi.org/10.1186/ 
S12986-020-00499-Z/FIGURES/2 

Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG (2011) Quantification of butyryl 
CoA: acetate CoA-transferase genes reveals different butyrate production capacity in individ-
uals according to diet and age. FEMS Microbiol Lett 316(2):130–135. https://doi.org/10.1111/ 
j.1574-6968.2010.02197.x 

Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 
8(2):172. https://doi.org/10.1080/19490976.2017.1290756 

Horne JR, Nielsen DE, Madill J, Robitaille J, Vohl MC, Mutch DM (2022). Guiding global best 
practice in personalized nutrition based on genetics: the development of a nutrigenomics care 
map. J Acad Nutr Diet 122:259–268, 269. https://doi.org/10.1016/j.jand.2021.02.008 

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):1– 
20. https://doi.org/10.1186/GB-2013-14-10-R115/COMMENTS 

Hosseini-Esfahani F, Mirmiran P, Daneshpour MS, Mehrabi Y, Hedayati M, Soheilian-Khorzoghi 
M, Azizi F (2015) Dietary patterns interact with APOA1/APOC3 polymorphisms to alter the 
risk of the metabolic syndrome: the Tehran lipid and glucose study. Br J Nutr 113(4):644–653. 
https://doi.org/10.1017/S0007114514003687 

How are biomarkers used to treat cancer? | MD Anderson Cancer Center (n.d.). Retrieved April 
19, 2022, from https://www.mdanderson.org/cancerwise/how-are-biomarkers-used-in-cancer-
treatment.h00-159460056.html 

Huan T, Chen G, Liu C, Bhattacharya A, Rong J, Chen BH, Seshadri S, Tanriverdi K, Freedman 
JE, Larson MG, Murabito JM, Levy D (2018) Age-associated microRNA expression in human 
peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell 17(1). 
http://doi.org/10.1111/acel.12687 

Huang ZB, Zhang HT, Yu B, Yu DH (2021) Cell-free DNA as a liquid biopsy for early detection 
of gastric cancer. Oncol Lett 21(1). http://doi.org/10.3892/OL.2020.12264 

Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. http://doi. 
org/10.1038/nm.3981 

Hughes RL, Kable ME, Marco M, Keim NL (2019) The role of the gut microbiome in predicting 
response to diet and the development of precision nutrition models. Part II: results. Adv Nutr 
10(6):979. https://doi.org/10.1093/ADVANCES/NMZ049 

Hwang JY, Aromolaran KA, Zukin RS (2017) The emerging field of epigenetics in neurodegen-
eration and neuroprotection. Nat Rev Neurosci 18(6):347. https://doi.org/10.1038/NRN.201 
7.46 

Jardon KM, Canfora EE, Goossens GH, Blaak EE (2022) Dietary macronutrients and the gut 
microbiome: a precision nutrition approach to improve cardiometabolic health. Gut. gutjnl-
2020-323715. http://doi.org/10.1136/GUTJNL-2020-323715 

Jiang-hua Q, De-chuang J, Zhen-duo L, Shu-de C, Zhenzhen L (2014) Association of methylenete-
trahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and 
interaction with folate, vitamin B6, and vitamin B12 intakes. Tumour Biol J Int Soc Oncode-
velopmental Biol Med 35(12):11895–11901. https://doi.org/10.1007/S13277-014-2456-1 

Jin H, Zhang Y, Ding Q, Wang SS, Rastogi P, Dai DF, Lu D, Purvis M, Cao C, Wang A, Liu D, 
Ren C, Elhadi S, Hu MC, Chai Y, Zepeda-Orozco D, Campisi J, Attanasio M (2019) Epithelial 
innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 4(2). http:// 
doi.org/10.1172/JCI.INSIGHT.125490 

Juengst ET (2000) Concepts of disease after the human genome project. In: Ethical issues in health 
care on the frontiers of the twenty-first century, pp 127–154. https://doi.org/10.1007/0-306-468 
79-4_7 

Kasper N, Mandell C, Ball S, Miller AL, Lumeng J, Peterson KE (2016) The healthy meal index: 
a tool for measuring the healthfulness of meals served to children. Appetite 103:54. https://doi. 
org/10.1016/J.APPET.2016.02.160 

Kastenmüller G, Raffler J, Gieger C, Suhre K (2015) Genetics of human metabolism: an update. 
Hum Mol Genet 24(R1):R93–R101. https://doi.org/10.1093/HMG/DDV263

https://doi.org/10.1186/S12986-020-00499-Z/FIGURES/2
https://doi.org/10.1186/S12986-020-00499-Z/FIGURES/2
https://doi.org/10.1111/j.1574-6968.2010.02197.x
https://doi.org/10.1111/j.1574-6968.2010.02197.x
https://doi.org/10.1080/19490976.2017.1290756
https://doi.org/10.1016/j.jand.2021.02.008
https://doi.org/10.1186/GB-2013-14-10-R115/COMMENTS
https://doi.org/10.1017/S0007114514003687
https://www.mdanderson.org/cancerwise/how-are-biomarkers-used-in-cancer-treatment.h00-159460056.html
https://www.mdanderson.org/cancerwise/how-are-biomarkers-used-in-cancer-treatment.h00-159460056.html
http://doi.org/10.1111/acel.12687
http://doi.org/10.3892/OL.2020.12264
http://doi.org/10.1038/nm.3981
http://doi.org/10.1038/nm.3981
https://doi.org/10.1093/ADVANCES/NMZ049
https://doi.org/10.1038/NRN.2017.46
https://doi.org/10.1038/NRN.2017.46
http://doi.org/10.1136/GUTJNL-2020-323715
https://doi.org/10.1007/S13277-014-2456-1
http://doi.org/10.1172/JCI.INSIGHT.125490
http://doi.org/10.1172/JCI.INSIGHT.125490
https://doi.org/10.1007/0-306-46879-4_7
https://doi.org/10.1007/0-306-46879-4_7
https://doi.org/10.1016/J.APPET.2016.02.160
https://doi.org/10.1016/J.APPET.2016.02.160
https://doi.org/10.1093/HMG/DDV263


138 A. Pointner and A. G. Haslberger

Keenan CR, Allan RS (2019) Epigenomic drivers of immune dysfunction in aging. Aging Cell 
18(1). http://doi.org/10.1111/ACEL.12878 

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice 
as long as wild type. Nature 366(6454):461–464. http://doi.org/10.1038/366461a0 

Khalilisamani N, Thomson PC, Raadsma HW, Khatkar MS (2022) Estimating heritability using 
family-pooled phenotypic and genotypic data: a simulation study applied to aquaculture. 
Heredity 128(3):178–186. http://doi.org/10.1038/s41437-022-00502-8 

Kinser HE, Pincus Z (2020) MicroRNAs as modulators of longevity and the aging process. Hum 
Genet 139(3):291–308. Springer. http://doi.org/10.1007/s00439-019-02046-0 

Klutstein M, Reizel Y, Galow A-M, Peleg S (2022) How to slow down the ticking clock: age-
associated epigenetic alterations and related interventions to extend life span. Cells 11(3):468. 
http://doi.org/10.3390/CELLS11030468 

Kolda TG, Bader BW (2009) Tensor decompositions and applications. Soc Ind Appl Math 
51(3):455–500. https://doi.org/10.1137/07070111X 

Kolodziejczyk AA, Zheng D, Elinav E (n.d.) Diet-microbiota interactions and personalized nutri-
tion. Nat Rev Microbiol. http://doi.org/10.1038/s41579-019-0256-8 

Kolodziejczyk AA, Zheng D, Elinav E (2019) Diet–microbiota interactions and personalized nutri-
tion. Nat Rev Microbiol 17(12):742–753. http://doi.org/10.1038/s41579-019-0256-8 

Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Bäckhed H, Gonzalez A, Werner 
JJ, Angenent LT, Knight R, Bäckhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling 
of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480. https:// 
doi.org/10.1016/j.cell.2012.07.008 

Lacal I, Ventura R (2018) Epigenetic Inheritance: concepts, mechanisms and perspectives. Front 
Mol Neurosci 11. https://doi.org/10.3389/FNMOL.2018.00292 

Lazarus A, Banerjee KK, Kolthur-Seetharam U (2013) Small changes, big effects: chromatin goes 
aging. Subcell Biochem 61:151–176. https://doi.org/10.1007/978-94-007-4525-4_8 

Lee B, Zhang S, Poleksic A, Xie L (2020) Heterogeneous multi-layered network model for 
omics data integration and analysis. Front Genet 10:1381. https://doi.org/10.3389/FGENE. 
2019.01381/BIBTEX 

Leeming ER, Johnson AJ, Spector TD, Roy CIL (2019) Effect of diet on the gut microbiota: 
rethinking intervention duration. Nutrients 11(12). http://doi.org/10.3390/NU11122862 

Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 
4(10):944. https://doi.org/10.1038/SJ.EMBOR.EMBOR941 

Li X, Watanabe K, Kimura I (2017) Gut microbiota dysbiosis drives and implies novel therapeutic 
strategies for diabetes mellitus and related metabolic diseases. Front Immunol 8. http://doi.org/ 
10.3389/FIMMU.2017.01882 

Li Y, Song Y, Wang Z, Zhang Z, Lu M, Wang Y (2019) Long non-coding RNA LINC01787 drives 
breast cancer progression via disrupting miR-125b generation. Front Oncol 9. https://doi.org/ 
10.3389/fonc.2019.01140 

Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126(2):257–268. 
http://doi.org/10.1016/j.cell.2006.07.002 

López-Cortegano E, Caballero A (2019) Inferring the nature of missing heritability in human traits 
using data from the GWAS catalog. Genetics 212(3):891–904. https://doi.org/10.1534/GEN 
ETICS.119.302077 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. 
Cell 153(6):1194. http://doi.org/10.1016/j.cell.2013a.05.039 

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and 
resilience of the human gut microbiota. Nature 489(7415):220. https://doi.org/10.1038/NAT 
URE11550 

Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z (2020) Wearable health devices in health care: 
narrative systematic review. JMIR MHealth UHealth 8(11). http://doi.org/10.2196/18907 

Mahmoud AM (2022) An overview of epigenetics in obesity: the role of lifestyle and therapeutic 
interventions. Int J Mol Sci 23(3). http://doi.org/10.3390/IJMS23031341

http://doi.org/10.1111/ACEL.12878
http://doi.org/10.1038/366461a0
http://doi.org/10.1038/s41437-022-00502-8
http://doi.org/10.1007/s00439-019-02046-0
http://doi.org/10.3390/CELLS11030468
https://doi.org/10.1137/07070111X
http://doi.org/10.1038/s41579-019-0256-8
http://doi.org/10.1038/s41579-019-0256-8
https://doi.org/10.1016/j.cell.2012.07.008
https://doi.org/10.1016/j.cell.2012.07.008
https://doi.org/10.3389/FNMOL.2018.00292
https://doi.org/10.1007/978-94-007-4525-4_8
https://doi.org/10.3389/FGENE.2019.01381/BIBTEX
https://doi.org/10.3389/FGENE.2019.01381/BIBTEX
http://doi.org/10.3390/NU11122862
https://doi.org/10.1038/SJ.EMBOR.EMBOR941
http://doi.org/10.3389/FIMMU.2017.01882
http://doi.org/10.3389/FIMMU.2017.01882
https://doi.org/10.3389/fonc.2019.01140
https://doi.org/10.3389/fonc.2019.01140
http://doi.org/10.1016/j.cell.2006.07.002
https://doi.org/10.1534/GENETICS.119.302077
https://doi.org/10.1534/GENETICS.119.302077
http://doi.org/10.1016/j.cell.2013a.05.039
https://doi.org/10.1038/NATURE11550
https://doi.org/10.1038/NATURE11550
http://doi.org/10.2196/18907
http://doi.org/10.3390/IJMS23031341


5 Personalized Nutrition for Healthy Aging, A Review 139

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos 
EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, 
Rotimi CN, Slatkin M, Valle D, Whittemore AS et al (2009) Finding the missing heritability 
of complex diseases. Nature 461(7265):747–753. http://doi.org/10.1038/nature08494 

Márquez-Quiñones A, Mutch DM, Debard C, Wang P, Combes M, Roussel B, Holst C, Martinez 
JA, Handjieva-Darlenska T, Kalouskova P, Jebb S, Babalis D, Pfeiffer AFH, Larsen TM, Astrup 
A, Saris WHM, Mariman E, Clément K, Vidal H et al (2010) Adipose tissue transcriptome 
reflects variations between subjects with continued weight loss and subjects regaining weight 6 
mo after caloric restriction independent of energy intake. Am J Clin Nutr 92(4):975–984. http:// 
doi.org/10.3945/AJCN.2010.29808 

Martin GM (2005) Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A 
102(30):10413–10414. https://doi.org/10.1073/pnas.0504743102 

Martin AM, Sun EW, Rogers GB, Keating DJ (2019) The influence of the gut microbiome on host 
metabolism through the regulation of gut hormone release. Front Physiol 10:428. http://doi.org/ 
10.3389/FPHYS.2019.00428/BIBTEX 

Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA 
signaling. Front Microbiol 7:1934. http://doi.org/10.3389/FMICB.2016.01934/BIBTEX 

McGregor RA, Seo DY (2016) miRNAs as nutritional targets in aging. In: Molecular basis of nutri-
tion and aging: a volume in the molecular nutrition series. Elsevier Inc., pp 277–291. http://doi. 
org/10.1016/B978-0-12-801816-3.00021-2 

McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, Conlon MA (2011) Fecal 
butyrate levels vary widely among individuals but are usually increased by a diet high in 
resistant starch. J Nutr 141(5):883–889. https://doi.org/10.3945/JN.110.128504 

Melzer D, Pilling LC, Ferrucci L (2020) The genetics of human ageing. Nat Rev Genet 21(2):88– 
101. https://doi.org/10.1038/S41576-019-0183-6 

Menzel PT (2012) Justice and fairness: a critical element in U.S. health system reform. J Law Med 
Ethics 40(3):582–597. http://doi.org/10.1111/J.1748-720X.2012.00691.X 

Ming DK, Sangkaew S, Chanh HQ, Nhat PTH, Yacoub S, Georgiou P, Holmes AH (2020) Contin-
uous physiological monitoring using wearable technology to inform individual management of 
infectious diseases, public health and outbreak responses. Int J Infect Dis 96:648. https://doi. 
org/10.1016/J.IJID.2020.05.086 

Modrackova N, Copova I, Stovicek A, Makovska M, Schierova D, Mrazek J, Sabolova M, Vlkova 
E, Hradsky O, Bronsky J, Nevoral J, Neuzil-Bunesova V (2021) Microbial shifts of faecal 
microbiota using enteral nutrition in vitro. J Funct Foods 77:104330. https://doi.org/10.1016/ 
J.JFF.2020.104330 

Molina-Serrano D, Kyriakou D, Kirmizis A (2019) Histone modifications as an intersection 
between diet and longevity. Front Genet 10. http://doi.org/10.3389/FGENE.2019a.00192 

Moradi Sarabi M, Zahedi SA, Pajouhi N, Khosravi P, Bagheri S, Ahmadvand H, Shahryarhesami S 
(2018) The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methyla-
tion status and VEGF protein expression in the colorectal cancer cells. Genes Nutr 13(1). http:// 
doi.org/10.1186/S12263-018-0623-5 

Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radical Biol Med 56:133– 
171. https://doi.org/10.1016/j.freeradbiomed.2012.10.525 

Morris BJ, Willcox BJ, Donlon TA (2019) Genetic and epigenetic regulation of human aging and 
longevity. Biochim Biophys Acta (BBA) Mol Basis Dis 1865(7):1718–1744. http://doi.org/10. 
1016/J.BBADIS.2018.08.039 

Muñoz-Najar U, Sedivy JM (2011) Epigenetic control of aging. In: Antioxidants and redox signal-
ing, vol 14, Issue 2, pp 241–259. http://doi.org/10.1089/ars.2010.3250 

Mutch DM, Temanni MR, Henegar C, Combes F, Pelloux V, Holst C, Sørensen TIA, Astrup A, 
Martinez JA, Saris WHM, Viguerie N, Langin D, Zucker JD, Clément K (2007) Adipose gene 
expression prior to weight loss can differentiate and weakly predict dietary responders. PLoS 
ONE 2(12). http://doi.org/10.1371/JOURNAL.PONE.0001344

http://doi.org/10.1038/nature08494
http://doi.org/10.3945/AJCN.2010.29808
http://doi.org/10.3945/AJCN.2010.29808
https://doi.org/10.1073/pnas.0504743102
http://doi.org/10.3389/FPHYS.2019.00428/BIBTEX
http://doi.org/10.3389/FPHYS.2019.00428/BIBTEX
http://doi.org/10.3389/FMICB.2016.01934/BIBTEX
http://doi.org/10.1016/B978-0-12-801816-3.00021-2
http://doi.org/10.1016/B978-0-12-801816-3.00021-2
https://doi.org/10.3945/JN.110.128504
https://doi.org/10.1038/S41576-019-0183-6
http://doi.org/10.1111/J.1748-720X.2012.00691.X
https://doi.org/10.1016/J.IJID.2020.05.086
https://doi.org/10.1016/J.IJID.2020.05.086
https://doi.org/10.1016/J.JFF.2020.104330
https://doi.org/10.1016/J.JFF.2020.104330
http://doi.org/10.3389/FGENE.2019a.00192
http://doi.org/10.1186/S12263-018-0623-5
http://doi.org/10.1186/S12263-018-0623-5
https://doi.org/10.1016/j.freeradbiomed.2012.10.525
http://doi.org/10.1016/J.BBADIS.2018.08.039
http://doi.org/10.1016/J.BBADIS.2018.08.039
http://doi.org/10.1089/ars.2010.3250
http://doi.org/10.1371/JOURNAL.PONE.0001344


140 A. Pointner and A. G. Haslberger

Mutch DM, Pers TH, Temanni MR, Pelloux V, Marquez-Quinõnes A, Holst C, Martinez JA, 
Babalis D, van Baak MA, Handjieva-Darlenska T, Walker CG, Astrup A, Saris WHM, Lan-
gin D, Viguerie N, Zucker JD, Cle ḿent K (2011) A distinct adipose tissue gene expression 
response to caloric restriction predicts 6-mo weight maintenance in obese subjects. Am J Clin 
Nutr 94(6):1399–1409. https://doi.org/10.3945/AJCN.110.006858 

Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L (2018) Cancer epigenetics: moving forward. 
PLOS GEnet 14(6):e1007362. https://doi.org/10.1371/JOURNAL.PGEN.1007362 

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut 
microbiota metabolic interactions. Science (New York, N.Y.) 336(6086):1262–1267. http://doi. 
org/10.1126/SCIENCE.1223813 

Olafuyi O, Parekh N, Wright J, Koenig J (2021) Inter-ethnic differences in pharmacokinetics—is 
there more that unites than divides? Pharmacol Res Perspect 9(6):e00890. https://doi.org/10. 
1002/PRP2.890 

Olshansky SJ (2018) From lifespan to healthspan. JAMA 320(13):1323–1324. https://doi.org/10. 
1001/jama.2018.12621 

Ordovas JM, Ferguson LR, Tai ES, Mathers JC (2018) Personalised nutrition and health. BMJ 361. 
https://doi.org/10.1136/BMJ.K2173 

O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging 
process. Trends Biochem Sci 37(11):466–476. http://doi.org/10.1016/j.tibs.2012.08.001 

Padin AC, Hébert JR, Woody A, Wilson SJ, Shivappa N, Belury MA, Malarkey WB, Sheridan JF, 
Kiecolt-Glaser JK (2019) A proinflammatory diet is associated with inflammatory gene expres-
sion among healthy, non-obese adults: can social ties protect against the risks? Brain Behav 
Immun 82:36. https://doi.org/10.1016/J.BBI.2019.07.031 

Pal S, Tyler JK (2016b) Epigenetics and aging. Sci Adv 2(7). http://doi.org/10.1126/sciadv.160 
0584 

Palacín-aliana I, García-romero N, Asensi-puig A, Carrión-navarro J, González-rumayor V, Ayuso-
sacido Á (2021) Clinical utility of liquid biopsy-based actionable mutations detected via 
ddPCR. Biomedicines 9(8). http://doi.org/10.3390/BIOMEDICINES9080906 

Palmnäs M, Brunius C, Shi L, Rostgaard-Hansen A, Torres NE, González-Domínguez R, Zamora-
Ros R, Ye YL, Halkjær J, Tjønneland A, Riccardi G, Giacco R, Costabile G, Vetrani C, Nielsen 
J, Andres-Lacueva C, Landberg R (2020) Perspective: metabotyping—a potential personalized 
nutrition strategy for precision prevention of cardiometabolic disease. Adv Nutr 11(3):524– 
532. https://doi.org/10.1093/ADVANCES/NMZ121 

Panchal SK, Brown L (2020) DNA methylation in adipose tissue and metabolic syndrome. J Clin 
Med 9(9):1–4. https://doi.org/10.3390/JCM9092699 

Panzeri I, Pospisilik JA (2018) Epigenetic control of variation and stochasticity in metabolic dis-
ease. Mol Metab 14:26–38. https://doi.org/10.1016/J.MOLMET.2018.05.010 

Pokorska-Bocci A, Stewart A, Sagoo GS, Hall A, Kroese M, Burton H (2014) “Personalized 
medicine”: what’s in a name? Pers Med 11(2):197–210. https://doi.org/10.2217/PME.13.107/ 
ASSET/IMAGES/LARGE/FIGURE2.JPEG 

Poulsen P, Esteller M, Vaag A, Fraga MF (2007) The epigenetic basis of twin discordance in 
age-related diseases. Pediatr Res 61:38R–42R. Retrieved March 25, 2020, from https://www. 
google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+ 
F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+ 
Pediatr.+Res.+61%25252C+38R-42R+(2007).&rlz=1C1CHBF_deAT866AT867&oq=P.+Pou 
lsen%25252C+M.+Esteller%25 

Randhawa V, Kumar M (2021) Analysis of aging-related protein interactome and cross-network 
module comparisons across tissues provide new insights into aging. Comput Biol Chem 92. 
https://doi.org/10.1016/J.COMPBIOLCHEM.2021.107506 

Reinders MJ, Bouwman EP, van den Puttelaar J, Verain MCD (2020) Consumer acceptance of per-
sonalised nutrition: the role of ambivalent feelings and eating context. PLoS ONE 15(4). http:// 
doi.org/10.1371/JOURNAL.PONE.0231342

https://doi.org/10.3945/AJCN.110.006858
https://doi.org/10.1371/JOURNAL.PGEN.1007362
http://doi.org/10.1126/SCIENCE.1223813
http://doi.org/10.1126/SCIENCE.1223813
https://doi.org/10.1002/PRP2.890
https://doi.org/10.1002/PRP2.890
https://doi.org/10.1001/jama.2018.12621
https://doi.org/10.1001/jama.2018.12621
https://doi.org/10.1136/BMJ.K2173
http://doi.org/10.1016/j.tibs.2012.08.001
https://doi.org/10.1016/J.BBI.2019.07.031
http://doi.org/10.1126/sciadv.1600584
http://doi.org/10.1126/sciadv.1600584
http://doi.org/10.3390/BIOMEDICINES9080906
https://doi.org/10.1093/ADVANCES/NMZ121
https://doi.org/10.3390/JCM9092699
https://doi.org/10.1016/J.MOLMET.2018.05.010
https://doi.org/10.2217/PME.13.107/ASSET/IMAGES/LARGE/FIGURE2.JPEG
https://doi.org/10.2217/PME.13.107/ASSET/IMAGES/LARGE/FIGURE2.JPEG
https://www.google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+Pediatr.+Res.+61%25252C+38R-42R+(2007).&amp;rlz=1C1CHBF_deAT866AT867&amp;oq=P.+Poulsen%25252C+M.+Esteller%25
https://www.google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+Pediatr.+Res.+61%25252C+38R-42R+(2007).&amp;rlz=1C1CHBF_deAT866AT867&amp;oq=P.+Poulsen%25252C+M.+Esteller%25
https://www.google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+Pediatr.+Res.+61%25252C+38R-42R+(2007).&amp;rlz=1C1CHBF_deAT866AT867&amp;oq=P.+Poulsen%25252C+M.+Esteller%25
https://www.google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+Pediatr.+Res.+61%25252C+38R-42R+(2007).&amp;rlz=1C1CHBF_deAT866AT867&amp;oq=P.+Poulsen%25252C+M.+Esteller%25
https://www.google.com/search?q=P.+Poulsen%25252C+M.+Esteller%25252C+A.+Vaag%25252C+M.+F.+Fraga%25252C+The+epigenetic+basis+of+twin+discordance+in+age-related+diseases.+Pediatr.+Res.+61%25252C+38R-42R+(2007).&amp;rlz=1C1CHBF_deAT866AT867&amp;oq=P.+Poulsen%25252C+M.+Esteller%25
https://doi.org/10.1016/J.COMPBIOLCHEM.2021.107506
http://doi.org/10.1371/JOURNAL.PONE.0231342
http://doi.org/10.1371/JOURNAL.PONE.0231342


5 Personalized Nutrition for Healthy Aging, A Review 141

Ren C, An G, Zhao C, Ouyang Z, Bo X, Shu W (2018) Lnc2Catlas: an atlas of long noncoding 
RNAs associated with risk of cancers. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-
20232-4 

Riedl A, Wawro N, Gieger C, Meisinger C, Peters A, Rathmann W, Koenig W, Strauch K, Quante 
AS, Thorand B, Huth C, Daniel H, Hauner H, Linseisen J (2020) Modifying effect of metabo-
type on diet-diabetes associations. Eur J Nutr 59(4):1357–1369. https://doi.org/10.1007/S00 
394-019-01988-5 

Riggs AD, Porter TN (1996) Overview of epigenetic mechanisms. Cold Spring Harb Monogr Arch 
32:29–45. https://doi.org/10.1101/0.29-45 

Rist MJ, Roth A, Frommherz L, Weinert CH, Krüger R, Merz B, Bunzel D, Mack C, Egert B, Bub 
A, Görling B, Tzvetkova P, Luy B, Hoffmann I, Kulling SE, Watzl B (2017) Metabolite patterns 
predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) 
study. PLoS One 12(8). http://doi.org/10.1371/JOURNAL.PONE.0183228 

Ruhl GL, Hazel JW, Clayton EW, Malin BA (2019) Public attitudes toward direct to consumer 
genetic testing. In: AMIA annual symposium proceedings, p 774. /pmc/articles/PMC7153088/ 

Salonen A (2014) Impact of diet and individual variation on intestinal microbiota composition and 
fermentation products in obese men. ISME J 8:2218–2230 

Samblas M, Milagro FI, Gómez-Abellán P, Martínez JA, Garaulet M (2016) Methylation on the 
circadian gene BMAL1 is associated with the effects of a weight loss intervention on serum 
lipid levels. J Biol Rhythms 31(3):308–317. https://doi.org/10.1177/0748730416629247 

Samblas M, Milagro FI, Martínez A (2019) DNA methylation markers in obesity, metabolic 
syndrome, and weight loss. Epigenetics 14(5):421. https://doi.org/10.1080/15592294.2019.159 
5297 

Sargent M (2010) Why twins age differently. Nature 464(7292):1130–1131. https://doi.org/10. 
1038/4641130a 

Sato Y, Nagasaki M, Nakai N, Fushimi T (2003) Physical exercise improves glucose metabolism 
in lifestyle-related diseases. Exp Biol Med 228(10):1208–1212. https://doi.org/10.1177/153537 
020322801017 

She J, Wong CC, Yu J (2021) Targeted prebiotics alter the obese gut microbiome in humans. Signal 
Transduct Targeted Ther 6(1):1–2. http://doi.org/10.1038/s41392-021-00758-2 

Shigeyasu K, Toden S, Zumwalt TJ, Okugawa Y, Goel A (2017) Emerging role of microRNAs as 
liquid biopsy biomarkers in gastrointestinal cancers. https://doi.org/10.1158/1078-0432.CCR-
16-1676 

Shin J, Noh JR, Choe D, Lee N, Song Y, Cho S, Kang EJ, Go MJ, Ha SK, Chang DH, Kim JH, 
Kim YH, Kim KS, Jung H, Kim MH, Sung BH, Lee SG, Lee DH, Kim BC et al (2021) Ageing 
and rejuvenation models reveal changes in key microbial communities associated with healthy 
ageing. Microbiome 9(1):1–19. http://doi.org/10.1186/S40168-021-01189-5/FIGURES/6 

Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izo-
tov A, Butkova T, Shulpekova N, Nechaev V, Damulin I, Okhlobystin A, Ivashkin V (2022) A 
recent ten-year perspective: bile acid metabolism and signaling. Molecules 27(6):1983. http:// 
doi.org/10.3390/MOLECULES27061983 

Sidler C, Kovalchuk O, Kovalchuk I (2017) Epigenetic regulation of cellular senescence and aging. 
Front Genet 8. http://doi.org/10.3389/FGENE.2017.00138 

Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota 
in gut-brain communication. Front Endocrinol 11:25. https://doi.org/10.3389/FENDO.2020. 
00025 

Simpson HL, Campbell BJ (2015) Review article: dietary fibre–microbiota interactions. Aliment 
Pharmacol Ther 42(2):158. https://doi.org/10.1111/APT.13248 

Skinner MK (2015) Environmental epigenetics and a unified theory of the molecular aspects of 
evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol 
Evol 7(5):1296–1302. https://doi.org/10.1093/GBE/EVV073 

Snow A, Chen D, Lang JE (2019) The current status of the clinical utility of liquid biopsies in 
cancer. Expert Rev Mol Diagn 19(11):1031. https://doi.org/10.1080/14737159.2019.1664290

https://doi.org/10.1038/s41598-018-20232-4
https://doi.org/10.1038/s41598-018-20232-4
https://doi.org/10.1007/S00394-019-01988-5
https://doi.org/10.1007/S00394-019-01988-5
https://doi.org/10.1101/0.29-45
http://doi.org/10.1371/JOURNAL.PONE.0183228
https://doi.org/10.1177/0748730416629247
https://doi.org/10.1080/15592294.2019.1595297
https://doi.org/10.1080/15592294.2019.1595297
https://doi.org/10.1038/4641130a
https://doi.org/10.1038/4641130a
https://doi.org/10.1177/153537020322801017
https://doi.org/10.1177/153537020322801017
http://doi.org/10.1038/s41392-021-00758-2
https://doi.org/10.1158/1078-0432.CCR-16-1676
https://doi.org/10.1158/1078-0432.CCR-16-1676
http://doi.org/10.1186/S40168-021-01189-5/FIGURES/6
http://doi.org/10.3390/MOLECULES27061983
http://doi.org/10.3390/MOLECULES27061983
http://doi.org/10.3389/FGENE.2017.00138
https://doi.org/10.3389/FENDO.2020.00025
https://doi.org/10.3389/FENDO.2020.00025
https://doi.org/10.1111/APT.13248
https://doi.org/10.1093/GBE/EVV073
https://doi.org/10.1080/14737159.2019.1664290


142 A. Pointner and A. G. Haslberger

Soriano-Tárraga C, Jiménez-Conde J, Roquer J (2019) Epigenetics and aging. In: Handbook of 
nutrition, diet, and epigenetics, vol 2, pp 1413–1433. https://doi.org/10.1007/978-3-319-55530-
0_123 

Stromsnes K, Correas AG, Lehmann J, Gambini J, Olaso-gonzalez G (2021) Anti-inflammatory 
properties of diet: role in healthy aging. Biomedicines 9(8):922. http://doi.org/10.3390/BIO 
MEDICINES9080922 

Szafranski K, Abraham KJ, Mekhail K (2015) Non-coding RNA in neural function, disease, and 
aging. Front Genet 6. http://doi.org/10.3389/fgene.2015.00087 
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ABSTRACT 

Metabolic syndrome (MetS) has become a global epidemic that continues to 
grow despite numerous efforts to determine the cause of its occurrence and 
create effective dietary interventions. The unsatisfactory long-term efficacy of 
otherwise non-personalized dietary recommendations can be explained by sig-
nificant variations in inter-individual responses to diet and lifestyle intervention. 
Precise nutrition considers the factors responsible for variations in response 
to diet to generate a personalized dietary intervention. The gut microbiome, a 
mediator between diet and the pathogenesis of MetS, is considered an important 
source of variation that modulates food responses. Given that food is considered 
a key determinant in microbiome remodeling, it is not surprising that the micro-
biota is seen as a target for dietary intervention to prevent diseases associated
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with dysbiosis, such as MetS. This section summarizes the latest findings on the 
effects of probiotics, prebiotics, and postbiotics as critical components of indi-
vidually oriented dietary strategies to optimize symbiosis between microbiome 
and host to prevent or treat MetS. 

Abbreviations 

BMI Body mass index; 
BP Blood pressure; 
FPG Fasting plasma glucose concentration; 
HDLC High-density lipoprotein cholesterol; 
IDF International diabetes federation; 
IR Insulin resistance; 
MetS Metabolic syndrome; 
NCEP:ATP III National cholesterol education program expert panel on detec-

tion, evaluation, and treatment of high blood cholesterol in adults 
(adult treatment panel III); 

T2D Type 2 diabetes; 
TG Triglycerides; 
WC Waist circumference; 
WHO World Health Organization. 

6.1 Introduction 

Metabolic syndrome (MetS) has grown to epidemic proportions and has become 
one of the major health challenges of the twenty-first century. MetS refers to a set 
of metabolic disorders that represent the most significant risk factor for develop-
ing cardiovascular disease and type 2 diabetes (T2D) and thus the leading cause of 
increased mortality and morbidity worldwide (McCracken et al. 2018). Due to the 
high costs of treating Mets complications, emphasis is placed on developing and 
implementing preventive strategies to reduce the prevalence of MetS. Therefore, 
many studies have focused on determining the components and dietary patterns to 
constitute a healthy and beneficial diet. However, current dietary recommendations 
are based on the average population and often do not consider inter-individual vari-
ations in response to diet and lifestyle intervention. As the incidence of metabolic 
disorders rises, it has become clear that the one-size-fits-all approach is not practi-
cal enough (Berry et al. 2020). The development of numerous advanced techniques 
has provided insight into the causes of these variations, pointing to the role of the 
gut microbiome, in addition to the human genome, as a potential causative agent 
responsible for the individual dietary response (Bashiardes et al. 2018). A per-
sonalized diet considers the factors that are the source of variation in response to
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food to generate personalized dietary recommendations (Iizuka and Yabe 2020). 
The gut microbiota consists of a community of over 100 trillion microorgan-
isms with a mutualistic and symbiotic relationship in the host; it participates in 
nutrient metabolism, immune system development, intestinal barriers, and host 
metabolism. Numerous studies have demonstrated an association between pertur-
bation in microbiomes and the development of obesity and MetS (De Filippis 
et al. 2020; Mills et al. 2019a). Given that food is considered a key determinant 
in microbiome remodeling, it is not surprising that the microbiota is seen as a tar-
get for dietary intervention to prevent diseases associated with dysbiosis, such as 
MetS (Kviatcovsky et al. 2021). In light of this, probiotics, prebiotics, symbiotic, 
and postbiotics may represent critical components of individually oriented dietary 
strategies to alter the microbiome toward a state of homeostasis to prevent and 
treat metabolic diseases. 

6.2 Metabolic Syndrome—Definition, Prevalence, 
and Pathophysiology 

MetS has become one of the significant public health challenges worldwide. The 
global prevalence of MetS differs depending on the diagnostic criteria used and the 
geographic and sociodemographic factors, ranging between 20 and 45% (Engin 
2017; McCracken et al. 2018). MetS is a complex disorder commonly defined as 
a cluster of several interrelated metabolic disorders, including abdominal (central) 
obesity, insulin resistance (IR)/impaired glucose tolerance, hypertension, and dys-
lipidemia (Alberti et al. 2009; Grundy 2016). MetS are associated with many other 
clinical conditions, such as pro-inflammatory and pro-thrombotic state, oxidative 
stress, non-alcoholic fatty liver disease, polycystic ovary syndrome, obstructive 
sleep apnea, vascular dementia, and several types of cancer (Cornier et al. 2008). 
The presence of MetS is associated with a twofold increase in the risk of 
atherosclerotic cardiovascular disease and a fivefold increase in the risk of T2D 
(Despres et al. 2008; Grundy 2016; Mameli et al. 2017). Accordingly, MetS is a 
significant risk factor for all-cause mortality (Engin 2017; Yu et al.  2019). The 
World Health Organization (WHO) first defined MetS in 1998 (Alberti and Zim-
met 1998). Subsequently, various definitions with diagnostic criteria have been 
suggested by different organizations: European Group for the Study of Insulin 
Resistance (EGIR) (Ferrannini et al. 1997), the National Cholesterol Education 
Program’s Adult Treatment Panel III (NCEP: ATP III) (Expert Panel on Detection 
2001), the American Heart Association/National Heart, Lung, and Blood Institute 
(AHA/NHLBI) (Grundy et al. 2005), and the International Diabetes Federation 
(IDA) (Alberti et al. 2005). The various diagnostic MetS criteria are listed in Table 
6.1. 

Although there are subtle differences in the diagnostic criteria given by these 
organizations regarding focus on different metabolic alterations, all of them 
describe the same clinical condition. Specifically, the definition reported by WHO
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Table 6.1 Different diagnostic criteria for Mets diagnostic 

Clinical and 
biochemical 
features 

WHO 1998 NCEP ATP III 
2004 

IDF 2005 Consensus 
(AHA/NHLBI + 
IDF) 2009 

Diagnosis of 
MetS 

IR plus any two of 
the following risk 
factors 

Presence 3 of 5 
risk factors 

Obesity plus any 
two of the 
following risk 
factors 

IR plus any two of 
the following risk 
factors 

Obesity Abdominal obesity 
(BMI > 30 kg/m2 or 
waist-to-hip 
ratio >0.9 in men; 
waist-to-hip 
ratio >0.85 in 
women, 

WC > 102 cm in 
men; WC > 88 cm 
in women 

BMI > 30 kg/m2 or 
WC with 
ethnicity-specific 
valuesa 

Raised WC 
(population- and 
country-specific 
definitions) 

Glucose 
homeostasis 

T2D, or impaired 
fasting glucose, or 
impaired glucose 
tolerance 

FPG > 6,1 mmol/l 
(includes the 
presence of T2D) 

FPG > 5,6 mmol/l 
(includes the 
presence of T2D) 

FPG > 5,6 mmol/l 
(includes the 
presence of T2D) 

Hypertension BP ≥ 140/90 mm 
Hg 

BP≥ 130/85 mm 
Hg 

≥ 130/85 mm Hg 
or on 
antihypertensive 
medication 

≥ 130/85 mm Hg 
or on 
antihypertensive 
medication 

Dyslipidemia TG ≥ 150 mg/dl 
HDLC < 40 mg/dl 
in men and HDLC < 
50 mg/dl in women 

TG≥150 mg/dl 
HDLC < 40 mg/dl 
in men and HDLC 
< 50 mg/dl in 
women 

TG≥ 150 mg/dl 
HDLC < 40 mg/dl 
in men and HDLC 
< 50 mg/dl in 
women, or on 
treatment 

TG ≥ 150 mg/dl 
HDLC < 40 mg/dl 
in men and HDLC 
< 50 mg/dl in 
women, or on 
treatment 

Others Microalbuminuria 

BMI body mass index; BP blood pressure; FPG fasting plasma glucose concentration; HDLC high-
density lipoprotein cholesterol; IDF International Diabetes Federation; IR insulin resistance; NCEP 
ATP III National cholesterol education program expert panel on detection, evaluation, and treatment 
of high blood cholesterol in adults (adult treatment panel III); T2D type 2 diabetes mellitus; TG 
triglycerides; WC waist circumference; WHO World Health Organization 
aWaist circumference: for Europids, >94 cm in men and >80 cm in women; for South Asians, Chinese, 
and Japanese, >90 cm in men and >80 cm in women; for ethnic South and Central Americans, use South 
Asian data; for sub-Saharan Africans and Eastern Mediterranean and Middle East (Arab) populations, 
use European data

emphasizes the significance of IR (identified either as DT-2, impaired glucose tol-
erance, or impaired fasting glycemia) in MetS diagnosis. Contrarily, NCEP:ATP 
III criteria do not focus on the central pathology but the co-presence of multiple 
risk factors. According to these criteria, MetS is present if at least three of the 
following five metabolic risk factors are met: elevated waist circumference (WC), 
high blood pressure, lowered HDL-cholesterol (HDLc), elevated triglycerides, and 
increased fasting glycemia. At last, the focus of IDF criteria is on abdominal obe-
sity, as a central component of MetS, determined by WC, while diagnosis is set if 
additional two metabolic risk factors are present. In 2009, however, a harmonized
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consensus definition was made by several organizations where it was agreed that 
WC might be considered as a useful screening tool for MetS, instead of insisting 
on compulsory components (Alberti et al. 2009). 

The pathogenic mechanism of MetS is complex and multifactorial, with the 
interplay of genetic susceptibility, epigenetics, metagenomics, and environmen-
tal factors, including dietary and lifestyle (Pigeyre et al. 2016). The underlying 
etiology that could explain the clustering of metabolic disorders remains to be 
completely elucidated. Insulin resistance, adipocyte dysfunction, and chronic low-
grade inflammation together with visceral adipose tissue are supposed to have 
a significant role in the progression of the syndrome by impairing glucose and 
lipid homeostasis in all insulin-sensitive tissues, such as the liver, muscle, and 
adipocytes (Zafar et al. 2018; Zimmet et al. 2019). Adipose tissue is considered 
to play a central role in the pathophysiology of MetS. It has been recognized 
as a biologically active endocrine and paracrine organ responsible for producing 
inflammatory cytokines and non-esterified fatty acids, which link central obesity, 
IR, inflammation, and atherogenesis (McCracken et al. 2018; Zafar et al. 2018). 
Although the MetS are closely associated with obesity, about 10–30% of obese 
individuals, primarily ones with normal WC, present no metabolic abnormalities, 
which further confirms the role of abdominal adipose tissue in the development of 
MetS (Latifi et al. 2017; Zeng et al. 2021). However, in multiple human micro-
biome studies, a close relationship has been demonstrated between alteration in 
the gut microbiota composition or diversity, known as dysbiosis, and the devel-
opment of MetS. These accumulated research evidence have focused on the gut 
microbiome as a pre-eminent target for potential MetS amelioration. 

6.3 The Microbiome—Composition, Establishment, 
and Functions 

A microbiota is a complex and dynamic ecosystem composed of symbiotic, com-
mensal, and pathogenic microorganisms (Haque and Haque 2017). It encompasses 
1013 to 1014 resident microorganisms, including bacteria, viruses, archaea, fungi, 
and protozoans, whose number exceeds ten times the total number of host cells 
(Gilbert et al. 2018; Singh et al. 2017). Moreover, the genetic content of the human 
gut microbiota, commonly referred to as the gut microbiome (>100 times larger 
than the host genome), expands the host’s biochemical and metabolic capabilities 
substantially, thus considered to be host “second genome” (Bäckhed et al. 2005; 
Norman et al. 2015). Advances in DNA sequencing technologies, coupled with 
advances in bioinformatics tools, have revealed that the composition of human gut 
microbiota at species and strains level, including their number, has varied dramat-
ically in an individual, thus being unique for every individual. There are no two 
individuals who share the same microbiome, including identical twins, although 
some bacterial species are present in most individuals. It is estimated that the 
number of species that inhabit the human gut is greater than 1000 (Lozupone et al. 
2012). Given high inter-individual variation, defining the “healthy” gut microbiota
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composition in any age population has been virtually impossible. However, most 
of these species belong to a limited number of phyla: Firmicutes (with belonging 
Clostridium clusters and members of Eubacterium, Faecalibacterium, Roseburia, 
and Ruminococcus), Bacteriodetes (with belonging genus Bacteroides and Pre-
votella), and in a lesser extent to Actinobacteria (with belonging Bifidobacterium 
species), Proteobacteria (mainly Escherichia coli), Fusobacteria, and Verrumicro-
bia (includes the genus Akkermansia) (Yadav et al. 2018). Furthermore, in 2011 
the “enterotype” concept was introduced when metagenomic analysis of fecal 
microbiota from American, European, and Japanese populations has revealed that 
microbiota can effectively be subdivided into different enterotypes, each enriched 
by particular bacterial genera. Three enterotypes have been proposed based on both 
the relative number of certain bacterial genera isolated from feces and the presence 
of certain metabolic pathways: Bacteroides (enterotype 1), Prevotella (enterotype 
2), and Ruminococcus (enterotype 3). These enterotypes are independent regard-
less of age, gender, or geography (Arumugam et al. 2011; Clemente et al. 2012). 
Further analysis has resulted in the identification of only two enterotypes, one 
dominated by genera Prevotella (P-type) and the other by genera Bacteroides (B-
type). Recently, these two enterotypes have been interpreted as biomarkers of diet 
since Prevotella has been linked to long-term carbohydrate-rich diets and Bac-
teroides to fat- and protein-rich diet (western diet) (Gorvitovskaia et al. 2016; 
Precup and Vodnar 2019). 

The establishment of the human intestinal microbiota begins during or shortly 
after birth, during exposure of newborns to maternal and environmental microbes. 
After initial establishment, the microbial population develops rapidly until 2– 
3 years of age, when microbiota gains in complexity and stability, which are 
characteristics of adult microbiota. Studies have demonstrated that microbial colo-
nization of the infant’s gut is influenced by several factors: delivery mode (vaginal 
vs. caesarian), sanitary conditions, antibiotic exposure, feeding regime (breastfeed-
ing vs. infant formula), and host genetic. The factor that significantly affects the 
gut microbiome of a newborn is the delivery mode. Additionally, it has been found 
that the greatest diversity of the microbiota at this stage is in spontaneously vagi-
nally delivered infants compared to infants delivered by cesarean section (Hill et al. 
2017). 

Moreover, the cesarean section is responsible for infant microbiota perturba-
tions, which have been associated with immune and metabolic disorders in the 
adult stage (Kim et al. 2020). Diet also plays an essential role in the development 
of the infant gut microbiome. For example, human breast milk contains oligosac-
charides (e.g., human milk oligosaccharides) which nourish the gut microbiome 
and lead to a significant increase in the relative abundance of bifidobacteria and 
lactic acid bacteria, including genera Lactobacillus and Streptococcus, with more 
than 70% of strains belonging to bifidobacteria species (Moore and Townsend 
2019; Thomson et al. 2018). 

Within the first year of life, the microbiota is typically characterized by low 
species diversity and high instability, dominated mainly by Actinobacteria phylum
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members. Maturation into adult-like microbiota is driven by cessation of breast-
feeding rather than the introduction of solid food drives the (Bäckhed et al. 2015). 
A stable adult-like microbiota, established between 2–3 years of age, is domi-
nated by Firmicutes and Bacteroidetes phylum. The composition and activities of 
healthy adult microbiota are stable over long periods although can be influenced 
by many factors, including those derived from the host (e.g., genetics, immune, 
and metabolic regulations) and environmental factors (e.g., diet, stress, physical 
activity, geographical location, antibiotic usage) (Leeming et al. 2019; Tang et al. 
2021). Diet and host genetics are the most significant contributors to variability in 
microbiota composition and functionality among individuals. Metagenomics and 
analysis of twins’ data have revealed that diet and household cohabitation greatly 
outweigh the contribution of heritable genetic (Rothschild et al. 2018). Accord-
ing to the data analysis of more than 1000 twins, genetics role in shaping the gut 
microbiota is on average around 8.8% (Goodrich et al. 2016). 

A large amount of data has contributed to a deeper understanding of the sym-
biotic relationship between the gut microbiota and the host. This relationship is 
regulated by complex metabolic, immunological, and neuroendocrine interactions 
that are involved in regulating numerous physiological processes such as energy 
homeostasis, nutrient metabolism, immune system maturation and function, reg-
ulation of structural and morphological maturation of the gastrointestinal tract, 
resistance to infection, intestinal barrier function, and brain development, function, 
and behavior (Bäckhed 2012; Frame et al. 2020). 

The gut microbiome supplies the host metabolism with enzymes not encoded 
by the human genome, enabling digestion and energy harvest from otherwise indi-
gestible polysaccharides (i.e., fiber). The major fermented end products of dietary 
polysaccharides are short-chain fatty acids (SCFAs) and gases. The three most 
abundant SCFAs, primarily produced in the proximal colon, are acetate, propi-
onate, and butyrate, which account for >95% of SCFA content in the gut (Hu 
et al. 2018). These SCFAs are involved in several regulatory and cellular pro-
cesses. SCFAs act as energy substrates, accounting for as much as 10% of host 
energy requirements. Moreover, SCFAs have been shown to enhance the absorp-
tion of dietary minerals such as calcium and water and to serve locally as crucial 
nourishment. Specifically, butyrate is a vital energy source for colon epithelial 
cells, involving 70% of their total energy consumption, thus allowing colonic cells 
to proliferate. Additionally, butyrate contributes to maintaining gut barrier func-
tion (Cani 2018; Donohoe et al. 2011). Butyrate also plays an important role in 
brain function and may prevent carcinogenesis and inflammation in colonocytes 
(Frame et al. 2020). All three SCFAs are involved in energy homeostasis, energy 
regulation, and the regulation of immune response (Frame et al. 2020; Mills et al. 
2019b). In addition, the gut microbiota significantly enriches the metabolism of 
glycans, xenobiotics, methanogenesis, and the biosynthesis of isoprenoids (Santos-
Marcos et al. 2019). Moreover, the gut microbiota is highly efficient in degrading 
proteins, peptides, and amino acids. End products of these proteins’ fermenta-
tions are organic acids, branched-chain fatty acids, and trace amounts of phenols,
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indoles, ammonia, and amines. Some of these fermentation by-products could have 
detrimental effects on health (Yadav et al. 2018). 

Besides SCFAs, the gut microbiota produces a variety of other nutrients, includ-
ing B group vitamins and vitamin K, which are essential for their metabolism and 
the host, maintaining host physiology (Rowland et al. 2018; Yadav et al. 2018). 
The metabolic function of gut microbiota also includes the bile acids metabolism 
involved in the digestion and absorption of dietary fats and lipid-soluble nutrients. 
A small fraction of bile acids that escape enterohepatic circulation reaches the 
colon, where they are converted into secondary bile acids through the action of bile 
salt hydrolases secreted by several microbiota bacterial species. These secondary 
bile acids regulate lipid and cholesterol metabolism by regulating gene expression 
in the liver and intestines. Moreover, secondary bile acids possess antimicrobial 
characteristics providing a host mechanism to control bacterial population and 
protect from infection pathogens (Kho and Lal 2018; Rowland et al. 2018). 

Gastrointestinal microbiota profoundly affects the development and functional-
ity of host gut physiological processes, immune system maturation, and immune 
homeostasis (Parker et al. 2018; Wang et al. 2019). These critical roles of micro-
biota for the host are seen through the consequence of its absence in germ-free 
animals. Concerning conventional mice, the gut anatomy of these animals was 
changed and less effective in nutrient absorption. Moreover, germ-free mice have 
shown immunodeficiency in terms of immune cells number, production of the 
immune response mediators (e.g., decreased immunoglobin A and antimicrobial 
peptides), and deficit in local and systemic local structures. In addition, there was 
a decrease in the number of specialized epithelial cells that secret mucus result-
ing in a thinner mucus layer and consequently to the impaired protective barrier 
(Dieterich et al. 2018; Parker et al. 2018; Zheng et al. 2020). 

In addition, it is essential to mention the role of the microbiota as one of the 
key regulators of the gut–brain axis. Recent findings have indicated that metabolic 
products of microbiota can act as neurochemicals and affect the peripheral enteric 
and central nervous systems. One of these products is gamma-aminobutyric acid 
(GABA), a major inhibitory neurotransmitter in the brain, produced by various 
strains in the human intestine (Cryan et al. 2019). Furthermore, SCFAs, end prod-
ucts of bacterial fermentation of carbohydrates, exert significant hormone-like 
activity and interact with the autonomic nervous system. Moreover, SCFAs are 
involved in behavior modulation (Appleton 2018). 

Human microbiota has a vital role in protecting the host from exogenous 
pathogens and preventing overgrowth of potentially pathogenic microbiota mem-
bers (pathobionts), referred to as colonization resistance (Kho and Lal 2018; 
Mills et al. 2019b). This protection of host by microbiota is enabled through an 
effective biological mechanism which could be direct or indirect. Direct mecha-
nisms include competition of human microbiota and pathogen for shared niches 
and nutrients and inhibition of pathogens through the production of antimicrobial 
substances. Indirect mechanisms include modulation of the luminal environment, 
including decreasing pH during the production of SCFAs, modulation of host
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immune system, and via host commensal interactions involving epithelium barrier 
function (Mills et al. 2019b). 

6.4 Role of Microbiome in Development of Metabolic 
Syndrome 

Human microbiome studies have linked MetS development to the alternations 
in the gut microbiota composition or diversity, known as dysbiosis. Given that 
gut microbiota has a crucial role in regulating various host physiological pro-
cesses, including energy and immune homeostasis, as well as metabolic function, 
a dysbiosis could be seen as a trigger for the development of metabolic disor-
ders, including obesity, T2D, dyslipidemia, and non-alcoholic fatty liver disease 
(NAFLD). In most of these conditions, the mechanisms leading to disease develop-
ment involve an altered interaction between the gut microbiome, their metabolites, 
and the host immune system (Green et al. 2020; Ivanovic et al. 2015). 

The link between gut microbiota and obesity was initially documented in a 
germ-free mouse protected against the development of obesity after consuming 
a high-fat, sugar-rich diet (Western diet) (Bäckhed et al. 2007). Colonization of 
germ-free mice with a normal microbiota from conventionally raised animals 
resulted in a 60% increase in body fat and IR without additional food intake or 
observed differences in energy expenditure (Bäckhed et al. 2004). In terms of 
microbiota composition, significant differences were found in the relative abun-
dance of two dominant bacterial phyla between genetically obese and lean mice. 
Compared to their lean counterparts, obese mice have a reduction in 50% in 
Bacteroidetes and a proportional increase in Firmicutes abundance, and thus an 
increase in Firmicutes/Bacteroidetes (F/B) ratio (Ley et al. 2005). Moreover, such 
an “obese microbiota” is more efficient in harvesting energy from the diet indi-
cating a causal link between this alteration in the intestinal microbiota and the 
development of obesity (Turnbaugh et al. 2006). A decrease in the relative propor-
tion of Bacteroidetes was also reported in obese people in comparison with lean 
people, and this proportion was found to increase with weight loss (Armougom 
et al. 2009; Ley et al. 2006). However, not all studies in humans confirmed the 
involvement of the F/B ratio in obesity (Finucane et al. 2014; Ley  2010), report-
ing even contradictory results (Ley 2010). Nevertheless, a recent study has shown 
that in obese individuals with MetS, dysbiosis was characterized by an increase in 
F/B ratio compared with obese individuals without MetS, suggesting that the F/B 
ratio could be more related to the presence or absence of metabolic disturbances 
rather than the presence of obesity itself (Haro et al. 2017). These inconsistencies 
between studies could be related to the inter-individual variability in the gut micro-
biome which is influence by differences in dietary habits, environmental factors, 
and host genetics (Zeng et al. 2021). 

In various studies, several bacterial groups at deeper taxonomic levels (e.g., 
family, genus, and even species), and individual bacterial species, were directly or
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inversely associated with metabolic disorders. However, literature data have sug-
gested that loss in microbial richness and bacterial genes and metabolic pathways, 
including those involved in nutrient digestion, is closely associated with increased 
calories harvesting and thus with the development of obesity and other metabolic 
disorders (Santos-Marcos et al. 2019; Vallianou et al. 2019). 

Recent evidence has shown that many different microbial metabolites influence 
host metabolisms, which could cause the development of MetS, including SCFAs, 
lipopolysaccharide (LPS) of Gram-negative bacteria, trimethylamine N-oxide 
(TMAO), indoxyl sulfate, and p-cresol sulfate (Croci et al. 2021). 

Even though several studies reported higher fecal concentrations of total or indi-
vidual SCFA in obese individuals, their role in obesity development is still unclear 
(Bäckhed et al. 2004; Fernandes et al. 2014; Teixeira et al. 2013). However, there is 
agreement from many studies, both in animals and humans, that in obesity, differ-
ent SCFAs have been presented compared with the non-obese phenotype (Petraroli 
et al. 2021). Additionally, the gut microbiota of MetS patients is characterized by 
a reduction in the abundance of several bacterial species with important saccha-
rolytic activity. The different end products of digestion, such as acetate, are used by 
many gut bacteria to produce propionate and butyrate in a growth-promoting cross-
feeding process (Kumar et al. 2020). A reduction in butyrate-producing bacteria 
may affect the secretion of peripheral hormones, such as insulin, leptin, and ghre-
lin, influencing appetite control, thus leading to the development of obesity and 
MetS (Santos-Marcos et al. 2019). Butyrate, besides its role as a signal molecule, 
is responsible for maintaining microbial homeostasis. The lack of butyrate leads 
to the inhibition of mitochondrial beta-oxidation in colonocytes, resulting in more 
accessible oxygen for pathogenic facultative anaerobes such as E. coli (Hills et al. 
2019). According to metagenomic analysis, the gut microbiota of individuals with 
T2D has been characterized by moderate gut microbial dysbiosis, a decrease in 
the abundance of some universal butyrate-producing bacteria, and an increase in 
various opportunistic pathogens has also been detected (Qin et al. 2012). Further-
more, findings from two population-based cohort studies, which included more 
than 1600 adult individuals, have shown an association between markers of IR, 
poor blood glucose levels, and systematic inflammation with lower diversity of the 
gut microbiome and distinct structure of the microbial community. These results 
proved that lower gut microbial diversity is responsible for impaired metabolic 
control (Zouiouich et al. 2021). 

As previously mentioned, butyrate has a vital role in maintaining healthy gut 
barrier function, which deterioration causes leaking of various harmful substances, 
mainly lipopolysaccharides (LPS), resulting in chronic inflammation (Vrieze et al. 
2010). Specifically, a vast array of research has been reported an association 
between changes in the gut microbiota composition and impaired gut barrier 
functions, increased gut permeability, and increased plasma lipopolysaccharide 
concentrations (i.e., metabolic endotoxemia), which causes low-grade inflamma-
tion that triggers the development of obesity, IR, and MetS (Festi et al. 2014; Tseng 
and Wu 2019). The link between obesity and chronic inflammation was observed 
in a study conducted by Cani et al. in which it has been found that a high-fat
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diet leads to an increase in LPS-containing bacteria abundance and LPS-induced 
inflammation, a process defined as metabolic endotoxemia (Cani et al. 2007). 
Metabolic endotoxemia results from the interaction between the host’s immune 
system and luminal bacteria (de La Serre et al. 2010). Specifically, metabolic endo-
toxemia is promoted by increased intestinal permeability caused by disorganized 
tight junction proteins in colonocytes or thinning the mucus layer and translocation 
of bacteria toxins and antigens from the gastrointestinal lumen into the blood-
stream. LPS triggers downstream inflammation through LPS receptor CD14 and 
thus enhances the transcription of several pro-inflammatory cytokines involved in 
the pathogenesis of obesity and other metabolic diseases (Cani et al. 2007). Addi-
tionally, in human studies, exposure to LPS has been shown to promote systemic 
IR and adipose tissue-related inflammation (Mehta et al. 2012). 

Trimethylamine-N-oxide (TMAO) is one of the microbial metabolites which 
present in circulation is associated with the development of MetS and a higher 
risk of major cardiovascular events (Croci et al. 2021; Croyal et al. 2020). In the 
presence of specific microbes, primarily members of the Enterobacteriaceae family, 
dietary choline, and its derivate (l-carnitine, betaine, lecithin) are metabolized into 
trimethylamine (TMA). Choline is a metabolite of phosphatidylcholine, a dietary 
lipid found in high quantities in egg yolk, liver, and other high-fat animal products. 
After entering the circulation, TMA is metabolized in the liver to TMAO via the 
enzyme flavin-containing monooxygenase-3 (FMO3), a nitrosamine precursor with 
carcinogenic activity (Croci et al. 2021; Hills et al. 2019). Increased plasma TMAO 
concentrations have been correlated with the accumulation of adipose depots in 
the liver and blood vessels, leading to visceral obesity and atherosclerosis (Croci 
et al. 2021). The results of a recent meta-analysis involving 19 prospective studies 
indicated that elevated plasma TMAO levels and their precursors could be risk 
biomarkers for major adverse cardiovascular events, including death events. More-
over, it has been determined that TMAO as a risk factor is independent of other 
traditional risk factors (Heianza et al. 2017). Higher plasma TMAO levels are also 
associated with diabetes (Dambrova et al. 2016). Nevertheless, TMAO level could 
be affected by both intra-individual and inter-individual variations over time which 
may be an obstacle for using TMAO as a risk marker in long-term epidemiolog-
ical studies (Kuhn et al. 2017). Interestingly, circulating TMAO generated from 
l-carnitine by gut microbes has been detected in humans, suggesting the mech-
anism for the connection between atherosclerosis and consumption of red meat 
(Koeth et al. 2013). 

Recently, mounting evidence suggests a causal link between the biosynthesis 
of branched-chain amino acids (BCAAs) and IR. BCAAs (leucine, isoleucine, and 
valine) represent three essential amino acids found in the diet that are the build-
ing blocks for protein synthesis. However, members of the gut microbiota can 
also regulate the biosynthesis, transport, and metabolism of BCAAs (Zeng et al. 
2020). A meta-analysis of 8 prospective studies involving 8000 subjects found a 
statistically significant association between plasma concentrations of BCAAs and 
aromatic amino acids with T2D (Guasch-Ferre et al. 2016). Furthermore, a sys-
tematic review of 23 studies involving 20,091 subjects indicated that circulating
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BCAAs may be a valuable biomarker for detecting IR and thus diabetic risk later 
on (Zhao et al. 2016). 

6.5 Precision Nutrition-Gut Microbiota as a Target 
for Metabolic Syndrome Treatment 

An effective strategy is required to prevent and control diet-related non-
communicable diseases, including Mets. Given the pandemic rise in metabolic 
diseases, conventional recommendations and dietary guidelines focused on pop-
ulation averages are not compelling enough. The low effectiveness of dietary 
interventions in treating obesity and its complications can be explained with inter-
individual variabilities in response to food, weight-loss diets (Zeevi et al. 2015) 
and lifestyle interventions (Delgado-Floody et al. 2019). Factors proposed as a 
source of inter-individual variations in response to dietary and lifestyle interven-
tions are the genetic, epigenetic, microbiome and behavioral/psychological features 
(Gonzalez-Muniesa and Martinez 2019). Based on this knowledge, the concept of 
precise nutrition was established. Precise nutrition refers to an individual diet or 
intervention that is designed to prevent or treat various diseases. In planning a 
precise diet, the interplay between metabolic, genetic, social, and environmental 
factors should be considered (Iizuka and Yabe 2020). 

Unlike genetic factors whose contribution to disease risk is well known, the role 
of the microbiota as a significant source of individualized responses to food has 
been for a long time neglected. As already have mentioned in the previous section, 
there are significant inter-individual differences in microbiome composition and 
diversity, which is linked to differences in the biological functions it performs 
for the host. On the other hand, the composition and functions of the microbiota 
depend on many factors, primarily on diet and genetics (Rothschild et al. 2018). In 
addition, the diversity and function of the microbiota present in healthy individuals 
can be significantly altered in certain diseases and conditions. 

Numerous studies have observed a certain percentage of participants defined 
as “non-responders” to applied dietary intervention. It has been shown that base-
line microbiome signatures can influence an individual’s response to diet (Mills 
et al. 2019b). Moreover, inter-individual response to obese-related dietary interven-
tions has also been associated with the presence of specific bacterial species at the 
baseline (Korpela et al. 2014). Accordingly, the microbiome can potentially serve 
as a target organ of dietary intervention (e.g., precision microbiomics) and serve 
as a biomarker for predicting responsiveness to diets and interventions, enabling 
greater opportunities in health promotion and disease prevention (Hughes et al. 
2019; Mills et al. 2019b). Precision microbiomics advanced when certain studies 
have shown that the glycemic responses to diets could be predicted by including 
the gut microbiota markers. For example, applying appropriate mathematical algo-
rithms that integrate microbiome composition data alone, or combine them with 
other clinical blood parameters, an individual postprandial glycemic response to a 
particular food (Korem et al. 2017), or complete meal (Zeevi et al. 2015) could
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be accurately predicted. Postprandial hyperglycemia is a risk factor for developing 
cardiovascular disease and mortality, even in people with normal fasting glucose 
(Berry et al. 2020). Furthermore, the metabolic improvements induced by specific 
diets or food may also be closely related to the presence of a specific micro-
biota species (Kovatcheva-Datchary et al. 2015) or correlate with the change in its 
presence before and after the dietary intervention (Martinez et al. 2013). 

Numerous recent studies have found evidence that stratification of obese indi-
viduals according to Prevotella to Bacteroides ratio may help predict responses on 
weight-loss intervention. This enterotype-based approach could be used in person-
alized nutrition in weight-loss strategy and obesity management. This approach 
could be justified in differences between two enterotypes in digestive functions 
with a preference for specific dietary substrates (Costea et al. 2018). According 
to these findings, a fiber-rich diet will result in effective weight loss among P-
enterotype subjects but not among B-enterotypes subjects (Hjorth et al. 2019, 
2018). Contrary, in terms of metabolic parameters improvements, B-enterotypes 
subjects could benefit from bifidobacteria-increasing interventions (Christensen 
et al. 2018). 

In addition, the pre-treatment abundance of certain fecal bacterial species, pre-
dominantly derived from Firmicutes phylum, may serve as a predictor of response 
predictors to weight-loss dietary interventions in obese men. A more precise 
prediction of the host responses to various diets could be achieved by identify-
ing the specific bacterial taxa and functions that are closely related to the host 
responses. For example, in overweight/obese individuals with a higher baseline 
abundance of Akkermansia muciniphila, a restrictive caloric diet led to a health-
ier metabolic status and a better clinical outcome, suggesting a predictive role of 
A. muciniphila in assessing response to dietary interventions (Dao et al. 2016). 
Furthermore, the results of a recently published longitudinal study involving 1089 
deeply phenotyped subjects have shown that the presence of only two bacterial 
species, Prevotella copri and Blastocystis spp., was a reliable microbial predictor 
of favorable postprandial glycemic responses to diet (Asnicar et al. 2021). 

The relevance of the gastrointestinal microbiota in precise nutrition may also be 
seen in its role in the relationship between red meat consumption and the develop-
ment of atherosclerosis and CVD, which is associated with elevated plasma levels 
of TMAO. According to some authors, the general recommendations for reduc-
ing red meat intake should be relevant primarily to individuals whose microbiota 
composition is more prone to metabolize choline and l-carnitine to proatherogenic 
metabolites (Zmora et al. 2016). Those could be individuals with significantly 
higher F/B ratio and significantly less microbiota diversity (Cho et al. 2017) or  
individuals classified within Prevotella enterotype (Koeth et al. 2013). Further-
more, another general recommendation regarding replacing sugar with artificial 
sweeteners may be harmful to a particular population if the approach is based on 
the microbiota composition. Suez et al. have reported that increased intake of arti-
ficial sweeteners leads to glucose intolerance in a subgroup of individuals with 
sensitive microbiota (Suez et al. 2014). Considering that high doses of saccharin
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were used and that the number of subjects was only seven, the results are still 
controversial. 

Given the complexity and individual uniqueness of the microbiota, designing 
personalized microbiome-based nutrition remains a challenge (Kolodziejczyk et al. 
2019). A strategy based on an individual approach could lead the microbiota from 
dysbiosis to eubiosis or improve the response to a particular diet. Although the 
primary determinant of the microbiota composition is food, probiotics, prebiotics, 
and recently postbiotics offer opportunities for the “normalization of the micro-
biota”. Therefore, they may represent a new potential for achieving an effective 
dietary responses in weight-loss intervention and obesity management. 

6.5.1 Probiotics 

One of the strategies aimed at modulating the intestinal microbiota to prevent 
obesity and MetS is the use of probiotics to restore balance or maintain the diver-
sity and functionality of the microbiome when its homeostasis is expected to be 
disturbed, as is the case in metabolic diseases. In addition, numerous pieces of 
evidence suggest that certain probiotic strains may modulate the inflammatory 
response, which may also reduce the risk of developing MetS (Ivanovic et al. 
2015; Xavier-Santos et al. 2020). 

According to the International Association for Probiotics and Prebiotics 
(ISAPP) consensus document, the term probiotic means “live microorganisms that, 
when administered in adequate amounts, confer a health benefit on the host” (Hill 
et al. 2014). Among the most widely used commercial probiotics, which have 
also been the most studied in animal and human studies, are strains belonging to 
the genus Lactobacillus and Bifidobacterium. Intensive studies of their beneficial 
effects in humans have led to several recommendations for prophylactic and thera-
peutic use in both children and adults, including prevention or treatment of acute, 
antibiotic, and Clostridium difficile-induced diarrhea, treatment of functional con-
stipation, treatment of irritable bowel syndrome, and inflammatory bowel disease, 
eradication of Helicobacter pillory, prevention of infantile colic (Guarner et al. 
2017; Dimitrijevic et al. 2014). Studies indicating the efficacy of probiotics in pre-
venting and treating other diseases can also be found in the literature. Some of the 
proposed underlying mechanisms of probiotic beneficial effects are given in Table 
6.2. 

The link between microbiota modification and functional effects on MetS is 
increasingly attracting attention, which is why the number of intervention stud-
ies examining the effectiveness of probiotics on obesity and associated metabolic 
pathophysiology is growing. The results of systematic reviews of randomized 
control studies and meta-analyses that evaluated the efficacy of probiotics in 
obese/overweight adults demonstrated their efficacy in lowering body weight, 
BMI, body fat mass, and WC (John et al. 2018; Koutnikova et al. 2019). 
Moreover, specific Lactobacillus and Bifidobacterium strains have shown con-
stant anti-obesity activity in many animal and human studies (Bifidobacterium
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Table 6.2 Mechanism of probiotic and host interaction (Guarner et al. 2017) 

Immunological benefits • Stimulation of IgA production 
• Modulation of cytokine production 
• Induction of tolerance to food antigens 

Nonimmunological benefits • Production of bacteriocins to inhibit pathogens 
• Digestion of food and competition for nutrients with pathogens 
• Alteration of local pH to create an unfavorable local 
environment for pathogens 

• Stimulation of epithelium mucin production 
• Enhance intestinal barrier function 
• Competition for adhesion with pathogens 
• Modification of pathogen-derived toxins 
• Scavenge of superoxide radicals 

breve, B. longum, B. infantis, Lacticaseibacillus casei, L. rhamnosus, L. gasseri, 
L. plantarum) (Ejtahed et al. 2019; Ivanovic et al. 2015). Some of the proposed 
mechanisms involved in the amelioration of MetS are modulation of host energy 
metabolism (SCFA production, modulation of satiety signaling pathways, bile acid 
deconjugation), strengthening of intestinal mucosal barrier (modulation of tight 
junction, stimulation of mucus secretion), interaction with host immune system, 
and interaction with microbiota members (production of bacteriocins and nutri-
ents used by other bacteria) (Abenavoli et al. 2019; Le Barz et al. 2015; Ivanovic 
et al. 2015). However, inconsistent results can be found in the literature show-
ing that administration of probiotics did not significantly affect the body weight 
or the effects obtained were not statistically significant compared to the placebo 
group (Borgeraas et al. 2018; Park and Bae 2015). One of the reasons for the 
inconsistency of the results between the conducted studies is the large number of 
microorganisms whose effects were examined in the studies. In particular, each 
of these genera includes several species, subspecies, and strains that may have the 
same but also opposite effects. Thus, the results of studies show that the benefits of 
probiotics that contribute to the host are highly specific for the species and strain, 
but also depend on the dose, duration of probiotic administration, as well as the 
basal characteristics of the host and microbiome (Green et al. 2020; Ivanovic et al. 
2015, 2016; Mills et al. 2019a; Suez et al. 2019). For example, contrary to most 
Lactobacillus species tested, which mainly lead to weight loss, L. acidophilus has 
been shown to increase weight in humans and animals. On the other hand, while 
L. gasseri BNR17 reduces body weight, L. gasseri L66-5 promotes it (Mills et al. 
2019a). 

Furthermore, to achieve a health benefit for the host, as the definition of pro-
biotics requires, probiotics must be administered in an adequate dose. This dose 
varies greatly depending on the strain used and ranges between 100 million and 
10 billion CFU/day. In a recently published review of studies examining the pro-
biotic dose–response relationship in humans, authors concluded that dose effects 
on probiotic efficacy were inconsistent and that number of studies are insufficient 
for drawing a conclusion. However, it has been found that studies examining the
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impact of probiotics on fecal recovery and antibiotic-induced diarrhea have shown 
a clear dose–response indicating that higher doses are necessary for biological 
effects (Ouwehand 2017). 

In a recently published paper, Zmora et al. observed individual differences con-
cerning intestinal mucosal colonization by the applied 11-strain probiotic mix in 
humans. Based on the degree of their colonization, the authors categorized the 
volunteers into two groups: probiotics “permissives” and probiotics “resisters.” In 
the permissive individuals, some of the strains from the probiotic mixture were 
detected a few weeks after administration, and the effects on microbiome compo-
sition, function, diversity, and bacterial load were significantly more pronounced 
than in resistant individuals. Moreover, this individual susceptibility to probiotic 
colonization could be predicted by combining the basal characteristics of the 
host and the microbiome (Zmora et al. 2018). For example, stable colonization 
of the probiotic strain B. longum AH1206 was found in only 30% of individu-
als, associated with low basal levels of resident B. longum and underrepresented 
microbiome-related genes for carbohydrate utilization (Maldonado-Gomez et al. 
2016). The role of the microbiome in the mechanism of probiotic resistance was 
confirmed during transplantation of fecal microbiome from persistent or resistant 
individuals into germ-free mice, which led, after the application of probiotics, to 
the recapitulation of the resistance to colonization from donors (Suez et al. 2020). 
Also, Zhang et al. have observed a more significant impact of probiotic supple-
mentation on fecal microbiota diversity in individuals colonized with the probiotic 
strain from a given supplement than individuals resistant to colonization (Zhang 
et al. 2016). 

Interestingly, Suez et al. observed that antibiotics may enhance probiotic colo-
nization in the human intestine, most likely due to depletion of resident bacteria. 
On the contrary, post-antibiotic application of probiotics delayed the reconstruction 
of the pre-antibiotic intestinal microbiota composition, diversity, and functionality 
compared to spontaneous recovery and autologous fecal transplantation (Suez et al. 
2018). In addition, Ferrario et al. reported that consumption of L. paracasei DG led 
to individually specific changes in microbiota composition and SCFAs production, 
indicating the role of the initial microbiota composition in exhibiting the effects 
of the probiotics (Ferrario et al. 2014). 

These studies indicate that probiotics may have a limited effect on microbiota 
composition and, thus, its functionality; their effects depend on the characteristics 
of the host, primarily on the initial microbiota composition. The above suggests 
the importance of developing personalized probiotics to represent a more precise 
therapeutic approach than empirical universal probiotics whose effects could show 
inter-individual variations. 

Until the development of personalized probiotics, one way to avoid the risks 
posed by the use of exogenous strains (transmission of antibiotic resistance genes 
and the risk of bacteremia and fungemia in immunocompromised individuals) 
is the use of next-generation probiotics, i.e., human intestinal bacteria such as 
A. muciniphila and Faecalibacterium prausnitzii. Human studies have shown a 
negative correlation between the prevalence of A. muciniphila and obesity, T2D,
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hypertension, and dyslipidemia. The presence of this bacterium in the microbiome 
is considered a feature of a healthy metabolic status. Moreover, supplementation 
of A. muciniphila at a dose of 10 billion CFU/g has been shown to improve 
metabolic parameters (IR, total cholesterol, and inflammatory biomarkers) while 
being safe and well-tolerated (Cuevas-Sierra et al. 2019; Vallianou et al. 2019, 
2020). However, some obstacles need to be overcome for commercial application 
of this strain, such as its high sensitivity to oxygen and mucus-based medium 
requirements (Vallianou et al. 2019). 

6.5.2 Postbiotics 

The results of numerous studies have demonstrated that probiotics can effectively 
treat various diseases, especially in infections of the gastrointestinal tract and 
inflammatory bowel diseases, and in extra-intestinal diseases. However, the use 
of probiotics may also be associated with some health risks, such as the possibil-
ity of developing bacteremia or fungemia as a consequence of translocation from 
the gut to the systemic circulation, primarily in immunocompromised individuals 
(Rannikko et al. 2021; Yelin et al. 2019), as well as with the risk of antibiotic 
resistance gene transfer (Montassier et al. 2021). Contrarily, there is a vast number 
of evidence suggesting that viability is not necessary for the manifestation of the 
probiotic effect, i.e., that non-viable microorganisms, their components, and their 
metabolites can also exhibit bioactivity, similar or something different from their 
living counter partners (Cuevas-González et al. 2020; Pique et al. 2019). These 
observations have led to increased interest in using non-viable microorganisms 
called “postbiotics” (also known as “paraprobiotics,” “metabiotics,” “ghost pro-
biotics,” “tyndallized probiotics,” “bacterial lysates”). According to the recently 
published ISAPP consensus paper, postbiotics are defined as “a preparation of 
inanimate microorganisms and/or their components that confers a health benefit 
the host” where the term “inanimate” is intended to emphasize that the microor-
ganism was previously alive but did not lose physiological benefit to the host with 
loss of viability (Salminen et al. 2021). The main characteristics of postbiotics are 
its advantages over probiotics, such as safety of use in sensitive categories (infants, 
people in intensive care units). Since the postbiotics are not viable cells, their effec-
tiveness is not compromised by reducing the number of bacteria at the end of use, 
and they are more stable during industrial processes and storage (Cabello-Olmo 
et al. 2021; Salminen et al. 2021) (Fig. 6.1). 

Different technological processes (heat, sonication, irradiation, and high pres-
sure) used for the inactivation of probiotics may have different effects on the 
structural components of the cell and the metabolite profile, and thus on the charac-
teristics of postbiotics and their biological activity (Deshpande et al. 2018). There 
are a large number of probiotics classes such as cell wall components (peptido-
glycan and lipoteichoic acids as major cell wall components of Gram-positive 
bacteria), exopolysaccharides and cell surface proteins (S-layer), cell-free super-
natants, polysaccharide fermentation products (SCFAs and succinate), metabolites
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Fig. 6.1 General characteristics of postbiotics 

(vitamins, aromatic amino acids, antimicrobial peptides), bacterial lysates, or 
enzymes (Aguilar-Toalá et al. 2018; Hernández-Granados and Franco-Robles 
2020; Pique et al. 2019; Zolkiewicz et al. 2020). Although the mechanisms 
involved in the health effects of postbiotics have not yet been fully elucidated, 
scientific evidence suggests that postbiotics exhibit health effects through sev-
eral different mechanisms, which may act independently or in combination. These 
mechanisms may be similar to those known for probiotics and include the fol-
lowing: (i) modulation of the resident microbiota, (ii) maintenance of epithelial 
barrier function, (iii) modulation of the local immune response, (iv) modulation 
of the systemic metabolism, and (v) signaling via the nervous system (Salminen 
et al. 2021). 

In recent years, many in vitro and in vivo studies have been conducted to deter-
mine the health effects of various postbiotics. In most cases, postbiotics derived 
from Lactobacillus and Bifidobacterium strains were used, although other bacterial 
species have also been reported as probiotics sources (Aguilar-Toalá et al. 2018; 
Cuevas-González et al. 2020). Although data from human studies are limited, they 
have shown efficacy for orally administered, inactivated lactic acid bacteria (pri-
marily Lactobacillus species) in reducing symptoms in patients with inflammatory 
bowel disease and chronic diarrhea, eradicating H. pylori infection (Salminen et al. 
2021). These studies have also shown that postbiotics may be a safer alternative to
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probiotics, although an assessment of safety for postbiotics is needed before use 
(Salminen et al. 2021; Wegh et al. 2019). 

Literature data indicate that postbiotics are promising candidates for treating 
metabolic complications related to obesity and promote cardiometabolic benefits 
by activating the innate immune response (Anhê et al. 2019b, 2021). Among post-
biotics, SCFAs are essential modulators of host metabolism (Salminen et al. 2021). 
Numerous strong evidence from animal studies has indicated that SCFAs play an 
essential role in treating and preventing obesity-induced IR. Moreover, there is an 
increasing number of evidence from human studies on the beneficial effects of 
SCFAs on body weight control, glucose and lipid homeostasis, and inflammatory 
status (Canfora et al. 2019). SCFAs, as already mentioned in the previous sections, 
affect appetite and energy intake through various mechanisms, such as stimulation 
of satiety hormones production (peptide YY and glucagon-like peptide 1) from 
enteroendocrine cells via G receptors and secretion of the adipocyte-derived sati-
ety hormone leptin. One of the mechanisms by which SCFA can have a suppressive 
effect on appetite and food intake is the central nervous system, i.e., the gut–brain 
axis. Animal studies have provided evidence that SCFA supplementation may play 
an essential role in the prevention of HFD-induced obesity through SCFA-induced 
upregulation of genes related to thermogenesis and lipid oxidation (Den Besten 
et al. 2015; Reynés et al. 2019) or through improved hepatic metabolic conditions 
without altering gut microbial composition (Shimizu et al. 2019). Furthermore, 
colonic administration of SCFA mixtures increased fasting lipid oxidation and 
resting energy expenditure and decreased lipolysis in overweight/obese normo-
glycemic volunteers (Canfora et al. 2017). The same effects have been shown in 
healthy volunteers after acute oral propionate administration where it was observed 
that these beneficial effects of propionate resulted from induced PYY and GLP-1 
secretion in colonic cells (Chambers et al. 2018). 

Findings confirming the usefulness of postbiotics in the treatment of MetS also 
result from a human study that has demonstrated that pasteurized A. muciniphila 
has superior effects on inflammation and several features of MetS metabolic syn-
drome associated with fatty liver disease and cardiometabolic risk compared to 
live bacterium (Depommier et al. 2019). Moreover, a component isolated from 
the cell wall of this bacterium (Amuc_1100) has been shown to exhibit the same 
favorable metabolic benefits in a mouse model of diet-induced obesity as it was 
reported after administration of pasteurized A. muciniphila (Plovier et al. 2017). 
Another example demonstrating the role of postbiotics in MetS treatment includes 
muramyl dipeptide, a component of the Gram + bacterial cell wall that has been 
shown to reduce adipose inflammation and glucose intolerance in a mouse model 
of obesity without affecting body weight or microbiota composition (Cavallari 
et al. 2017).
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6.5.3 Polyphenols 

Polyphenols are non-nutritive phytochemicals commonly found in human diets. 
They represent a very different class of secondary metabolites synthesized by a 
plant to perform various functions, such as protection against UV radiation, micro-
bial infections, or mechanical damage (Cueva et al. 2020). Polyphenols comprise 
a large heterogeneous group of compounds with over 10,000 structural variants, 
characterized by aromatic rings and ligand groups; these structures can vary from 
monomers to complex polymers of high molecular weight (De Filippis et al. 2020; 
Singla et al. 2019). These compounds are usually classified into two main groups: 
flavonoids and nonflavonoids. Each class can be subdivided into many subclasses 
depending on their chemical structure (e.g., number of phenol units, substituted 
groups or bonds between phenolic units). Subclasses of flavonoids are flavanols, 
flavones and isoflavones, anthocyanidins, and anthocyanins, while nonflavonoids 
include phenolic acids, stilbenes, and lignans (Singla et al. 2019). Classification of 
polyphenol components and their primary dietary sources are shown in Table 6.3. 

Due to their chemical structure, only 5–10% of ingested polyphenols are 
absorbed in the small intestine (Ray and Mukherjee 2021). Approximately 90% of 
ingested polyphenols reach the colon, where they interact with the gut microbiota 
(Rodriguez-Daza et al. 2021). There is a two-way interaction between polyphe-
nols and the microbiota, which is determinant in the effects of polyphenols 
(Cortés-Martín et al. 2020). Polyphenols modulate the gut microbiota composition 
through their antimicrobial and prebiotic effects, which can per se affect the host’s 
metabolism. Also, members of the gut microbiota catabolize ingested polyphenols

Table 6.3 Polyphenolic classes and their primary dietary sources 

Class Sub-class Compounds Dietary sources 

Flavonoids Anthocyanins Cyanidin, delphinidin, 
peonidin, malvidin 

Berries, cherries, red grapes, 
currants, beans 

Flavan-3-ols Catechin, epicatechin, 
gallocatechin, 
epigallocatechin, tannins 

Green tea, cocoa, grapes, 
berries 

Flavones Apigenin, luteolin Olives, apple, cabbage 

Flavanols Kaempferol, quercetin, Green and black tea, various 
fruits, vegetables, nuts 

Flavanones Naringenin, hesperetin, 
neohesperidin 

Citrus fruits, tomato, berries 

Isoflavones Daidzein, genistein Soybeans and soy products 

Non-flavonoids Phenolic acids Benzoic acids, cinnamic 
acids, benzoic acids 

Berries, grapes, nuts 

Stilbenes Resveratrol Red wines, grapes, peanuts, 
plums, pine nuts 

Lignans Enterodiol, enterolactone Flaxseed, beans, berries, 
sesame 
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into various low molecular weight metabolites that can be easily absorbed and thus 
again exhibit a potential effect on host health (Alves-Santos et al. 2020; Cueva  
et al. 2020). Based on recent evidence that polyphenols can be selectively used 
by the gut microbiota and thus exert beneficial effects on host health, polyphenols 
can also be considered prebiotics according to the revised definition, previously 
limited to carbohydrates only: “A prebiotic is a non-digestible compound that, 
through its metabolism by microorganisms in the gut modulates the composition 
and (or) activity of the gut microbiota, thus conferring a beneficial physiological 
effect on the host” (Gibson et al. 2017). However, the effects of polyphenols on 
the gut microbiome ecology are mainly based on the combined antimicrobial and 
grow-stimulating (prebiotic) effects (Rodriguez-Daza et al. 2021). 

Accumulating literature have demonstrated that regular consumption of food 
rich in polyphenols such as fruits, vegetables, tea, coffee, wine, and grains is asso-
ciated with a reduced risk of cardiometabolic diseases and cancer ( Čakar et al. 
2018; Anhê et al. 2019a; Van Hul and Cani 2019). Also, a wide range of biolog-
ical activity of different polyphenols has been described in numerous in vitro and 
in vivo studies, as it is shown in Fig. 6.2. 

Numerous in vivo studies, both in animals and humans, indicate that certain 
classes of polyphenols such as anthocyanins, proanthocyanidins, flavanones, fla-
vanols, ellagitannins, and stilbenoid resveratrol may alleviate some of the features 
of MetS. Proposed mechanisms of action include reduction of inflammation, mod-
ulation of glucose homeostasis, repair of endothelial dysfunction, suppression 
of adipogenesis and lipid synthesis, an increase of energy expenditure through 
thermogenesis, stimulation of fat oxidation, and reduction of nutrient intake by 
interaction with digestive enzymes (De Filippis et al. 2020; Van Hul and Cani 
2019) Moreover, the findings from these studies indicate that their effects depend 
primarily on the interaction with gut microbiome ecology, i.e., that gut micro-
biota is a crucial mediator of the health effects of polyphenols (Anhê et al. 2019a, 
b). A recently published review involving 44 animal studies have reported that 
polyphenols are effective in improving metabolic derangements (weight gain, vis-
ceral obesity, plasma TAG, glucose intolerance) and that these effects were the 
result of polyphenol ability to improve gut dysbiosis, induced by HFD (Moorthy 
et al. 2021). Additionally, polyphenols can play an essential role in maintain-
ing the microbial richness and thus better metabolic fitness (Anhê et al. 2019a, 
b). Analysis of the microbiota of 1135 subjects showed that the frequency of 
fruits, vegetables, red wine, coffee, and tea intake, which are the major sources 
of polyphenols in diet, is one of the most critical factors that positively correlate 
with microbial richness. Moreover, it has been shown that the intake of these foods 
was among the main variables that firmly explain the inter-individual differences 
in the gut microbiota composition (Zhernakova et al. 2016). 

Quercetin is one of the polyphenols for which there is strong evidence, pri-
marily from animal studies, that it can be highly effective in preventing various 
risk factors for MetS. Quercetin has been shown alone or in combination with 
other compounds such as resveratrol or green tea extract to correct HFD-induced 
dysbiosis in mice and thus prevent metabolic changes associated with obesity. The



166 D. I. Brizita and I. Dj. Nevena

Fig. 6.2 Biological activities of dietary polyphenols 

observed effects of quercetin alone or in combination with these compounds on the 
microbiota composition were, among others, an increase in the prevalence of A. 
muciniphila and a decrease in F/B ratio, one of the hallmarks of metabolic fitness 
(Koch 2019; Tan et al. 2021; Zhao et al. 2017). In addition, there is much evi-
dence demonstrating the antidiabetic activity of quercetin, and one of the proposed 
mechanisms is that quercetin activates 5, adenosine monophosphate-activated pro-
tein kinase (AMPK) in the liver (Bule et al. 2019). This mechanism is analogous 
to the action of metformin, the most commonly used antidiabetic drug. A group of 
researchers proposed the so-called “AMPK hypothesis” that polyphenols can acti-
vate AMPK by phosphorylation and thus regulate energy metabolism (Yang et al. 
2016). Given that AMPK is the central regulator of energy homeostasis and thus 
an important target for the treatment of MetS, the role and potential of polyphenols 
in the treatment of MetS can then be explained. 

Furthermore, certain polyphenols can benefit cardiometabolic health via their 
prebiotic effect, such as increasing the abundance of A. muciniphila. The exact
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mechanism is not established, but it has been shown that polyphenols intake is 
also associated with an increase in mucus synthesis, which is the primary energy 
source for this mucin-degrading bacteria (Anhê et al. 2019a, b; Rodriguez-Daza 
et al. 2021; Van Hul and Cani 2019). 

Regarding the results from human studies, a meta-analysis that included 117 
studies (published between 1997–2015) revealed a significant beneficial effect of 
flavanols (from tea, cocoa, and apples) on BMI, WC, and serum lipids levels. 
Although these effects were modest, they could be compared quantitatively with 
those obtained, for example, by a change in lifestyle (González-Sarrías et al. 2017). 
Furthermore, a meta-analysis of 11 randomized controlled trials demonstrated that 
resveratrol could significantly improve glucose homeostasis in people with dia-
betes (Liu et al. 2014). However, the results from numerous clinically randomized 
studies are contradictory. Thus, the final consensus on the beneficial effects of 
polyphenols on health remains elusive. The reason lies in the fact that human sub-
jects have different responses to dietary intervention, and thus, it is more evidence 
that there is no universal (one-size-fit-all) diet and that the effects are significantly 
determined by the characteristics of the host and the gut microbiota. Therefore, the 
possibility of polyphenols exhibiting favorable health effects depends on many fac-
tors, including the dietary source in which they are found, the amounts ingested, 
i.e., nutritionally relevant doses, and on inter-individual differences in genetics, 
physiological status, lifestyle. 

Additionally, the set of microbial polyphenolic metabolites, and the effect of 
polyphenols, depend primarily on the microbiota’s characteristics, which is the 
primary intermediate between polyphenols and health (Cortés-Martín et al. 2020; 
Pushpass et al. 2021). In this matter, the results of numerous studies have indicated 
the need to cluster human subjects into metabotypes, which refers to a differential 
gut microbial metabolism of polyphenols, to explain the inter-individual variability 
of effects observed after consumption of dietary polyphenols. The introduction of 
metabotypes aims to design a customized polyphenol-rich diet for specific individ-
uals to prevent or treat certain diseases (Cortés-Martín et al. 2020); this achieves 
the concept of a personalized diet focused on the microbiota as the target organ of 
intervention. 

Until now, only two polyphenols, ellagic acid and isoflavone daidzein, are 
known to show inter-individual differences in their metabolism related to specific 
intestinal microbial ecology, otherwise responsible for the formation of differ-
ent metabolites (postbiotics). As for daidzein, soy isoflavones, it has been found 
that only 30% of the Western population possesses certain bacterial species in 
the microbiota capable of metabolizing daidzein to S-equol. The existence of two 
metabotypes that differ in their ability to synthesize S-equol may be relevant in 
achieving the beneficial effects of soy isoflavone on glucose and lipid homeostasis, 
which is the necessary presence of this metabolite (Usui et al. 2013). In addi-
tion to the equol-producer metabotype, O-desmethylangolensin (ODMA)-producer 
metabotype was also identified; for this, two metabotypes have been reported to 
be independent of each other. Regarding the microbial conversion of ellagic acid
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to urolithins, three metabotypes have been proposed depending on the final postbi-
otic produced: metabotype A (UM-A) produces urolithin A, metabotype B (UM-B) 
produces urolithin B and isourolithin A in addition to urolithin A, and metabotype 
O (UM-0) is unable to produce urolithins from ellagic acid (Romo-Vaquero et al. 
2019). The importance of clustering human subjects into metabotypes can be seen 
in a study in which pomegranate extract was given to obese subjects stratified 
as UM-A or UM-B metabotypes. Although UM-A individuals had a better basal 
lipid profile, administration of pomegranate extract led to a greater improvement 
in lipid profile in UM-B individuals (Gonzalez-Sarrias et al. 2017). Furthermore, 
consumption of walnuts over three days led to UM-depending modulation of the 
gut microbiota. The short-term intervention with walnuts led to an increase in 
Blautia, Bifidobacterium, and members of the Coriobacteriaceae family only in 
UM-B individuals, while in UM-A individuals, only a decrease in members of the 
Lachnospiraceae family was observed (García-Mantrana et al. 2019). 

Romo Vaquero et al. reported a difference in diversity and richness between 
UM metabotypes, which was not found when individuals were stratified on three 
enterotypes (Bacteroides, Prevotella, and Ruminococcus). UM-O metabotype was 
characterized by lower diversity and richness than UM-A and UM-B, while more 
than half of the discriminant genera between UM-A and UM-B belonged to the 
Coriobacteriaceae family. The presence of Coriobacteriaceae was increased in 
UM-B compared with UM-A and UM-O metabotypes, and it was positively asso-
ciated with BMI, total, and LDL cholesterol (Romo-Vaquero et al. 2019). So far, 
no clear link has been reported between UM metabotypes and dietary pattern, gen-
der, or ethnicity. However, preliminary observations show that UM-B metabotype 
is associated with higher BMI and cardiometabolic disorders caused by dysbio-
sis, while UM-A is marked as a “protective” metabotype (Cortés-Martín et al. 
2020). Recent cross-sectional studies have reported significantly different content 
and functioning of the microbial gut community between equol producers and non-
producers. Further, lower prevalences of dyslipidemia were found within equol 
producers suggesting that S-equol might play an essential role in lipid metabolism 
by gut microbiota (Zheng et al. 2019). 

6.6 Conclusion 

The link between diet, intestinal microbiota, and MetS has been intensively inves-
tigated in numerous studies published in recent years. Current evidence suggests 
that obesity and associated metabolic disorders are closely related to a perturba-
tion in the composition and function of the microbiota dictated by several factors, 
of which nutrition plays the most crucial role. Numerous interventional studies 
have indicated the role of the microbiome as a source of inter-individual variation 
in response to diet. Therefore, microbiome-focused dietary interventions can be 
an essential tool for achieving a personalized approach for preventing and treat-
ing cardiometabolic diseases. Probiotics, prebiotics, postbiotics, and polyphenols
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could be critical components of personalized dietary intervention to alter the gut 
microbiome to a more beneficial configuration for preventing and treating MetS. 

However, the use of the microbiome as a target in creating a precise diet has 
been accompanied by many unknowns. For example, many data are still missing, 
such as the association of certain enterotypes, diversity, richness, and specific taxa, 
with different responses in different dietary contexts. Moreover, the limited data 
from human studies suggest that more profound large-scale clinical randomized 
studies are needed to evaluate the conditions for their personalized use, including 
the adequate dose, duration of supplementation, the durability of their beneficial 
effects, and in the case of probiotics, determination of microbiota and host factors 
influencing colonization of probiotics, and thus their efficiency. 
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ABSTRACT 

Metabolomics offers unique insights into the interface between environment, 
host, and microbiome in the pathophysiology of disease. New metabolomics 
findings can enhance the understanding obtained through classical molecular 
biology research and lead to actionable targets not just for diagnosis but also 
for prevention and therapeutic strategies. In this chapter, we discuss how the 
typical Western diet contributes to a variety of chronic diseases, through both
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systemic effects and alterations of the microbiome. Alzheimer’s disease (AD) is 
presented as a case study for exploring how nutritional interventions can support 
efforts to prevent and manage disease. We discuss how nutritional approaches 
affect systemic and local biochemistry, potentially reducing the risk for AD and 
slowing disease progression. Finally, we establish a metabolic model of AD 
pathogenesis by describing the molecular pathways and pathophysiological that 
are affected by a Western-style diet, and the changes in the gut microbiome that 
accompany it. For this purpose, we draw from recent findings of metabolomics 
studies in epidemiological, clinical, and basic research settings. In conclusion, 
we present how metabolomics can provide a roadmap for further research in 
chronic disease, including AD and other neurodegenerative diseases, as well as 
provide a basis for new interventions based on a thorough understanding of the 
biochemical processes involved in the respective pathologies. 

7.1 Introduction 

The role of nutrition and lifestyle in complex, chronic, and age-related diseases 
is undeniable. There is growing interest in the microbiome’s involvement in the 
pathogenesis of these diseases. Exactly how nutrition affects the bioenergetic state 
and fate of cells is not yet fully understood. 

Metabolomics is a promising tool to help disentangle these complex interactions 
and processes. In this chapter, we will summarize current knowledge, focusing on 
the development of neuropsychiatric diseases such as Alzheimer’s disease. 

7.2 Metabolomics and the -Omics Cascade 

Before we discuss the association between nutrition, Alzheimer’s disease, and 
metabolism, the concept of metabolomics shall briefly be introduced. 

Metabolomics is an omics technology that aims at the characterization of inter-
mediates of metabolism with low molecular weight, i.e., metabolites. Although 
there are feedback loops through which metabolites determine upstream—omics 
levels, metabolites are typically considered the end point of biochemical processes. 
Consequently, metabolic profiles are considered to represent the biochemical 
phenotype of an individual or sample. 

The recent surge of the use of metabolomics is probably fueled by the high 
information content inherent to metabolic profiling. While genes are easy to mea-
sure, consisting of only four nucleobases, they do not necessarily inform about 
the functional importance in a specific disease context at a certain time. Metabo-
lites, on the other hand, are very diverse with assumed tens of thousands of 
endogenous intermediates of metabolism believed to exist. In addition, they show



7 Precision Nutrition and Metabolomics, a Model … 181

Fig. 7.1 Metabolomics in relationship to other—omics technologies 

dynamic changes with factors such as age, lifestyle, and even circadian rhythmic-
ity. This dynamic regulatory landscape provides meaningful functional insights as 
metabolite alterations are assigned to pathophysiological processes (Fig. 7.1). 

Metabolites such as creatinine and glucose have been in diagnostic use for 
decades. Thanks to the rapid development of analytical technology, a broader range 
of metabolites can now be analyzed in parallel, enabling researchers to investi-
gate diverse sets of molecules in relation to each other rather than relying on few 
selected substances. 

7.3 How Metabolomics Provides Actionable Insights 
into Disease Pathophysiology 

Here, we explore why metabolomics is so well-suited to the study of the nutrition-
microbiome-disease axis, and how it can provide the basis for personalized 
therapies. 

Most tissues have a large degree of metabolic flexibility. In other words, an 
organism can remain healthy even if the optimal set of nutrients is unavailable or 
cannot be produced endogenously. For example, glucose oxidation is the preferred 
route for energy production in many tissues, but if sufficient glucose is unavailable, 
most cell types can continue to function by utilizing other sources of energy. The 
switch from glucose consumption to lipid mobilization and oxidation in endurance 
training is a good example of this principle. 

It has been hypothesized that, while homeostasis could be maintained for a 
certain period imbalances occur long before there’s any evidence of manifest and 
symptomatic disease. These imbalances eventually cause subtle changes in the 
biochemical profiles of cells, tissues, and biofluids that could be detected with 
metabolomics (Fig. 7.2).
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Fig. 7.2 Use of metabolomics in biomarker research; Adapted from D. I. Ellis et al., Metabolic 
fingerprinting as a diagnostic tool, Pharmacogenomics (2007) 

Knowing what drives early disease pathophysiology can also inform pharma-
ceutical approaches, nutrition/lifestyle interventions, and choices to help prevent 
or delay the onset of symptomatic disease. Metabolomics has already been instru-
mental in improving our understanding of both advanced and early stages in the 
pathophysiology of the most common chronic diseases. 

Here, we discuss Alzheimer’s disease as a case study, though similar observa-
tions could be made in a wide variety of diseases. In neurodegenerative diseases 
such as AD, pharmaceutical therapy remains challenging, and personalized nutri-
tion and lifestyle recommendations could be instrumental in fighting the rise in 
incidence and disease-related socioeconomic cost. 

7.4 Western-Style Diet, Metabolism, and the Epidemiology 
of Chronic Disease 

In the USA, six in ten adults have a chronic disease, and unhealthy lifestyle choices 
are a known contributor (CDC 2021). As a consequence, nutritional guidelines now 
tend to focus on encouraging nutritional choices that help avoid chronic disease, 
rather than securing the sufficient intake of essential nutrients (Hite 2018). 

A comprehensive review on nutritional epidemiology is beyond the scope of 
this chapter, but it is worth mentioning a few recent notable findings. 

Body mass index (BMI), while an imperfect measure of both body composi-
tion and lifestyle, provides insights into the interaction between the Western-style 
diet and chronic disease. Field et al. (2001) showed that the risk for multiple 
chronic diseases rises with increasing BMI. Unsurprisingly, multiple metabolomics 
studies have shown vast metabolic consequences of overweight and obesity in 
both adult and adolescent populations (Rangel-Huerta et al. 2019; Handakas et al. 
2021). In a recent study, Frigerio et al. (2021) confirmed an association between
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increasing BMI and reduced levels of glutamine, a precursor of the excitatory 
neurotransmitters glutamate and aspartate. 

Levels of many other amino acids, including branched-chain amino acids 
(BCAAs), have also been shown to increase with BMI. High levels of the BCAAs 
valine, leucine, and isoleucine (which are essential food components) have been 
identified as a causal factor in diabetes pathogenesis and insulin resistance (Lotta 
et al. 2016; Magnusson et al. 2013). BCAAs and ketogenic acids such as leucine 
and isoleucine have been shown to function as insulin analogs, thus inducing 
insulin secretion or insulin resistance if chronically elevated (Wishart 2019), and 
potentially contributing to a pro-inflammatory phenotype (Ruge et al. 2009). In 
addition, elevated saturated chain triglycerides (TAGs) (Rhee et al. 2011) have  
been implicated as a major driver of diabetes. 

Diabetes is an established risk factor for AD (Leibson et al. 1997; Luchsinger 
et al. 2001; Ott et al. 1999). Obesity has also been implicated as a risk factor for 
the development of AD, with glutamate thought to be an important factor (Ma 
et al. 2020; Lloret et al. 2019). 

Finally, the results implicating a typical Western lifestyle with AD have sparked 
significant interest in the role of the microbiome. In a review of recent literature, 
Jiang et al. (2017) considered how alterations in the microbiome affect the risk for 
and pathogenesis of AD. 

7.5 Western-Style Diet, the Association with Intracellular 
Malnutrition, and Nutritional Interventions 
in Alzheimer’s Disease 

For these reasons, nutrition has become a matter of growing interest for the 
prevention and management of chronic conditions, including AD and other 
neurodegenerative diseases. For example, Więckowska-Gacek et al. (2021) hypoth-
esized that the Western-style diet could trigger Alzheimer’s disease through both 
systemic inflammation and neuroinflammation, leading to neurodegeneration. Kim 
et al. (2015) showed that adhering to Korean national nutritional guidelines can 
reduce the risk for developing AD. 

As outlined above, excessive BCAA levels are associated with obesity and 
insulin resistance. They also affect brain biochemistry, as circulating levels of 
BCAAs inhibit the uptake of other amino acids in the brain, altering the production 
of various neurotransmitters (Pardridge 1977; Fernstrom 2005). High-BCAA diets 
have also been associated with lower cortical levels of threonine and tryptophan, 
with a negative impact on cognition (Tournissac et al. 2018). 

These findings show how malnutrition on a systemic level can lead to 
metabolic profile alterations in tissues, and malnutrition in cells that must maintain 
homeostasis under less-than-ideal circumstances. 

Naturally, reports of an association between nutritional factors and AD risk 
have prompted investigations into how specific modes of nutrition influence risk.
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One nutritional approach that has received a great deal of attention is the keto-
genic diet. Recent findings on its effects have been reviewed at length in de la 
Rubia et al. (2021), Broom et al. (2019) and Rusek et al. (2019). As the name 
suggests, a ketogenic diet induces a state of ketosis. It simulates a state of fast-
ing, potentially inducing opposite effects of the usual Western-style diet. A recent 
randomized trial showed that following a ketogenic diet for 12 weeks led to 
improvements in quality of life and daily function for patients with AD (Phillips 
et al. 2021). 

The Mediterranean-style diet has also been investigated as a potential nutritional 
approach to reducing AD risk. Gu et al. (2010) hypothesized that inflammatory and 
metabolic pathways could change the association between the Mediterranean diet 
and reduced AD risk, but the classical inflammation marker high-sensitivity C-
reactive protein (hsCRP), adiponectin, and fasting insulin, did not seem to mediate 
the effect. Berti et al. (2018) found that long-term adherence to a Mediterranean 
diet slows progression of selected AD biomarkers. More sensitive biomarkers are 
needed to capture the biochemical processes that mediate the interactions of the 
nutrition-microbiome-AD axis. 

7.6 A Metabolic Model of Alzheimer’s Disease, and Its 
Relationship with Nutritional and Microbiome-Related 
Factors 

This body of evidence shows conclusively that malnutrition contributes to obesity, 
changes in the microbiome, and metabolic risk factors involved in the patho-
physiological processes of AD development, such as insulin resistance, diabetes, 
and inflammation. We have also hinted at the role of selected metabolites and 
shown that classical biomarkers are insufficient to fully elucidate the biochemical 
processes at play. 

This is where metabolomics comes in. 
The first studies of the interaction between metabolome and nutrition in the 

context of AD were published in the early 2010s. Grimm et al. (2011) found that 
certain lipids are strongly reduced in post-mortem brain tissue from AD patients 
compared to that of non-AD individuals. Interestingly, the structure of those lipids 
suggests that a diet rich in polyunsaturated fatty acids might be protective against 
AD. These findings led to clinical trials investigating the effect of dietary sup-
plementation with these nutrients. Recent results indicate that this approach could 
improve outcomes by slowing disease progression (Soininen et al. 2021). However, 
these results also show that a prolonged intervention is required for significant 
effects. 

Confirming the role of complex lipids, Mapstone et al. (2014) used 
metabolomics to identify the first blood-based biomarker signature for prediction 
of a future AD diagnosis with very high accuracy, based on 10 lipid metabolites.
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Fig. 7.3 Metabolic model of AD: An event cascade describing AD pathophysiology by the means 
of metabolomics 

This study was ground-breaking in describing a biomarker signature for a neu-
rodegenerative order that could be easily obtained through blood sampling, rather 
than through the invasive collection of cerebrospinal fluid. 

In the following paragraphs, we will discuss how the field has evolved since 
those early findings and describe the clinical phenotype of Alzheimer’s disease. 
Figure 7.3 shows a metabolomics model of AD, demonstrating how the Western 
diet drives cellular malnutrition and thus contributes to AD pathophysiology. These 
processes are driven by a (pre-) diabetic phenotype and changes in the gut micro-
biome. Changes in circulatory and tissue metabolites can be observed occurring in 
parallel and in sequence. Lipids, glucose, branched-chain amino acids, ketogenic 
amines, and bile acids all play a role in AD risk and development. 

7.6.1 Lipid Metabolism 

As we’ve established, a Western-style diet, typically rich in fat and carbohydrates 
and low in polyunsaturated fatty acids (PUFAs), is thought to influence AD patho-
physiology (Gustafson et al. 2020). A diet that’s too low in PUFAs could lead to a 
reduction in cell membrane fluidity (Abedi and Sahari 2014). Low-grade inflam-
mation may contribute to the association between Western lifestyle, changes in 
the gut microbiome, (lipid) metabolism, and development of AD (Sochocka et al. 
2019; Gentile and Weir 2018). In a recent study, mice fed a high-fat diet showed 
increased levels of several important lipid metabolites, but decreased levels of 
eicosapentaenoic acid (EPA) in serum, brain, and other tissues. EPA is important 
in maintaining a healthy membrane composition and a precursor to eicosanoids, 
which are intimately involved in immune regulation (Pakiet et al. 2019). In an
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analysis of three cohorts within the Alzheimer’s disease neuroimaging initia-
tive (ADNI), Toledo et al. (2017) confirmed changes in phospholipid levels as 
early metabolic events in the AD pathophysiology, citing changes in membrane 
composition as a probable explanation. 

7.6.2 Glucose Homeostasis and Alterations in Energy Supply 

As we have described above, diabetes (characterized by high circulatory glucose 
levels and peripheral insulin resistance) is a risk factor for AD. In fact, Alzheimer’s 
disease has been dubbed “type 3” diabetes. The fact that branched-chain and keto-
genic amino acids, such as valine and α-aminoadipic acid, have been found in 
symptomatic stages of AD (Toledo et al. 2017) adds to the hypothesis that dia-
betes and pre-diabetic phenotypes are involved in the development of AD. This 
association exists even though the supply of glucose to the brain, which consti-
tutes the main energy source, mainly depends on an insulin-independent glucose 
transporter GLUT3. 

A study by An et al. (2018) showed that increased brain glucose levels and 
reduced neuronal expression of insulin-independent glucose transporters (GLUT3) 
were associated with the severity of AD in post-mortem brains. The authors pro-
posed that lower levels of glucose transporters reduced glycolytic flow, forcing the 
brain to utilize sources other than glucose for energy production. The hypothesis of 
altered glucose metabolism as a hallmark of AD pathogenesis was later confirmed 
in a large-scale proteomics study (Johnson et al. 2020). 

To satisfy their energy requirements, the metabolism of cells probably shifts 
from glycolysis to fatty acid (FA) oxidation. These changes in energy metabolism 
are probably a late event in AD pathogenesis (Toledo et al. 2017). Metabolically, 
this is reflected by altered circulatory levels of multiple acylcarnitines in advanced 
stages, which are involved in mitochondrial beta oxidation of fatty acids. Peripheral 
insulin resistance and hyperinsulinemia may lead to increased lipolysis in adipose 
tissue. Triacylglycerol can cross the blood–brain barrier and supply energy demand 
through fatty acids. 

7.6.3 Bile Acid Metabolism 

Although multiple microbiota-related metabolites have been associated with AD, 
here, we will focus on bile acids (BAs). 

Bile acids are one endpoint of cholesterol metabolism. Primary BAs are pro-
duced in the liver and secreted into the intestine via enterohepatic circulation. In 
the large intestine, bile acids are irreversibly modified by certain gut bacteria. BAs 
not only play a role in fat absorption, but also act as important hormone-like sig-
naling molecules. They are involved in insulin signaling (Ahmad and Haeusler 
2019) and have toxic effects on mitochondria (Krähenbühl et al. 1994). BAs are 
involved in multiple signaling pathways, for example, through the TGR5 and FXR
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receptors. FXR has also been found to be involved in immune regulation (Schote 
et al. 2007; Vavassori et al. 2009; Fiorucci et al. 2018). 

In routine clinical biochemistry, bile acids are typically measured as a sum, 
but primary and secondary bile acids have very different actions on FXR: some 
induce strong activation, some have no affinity at physiological levels, and others 
have antagonistic effects (Lefebvre et al. 2009; Sayin et al. 2013). Mahmoudian-
Dehkordi et al. (2019) showed that serum levels of secondary bile acids, produced 
by specific gut bacteria, increase the risk of AD. Specifically, the authors showed 
that the ratio between the secondary bile acid deoxycholic acid and the primary 
bile acid cholic acid was associated with cognitive decline. Bile acid signatures are 
also correlated with classical AD biomarkers (Amyloid, Tau and Neurodegenera-
tion, referred to as (“A/T/N”)) (Nho et al. 2019). As bile acids regulate their own 
production, it is plausible that both bile acid metabolism and bile acid synthesis 
are affected in AD (Baloni et al. 2020). 

7.6.4 The Metabolic Model of Alzheimer’s Disease (AD) 

Taking account of the processes described above, the extant literature on 
metabolomics in Alzheimer’s disease indicates a cascade of events. A Western-
style diet increases the risk of AD by creating an unfavorable lipid composition, 
contributing to a diabetic phenotype and sub-clinical inflammation. This phenotype 
is also promoted by an overload of branched-chain and ketogenic amino acids, 
through the induction of insulin resistance and hyperinsulinemia. 

In addition, altered profiles of gut bacteria lead to an increased production 
of secondary bile acids with effects via FXR, which further deteriorates glu-
cose homeostasis. Although a direct link has not been proven experimentally, 
this may contribute to a reduced GLUT3 expression in neurons. These processes 
create cellular malnutrition and a shift of energy supply from glycolysis to fatty 
acid oxidation. In the long run, this will cause an overload and partial dysfunc-
tion of mitochondria. Consequently, incompletely metabolized acylcarnitines will 
accumulate. 

The proposed model is not only in line with recent metabolomics literature 
in AD, but also with the hypothesis that we have stated in the beginning of the 
chapter. While metabolic signatures might be helpful in diagnosis and stratification 
in an advanced stage of the disease, perturbations in selected pathways proba-
bly accumulate over years and even decades. This provides a basis for earlier 
intervention and preventive strategies, such as with personalized nutrition. 

7.7 Conclusion 

Metabolomics has great potential in elucidating metabolic risk factors for chronic 
diseases including Alzheimer’s disease (AD). Gaining insights into the metabolic 
processes that lead to the development and progression of AD will also help build
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a better understanding of how malnutrition, obesity, insulin resistance and dia-
betes, and dysbiosis affect other chronic diseases. The literature discussed in this 
chapter demonstrates how malnutrition contributes to AD on a systemic and cellu-
lar level, and the metabolic impact of various approaches for supportive nutrition 
in AD. Specifically, we can conclude that current knowledge points to metabolic 
alterations in AD in the context of Western-style diet, as depicted in the graphical 
model. 
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ABSTRACT 

Cognitive decline, both due to ageing or disease, presents one of Western soci-
eties’ most significant disease burdens. Personalized preventive actions and 
public health interventions and policies can contribute to the prevention of 
dementia and healthy ageing. Nutrition is an integral part of the exposome,
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acting either as a risk factor or preventive intervention. Precision nutrition 
approach for prevention of cognitive decline involves the ability to profile 
the population for the risk of dementia, knowledge of the impact of nutrients 
and dietary patterns on biological processes involved in the pathogenesis of 
cognitive decline and the ability to predict individual heterogeneity response 
to diet. Genetic factors, either as rare monogenic causes or polygenic risk 
scores and known risk factors for dementia, can be used to assess the indi-
vidual risk for dementia. In addition, several nutrients and dietary patterns 
influencing common mechanisms involved in dementia pathogenesis like oxida-
tive stress, neuroinflammation, and hypoxia have been investigated as potential 
preventive interventions—the evidence is still accumulating. Finally, genomic 
variation, epigenetics, and microbiome have been proposed to modulate individ-
ual response to diet, and different »omic« surrogate biomarkers could improve 
the monitoring of individual response to nutrition. Large population data sets 
covering comprehensive information on mentioned variables are needed for the 
system medicine approach to dementia prevention. In addition, there is an urgent 
need for standardization of the methodological inventory and study design on 
the international level for that purpose. 

8.1 Introduction 

The cognitive decline that progresses to dementia is currently the fifth most sig-
nificant contributor to the global burden of disease (Prince et al. 2015)) and 
substantially affects patients’ lives, their families, and society. It affects around 
1% of the population aged 30–64 years (Hendriks et al. 2021). Due to the ageing 
population worldwide, it is projected that the prevalence will triple by 2050 (Col-
laborators et al. 2016); therefore, dementia is considered a global public health 
priority. It was estimated that a five-year delay in the onset of dementia would 
reduce the number of people with a disease by 33–50% by 2050 (Jennings et al. 
2020). 

Dementia is not a specific disease but rather an overarching term to describe a 
group of symptoms affecting memory, thinking, and social abilities which inter-
fere with daily life. It is associated with several distinct diseases with different 
aetiology and pathophysiology. Alzheimer disease is the most common cause, 
followed by vascular dementia, dementia with Lewy bodies, frontotemporal degen-
eration, and dementias associated with brain injury, infections, alcohol abuse, 
and genetic causes. Different entities are associated with specific etiological fac-
tors and neuropathologic hallmarks, while etiological factors and neuropathologic 
signs are often shared among dementias (Raz et al. 2015). Alzheimer’s disease 
is characterized by the extracellular accumulation of senile plaques composed of 
a peptide and intraneuronal accumulation of neurofibrillary tangles composed of
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hyperphosphorylated microtubule-binding protein-tau. Vascular dementia is a het-
erogeneous disorder associated with endothelial dysfunction, atherosclerosis, small 
vessel disease, ischemia, and haemorrhage. Dementia with Lewy bodies is char-
acterized by abnormal aggregation of the synaptic protein alpha-synuclein, while 
frontotemporal dementia may be associated with either cellular p-tau inclusions, 
ubiquitin-positive tau-negative neuronal inclusions, or neurodegeneration without 
ubiquitin or tau inclusions. There is significant heterogeneity in the comorbidity, 
and the cognitive impact of age-related neuropathology and mixed neuropatholo-
gies is the most common cause of dementia in the population (Boyle et al. 2021). 
Thus, the contribution of neuropathologies to cognitive decline is person-specific 
which has an essential impact on prevention strategies (Boyle et al. 2018). 

Common mechanisms involved in dementias include neuroinflammation, neu-
rodegeneration, autophagy, hypoxia with cerebrovascular dysfunction, blood–brain 
barrier dysfunction, and oxidative stress (Raz et al. 2015; Dominguez and 
Barbagallo 2018). Equally important for designing preventive interventions are 
functional pathways associated with cognitive resilience, including inflammation, 
amyloid degradation, memory function, and neurotransmission (Pérez-González 
et al. 2021). 

Understanding pathology and mechanisms associated with cognitive decline 
provides a basis for prevention. In addition to public health interventions and 
policies, personalized preventive actions can contribute to dementia prevention. 
Preliminary evidence has not demonstrated that population screening for demen-
tia had clear benefits or harm in quality of life, mood, or improved diagnostics 
(Fowler et al. 2020). Therefore, individualized strategies to identify risk fac-
tors and planning intervention strategies are expected to impact future prevention 
significantly. 

Precision nutrition interventions could impact several biological processes 
involved in the pathogenesis of cognitive decline one hand. Also, there is indi-
vidual heterogeneity in response to diet. To explore the potential individualized 
nutritional interventions, we will discuss current evidence of dietary effects on 
cognition, individual differences in response to nutrition in the context of cogni-
tion, as well as our understanding of risk factors for dementia which could lead to 
an assessment of individualized risk for dementia or stratification individuals for 
precision nutrition interventions (Fig. 8.1). 

8.2 Nutrients and Dietary Patterns 

Many nutritions are associated with mechanisms and risk factors for cognitive 
decline and dementia. However, most of the evidence linked to potential inter-
ventions is still lacking or is contradictory. Moreover, in several cases, potential 
favourable effects are limited to specific subpopulations, which requires further 
scientific confirmation and stipulates the potential of individualized nutritional 
interventions.
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Fig. 8.1 Potential applications of precision nutrition on cognitive decline 

8.2.1 Antioxidants 

The contribution of oxidative stress to neurodegenerative disorders is not clearly 
understood, and several mechanisms have been proposed (Cobley et al. 2018). 
The primary antioxidant defences include vitamin C, vitamin E, carotenoids, 
flavonoids, and polyphenols. 

The meta-analysis demonstrated low-certainty evidence for a positive effect of 
vitamin C and carotenoids on overall cognitive function (Rutjes et al. 2018). A 
recent meta-analysis of randomized intervention trials suggested that carotenoids 
are associated with better cognitive performance (Davinelli et al. 2021). Further-
more, there is partial evidence of synergism between carotenoids and vitamin 
E regarding basic cognitive performance (Beydoun et al. 2020). The results on 
vitamin E impact on cognition have been mixed (Lakhan et al. 2021). 

Flavonoids were associated with a beneficial effect for maintaining cognitive 
function (Yeh et al. 2021; Gardener et al. 2021). 

Similarly, polyphenols have been reported to improve cognitive function in both 
healthy middle-aged volunteers and students (Philip et al. 2019; Carrillo et al. 
2021). 

8.2.2 Vitamins 

Both vitamin B12 and vitamin B6 are involved in the metabolism of homocys-
teine. Most systematic reviews showed no overall evidence that oral B vitamin 
supplementation prevented cognitive decline (Rutjes et al. 2018; Behrens et al. 
2020; Markun et al. 2021). Pooled post hoc analysis of two randomized clinical 
trials showed that B vitamins had favourable effects on global cognitive function-
ing and whole-brain atrophy in older people with mild cognitive impairment (Wu 
et al. 2021). Furthermore, a combination of B6 and B12, folate, and n-3 fatty 
acids contributed to preserving semantic memory in a subgroup of women and
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men with previous coronary artery disease or ischaemic stroke aged 45–80 years 
in a randomized clinical trial (Andreeva et al. 2011). 

Observational studies on folic acid supplementation provided mixed results 
(Scarmeas et al. 2018). A recent randomized clinical trial provided evidence that 
combining folic acid and docosahexaenoic acid therapy might improve cognitive 
function and reduce Aβ production in patients with mild cognitive impairment (Bai 
et al. 2021). 

Few evidence on vitamin D supplementation demonstrated no significant effect 
on cognition; there is some evidence of modest effect in older black adults (Kang 
et al. 2021). 

8.2.3 Omega-3 Fatty Acids 

Randomized clinical trials reported mixed findings with supplementation of 
docosahexaenoic acid (DHA), however, in the LipiDiDiet trial Souvenaid (medic-
inal food with docosahexaenoic acid as one of the bioactive ingredients) improved 
clinical dementia rating score (Soininen et al. 2017). Recently, it was suggested 
that the supplementation of eicosapentaenoic acid but not DHA improved global 
cognitive function (Patan et al. 2021), while no treatment effect was found after 
omega-3 supplementation in young adults (Marriott et al. 1854). Combining DHA 
and folic acid therapy might be more beneficial in improving cognitive function 
and reducing Aβ-related biomarkers in older adults with mild cognitive impairment 
(Bai et al. 2021). 

8.2.4 Dietary Patterns 

Due to the complex interactions among different nutrients on one side and com-
plex evolution of cognitive decline on the other, dietary patterns rather than single 
nutrients could better address the therapeutic potential of nutrients. Three dietary 
patterns were most extensively studied with cognitive decline: Mediterranean 
diet, dietary approaches to stop hypertension (DASH) and Mediterranean—DASH 
intervention for neurodegenerative delay (MIND). 

While several observational studies reported beneficial effects of mostly 
Mediterranean and MIND diets on cognition, few randomized controlled trials 
with mixed results do not provide conclusive evidence (Duplantier and Gardner 
2021). Furthermore, standardized approaches are needed both for nutrition and 
cognitive assessment (Scarmeas et al. 2018; Duplantier and Gardner 2021). 

8.3 Individualized Response to Diet 

There is considerable individual variation in how nutrients and food-derived 
bioactive molecules are absorbed and metabolized in humans. Understanding and
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assessing this variation may lead to better dietary recommendations and person-
alized dietary interventions. Sources for metabolic heterogeneity may include the 
human genome, epigenome, and microbiome (Zeisel 2020). 

8.3.1 Human Genome 

Genetic variation in the human genome may be associated with differential 
responses to nutrients (nutrigenetics). Few studies were addressing nutrigenetic 
implications in cognitive disfunction. In four studies, a healthy lifestyle includ-
ing diet, fatty fish consumption, fruits and vegetables, and moderate intake of 
polyunsaturated fats were associated with reduced dementia risk (Samieri et al. 
2021). Additionally, genetic variation in the MTHFR gene was associated with the 
total plasma homocysteine concentrations following B vitamin supplementation 
in the SU.FOL.OM3 trial (Fezeu et al. 2018). Polymorphisms in genes involved 
in vitamin uptake, transport, and metabolism were associated with vitamin sta-
tus (Niforou et al. 2020). Similarly, data on the genetic variation of antioxidant 
enzymes relevant to nutritional components accumulate (Birk 2021). 

8.3.2 Epigenome 

The field of epigenetics is concerned with changes in gene expression that are 
not related to changes in DNA sequence. Epigenetic control of gene expression 
involves several mechanisms, including DNA methylation and hydroxymethyla-
tion, histone modifications, non-protein-coding RNA molecules, RNA editing, 
chromatin remodelling, and telomere control. Epigenetic marks are reversible 
and influenced by several environmental factors, including nutrition, infections, 
chemicals, stress and age, to name only a few. 

Some dietary factors, such as folate, vitamins B6 and B12, choline and methio-
nine, are involved in metabolic pathways directly related to DNA methylation. 
However, diet effects also other epigenetic mechanisms, such as histone modifica-
tions and non-coding RNAs (Dauncey 2014). Consequently, dietary factors such 
as deficiency in folate, vitamins B6 and B12 effect cognition via alterations in 
DNA methylation or in the case of vitamins A, E and C via histone acetylation 
(Polverino et al. 2021). 

8.3.3 Microbiome 

The microbiome is involved in nutrient metabolism and releases specific diet-
microbial metabolites in the gut and the bloodstream. These include neuro-
transmitters, pro-inflammatory factors, and short-chain fatty acids. There are 
marked person-specific diet-microbiome interactions in the population, and thus, 
the gut microbiome contributes to the variation of subject-specific responses to
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diet (Leshem et al. 2020). In addition, several gut-derived metabolites linked to 
the brain metabolism, which are associated with specific diet—bacterial strains 
interactions, were identified (Samieri et al. 2021). 

8.4 Risk Factors for Dementia 

Risk factors for dementia include both nonmodifiable such as age, sex, and genetic 
predisposition as well as modifiable risk factors including less education, hyper-
tension, hearing impairment, smoking, obesity, depression, physical inactivity, 
diabetes, low social contact, excessive alcohol consumption, traumatic brain injury, 
and air pollution (Livingston et al. 2020). 

While diabetes and obesity may present direct targets for nutritional prevention 
or intervention and will be discussed in the next chapter, genetic predisposition 
may be used to estimate the risk of developing the disease. Moderately raised 
concentrations of homocysteine were reported to be associated with an increased 
risk of dementia in men and women over 65 years (Smith et al. 2018). It has been 
estimated that 25% of individuals aged 55 years and older have a family history 
of dementia (Loy et al. 2014) which might be associated with a monogenic or 
polygenic predisposition and complex interactions with environmental factors. 

Monogenic forms of dementia may be due to pathogenic genetic variations 
in the APP, PSEN1 and PSEN2 genes related to Alzheimer disease, MAPT, 
GRN, C9orf72, CHMP2B, FUS, VCP, SQSTM1, OPTN, UBQLN2 and TBK1 
genes related to frontotemporal dementia, NOTCH3, GLA, TREX1, COL4A1 and 
HTRA1 genes associated with the vascular type of dementia, and more than 168 
genes related to rare syndromic forms of dementia (Huq et al. 2021). In addition 
to rare monogenic forms of dementia, polygenic risk scores can be used to predict 
the risk of developing dementia, as has been shown for Alzheimer disease (Rojas 
et al. 2021; Escott-Price et al. 2017; Leonenko et al. 2021). 

Prognostic models may assess different risk factors and provide the likelihood 
that an individual will develop dementia; however, there is no golden standard to 
evaluate the dementia risk yet (Geethadevi et al. 2021; Goerdten et al. 2019). 

8.5 Challenges and Future Directions 

Presented data show evidence that, on the one hand, evidence is accumulating 
about the effects of nutrition on pathological processes involved in cognitive 
decline and for the assessment of individual responses to diet as well as risks 
for developing dementia. On the other hand, current evidence is mainly based 
on a single or small number of observed interactions. We are just at the begin-
ning of understanding single elements that are part of much more complex and 
heterogeneous networks, necessary to understand and model in order to design 
comprehensive dietary interventions for an individualized approach to cognitive 
decline prevention (Ommen et al. 2017; Ebaid and Crewther 2020).
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To advance the field, comprehensive data on multiple combinations of nutri-
tion exposures for different, specific domains of cognitive function are needed 
(Samieri et al. 2021). High throughput technologies will provide several levels 
of nutrigenomic biomarkers, including transcriptomic, proteomic, metabolomic, 
lipidomic, and immunomic, which will provide data for a systems approach to 
understanding nutritional effects on molecular pathways. At the same time, data 
on potential sources influencing metabolic heterogeneity in response to nutrition, 
including individual genetic and microbiome data, should be available to personal-
ize intervention strategies. Furthermore, tools for dementia risk assessment based 
on a combination of risk factors will provide information on individualized risk 
for cognitive decline to inform precision nutrition interventions. Finally, due to 
the heterogeneous and complex aetiology and pathogenesis of cognitive decline, 
precision nutrition is one of the multidomain interventions, which should simulta-
neously target several risk factors and mechanisms to achieve optimal preventive 
effects (Solomon et al. 2021). 

Large cohorts from different world populations, standardized study designs, 
and analytical methods are needed to provide adequate power for evidence-based 
recommendations. 
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Abstract 

Nowadays, the various omics disciplines such as genomics, proteomics, 
metabolomics, metagenomics, and transcriptomics generate a plethora of data. 
At the same time, a multitude of omics markers may be accompanied by a multi-
tude of diseases. Hence, finding relationships between omics markers and disease 
in their early stages is a challenge that is at the very core of predictive or per-
sonalized medicine. In this chapter, an overview of algorithms for solving these 
problems of supervised learning is given, and challenges in this problem domain 
are discussed. Questions of learnability should be considered, and the quality 
and precision of the predictions should be assessed critically and quantitatively. 
Therefore, quality metrics for the assessment of the predictions are discussed as 
well. 

9.1 Introduction 

Modern sequencing technologies make it possible to generate genomic data of 
patients routinely and at reasonable cost. In addition to sequences of the nucleobases, 
epigenetic modifications and the regulation of genes may be associated with diseases 
(Tan et al. 2021), which motivates the inclusion of epigenetic states in the collected 
data. The effects of healthy nutrition (Mainardi et al. 2019) are also expected to be 
observable in patients’ data. More generally, overviews of the role machine learning 
in health care are shown in Figs. 9.1 and 9.2. 

But generating all these data is just a necessary prerequisite to solve problems 
of biological, medical, or clinical relevance. Having made the data available, the 
challenge can be stated as follows: Given a certain disease, is it possible to find or 
calculate a function (the predictor or prediction model) that takes genetic, epigenetic, 
or other markers as inputs and that predicts the disease as early as possible and as 
reliably as possible? Part of the challenge is to identify any markers that are expedient 
for finding such a predictor. Also, the data or markers used should be obtainable in 
a manner that is as non-intrusive as possible. In the ideal case, only blood samples 
(Chen et al. 2018; Cohen 2020; Elena Tomeva et al. 2022) or harmless radiation is 
used. 

It goes without saying that answering this question is of great importance in 
health care and also in view of aging populations in developed countries. As usual 
in economy, it can be expected that technological progress and commercial interest 
will drive the price of determining relevant markers down, even if the markers are 
expensive to obtain at present. Hence, the major challenge in this area is most likely 
to identify expedient (genetic) markers first. As discussed below, there are good 
theoretic reasons why the identification of useful markers is a hard learning problem.
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Fig. 9.1 Overview of machine learning in medicine. From https://academic.oup.com/database/ 
article/doi/10.1093/database/baaa010/5809229 

Fig. 9.2 The role of machine learning in health care. Data from various sources are collected in 
databases. Methods from the three pillars of machine learning are then used to extract information. 
Finally, the extracted information and knowledge is made available to patients and healthcare 
specialists 

Clearly, large benefits are obtained whenever the predictor is so reliable that it can 
be employed at a large scale for multiple diseases and that it can reliably trigger the 
use of more conventional means to obtain clinically relevant and actionable diagnoses 
by possibly more intrusive means if the test result is positive for a certain disease. 

Early and reliable detection are both stated as desirable goals in the problem 
statement above. These two goals are, however, certainly conflicting requirements. 
As an extreme example, a predictor that always returns a positive answer never 
misses a case of a disease, but is utterly useless, as all healthy individuals become 
false positives. Therefore, various metrics to assess the quality of a predictor are 
needed and discussed below. 

The data available for determining or finding a predictor are fraught with uncer-
tainties due to measurement errors, recording and transmission errors, the possible

https://academic.oup.com/database/article/doi/10.1093/database/baaa010/5809229
https://academic.oup.com/database/article/doi/10.1093/database/baaa010/5809229
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lack of significant markers, and the possible rareness of the disease. All these factors 
contribute to the challenge of finding such predictors. 

If there were an infinite data stream and a physiological basis of disease and all 
relevant aspects were available in the data and sufficient time were available to per-
form the calculations, it would certainly be possible to learn predictors. However, 
some of these assumptions are violated in reality. In particular, the available data 
are always finite. Therefore, questions arise: How well can a predictor be learned 
(a priori estimate)? How well has it been learned having done the calculations (a pos-
teriori estimate)? These questions motivate the development of a theory of learning 
underlying and informing implementations of learning algorithms. One of the most 
fundamental and important theories in this regard is probably approximately correct 
(PAC) learning and discussed below. 

In summary, this chapter provides an overview of the challenges inherent in the 
analysis of markers in personalized health care and an introduction to fundamental 
learning theory and algorithms for finding predictors. 

The rest of this chapter is organized as follows. In Sect. 9.2, the prediction problem 
is stated within the context of machine learning and supervised learning in particular. 
In Sect. 9.4, the inherent challenges in prediction based on (epi-)genetic markers are 
discussed. In Sect. 9.3, an overview of algorithms for supervised learning is given. 
In Sect. 9.5, metrics to assess the quality of predictors are presented. In Sect. 9.6, 
the theory of probably approximately correct learning is shortly discussed, since it 
provides the intellectual foundation and framework to formulate learning problems, 
to discuss learnability, and to assess whether and how well a learning problem has 
been solved. Finally, in Sect. 9.7, conclusions are drawn. 

9.2 Supervised Learning 

Supervised learning is the field of machine learning that is most relevant for finding 
predictors of disease. 

9.2.1 Basic Definitions and the Learning Task 

In general, there is a vector of variables that are called independent variables or 
inputs or features. These variables are used to predict another vector of variables, the 
dependent variables or outputs or responses. Discrete variables (taking values from 
a finite set) are also called categorical variables or qualitative variables or factors. 
Continuous variables (taking real values) are also called quantitative variables. 

We discern two types of prediction tasks. A classification task is concerned with 
predicting discrete or qualitative outputs, while a regression task is concerned with 
predicting continuous or quantitative outputs. 

We usually denote inputs by X and outputs by Y (when they are referred to 
as random variables) or by x and y (when we mean concrete values or vectors of 
values). The capital letters signify random variables which are a useful notion here
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as we usually make the assumption that the values that are available for learning are 
drawn from underlying and fixed distributions. 

The measurements, observations, realizations, or samples of the random variables, 
i.e., the data points used for training/learning, testing, and validation, are denoted by 

(xi , yi ) ∈ Sin × Sout, i ∈ {1, . . . ,  N }. 

Depending on the purpose for which a set 

{ 
(xi , yi ) ∈ Sin × Sout | i ∈ {1, . . . ,  N }} 

consisting of such realizations is used, it is called the training data, the testing data, 
or the validation data. 

We make the basic assumption that a statistical model of the form 

Y = f (X ) + ε, E[ε] =  0, (9.1) 

holds, where the function 

f : Sin → Sout 
is the true relationship between the inputs (which are elements of the set Sin) and the 
outputs (which are elements of the set Sout). The random variable 

ε ∼ E 

is i.i.d. observation noise, whose distribution is E . Otherwise, there would be nothing 
to learn. 

Now the learning task in supervised learning is to find a prediction model or 
predictor 

f̂ : Sin → Sout 
that resembles the unknown true relationship f as closely as possible by using only 
realizations. 

In order to quantify this resemblance, loss functions and errors are commonly 
used. 

9.2.2 Loss Functions 

Loss functions and errors are used in order to quantify how well a prediction model 
resembles the truth. Various different loss functions and errors may be used for 
regression and classification tasks.
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9.2.2.1 Regression Tasks 
We denote (vector valued) inputs by x, (vector valued) outputs by y, and the prediction 
model by f̂ as usual. For regression tasks, common choices for the loss function L 
are the p-norms 

L( f̂ (x), y) := || f̂ (x) − y||p 

including the special cases of the absolute error (p = 1), the squared Euclidean error 

L( f̂ (x), y) := || f̂ (x) − y||2 2 
(p = 2 and squared), and the maximum error (p = ∞). 

9.2.2.2 Classification Tasks 
For classification tasks, different loss functions are usually used. We suppose that 
the qualitative or categorical response y ∈ Sout takes values k from the set Sout := 
{1, . . . ,  K }, which represents K classes. Often, but not always, the probabilities 

p̂k (x) := P[k = y | x], k ∈ Sout, 

are modeled and the most likely value is chosen, i.e., the prediction model ĝ is 

ĝ(x) := arg max 
k∈Sout 

pk (x) = arg max 
k∈Sout 

P[k = y | x] ∈  Sout. 

Typical loss functions are the zero-one loss 

L( ̂g(x), y) := [ ̂g(x) = y] 

and −2 times the log-likelihood 

L( ̂g(x), y) := −2 
K∑ 

k=1 

[k = y] log p̂k (x) = −2 log p̂y(x). 

9.2.3 Errors 

Having decided on a loss function, we define various types of errors based on the 
loss function. In the following, the prediction model f̂T has been estimated using a 
training set 

T := 
{ 
(xi , yi ) ∈ Sin × Sout | i ∈ {1, . . . ,  N }} 

with size N = |T |. We imagine that the samples have been drawn from the underlying 
data distribution 

(X , Y ) ∼ D.
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To make the dependence of the prediction model on the training data explicit in our 
notation, we add the index T to f̂ and write f̂T . 

We now make this dependence even more explicit by christening the (unfortu-
nately usually unnamed) learning algorithm. A learning algorithm a takes a training 
set as input and outputs a prediction model, i.e., it is a function 

a : sets(N , Sin × Sout) → F(Sin, Sout), (9.2) 

where sets(N , S) denote the set of all sets with N elements in S, and F( A, B) denotes 
the set of all functions from the set A to the set B. Using the learning algorithm a, 
we have 

f̂T := a(T ). 
This allows us to make the dependencies of the errors defined below on the learning 
algorithm and the training set explicit. 

The training error TE is defined as the (empirical) expected value 

TE(a, T ) = TE( f̂T , T ) := 
1 

N 

N∑ 

i=1 

L( f̂T (xi ), yi ) 

of the loss calculated on the training set T . The training error is available immediately 
during and after training/learning, but it is important to note that minimizing the 
training error is not our ultimate goal (see Sect. 9.2.5). Since the size of the training 
set T is finite, the training error can always be reduced to zero (for a fixed set T ) by  
increasing the model complexity, i.e., by enlarging the class of functions from which 
the prediction model is calculated. 

The generalization error or test error GE is defined as 

GE(a, T ) = GE( f̂T , T ) := E(X ,Y )∼D[L( f̂T (X ), Y )], 

where the random variables X and Y are drawn from their joint distribution D over 
Sin × Sout. The generalization error depends on the training set T via the prediction 
model f̂T and hence is the error for this particular prediction model and training 
set. The index (X , Y ) ∼ D of the expectation indicates that the samples to be used 
for calculating the expectation and hence the generalization error are to be (newly) 
drawn from the underlying distribution D of all data available to us and hence that 
these samples are independent of the training data T used for finding f̂T . 

To solve learning problems, the generalization error is much more important than 
the training error. The generalization error tells us how small we can expect the loss to 
be when we make predictions using our prediction model f̂T . Still, the generalization 
error depends on the training data T , and we may have been lucky in our choice of 
training data resulting in a particularly well working prediction model and hence in 
an exaggerated confidence in our ability to solve the prediction problem. 

So far, the training set T has been chosen once and remained fixed. In order 
to assess our ability to solve a learning problem in a reproducible manner with
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respect to new choices of the training set, we must consider what happens when 
we generate new training sets (by drawing samples (X , Y ) ∼ D from the underlying 
data distribution D). We hence extend the expectation in the generalization error also 
over the sampling of the training set, i.e., also over T ∼ D|T |, where the notation 
indicates that each of the N = |T | elements of the set T is sampled as (X , Y ) ∼ D. 

The expected prediction error or expected test error is defined as 

EPE(a) := ET ∼D|T | [GE(a, T )] =  ET ∼D|T |, (X ,Y )∼D[L( f̂T (X ), Y )], (9.3) 

where the expectation now also averages over all training sets. Therefore, the 
expected prediction error assesses how well a learning algorithm can solve a predic-
tion problem. 

Finally, we can consider the expected value E[EPE] of the expected predic-
tion error over all algorithms. Such considerations result in no-free-lunch theorems 
(Wolpert and Macready 1997) which state that while an algorithm may outperform 
others on a particular class of learning problems, it cannot outperform other algo-
rithms consistently on all learning problems. No-free-lunch theorems are of no imme-
diate interest here. 

9.2.4 Model Selection, Model Assessment, and Datasets 

In the previous section, we have already mentioned that learning should be repro-
ducible with respect to the training set, and we have seen that the expected prediction 
error is a function of the learning algorithm only, allowing us to shed any dependence 
(of the generalization error) on the training set and also allowing us to assess the 
usefulness of a learning algorithm. 

In order to solve a learning problem, there are two separate goals that need to 
be achieved. The first is model selection. Since, there is a huge choice of learning 
algorithms of the form (9.2) and of representations of the prediction model (see 
Sect. 9.3), we must estimate the performance of different models and algorithms in 
order to choose the best one for our learning task. 

The second goal is model assessment. Having decided on the prediction model 
and learning algorithm for our task, we would like to estimate the generalization 
error (which is always calculated using new data) of the final prediction model that 
we consider the solution to our learning problem so that we know how well we have 
solved the given learning task. 

Whenever enough data are available, the whole dataset is randomly divided into 
three parts, and the typical procedure comprises the following three steps. In each 
step, one of the errors defined in Sect. 9.2.3 is used. 

1. Model fitting: The training set is used to fit the prediction models. The training 
error is useful in this regard. 

2. Model selection: The validation set, which has not been used yet, is used to 
estimate the expected prediction error and to select the model.
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3. Model assessment: Finally, the test set, which has not been used yet, is employed 
to assess the generalization error of the finally chosen model. If the performance 
is satisfactory, the learning task has been solved. 

A typical split may be to use 50% of the data for the training set, 25% for the 
validation set, and 25% for the test set, but this split is far from being a general rule. 

9.2.5 Learnability and Data 

Loss functions and errors make it possible to formulate problems in supervised learn-
ing as optimization problems. The training error is minimized such that a suitable 
prediction model f̂ is found, typically by calculating the parameter vector θ that 
corresponds to a parameterized prediction model f̂θ (the minimizer) whenever we 
search for prediction models in a class of functions parameterized by θ . 

In this manner, part of learning becomes an optimization problem, for which many 
computational approaches are available. For computational purposes, it is expedient 
that the loss functions and the optimization algorithms harmonize. However, this 
implies that the minimizer f̂ is not a unique function, as our particular choices of 
the class of functions from which it is sought, of loss function, and of optimization 
algorithm may yield different solutions or solution candidates, i.e., prediction models. 
Importantly, as already discussed in the previous sections, learning is more than an 
optimization problem, as it is not sufficient to just minimize the training error. 

In this regard, model selection and model assessment (see Sect. 9.2.4) are essential, 
and sufficient data are necessary. In other words, the ability to learn from data, i.e., 
the learnability, depends on the availability of data. Therefore, we discuss the amount 
of data and some aspects of learnability in the following. (Learnability can also be 
investigated in the view of computational restraints, but this is not of immediate 
interest here.) 

The basic assumption is that a stream of data points 

z1, z2, z3, . . .  

is available, where the zi are realizations of a random variable 

Z ∼ D, (9.4) 

where D is the data distribution. The data distribution is often assumed to be constant. 
But this is not always the case; in certain type learning, e.g., in reinforcement learning, 
it may change over time, and then solutions that adopt to the changing conditions 
are sought. 

In the case of supervised learning, the random variable Z has the (vector) structure 
Z = (X , Y ), where X is an input and Y is an output. In other types of learning, the 
random variable Z may have a different structure.
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Depending on when the data or realizations becomes available and when the 
learning algorithm is executed, we can discern two types of learning, namely online 
and offline learning. 

• In offline learning, all realizations are available before learning. In other words, 
historic data are collected, and then the learning algorithm is executed. 

• In online learning, data collection and running the learning algorithm are inter-
leaved. In other words, the learning algorithm is run again or continues whenever 
a new data point or a batch of data points becomes available. Note that learning 
using simulations is online learning. 

Depending on the length of the stream of data points, we discern two kinds of 
learning results. 

• In the first case, we assume that an infinite number of data points, i.e., a sequence 
<zi >i∈N, is available for learning. Then learning results state that the solution 
calculated by a learning algorithm converges (in a specific sense) to the true 
solution or an optimal solution. We call these learning results qualitative ones, as 
they provide no indication how fast convergence occurs. 

• In the second case, we assume that a finite number of data points, i.e., a vector 
(z1, . . . ,  zN ), is available for learning. Then learning results state that the solution 
calculated by a learning algorithm solves the problem with a given maximal error 
(in other words, to a prescribed accuracy) with a certain probability; the learned 
statement is probably approximately correct. 
Both limitations mentioned in the last sentence, namely that we solve the problem 
to a given accuracy (only approximately) and with a certain probability (only 
probably), are inherent in learning [at least in the sense of the assumption leading 
to (9.4)]. 
The fundamental limitation that we can only learn with a certain probability stems 
from the problem that we may not have observed all relevant cases. For example, 
if our task is to learn the colors of swans, we have never observed a sample in 
Australia, we are led to believe that all swans are white, because we have never 
observed a Cygnus atratus, a black swan. 
The fundamental limitation that we can only learn to a certain accuracy stems from 
the problem that we may have observed an unluckily large number of outliers. For 
example, if we want to estimate the expectation of a real-valued random variable 
and observe many outliers, the accuracy of the sample mean as the estimator is 
reduced. 
Of course, as the number of observations increases, the probability that a statement 
is correct increases for a given maximal error or, vice versa, the maximal error 
decreases for a given probability. 
These considerations lead to probably approximately correct learning (see Sect. 
9.6). If such a learning result is available, the learning problem is solved for all 
intents and purposes. Still, the practical question may remain whether the error
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bounds provided by the theory for a certain probability are sharp or not. If they 
are not sharp, the error or the number of required samples is overestimated. 

In the second case, we can furthermore discern the two cases whether the data 
fit into memory or not. If they do not fit, the fact that a part of the data needs to be 
fetched from a slower source influences the run time and the design of the learning 
algorithm. The case that not all available data fit into memory also provides a good 
definition of the field of big data. 

Theoretic results for the first case are already very beneficial, as they show that 
a learning algorithm calculates what it is supposed to calculate, although we do not 
know quantitatively how well it performs. Results about probably approximately 
correct learning in the second case are even better, as they also yield the convergence 
speed as a function of the number of available data points. 

In Sect. 9.2.4, learning under the assumption that enough data are available was 
discussed. However, restrictions on data availability are quite common, as collecting, 
storing, cleaning, and imputing data are associated with cost (cf. Sect. 9.4.2). The 
most notable exception may be generating the data Z ∼ D from simulations. 

In order to discuss artificial intelligence and machine learning in a historical 
context, we recall that Leibniz believed that most of human reasoning can and should 
be reduced to calculations: 

The only way to rectify our reasonings is to make them as tangible as those of the math-
ematicians so that we can find our error at a glance, and when there are disputes among 
persons, we can simply say: let us calculate [calculemus] without further ado to see who is 
right. Leibniz (2022) 

Hence the imperative “calculemus!” set out a whole research program in a single 
word. 

By understanding learning as reliably extracting information from observations 
as in (9.4), we note, however, that uncertainties must additionally be dealt with and 
included in the learning process. Examples are the statistical model in (9.1) and the 
discussions of probably approximately correct learning above and in Sect. 9.6. In  
this sense, artificial intelligence and machine learning must go beyond deterministic 
models, which have been prevalent during most of the history of science. 

To emphasize this notion and to paraphrase Leibniz, the imperative 

“datis discamus!” (“let us learn from the data!”) 

summarizes artificial intelligence and machine learning. Our goal is to learn from 
observations in the face of uncertainties, building on Leibniz’ program, and accepting 
new challenges.
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9.2.6 Bias and Variance 

After these general considerations, we elucidate the structure of the expected pre-
diction error (9.3) for a particular loss function, namely the squared loss 

L(a, b) := (a − b)2, 

which is useful for regression problems. 
While expectations over the error ε ∼ E were implicit in Sect. 9.2.3, we now  

mention them explicitly to make the calculations clearer. 
For the squared loss, the expected prediction error (9.3) becomes 

EPE = Eε∼E, T ∼D|T |, (X ,Y )∼D[( f̂T (X ) − Y )2]. (9.5) 

The important result below means that this expected prediction error can be decom-
posed into three parts. For the decomposition, the expectation over (X , Y ) ∼ D is 
not necessary, and we hence perform the calculations using the expected squared 
error 

ESE := Eε∼E, T ∼D|T | [( f̂T (X ) − Y )2]. 
With this definition, the equality 

EPE = E(X ,Y )∼D[ESE] 

holds, and hence the decomposition below translates to the expected prediction error. 

Theorem 2.1 (bias–variance decomposition for squared loss function) Suppose that 
the statistical model (9.1) holds with E[ε] =  0 and that the noise ε is independent 
of the random variables X and Y . Then the expected squared error (9.5) is equal to 

ESE = Eε∼E, T ∼D|T | [( f̂T (X ) − Y )2] 
= VT ∼D|T | [ f̂T (X ) − f ̄ (X )]

︸ ︷︷ ︸
variance 

+ ( f ̄ (X) − f (X ))2
︸ ︷︷ ︸

bias2 

+ V[ε]︸︷︷︸
noise 

, 

where 

f ̄ (X) := ET ∼D|T | [ f̂T (X)] (9.6) 

is the mean (over all sets T ) prediction. 

A proof is given in Appendix. The assumption that E[ε] =  0 is benign, because 
otherwise a nonzero constant can be absorbed into the true model f . 

The three terms in the decomposition have specific meanings.
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Fig. 9.3 Schematic diagram of the behavior of the bias squared and the variance as functions of 
model complexity or degrees of freedom 

1. The first term is the variance of the learning algorithm. Models with low com-
plexity (i.e., a low number of degrees of freedom) have low variance, and models 
with high complexity have high variance. 

2. The second term is called the bias squared, it does not depend on the training 
set T , and it is due to the model class. Models with low complexity have high 
bias, and models with high complexity have low bias. 

3. The third term is the observation noise. It is inherent in the statistical model (9.1) 
and hence irreducible, i.e., we cannot reduce it (e.g., by our choice of model class 
or learning algorithm). 

Generally speaking, bias–variance decompositions decompose the expected loss 
into the three terms above, i.e., the variance, the bias, and the noise. The theorem 
above states the standard decomposition for the squared loss. The proof works only 
for the squared loss, and a generalization to other loss functions is not obvious. For 
example, a number of different decompositions have been proposed for the zero-one 
loss (Domingos 2000).
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The typical behavior of the bias squared and the variance as functions of model 
complexity or degrees of freedom is shown in Fig. 9.3. The observation noise is not 
shown as it is constant and does not influence the optimal model which minimizes 
the total error. 

9.3 Algorithms 

Various types of algorithms have been developed for calculating prediction models. 
In this section, some of the most commonly used ones are introduced. 

9.3.1 KNN 

The k-nearest neighbors algorithm (KNN) first finds the k neighbors of the given 
point that are closest in the training set and then returns the prediction based on 
these k neighbors. When used for classification, a plurality vote of the neighbors is 
returned. When used for regression, the expectation of the values of the k nearest 
neighbors or a weighted mean of these values is returned. 

The only parameter in the KNN algorithm is the number of neighbors to be used. 
If k is small, the local structure of the data is predominant in the prediction; if k is 
large, the prediction model is smoother. 

In implementations of the KNN algorithm, it is often expedient to use k-
dimensional trees, feature selection, and/or dimensionality reduction. 

9.3.2 Linear Regression 

In linear regression, linear combinations of regressors are fit to the known data. 
Regressors are functions of the independent variables, such as the commonly used 
constants, that are chosen by the user with the intent of facilitating learning by 
incorporating prior knowledge into the prediction models. Many variants of this 
general approach have been developed. 

9.3.3 Logistic Regression 

Logistic models (or logit models) model probabilities. If we denote the probability 
of a class in a classification problem by p, the logit or log-odds (the logarithm with 
base b of the odds p/(1 − p)) is defined as 

l( p) := logb 
p 

1 − p 
, p ∈ (0, 1).
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The logit is then modeled, for example, using a linear regression to find 

l( p) = 
∑ 

i 

αi ri , 

where the αi are the model parameters and the ri are the regressors (see Sect. 9.3.2). 
After having found the model parameters using the data, the equation is solved for p 
to obtain 

p = 1 

1 + b− 
∑ 

αi ri 
, 

which can be written as 

p = σb 
(∑ 

αi ri 
) 

, 

where σb is the sigmoid function 

σb(x) := 1 

1 + b−x 

with base b. 

9.3.4 Artificial Neural Networks 

The study of artificial neural networks (ANN), which are computational models for 
neural networks, began in the middle of the past century. In their simplest form, in 
feed-forward ANN, the input is propagated through layers of neurons. Going from 
one layer to the next, an affine transformation is applied to the output of the previous 
layer and a nonlinear function is applied element-wise at each neuron. It goes without 
saying that many variations exist. ANN have a huge number of parameters, i.e., 
the model complexity is high, and therefore, overfitting (see Sect. 9.4.1) should be 
prevented. 

Training algorithms are generally based on stochastic gradient descent. The gradi-
ent of the ANN required in the training algorithms is calculated by backpropagation, 
which is another name for automatic backward differentiation. Backpropagation 
makes it possible to calculate the gradient of the ANN at a given point at about 
twice the computational cost of evaluating the ANN, which is a great improvement 
compared to the naive finite-difference approximation of the gradient, whose com-
putational cost increases linearly with the number of parameters. 

9.3.5 Naive Bayes Classifiers 

Naive Bayes classifiers are called naive because of the strong assumption that all 
independent variables or features are independent given the output variable. Denot-
ing the independent variables by x = (x1, . . . ,  xn) and the event that the sample
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is in class k ∈ {1, . . . ,  K } by Ck , naive Bayes classifiers estimate the conditional 
probability p(Ck |x). By Bayes’ theorem, it is equal to 

p(Ck |x) = 
p(Ck )p(x|Ck ) 

p(x) 
. 

In Bayesian terminology, this equation means 

posterior = 
prior × likelihood 

evidence 
. 

The denominator is only important as a constant of proportionality. 
The nominator is equal to the joint probability p(Ck , x) and can be rewritten using 

the definition of the conditional probability as 

p(Ck , x) = p(x1, . . . ,  xn, Ck ) 
= p(x1 | x2, . . . ,  xn, Ck ) p(x2, . . . ,  xn, Ck ) 
=  · · ·  
= p(x1 | x2, . . . ,  xn, Ck ) p(x2 | x3, . . . ,  xn, Ck ) · · ·  
p(xn−1 | xn, Ck )p(xn|Ck ) p(Ck ). 

By the (naive) assumption that all independent variables xi are mutually independent 
conditional on the class Ck , we have  

p(xi | xi+1, . . . ,  xn, Ck ) = p(xi |Ck ) ∀i ∈ {1, . . . ,  n − 1}. 

This yields 

p(Ck , x) = p(Ck ) 
n|| 

i=1 

p(xi |Ck ) 

and therefore the equation 

p(Ck |x) = 
p(Ck ) 

||n 
i=1 p(xi |Ck ) 
p(x) 

. 

for the posterior probability. 
To find the predicted class, the maximum-a-posteriori rule is often used. It assigns 

the class k with the largest probability to a given sample x. Since the denominator is 
constant for this purpose, the predicted class is 

arg max 
k∈{1,...,K } 

p(Ck |x) = arg max 
k∈{1,...,K } 

p(Ck ) 
n|| 

i=1 

p(xi |Ck ), 

where the likelihoods p(xi |Ck ) and p(Ck ) have been learned from the training data.
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9.3.6 Decision Trees and Random Forests 

A decision tree is a certain kind of tree. Each internal node has two children and 
is labeled with an independent variable and a rule or decision such as “follow the 
left child of the node if the independent variable is less equal than a specific value 
and the right child if not.” Each leaf of the tree is labeled with a specific class. By 
following the children starting at the root according to the rules, a classification of 
each sample is achieved. 

A decision tree is constructed by partitioning the training data into two subsets, 
which then constitute the two children and the corresponding decision. This process 
is repeated recursively for each subset or child and is stopped when partitioning no 
longer adds value the classification. This algorithm is called top-down induction of 
decision trees and is the most common one for learning decision trees. 

The construction of a decision tree is not unique. Techniques that construct more 
than one decision tree are called ensemble methods. They include boosted trees (e.g., 
AdaBoost), bootstrap aggregated decision trees (e.g., random forests), and rotation 
forests. 

9.4 The Challenges 

Learning predictive models for healthcare applications is challenging as already 
mentioned in the introduction in Sect. 9.1. The reasons are discussed in this section. 
While is also possible to consider problems in unsupervised learning by asking 
questions such as which genes are similar or which samples are similar, we focus on 
supervised learning for the purposes of predicting diseases here. 

9.4.1 Overfitting 

Having summarized basic notions of supervised learning in Sect. 9.2, we start this 
section with a discussion of a general point always to be kept in mind in supervised 
learning. Recalling the goal of minimizing the expected prediction error defined in 
Sect. 9.2.3 and the bias–variance decomposition for the squared loss in Sect. 9.2.6, 
just minimizing the bias is not sufficient to solve a learning problem (see Fig. 9.3). 
Overfitting means that the model complexity has become too large, and hence the 
increasing variance increases the total error despite the decrease of the bias. The 
model complexity must be chosen prudently such that the total error is minimized 
and an optimal model is found. 

One way to reduce overfitting is regularization. Regularization means that a term 
that penalizes complex models is added to the loss function, which effectively reduces 
the size of the model class. For example, when the models are artificial neural net-
works, the regularization term may penalize large parameters.
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9.4.2 (Epi-)genetic Problems 

A fundamental problem that hinders the search for genetic and/or epigenetic features 
(or biomarkers) is that the number of samples (or patients) is usually much, much 
smaller than the number of possible (epi-)genetic features such as single-nucleotide 
polymorphisms and other mutations. Therefore, correlations between the disease 
and one of the many possible features may occur purely by chance and without any 
predictive value. As the number of samples (or patients) increases, these spurious 
correlations vanish and only features with predictive value remain. 

Another point that should be kept in mind when screening features is that the 
features may only be screened using the training dataset. The wrong way is to use 
the whole dataset for screening features, which would violate the separation between 
training, validation, and test datasets (see Sect. 9.2.4) (Hastie et al. 2009, Sect. 7.10.2). 

9.4.3 A Numerical Example 

To illustrate the effect of the huge number of possibly relevant features in (epi-
)genetic problems and to estimate the number of samples (patients) that suffices 
to identify relevant features (biomarkers) and to achieve reliable classification, a 
numerical experiment was conducted. The main assumption is that there is a (small) 
number of relevant features hidden among the (large) total number of features. 

In the numerical experiment, a certain number of features is generated as standard 
normally distributed random numbers, and it is assumed that a patient has a tumor 
if and only if the values of a certain (small) number of features are positive. In other 
words, the rest of the features is ignored when determining the health status of the 
simulated patients. This results in about 1/2 to the power of the number of relevant 
features of the total number of patients having a tumor in the numerical experiments. 
Then the Pearson correlation coefficient of each feature with the health status is 
calculated, the correlations are sorted by their absolute values, and a certain number 
of features with largest correlations (by absolute value) is employed to predict the 
health status using k nearest neighbors. 

Numerical results are given in Table 9.1. A limitation of this example that we use 
the number of relevant features in the learning process, which is known here; in the 
real world, the number of features to be used must be learned. It is seen in the table 
that about 300 training samples are sufficient in this example to correctly identify 
the three relevant features. The remaining incorrect predictions are due to the KNN 
prediction. 

It is also observed that the informedness lives up to its name and can discern much 
clearer than the accuracy when the features are identified to inform the prediction.
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Table 9.1 Numerical results for various numbers of features, relevant features, and best correlations 
used 

Total 
features 

Relevant 
features 

Used 
features 

Training 
samples 

Found all 
relevant 
features (%) 

Accuracy Informedness 

100 3 3 50 4 0.834 0.138 

100 3 3 100 36 0.881 0.424 

100 3 3 150 72 0.922 0.625 

100 3 3 200 90 0.941 0.720 

100 3 3 250 99 0.953 0.783 

100 3 3 300 100 0.956 0.800 

100 3 3 400 100 0.960 0.816 

100 3 3 500 100 0.963 0.830 

100 3 3 1 000 100 0.970 0.864 

200 3 3 50 0 0.826 0.103 

200 3 3 100 18 0.862 0.338 

200 3 3 150 63 0.910 0.574 

200 3 3 200 86 0.937 0.703 

200 3 3 250 94 0.948 0.756 

200 3 3 300 99 0.955 0.794 

200 3 3 400 100 0.960 0.813 

200 3 3 500 100 0.962 0.821 

200 3 3 1 000 100 0.970 0.864 

400 3 3 50 1 0.822 0.060 

400 3 3 100 15 0.856 0.277 

400 3 3 150 57 0.903 0.538 

400 3 3 200 80 0.932 0.680 

400 3 3 250 95 0.949 0.761 

400 3 3 300 99 0.956 0.800 

400 3 3 400 100 0.960 0.813 

400 3 3 500 100 0.963 0.832 

400 3 3 1 000 100 0.970 0.864 

The numbers of training samples is also given. The number of samples for testing is always equal 
to 100 000, and  100 runs were used to average the results the last three columns 

In summary, such simulations make it possible to roughly estimate the relationship 
between the numbers of training samples and of the relevant features. 

9.5 Quality Metrics 

Errors, loss functions, optimization algorithms, etc., are only intermediate goals. The 
ultimate goal is the correctness and usefulness of the prediction model. Therefore, 
commonly used quality metrics are summarized in this section. It is prudent to not
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only consider a single quality metric, as it is hard to summarize all information about 
the quality of a prediction in a single number. 

9.5.1 True and False Positives and Negatives 

We denote the number of true positive samples by P and the number of true negative 
samples by N . Therefore, the total number of samples is P + N . 

The number TP of true positives is the number of predictions that correctly classify 
a positive sample as positive. The number TN of true negatives is the number of 
predictions that correctly classify a negative sample as negative. 

The number FP of false positives is the number of predictions that wrongly classify 
a negative sample as positive. The number FN of false negatives is the number of 
predictions that wrongly classify a positive sample as negative. 

Clearly, the equalities 

P = TP + FN, 
N = TN + FP, 

P + N = TP + TN + FP + FN 

hold. 

9.5.2 Positive and Negative Rates 

The sensitivity or hit rate or true positive rate is defined as 

TPR := 
TP 

P 
= 

TP 

TP + FN 
= 1 − FNR. 

The specificity or selectivity or true negative rate is defined as 

TNR := 
TN 

N 
= 

TN 

TN + FP 
= 1 − FPR. 

The false positive rate is defined as 

FPR := 
FP 

N 
= FP 

FP + TN 
= 1 − TNR. 

The miss rate or false negative rate is defined as 

FNR := 
FN 

P 
= 

FN 

FN + TP 
= 1 − TPR.
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9.5.3 Predictive Values Etc. 

The precision or positive predictive value is defined as 

PPV := 
TP 

TP + FP 
= 1 − FDR. 

The negative predictive value is defined as 

NPV := 
TN 

TN + FN 
= 1 − FOR. 

The false discovery rate is defined as 

FDR := 
FP 

FP + TP 
= 1 − PPV. 

The false omission rate is defined as 

FOR := FN 

FN + TN 
= 1 − NPV. 

9.5.4 Prevalence, Accuracy, and Informedness 

The prevalence is defined as 

P 

P + N 
, 

and the accuracy is defined as 

ACC := 
TP + TN 
P + N 

= TP + TN 
TP + TN + FP + FN 

. 

The (bookmaker) informedness or Youden’s index (Youden 1950) is defined as 

INF := 
1 

2 

( 
TP − FN 
TP + FN 

+ 
TN − FP 
TN + FP 

) 

= TP 

TP + FN 
+ 

TN 

TN + FP 
− 1 

= TPR + TNR − 1 

= 
TP 

P 
+ 

TN 

N 
− 1.
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It has some desirable features (Youden 1950). Its value is always in the interval 
[−1, 1], i.e., 

−1 ≤ INF ≤ 1, 
as TP/P and TN/N are always in the interval [0, 1]. 

The value INF = 1 implies that FN = 0 and FP = 0, i.e., the prediction works 
perfectly. 

The value INF = 0 is obtained, e.g., when TP = FN and TN = FP, which means 
that the prediction is useless. 

The value INF = −1 implies that TP = 0 and TN = 0, meaning that all sam-
ples are misclassified. In this case or, more generally, whenever INF ∈ [−1, 0), the 
two classes in the prediction should be swapped to obtain a better prediction and 
an informedness in the interval (0, 1]. Swapping the two classes means that TP is 
swapped with FN and TN is swapped with FP. Therefore, the informedness after 
swapping is 

INF := 
FN 

FN + TP 
+ FP 

FP + TN 
− 1. 

Hence, we have INF + INF = 0 and thus 

INF = −INF ∈ [−1, 1]. 
Since we have assumed INF ∈ [−1, 0), we find  INF ∈ (0, 1], and swapping the 
predicted classes indeed improves the prediction. 

In summary, larger (absolute) informedness values are better. False positives and 
false negatives are equally undesirable in the informedness. The informedness can 
be interpreted as the probability of an informed decision as opposed to a random 
guess taking into account all predictions (Powers 2011). Finally, it can be used in 
conjunction with receiver-operating-characteristic analysis. 

9.5.5 Weighted Informedness or Weighted Youden’s Index 

In the (bookmaker) informedness or Youden’s index defined in the previous section, 
false positives and false negative are equally undesirable. In certain applications (such 
as tumor prediction), false negatives are to be avoided more than false positives. It 
is, therefore, desirable to generalize the informedness such that false positives and 
false negatives can be assigned different weights. 

We, therefore, propose and define the weighted informedness or the weighted 
Youden’s index as 

WINF := α 
TP − FN 
TP + FN 

+ (1 − α) 
TN − FP 
TN + FP 

, 

where α ∈ [0, 1] is the weight of the positives and 1 − α the weight of the negatives. 
The first fraction (TP − FN)/(TP + FN) is the proportion TP/(TP + FN) of pos-
itive samples correctly classified as positive minus the proportion FN/(TP + FN)
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Table 9.2 Confusion matrix 

Samples Predicted Predicted Total 

positive negative 

True positive TP FN TP + FN = P 
True negative FP TN FP + TN = N 
The rows contain the true classification and the columns contain the predictions 

of incorrectly classified positive samples. The analogous interpretation for negative 
samples motivates the second fraction. 

The equation 

a − b 
a + b 

= 2 
a 

a + b 
− 1 ∀a ∈ R, ∀b ∈ R 

applied to both fractions in the definition of WINF yields 

WINF = 2α 
TP 

TP + FN 
+ 2(1 − α) 

TN 

TN + FP 
− 1 

= 2αTPR + 2(1 − α)TNR − 1 

= 2α 
TP 

P 
+ 2(1 − α) 

TN 

N 
− 1. 

9.5.6 Confusion Matrix 

By convention, the true and false positives and negatives are arranged in a matrix as 
given in Table 9.2. 

9.5.7 A Numerical Example 

Table 9.3 gives the quality metrics defined in this section for a single classification 
with the indicated parameters as in Sect. 9.4.3. 

9.6 Probably Approximately Correct 

In view of these challenges, it is not clear whether a prediction model for a certain 
disease can be learned reliably at all in situations with many features and few samples. 
Therefore, questions of learnability arise. The term learnability often also refers to 
questions of computability, but these are not of primary interest in the present context. 

In addition to learning optimal prediction models, one is, therefore, also interested 
in answering the question how reliable the learned prediction model is given the 
(limited) number of available training data. A fundamental theory that addresses
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Table 9.3 Quality metrics for a single classification as in Sect. 9.4.3 

Name Value 

Inputs 

Number of training samples 500 

Number of test samples 100,000 

Number of features 100 

Number of relevant features 3 

Number of used features 3 

Quality metrics 

Total number of samples 100,000 

Number of positives 12,307 

Number of negatives 87,693 

Number of true positives 10,944 

Number of true negatives 85,542 

Number of false positives 2151 

Number of false negatives 1363 

True positive rate 0.889 

True negative rate 0.975 

False positive rate 0.111 

False negative rate 0.111 

Positive predictive value 0.836 

Negative predictive value 0.984 

False discovery rate 0.164 

False omission rate 0.016 

Prevalence 0.123 

Accuracy 0.965 

Informedness 0.865 

Weighted informedness for α = 0 0.951 

Weighted informedness for α = 0.1 0.934 

Weighted informedness for α = 0.2 0.916 

Weighted informedness for α = 0.3 0.899 

Weighted informedness for α = 0.4 0.882 

Weighted informedness for α = 0.5 0.865 

Weighted informedness for α = 0.6 0.847 

Weighted informedness for α = 0.7 0.830 

Weighted informedness for α = 0.8 0.813 

Weighted informedness for α = 0.9 0.796 

Weighted informedness for α = 1 0.779 

Confusion matrix 10,944 1363 

2151 85,542
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this question is probably approximately correct (PAC) learning, which is shortly 
discussed in the following. 

Probably, approximately correct statements or estimates is among the most impor-
tant in learning theory. Since learning problems are usually stochastic in nature due 
to the fact that the samples obtained for learning are stochastic, any statements about 
the accuracy and validity of learning results must also be stochastic. 

To discuss a leading example, we consider the problem of calculating the expected 
value E[X ] of a random variable X (i.e., E[X ] is the true value) using samples of 
the random variable X (the values that we can observe). We would hence like to 
minimize the absolute value |X − E[X ]| of the error. Then a PAC statement as the 
solution of a learning problem has the form 

∀δ ∈ [0, 1] : P[|X − E[X ]| < ε(δ)] > 1 − δ, 

where the challenge is to find the function ε of the probability δ. Such a statement 
is interpreted as now being able to give confidence intervals: with probability at 
least 1 − δ (the P in PAC), the absolute value |X − E[X ] of the error is at most ε(δ) 
(the A in PAC). Thus ε(δ) gives the size of the (here two-sided) confidence interval 
around X in which the true value E[X ] lies. 

Concentration inequalities are a source of PAC estimates. Good bounds are avail-
able if the random variable is bounded or if it is bounded and has finite variance. 
Finding better bounds is still an active area of research, as simpler inequalities only 
yield loose bounds. 

9.7 Conclusions 

This chapter has given an overview of supervised learning with genetic, epigenetic, 
and proteomic applications in mind. Caveats have been pointed out along the way. 

Although immense amounts of genetic, epigenetic, and proteomic data are avail-
able and more will become available, prediction of diseases, and especially of rare 
diseases remains a challenge. While sequencing easily produces many features for 
each patient at relatively low cost, the number of patients is limited, and increasing 
their number is costly. This combination of many features and few samples is a major 
challenge. On the other hand, since genetic, epigenetic, and proteomic information 
should suffice to detect diseases, it is expected that careful application of machine 
learning methods will enhance our capabilities for early detection of disease signif-
icantly in the coming years, improving quality of life.
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Proof of Theorem 2.1 

Proof First, we use the statistical model (9.1) and expand the square to find 

ESE = ET ∼D|T |, ε∼E [( f̂T (X ) − Y )2] 
= ET ∼D|T |, ε∼E [( f̂T (X ) − f (X) − ε)2] 
= ET ∼D|T |, ε∼E [( f̂T (X ) − f (X))2] 

− 2ET ∼D|T |, ε∼E [ε( f̂T (X) − f (X ))] 
+ ET ∼D|T |, ε∼E [ε2] 

= ET ∼D|T | [( f̂T (X) − f (X))2] +  Vε∼E [ε]. 
The middle term vanishes, since the independence of ε from X and Y implies 

ET ∼D|T |, ε∼E [ε( f̂T (X ) − f (X ))] =  Eε∼E [ε]ET ∼D|T | [ f̂T (X) − f (X )] =  0 

because of Eε∼E [ε] =  0 by assumption. 
Next, we split the first remaining term into two parts. In order to do so, we define 

the intermediate (9.6), which is the mean (over all sets T ) prediction. Using f ̄ (X ), 
we can write 

ESE = ET ∼D|T | [( f̂T (X) − f ̄ (X ) + f ̄ (X ) − f (X ))2] +  Vε∼E [ε] 
= ET ∼D|T | [( f̂T (X) − f ̄ (X ))2] 

+ 2ET ∼D|T | [( f̂T (X ) − f (X))( ¯ f ̄ (X) − f (X ))] 
+ ET ∼D|T | [( f (X ) − f (X ))2] +  Vε∼E [ε]. ¯

The first term is equal to the variance VT ∼D|T | [ f̂T (X ) − f ̄ (X )], since 
ET ∼D|T | [ f̂T (X ) − f ̄ (X )] =  f ̄ (X ) − f ̄ (X ) = 0. 

Since the second factor in the middle term does not depend on T , the middle term 
becomes 

ET ∼D|T | [( f̂T (X ) − f (X ))( ¯ f ̄ (X ) − f (X ))] 
= ( f ̄ (X ) − f (X ))ET ∼D|T | [ f̂T (X ) − f ̄ (X )] 
= ( f ̄ (X ) − f (X ))( f ̄ (X ) − f ̄ (X)) 
= 0. 

In summary, we have 

ESE = ET ∼D|T | [( f̂T (X) − f ̄ (X ))2] +  ( f ̄ (X ) − f (X))2 + V[ε] 
= VT ∼D|T | [ f̂T (X) − f ̄ (X )] +  ( f ̄ (X ) − f (X ))2 + V[ε], 

which concludes the proof. □
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medical innovations. But developments also resulted in legal- and trading prob-
lems between different regions of the world. Also quite different expectations 
of different groups of consumers in their food developed, with relevance to their 
regional and social background. The scientific progress to understand the con-
nections between genetics, epigenetics, microbiota, and metabolomics as well as 
considerably individual metabolic differences resulted in the increasing accep-
tance of personal different needs of individuals in their foods. Consequently, 
foods and diets with different functions have been developed and need to be 
approved for effectivity, bioavailability, stability, and safety. 

10.1 Novel Food, Food Supplements, Nutraceuticals, 
Phytoceuticals, Medicinal Foods 

The role of food in maintaining good health has been known since ancient times. 
Confirmed by the phrase left by Hippocrates, the Greek physician father of mod-
ern medicine: “Let food be your medicine and medicine your food”. It is well 
known that nutrition plays an essential role in maintaining health which is why 
it is integrated into public health strategies established to promote optimal health 
conditions throughout life. Modern consumers have placed new demands on food, 
which provides them with additional health benefits beyond the adequate nutri-
tional effects. This has led to the development of the “functional food” concept, 
which, although existing since the 1980s, is still not precisely defined, and in many 
countries, this food category is not even recognized by national regulations. The 
primary function (nutritional value) of food is to provide us with food energy and 
the necessary macro and micronutrients. Foods also contribute to our well-being 
and can influence health status and prevent illnesses (health value) [2] (Cencic 
and Chingwaru 2010). Food that fulfills this function to an extent or in a special 
way is referred to as “functional food”. Differentiation between food additives and 
functional foods is delicate and regional different, Fig. 10.1, https://www.burdoc 
kgroup.com/dietary-supplements-vs-functional-foods-safety-and-labeling 

In the development of precision nutrition concepts, specific functions of diverse 
diets or foods need to be reflected, despite the considerable problems of definition 
and legal aspects in this area. For the use of foods as “precise nutrition”, either 
the chemical composition of food should be taken into account, or the effect it 
has on the human metabolism [1]. To give individual tailored advice, a cumula-
tive diagnosis of each individual must be done including microbiota composition, 
metabolomics, bioavailable tests for phytoceuticals, genetic testing, metabolomics, 
and many more tests. Or people get assigned to the individual symptoms for which 
there is an increased need for different nutrients like increased infection risk, diet-
gut microbiome interplay, increased food cravings or accelerated aging, and many 
more, Fig. 10.2.

https://www.burdockgroup.com/dietary-supplements-vs-functional-foods-safety-and-labeling
https://www.burdockgroup.com/dietary-supplements-vs-functional-foods-safety-and-labeling
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Fig. 10.1 Functional foods and dietary supplements, https://www.burdockgroup.com/dietary-sup 
plements-vs-functional-foods-safety-and-labeling 

Fig. 10.2 Analyzing most relevant aspects affecting an individual response to lifestyle/nutritional 
interventions [1] (de Toro-Martín et al. 2017) 

The concept of functional food was first introduced in 1984 in Japan to improve 
the consumer’s health through the diet fortified with functional ingredients. The so-
called FOSHU concept (FOSHU = foods for specified health use) was established, 
and placed 1991 in Japanese law. Food manufacturers who want to label their food 
with a special FOSHU seal must undergo a corresponding approval process. In 
2002, 293 foods were already approved in this area in Japan (Shimizu 2002).

https://www.burdockgroup.com/dietary-supplements-vs-functional-foods-safety-and-labeling
https://www.burdockgroup.com/dietary-supplements-vs-functional-foods-safety-and-labeling
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The European Food Safety Authority (EFSA) defines functional foods as: “A 
food, which beneficially affects one or more target functions in the body, beyond 
adequate nutritional effects, in a way that is relevant to either an improved state of 
health and well-being and/or reduction of risk of disease. A functional food can 
be a natural food or a food to which a component has been added or removed by 
technological or biotechnological means, and it must demonstrate their effects in 
amounts that can normally be expected to be consumed in the diet”. In contrast to 
conventional foods, functional foods have demonstrated physiological benefits and 
can reduce the risk of chronic disease beyond basic nutritional functions, includ-
ing maintenance of gut health. It provides health effects that go beyond traditional 
nutritional effects. As such it is closely related to but different from concepts 
such as food supplements or nutraceuticals. Functional foods may include (i) con-
ventional foods with naturally occurring bioactive substances (e.g., dietary fiber); 
(ii) food with added bioactive substances (e.g., probiotics, polyphenols); and (iii) 
obtained from food ingredients (prebiotics, bioactive peptides). 

In the USA, the functional foods concept was initiated and coined by Stephen 
DeFelice and Steve McNamara in 1989. They suggested the term “nutraceuticals” 
based on the 1983 Orphan drug. “Nutraceuticals are natural, bioactive chemical 
compounds that have health-promoting, disease-preventing, or general medicinal 
properties” (del Castillo and Iriondo-DeHond 2018). The definition of nutraceuti-
cals includes “functional foods”—i.e., foods that provide a specific health benefit 
based on their ingredients. 

Experts belonging to the Functional Food Center, USA (FFC) currently 
define functional foods as “natural or processed foods that contain known or 
unknown biologically active compounds, which, in defined, effective, and non-
toxic amounts, provide a clinically proven and documented health benefit utilizing 
specific biomarkers for the prevention, management, or treatment of chronic dis-
ease or its symptoms”. In this context, bioactive compounds, which are considered 
as a backbone of the functional foods, are understood as “primary and secondary 
metabolites of nutritive and non-nutritive natural components generating health 
benefits by preventing or are functional foods essential for “sustainable health”. 

The general confusion on definitions and legal uncertainties is reflected in 
the scientific literature, e.g.; “unfortunately, there are no internationally agreed 
definitions of “nutraceuticals” and “functional foods”, or of similar terms, such 
as “health foods”, or of terms related to herbal products, which are sometimes 
referred to as “nutraceuticals”, compounding the confusion. “Nutraceuticals” and 
“functional foods” are vague, nondiscriminatory, unhelpful terms; the evidence 
suggests that they should be abandoned in favor of more precise terms. The term 
“dietary supplement” is widely used to designate formulations that are also called 
“nutraceuticals”, but it would be better restricted to individual compounds used to 
treat or prevent deficiencies. “Fortified foods”, sometimes called “designer foods”, 
are foods to which compounds of proven therapeutic or preventive efficacy (e.g., 
folic acid) have been added” (Aronson 2017). 

Botanical dietary supplements are generally available as whole plants, plant 
parts, powdered plant material, or plant extracts. These supplements are marketed
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Fig. 10.3 Continuum between nutraceuticals and pharmaceuticals, https://www.es.kearney.com/ 
consumer-retail/article/?/a/nutraceuticals-the-front-line-of-the-battle-for-consumer-health 

in various forms, including as powders, tablets, capsules, gummies, teas, tinc-
tures, and essential oils. A variety of botanical dietary supplements are used in 
complementary and integrative health practices (https://nccih.nih.gov/health/integr 
ative-health). Although there is overlap in the botanical species used in dietary 
supplements and other forms of complementary medicine, such as Ayurveda and 
Traditional Chinese Medicine, the applications can vary widely. 

Another cause for concern is the overlap between nutraceuticals and phar-
maceuticals. At one end of the spectrum is functional foods and beverages, 
as well as dietary supplements, aimed primarily at maintaining health. At 
the other, more medical end of the spectrum is products aimed at people 
with special nutritional needs. In the middle, it is an emerging gray area 
of products that have a physiological effect to reduce known risk factors, 
such as high cholesterol, or appear to slow or prevent the progression of 
common diseases “https://www.es.kearney.com/consumer-retail/article/?/a/nutrac 
euticals-the-front-line-of-the-battle-for-consumer-health”, Fig. 10.3. 

A validated food composition database, also used by European EFSA, including 
fortifications and claim identification is https://www.eurofir.org. This database will 
be further broadened by the outcomes of the combined EU action ‘Creation of 
Open Access EU Food Composition Database (EU FCDB)’. 

10.2 Fasting, Caloric Restriction (CR) 

One of the most effective diets for health is certainly caloric restriction (CR) and 
fasting. Consequently, many kinds of foods are under evaluation aiming to mimic 
beneficial functions or molecular pathways of CR and fasting. To date, caloric 
restriction (i.e., a reduction in caloric intake without malnutrition) and fasting 
(abstinence from food which may be complete or partial, lengthy, of short dura-
tion, or intermittent) are the only non-genetic intervention that has consistently

https://www.es.kearney.com/consumer-retail/article/?/a/nutraceuticals-the-front-line-of-the-battle-for-consumer-health
https://www.es.kearney.com/consumer-retail/article/?/a/nutraceuticals-the-front-line-of-the-battle-for-consumer-health
https://nccih.nih.gov/health/integrative-health
https://nccih.nih.gov/health/integrative-health
https://www.es.kearney.com/consumer-retail/article/?/a/nutraceuticals-the-front-line-of-the-battle-for-consumer-health
https://www.es.kearney.com/consumer-retail/article/?/a/nutraceuticals-the-front-line-of-the-battle-for-consumer-health
https://www.eurofir.org
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been found to extend both mean and maximal life span across a variety of species. 
Early studies in rodents revealed that mice fed 55–65% caloric restricted diets 
through their life exhibited a 35–65% greater mean and maximal lifespan than 
mice eating a non-purified ad libitum diet (Weindruch 1996). Although attenuated, 
these effects remain present even when moderate caloric restriction (20–40%) is 
implemented in middle-aged mice (Weindruch et al. 2001). 

Importantly, prolonged caloric restriction has also been found to delay the onset 
of age-associated disease conditions such as cancer and diabetes in rodents (Wein-
druch et al. 2001) and nonhuman primates (Colman et al. 2009). Thus, findings 
from animal studies, including recent primate studies, suggest prolonged caloric 
restriction has the potential to extend health span and thereby increase the qual-
ity of life. In recent studies conducted in overweight humans, caloric restriction 
has been shown to improve a number of health outcomes including reducing sev-
eral cardiac risk factors (Fontana et al. 2004, 2007; Lefevre et al. 2009), improving 
insulin-sensitivity (Meyer et al. 2006), and enhancing mitochondrial function (Civ-
itarese et al. 2007). Additionally, prolonged caloric restriction has also been found 
to reduce oxidative damage to both DNA (Heilbronn and Ravussin 2003; Heil-
bronn et al. 2006; Hofer et al. 2008) and RNA, as assessed through white blood 
cells (Hofer et al. 2008). 

Results from a controlled trial in healthy humans confirmed the health bene-
fits of moderately limiting calorie intake over a period of two years. In humans 
CR decreased macrophage protein PLA2G7 such inhibiting the Nlrp3 inflamma-
tion and slowed down shrinking in of the thymus mice (Spadaro et al. 2022). 
However, in a number of popular CR concepts, like intermittent fasting or base 
fasting, almost no ketogenic switch and benefits from increased production of 
short-chain fatty acids (SCFAs) are likely. 

Recently, our group reported beneficial effects of fasting on GI microbiota 
functions interacting with epigenetic regulation (Lilja et al. 2021). 

Additional biological changes associated with CR and fasting that may con-
tribute to the observed increases in health span and longevity include enhanced 
cellular quality control through autophagy. The metabolic switch from the use of 
glucose to the use of fatty acids and ketone bodies results in a beneficial modu-
lation of the epigenetic regulation such as activation of DNA methyltransferases 
(DNMTs) to hypermethylate the promoter regions of aging-promoting genes such 
as p16 and RAS which induces cellular senescence. Effects of CR and fasting 
on the epigenetic methylation can be seen using the epigenetic clocks indicating 
healthy or accelerated aging (Zhang et al. 2020). At the histone level, CR and fast-
ing are widely reported to be able to activate sirtuins in mammals (SIRT1–SIRT7) 
(Satoh et al. 2011) (Fig. 10.4). 

Meanwhile fasting and other ways to increase SCFAs especially butyrate or 
ketone bodies especially beta-hydroxybutyrate (BHB) are under investigation to 
improve metabolic diseases as well as specifically neurological disease linked 
to neuro-inflammation such as depression, Alzheimer disease, and many others 
(Gough et al. 2021), Fig. 10.5. Butyrate is known to be essential for the develop-
ment and maintenance of intestinal immunity and has a known role in supporting 
epithelial integrity (Ortiz et al. 2022).
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Fig. 10.4 Ac, histone acetylation; 5-caC, 5-carboxycytosine; 5-FC, 5-formylcytosine; HATs, his-
tone acetyltransferases; 5-hmC, 5-hydroxymethylcytosine; 5-mC, 5-methylcytosine (Zhang et al. 
2020) 

A meta-analysis revealed that fasting interventions improve stress, anxiety, and 
depressive symptoms (Berthelot et al. 2021). Sodium butyrate (NaB) was shown 
to attenuate memory deficits and Aβ Plaques in a mouse model (Jiang et al. 2021). 
In many aspects therefore, functional foods try to mimic health supporting effects 
of CR and fasting. The concept of fasting mimetics developed. 

10.3 Modulating the Diet-Gut Microbiome Interplay 

Gut microbiota profiling is a top priority in nutritional interventions, and the 
impact of specific dietary factors on the ecological diversity of the gut can be sup-
ported by pro- and prebiotics. The development of nutritional interventions based 
on individual profiles is focused on optimizing gut microbial composition, both 
richness and diversity, and gut microbiota profiling is included as a key feature
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Fig. 10.5 Proposed mechanisms for the neuroprotective effects of ketogenesis, e.g., butyrate and 
the diseases which may benefit (Gough et al. 2021) 

of precision nutrition (Zec 2022). For example, the effectiveness of probiotics are 
determined (1) by the interactions with prevailing gastrointestinal microbiota, (2) 
interaction with the host, in achieving a desirable probiotic effect, (3) interaction 
with diet, to survive, proliferate, and colonize GI, albeit temporary, and in the pro-
duction of beneficial bioactive metabolites, such as short-chain fatty acids (e.g., 
butyric acid), bile acid derivatives and trimethylamines. This creates the necessity 
to design personalized pro- and prebiotics that focuses on treatment of specific 
disease considering the individual specific gut microbiome (Spacova et al. 2020). 

10.4 Probiotics 

Probiotics are one of the most common ingredients of functional products, and 
probiotic-containing foods account for 60–70% of the total functional products 
market (Kareb and Aider 2019). According to the definition proposed in 2002 
by Food and Agriculture Organization of the United Nations (FAO)/World Health 
Organization (WHO) panel of experts, probiotics are “live microorganisms which 
when administered in adequate amounts confer a health benefit to the host” (Food 
Agriculture Organization of the United Nations 2002). After almost two decades, 
this concept remained in force and was accepted by several organizations, such as 
the World Gastroenterology Organization (WGO) and the European Food Safety 
Authority (EFSA) (Hill et al. 2014). 

Functional products may contain one or more probiotic microorganisms. The 
most common genera to which probiotic microorganisms belong are Lactobacil-
lus and Bifidobacterium, while others, less common species, may also belong 
to genera such as Streptococcus, Lactococcus, Enterococcus, Bacillus. Probiotic 
microorganisms include one type of yeast, Saccharomyces cerevisiae var. boulardii



10 Precise Nutrition and Functional Foods 239

Table 10.1 Some of the probiotic species used in the food (EFSA BIOHAZ Panel 2021) 

Lactobacillus spp. Other lactic acid bacteria Bifidobacterium spp. Other microorganisms 

L. acidophilus 
L. amylolyticus 
L. amylovorus 
L. casei 
L. crispatus 
L. delbrueckii 
L. fermentum 
L. gallinarum 
L. gasseri 
L. helveticus 
L. johnsonii 
L. kefiri 
L. paracasei 
L. plantarum 
L. reuteri 
L. rhamnosus 
L. salivarius 

Streptococcus. salivarius 
subsp. thermophilus 
Lactococcus lactis 
Leuconostoc 
mesenteroides 

B. adolescentis 
B. animalis 
B. bifidum 
B. breve 
B. longum 

Enterococcus faecium 
Bacillus coagulans 
B. subtilis 
E. coli strain Nissle 
S. cerevisiae var. 
boulardii 

(EFSA BIOHAZ). Lactic acid bacteria (LAB), including Lactobacillus species, 
which have been used for thousands of years to extend the shelf life of food, 
can play a dual role in functional foods, acting as a food fermentation and in 
addition, impart health benefits. However, the term “probiotic” in these functional 
fermented products should be strictly reserved for live microorganisms that have 
shown health benefits in controlled human studies (Guarner et al. 2017, Ivanovic 
and Ðor -dević 2018). Table 10.1 shows some of the most commonly used probiotic 
microorganisms in functional foods and the pharmaceutical industry. 

Traditionally, strains belonging to the mentioned bacterial genera have been 
primarily isolated from fermented products and the fecal microbiome. Fermented 
products are the most common natural sources of potential probiotic strains of 
LAB and are considered their most important source in the human gut microbiome. 
Their consumption is also associated with health benefits such as reducing the 
risk of developing type 2 diabetes and cardiovascular disease, which is why they 
represent a significant potential for future production of probiotics (Cunningham 
et al. 2021). 

In order to be characterized as probiotic, bacterial species/strain have to posses 
specific characteristics: (i) safe for human use; (ii) ability to survive in the digestive 
tract; (iii) adhesion to the intestinal epithelium; (iv) colonization of the gastroin-
testinal tract; (v) generation of antimicrobial substances; (vi) stability and viability 
during technological processes and the storage period (Gutiérrez et al. 2020; Leo 
et al. 2019; Ivanovic and Ðor -dević 2018). An adequate selection process for pro-
biotics is essential to ensure health benefits. Probiotics must meet specific safety, 
functional, and technological criteria, while health effects must be confirmed in 
clinical studies (Kareb and Aider 2019; Leo et al. 2019). Some of the most 
important criteria are given in Fig. 10.6.
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Fig. 10.6 Primary criteria for the selection of probiotics microorganisms in food production. 
Adapted from Kareb and Aider (2019) and Kumari et al. (2020) 

The selection of probiotics begins with an evaluation of their safety. The safety 
of probiotic microorganisms depends on their origin, the presence of plasmids car-
rying the antibiotic resistance gene, and their association with other pathogenic 
cultures. In the United States, the most commonly used and currently available 
probiotic strains, with a long history of use, have the status of “GRAS” (gen-
erally recognized as safe). In the European Union, all microorganisms intended 
for food and feed production must be granted with “QPS status”, which confirms 
that a particular microorganism does not pose a safety risk to humans and animals 
(Kareb and Aider 2019). When EFSA grants a microorganism with QPS status, it is 
included in the QPS list. In order to obtain QPS status, a microorganism must meet 
the following criteria: (i) Its taxonomic identity must be well defined (on the genus, 
species, and strain level); (ii) the available body of knowledge must be sufficient 
to establish its safety; (iii) the lack of pathogenic properties must be established 
and substantiated; (iv) its intended use must be clearly described (https://www. 
efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps). It is important to 
note that in addition to taxonomic identification, the strain must be deposited in a 
recognized culture collection (national and international) before use (FAO 2002). 

Furthermore, for the effectiveness of probiotics, the microorganisms must be 
viable and present in the product in an adequate number. However, more recently, 
a striking beneficial activity was seen with inactivated bacterial cells, possibly via

https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps
https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps
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interaction of cell wall constituents with immune cell receptors (Piqué et al. 2019). 
The number of viable microorganisms should be maintained during the production 
and storage of the product, until the end of the shelf life, and during the passage 
through the digestive tract (Hill et al. 2014, Korčok et al. 2018). Although most 
commercial products contain probiotic strains in an amount between 1 and 10 
billion colony-forming units (CFU), a lower or higher dose may be required to 
exhibit specific effects, making it impossible to establish a general dose; the dose 
should be based on human studies in which health benefits have been demonstrated 
(Guarner et al. 2017). However, the Public Health Agency of Canada and the 
Italian Ministry of Health recommend an intake of a minimum of billion CFU 
to ensure a beneficial effect (Santos et al. 2020). The ability to adhere to the 
intestinal epithelium allows probiotic microbes to persist in the digestive tract and 
exert beneficial effects (Kareb and Aider 2019). 

In addition, the FAO/WHO guide from 2002 made recommendations about the 
labeling of the probiotic-containing products, which should include the follow-
ing information: (i) genus, species, and strain for each probiotic microorganism 
present; (ii) the lowest viable number of bacteria at the end of the shelf life; (iii) 
the recommended dose which must ensure the efficacy of the probiotic concerning 
the purpose; (iv) recommended storage conditions (Food Agriculture Organization 
of the United Nations 2002). 

A wide range of potentially beneficial effects is associated with the use of 
probiotics. Some of the beneficial effects of probiotics have been supported by 
randomized clinical studies and high-quality systematic reviews and meta-analyzes 
that have resulted in specific recommendations for prophylactic and therapeutic 
use. Based on the WGO guideline, there are specific indications for probiotic use 
based on different levels of evidence (following the Oxford Center for Evidence-
Based Medicine criteria). For example, in adults, some of these indications are the 
prevention and treatment of acute diarrhea (L. paracasei B21060, L. rhamnosus GG 
or S. boulardi CNCM I-745), antibiotic-induced diarrhea (L. rhamnosus GG or S. 
boulardi CNCM I-745), as adjunctive therapy in the eradication of Helicobacter 
pylori (L. rhamnosus GG alone or in combination with B. animalis subspecies 
lactis), or as treatment of inflammatory bowel disease (L. plantarum 299v or E. coli 
DSM17252) (Guarner et al. 2017). According to the EFSA opinion based on a high 
level of evidence, yogurt with live cultures of L. delbrueckii subsp. bulgaricus and 
S. thermophilus effectively reduces symptoms associated with lactose intolerance 
(EFSA Panel on Dietetic Products and Allergies, 2010). There are also indications 
of different levels of evidence for the use of certain strains to prevent and treat 
specific conditions in children (Guarner et al. 2017; Szajewska et al. 2014; WGO 
2017; Szajewska 2014). For each of these indications, the probiotic recommended 
dose is given. Studies indicating the efficacy of probiotics in the prevention and 
treatment of other diseases can be found in the literature, and some of the proposed 
mechanisms by which probiotics exhibit beneficial effects are given in Fig. 10.7. 

The mechanisms underlying these probiotic effects have not yet been fully elu-
cidated. The detection of mechanisms of probiotic activity is difficult because they 
are often species- and strain-specific and in most cases, represent a combination
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Fig. 10.7 Mechanisms of probiotic actions and potential clinical target. Adopted from Cremon 
et al. (2018) 

of different activities (Ivanovic et al. 2015). For example, the beneficial effects 
of probiotics in preventing and reducing the duration of infectious diarrhea may 
be based on different mechanisms of probiotics such as modulation of gut micro-
biota, production of antimicrobial substances, competition with pathogens for the 
same adhesive sites, and modulation of immune response (Harzallah and Belhadj 
2013). However, four levels of activity can generally be distinguished through 
which probiotics exhibit health effects: (i) interaction with microorganisms at the 
site of action or antagonistic activity on pathogenic bacteria by reducing lumi-
nal pH, inhibiting pathogen binding to adhesive sites, producing antimicrobial 
substances, and competing for nutrients; (ii) strengthening the intestinal mucosal 
barrier by promoting mucus secretion and strengthening intercellular connections; 
(iii) effect on the host immune system (immunostimulation and immunosuppres-
sion), (iv) interaction with the gut-brain axis (Mazhar et al. 2020; Sánchez et al. 
2017; Ivanovic and Ðor -dević 2018). 

As most of the probiotic effects of a strain are specific, recommendations for a 
particular application of probiotics in the clinical setting must be based on probi-
otic strains that have demonstrated these effects in human studies (Guarner et al. 
2017). Namely, different strains within the same species are usually unique and 
can differ in the specific site of binding in the intestine or how they interact 
with the host immune system, which is crucial when determining the indication
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for the selected probiotic (Dimitrijevic et al. 2014; Ivanovic et al. 2015). Some 
strains will have unique properties that explain certain immunological, neurolog-
ical, endocrinological, or antimicrobial activities (Guarner et al. 2017; Hill et al. 
2014). Specific effects may be species-specific, such as vitamin synthesis, bile salt 
metabolism, antagonism against pathogenic enzyme activity, or strengthening the 
intestinal barrier (Ivanovic and Ðor -dević 2018). 

With the expansion of knowledge about the human microbiome and its 
functions, the development of techniques for complete microbiome sequencing 
and cultivation methods created conditions for isolation and characterization of 
new microorganisms from the human microbiota with potential health bene-
fits. Therefore, the conditions for the development of next-generation probiotics 
are established. Some bacteria isolated from the gut microbiome with probiotic 
potential are Akkermansia muciniphila, Roseburia intestinalis, Faecalibacterium 
prausnitzii, Eubacterium spp., Bacteroides spp. (Cunningham et al. 2021; O’Toole 
et al. 2017). These candidates provide physiological functions such as the pro-
duction of butyrate, propionate, and other biologically active metabolites that are 
not always directly conferred by traditional probiotics such as lactobacilli and 
bifidobacteria (Cunningham et al. 2021). These species belonging to different 
genera were mainly identified based on comparative analyzes of the gut micro-
biota composition between healthy and diseased individuals (Martín and Langella 
2019). Some authors are currently proposing using next-generation probiotics to 
avoid some of the side effects that may be accompanied by the intake of exoge-
nous bacteria (Langella and Chatel 2019). The production of commercial products 
with these species is a challenge as they require certain specific growth media 
and anaerobic conditions. These difficulties have been partially overcome with A. 
muciniphila, representing one of the promising candidates for commercialization 
(Cunningham et al. 2021; Depommier et al. 2019). 

Probiotics as a current strategy for treating dysbiosis, repairing the perturbed 
gut microbiota, and restoring microbial diversity, i.e., directing the microbiome 
toward health, have become very popular (Diaz et al. 2019). With the develop-
ment of techniques that have linked taxonomic profiles and specific genera and 
species to disease and health, there has been significant interest in the precise 
application of probiotics (Cunningham et al. 2021). Moreover, numerous metabo-
lites produced by intestinal bacteria, such as short-chain fatty acids, amino acids, 
vitamins, and secondary bile acids, play an essential role in the health and dis-
ease of the host. Therefore, the strategy for the precise application of probiotics 
could be based on the introduction of keystone species that are compromised in 
the microbiome and closely related to the host’s health. Moreover, they could be 
used to stimulate the production of favorable bacterial metabolites or inhibit the 
production of metabolites harmful to health (Veiga et al. 2020). 

Furthermore, evidence of probiotic efficacy is often very heterogeneous and 
conflicting between the scientific, medical, and industrial communities (Veiga et al. 
2020). Although the term “probiotic” is generally associated with health benefits, 
the efficacy of probiotics is high strain-, indication- and dose-dependent (Sniffen 
et al. 2018). However, personal-specific factors, such as diet, age, genetics, and
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microbiome, also contribute to heterogeneity in probiotic outcomes, often very 
unpredictable (Shepherd et al. 2018; Veiga et al. 2020). Indeed, the degree to 
which probiotics can colonize the intestine during supplementation and their effec-
tive persistence, which is essential for its health-promoting characteristics, varies 
significantly between individuals. In addition to host factors, colonization will be 
primarily influenced by the background microbiota (Ma et al. 2020; Zmora et al. 
2018), but the availability of the preferred substrate may also control the per-
sistence of the introduced microbe (Kearney et al. 2018; Shepherd et al. 2018). 
Although stable colonization is not necessary for the manifestation of beneficial 
effects for the host, the population must be established at least in transit to exert 
the effect on the host and the resident gut microbiota (Ojima et al. 2022). 

To date, few studies have examined the factors influencing probiotic coloniza-
tion. Zmora et al. demonstrated that personalized intestinal mucosal resistance 
to colonization by commercial probiotics is associated with unique host and 
microbiota characteristics. These host and microbiome factors can lead to dif-
ferent colonization susceptibility to probiotics through the competitive exclusion 
of probiotic species or site-specific immune responses. Authors have reported 
the existence of caecal host immune activity against gram-positive bacteria in 
colonization-resistance subjects. The results of this study indicate the possibility of 
an individual predisposition to create an unfavorable environment for exogenous 
probiotics (Zmora et al. 2018). 

Further, according to Ojima et al., response to probiotic administration could 
be predicted according to both availability of ecological niches within the gut 
microbiota and the relative fitness of the probiotic strain; the success of probiotic 
colonization is greater with a more significant niche difference between adminis-
trated probiotics and the resident bacteria (Ojima et al. 2022). In a human study in 
which B. longum AH1206 was orally administered, long-term colonization with 
this strain was found in only 30% of subjects. Microbiome analysis revealed that 
responders to colonization had a low presence of indigenous B. longum in the 
basal microbiota and underrepresentation in specific carbohydrate utilization genes 
(Gomez et al. 2016). Colonization by the exogenous strain in the responders was 
probably successful due to the absence of the autochthonous microbiota members, 
occupying the same niche, which are otherwise superior competitors for the same 
resources (Gomez et al. 2016; Ojima et al. 2022). A similar study on B. lactis V9 
found that the high prevalence of the genus Bifidobacterium is the primary factor 
inhibiting the persistence of consumed B. lactis V9, which the authors attributed 
to competition for similar substrates and ecological niches as they belong to the 
same genus (Ma et al. 2020). 

Also, the probability of colonization increases with the presence of a substrate 
for which the probiotic is highly selective, i.e., prebiotics, a substrate that can 
increase its fitness concerning members of the resident microbiota, provided it 
has genes for their digestion and utilization (Ma et al. 2020; Shepherd et al. 
2018). These studies have highlighted the importance of a precise combination 
of probiotics and prebiotics in symbiotic products.
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Despite increasing evidence of individual differences in susceptibility to probi-
otic colonization, its impact on clinical outcomes is still unknown. Nevertheless, 
better characterization of biological responses to probiotics and prebiotics in clin-
ical studies would allow for a deeper understanding of these interventions and 
increase their potential for precise application. 

Several approaches like administration of probiotic, prebiotics, synbiotics, fecal 
microbiota transplantation have been tried to mitigate the dysbiosis originated 
ill effects. But the effects of these approaches are highly generic and nonspe-
cific. This creates the necessity to consider the individual specific gut microbiome. 
The health-promoting commensals could be the new promising prophylactic and 
therapeutic next-generation probiotics (NGPs). However, their unusual characteris-
tics, unknown identity, and special growth requirements have presented difficulties 
for researcher, industrial exploitation, and regulatory agencies (Singh and Natraj 
2021). 

Personalization of probiotics has already been discussed for a long time. 
Currently, probiotic products are marketed worldwide, with the assumption that 
probiotics with demonstrated health effects work on all people, irrespective of 
the genetic (ethnicity), environment (geographical location), dietary habit and 
lifestyle. However, the benefits acquired from a probiotic are personal, depend-
ing on the health status, dietary habit, and prevailing GI microbiota. Personalized 
probiotics should be established to achieve precision administration of specific 
probiotic effects for targeted population. Globalization and urbanization of human 
activities have led to merging of dietary habit, thus effective probiotics should 
evolve in tandem. Ultimately, the probiotics of choice should be directed at specific 
physiological stage, health condition, and targeted diseases (Liu et al. 2018). 

This concept was tested before when commensal bacterial strains were isolated 
from the feces of healthy mice and then administered back to the host as a person-
alized treatment in dextran sodium sulfate (DSS)-induced colitis. The group that 
received the personalized probiotic showed reduced susceptibility to DSS-colitis 
as compared to a commercial probiotic. Moreover, the personalized probiotic was 
more effective in modulating the host immune response, leading to decreased Il-
1β and Il-6 and increased TGF-β and Il-10 expression. (Celiberto et al. 2018) The 
authors summarized that personalized probiotics may possess an advantage over 
commercial probiotics in treating dysbiotic-related conditions, possibly because 
they are derived directly from the host’s own microbiota. 

10.5 Prebiotics 

Gibson and Roberfroid originally defined the concept of prebiotics in 1995 as 
“non-digestible food ingredients that beneficially influence the host’s health by 
stimulating the activity of one or more commensal colon bacteria” (Gibson and 
Roberfroid 1995). Based on the definition, prebiotic administration is intended to 
impact the gut ecosystem, dominated by trillions of commensal microorganisms,
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to benefit the host. With the adoption of new scientific data on their mecha-
nisms, site of action, and selectivity, prebiotics’ definition has been revised several 
times. The last update of the definition was published in 2017 by ISAPP as an 
expert consensus stating that prebiotics is non-digestible components of food that 
serve as “substrate that is selectively utilized by host microorganisms conferring a 
health benefit” (Gibson et al. 2017). This definition has expanded the concept of 
prebiotics to include potential prebiotic substances other than non-carbohydrates, 
such as polyphenols and polyunsaturated fatty acids if their documented positive 
health effects are mediated through the gut microbiota. Moreover, the benefits 
of prebiotics are not limited to the gut, but the effect can also be manifested in 
extraintestinal sites, directly or indirectly (Gibson et al. 2017; Sanders et al. 2019). 

Currently, there are a limited number of confirmed prebiotic substances, with 
non-digestible oligosaccharides most widely used in functional food production 
(Kareb and Aider 2019). The chemical structure of these components makes them 
resistant to enzymatic digestion in the digestive tract but can serve as nutrient 
substrates for health-promoting colon microorganisms, increasing their population 
(Brosseau et al. 2019; Kareb and Aider 2019). These microbiota members pos-
sess a wide range of cell-associated and extracellular glycosidases and transport 
systems that allow them to utilize fermentation products as carbon and energy 
sources. These are also critical requirements for defining prebiotics because the 
mentioned mechanisms enable their selectivity in target sites, especially in compet-
itive environments such as the intestinal ecosystem (Gibson et al. 2017; Khangwal 
and Shukla 2019b; Sanders et al. 2019). Fructans such as fructooligosaccharides 
(FOS) and inulin are the most studied prebiotics, generally classified as “well 
established” prebiotics because of their number of commercial applications and 
regulatory status (Fig. 10.8). They are also recognized as safe food ingredients in 
the European Union (EU), being in use for more than two decades (Cardoso et al. 
2020). These classes of prebiotics are most often naturally present in food, pri-
marily in plant foods such as some vegetables (onions, garlic, chicory, asparagus), 
fruits (bananas), and cereals (Brosseau et al. 2019; Ivanovic and Ðor -dević 2018). 
However, their content in the modern westernized diet is insufficient to achieve 
the benefits of their intake. Most studies indicate that for achieving positive phys-
iological effects from prebiotics, an intake of 5.5–20 g per day is required, while 
the average daily dietary intake of prebiotics such as inulin and FOS in the US 
is estimated at 1–4 g (Green et al. 2020). Due to their low content in food, pre-
biotics are produced on large industrial scales by various extraction and synthesis 
processes (Khangwal and Shukla 2019a). 

Other carbohydrate-based prebiotics can be used in functional foods, such 
as isomaltooligosaccharides, xylooligosaccharides, isomaltooligosaccharides, and 
lactosucrose, which are classified as “emerging” prebiotic, while raffinose, for 
example, is classified as “under development”. which is in detail reviewed in 
Cardoso et al. (2020). The current prebiotic classification is given in Fig. 10.8. 

Gibson et al. proposed the criteria that a particular component should meet 
to be classified as a prebiotic: (i) resistance to gastric acidity, host enzymes 
hydrolysis, and gastrointestinal absorption; (ii) being fermentable by a specific
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Fig. 10.8 Prebiotics current classification. FOS, fructooligosaccharides; GOS, galac-
tooligosaccharides; XOS, xylooligosaccharides; AXOS, arabino-xylooligosaccharides; IMOs, 
isomaltooligosaccharides; NAOs, neoagaro-oligosaccharides; PUFAs, polyunsaturated fatty acids; 
CLAs, conjugated linoleic acid. Adapted from Cardoso et al. (2020) 

member of intestinal microbiota; (iii) being able to selectively stimulate the growth 
and/or activity of intestinal bacteria considered to be beneficial to health (Gib-
son et al. 2004; Ivanovic and Ðor -dević 2018). Another essential potential criteria 
for selecting prebiotics in functional products production are their stability during 
technological processes so that undigested, chemically unchanged prebiotic reach 
the site of action (Markowiak and Slizewska 2017). 

Selectivity is the most challenging criterion to demonstrate, and at the same 
time, the main criterion determines the difference between carbohydrate-derived 
prebiotics and dietary fiber. Namely, the terms prebiotic and dietary fiber are often 
interchanged when describing components that will not be digested in the upper 
intestine but are fermented by the action of colon bacteria. However, while fer-
mentable dietary fiber is fermented nonselectively by most colon bacteria, prebiotic 
fermentation is performed by selected specific microorganisms potentially asso-
ciated with human well-being and health (Kumari et al. 2020). Moreover, fiber 
fermentability is not crucial for the action of dietary fibers (Dorna Davani-Davari). 
Thus, some prebiotics can be considered dietary fiber, but not all dietary fibers 
are prebiotics (Slavin 2018). It is generally accepted that prebiotics have a highly
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selective effect on the human gut microbiota, increasing mainly the population 
of bifidobacteria and lactobacilli while reducing the prevalence of genera with 
detrimental effects on health (Bindels et al. 2015). However, in recent years, the 
development of advanced techniques for microbiota analysis has enabled a more 
profound determination of the range of prebiotic activity, which has led to the 
expansion of target sites of their selective action, in addition to lactic acid bacteria 
(LAB), to other candidates of genera with health promotion, such as Roseburia 
spp. Akkermansia and Propionibacterium (Cunningham et al. 2021). Therefore, 
new candidates for prebiotics have been proposed (Fig. 10.8). 

Prebiotics can directly exert a beneficial effect by stimulating the growth and 
activity of specific groups of microorganisms that use them as substrates, resulting 
in favorable modulation of the composition and function of the microbiota. The 
beneficial effect can be manifested indirectly through cross-feeding interaction— 
their fermentation by specific microorganisms releases one or more metabolic 
products that serve as growth substrates for other bacteria with health benefits 
for the host (Cunningham et al. 2021). Changes in microbiota composition and 
metabolite concentration can affect the epithelial, immune, endocrine, and nerve 
signaling resulting in health benefits for the host, such as improvement in intesti-
nal tract function, immune response, bone health, lipid, and glucose metabolism, 
appetite, and satiety regulation (Cunningham et al. 2021; Gibson et al. 2017). The 
primary metabolites of prebiotic fermentation are short-chain fatty acids (SCFAs), 
such as acetates, propionates, and butyrates, which interact with these host systems 
and through which numerous beneficial effects of prebiotics take place (Ashaolu 
and Ashaolu 2021). To date, the exact mechanisms by which prebiotics benefit 
remain unclear. The proposed mechanisms supported in vitro and animal studies 
are given in Table 10.2. 

The beneficial effects of prebiotics in defense against pathogens can be achieved 
in several ways: through the production of SCFAs, which lowers the luminal pH 
and inhibits the growth of some pathogenic bacteria, and through the establishment 
of a stable population of commensal microorganisms (Chen and Gänzle 2017; 
Holscher 2017). Lowering the luminal pH as a consequence of SCFA synthesis 
can also lead to increased solubility of minerals, such as calcium and magnesium, 
and thus to their enhanced absorption, which is one of the most studied effects 
of fructans in both animal and human clinical studies (Porwal et al. 2020). It 
is important to emphasize that the change in pH in the intestines is one of the 
mechanisms for changing the composition and population of the intestinal micro-
biota. A change in pH can alter the population of acid-sensitive species such as 
Bacteroides and promote butyrate synthesis by Firmicutes, called the butyrogenic 
effect (Davari et al. 2019). Stimulation of the immune system can be direct or 
indirect through an increase in the population of beneficial microbes, although 
the exact mechanism is not understood enough. One of the essential mechanisms 
by which prebiotics exhibit immunomodulatory activity is a change in cytokine 
expression (Shokryazdan et al. 2022). There is evidence that many innate and 
acquired immune response components may be affected by metabolic fermentation
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Table 10.2 Potential mechanisms of prebiotics action 

Prebiotic effect Mechanisms/expected results 

Changing in gut microbiota composition Selectively stimulating beneficial members of the gut 
microbiota with positive effects on the host health 

Direct simulation of the immune system Increasing anti-inflammatory cytokines; decreasing 
pro-inflammatory cytokines; beneficial effects on the 
mucosal immune system; increasing the secretory 
IgA; reducing Th2 responses 

Simulating intestinal barrier function Increasing production of mucus; increasing 
expression of the tight junction proteins in intestinal 
epithelial cell lines 

Defense against pathogens Lowering the colonic pH below threshold levels via 
SCFAs production; antagonism via different 
inhibitory peptides commonly produced by lactic 
acid bacteria; limitation in several colonization sites; 
reducing nutrient availability by establishment of a 
stable population of commensal microorganisms 

Improvements in bowel function Fecal bulking; regulating the secretion of gut 
hormones 

Improving nutrients absorption Improving small intestine development 
Increasing villi height, crypt depth, and number of 
goblet cells per villus 

Increased mineral absorption Reducing the colonic pH and increasing mineral 
solubility 

Metabolic effects Improving intestinal barrier function and prevention 
of inflammatory mediators translocation; regulation 
of glucose homeostasis and lipid metabolism; 
regulation of appetite via increased production of 
anorexigenic hormones such as PYY and GLP-1 

Adapted from reports of Sander et al. (2019), Shokryazdan et al. (2022), and Kumari et al. (2020) 

products and prebiotics themselves (Kumari et al. 2020). Additionally, interven-
tion with prebiotics can reduce the Th2 immune response and thus affect allergies 
(Ashaolu 2020). The improvement in bowel function may be due to increased fecal 
content due to consumption of dietary fiber, although evidence from animal stud-
ies indicates that SCFA, fermentation products, can modulate intestinal motility 
via intestinal hormones (Sanders et al. 2019). 

In recent years, the metabolic effects of prebiotics have been the subject of 
numerous studies. Despite inconsistent results, the generally accepted consensus 
is that intervention with prebiotics has a positive effect on glucose homeostasis, 
lipid profile, and inflammation (Sanders et al. 2019). It has been suggested that 
prebiotic-induced proliferation of commensal bacteria and increased SCFA syn-
thesis positively affects mucosal intestinal barrier function, leading to reduced 
translocation of bacterial endotoxins from the gut into the circulation, a condi-
tion known as metabolic endotoxemia (Green et al. 2020). Metabolic endotoxemia 
has been suggested as a causative factor in diabetes and obesity. An additional
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effect on strengthening the mucosal barrier can be exerted by stimulating the tight 
junction proteins expression and stimulating mucus synthesis (Shokryazdan et al. 
2022). The effect of prebiotics on satiety is achieved by synthesizing SCFAs whose 
interaction with colon L-cells results in the production of anorexigenic hormones 
such as peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), both involved 
in the regulation of body weight, appetite, and glucose metabolism (Van Hul and 
Cani 2019). The effect of probiotics on lipid metabolism can also be manifested 
by inhibiting the absorption of cholesterol and bile acids, probably through the 
mechanism of binding prebiotics to these lipid components and promoting their 
excretion or inhibiting the lipogenic enzymes (Sierra et al. 2019; Pushpass et al. 
2021). Increased bile acid excretion may be associated with increased intestinal 
commensal bacterial proliferation and increased BSH enzyme activity produced 
by these strains (Pushpass et al. 2021). 

Interest in prebiotics as biologically active compounds that can prevent and 
treat a wide range of conditions and diseases associated with disturbances of the 
gut microbial ecosystem, named dysbiosis, can be seen in many registered clinical 
studies (ClinicalTrials.gov). Since October 2021, there have been as many as 268 
registered clinical studies that have completed the evaluation of prebiotics (alone 
or in combination with probiotics) in obesity, type 2 diabetes, irritable bowel syn-
drome, ulcerative colitis, diarrhea, constipation, colon cancer, infant growth, atopic 
dermatitis, chronic kidney disease, aging, autism, depression, and other conditions. 

However, intervention studies are increasingly incoherent and without statis-
tical power due to the considerable variation in individual responses between 
participants, primarily when conducted in natural living conditions. A growing 
body of evidence suggests that the response to food intervention and dietary com-
pounds, including prebiotics, is highly personalized and conditioned by the initial 
microbiota characteristics. Indeed, individual basal microbiota and health status 
at the beginning of the intervention affect the magnitude of potential changes 
in the microbiota and consequently the host (Mills et al. 2019). Theoretically, 
precise nutrition with existing prebiotics is possible by selecting susceptible indi-
viduals or subgroups with appropriate basal commensal microbes which can 
utilize this substrate. However, such selection is still challenging given the lack 
of targeted studies, including microbiome data (Vandeputte 2020). It is currently 
known that the Prevotella-dominant (P-enterotype) microbiome can ferment non-
digestible carbohydrates more efficiently compared to the Bacteroides-dominant 
(B-enterotype) microbiome, resulting in P-enterotype subjects having more bene-
fits than a fiber-rich diet in terms of losing bodyweight (Christensen et al. 2018). 
Additionally, in vitro fermentation studies have indicated functional differences 
between the enterotypes regarding prebiotics or fibers fermentation. Incubation 
with FOS, arabinoxylans, or fiber from pulse cell wall has led to a higher fermen-
tation rate in P-enterotype inoculum and higher production of SCFAs, especially 
butyrate and propionate, compared to B-enterotype inoculum (Chen and Gänzle 
2017). A similar effect of the initial microbiota composition on the fermentation 
of prebiotics was found in another in vitro study in which isomaltooligosaccharide 
was used as a carbon source (Wu et al. 2017). Contrary, B-enterotype microbiota
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was more efficient in the fermentation of alginate and its derivatives, producing 
more total SCFAs and butyrates than P-enterotype and Escherichia-enterotype (Fu 
et al. 2021). These studies have highlighted that the fermentation of prebiotics 
by the human microbiota is enterospecific, thus the importance of a personalized 
approach based on enterotype. 

In a precise application of prebiotics, an important aspect should be an approach 
based on the prediction of responders and non-responders (Cunningham et al. 
2021). A growing number of studies indicate that the basic microbiota consists 
of responders and non-responders to dietary intervention as well as the effectors 
of the host response (Holscher 2017; Holscher et al. 2015; Rodriguez et al. 2020). 
Thus, individuals with a non-detectible level of bifidobacteria in their gut micro-
biota failed to respond to agave inulin supplementation (Holscher et al. 2015). 
Furthermore, the presence or absence of certain species or consortia of microor-
ganisms may also be related to the microbiota responsiveness on the prebiotics. 
Individuals in whom the presence of Ruminococcus bromii was not detected in 
the microbiota had a significantly reduced capacity for fermentation of resistant 
starch during ten weeks of intervention, resulting in 20–30% fermentability com-
pared to 100% in individuals in whom R. bromii was detected (Frame et al. 2020; 
Walker et al. 2011). Also, improvement in metabolic disorders in obese individuals 
after inulin supplementation was associated with the pre-intervention presence of 
a specific consortium of bacteria such as Anaerostipes, Akkermansia, and Butyri-
cicoccus but not with basal microbiota diversity (Rodriguez et al. 2020). Contrary, 
patients who were found to have pre-interventional elevated levels of Coprococcus 
spp. were more likely to benefit from inulin supplementation in terms of mood 
(Leyrolle et al. 2021). The initial microbiota composition was also related to the 
degree of fermentation and production of butyrate in response to intervention with 
resistant starch and hydrolyzed guar gum (Baxter et al. 2019; Reider et al. 2020). 
According to Ojima et al., response to prebiotics can be predicted by the abundance 
of enzymes for prebiotics digestion and utilization by the host microorganisms 
(Ojima et al. 2022). 

Long-term dietary habits, especially dietary fiber intake, can also play a signifi-
cant role in the response of the intestinal microbiota to intervention with prebiotics 
(Mills et al. 2019; Nogal et al. 2021). Three-week supplementation with inulin-type 
fructan resulted in a significant increase in the relative presence of Bifidobacterium 
and Faecalibacterium in participants classified as high-fiber consumers with a 
significant reduction in Coprococcus, Dorea, and Ruminococcus compared to low-
fiber consumers showing only an increase in Bifidobacterium. Moreover, inulin 
intervention was more effective in increasing bifidobacteria in individuals with a 
lower basal concentration of bifidobacteria in the gut microbiota (Healey et al. 
2018). 

What further complicates predictions of response to prebiotic intervention is 
that their effects on the intestinal microbial community will depend on their 
structure, including the degree of polymerization, branching, monosaccharide pro-
file, glycosidic linkage, specific structure (Lam and Cheung 2019). For example, 
in vitro fermentation studies have shown that only slight changes in the structure
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of arabinoxylans, extracted from different dietary sources, can lead to different 
changes in the composition and function of the microbiota, suggesting that phys-
iological fiber function is highly dependent on structure (Tuncil et al. 2020). In 
addition, clinical intervention studies using different sources of either type 2 or 
type 4 resistant starch, which differs in structural characteristics, reported different 
effects of these components in modulating microbiota composition and SCFA pro-
duction (Baxter et al. 2019; Cunningham et al. 2021; Deehan et al. 2020). Also, 
three weeks’ consumption of resistant starch type 3 or type 4 differently affected 
healthy volunteers’ initial fecal microbial population (Martínez et al. 2019). 

The health effects of polyphenols as potential prebiotics depend on the ability of 
individuals to metabolize polyphenols into bioavailable metabolites, which is influ-
enced by the characteristics of the microbiota as the central intermediate between 
polyphenols and health (Martín et al. 2020; Pushpass et al. 2021). The results of 
numerous studies have indicated the need to cluster human subjects into metabo-
types that have different potentials for polyphenol metabolism and thus manifest 
their health effects. Therefore, personalized intervention with polyphenols in future 
will not be conceivable without considering metabotypes. As markers of the abil-
ity of individuals to benefit from a given polyphenol, it could serve metabolites 
produced by polyphenols in the presence of specific microorganisms (Martín et al. 
2020). 

Postbiotics and personalization 
Postbiotics are functional bioactive compounds, generated in a matrix during bac-
terial fermentation, which may be used to promote health (Wegh et al. 2019). 
Postbiotics can include all products from microbial fermentation process, such 
as SCFAs, microbial cell fractions, functional proteins, extracellular polysaccha-
rides (EPS), cell lysates, teichoic acid, peptidoglycan-derived muropeptides, and 
pili-type structures, Fig. 10.9. Definitions for postbiotics are yet under discussion. 

The postbiotic concept would certainly allow various forms of personalization. 
A decrease of microbial metabolites such as SCFAs or neurological active metabo-
lites have been reported with aging but also in various diseases such as depression 
or neuroinflammatory processes (Gruendler et al. 2020; Zalar et al. 2018). The ori-
gin of inter-individual variability in the action of bioactive small molecules from 
the diet has been analyzed, e.g., for urinary coffee phenolic acid metabolites. High 
inter- and intra-individual variation for metabolites produced by the colonic micro-
biome have been observed (Kerimi et al. 2020). Highly different metabolization 
of fibers or nutraceuticals due to GI microbiota composition effecting bioavail-
ability as well as activity of food ingredients has been known for a long time. 
Therefore, analysis of microbiota and relevant metabolites could guide personal-
ized production of postbiotics with improved activity in aging and many complex 
diseases.
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Fig. 10.9 Postbiotic, https://www.thinkbiome.com/postbiotics 

10.6 Nutraceuticals 

DeFelice proceeded to define nutraceutical as, “a food (or part of a food) that 
provides medical or health benefits, including the prevention and/or treatment 
of a disease”. When functional food aids in the prevention and/or treatment 
of disease(s) and/or disorder(s) other than anemia, it is called a nutraceutical. 
Thus, nutraceuticals differ from dietary supplements in the following aspects: (1) 
nutraceuticals must not only supplement the diet but should also aid in the preven-
tion and/or treatment of disease and/or disorder; and (2) nutraceuticals are used as 
conventional foods or as sole items of a meal or diet. Dietary components play ben-
eficial roles beyond basic nutrition, leading to the development of the functional 
food concept and nutraceuticals. A functional food for one consumer can act as 
a nutraceutical for another consumer. Examples of nutraceuticals include fortified 
dairy products (e.g., milk) and citrus fruits (e.g., orange juice). Parameters for the 
evaluation of a nutraceutical are shown in Fig. 10.10. 

Several naturally derived food substances have been studied in complex dis-
eases, e.g., cancer therapies. Vitamin E, selenium, vitamin D, green tea, soy, and 
lycopene are examples of nutraceuticals widely studied in human health. While 
many of these compounds have been found to have high-therapeutic potential, 
future studies should include well-designed clinical trials assessing combinations 
of these compounds to realize possible synergies for human health. 

Polyunsaturated fatty acids (PUFAs) (which include the omega-3 and omega-6 
fatty acids) and phytochemicals also play an important role as healthy dietary 
bioactive compounds (Brower 1998; Zeisel 1999; Kalra 2003). Unfortunately,

https://www.thinkbiome.com/postbiotics
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Fig. 10.10 Parameters for the evaluation of a nutraceutical (Mukherjee 2019) 

different broad meta-analytical or coherent studies showed strikingly different 
conclusions on the effectivity on cardio vascular- or aging-related health prob-
lems (Abdelhamid AS). In this respect, a problematic stability of products and 
dose response characteristics have been discussed. Also “consistent and incon-
sistent responses” of different individuals have been shown, using multi-platform 
lipidomic approach (Nording et al. 2013). Recently, more studies tend to see pos-
itive effects of fish oil in a variety of health problem (Khan et al. 2021; Liao et al. 
2022; Zhang et al. 2022). 

10.7 Medical Foods 

Medical foods are considered to be administered to a “patient receiving active and 
ongoing medical supervision (e.g., in a health care facility or as an outpatient) by 
a physician who has determined that the medical food is necessary to the patient’s 
overall medical care”. Furthermore, medical foods cannot be used for a condi-
tion that can be managed with a simple adjustment of the normal diet, such as 
diabetes or vitamin and mineral deficiencies. Medical foods include nutritionally 
complete formulas; nutritionally incomplete formulas containing proteins, carbo-
hydrates, or fats; formulas for metabolic disorders in patients over 12 months of 
age; and oral rehydration formulas. These foods differ from dietary supplements 
and FDA-approved drugs in a number of ways. The main difference between med-
ical foods and dietary supplements is that medical foods are used to manage a 
chronic disease or condition under medical or physician supervision, whereas sup-
plements are intended for healthy individuals and can be obtained over-the-counter 
(OTC). (Ciampa et al. 2017). The use of medical foods for specific diseases must 
also be supported by recognized science.
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These foods are intended for the exclusive or partial feeding of people 
whose nutritional requirements cannot be met by normal foods. The Direc-
tive 1999/21/EC lays down essential requirements on their composition and gives 
guidance for the minimum and maximum levels of vitamins and minerals. 

Nutritional substances that may be used in the manufacture of foods for special 
medical purposes are laid down in Commission Regulation (EC) No. 953/2009. 
European EFSA gives guidance for the preparation of dossiers for foods for 
special medicinal purposes: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/ 
j.efsa.2015.4300 

10.8 Mechanistic Aspects of Special Foods 

10.8.1 Epigenetic Active Foods 

Over the past decade, remarkable breakthroughs in our understanding of epige-
netic biology have coincided with an increased public interest in the impact of 
diet and lifestyle choices on health. It is well established that a balanced diet 
enhances life expectancy and helps to prevent or treat certain diseases, such as obe-
sity, diabetes, cancer, and mental disorders. However, the biological mechanisms 
underlying these effects are not yet well understood. One possibility is through 
directly affecting catalytic activities of the enzymes responsible for “writing” or 
“erasing” the epigenetic modifications. Wang et al. identified two phytochemi-
cals, dihydrocaffeic acid (DHCA) and malvidin-3'-O-glucoside (Mal-gluc), and 
metabolic intermediates derived from Concord grape juice, grape seed extract, and 
trans-resveratrol—that attenuate depression-like behaviors in mice. (Wang et al. 
2018). 

Nutrients affecting one of the two metabolites of the 1-carbon metabolism, S-
Adenosylmethionin, a ubiquitous methyl donor, or S-adenosylhomocysteine, an 
inhibitor of methyltransferases, potentially alter the methylation of DNA and his-
tones. Methylated promoter and other regulatory regions of a gene are usually 
associated with gene repression, whereas DNA demethylation within these regions 
leads to gene activation. Polyphenols, including curcumin, genistein, epigallocate-
chin gallate (EGCG), resveratrol, and equol, are well known for their beneficial 
effects via modulation of nuclear factor kappa B (NFkB) expression, chro-
matin remodeling through regulation of histone deacetylases (HDACs), and DNA 
methyltransferases activities. Gut microbiota-derived butyrate, sulforaphane, and 
curcumin affect histone acetyl-transferase (HATs) and/or HDACs activities leading 
to changes in chromatin structure. Vitamins, like biotin, niacin, and panthothenic 
acid, influence histone modifications. Resveratrol, butyrate, sulforaphane, and dial-
lyl sulfide inhibit HDACs, whereas curcumin inhibits HATs. Although the action of 
many bioactive substances is specific to enzymes and proteins involved in the reg-
ulation of different components of the epigenome, interaction with other nutrients 
and lifestyle factors in physiological and pathological conditions must be taken 
into account. In addition, epigenetic components exert effect over each other. It

https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.4300
https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.4300
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adds an additional layer of complexity to the action of epigenetically active nutri-
ents. Studies demonstrate that DNA methylation and histone modifications that act 
together to establish chromatin structure are involved in miRNA regulation and 
vice versa. Thus, deeper knowledge of bioactive nutrients/diets for characteriza-
tion of their effects on the epigenome modifying enzymatic activities (acetylation, 
methylation, phosphorylation, ribosylation, oxidation, ubiquitination, and sumoyla-
tion) influencing drug absorption, distribution, metabolism, and excretion is needed 
(Remely et al. 2015). 

Bioactive food components may get increasing importance in the prevention 
of various diseases, but researchers still face challenges which inhibit the imple-
mentation of such compounds into clinical practice. A major factor is the lack of 
knowledge underlying the mechanisms and effectiveness of these metabolites and

Fig. 10.11 Epigenetic active compounds and activities (Stefanska et al. 2012)
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whether in vitro results are replicable in vivo in humans. Another concern is the 
poor bioavailability of the nutrients, which may be increased by combining cer-
tain bioactive compounds with other nutrients or the use of nanoencapsulation (Di 
Salle et al. 2016).

Examples of Bioactive Food Components and Epigenome Interactions are given 
in Fig. 10.11. 

10.8.2 Sirtuin Activation by “Sirtfoods” 

Sirtuins, commonly also referred to as silent mating type information regulation 2 
homologous (SIRT), are a class of proteins which can be found in all living organ-
isms, from bacteria and archaebacteria to mammals, and were first discovered in 
the 1990s in an effort to find yeast mutants with longer life durations (SINCLAIR 
2006). SIRT1 is mainly located in the cell nucleus, but it can also be found in 
the cytosol. SIRT2 is also located in the cytosol, where it has its main site. SIRT3, 
SIRT4, and SIRT5 are mitochondrial proteins, but SIRT3 can also be located in the 
cell nucleus and cytosol under different cellular conditions. SIRT6 and SIRT7 are 
located in the cell nucleus and nucleolus, respectively (Alhazzazi 2011, p. 80–88) 
(Fig. 10.12). 

Humans possess a total of seven sirtuins (SIRT1–SIRT7). Just like in yeast, 
they act as energy sensors in our cells and are activated when there is a lack of 
energy. Thanks to their properties, sirtuins are therefore multifunctional and regu-
late many metabolic processes as well as the aging process (RAUH 2013). In fact, 
increased activity of a yeast’s sirtuin, silent information regulator two (Sir2), can 
extend its life. It ensures the silencing of certain chromatin regions by deacetylat-
ing histones. This attenuation of chromatin activities, such as during replication, 
recombination, and transcription, seems to be essential for prolonging the life of 
Sirt2. Interestingly, an increase in sirtuin activity also prolongs the lifespan of 
more complex organisms, such as the worm Caenorhabditis elegans or the fruit fly 
Drosophila melanogaster. Recent studies suggest that sirtuins also play an impor-
tant role in the regulation of the life span of mammals. In more complex species, 
sirtuins can deacetylate a number of cellular regulatory proteins, in addition to 
histones, and can influence their activity in a positive or negative manner. How-
ever, the life-enhancing effect of increased sirtuin on mice has not yet been clearly 
documented. 

Strong evidence supports a role for SIRT1 mediating an oxidative stress 
response by directly deacetylating several transcription factors that regulate antiox-
idant genes. Notably, SIRT1 activates several members of the FOXO family 
of transcription factors which promote the expression of stress response genes 
including SOD2. SIRT1 also promotes mitochondrial biogenesis by activating 
peroxisome proliferator-activated receptor co-activator 1-α (PGC-1α). PGC-1α 
increases mitochondrial mass and upregulates the expression of oxidative stress 
genes including glutathione peroxidase (GPx1), catalase, and manganese SOD 
(MnSOD). Finally, SIRT1 inactivates the p65 subunit of NF-κB through direct
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Fig. 10.12 Localization sirtuins (Alhazzazi 2011)

deacetylation. NF-κB inhibition suppresses the inducible nitric oxide synthase 
(iNOS) and nitrous oxide production and thus may lower the cellular reactive 
oxigen species (ROS) load. Given its role in the antioxidant response, whether 
SIRT1 activation contributes to CR mediated lifespan extension has been exten-
sively studied. CR fails to increase the lifespan of SIRT1 knock-out mice, and 
these mice do not increase their physical activity, a phenotype typically associ-
ated with calorically restricted mice. Similarly, SIRT1 overexpression mimics a 
caloric restriction phenotype. Precisely, how SIRT1 functions during CR remains 
an open question, but emerging evidence suggests that p53 plays an important role 
in modulating SIRT1 during CR. Mitochondria account for the majority of cellular 
ROS production. Mitochondrial SIRT3 deacetylates and activates several enzymes 
that are critical in maintaining cellular ROS levels. SIRT3 deacetylates SOD2 at 
two important lysine residues to boost its catalytic activity, and the catalytic activ-
ity of SOD2 is diminished when SIRT3 is deleted. SIRT3 knock-out mice fail to 
reduce their levels of lipid peroxidation and protein carbonylation that are typ-
ically observed during caloric restriction indicating that SIRT3 is necessary for 
caloric restriction to mitigate oxidative stress. Additionally, SIRT3 stimulates the 
activity of mitochondrial isocitrate dehydrogenase, IDH2, during caloric restric-
tion through direct deacetylation. IDH2 promotes the conversation of NADP+
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to NADPH which in turn provides the reducing equivalents for conversion of 
oxidized to reduced glutathione. In support of this biochemical data, SIRT3 is 
required to protect calorically restricted mice from age-associated hearing loss. 
Another link between SIRT3 and oxidative stress comes from the field of oncology. 
Since ROS can severely damage nucleic acids, it is not surprising that oxidative 
stress can promote tumorigenesis. SIRT3 knock-out mouse embryonic fibroblasts 
(MEFs) exhibit higher ROS levels, greater genomic instability, and increased sen-
sitivity to oncogenic transformation compared to wild-type fibroblasts (Kim et al. 
2010). Intriguingly, overexpression of SOD2 suppresses oncogenic transformation 
in SIRT3 knock-out MEFs suggesting that SIRT3 may protect against tumorigen-
esis through an oxidative stress mechanism. In support of the above in vitro data, 
mice deficient for SIRT3 is more susceptible to cancer, and many human tumors 
display reduced SIRT3 levels compared to healthy tissues. In addition to suppress-
ing the formation of cancer, SIRT3 can also combat established tumors (Guarente 
2011; Merksamer et al. 2013), Fig. 10.13. 

The close link between the sirtuin function and cellular metabolism plays a 
central role in regulating the lifespan. For example, sirtuins are necessary to 
activate the life-prolonging effect which occurs during the restriction of calo-
ries. Studies have shown that in animals, including mammals, a reduced calorie

Fig. 10.13 Role of SIRTS, Merksamer et al. (2013) 
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intake leads to a general increase in fitness and prolonged life span. For exam-
ple, in mice, Sirt1 activity is increased when calorie restrictions are in place 
(Bober 2007). Recently, research has focused on ways how to activate these sirtu-
ins without fasting and foods which stimulate sirt enzymes came into broader 
interest. Sirtfoods are plant-based foods composed of polyphenols—secondary 
plant substances. In other words, Sirtfoods can activate sirtuins without fast-
ing taking place. In countries such as Japan and India, varying sirtuins are part 
of the daily diet. Also known as “blue zones”, these countries have the lowest 
incidences of lifestyle-related diseases, including hypertension, obesity, diabetes, 
fatty liver, and cancer, due to higher sirtuin activating diets. In addition, the 
polyphenols contained in Sirtfoods have been closely linked to positive effects 
on epigenetic mechanisms and many other genes known for promoting a long and 
above all, healthy life. Certain natural plant compounds such as red wine, straw-
berries, onions, soy, parsley, extra virgin olive oil, dark chocolate (85% cocoa), 
green tea, buckwheat, turmeric, or walnuts presumably increase the level of these 
proteins in the body, and foods containing them have been dubbed “Sirtfoods”. 
Sirtfoods have attracted a broad interest in public media: https://www.healthline. 
com/nutrition/sirtfood-diet#section1; https://www.bbcgoodfood.com/howto/guide/ 
what-sirtfood-diet; https://doi.org/10.1016/B978-0-08-100596-5.22721-2; https:// 
doi.org/10.1016/j.freeradbiomed.2012.10.525 

10.9 Senolytic Foods 

Accumulating evidence suggests that targeting some of the aging hallmarks, for 
example, cellular senescence, can significantly improve human health and extend 
health span. Cellular senescence is a phenomenon where normal cells stop divid-
ing. Senescent cells (SCs) accumulate in various tissues during the aging process. 
On one hand, cellular senescence blocks the propagation of damaged cells in order 
to maintain tissue homeostasis. On the other hand, it plays a causative role in 
irreparable, deleterious cellular damage, and loss of tissue homeostasis, which 
relates to aging and aging-associated diseases. Accumulating evidence demon-
strates that elimination of SCs can reduce age-dependent deterioration in tissues 
and organs, which is useful in improving the treatment of age-associated dis-
eases and alleviating the side effects of therapy-induced. Small molecules that 
can selectively kill SCs, called senolytics, have the potential to both prevent 
and treat age-related diseases, thereby extending health span. Until now, several 
classes of senolytic agents, including natural compounds such as quercetin, fisetin, 
piperlongumine, and curcumin analog EF24, and targeted therapeutics, which are 
mainly senolytic target inhibitors, have been identified. Compared to the targeted 
senolytics, natural senolytic compounds are less potent, but have low toxicity. They 
may also have a better chance of being translated into the clinical setting to treat 
age-related diseases or used as a lead for the development of more specific and 
potent senolytic agents (Li et al. 2019; Bielak-Zmijewska et al. 2019) (Fig. 10.14).

https://www.healthline.com/nutrition/sirtfood-diet\#section1
https://www.healthline.com/nutrition/sirtfood-diet#section1
https://www.bbcgoodfood.com/howto/guide/what-sirtfood-diet
https://www.bbcgoodfood.com/howto/guide/what-sirtfood-diet
https://doi.org/10.1016/B978-0-08-100596-5.22721-2
https://doi.org/10.1016/j.freeradbiomed.2012.10.525
https://doi.org/10.1016/j.freeradbiomed.2012.10.525
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Fig. 10.14 Cellular senescence (Li et al. 2019) 

10.9.1 Fasting Mimetics 

As the world population ages, chronic diseases such as diabetes, cardiovascular 
disease, cancer, and neurodegeneration become ever more prevalent. Interventions 
that favor healthy aging would constitute powerful strategies with which to limit 
human diseases that have a broad socioeconomic impact. Fasting regimens such 
as intermittent fasting or dietary adaptations such as caloric restriction are among 
the few regimens that extend life and beneficially affect health in all tested model 
organisms, including rodents and nonhuman primates. However, few people seem 
capable of changing their dietary routines for extended periods. Thus, supplemen-
tation with pharmacological or plant derived caloric restriction mimetics (CRMs), 
mimic the beneficial effects of caloric restriction or fasting, has gained attention 
as an attractive and potentially feasible strategy (Madeo et al. n.d.). 

Various polyphenols such as resveratrol in cells are able to activate biochemi-
cal pathways involved in senolysis in mammalian cells. These molecules include 
resveratrol, catechins, quercetin, and genistein. There is considerable overlap 
between these pathways and those activated by caloric restriction and mechanisms 
seem in large part to be mediated by their activation of sirtuin enzymes, Fig. 10.15. 

Figure 10.16 shows mechanisms of plant ingredients and pharmaceutics claimed 
as caoric restriction mimetics and possible senolytic activity. Also combinations 
of pharmaceuticals and plant ingredients are under development as senolytica. In 
a clinical trial, the decrease of senescent cells by the tyrosine kinase inhibitor 
Dasatinib plus quercetin was shown in individuals with diabetic kidney disease 
(Hickson et al. 2019). The special importance of senolytics for health and economy 
can be shown by development of antibody-drug conjugates (Poblocka et al. 2021) 
as well as senolytic CAR T cells (Amor et al. 2020). 

10.10 Personalization, Discussion 

The ancient philosopher Lucretius recognized that one man’s meat is another man’s 
poison. In more modern times, Roger Williams (1956) wrote that “nutrition applied 
with due concern for individual variations […] offers the solution to many baffling 
health problems”.
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Fig. 10.15 General pathways and processes activated by calorie restriction and resveratrol (Mor-
ris 2010) 

Fig. 10.16 Mechanisms of c caloric restriction mimetics (Madeo et al. 2019)
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Clinicians have long recognized that diet, supplement, and lifestyle solutions 
that are effective for some individuals have no or even deleterious effects on others. 
Clearly, the need for personalized nutrition exists. The use of nutrigenomics has 
been discussed as a tool for disease risk intervention (Ferguson 2015). To propose 
a healthy diet to populations worldwide that must suit high inter-individual vari-
ability driven by complex gene–nutrient–environment interactions has been seen 
as one of the biggest challenges of modern nutrition before. Although a number of 
functional foods are now proposed in support of a healthy diet, a one-size-fits-all 
approach to nutrition is inappropriate, and new personalized functional foods are 
necessary. Metabolic profiling technologies can assist at various levels of the devel-
opment of functional foods, from screening for food composition to identification 
of new biomarkers of food intake to support diet intervention and epidemiological 
studies (Claus 2014). 

The wide array of new health products—nutraceuticals, nutritional supplements, 
functional foods, dietary supplements, foods for special medical purposes, and 
foods for special dietary uses—as well as different national regulations makes a 
harmonized understanding of safety evaluation difficult and is often confusing to 
consumers and industry. Facing often difficult legal categorization of products or 
unsubstantiated health claims from industry, consumer advice organizations are 
calling for stricter control mechanisms. On the other hand, stricter legislation and 
burdens for authorization result in monopolization in food and medical industry 
often hindering creative new developments for health care. 

References 

Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, 
Li X, Giavridis T, Kulick A, Houlihan S, Peerschke E, Friedman SL, Ponomarev V, Piersig-
illi A, Sadelain M, Lowe SW (2020) Senolytic CAR T cells reverse senescence-associated 
pathologies. Nature 583(7814):127–132. https://doi.org/10.1038/s41586-020-2403-9 

Aronson JK (2017) Defining “nutraceuticals”: neither nutritious nor pharmaceutical. Br J Clin 
Pharmacol 83(1):8–19. https://doi.org/10.1111/BCP.12935 

Baxter et al (2019). https://doi.org/10.1128/mBio.02566-18 
Berthelot E, Etchecopar-Etchart D, Thellier D, Lancon C, Boyer L, Fond G (2021) Fasting inter-

ventions for stress, anxiety and depressive symptoms: a systematic review and meta-analysis. 
Nutrients 13(11). https://doi.org/10.3390/NU13113947 

Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch Ł, Sikora E (2019) 
The role of curcumin in the modulation of ageing. Int J Mol Sci 20(5). https://doi.org/10.3390/ 
ijms20051239 

Bindels et al (2015). https://doi.org/10.1038/nrgastro.2015.47 
Bober (2007). https://doi.org/10.5483/BMBRep.2008.41.11.751. https://doi.org/10.1101/gad.227 

439.113 
Brosseau et al (2019). https://doi.org/10.3390/nu11081841 
Brower V (1998) No Title. Nat Biotechnol 16:728–731 
Cardoso et al (2021). https://doi.org/10.1016/bs.afnr.2020.08.001 
Celiberto LS, Pinto RA, Rossi EA, Vallance BA, Cavallini DCU (2018) Isolation and character-

ization of potentially probiotic bacterial strains from mice: proof of concept for personalized 
probiotics. Nutrients 10(11). https://doi.org/10.3390/NU10111684

https://doi.org/10.1038/s41586-020-2403-9
https://doi.org/10.1111/BCP.12935
https://doi.org/10.1128/mBio.02566-18
https://doi.org/10.3390/NU13113947
https://doi.org/10.3390/ijms20051239
https://doi.org/10.3390/ijms20051239
https://doi.org/10.1038/nrgastro.2015.47
https://doi.org/10.5483/BMBRep.2008.41.11.751
https://doi.org/10.1101/gad.227439.113
https://doi.org/10.1101/gad.227439.113
https://doi.org/10.3390/nu11081841
https://doi.org/10.1016/bs.afnr.2020.08.001
https://doi.org/10.3390/NU10111684


264 I. Dj Nevena et al.

Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements 
in intestinal health. Nutrients 2(6):611. https://doi.org/10.3390/NU2060611 

Christensen et al (2018). https://doi.org/10.1093/ajcn/nqy175 
Ciampa BP, Ramos ER, Borum M, Doman DB (2017) The emerging therapeutic role of medical 

foods for gastrointestinal disorders. Gastroenterol Hepatol 13(2):104–115 
Claus (2014). https://doi.org/10.1097/MCO.0000000000000107 
Colman et al (2009). https://doi.org/10.1126/science.1173635 
Civitarese et al (2007). https://doi.org/10.1371/journal.pmed.0040076 
Cunningham et al (2021). https://doi.org/10.1016/j.tim.2021.01.003 
del Castillo and Iriondo-DeHond (2018). https://doi.org/10.3390/nu10101358 
Davari et al (2019). https://doi.org/10.3390/foods8030092 
de Toro-Martín J, Arsenault BJ, Després JP, Vohl MC (2017) Precision nutrition: a review of per-

sonalized nutritional approaches for the prevention and management of metabolic syndrome. 
Nutrients 9(8):913. https://doi.org/10.3390/NU9080913 

Deehan et al (2020). https://doi.org/10.1016/j.chom.2020.01.006 
Depommier et al (2019). https://doi.org/10.1038/s41591-019-0495-2 
Diaz et al (2019). https://doi.org/10.1093/advances/nmy063 
Dimitrijevic R, Ivanovic N, Mathiesen G, Petrusic V, Zivkovic I, Djordjevic B, Dimitrijevic LJ 

(2014) J Dairy Res 81(2):202–207. https://doi.org/10.1017/S0022029914000028 
Di Salle A et al (2016) Polyphenols nanoencapsulation for therapeutic applications. J Biomol Res 

Ther 5(2). https://doi.org/10.4172/2167-7956.1000139 
Ferguson (2015). https://doi.org/10.1161/HCG.0000000000000030 
Fontana et al (2004). https://doi.org/10.1073/pnas.0308291101 
Frame et al (2020). https://doi.org/10.1093/nutrit/nuz106 
Fu et al (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.135 
Gibson et al (2017). https://doi.org/10.1079/NRR200479 
Gomez et al (2016). https://doi.org/10.1016/j.chom.2016.09.001 
Gough SM, Casella A, Ortega KJ, Hackam AS (2021) Neuroprotection by the ketogenic diet: 

evidence and controversies. Front Nutr 8:782657. https://doi.org/10.3389/FNUT.2021.782657 
Green et al (2020). https://doi.org/10.3390/ijms21082890 
Gruendler R, Hippe B, Sendula Jengic V, Peterlin B, Haslberger AG (2020) Nutraceutical 

approaches of autophagy and neuroinflammation in Alzheimer’s disease: a systematic review. 
Molecules (Basel, Switzerland) 25(24). https://doi.org/10.3390/molecules25246018 

Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90. 
https://doi.org/10.1101/sqb.2011.76.010629 

Guarner et al (2017). https://doi.org/10.3389/fmicb.2020.01662 
Gutiérrez et al (2020). https://doi.org/10.1080/10408398.2022.2099807 
Healey et al (2018). https://doi.org/10.1017/S0007114517003440 
Heilbronn et al (2006). https://doi.org/10.1001/jama.295.13.1539 
Hickson, LTJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, 

Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson 
DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirt-
skhalava T, IMSaadiq, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth 
MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent 
cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individ-
uals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom. 
2019.08.069 

Hill et al (2014). https://doi.org/10.1038/nrgastro.2014.66 
Hofer et al (2008). https://doi.org/10.1089/rej.2008.0712 
Holscher (2017). https://doi.org/10.1080/19490976.2017.1290756 
Holscher et al (2015). https://doi.org/10.1080/19490976.2017.1290756 
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lation for the treatment of iron deficiency anemia. Chem Pharm Bull 66(4):347–352. https://doi. 
org/10.1248/cpb.c17-00634 

Kumari et al (2020). https://doi.org/10.1016/B978-0-12-820528-0.00012-0 
Lefevre et al (2009). https://doi.org/10.1172/JCI36714 
Leo et al (2019). https://doi.org/10.1016/B978-0-12-816397-9.00014-5 
Leyrolle et al (2021). https://doi.org/10.1016/j.bbi.2021.01.014 
Li W, Qin L, Feng R, Hu G, Sun H, He Y, Zhang R (2019) Emerging senolytic agents derived from 

natural products. Mech Ageing Dev 181:1–6. https://doi.org/10.1016/j.mad.2019.05.001 
Liao J, Xiong Q, Yin Y, Ling Z, Chen S (2022) The effects of fish oil on cardiovascular diseases: 

systematical evaluation and recent advance. Front Cardiovasc Med 1959. https://doi.org/10. 
3389/FCVM.2021.802306 

Lilja S, Stoll C, Krammer U, Hippe B, Duszka K, Debebe T, Höfinger I, König J, Pointner 
A, Haslberger A (2021) Five days periodic fasting elevates levels of longevity related chris-
tensenella and sirtuin expression in humans. Int J Mol Sci 22(5):1–15. https://doi.org/10.3390/ 
ijms22052331 

Liu Y, Tran DQ, Rhoads JM (2018) Probiotics in disease prevention and treatment. J Clin Pharma-
col 58(Suppl 10):S164. https://doi.org/10.1002/JCPH.1121 

Ma et al (2020). https://doi.org/10.1016/j.foodres.2020.109496 
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019) Caloric restriction mimetics against 

age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29(3):592– 
610. https://doi.org/10.1016/j.cmet.2019.01.018 

Madeo F, Eisenberg T, Pietrocola F, Kroemer G (n.d.) Review summary. Spermidine in health and 
disease. https://doi.org/10.1126/science.aan2788 

Martín et al (2020). https://doi.org/10.1002/mnfr.201900952 
Martínez et al (2019). https://doi.org/10.1093/advances/nmy078 
Mazhar et al (2020). https://doi.org/10.2217/fmb-2019-0143 
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress 

and aging: an emerging link. Aging 5(3):144–150. https://doi.org/10.18632/aging.100544 
Meyer et al (2006). https://doi.org/10.2337/dc05-2565 
Mills et al (2019). https://doi.org/10.3390/nu12061776 
Morris BJ (2010) Calorie restriction mimetics and aging. In: Calorie restriction, aging and 

longevity. Springer, Netherlands, pp 141–175. https://doi.org/10.1007/978-90-481-8556-6_9 
Mukherjee PK (2019) Quality control and evaluation of herbal drugs: evaluating natural products 

and traditional medicine. In: Quality control and evaluation of herbal drugs: evaluating natural 
products and traditional medicine. Elsevier. https://doi.org/10.1016/C2016-0-04232-8

https://doi.org/10.1039/C4FO00843J
https://doi.org/10.1016/J.CBI.2021.109452
https://doi.org/10.1038/S41598-020-76558-5
https://doi.org/10.1016/J.ECLINM.2021.100997/ATTACHMENT/079022C4-42B6-4816-A327-3B5BF0CF0017/MMC1.DOCX
https://doi.org/10.1016/J.ECLINM.2021.100997/ATTACHMENT/079022C4-42B6-4816-A327-3B5BF0CF0017/MMC1.DOCX
https://doi.org/10.1016/J.ECLINM.2021.100997/ATTACHMENT/079022C4-42B6-4816-A327-3B5BF0CF0017/MMC1.DOCX
https://doi.org/10.1016/j.ccr.2009.11.023
https://doi.org/10.1248/cpb.c17-00634
https://doi.org/10.1248/cpb.c17-00634
https://doi.org/10.1016/B978-0-12-820528-0.00012-0
https://doi.org/10.1172/JCI36714
https://doi.org/10.1016/B978-0-12-816397-9.00014-5
https://doi.org/10.1016/j.bbi.2021.01.014
https://doi.org/10.1016/j.mad.2019.05.001
https://doi.org/10.3389/FCVM.2021.802306
https://doi.org/10.3389/FCVM.2021.802306
https://doi.org/10.3390/ijms22052331
https://doi.org/10.3390/ijms22052331
https://doi.org/10.1002/JCPH.1121
https://doi.org/10.1016/j.foodres.2020.109496
https://doi.org/10.1016/j.cmet.2019.01.018
https://doi.org/10.1126/science.aan2788
https://doi.org/10.1002/mnfr.201900952
https://doi.org/10.1093/advances/nmy078
https://doi.org/10.2217/fmb-2019-0143
https://doi.org/10.18632/aging.100544
https://doi.org/10.2337/dc05-2565
https://doi.org/10.3390/nu12061776
https://doi.org/10.1007/978-90-481-8556-6_9
https://doi.org/10.1016/C2016-0-04232-8


266 I. Dj Nevena et al.

Nording ML, Yang J, Georgi K, Hegedus Karbowski C, German JB, Weiss RH, Hogg RJ, Trygg J, 
Hammock BD, Zivkovic AM (2013) Individual variation in lipidomic profiles of healthy sub-
jects in response to omega-3 fatty acids. PLoS ONE 8(10). https://doi.org/10.1371/JOURNAL. 
PONE.0076575 

Ojima et al (2022). https://doi.org/10.3389/fmicb.2020.01349 
Ortiz AM, Simpson J, Langner CA, Baker PJ, Aguilar C, Brooks K, Flynn JK, Vinton CL, 

Rahmberg AR, Hickman HD, Brenchley JM (2022) Butyrate administration is not sufficient 
to improve immune reconstitution in antiretroviral-treated SIV-infected macaques. Sci Rep 
12(1):1–14. https://doi.org/10.1038/s41598-022-11122-x 

Piwpong (2018). https://doi.org/10.1016/B978-0-08-100596-5.22721-2. https://doi.org/10.1016/j. 
freeradbiomed.2012.10.525 

Piqué N, Berlanga M, Miñana-Galbis D (2019) Health benefits of heat-killed (tyndallized) probi-
otics: an overview. Int J Mol Sci 20(10). https://doi.org/10.3390/IJMS20102534 

Poblocka M, Bassey AL, Smith VM, Falcicchio M, Manso AS, Althubiti M, Sheng XB, Kyle A, 
Barber R, Frigerio M, Macip S (2021) Targeted clearance of senescent cells using an antibody-
drug conjugate against a specific membrane marker. Sci Rep 11(1):1–10. https://doi.org/10. 
1038/s41598-021-99852-2 

Porwal et al (2020). https://doi.org/10.1016/j.biopha.2020.110448 
Pushpass et al (2021). https://doi.org/10.1017/S0029665121003165 
Reider et al (2020). https://doi.org/10.3390/nu12051257 
Remely M, Stefanska B, Lovrecic L, Magnet U, Haslberger AG (2015) Nutriepigenomics: the 

role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care 
18(4):328–333. https://doi.org/10.1097/MCO.0000000000000180 

Rodriguez et al (2020). https://doi.org/10.22175/mmb.11687 
Sánchez et al (2017). https://doi.org/10.1002/mnfr.201600240 
Sanders et al (2019). https://doi.org/10.1038/s41575-019-0173-3 
Santos et al (2020). https://doi.org/10.1039/C9FO02478F 
Satoh A, Stein L, Imai S (2011) The role of mammalian sirtuins in the regulation of metabolism, 

aging, and longevity. Handb Exp Pharmacol 206:125–162. https://doi.org/10.1007/978-3-642-
21631-2_7 

Shepherd et al (2018). https://doi.org/10.1016/j.tim.2021.01.003 
Shimizu T (2002) Newly established regulation in Japan: foods with health claims. Asia Pac J Clin 

Nutr 11(2):S94–S96. https://doi.org/10.1046/j.1440-6047.2002.00007.x 
Shimizu T (2003) Health claims on functional foods: the Japanese regulations and an international 

comparison. Nutr Res Rev 16(2):241–252. https://doi.org/10.1079/nrr200363 
Shokryazdan et al (2022). https://doi.org/10.1007/s00430-016-0481-y 
Sierra et al (2019). https://doi.org/10.1093/advances/nmy078 
Singh TP, Natraj BH (2021) Next-generation probiotics: a promising approach towards designing 

personalized medicine. Crit Rev Microbiol 47(4):479–498. https://doi.org/10.1080/1040841X. 
2021.1902940 

Slavin (2018). https://doi.org/10.1093/cdn/nzy005 
Sniffen et al (2018). https://doi.org/10.1371/journal.pone.0209205 
Spacova I, Dodiya HB, Happel AU, Strain C, Vandenheuvel D, Wang X, Reid G (2020) Future 

of probiotics and prebiotics and the implications for early career researchers. Front Microbiol 
11:1400. https://doi.org/10.3389/FMICB.2020.01400/BIBTEX 

Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, Ravussin A, Nguyen K, Aladyeva E, Pre-
deus AN, Smith SR, Ravussin E, Galban C, Artyomov MN, Dixit VD (2022) Caloric restriction 
in humans reveals immunometabolic regulators of health span. Science 375(6581):671–677. 
https://doi.org/10.1126/SCIENCE.ABG7292 

Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG (2012) Epigenetic 
mechanisms in anti-cancer actions of bioactive food components—the implications in can-
cer prevention. Br J Pharmacol 167(2):279–297. https://doi.org/10.1111/j.1476-5381.2012.020 
02.x 

Szajewska (2014). https://doi.org/10.1111/apa.14270

https://doi.org/10.1371/JOURNAL.PONE.0076575
https://doi.org/10.1371/JOURNAL.PONE.0076575
https://doi.org/10.3389/fmicb.2020.01349
https://doi.org/10.1038/s41598-022-11122-x
https://doi.org/10.1016/B978-0-08-100596-5.22721-2
https://doi.org/10.1016/j.freeradbiomed.2012.10.525
https://doi.org/10.1016/j.freeradbiomed.2012.10.525
https://doi.org/10.3390/IJMS20102534
https://doi.org/10.1038/s41598-021-99852-2
https://doi.org/10.1038/s41598-021-99852-2
https://doi.org/10.1016/j.biopha.2020.110448
https://doi.org/10.1017/S0029665121003165
https://doi.org/10.3390/nu12051257
https://doi.org/10.1097/MCO.0000000000000180
https://doi.org/10.22175/mmb.11687
https://doi.org/10.1002/mnfr.201600240
https://doi.org/10.1038/s41575-019-0173-3
https://doi.org/10.1039/C9FO02478F
https://doi.org/10.1007/978-3-642-21631-2_7
https://doi.org/10.1007/978-3-642-21631-2_7
https://doi.org/10.1016/j.tim.2021.01.003
https://doi.org/10.1046/j.1440-6047.2002.00007.x
https://doi.org/10.1079/nrr200363
https://doi.org/10.1007/s00430-016-0481-y
https://doi.org/10.1093/advances/nmy078
https://doi.org/10.1080/1040841X.2021.1902940
https://doi.org/10.1080/1040841X.2021.1902940
https://doi.org/10.1093/cdn/nzy005
https://doi.org/10.1371/journal.pone.0209205
https://doi.org/10.3389/FMICB.2020.01400/BIBTEX
https://doi.org/10.1126/SCIENCE.ABG7292
https://doi.org/10.1111/j.1476-5381.2012.02002.x
https://doi.org/10.1111/j.1476-5381.2012.02002.x
https://doi.org/10.1111/apa.14270


10 Precise Nutrition and Functional Foods 267

Tuncil et al (2020). https://doi.org/10.1128/mSphere.00180-20 
Vandeputte (2020). https://doi.org/10.1093/nutrit/nuaa098 
Veiga et al (2020). https://doi.org/10.1038/s41564-020-0721-1 
Walker et al (2011). https://doi.org/10.1038/ismej.2012.4 
Wang J, Hodes GE, Zhang H, Zhang S, Zhao W, Golden SA, Bi W, Menard C, Kana V, Leboeuf M, 

Xie M, Bregman D, Pfau ML, Flanigan ME, Esteban-Fernández A, Yemul S, Sharma A, Ho L, 
Dixon R, Pasinetti GM (2018) Epigenetic modulation of inflammation and synaptic plasticity 
promotes resilience against stress in mice. Nat Commun 9(1). https://doi.org/10.1038/s41467-
017-02794-5 

Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C (2019) Postbiotics and their potential 
applications in early life nutrition and beyond. Int J Mol Sci 20(19):4673. https://doi.org/10. 
3390/ijms20194673. PMID: 31547172; PMCID: PMC680192 

Weindruch et al (2001). https://doi.org/10.1093/gerona/56.suppl_1.20 
Wu et al (2017). https://doi.org/10.1016/j.anaerobe.2017.08.016 
Zalar B, Haslberger A, Peterlin B (2018) The role of microbiota in depression—a brief review. 

Psychiatr Danubina 30(2):136–141. https://doi.org/10.24869/spsih.2018.136 
Zec M (2022) Emerging role of microbiota in precision nutrition approaches. Compr Gut Micro-

biota 220–229. https://doi.org/10.1016/B978-0-12-819265-8.00046-2 
Zeisel SH (1999) No Title. Science 285:185–186 
Zhang W, Qu J, Liu GH, Belmonte JCI (2020) The ageing epigenome and its rejuvenation. Nat 

Rev Mol Cell Biol 21(3):137–150. https://doi.org/10.1038/s41580-019-0204-5 
Zhang X, Ritonja JA, Zhou N, Chen BE, Li X (2022) Omega-3 Polyunsaturated Fatty Acids 

Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. 
Journal of the American Heart Association 11(11) e025071 10.1161/JAHA.121.025071 

Zmora et al (2018). https://doi.org/10.1016/j.cell.2018.08.041 
Zmora (2020). https://doi.org/10.1038/s41577-019-0198-4

https://doi.org/10.1128/mSphere.00180-20
https://doi.org/10.1093/nutrit/nuaa098
https://doi.org/10.1038/s41564-020-0721-1
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1038/s41467-017-02794-5
https://doi.org/10.1038/s41467-017-02794-5
https://doi.org/10.3390/ijms20194673
https://doi.org/10.3390/ijms20194673
https://doi.org/10.1093/gerona/56.suppl_1.20
https://doi.org/10.1016/j.anaerobe.2017.08.016
https://doi.org/10.24869/spsih.2018.136
https://doi.org/10.1016/B978-0-12-819265-8.00046-2
https://doi.org/10.1038/s41580-019-0204-5
https://doi.org/10.1016/j.cell.2018.08.041
https://doi.org/10.1038/s41577-019-0198-4


11 Precision Nutrition from a Practical 
Clinical View, Case Study 

Ursula Jacob 

Contents 

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 
11.2 Chances of Diagnostics and Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 
11.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 

ABSTRACT 

The translation of scientific progress in the multiple areas of molecular biol-
ogy into clinical praxis is certainly challenging. Already the integration of 
standard clinical data with results from analytical concepts using genetic, epi-
genetic, microbiota and metabolic markers needs a profound understanding of 
the medical relevance of these new markers. Improved ambitious and adap-
tive bioinformatic platforms for integration and appropriate storage of data are 
essential. There is also an urgent need for improved and harmonised concepts 
to explain the benefit of the new analytical possibilities, their relevance and the 
consequences of the results to patients. Whereas these new requirements are a 
logistic and financial burden for doctors, the advent of personalised medicine 
including personalized diets addresses our expectation of how to serve and treat 
patients the best possible.
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11.1 Introduction 

Running a clinic with a focus on individual counseling, personalized diagnostics 
and preventive therapy often reminds on the old nice saying: We are what we eat. 
And although we learned so much about scientific aspects of genetics, epigenetics, 
microbiota and metabolism this still holds true in many cases. 

Understanding some of our principal health problems in the area of nutrition we 
need to reconsider important changes of the last few centuries. Before the recent 
times of globalized food trading most people sticked to local foods. The time of an 
exponential population growth resulted in the need of an increased food produc-
tion. In the following green revolution, food yields increased, but monocultures, 
enhanced needs of pesticides, artificially breed organism, elite lines of staple crops 
with modified ingredients developed. Often this resulted in a loss of food diversity, 
vitamins, minerals and local marketing and distribution of foods (Figs. 11.1 and 
11.2). 

By the improved possibilities to travel worldwide and to get all kind of exotic 
fruits, corns or vegetables our genetic and biochemical “fabrics” in our cells as well 
as our immune system came into contact with new nutritional or microbial, espe-
cially viral challenges. Over the years it came to epigenetically triggered changes 
of our inner cell metabolism and in the end to changes in our digestive processes, 
building up different structures of microbiota and metabolism. 

If we want to understand precision nutrition, we have to bear this in our 
thoughts. 

Fig. 11.1 Hazard from the food chain. International Society of Applied Preventive Medicine i-g-
a-p (https://www.i-gap.org/index_en.php)

https://www.i-gap.org/index_en.php
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Fig. 11.2 Residual loads in foods. International Society of Applied Preventive Medicine i-g-a-p 
(https://www.i-gap.org/index_en.php) 

This means: It is not enough to design diets for specific clients but control of 
food quality as well as compliance and adherence to advice needs a careful control. 

We must consider that everyone has a different genetical disposition, different 
metabolic pathways as well as different bacterial mucosal flora in the digestive sys-
tem and this not only in the big intestinal/bowel part. We have to analyze personal 
aspects from our mouth to the end of our bowels: 

Alone, if we look into the mouth we have different parts, which are involved in 
the digestion process: 

• Teeth, which often had or still have potentially toxic fillings 
• The tongue, which has millions of nerves for taste or misguided sensitivity 
• A big mucosal layer, which covers all the areas of the mouth, helping to harbor 

appropriate or problematic bacteria. Personal differences of mucosal sites and 
their consequences are right now an rapidly developing scientific area. 

• Lots of glands to produce saliva with digestive properties. 

If these co-workers get messed up through foreign materials like amalgam, gold, 
titan implants, etc. all of this perfect collaboration gets irritated and as a conse-
quence of that, the first digestion steps of our food are already concerned. Also 
personal lifestyle and nutritional behaviors can change the milieu of our digestive 
tract, e.g., from alkaline to acidic which can trigger the problematic growth of 
bacteria which start processes of wrong food fermentation (Fig. 11.3). 

When we come to the stomach, we again have bacteria there and different 
enzymes, which we need for further digestive processes. 

If this part is getting “wrong information” from the mouth (like over-
fermentation), then bacteria like helicobacter can become more active and change

https://www.i-gap.org/index_en.php
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Fig. 11.3 Heavy meals in food components. International Society of Applied Preventive Medicine 
i-g-a-p (https://www.i-gap.org/index_en.php) 

the alkaline milieu to acidic and it can end up in inflammation of the mucosal gas-
tric layer (like gastritis or in the worst-case ulcers). This means that again digestive 
processes will change (Figs. 11.4 and 11.5). 

The upper intestines are regulating not only digestive processes, but as well act 
as an important controller for building neurotransmitters, which our brain needs

Fig. 11.4 Effects of heavy metals. International Society of Applied Preventive Medicine i-g-a-p 
(https://www.i-gap.org/index_en.php)

https://www.i-gap.org/index_en.php
https://www.i-gap.org/index_en.php
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Fig. 11.5 Arsenic levels in food products, Aerzteblatt 

to function. This is called “gut-brain-axis”. If this gets under stress because the 
food is not digested well enough (if we have gastritis, ulcers, etc.) the buildup of 
neurotransmitters is changed as well. 

The bowels at the end have again different mucosal layers harboring microbiota 
which we need to finish the digestive process. But if the other parts of the GI tract 
are disturbed we can develop what is so called irritable bowls syndrome (IBS). 

This can lead to “secondary food allergies or intolerances” and to a deficit in 
processing minerals, vitamins, etc. 

All of the digestive processes, the bacterial flora, is influenced by what we eat, 
but as well at the same time through inner and outer factors. 

This all we must bear in our mind if we want to understand, why nowadays 
precision nutrition is so important in prevention and intervention. 

11.2 Chances of Diagnostics and Markers 

With the new diagnostic concepts including genetics, epigenetics, biochemical 
markers and microbiota we can better understand what influences our personal 
digestive biochemical system. We need to know from the genetic, epigenetic and 
microbiota side which kind of metabolic type we are and how we can modulate 
our metabolism with personalized nutrition and lifestyle adequate exercise. 

Our diagnostic system comprises following markers: 
Lifestyle and nutrition Lifestyle and nutrition is not only analyzed by anamnesis 
but also by food frequency questionnaires and follow up recording. 
Clinical data, including micronutrients. 
Genetics, Selected panels of SNPS are tested according to clinical situation.
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Epigenetics: Epigenetic markers including CpG methylation of selected genes, 
such as general aging and metabolic aspects as well as miRNAs regulating genes 
of relevance such as inflammation, immune responses, aging, metabolic, stress and 
fitness and even cosmetic aspects. 
Telomere length as a marker of aging is analyzed as lifestyle factors, such as 
obesity, an unhealthy diet, smoking, alcohol, stress (also environmental stress) 
have negative effects on the telomere length. The telomere length can be mod-
ulated through dietary and lifestyle interventions including specific supplements 
or through a therapy of underlying diseases. 
Inflammation and immune markers. TNF-alpha and IL-6, e.g., have a central 
regularity role in inflammation and immune response since it influences immune 
cells. A high occurrence of TNF-alpha in adipose tissue leads to a deterioration of 
insulin signaling and can contribute to the development of insulin resistance and 
weight gain (Fig. 11.6). 

Fig. 11.6 Examples of clinical analysis
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11.3 Case Study 

The following case study wants to give an example how marker-based personalized 
medical- and nutritional advice can work. 
Case 1: Male 51 years old 
Existing risk factors: 

Genetical risk factors: slow metabolism, slow detoxifying function. 
Chronic heavy metal load (arsenic/mercury). 
Chronic viral load (different herpes viruses). 
Biochemical, microbial and epigenetic markers indicated significant metabolic, 

inflammatory and stress relevant burden as well as an active EBV virus disease. 
Anamnesis: 

Since 1960 CFS (chronic fatigue syndrome) 
IBS (irritable bowel syndrome in direction of diarrhea) 
Eczema, mononucleosis 

1970 Chronic respiratory infections 
1976 Massive food poisoning 
Since 2015 Because of chronic infections the patient frequent antibiotics, ther-

apy, worsening of IBS 
Worsening of chronic activity of different herpes viruses. 
Chronic inflammation 

11/2018 Still IBS, despite sportive activities, and a good diet no improve-
ment of weight and muscle buildup, he has increasing problems with 
muscle pain after exercising, no loss of abdominal fat, still massive 
fatigue 

Gradual improvement until 2021. At this time an personalized therapy program 
was adapted according to indicated marker-based results: 

• Start with different targeted antiviral therapies, anti-inflammatories 
• Detox protocol with chelation therapies as well as herbal detox 
• Tailormade supplements containing antioxidative, anti-inflammatory, immune 

supportive supplements especially white tea extract, resveratrol, omegas 3 fatty 
acid supplements, 

• Lifestyle: The patient changed his diet following his genetic based metabolic 
type (balanced type). The patient followed his genetic (SNP-analyzed) exercise 
type. 

The following specific improvements in clinical markers could be seen until 2021: 

• Weight loss 
• Formation of body, improvement of muscles, no pain any longer 
• Improvement of IBS, CFS
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• Less risk factors for chronic inflammation 
• Improved EBV disease (Fig. 11.7). 

Fig. 11.7 Epstein Barr virus activity and occupancy: The specific B-cell testing for chronic occu-
pation of B-cells by Epstein Barr virus and activity of Epstein Barr virus from 2016 to 2021. 
Reduction of chronic occupation of B-cells with Epstein Barr virus and change of activity of cor-
relates with an improvement of epigenetic damages as well as improvement of symptoms and 
life-quality
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Fig. 11.7 (continued) 

11.4 Conclusion 

This case study suggests that the use of marker-based—precision medicine and 
precision nutrition can optimize health and quality of life. 

Epigenetic markers early indicate ongoing pathogenic developments but also 
improvements by intervention. 

Especially with aging, when our cells develop toward senescence and lifestyle 
is rather inflexible and hard to modulate it is difficult to influence nutrition and 
metabolism. Especially in this time of life it makes sense to use analytical marker-
based personalized intervention and marker-based monitoring. We observed a 
widely improved compliance with this concept.
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ABSTRACT 

Scientific progress enables the analysis of biomarkers which can enable a per-
sonal disease prevention and improved healthcare. Whereas these opportunities 
can improve personal health management significantly, translation of these 
opportunities into practice faces social, economic and ethical aspects which 
need to be addressed. The article discusses some of these aspects. The health
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system has changed dramatically over the past 100 years. Driven by the grow-
ing understanding of body functions and new technologies to measure them, 
a multitude of technological, clinical and biomolecular changes and related 
data resulted (Towse and Garrison in J Cancer Policy 11, 2017). Based on this 
enormous knowledge and the collected data, it is both technically feasible and 
economically sensible to strongly revise the “one fits all” strategy. Consider-
ing the ineffectiveness, side effects, and high cost of some standard treatments, 
it is now also unethical and uneconomical to offer non-personalized services 
(Doble and Lorgelly in Per Med 12, 2015). Not only the personalization of 
treatments is extremely important, but also the prevention of diseases is even 
more important. One of the most common preventive measures is a healthy diet 
that is adapted to the needs of each individual (Kirk et al. in Comput Biol Med 
133, 2021). Many people deal with the topic of maintaining health in contrast 
to the previous strategy of disease treatment. Even if this topic was not suf-
ficiently advertised during the corona pandemic, there has been an upturn in 
direct-to-consumer (B2C) and business to distributors (B2D) analysis tests. The 
demand for contactless test systems has risen sharply during this time. Since fit-
ness studios and sports courses were closed, new ways of self-optimization had 
to be found. The possibilities range from epigenetic analyzes to determine the 
biological age, physical sport- or stress level, to the determination of genetic 
diet or sport types, to the determination of the hormone status from urine to 
complex microbiota analyzes out of feces samples. Also, the new hype of DIY 
(do it yourself) especially concerning nutrition, pushed this economic branch of 
individual nutrition and health advice. 

12.1 Boom in Medical Self-tests—Since Corona Pandemic 

Due to the national test strategy, PCR tests and quick tests for at home, have greater 
acceptance in the population. For that there are currently many new products or 
companies on the market that offer self-tests. 

The business model of blood tests or other preventive tests, like feces or urine, 
could now be more promising than it was a few years ago. Because the public is 
now much more open to tests than before the corona pandemic. Michael Neumaier, 
German specialist in laboratory medicine, thinks that the term: “test, test, test” has 
also caught on. In the past, you only tested if you went to the doctor when you were 
sick. Now you do antigen tests or PCR tests routinely even if you are healthy. The 
willingness to test oneself has increased compared to before 2020 (Nützel 2021). 

Since the outbreak of the corona pandemic, many people have experienced that 
even technically well-developed tests can deliver incorrect results. The specificity 
is one of the measures that indicate how high the probability is that a test will 
produce a correct result. That indicates the number of times a test will confirm 
the same result being tested for. A specificity of 99% sounds great to consumers,



12 Translational Aspects in Precision Nutrition … 281

but it must be interpreted correctly. It means that one out of every hundred people 
has a false positive test. So, if thousand people are tested, 10 people will be false 
positive, if tested 10,000 healthy people, already 100 false cases will be analyzed. 
A false positive test means a person could be told to have any bad result or even a 
sickness. Also, a false good result can lead to the failure to intervene, and increase 
the risk. 

Doctors also used the opportunity to outsource some of their analyzes and treat-
ments. For example, patients did not have to sit in the doctor’s office for long to 
be tested for fructose intolerance. Doctors used the option of a B2D methane 
breath gas analysis. Sending their patients the kit to measure any food intoler-
ances (fructose, lactose, histamine, …) home, the patients sends the applied kit to 
a standardized laboratory and the doctor gets the result from the laboratory. 

Caused by the dynamic situation in the pandemic, it has become more difficult 
for companies to always guarantee all services. In many consulting and analysis 
companies, it was possible to switch to e-commerce. 

12.2 From One Fits-All Recommendations to Personalized 
Tests 

When the food pyramid was introduced in the 1970s, it was a compromise between 
easy-to-understand recommendations and economic feasibility. At that time, Luise 
Light was commissioned in the USA to revise the post-war guidelines. She should 
create a more contemporary model for feeding the people. Dr. Light and her 
team worked very scientifically, correlating individual nutrients with diseases, 
bioavailability, biochemical relationships, and more. Political contexts such as food 
availability or ecological resources were also considered. The new guideline should 
hardly have any negative effects on consumers and the food industry (Minger 
2014). When the pyramid was published, there were many deviations from the 
submitted project with serious, long-term consequences for the health status. Even 
then, Dr Light valued the influence of diet on quality of life, for many healthy 
years of life, very highly. 

Why have people different health outcomes despite eating similar diets and 
practicing similar lifestyles? 

Current nutrient intake guidelines are based on population estimates of the nutri-
ent intake required to prevent malnourishment according to sex, age, and other 
physiological states such as pregnancy or lactation (Ardini 2019). Nevertheless, 
the “one fits all” approach was unable to reduce the risk of diet-related diseases 
and provided very different results in nutrition studies. 

When in Oct. 2004, the International Human Genome Sequencing Consortium 
publishes its scientific description of the finished human genome sequence the 
expectations for improved, personalized nutritional recommendations for disease 
reduction and prevention were very high (International Human Genome Sequenc-
ing Consortium 2021). The subsequent mapping of human DNA sequencing 
heralded in the “era of big science” (Mathers 2017).
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Fig. 12.1 The genetic makeup of two people is on average almost 99.7% the same. The small 
difference, however, can mean that food, such as a serving of pasta, is digested very differently. One 
person uses the same portion far better than another—and gains weight (Eberle 2021) © Karsten  
Petrat 

The interaction between genetic and genomic information with environmental 
data such as diet could now be explored. Due to the research of nutrigenomics 
(how nutrition affects gene function) and nutrigenetics (how genetic variation 
affect nutritional response, food intake, and eating behavior) a better insight into 
the variability in biological response to nutrients was discovered (Fig. 12.1). 

12.3 Nutrigenetics 

The human genome contains approximately 3 billion nucleotides, forming 25,000 
genes (Zahn 2021). Most of the genes that have been identified do not directly 
cause complex disease but enhance the susceptibility and predisposition. A wind 
range of biochemical and molecular pathways are involved in digestion pathways. 
Several research studies have demonstrated that single nucleotide polymorphisms 
can partly explain why foods can have different effects on different people or dif-
ferent risks for diet-related complex disease traits (Robino et al. 2019). The genetic 
makeup of two people is on average almost 99.7% the same. The differences in 
genes are called SNPs, Single Nucleotide Polymorphisms. These are variations 
at a single position in a DNA sequence among individuals. Recall that the DNA 
sequence is formed from a chain of four nucleotide bases: A, C, G, and T. If more 
than 1% of a population does not carry the same nucleotide at a specific position in 
the DNA sequence, then this variation can be classified as a SNP. If a SNP occurs 
within a gene, then the gene is described as having more than one allele. In these 
cases, SNPs may lead to variations in the amino acid sequence. SNPs, however,
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Fig. 12.2 A SNP, single nucleotide polymorphism, can change the interpretation of a gene by 
changing only one nucleotide (Konstantinidou 2020) 

are not just associated with genes; they can also occur in noncoding regions of 
DNA (Karki et al. 2015). A mutation in the sequence of a functional gene can 
make that the body still can read, but the interpretation will change (Fig. 12.2). 

12.4 Impact of Genetic Lifestyle Tests 

Genetic testing is being increasingly used in a growing number of healthcare 
settings and in direct-to-consumer testing for a range of common complex disor-
ders and nutrition advice. There is an expectation that communicating DNA-based 
disease risk estimates, will motivate changes in key health behaviors, including 
smoking, diet, or physical activity. A Cochrane meta-study was conducted in 
2010 to examine whether knowledge of a genetic predisposition leads to behav-
ioral changes. This study was expanded in 2016 by 7 publications. The results of 
this updated systematic review with meta-analysis using Cochrane methods sug-
gest that communicating DNA-based disease risk estimates has little or no impact 
on risk-reducing health behavior. Existing evidence did not support expectations 
that such interventions could play a major role in motivating behavior change to 
improve population health (Hollands et al. 2016). Despite the clarity of the study 
situation, the authors of the Cochrane Review point to the high or unclear risk of 
bias in the analyzed studies and the low quality of the evidence obtained. More 
than 100 gene variants often play a role in regulating the metabolism. This shows 
the need to view genetic data as a complex interaction. Nor should consumers 
be left alone with the interpretation of such highly complex findings. Behavioral 
optimization can only succeed with long-term care from well-trained therapists 
(doctors, nutritionists). 

A study, published in nature—European journal of human genetics that par-
ticipants who stated they intended to modify their behavior after genetic testing 
results, effectively did so over time. This result held both for participants who 
received a positive or negative test result. In general, a healthier diet was the most
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Fig. 12.3 Changes in health-related behaviors over time. Shown in the figure are the percentages 
of subjects who decided to change specific aspects of their lifestyle at T1 (6 months) and at T2 
(1 year) (McBride et al. 2010) 

frequently observed long-term behavioral change. As regards psychological vari-
ables, a risk-taking attitude and risk tolerance did not seem to affect the decision 
to change the lifestyle. They found an overall reduction in anxiety and worry over 
health over time, but also a reduction in the motivation for health promotion and 
prevention, health esteem, and positive expectations for their health in the future 
(McBride et al. 2010) (Figs. 12.3 and 12.4). 

12.5 Compliance of Lifestyle Change 

In principle, this does not mean all markers of genetic analyses are useless. Test-
ing a genetic risk may not change the behavior, but in situations when a lifestyle 
adaption already has taken place, the compliance will increase with the knowledge 
of strengths and weaknesses. Especially the knowledge of the potential bioavail-
ability of nutrients has an impact on the success of lifestyle change. Knowing 
the screws that must be tighten, is less elaborate than to fix the whole system. The 
more effective the change is, the longer it can be implemented. Goal setting is also 
important. What would you like to change? Which markers are important to know 
in order not to be overwhelmed by a huge amount of information? So, lifestyle 
analyzes can achieve a great deal with a specific question and the science-based 
personalized intervention. 

Using the advances in DNA analysis and the resulting insights into the complex-
ity of personalization, or of the affected subgroups and the possible positive effects 
on the development of effective therapeutics is one further step in personalized, 
marker-based interventions and treatments.
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Fig. 12.4 Precision nutrition is a complex combination of science-based biomarkers 

12.6 Nutrigeneomics 

The interaction between genes and diets is fundamental in human evolution. Study-
ing the interactions between nutrition and genetic provides a better insight into 
the variability in biological response to nutrients, but still, this explains around 
40–70% variability (Friedman 2004). Nutrigenomics, also known as nutritional 
genomics, is broadly defined as the relationship between nutrients, diet, and gene 
expression (Chadwick 2004). Nutrigenomics is the foundation of “personalized 
nutrition” approaches tailored to individuals (Ordovas et al. 2018). Many diseases 
are diet-related or are significantly influenced by diet. So gluten can change in 
people with a gastrointestinal autoimmune disorder the expression patterns and 
gene networks, leading to celiac disease (Banaganapalli et al. 2020). 

12.7 Personalized Epigenetic Testing 

Now it is known that genetics can only answer a fraction of nutrition-related 
questions. Epigenetics is a stream of genetics, initiated by external or ecologi-
cal aspects, which turn genes on and off and affect cellular ability to read genes 
without being affected by changes in genotype. Epigenetics results into changes
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in phenotype of an organism rather than genotype, wherein underlying DNA or 
RNA sequence remains unchanged. Epigenetic alterations are essential for devel-
opment as they are dynamic and change with respect to environmental stimuli. 
However, these changes can be stable and could pass from one generation to 
another. Biology and genetic expressions of most organisms are affected by epi-
genetics, which makes it one of the most useful tools in personalized nutrition 
intervention analysis. 

Over the last 20 years, however, an increase in research studies has demon-
strated that epigenetics can ultimately affect nutrition and decrease the risk of 
developing a variety of health issues, including oxidative stress or inflammation 
(Tiffon 2018). The mechanisms by which environmental influences affect gene 
regulations are: Methylation and Demethylation, Histonmodifications and miRNA 
expression (Miller and Grant 2013). 

Epigenetic Clocks 

Since many companies focus on healthy aging, methylation analysis of aging rel-
evant genes is the most common used type of personalized analysis which is done 
in routine. The change in DNA-methylation patterns are associated to a specific 
biological age (Unnikrishnan et al. 2019). Depending on the question of the anal-
ysis, different genes, and different numbers of CpGs are examined. Sometimes 
combined with further biomarkers as Telomere length, or miRNAs (Table 12.1). 

In epigenetic analyses, single markers should represent entire metabolic sys-
tems. Since so many factors must be considered, it is often not easy to distinguish 
cause and effect: do the changes to epigenetic clocks contribute to aging or are 
they a consequence of aging? Or are they helpful ways in which our bodies com-
pensate as a response to aging and disease, in which case reversing their pattern

Table 12.1 List of epigenetic clocks developed for humans (Unnikrishnan et al. 2019) 

Epigenetic clock Platform used Tissues used in 
training 

CpG sites 
identified 

Accuracy in 
predicting age 

Horvath Clock 
(2013) 

27 k and 450 K 
arrays 

Blood, brain, 
breast, buccal cells, 
colon, heart, liver, 
lung, placenta, 
saliva, CD4 cells, 
immortalized B 
cells, adipose, 
kidney, muscle, 
uterine tissue 

353 r2 = 0.96 

Hannun Clock 
(2013) 

27 k and 450 K 
arrays 

Blood 71 r2 = 0.91 

Weidner Clock 
(2014) 

27 k and 450 K 
arrays 

Blood 3 r2 = 0.98 

PhenoAge Clock 
(2018) 

27 k, 450 K and 
EPIC arrays 

Blood 513 r2 = 0.92 
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Fig. 12.5 Number of studies versus mortality hazards for the biological age predictors 

would not be advantageous? Different epigenetic clocks are linked to different age-
related conditions (Unnikrishnan et al. 2019). Even scientific accepted epigenetic 
clocks are not always associated with things like alcohol use, smoking, diabetes, 
and hypertension (Jylhävä et al. 2017) (Fig. 12.5). 

Overview of the four biological age predictors telomere length, epigenetic 
clock, Metabolic Age Score, and composite biomarker which have all been used 
in survival models. The hazard ratio per yearly change in biological age (de-) 
acceleration for each predictor is presented on the x-axis. The y-axis presents an 
approximation of the number of studies on a log-scale where the predictor has 
been used (Jylhävä et al. 2017). 

miRNA-Based Lifestyle Tests 

The selection of biomarkers in nutrigenomics needs to reflect subtle changes in 
homoeostasis representing the relation between nutrition and health, or nutrition 
and disease. Noncoding RNAs, such as circulating microRNAs (miRNAs), repre-
sent a new class of integrative biomarkers to reflect complex metabolic processes 
(Rome 2015). 

MicroRNAs (miRNAs) are small non-protein-coding RNA molecules that reg-
ulate gene expression. Diet and lifestyle factors have been published in several 
studies to be involved in the regulation of miRNA expression, and vice versa 
(Slattery et al. 2016). MiRNAs derived from capillary blood, whole blood and
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also from feces, provide additional support for the influence of nutritional fac-
tors, oxidative balance, stress response or sport intervention (Slattery et al. 2016; 
Francavilla et al. 2021; Ulrike et al. 2021). 

Until now, the most relevant body fluids for miRNA quantification in response 
to nutrition are plasma or serum, but also capillary blood could be used to quan-
tify the physiological impacts of diet or lifestyle. In addition, a number of recent 
studies also indicate that miRNAs could permit to monitor the impact of diet on 
gut microbiota (Rome 2015). 

miRNA Tests and Stress Response 

Through many studies on metabolism and stress, the connection between epi-
genetics and the most important disease processes are becoming clearer. The 
identification of the most important molecular biomarkers lead to new therapy 
strategies. MicroRNAs (miRNAs) play a central role in the regulation of cellu-
lar processes, including physiological and psychological stress response pathways 
(Olejniczak et al. 2018). miRNAs are small, noncoding RNAs that have impor-
tant regulatory roles in gene expression. They are excellent biomarkers as they are 
present in all organs and are very stable. Several miRNAs are involved in the reg-
ulation of stress and stress responses. Changes of stress-associated miRNA levels 
in the blood reflect the changes in the brain contrary (Du et al. 2019). Analysis of 
the amount of different miRNAs involved can used to assess stress, but also for 
diagnosis, prevention and treatment of stress-related illnesses (Fig. 12.6). 

Fig. 12.6 Example of 
miRNA lifestyle analysis test
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Fig. 12.7 The properties of the individual miRNAs and their importance and classification as 
sports-relevant biomarkers (Krammer et al. 2021) 

Sport Relevant miRNA and Nutrition Intervention Response 

In a 2-year study with 160 participants, HealthBioCare tested over 460 differ-
ent metabolic factors and circulating miRNAs for their use as biomarkers to 
investigate systemic and cellular changes. miRNAs reflect the complex metabolic 
processes that take place in the body during a training cycle. The analysis of 
blood-borne microRNAs, additional with genetic factors, enables HealthBioCare to 
create recommendations on the intention and frequency of endurance and strength 
sports, nutrition and lifestyle factors (Ulrike et al. 2021). Many secondary plant 
ingredients, so called Phytoceuticals are known for its epigenetically effects. Sev-
eral studies supporting the strategy for targeted intervention with Phytoceuticals 
to modify the expression patterns of relevant miRNAs (Haslberger et al. 2020; 
Gruendler et al. 2020) (Fig. 12.7). 

12.8 Personalized Microbiota Analysis 

With nearly $160 million in government funding in the USA, the NIH Com-
mon Fund’s Nutrition for Precision Health research program, expected to launch 
2022, seeks to enroll 1 million people to study the interactions among diet, the 
microbiome, genes, metabolism and other factors (Nutrition for Precision Health, 
powered by the All of Us Research Program 2022). 

In the intestine, host-derived factors are genetically hardwired and difficult to 
modulate. However, the intestinal microbiome is more plastic and can be readily 
modulated by dietary factors. It is accepted that the microbiome can potentially 
impact physiology by participating in digestion, the absorption of nutrients, shap-
ing of the mucosal immune response, energy homeostasis, and the synthesis or 
modulation of several potential bioactive and epigenetic active metabolites. Thus,
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diet-induced microbiota alterations may be harnessed to induce changes in host 
physiology, stress management, sleep quality, energy metabolism, blood lipid 
levels, or disease development and progression (Kogut 2022). 

Gut microbiota analysis companies offer individualized diet regimens based on 
analyzing gut bacteria to answer to health problems ranging from irritable bowel 
syndrome to obesity. Venture capitalists invested $1 billion into these startups from 
2015 to 2020, according to Crunchbase (Hall 2020). But not all companies have 
the scientific background which is needed to interpret these complex data. 

12.9 Legal Responsibility 

Who owns the data? 
Scale development and validation are critical and most important for personalized 
tests. For this, consumers must sign that their data can be used for study purposes. 

It is an ethical question who owns the results of the analyses. On the one hand, 
the consumer pays for his/her test and the analysis of his/her results, on the other 
hand, the analyzing companies use the results at best to validate their data. Worst 
of all, as you can see from the example of 23 and me to develop and patent 
new markers and sell them back to consumers. Some companies offer people to 
opt-in or opt-out of having their DNA used by law enforcement, further studies, or 
validation purposes. Recent studies of actual and potential users have demonstrated 
that individuals’ responses to the use of these tests for these purposes are complex, 
with privacy, disruptive consequences, potential for misuse, and secondary use by 
law enforcement cited as potential concerns (Hazel et al. 2021). Users should 
consider where genetic testing data ends up and define personal boundaries what 
can be used with its own data. The companies are responsible for the sensitive 
handling of personal data. 

12.10 Validation of Study Results and Generation of Limit 
Values 

Validation of Personalized Tests 
Scale development is not, however, an obvious or a straightforward endeavor. 
There are many steps to scale development, there is significant jargon within these 
techniques, the work can be costly and time consuming, and complex statistical 
analysis is often required (Boateng et al. 2018) (Fig. 12.8). 

Legal Aspects 
Preventive analysis kits do not need to be approved by the FDA or EMA. Some 
providers use alternative seals of approval. Since these are preventive tests, they 
are not subject to the regulations of the EU Medical Device Regulation (MRD) 
or the in Vitro Diagnostic Medical Devices Regulation (IVD). The responsibility 
lies with the provider. But there are also epigenetic IVD Tests for Personalized
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Fig. 12.8 An overview of the three phases and nine steps of scale development and validation 
(Boateng et al. 2018)
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Precision Medicine in Cancer (Beltrán-García et al. 2019). A quality factor lies in 
the reproducibility of the tests since epigenetic tests can be repeated regularly to 
check the influence of the intervention. 

Data Processing and Artificial Intelligence 
The era of general dietary recommendations is over. It is becoming increasingly 
clear that blanket recommendations are not suitable for everyone. An individually 
appropriate diet is particularly good for health and takes into account the individ-
ual, genetically determined metabolic needs as well as the needs resulting from 
different environmental influences (epigenetic regulated metabolism). Since the 
publication of the study by Zeevi et al. (2015) at the latest, it has been clear that 
recommendations for a healthy diet can no longer be general recommendations 
(Zeevi 2015). “The modern view of food and medicine has led to a significant 
shift in nutritional research and practice toward precision nutrition” (Rodgers and 
Collins 2020). 

Due the complex interplay among genetics, microbiome, antibiotic and probi-
otic use, metabolism, food environment, and physical activity, as well as economic, 
social, and other behavioral characteristics the data which could be assessed is 
enourm. 

Data from any of these feature elements can be integrated into machine learn-
ing models and used to generate nutritional advice on a personalized basis (Kirk 
et al. 2021). Large data processing companies are now playing a major role in the 
healthcare system. 

Bioinformatic tools are basic for the interpretation of changes in genes related 
and gene regulation to specific nutrients or dietary patterns. Grouping biomarkers 
based on functional similarity can help to enhance the biological interpretation 
(Figs. 12.9 and 12.10). 

Fig. 12.9 Patient outcome information feedback loop
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Fig. 12.10 Omic overviev—complexity of analyzed data 

Do Personalized Tests Reflect the Lifestyle? 
The tests do not reflect lifestyle but how well the body can handle the lifestyle. 
Consumers must be well-trained to correctly interpret the test results. The risk 
of negative test results, in particular, is difficult for laypeople to assess. But also 
positive results can have adverse effects on the consumer behavior. Psychology has 
shown that many people tend to interpret test results differently than they should. 
A positive screening test does not mean the life the person lived has been healthy. 
It does not validate the way of life. Before testing the consumer needs to consider 
what screening test is needed, can the recommendations be implemented and what 
will be the outcome (Nützel 2021). 

What Are the Consequences of the Tests for the Consumers? 
The consequences for the consumers are not always clear. What do you do with 
the knowledge of your biological age without the appropriate intervention? 

A tailored health advice is still hard for consumers to implement in daily life 
without the support of trained doctors or nutritionists. It has been estimated that 
about 12% of American adults can understand the majority of health information, 
and only 66% of smokers shown a test result for their genetic susceptibility to lung 
cancer can accurately interpret the result (McBride et al. 2010). 

The type of evaluation must be adapted to the level of education of the 
consumers, without leaving them alone in interpreting the risk assessment. The 
benefits of dietary changes versus supplements or trends like eating intuitively 
versus marker-based diets, need to be weighed.
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12.11 Conclusion 

Reflecting the entire body with all individual metabolic processes is very complex 
and expensive. Therefore, functional biomarkers are important to reflect complex 
systems. The responsibility of companies for health-related analyzes is huge. All 
analysis needs to be based on scientific, validated data. The knowledge gained 
through rigorous research into personalized, health related analysis tools have con-
crete applications in treatment and prevention. But also effective ways to improve 
health behaviors and interpretation of test results and risk factors, need to be 
supported by health experts, as doctors and nutritionist. 

Appendix 

Future potential of personalized nutrition from the consumer’s point of view 
and as chance for the food and pharmaceutical industry 

Martin Schiller Freelance Jounalist, Nutrition, Vienna 
m.schiller@medmedia.at 

Interest in personalization of nutrition has increased in the last years—not only 
among scientists but also among consumers, nutritional consulters and in the food 
and pharmaceutical industry. 

This trend has 3 dimensions: 

• Individual composition of food, e.g., a modularized system for creating peo-
ple’s own muesli (Buxel 2019) or individually designed wraps and burgers in 
restaurants. 

• Digitally supported food shopping: Using applications/artificial intelligence 
enables consumers a choice specific to their needs and preferences. Only a 
few seconds are needed to personalize and order the product. To mention a few 
examples: individual variation of fruits in yoghurts, the desired shape of cook-
ies creating individual labels of jams as a gift, etc. All those concepts address 
the growing interest in individualization, above all in the younger population. 
Additionally, preferences regarding packaging design, style of food preparation 
and volumes can be covered (Buxel 2019). Using artificial intelligence also 
means that, for example, people only get suggestions which consider people’s 
health condition (allergies and intolerances, blood levels, nutrition deficiency, 
etc.) 

• Personalized concepts für daily nutrition: A survey has shown that consumers 
have a high interest using digital products which enable to generate individ-
ual personalized nutritional recommendations (Markant Magazin 2020). Also, 
using counseling services that provide dietary suggestions based on individual’s 
nutritional have shown an increased popularity. The potential of those concepts 
and the challenges in addressing consumers will now be discussed.

mailto:m.schiller@medmedia.at
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Personalized Concepts 
A person who is interested in personalized nutritional concepts has the target to 
maximize the potential of maintaining health through daily nutrition and improve 
the and simplify everyday life. Looking at current consumers of personalized nutri-
tion, the majority can be termed as‚ early adaptors’. This kind of consumer is 
strongly interested in wellness, ready to invest in personal health and actively 
seeking new personalized solutions to further optimize health. There are also some 
consumers who joined the personalization approach due to specific medical needs 
(metabolic disorders, weight problems, etc.). The majority of consumer uptake is 
in Europe, North America and Japan (Spitzer 2020). 

Looking at the demographics, two main parameters can be identified: an aging 
society in the industrialized countries and the digitalized, health-focused consumer. 
While the number of elderly people is increasing in the first world countries, a so 
called‚ silver generation ‘is staying in health for longer periods in the aging pro-
cess. This is a completely new phase in life, compared to former generations. 
Those consumers have a higher quality of life and are increasingly interested in 
products offering support for healthy aging. Nevertheless there is also an increased 
incidence of lifestyle diseases and numbers go up for age-related chronic dis-
eases. Many of those diseases are strongly associated with risk factors such as 
lack of physical activity, unhealthy diet, obesity and smoking. There is a growing 
movement toward prevention instead of the‚ wait an treat’ scenario. Personalized 
nutrition solutions will support the preventative aspect of health and by using 
digital technologies the development will be further promoted. Self-Care aspects 
become more and more popular among consumers. A growing spectrum of health 
information and advice via digital devices is used and the freedom to diagnose and 
intervene in the field of problem solving and prevention are high on the agenda of 
these proactive and highly engaged consumers (Spitzer 2020). 

What do people expect from personalized nutrition and which kind of per-
sonalization is expected? The highly engaged consumer expects to be able to 
access personal information to adapt the health behavior and to purchase deci-
sions. Access to this information shall be available everytime and wherever they 
are. A personalized digital healthy life outside the healthcare system is also one of 
the future scenarios when looking at the demands of modern engaged consumers 
(Spitzer 2020). 

Challenges 
Consumer acceptance is crucial for the success of personalized nutrition services 
(Reinders et al. 2020). Although consumer attitudes toward genetic tests aiming 
to reveal the risks of a predisposition to various illnesses have been examined by 
several research studies worldwide, the aspect of acceptance is only examined by 
a low number of papers (Szakály et al. 2021). 

In a study published in 2020 was explored whether ambivalent feelings and 
contextual factors could help to further explain consumers’ usage intentions of 
those services. An online survey was conducted with a final sample of 797 partici-
pants. According to the results, weighing personalization benefits and privacy risks
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is positively related to the intention to use personalized nutrition advice. There is 
a more positive intention when more benefits than risks are perceived. Ambiva-
lent feelings are related to a lower intention to use personalized advice. The more 
the eating context is perceived as a barrier to use personalized nutrition advice, 
the more ambivalent feelings are perceived. Predicting the consumers intentions 
means that there is need to address affective concerns and consider an individual’s 
eating context (Reinders et al. 2020). 

Several studies have confirmed consumer’s fear of high costs of personalized 
diets. This could hinder the acceptance of new technologies. Moreover, social 
aspects and norms must be considered. The acceptance of personalized nutrition 
also depends of the preferences of family/family members, friends and opinion 
leaders (Ghosh 2014; Stewart-Knox et al. 2016; Ronteltap et al. 2009). 

Consumer acceptance is also an important factor regarding nutrigenomics-based 
level of personalization. A study from Hungary had the aim to create more infor-
mation on the consumers’ point of view, using a survey involving 1000 persons. 
Results showed that 23.5% of respondents accept genetic test-based personalized 
nutrition. A gender gap was also found out: The technology was rejected more 
often by men compared to women. Persons over 70 years rejected genetically-
based personalized nutrition significantly more than expected (49.1%). In the age 
group 40–49 the rejection was in a smaller proportion than expected (21.9%). 
Results also indicate that it is perceived cost/benefit that is most related to 
genetically-based personalized dietary preferences, followed by perceived risk and 
subjective norms. Perceived uncertainty and perceived behavioral control, however, 
have only a weak relationship with genetic-based personalized dietary preferences. 
The results also showed that individual psychological processes have a greater 
influence on the development of preferences than any socio-demographic factor. 
For product development this means that psychological characteristics should be 
given more emphasis among the segmentation criteria (Szakály et al. 2021). 

Communication Tasks 
First surveys show that often genetic analyses are associated with personalized 
nutrition. It is not in the thought of many consumers that creating individual 
profiles can be based on far more tests, which is a challenge for all stakehold-
ers working in nutritional communication, nutritional counseling, and nutritional 
education. A problem for the more interested consumer is that with increasing 
individualization less studies exist, because no big trials examine the effects of 
individual nutrition for every test person. This is also a matter of communica-
tion: Interested consumers will not find results of big trials for evidence of a 
certain concept, they must be persuaded by the quality of testing and of product 
development. 

Another important aspect to bring personalized nutrition to the proactive con-
sumer is the strong integration of those concepts in personal nutritional counseling 
and in health promotion projects. This offers support of the client beyond the coun-
seling unit and is also a good opportunity to clear out myths and misunderstandings 
of personalized nutrition.
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Individualization also has high importance regarding the low health literacy in 
the general population even after decades of nutritional journalism. It seems that 
general recommendations have not fulfilled the hopes of scientists and institutions 
regarding a healthy lifestyle and many people doubt that those recommendations 
address their life-situation and their needs. Self-tests can help to find out which 
kind of nutrition is individually best suited to fulfill health targets, achieve a bal-
anced gut microbiota, lose weight, build muscle mass, etc. without strictly looking 
on general recommendations. Those tests already exist, but for consumers it is not 
always clear which tests deliver valid results and are based on serious scientific 
work. A simple search on Google offers a broad variety of self-testing options, 
leaving consumers in irritation, which tests they can trust. So it is a big challenge 
for scientists and industry to address people directly and explain the methods of 
tests and why it is possible to create personalized concepts based on the results. 
Otherwise, producers of unscientific tests will take over the field. The need and 
demand among consumers is here, now it is time to address them more intensively. 

Chances for Industry 
Industry is asked to address the growing need and demand for self-care. In the 
upcoming years a growing market for products and services regarding personal-
ized nutrition is expected. This refers to personalized food as well as to personal 
recommendations based on various scientific tests. 

In the area of food production the focus is on personalization of taste. A survey 
showed that 40% of the respondents already bought a product for which individ-
ual taste preferences were considered in the manufacturing process. Trend products 
could be mainly yoghurts, read-to-eat foods, meat and meat products, pizza and 
cheese. An important reason to buy is also the personalization of ingredients 
(favored by 28% of the respondents) and the personalization of the product vol-
ume. Besides the individual manufacturing for the consumer modularized systems 
for salads, bread, nuts, muesli, sweets and confectionary, fruits vegetables, yoghurt, 
pasta products, cheese and tea could be considered. The market development will 
also bear more products based on nutrigenomic and metabolic testing. 

Personalized nutrition will establish as business model in the next years. There-
fore investment in artificial intelligence is needed, because large analysis capacities 
are a main criterion für competing in a growing market und enable to be part of 
the value-chain. At the same time these developments will need transparency as 
consumers want to know which technologies are used and what will happen to 
their data. For this reason, questions of ethical and moral will be companions of 
the trend of personalized nutrition. 
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