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1 Introduction 

Around the turn of the millennium, the term “mathematical competence” entered the 
discussion of mastering mathematics as a more comprehensive concept than proce-
dures, skills, knowledge and understanding (e.g., Niss & Højgaard, 2019; Stacey, 
2010). Around the same time, the role of digital technologies significantly increased 
in the teaching and learning of mathematics (Trouche et al., 2013). Studies of the 
conceptualization of specific mathematical concepts in relation to competencies and 
the use of digital tools have been carried out (e.g., Kendal & Stacey, 2000; Weigand & 
Bichler, 2010). With the discussion of mathematical digital competencies, Geraniou 
and Jankvist (2019) address the requirement students face to draw on both mathemat-
ical and digital competencies in learning situations. To capture the students’ math-
ematical competencies, Geraniou and Jankvist (2019) use the Danish mathematical 
competency framework, referred to as KOM, i.e., a framework describing what it 
means to master mathematics (Niss & Højgaard, 2019). Furthermore, to describe the 
interplay of mathematical and digital competencies, the authors apply the theoretical 
perspectives of Drijvers et al. (2013) instrumental genesis and Vergnuad’s (2009) 
conceptual fields.
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In their analysis, Geraniou and Jankvist (2019) address all the mathematical 
competencies in the KOM framework except the mathematical thinking competency. 
Without entering the discussion of mathematical digital competencies, I find it inter-
esting to investigate the interplay between students’ mathematical thinking compe-
tency and their use of digital technologies. However, since mathematical competen-
cies cannot be developed or exercised without working with a mathematical subject 
matter, and since aspects of a mathematical competency appear differently depending 
on the level of mathematics education (Niss & Højgaard, 2019), it is necessary to 
specify the contextual setting of the specific mathematical thinking competency I 
will investigate. 

In the subject of mathematics in upper secondary school, differential calculus 
plays an important role. Digital technologies, such as computer algebra systems 
(CAS) and dynamic geometry systems (DGS), can allow teachers to teach and 
students to study concepts of differentiability in new ways (Hohenwarter et al., 2008). 
However, incorporating digital tools into the learning of mathematical concepts can 
also lead to disasters, in which students objectify CAS procedures as mathematical 
objects (Jankvist et al., 2019). Niss (2016) argues that digital technologies may serve 
to enhance or replace mathematical competencies, depending on for what, when and 
how they are used. Contributing to the discussion of the interplay between mathemat-
ical competencies and the use of digital technologies, I address the following ques-
tions: (1) Which processes of the mathematical thinking competency can be identified 
as part of students’ work with instances of differentiability and non-differentiability? 
(2) How can these processes of the students’ mathematical thinking competency 
interact with the students’ use of a given digital tool? 

For this investigation, I present an empirical example of two students working with 
the concept of differentiability using both the dynamic graphic window and the CAS 
window of TI-nspire. Addressing the first question, I analyze the case through the 
lens of the mathematical thinking competency in order to identify the processes by 
which this particular competency appears in this case. When analyzing the students’ 
mathematical competencies, the analyses can benefit from the use of other theoretical 
frameworks and constructs within mathematics education research (Jankvist & Niss, 
2015). I also consider different perspectives on the use of digital technologies in 
mathematics education when analyzing the students’ use of these tools. The research 
practice Networking of Theories offers different strategies for networking theoretical 
approaches of mathematics education research (Prediger et al., 2008). Thus, to inves-
tigate the second question, I aim to illustrate the interaction between the students’ 
mathematical thinking competency and their use of a digital tool by applying the 
networking strategy combining, using key elements of the theoretical perspectives of 
instrumental genesis (Drijvers et al., 2013), conceptual fields (Vergnaud, 2009) and 
semiotic mediation (Bussi & Mariotti, 2008). In the following three sub-sections, I 
present the theoretical perspectives included in my analyses.
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2 The Mathematical Thinking Competency of the KOM 
Framework 

The KOM framework1 is a set of descriptions for mastering mathematics across insti-
tutional levels and mathematical topics (Niss et al., 2016). In the KOM framework, 
possessing overall mathematical competence is defined as “someone’s insightful 
readiness to act appropriately in response to all kinds of mathematical challenges 
pertaining to given situations” (Niss & Højgaard, 2019, p. 12). In the framework, 
mathematical competence is divided into eight distinct but mutually linked mathemat-
ical competencies. A mathematical competency is defined in relation to a specific sort 
of mathematical challenge, in contrast to general mathematical competence, which 
includes a variety of mathematical challenges. 

In the KOM framework, the mathematical thinking competency includes the 
processes of engaging in and reflecting upon mathematical inquiry (Niss & Højgaard, 
2019). To be more specific, it involves “being able to relate to and pose the kinds 
of generic questions that are characteristic of mathematics and relate to the nature 
of answers that may be expected to such questions” (Niss & Højgaard, 2019, p. 15, 
italics in original). I term these processes of the competency the question–answer 
aspect. 

In line with this aspect are the processes of 

distinguishing between different types and roles of mathematical statements (including defi-
nitions, if-then claims, universal claims, existence claims, statements concerning singular 
cases, and conjectures), and navigating with regard to the role of logical connectives and 
quantifiers in such statements, be they propositions or predicates (Niss & Højgaard, 2019, 
p. 15). 

For instance, to possess elements of the question–answer aspect, one needs to 
know the differences between the mathematical claims. I term these processes the 
mathematical statements aspect. 

Furthermore, the mathematical thinking competency includes the process of 
“relating to the varying scope, within different contexts, of a mathematical concept 
or term” (Niss & Højgaard, 2019, p. 15), which I term the scope of concept aspect. In 
relation to differentiability, this could include the meanings of differentiability for a 
given point, a given interval or a function as a whole. Moreover, it could include the 
different views of differentiability, from whether a function’s graph is smooth to the 
ε−δ definition. Lastly, the competency involves “relating to and proposing “abstrac-
tions” of concepts and theories and “generalization” of claims (including theorems 
and formulae) as processes in mathematical activity” (Niss & Højgaard, 2019, p. 15, 
quotation marks in original). I term these processes the generalization–abstraction 
aspect. With the aspects of scope of concept and generalization–abstraction, the 
mathematical thinking competency concerns mathematical conceptualization.

1 In this section, the mathematical thinking competency of the KOM framework is in focus, but for 
the chapter to be readable on its own, some of the concepts of the KOM framework are repeated 
from Chap. 2 (Niss & Jankvist, 2022) of this book. 
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3 Instrumental Genesis and Conceptual Fields 

The perspective of instrumental genesis describes the complex process of trans-
forming a tool into a useful mathematical instrument (Guin & Trouche, 1998); “use-
ful” in this context refers to the tool’s ability to help the user achieve an aim. Drijvers 
and colleagues describe instrumental genesis in terms of three dualities. The first 
duality is artefact-instrument, which distinguishes between the tool itself as a phys-
ical object (the artefact) and the tool as a psychological construct (the instrument) 
(Guin & Trouche, 1998). The second duality is instrumentation-instrumentalization, 
which concerns the direction of how the user interacts with the artefact. Instrumen-
tation refers to how the artefact’s configuration and features shape the user’s way 
of thinking and doing. In contrast, instrumentalization refers to the user’s way of 
thinking that directs the use of the artefact. (Drijvers et al., 2013) The third duality 
is technique-scheme, which, from a practical point of view, distinguishes between 
observable gestures (techniques) and unobservable cognitive structures that guide 
these techniques (schemes) (Drijvers et al., 2013). 

The notion of scheme comes from Vergnaud’s (2009) theory of conceptual fields. 
A conceptual field is a cognitive structure consisting of mathematical concepts and 
situations associated with each other, and “a scheme is the invariant organization 
of activity for a certain class of situations” (Vergnaud, 2009, p. 88, italics in orig-
inal). In the development of mathematical knowledge, Vergnaud (2009) distinguishes 
between operational and predicative forms of knowledge. The operational form is 
the knowledge of doing, and the predicative form is the knowledge of articulation. 
Schemes are part of the operative form of knowledge, whereas language and symbols 
are part of the predicative form. Schemes consist of several aspects, one of which 
involves the two operational invariants: concepts-in-action and theorems-in-action. 
Concepts-in-action are the concepts we associate with and find relevant in the given 
situation. Theorems-in-action are propositions—considered true, but not necessarily 
articulated—stating which activities we can carry out with the concepts-in-action 
(Vergnaud, 2009). 

Considering the concept of differentiability from the perspective of conceptual 
fields, differentiability builds on and connects to other concepts, such as linearity, 
slope, secant, tangent, limit and the derivative among others, all of which consti-
tute their own conceptual fields. Furthermore, with the notions of concepts and 
theorems-in-action, a conceptual field of differentiability can include different ways 
of understanding differentiability. It is these relations and conceptualizations within 
the conceptual fields that I find particularly relevant for the mathematical thinking 
competency’s scope of concept aspect (unfolded in the previous section). Further-
more, the dualities of instrumental genesis and the two-way interaction between user 
and tool can provide a deeper insight into the students’ way of thinking and therefore 
their mathematical thinking competency.
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4 Semiotic Mediation 

The perspective of semiotic mediation focuses on the involvement of an artefact 
(understood in the same sense as in the perspective of instrumental genesis) as a 
tool of semiotic mediation in a mathematics teaching and learning setting (Bussi & 
Mariotti, 2008). A tool of semiotic mediation is an artefact the teacher intentionally 
uses to mediate specific mathematical content through a didactical sequence. The 
word “intentionally” is important here, as one can never be certain that the students 
using the artefact will infer the teacher’s intended mathematical meanings (Bussi & 
Mariotti, 2008). This ultimately means that the artefact acquires a two-fold aim. It 
should be both an aid for the students to solve specific tasks and a tool of semiotic 
mediation related to specific mathematical knowledge (Bussi & Mariotti, 2008). 

To account for this two-fold aim, Bussi and Mariotti (2008) distinguish between 
three categories of signs that indicate a student’s progress from personal to mathemat-
ical meaning. The first category is artefact signs, which originate from the activities 
carried out with the artefact and are of personal meaning, based on experience. The 
second category is mathematical signs, which, in contrast, are signs of mathemat-
ical meaning related to the given mathematical content. The third category is pivot 
signs, which refer both to activities carried out with the artefact and to a mathemat-
ical domain. They function as a pivot in the progress from personal to mathematical 
meaning. Signs include different gestures, drawings and written and oral language 
(Bussi & Mariotti, 2008). With the framework of signs used in the a posteriori anal-
ysis of a teaching sequence, the process of semiotic mediation can bring forth aspects 
of students’ making-meaning when they interact with an artefact. 

5 Networking of Theories and the Roles of the Selected 
Theoretical Perspectives 

Networking of theories is a research practice developed to make different theoretical 
and methodical perspectives in mathematics education research communicate with 
each other. It offers strategies for networking on a spectrum according to the degree 
of integration, from understanding others and making understandable to integrating 
locally and synthesizing (Prediger et al., 2008). Two of these strategies, combining 
and coordinating, are typically used to study an empirical phenomenon in more detail 
than could be achieved using only one perspective; but they are used in different 
ways. Combining is when two juxtaposed analyses use different theoretical lenses to 
capture different aspects of the same empirical phenomena. In contrast, coordinating 
is when a conceptual framework consists of well-fitting elements from different 
theoretical approaches (Bikner-Ahsbahs & Prediger, 2010). Therefore, coordinating 
requires that the cores of the theoretical approaches in question are more compatible. 
Hence, an important element for networking of theories is the focus on the core of a 
theoretical approach (Prediger et al., 2008).
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Considering the core of the KOM framework, the authors behind the framework 
write in relation to the notion of mathematical competency: 

[t]he core of a mathematical competency is the enactment of mathematics in contexts and 
situations that present a certain kind of challenge. (Niss & Højgaard, 2019, p. 19) 

The entire framework is a broad description of mathematics as a practice and is 
not anchored in a given theoretical perspective (Niss & Højgaard, 2019). From a 
network perspective, this may create difficulties, as one cannot go back to its origins 
to determine how compatible it is with the cores of the other theoretical approaches in 
question. However, it is possible to combine the mathematical thinking competency 
with parallel analyses using other lenses to elaborate the empirical phenomena of 
students exercising the mathematical thinking competency in interactions with a 
given digital tool. 

As the KOM framework focuses on an individual’s cognitive actions for doing 
and dealing with mathematics (Niss & Højgaard, 2019), the theoretical perspectives 
to help elaborate the mathematical thinking competency in interplay with the use of 
digital tools should also focus on the individual’s cognition and actions. The theoret-
ical perspectives of instrumental genesis (Drijvers et al., 2013) and conceptual fields 
(Vergnaud, 2009) have previously been proven suitable to describe the interplay 
between students’ possession of mathematical competencies and the use of digital 
tools (Geraniou & Jankvist, 2019). Furthermore, I argue that the theoretical perspec-
tive of semiotic mediation offers a terminology to help us gain deeper insights into 
the students’ meaning-making of a digital tool. 

Instrumental genesis (Drijvers et al., 2013) and semiotic mediation (Bussi & Mari-
otti, 2008) are both based on the instrumental approach. The instrumental approach 
involves a Vygotskian perspective that emphasizes the use of instruments in learning 
processes but that also uses the Piagetian notion of scheme (Verillon & Rabardel, 
1995). The notion of scheme is re-elaborated by Vergnaud (1996), who also draws on 
a Vygotskian perspective, arguing how notions from Piaget and Vygotsky comple-
ment each other. Thus, the cores of instrumental genesis (Drijvers et al., 2013), 
conceptual fields (Vergnaud, 2009) and semiotic mediation (Bussi & Mariotti, 2008) 
are compatible. 

Since these theoretical approaches are compatible, they could potentially be used 
in a coordinated analysis of students’ interactions with digital tools in a mathe-
matics education setting. However, I have chosen to use these theoretical perspec-
tives to conduct juxtaposed analyses using the networking strategy of combining to 
study the phenomenon of students exercising the mathematical thinking competency 
when working with digital tools. Using the mathematical thinking competency as a 
coarse-grained framework, I analyze the empirical case presented below to focus the 
attention on the students’ processes of mathematical thinking competency for the 
subsequent finer-grained combined analyses. 

In the following two sections, I account for the method of the empirical study 
and present a case in which I illustrate how the students exercise the mathematical 
thinking competency through their interaction with a digital tool.
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6 Method and Selection of the Case 

The case presented in this chapter is taken from a larger empirical study carried out in 
autumn 2020 in the classical stream of Danish upper secondary school, called STX. 
In the empirical study, 29 students participated in two lessons on differential calculus, 
each lesson lasting 90 minutes. The students collaborated in groups of two or three in 
order to capture their thinking through their mutual discussions. The students worked 
from a premade TI-nspire worksheet and wrote their answers in an appurtenant Word 
document, both of which were screencast recorded. The students were also recorded 
using their webcams so that their participation and any relevant hand gesticulations 
could be analyzed. The tasks on which the students worked represented the main 
exercises of the two lessons in the empirical study. All pairs/groups worked on these 
tasks for between 20 and 60 minutes, though their work was interrupted by various 
events, such as the first lesson ending, the teacher giving an introduction, having 
to engage in-class discussion, waiting for help or discussing topics unrelated to 
mathematics. 

The video sequences of the students working on these tasks were first coded with 
the aspects of the mathematical thinking competency (described above) to identify 
relevant pieces of data. Analysis 1 below is an elaboration of this process for the 
given case. Based on this analysis, the case of Karen and Lily was selected, because 
the scope of concept aspect of the mathematical thinking competency was very clear 
in the initial coding, due to the students being persistent in their intuitive idea of 
differentiability (cf. Analysis 1). In order to elaborate on how the students interacted 
with and created meaning from the digital tool in relation to the scope of concept 
aspect of the mathematical thinking competency, the case was then analyzed using the 
perspectives of instrumental genesis and conceptual fields (Analysis 2) and semiotic 
mediation (Analysis 3). 

7 Data: Exploring Differentiability Using Secant Lines 

The case presents two students, Karen and Lily, working on a dynamic TI-nspire 
worksheet. This worksheet asks the students to investigate whether a given function 
f (depicted by the blue graph in Fig. 1) is differentiable for given values, where f 
is defined by 

f (x) =
{ 1 

15 x
3 − 1.2x2 + 5.4x + 1.8, −0.5 ≤ x ≤ 9 

1.8, 9 < x ≤ 15 

With two sliders in the top right corner, the students can move x0 on the x-axis 
and change the difference �x . In this way, students can observe differentiability as a 
numerical approximation to the slope of the tangent line (Hohenwarter et al., 2008).
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Fig. 1 Snapshot from TI-nspire, the interactive representation of a function (the blue graph) and a 
changeable secant line (the red graph) 

In the following dialogue, Karen and Lily work with the tool to investigate 
differentiability for x0 = 9. 
01. Lily: What does it mean for it to be differentiable? … When it is differen-

tiable… we should read about it at some point. That, when it has such a tip, 
then it is not differentiable. 

02. Karen: Yes, it is when it is curved. You should be able to walk from a to b 
and such [she grabs her book and reads out sections of the text]. Continuity. 
Called continuity when its graph is connected… from a… [she moves on to  
the paragraph on differentiability] and here, it should be without corners.2 

03. Lily: [Looks at the graph in Fig. 1] But I guess there are no corners in this 
one… But, when it is differentiable, then it is without corners, so there cannot 
be such a tip on it. … Because then it could slope differently-ish like this [she 
holds one of her hands in different directions]. 

04. Karen: But this one [the graph in Fig. 1] is soft.  
05. Lily: Yes, there are no corners. 

Karen and Lily cannot work out how the information from the book can help them 
investigate differentiability using the tool, and they ask for help. Through guidance, 
Karen sets x0 = 9 and controls the slider for �x . First, she does it for negative �x , 
but, because the slider jumps in small intervals, she ends up typing �x = −0.1, for

2 I translate the Danish word “knæk” as “corners”, to illustrate a graph having one or more sharp 
bends but still being connected. 
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which the secant slope is 0. Afterward, she types �x = 0.1, for which the secant 
slope is also 0. 

06. Mathilde: There [the secant slope] is also 0. So, now it approaches 0 from right 
and left, so it then approaches the same value. In this case, 0. 

07. Karen: Ah, so it is opposite, kind of like a mirror-ish? 
08. Mathilde: Yes, let’s say we worked with something that tended to 0 from the 

one side, but 
09. Karen: something different … then it would not be differentiable. Ok. For 

example, if it has a corner. 

The group moves on to investigate differentiability for x0 = 1. Karen types
�x = −0.1, for which the secant slope is 3.3, and then she types �x = 0.1, for  
which the slope is 3.1. 

10. Karen: Then, I guess, it is not differentiable. But, that does not make any sense. 
11. Lily: No, I don’t think it does. But, well, I guess it approaches the same, but 

it is not quite the same. Is it just because there is a little bit of difference in 
the slope. Well, they both approach 3 [she mumbles something]… but does it 
have to be the exact same? What if we take 0.01? 

12. Karen: I think so. Let us just try. [She types in�x = 0.01, and the secant slope 
is 3.19.] 

13. Lily: So it does… it does move closer to. It does approach… 
14. Karen: But it is just not. I think they have to be right on the opposite side. … 

I do not feel, it would make any sense if it is not [differentiable]. 
15. Lily: Yes, because there are no corners, or jumps or anything. 

From this, Karen and Lily presume differentiability, but, to be sure, they ask their 
teacher, who suggests they go even closer. Setting �x = ±0.0001, they get the 
secant slopes to 3.2 on both sides and confirm their presumption. The group moves 
on to another function, where they have to investigate differentiability for x0 = 10. 
For �x = 0.1, the secant slope is −0.1, and for �x to −0.1, the secant slope is 0. 

16. Karen: Oops, there it is not. Should we try more 0’s, or what? 

Fig. 2 Non-differentiable function at x = 10. The secant slope is 0 for �x = 0.00001 (left), and 
the secant slope is −0.1 for �x = −0.00001 (right)
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Fig. 3 Estimated slopes for the given x-values. The text translates as “That means that they are 
all differentiable, because it is continuous and without corners. Slope for x0 = 1 is 3.2 Slope for 
x0 = 3 is 0.0 Slope for x0 = 9 is 0.0” 

For �x = ±0.00001 the slope is still 0 (Fig. 2 left), respectively −0.1 (Fig. 2 
right). 

Karen and Lily seem to see a little corner around x = 10, and they try with �x = 
±0.000001. The secant slope is still 0 for positive �x and −0.1 for negative �x , 
and they conclude non-differentiability. Afterward, they get guidelines to calculate 
the derivative with TI-nspire CAS. Karen types in the given command for the first 
function with the value of x0 = 1, to which TI-nspire CAS gives the result 3.2. 

17. Karen: 3.2, ay! Ah, that was it… we did not calculate it. Should we then just 
[calculate it]? 

They go back to the graphic window again and estimate their values for the limit 
of the secant slope for �x approaching 0 (Fig. 3). 

Before using CAS on the last example, the students go back to the graphic inves-
tigation and write out their arguments for their conclusion of non-differentiability 
for x0 = 10 (Fig. 4). 

18. Karen: x is 10, and there we got that it was not differentiable in ours. 
19. Lily: Oh, yes. Should it not say undefined then? 
20. Karen: I think so. 

Karen types in the command to which the output is “undef” (the last calculation 
in Fig. 5). 

21. Lily: Great. It is so nice when it works. 
22. Karen: Great, yeah. It is the greatest when it actually works, and you finally 

… well, when you do not get it. It is really like ups and downs. 

Fig. 4 The students’ argumentation for differentiability and non-differentiability. The text trans-
lates as “We found out that x0 = 2 is differentiable (differential quotient = −1.33), but that x0 = 10 
is not differentiable. We found out that the slope of the secant for x0 = 10 is unequal when you 
come from a positive direction −0.1, but, when you come from a negative direction, the slope is 0”
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Fig. 5 Calculations of the derivative for specific values in TI-nspire CAS 

8 Analysis 1: Exercised Processes of the Mathematical 
Thinking Competency 

To identify which processes of the mathematical thinking competency the students 
exercise, I analyze the case through the lens of the four aspects of the mathematical 
thinking competency. At first, Lily asks the question of what differentiability means 
(Line 01), which illustrates processes of the question–answer aspect. She recognizes 
the task as a mathematical question and relates this to the nature of the expected 
answer to such a task. This prompts her to search for a definition or explanation of 
differentiability, so they know which results they can interpret as “yes, it is” or “no, it 
is not differentiable”. The students do not exercise the process of posing or relating to 
generic mathematical questions, which are also parts of the question–answer aspect. 

In the students’ search for an answer, relying on the explanation of differentia-
bility as a function whose graph has no corners (Line 02), the two students exercise 
processes of the scope of concept aspect. For instance, Karen connects her under-
standing of differentiability as a graph with no corners to the actions carried out with 
the tool (Line 09). Here, she relates the scope of differentiability when simply looking 
at the graph of the function to investigate the limit of the secant slopes graphically. 

Before starting their investigations, they intuitively consider the graph as being soft 
with no corners (Line 03–05). Hence, they presume that the function is differentiable. 
When they are to determine if the function is differentiable for x0 = 1, they calculate 
the secant slopes to be 3.3, respectively, 3.1 for �x = ±0.1. This makes Karen
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conclude non-differentiability, despite it looks like it has no corners (Line 10). Lily 
tries to relate the two understandings of differentiability by interpreting the dynamic 
output of the tool, adding more 0s to �x (Line 09–15). This relation is also seen 
in the instance of non-differentiability (Line 16). Throughout the actions with the 
tool, the students’ intuitive view of differentiability as a graph with no corners guides 
the students’ extension of the scope of the concept of differentiability. 

When calculating the derivatives with CAS, they relate these results to their work 
with the tool (Line 17–20). Hereby, they expand their understanding of an answer of 
differentiability to include a result in the form of a number, or the output “undef” in the 
case of non-differentiability (Line 19–20). Hence, they return to the question–answer 
aspect of the mathematical thinking competency. 

This analysis illustrates that the work with instances of differentiability and non-
differentiability makes Karen and Lily exercise some processes of the question– 
answer aspect and some of the scope of concept aspect, but no processes of the math-
ematical statements or the generalization–abstraction aspect. Moreover, the students’ 
expressions in Line 18–19 also illustrate how the students find coherence between 
the answers and the varying scopes. In the following analyses, I elaborate on how 
these processes are exercised during the students’ work. 

9 Analysis 2: Beginning Instrumental Genesis 

In this section, I analyze the case using the perspectives of instrumental genesis 
and conceptual fields. In this case, the TI-nspire worksheet is the artefact at issue. 
Karen and Lily’s starting point is their concept-in-action “differentiability is shown 
by a graph with no corners” (Line 01–02). Thereby, they have an intuitive idea of 
the function being differentiable (Line 03–05). This understanding becomes part of 
their predicative form of knowledge, but with no connection to any operative form of 
knowledge. As they have no theorem-in-action to draw on, they cannot infer how to 
act with the artefact in relation to their predicative form of knowledge and they ask 
for help. This illustrates the difficulties of beginning the instrumental genesis when 
they have no initial schemes to rely on. 

The instrumentation of the artefact leads Karen to a theorem-in-action, saying that, 
for a function to be differentiable at a given point, the secant slope should be the same 
value for both negative and positive�x , close to the given point. This worked for the 
first instance (x0 = 9) with �x = ±0.1. Therefore, Karen and Lily use this scheme 
to investigate differentiability by copying the technique of setting �x = ±0.1 for 
the next point of interest (x0 = 1). As this gives them two different secant slopes, 
respectively, for �x = ±0.1, they get confused (Line 10–15). This instrumentation 
leads Karen to conclude non-differentiability, even though this conclusion does not 
match her initial concept-in-action of differentiability being a curved graph with no 
corners. 

Because of the mismatch between the tool-induced theorem-in-action and the 
book-induced concept-in-action, Lily is not sure non-differentiability is the answer.
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Although she cannot infer the exact limit, her scheme builds on the secant slope 
getting closer to something, which is observed by her technique of adding more 0s 
to �x . In Lily’s case, the duality of instrumentation-instrumentalization is essential. 
On the one hand, it is Lily’s way of thinking of “approaching” (Line 11) that directs 
the use of the slider for �x . On the other hand, the configuration of the tool and the 
constraints of the slider have encouraged her to think this way. 

With �x = ±0.0001, they conclude differentiability for x0 = 1, which matches 
the concept-in-action of “differentiability-as-no-corners”. This process illustrates 
how Lily’s actions make Karen adjust her thinking of differentiability. For Karen, 
the two secant slopes still have to be equal, but now in the sense of �x close 
enough to 0. Both Lily’s and Karen’s schemes are confirmed by the instance of 
non-differentiability, where the two secant slopes differ from each other, keeping 
their respective values, regardless of how close �x is to 0 (Line 16, Fig. 2 left and 
right). 

In the end, the CAS calculations of the derivatives also confirm their schemes, 
building on the instrumentation of the dynamic environment. Getting the exact value 
of the derivative puts the dynamic investigations into perspective and helps them 
develop a predicative form of knowledge in the form of arguments for differentiability 
and non-differentiability, respectively (Figs. 3 and 4). Also in this situation, the 
instance of non-differentiability functions as a confirmation, when Lily predicts the 
output to be “undefined” (Line 19), and, in this way, thinks with the tool. 

This analysis illustrates how the students relate to the varying scope of differentia-
bility from simply looking at the graph to estimating the limits of the secant slopes by 
relating their concept-in-action of “differentiability-as-no-corners” with their devel-
oped theorems-in-action from working with the tool. Through the development of 
schemes for using the dynamic worksheet as an instrument for determining differ-
entiability, the students’ two views on differentiability approach a conceptualization 
of differentiability with a similar scope. With the students’ development of predica-
tive knowledge, they expand their view on an expected answer of differentiability 
to include whether or not they can determine a limit. Therefore, this process also 
calls for them to exercise the question–answer aspect of the mathematical thinking 
competency. 

To explore how the students obtain sense and meaning out of their interaction 
with the tool, I will now analyze the case from the perspective of semiotic mediation. 

10 Analysis 3: Signs of Semiotic Mediation 

Like above in the analysis from the perspective of instrumental genesis, the artefact 
is the specific dynamic TI-nspire worksheet with the two sliders. From this perspec-
tive, we consider it a tool of semiotic mediation in relation to the specific tasks of 
investigating differentiability and the mathematical content of differentiability. 

Summing up their initial work with the artefact, Karen’s question “Ah, so it is 
opposite, kind of like a mirror-ish?” (Line 07) can be seen as an artefact sign of
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how she understands the secant slopes’ behavior in relation to differentiability. She 
connects this to the situation of non-differentiability and a graph with corners (Line 
09). Thus, the terms “corner” and “no-corner” become pivot signs that hinge the 
behavior of the secant slopes to the concept of differentiability-as-no-corners. This 
allows her to speak of differentiability on a more general level than just related to 
the specific tasks. 

In the next task for x0 = 1, where the secant slopes do not “mirror” around the 
given value, Karen concludes “Then, I guess, it is not differentiable. But, that does not 
make any sense.” This illustrates a discrepancy between her personal sense of differ-
entiability within the artefact and her differentiability-as-no-corners understanding. 
Lily, on the other hand, remains focused on the dynamic of the artefact, expressed 
by artefact signs like “it approaches…” (Line 12) and “it does move closer to…” 
(Line 14). With confirmation from their teacher, this leads to an agreement between 
the results in the artefact and the differentiability-as-no-corners understanding for 
both students, as they can see the graph has no corner at the given point. For Lily, 
the movements of the artefact confirm her understanding of “approaching”, and for 
Karen, the secant slopes do “mirror” around the given point for small enough �x . 

In the last task, Karen and Lily’s written answers show their move from artefact 
signs to mathematical signs, with the pivot sign “slope” hinging the observed in the 
artefact with the derivative obtained by CAS (Figs. 3 and 4). During the exercises in 
the dynamic artefact, Karen does not pay attention to the values of the limit but to 
whether the slopes are equal on both sides of the given x-value. Lily seems aware 
of the limit in some sense, expressed by artefact signs of “approaching”. When they 
return to the graphic investigations after calculating the first derivative, the exact 
values become their argumentation for whether the function is differentiable. In 
Fig. 3, they use the pivot signs of “corners” and “slope”, whereas in Fig. 4, they  
use the mathematical sign “derivative”. This indicates a move from the artefact and 
toward a more generalized concept of differentiability. However, the episode also 
illustrates that knowing the CAS command simplifies determining differentiability 
to whether the output is a number or the undefined-respond. 

This analysis illustrates that as part of the students’ meaning-making of their 
actions with and responses from the artefact they exercise the question–answer aspect 
of the mathematical thinking competency. Like in analysis 2, analysis 3 shows the 
importance of the individual tasks in relation to each other, which makes the students 
exercise the scope of concept aspect. Moreover, the attention to artefact signs and 
mathematical signs in analysis 3 indicates an initial, yet important, process of the 
generalization–abstraction aspect of the mathematical thinking competency, which 
analysis 1 did not capture.
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11 Discussion and Conclusion 

By viewing the same data through different lenses, the three analyses above illustrate 
processes of students’ mathematical thinking competency in interactions with the use 
of the TI-nspire worksheet. 

Analysis 1 uncovers which aspects of the mathematical thinking competency 
are exercised in the given case and which are not. The apparent processes of the 
mathematical thinking competency that the students exercise are of the question– 
answer and the scope of concept aspects. It is through the students’ work with 
multiple instances of differentiability and non-differentiability that the students get 
the opportunities to relate to the scope of the concept in different contexts and develop 
their conception of differentiability, as well as to relate to the expected answer for 
determining differentiability. 

Analyses 2 and 3 illustrate how these processes of mathematical thinking compe-
tency interact with the students’ use of the TI-nspire dynamic template and CAS. 
First, the case illustrates that the question–answer aspect is part of the instrumen-
tation of instrumental genesis. An expectation of the interplay between the mathe-
matical thinking competency and the use of digital tools could be that relating to an 
expected answer would influence the instrumentalization. Having an idea of what 
kind of answer to be looking for may influence how to use the tool. However, Anal-
ysis 2 of the case illustrates that relating to the expected answer develops through 
the instrumentation and the development of schemes. Not until then, the question– 
answer aspect is exercised in the instrumentalization aspect as well. Thus, in this case, 
instrumentation and to some extent instrumentalization interact with the exercise of 
the question–answer aspect. 

Second, the scope of concept aspect is exercised in the duality of instrumentation 
and instrumentalization. The students bring new operational knowledge including 
new-developed schemes into each new task, which develops both the instrumental 
genesis and the signs of the semiotic mediation as well as the scope of the concept 
of differentiability. Hereby, it seems that the students work on the individual tasks 
and relate these to each other, but do not generalize over the different instances. 
Nevertheless, illustrating the development from artefact signs to pivot and initial 
mathematical signs, Analysis 3 indicates that the students approach the conditions 
for the limit to exist and for the function to be differential at a more general level. 
This shows that the students’ work with the tool includes an initial process of the 
generalization–abstraction aspect toward a more generalized concept of differentia-
bility—an aspect of the mathematical thinking competency not obvious from the 
perspective of the mathematical thinking competency alone. 

Using the networking strategy of combining, the three analyses can be said to 
have separate foci. The first analysis (with the mathematical thinking competency as 
a coarse-grained framework) helped navigate the following analyses using the other 
selected theoretical perspectives. As juxtaposed analyses, each theoretical perspec-
tive adds to a networked understanding of students exercising the mathematical 
thinking competency while interacting with the given TI-nspire worksheet.
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The focus on enactment in the KOM framework fits well with the focus on inter-
action with the tool in the perspectives of instrumental genesis (Drijvers et al., 2013) 
and semiotic mediation (Bussi & Mariotti, 2008) as well as with the focus on the oper-
ational form of knowledge and the notion of scheme in the perspective of conceptual 
fields (Vergnaud, 2009). This indicates compatibility between the KOM framework 
and the theoretical perspectives applied in this study, thus, a potential for using the 
networking strategy coordinating. Hence, the theoretical perspectives can be pieced 
together as a conceptual framework to study the mathematical thinking competency 
in interaction with the use of a given digital technology. 

The three juxtaposed analyses also illustrate which processes of the mathemat-
ical thinking competencies the students do not exercise. First of all, the involved 
tasks do not initiate the mathematical statements aspect or the part of the generaliza-
tion–abstraction aspect involving the awareness of generalization and abstraction as 
mathematical activities. Nevertheless, it could be expected that the students would try 
to generalize more explicitly over the different instances of differentiability. Further-
more, having the view on differentiability-as-no-corners, the students could have 
asked why discontinuous functions or functions whose graphs have sharp corners 
are not differentiable and in this way add to the question–answer aspect as well 
as to the scope of concept aspect. Yet the results do indicate how single aspects 
of the mathematical thinking competency can be exercised in interaction with an 
explorative worksheet, like the TI-nspire worksheet presented in this chapter. Using 
an explorative environment can help students investigate both positive and nega-
tive instances of given mathematical concepts, processes or relations. However, it is 
important that the tasks supporting the students’ use of the tool guide the students’ 
explorations, for example, by clearly stating the interesting aspects and asking them 
to observe specific elements of the explorative environment. Finally, the tasks should 
explicitly ask the students to question the concept in different contexts, for instance, 
how the given concept is connected to other parts of the specific topic or how the 
given concept could be defined in other mathematical topics. 
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