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Foreword 

Mathematical Competencies in the Digital Era, edited by Uffe Thomas Jankvist 
and Eirini Geraniou, is a book in the series Mathematics Education in the Digital 
Era, edited by Dragana Martinovic and Viktor Freiman. The Digital Era, in this  
book, refers to two layers: mathematical digital competencies to be developed, but 
even with higher emphasis, the development of mathematical competencies with the 
support of digital tools. 

The focus on mathematical competencies (also conceptualized as mathematical 
practices, in other contexts) has a strong tradition in Denmark, where Mogens Niss 
and colleagues not only developed a coherent framework, the mathematics competen-
cies framework, the so-called KOM-framework. Denmark is an interesting curricular 
laboratory of international interest, because the KOM framework has been conse-
quently established in the Danish curricula and from there influenced many other 
countries and regions and also the previous PISA frameworks. In recent years, digital 
technologies have been introduced to classrooms, but the editors and authors are 
driven by the main idea that more research is needed to use the digital technolo-
gies productively for supporting the development of mathematical competencies and 
mathematical digital competencies. 

Thereby, the ambitious book presents design research studies from Denmark 
and other countries that develop learning opportunities with digital technologies 
to support the development of particular mathematical competencies and that 
investigate the initiated teaching–learning processes. 

The design as well as the empirical investigations draw upon the KOM framework 
as well as upon different theoretical constructs and perspectives in mathematics 
education research that were particularly generated for situations involving digital 
technologies in the teaching and learning of mathematics. For example, the chapters 
refer to the instrumental approach, instrumental orchestration, semiotic mediations, 
the anthropological theory of the didactic, mathematics-related beliefs, programming 
and computational thinking, mathematical digital competencies and the theory of 
conceptual fields. In each of the chapters, the authors find other ways to combine the 
KOM framework with one or two other theoretical perspectives or constructs, and 
in each of the cases, different strategies are applied for networking the theories. In
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viii Foreword

this way, the book documents highly interesting cases of networking experiences on 
four levels: 

(1) On the practical level, two highly relevant challenges in classrooms practices are 
combined in many different ways, each time the development of one competency 
and the use of digital technologies, and this networked design work results in 
several promising instructional approaches that can enrich classroom practice. 

(2) On the theoretical and empirical level, the design research requires coordinating, 
local integrating or synthesizing theoretical approaches to make sense of the 
investigated teaching–learning processes. 

(3) On the personal level, these tasks have been conducted by networking of 
researchers from different countries: sustained exchange of ideas and collabo-
rations between Scandinavian researchers familiar with the KOM framework 
and a number of international scholars have resulted in an impressive range of 
co-authored contributions in the book’s 18 chapters. 

(4) On the methodological level, the authors present intriguing ideas about 
comparing and contrasting theories in relation to the use of digital technologies 
and mathematical competencies and other constructs from the KOM frame-
work. The editors and authors have carried out substantial networking prac-
tices to showcase how KOM’s descriptions of mathematical competencies, etc., 
can be refined and deepened using other frameworks from both inside and 
outside of mathematics education research. This in itself is a significant contri-
bution that offers some foundational work for further connections of theo-
ries moving towards a higher level of integration for the KOM framework’s 
constructs in the digital era. The audience of this book should recognize the 
combined (networked) framework approach suggested in each chapter, as they 
provide specific foci for attention and a potential basis for an increasingly unified 
discourse of research and practice in mathematics education. 

In my view, one of the strongest aspects of the work presented in this book is 
the comprehensive exposition of how additional frameworks augment and refine 
the KOM framework when digital technologies are in play. Its multi-layer work 
reveals a fascinating read for mathematics education researchers, graduate students 
and teacher educators worldwide, who are particularly interested in the digital tech-
nologies’ influence on mathematical competencies as presented by different authors 
using various educational theories. I congratulate the editors and the authors for this 
insightful work! 

I hope this compelling book will find many readers who enjoy diving into 
Mathematical Competencies in the Digital Era! 

Dortmund, Germany Susanne Prediger
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Mathematical Competencies 
in the Digital Era: An Introduction 

Uffe Thomas Jankvist , Eirini Geraniou , Mathilde Kjær Pedersen , 
Cecilie Carlsen Bach , and Rikke Maagaard Gregersen 

1 Rationale Behind the Book 

Mathematics education has been experiencing two rather distinct, yet related, 
‘paradigm shifts’. The first is to do with the massive introduction of digital tech-
nologies (DT) in the teaching and learning of the subject (e.g., Trouche et al., 2013); 
the second is to do with a shift from the traditional focusing on mastering of skills and 
knowledge to being concerned with the possession and development of mathematical 
competencies (e.g., Stacey, 2010; Stacey & Turner, 2015). This book focuses on the 
potential interplay between these two paradigm shifts by considering the connection 
of different theoretical perspectives, e.g., by drawing on the notion of ‘networking 
of theories’ (e.g., Bikner-Ahsbahs & Prediger, 2010; Prediger et al., 2008). 

A somewhat recent Organisation for Economic Co-operation and Development 
(OECD, 2015) report states that merely adding 21st-century technologies to 20th-
century teaching practices is rather likely to dilute the effectiveness of teaching 
than to inform and enhance it. This observation is in line with recent research in 
mathematics education; while studies from the 1980s and 1990s tend to point to the
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positive effects of DT on teaching and learning, recent research often has a more 
balanced view on these effects (Drijvers, 2015; Weigand, 2014) or even point to 
negative effects (Jankvist et al., 2019). DT in the form of mathematical software— 
for example, Dynamic Geometry Systems (DGSs) or Computer Algebra Systems 
(CASs)—can today perform many of the mathematical tasks and processes that 
students traditionally are expected to do (e.g., reduction, equation solving, functional 
analysis, etc.). Newer research thus address the role of mathematical competencies 
in the digital era (e.g., Geraniou & Jankvist, 2019). 

From an international perspective, Denmark offers unique opportunities for 
carrying out research on this interplay for two reasons. Firstly, Denmark is one of the 
few countries in the world that has gone ‘all in’ on introducing DT in its mathematics 
programmes of primary, secondary and upper secondary school. However, this has not 
been an altogether positive experience (Matematikkommissionen, 2016), since DT 
has also brought along new and unforeseen difficulties related to students’ learning 
of mathematics (Jankvist & Misfeldt, 2015). Secondly, Denmark is one of the few 
countries that have competencies descriptions of its mathematics programmes all the 
way from primary school through upper secondary school to tertiary level, including 
teacher training—and all of these are based on the Danish so-called KOM frame-
work (Niss & Højgaard, 2011, 2019; Niss & Jensen, 2002), which was also previously 
adopted by OECD for the Programme for International Student Assessment (PISA) 
(OECD, 2013). Niss and Højgaard (2011) define a mathematical competency as (an 
individual’s) “well-informed readiness to act appropriately in situations involving 
a certain type of mathematical challenge” (p. 49). The KOM (competencies and 
the learning of mathematics) framework operates with eight distinct, yet mutually 
related, mathematical competencies, three second-order competencies referred to as 
types of overview and judgement and six didactico-pedagogical competencies for 
mathematics teachers. 

Thus far, the discussions of using DT and developing mathematical competencies 
have often run on separate tracks, both within practice and within research. One 
reason for this may be due to many of the mathematics educational theories and results 
being framed within a setting of skills and knowledge rather than one of competency. 
New research surrounding KOM in the digital era does, however, address the potential 
of connecting the KOM framework with more established theoretical perspectives 
of mathematics education in situations involving DT. Recent research studies show 
that the KOM framework for example connects well with both Trouche (2005) and 
colleagues’ instrumental approach as well as the theoretical perspective of semiotic 
mediations (Bartolini-Bussi & Mariotti, 2008) in relation to the use of DT as well 
as for example Vergnaud’s (2009) theory of conceptual fields in relation to more 
cognitive elements of mathematical concept formation. 

The chapters of this book provide further illustration of such connections. Several 
of the empirical cases in the book stem from the Danish educational system. Still, 
the book also offers a broader international perspective by, on the one hand, drawing 
on cases from other countries, for example, Australia, China, Costa Rica, England 
and Sweden and, on the other hand, having a wide range of international researchers 
co-author several of the chapters involving cases from the Danish educational system.
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2 The Structure of the Book 

Besides this introduction, the chapters of the book fall into four parts, each part 
addressing different aspects of the KOM framework. 

The first part, Setting the Scene, consists of two introductory chapters. These 
chapters address the KOM framework and the potentials of connecting it with other 
theoretical perspectives from mathematics education research, both from a general 
point of view and specifically in relation to the use of DT. 

The second part, which is on the eight mathematical competencies, consists of 
eight chapters, one for each of the mathematical competencies described in the KOM 
framework. These are:

• Mathematical thinking competency—engaging in mathematical enquiry.
• Mathematical problem handling competency—posing and solving mathematical 

problems.
• Mathematical modelling competency—analysing and constructing mathematical 

models.
• Mathematical reasoning competency—assessing and producing justification of 

mathematical claims.
• Mathematical representation competency—dealing with different representations 

of mathematical entities.
• Mathematical symbols and formalism competency—handling mathematical 

symbols and formalisms.
• Mathematical communication competency—communicating in, with and about 

mathematics.
• Mathematical aids and tools competency—handling material aids and tools for 

mathematical activity. 

The third part consists of three chapters, each addressing one of the KOM frame-
work’s three types of overview and judgement. According to Niss and Højgaard, 
(2011), overview and judgement are insights that “enable the person mastering them 
to have a set of views allowing him or her overview and judgement of the relations 
between mathematics and in conditions and chances in nature, society and culture” 
(p. 74). The three types of overview and judgement are:

• The actual application of mathematics within other disciplines and fields of 
practice.

• The historical development of mathematics, seen from internal as well as from 
sociocultural perspectives.

• The nature of mathematics as a discipline. 

The fourth part broadens the scene by providing four chapters that are of general 
nature in relation to the KOM framework in the digital era. Among other things, these
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chapters address assessment of mathematical competencies, teachers’ didactico-
pedagogical competencies in situations involving DT, mathematical competencies 
in relation to computational thinking and programming in school. 

3 Introduction to Setting the Scene 

In “On the mathematical competencies framework and its potentials for connecting 
with other theoretical perspectives”, Mogens Niss and Uffe Thomas Jankvist present 
and discuss the KOM framework in general as well as its potentials for connecting 
with other theoretical perspectives. As part of this discussion, the notions of ‘theory’, 
‘theoretical framework’ and ‘theoretical perspectives’ are examined and discussed 
with the purpose of placing KOM in this landscape. The chapter also provides exam-
ples of connections between the KOM framework and other theoretical perspec-
tives, one example in terms of mathematical competencies (the modelling compe-
tency), one example in terms of the three types of overview and judgement (the 
historical development of mathematics) and one example in terms of the didactico-
mathematical competencies (uncovering learning). Based on their discussion of 
the potential of connecting aspects of the KOM framework with other theoretical 
constructs, the authors point out that at the current stage of development perhaps 
‘mutual fertilisation’ of the entities under consideration should be the goal rather 
than actual ‘networking’ of these entities into new frameworks. 

While the first chapter does not address the role of DT explicitly in relation to 
the KOM framework, the second chapter by Eirini Geraniou and Morten Misfeldt 
does exactly this. In their chapter, “The mathematical competencies framework and 
digital technologies”, the two authors discuss the influence as well as the potential 
of DT in relation to the KOM framework’s eight mathematical competencies, six 
didactico-pedagogical competencies for teachers and three types of overview and 
judgement. Influenced by the notion of mathematical digital competency (MDC) by 
Geraniou and Jankvist, (2019), through the use of examples (from England, Sweden, 
and the well-known international problem—‘the four-color theorem’), they argue for 
the need to revisit the KOM framework and add a layer that represents the interplay 
between technology and competencies. However, not thinking of this as a meta-
competency of the tools and aids competency, but rather allowing technology to 
take a more central role in each of the mathematical competencies described by the 
KOM framework. In Geraniou’s and Misfeldt’s eyes, MDCs should be at par with 
mathematical competencies rather than being a sub-competency.
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4 Introduction to The Eight Mathematical Competencies 

The second part presents the eight mathematical competencies of the KOM frame-
work in the perspective of DT use. Each chapter in this part corresponds to one of the 
eight mathematical competencies. Since all eight competencies are mutually related, 
a chapter may involve other competencies than the one in focus. All chapters present 
cases illustrating the interplay between the competency in play and the use of DT. 
Most of the chapters involve DGS, but there are also examples of CAS and various 
programming tools. 

In “Processes of mathematical thinking competency in interactions with a digital 
tool”, Mathilde Kjær Pedersen discusses students’ mathematical thinking compe-
tency in learning situations of differentiability involving TI-nspire, which involves 
both DGS and CAS. In parallel, an empirical case stemming from Danish upper 
secondary school is analysed from the lenses of the instrumental approach (e.g., 
Drijvers et al., 2013), conceptual fields (Vergnaud, 2009) and semiotic mediation 
(Bartolini-Bussi & Mariotti, 2008). The chapter discusses which aspects of the math-
ematical thinking competency can be identified in the students’ interaction with the 
DT. 

In their chapter “Mathematical competencies framework meets problem-solving 
research in mathematics education”, Mario Sánchez Aguilar, Martha Leticia García 
Rodríguez and William Enrique Poveda Fernández focus on the problem handling 
competency. The authors connect the KOM framework with other notions from 
mathematics education research related to problem-solving, which together provide 
a suitable construct for analysing problem-solving processes. Through analyses of an 
empirical case stemming from a virtual course for prospective lower secondary school 
teachers in Costa Rica, a student (i.e., a prospective teacher) worked with Euclidean 
geometry using GeoGebra (DGS). The authors connect the problem handling compe-
tency and the aids and tools competency with Santos-Trigo and Camacho Machín’s 
(2013) framework of using DT in problem-solving processes. 

In “Mathematical modelling and digital tools—and how a merger can support 
students’ learning”, Britta Eyrich Jessen and Tinne Hoff Kjeldsen debate the 
modelling competency in relation to DT using two cases from upper secondary 
school in Denmark. Based on parallel analyses on the modelling cycle (Kjeldsen & 
Blomhøj, 2006) and the Media-Milieu dialectics from the anthropological theory 
of the didactic (ATD) (Chevallard, 2007), they compare and contrast the theoretical 
perspectives and their analyses. Such a networking approach is applicable for the 
authors to discuss how to merge DT and the modelling competency with the purpose 
of supporting students’ learning. 

In their chapter “Lower secondary students’ reasoning competency in a digital 
environment: The case of instrumented justification”, Rikke Maagaard Gregersen 
and Anna Baccaglini-Frank focus on the reasoning competency when students use
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GeoGebra (DGS). Within the chapter, an analytic tool coordinating the technique-
scheme duality from the instrumental approach (Drijvers et al., 2013) with Toulmin’s 
(2003) argumentation model is developed. The authors utilise the tool for an analysis 
of two Danish lower secondary school students collaborating on a task concerning 
variable points. 

In “Mathematical representation competency in the era of digital representations 
of mathematical objects”, Ingi Heinesen Højsted and Maria Alessandra Mariotti 
address students’ possession and development of the representation competency in 
a context of using DGS. The authors utilise two cases of Danish lower secondary 
school students collaborating on a task concerning geometry in GeoGebra, which 
are analysed and discussed with respect to the representation competency. They 
hypothesise that the representation competency in the context of DT is closely related 
to the complexity of the dynamic dependency of the mathematical representation 
itself. 

Linda Marie Ahl and Ola Helenius display a case on programming, exemplified 
using Scratch. Within this chapter “New demands on the symbols and formalism 
competency in the digital era”, Vergnaud’s (2009) theory of conceptual fields and 
the KOM framework are coordinated to gain deeper understanding of the symbols 
and formalism competency. The two theoretical perspectives offer different grain 
sizes for analysing the programming situation. 

In “Activating mathematical communication competency when using DGE—is it 
possible?”, Cecilie Carlsen Bach and Angelika Bikner-Ahsbahs investigate mathe-
matical communication competency through the concept of tool-based mathematical 
communication. Such a concept is developed through a coordinated analysis of cases 
of Danish lower secondary school students using a DGS template. The two theoretical 
perspectives, instrumentation profiles, part of the instrumental approach to mathe-
matics education (Guin & Trouche, 1998) and two dialogical genres (O’Connell & 
Kowal, 2012), are chosen with respect to KOM. 

Morten Misfeldt, Uffe Thomas Jankvist and Eirini Geraniou investigate the appli-
cation of the aids and tools competency in relation to DT and new virtual manip-
ulatives in “An embodied cognition view on the KOM framework’s aids and tools 
competency in relation to digital technologies”. Different examples are analysed 
using the instrumental approach (Guin & Trouche, 2002) and embodied instrumen-
tation (Drijvers, 2019) to discuss students’ aids and tools competency in situations 
involving DT. The chapter includes examples of tasks from Danish higher education 
involving CAS and DGS as well as non-empirical analyses of virtual manipulatives, 
located within online mathematical learning environments, such as Mathletics and 
TouchCount.
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5 Introduction to The Three Types of Overview 
and Judgement 

In “Mathematics in action: On the who, where and how of the constructions and 
use of mathematical models in society”, Raimundo Elicer and Morten Blomhøj 
address the KOM framework’s first type of overview and judgement related to the 
actual application of mathematics through a discussion of mathematical models in 
society. They take the KOM framework’s critical stance to this and address the role 
of such models in the digital era by networking the notion of internal and external 
reflections regarding mathematical modelling and the instrumentation–instrumental-
isation duality of the instrumental approach. Two teaching experiences from higher 
education in Denmark serve as illustrative cases in this respect. 

Marianne Thomsen and Kathleen M. Clark consider the KOM framework’s second 
type of overview and judgement on the historical development of mathematics, seen 
from internal as well as from sociocultural perspectives. In “Perspectives on embed-
ding the historical development of mathematics in mathematical tasks”, they do so 
in relation to how working with the interplay between original (historical) mathe-
matical sources and DT can support students’ development of this type of overview 
and judgement, and thereby reinforce the dialectical relation between the praxis and 
logos block relying amongst other theoretical constructs on the ATD. The authors 
describe and draw on two empirical examples from Denmark, one from a 7th-grade 
classroom and one from an in-service teacher course. 

In their chapter “Facilitating teachers’ reflections on the nature of mathematics 
through an online community”, Maria Kirstine Østergaard and Dandan Sun address 
the third type of overview and judgement from a teacher’s professional development 
perspective. Although teachers’ overview and judgement concerning the nature of 
mathematics as a discipline must be regarded as an essential part of their overall 
mathematical competence, this is seldom the object of teachers’ professional devel-
opment. The authors apply theoretical constructs related to beliefs in combination 
with the KOM framework in order to investigate how an online teacher community 
can provide opportunities, both for gaining experience with the nature of mathe-
matics as a discipline as well as for reflections on such. The empirical case stems 
from China, where the authors have monitored a Chinese teacher who participated 
in an online teacher education programme. The authors exemplify how DT can facil-
itate and motivate the participant teachers’ reflections on their own existing beliefs, 
for instance, by making these more conscious and nuanced.
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6 Introduction to Broadening the Scene 

Ingi Heinesen Højsted, Eirini Geraniou and Uffe Thomas Jankvist investigate one 
Danish teacher’s practice in a dynamic geometry teaching sequence aiming to 
support students’ development of mathematical reasoning. In “Teachers’ facilitation 
of students’ mathematical reasoning in a dynamic geometry environment: An anal-
ysis through three lenses”, the three lenses used are the KOM framework’s descrip-
tion of (didactico-pedagogical) mathematical competencies for teaching, the theory 
of instrumental orchestration and the theoretical construct of justificational media-
tions. The authors argue that the use of these three theoretical constructs enabled 
them to capture different levels of analysis as a synthesising result, and therefore to 
widen the scope of the KOM framework by integrating aspects from the theory of 
instrumental orchestration and the justification mediations framework. In fact, the 
latter allowed for an exemplification of a teacher’s chosen mediations in utilising both 
their mathematical competencies and their instrumental orchestrations in supporting 
students’ mathematical learning, comprising the reasoning competency. 

In “Mathematical competencies and programming: The Swedish case”, Kajsa 
Bråting, Cecilia Kilhamn and Lennart Rolandsson present opportunities and chal-
lenges regarding the integration of programming in school mathematics, focusing 
on the case of Sweden. The authors discuss how using programming in mathe-
matics teaching and learning can affect the development of students’ mathematical 
competencies. In more detail, they present three examples. The first one showcases 
differences regarding syntax and semantics in programming and mathematics and 
how these affect learning, while the second and third examples draw attention to 
the teachers’ views of how programming may enhance the traditional learning of 
school mathematics. In all three examples, different mathematical competencies are 
discussed. 

In their chapter “Coordinating mathematical competencies and computational 
thinking practices from a networking of theories point of view”, Andreas Tamborg 
and Kim André Stavenæs Refvik discuss the evolving role computational thinking 
plays in mathematics education and its potential with regards to mathematical compe-
tencies. They build on the taxonomy of Weintrop et al. (2016) for computational 
thinking practices along with the KOM framework to attempt a coordination of math-
ematical competencies and computational thinking practices from a networking of 
theories perspective, and articulate which mathematical competencies may support 
students with engaging in computational thinking practices. They exemplify their 
analysis with mathematical tasks used in Denmark and Sweden, but also in PISA 
assessments. 

Finally, Ross Turner, David Tout and Jim Spithill present in “A rich view of 
mathematics education and assessment: Mathematical competencies” how  the KOM  
framework has influenced the OECD’s Programme for International Student Assess-
ment (PISA) assessment of mathematical literacy and its reporting, but also how 
it can be applied to develop KOM-inspired PISA assessment items. The authors
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present an evidence-based case for making use of mathematical competencies and 
their assessment in the digital era. 

7 A Platform for Further Discussion and Research 

The present book can be seen as a first attempt to connect—or network—different 
theoretical perspectives in mathematics education with the KOM framework on math-
ematical competencies for situations that in some way or another involve DT. The 
types and variants of theoretical perspectives in play are numerous, stretching from 
more comprehensive theoretical perspectives such as Chevallard and colleagues’ 
ATD to much smaller or local constructs, notions and distinctions. Some of these of 
course address aspects of DT use in an explicit manner, for example, the instrumental 
approach or that of semiotic mediations. Some connect the elements of the KOM 
framework, through a competency or two, with in-depth analyses of mathematical 
concept formation, for example, through Vergnaud’s theory of conceptual fields. 
Some again go beyond the scope of the KOM framework’s content, for instance, 
when drawing on the notion of teachers’ mathematics-related beliefs in relation to 
overview and judgement. The involvement of different DT in the chapters mirrors 
the digital era of mathematics education through the many different possibilities of 
choosing DT for teaching, such as programming, CAS and DGS. 

In the chapters on the eight mathematical competencies in Part II, the authors 
often utilise both theoretical perspectives of the use of DT, for most of the chapters 
the instrumental approach, and theoretical perspectives related to the specific compe-
tency. For example, theoretical perspectives on problem-solving when focusing on 
the problem handling competency, or theoretical perspectives on modelling when 
investigating the modelling competency. The same appears to be the case in Part 
III and Part IV. In Part III, authors draw on theoretical perspectives closely related 
to the specific types of overview and judgement, such as mathematical modelling 
or use of history of mathematics in the teaching and learning of mathematics, as 
well as the instrumental approach. For Part IV, authors connect aspects of KOM 
to the interest at issue in the chapter, such as instrumental orchestration and the 
six didactico-pedagogical competencies, or the eight mathematical competencies’ 
relations to programming and computational thinking. 

Another commonality throughout the chapters of the book is that several of these 
apply the networking strategies of ‘coordinating’ or ‘combining’, which both serve as 
means to understand an empirical phenomenon through triangulation of theoretical 
perspectives (Prediger et al., 2008). Furthermore, several chapters contain parallel 
analyses in order to secure both a focus on DT and on the mathematical competency 
in question. 

Other chapters apply networking practices merely as reflections of the processes 
and of the selection of the theoretical perspectives in play (Prediger et al., 2008). 
In such cases, networking of theories may be identified as a kind of ‘eclecticism’ 
of theoretical perspectives on a well-informed basis (Køppe, 2008). In any of the
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different involvements of networking of theories, the actual connection of theories 
serves the purpose of shedding light on the processes of choosing and of using the 
theoretical perspectives in relation to the specific framework of KOM. Often, KOM 
acts as the broader lens, while the other theoretical perspectives serve the purposes 
of providing finer graded analyses. 

Hence, the book offers a variety of different ways to link theoretical perspec-
tives from mathematics education research with elements of the KOM framework in 
teaching and learning situations involving DT. The book in itself serves the purpose 
of obtaining “various forms of mutual fertilisation of the entities under considera-
tion” as pointed out by Niss and Jankvist (2022, p. 35). In this light, the endeavours 
of the contributors of this book may be seen as “valuable for furthering the theo-
retical development of our field to engage in analysing, comparing and contrasting 
different constructs and frameworks in considerable detail in order to uncover their 
similarities and differences” (2022, p. 35); yet, in this book specifically in relation 
to mathematical competencies and use of DT. We cannot escape the influence of DT 
in the teaching and learning of mathematics, and hence also for each of the eight 
mathematical competencies, as pointed out by Geraniou and Misfeldt (2022), which 
too promotes the notion of mathematical digital competencies (Geraniou & Jankvist, 
2019). All in all, mathematical competencies in the digital era. 

Ackowledgements This book was partly prepared in the frame of project 8018-00062B under 
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Setting the Scene



On the Mathematical Competencies 
Framework and Its Potentials 
for Connecting with Other Theoretical 
Perspectives 

Mogens Niss and Uffe Thomas Jankvist 

1 Introduction 

The growing plethora of theories, theoretical constructs, frameworks and perspectives 
in mathematics education, many of which stand alone in more or less ‘splendid 
isolation’, has given rise to the need for finding ways to bring them together in 
some sort of fruitful interaction in order to better serve the theoretical interests 
of mathematics education research, especially as regards creating some order in 
the chaos of theoretical constructs and frameworks. Naturally, this may be done in 
numerous different ways, but the overarching term that has been used in the research 
community for this endeavour is ‘networking’ of theories, theoretical perspectives, 
or theoretical frameworks (e.g., Bikner-Ahsbahs & Prediger, 2014). This chapter 
concerns such ‘networking’ of theoretical perspectives with the Danish mathematical 
competencies framework, the so-called KOM framework (Niss & Højgaard, 2011, 
2019), which first appeared in Danish some twenty years ago (Niss & Jensen, 2002). 

Now, engaging in such a discussion surely requires that we first come to terms with 
the meaning(s) of ‘theoretical framework’ and ‘theory’ in the field of mathematics 
education research, and not the least with how the KOM framework may be placed in 
this landscape. So, the two next sections of the chapter are devoted to this endeavour. 
Following this, we provide three rich examples of the KOM framework’s potential 
for connection with other theoretical perspectives, both inside and outside of math-
ematics education research. The first example concerns mathematical modelling, 
an area which, as a separate subdomain of mathematics education research, has
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undergone its own theoretical development, intricately linked to the fostering and 
possession of mathematical modelling competency. Secondly, we discuss one of the 
KOM framework’s three so-called types of overview and judgement—the type that 
concerns the historical development of mathematics, seen from internal as well as 
from socio-cultural perspectives—and its relation to the use of history in mathe-
matics education. Thirdly, we address one of the KOM framework’s six didactic and 
pedagogical teacher competencies, namely the competency of uncovering learning. 
These examples thus stem from different sub-domains of the KOM framework, the 
eight mathematical competencies, the three types of overview and judgement and 
the six didactic and pedagogical teacher competencies (see also Sect. 3). Finally, 
we relate the three examples to the ongoing discussion of networking of theoretical 
perspectives in mathematics education research and provide our suggestions related 
to potential connections with the KOM framework.1 

2 What Are Theoretical Frameworks in Mathematics 
Education? 

The notion of ‘theoretical framework’, as well as those of its closer relatives, 
‘theory’, ‘theoretical construct’, ‘theoretical perspective’, ‘theoretical approach’ and 
the slightly more distant ones ‘conceptual framework’ and ‘research framework’, 
are highly significant in mathematics education research but at the same time notori-
ously ill-defined and extremely multifaceted. This implies that no sensible discussion 
involving members of this cluster of notions can be conducted without an attempt to 
provide at least a minimum of conceptual clarification of the notions invoked in the 
given context. Offering an outline of the most important of these notions is the aim 
of this section. 

The fundamental notions are those of ‘theory’ and ‘theoretical’. They are derived 
from the ancient Greek verb theorein, ‘to consider’, and the noun theoria, ‘consider-
ation’ or ‘speculation’. These terms suggest that, in the first place, ‘theory’, ‘theoret-
ical’ and ‘theorising’ consist in thinking and reflection, rather than in actions dealing 
with material objects and in forming perceptions and conceptions of certain segments 
of the world rather than in interacting with it in empirical or practical terms. Needless 
to say, this neither prevents theorising from being inspired by dealing with the prac-
tical, material world nor from having consequences for interaction with that world. 
In writings concerning the notion of ‘theory’ the following three meanings, whether 
explicit or implicit, are prevalent:

1 It should be noticed that this chapter, unlike the majority of other chapters in this book, does 
not specifically address the use of digital technology in relation to the KOM framework, since this 
matter is dealt with in the book’s following chapter by Geraniou and Misfeldt (2022). 
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• A theory can be a hypothesis that cannot be, or has not yet been, substantiated;
• A theory can be a collection of beliefs, rules or principles that are meant to guide 

action or behaviour;
• A theory can be a more or less connected edifice of claims intended to explain or 

predict phenomena occurring within some domain. 

In this chapter, we shall adhere to the third of these meanings. More precisely, we 
adopt the following minimalist definition—inspired by Niss (2007)—of the concept 
of theory: 

A theory is a theory of something, i.e., it deals with certain sorts of objects and 
phenomena and includes terms for these. Its purpose is to produce corroborated 
claims about these objects and phenomena, typically in response to questions posed 
about them. These claims are generated by some means, on some  grounds, involving 
some fundamental methodology/ies. 

Thus, specifying a theory amounts to specifying (at least) the objects and 
phenomena covered by the constructs, the nature of the questions posed and of 
the claims produced, as well as the ways in which these claims are (supposed to be) 
obtained. 

A more elaborate and exhaustive definition of theory, going beyond the minimalist 
one just stated, reads: 

A theory is an organised network of concepts (including, ideas, notions, distinctions and 
terms) and claims (oftentimes taken as answers to questions) about some extensive domain of 
objects and phenomena. The concepts of the theory are linked in a hierarchy, in which a subset 
of concepts, taken to be basic, is employed to form the other concepts in the hierarchy. The 
claims are either basic assumptions or axioms, taken as fundamental, or statements obtained 
from the fundamental claims by formal or material derivation (including reasoning). (Niss, 
2007, p. 1308) 

The concept of ‘theory’ is the most elaborate, complex and demanding one within 
the cluster of notions considered here. This is not the place to offer a more elaborate 
discussion of the notion of theory and of what can justifiably be perceived as a theory 
in mathematics education research. Suffice it to quote Kilpatrick (2010): “To say 
that something is a theory in mathematics education—rather than, say, an approach, 
theoretical framework, theoretical perspective, or model—is to make an exceedingly 
strong claim […] I am happy to talk about theorising, adopting a theoretical stance, or 
employing a theoretical framework but I do not see extant theoretical constructions 
as warranting the label of theory.” (p. 4). Although we would, in fact, grant the 
label ‘theory’ to some constructions in mathematics education—e.g., Brousseau’s 
(1997) theory of didactical situations, or Chevellard’s (2019) anthropological theory 
of the didactic (ATD), and the APOS theory developed by Dubinsky (1991)—we 
largely share Kilpatrick’s position. At any rate, the number of theories in mathematics 
education is, at best, extremely small.
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Even if the notion of ‘theoretical construct’ can, of course, refer to a component of 
a theory as just defined (like ‘didactical contract’ forms part of Brousseau’s ‘theory 
of didactical situations’), it does not have to. A ‘theoretical construct’ may well stand 
alone and in its most basic form be nothing more than a singular concept introduced 
by way of a definition. It may or may not rest on certain assumptions or hypotheses, 
and it may or may not involve certain claims. In other words, a ‘theoretical construct’ 
is a much less ambitious notion than ‘theory’, which does not mean that it is less 
important. As examples, we can think of the construct ‘concept image’ introduced by 
Vinner, Hershkowitz and Tall (see, e.g., Vinner & Hershkowitz, 1980; Tall & Vinner, 
1981), the notion of ‘mathematical beliefs’ (see, e.g., Leder et al., 2002) or that 
of teachers’ ‘pedagogical content knowledge’, PCK, (Shulman, 1987). Oftentimes 
a theoretical construct is introduced as part of a distinction. This is the case with 
‘concept image’ in contradistinction to ‘concept definition’, ‘mathematical beliefs’ 
as distinct from ‘mathematical knowledge and skills’, and teachers’ PCK as distinct 
from teachers’ subject matter knowledge. 

Some researchers consider a ‘theoretical framework’ to be a ‘theory’, which, 
together with other entities, is employed as a framework for conducting research or 
making research expositions, e.g., Cai et al. (2019): “… we use the term theoretical 
framework broadly […] to encompass the set of assumptions, theories, hypotheses 
and claims (as well as the relationships between them) that guide the researcher’s 
thinking about the phenomenon being studied” (p. 219). 

We, too, use the term ‘theoretical framework’ broadly as a framework guiding 
a research study but, in contrast to Cai et al. (2019), for us, such a framework is a 
collection of one or more theoretical constructs (as defined above), which frames— 
i.e., provides the foundation for—the conceptualisation, design or carrying out of 
the study, including its interpretations, analyses or inferences. The elements of a 
theoretical framework do not have to be linked so as to form a full-fledged theory. 
In fact, the framework does not even have to be coherent or exhaustive but may 
take the shape of bricolage (Cobb, 2007; Gravemeijer, 1994) of singular theoretical 
constructs. Since a ‘theoretical framework’ does not necessarily involve any theory, 
it is a vaguer and less tight notion than ‘theory’ but, for exactly that reason, much 
more prevalent in mathematics education research. 

What, then, is a ‘theoretical approach’ to a research enterprise? We suggest that 
this simply means that the problématique of the research is (at least in parts) primarily 
dealt with by way of conceptual and theoretical, as opposed to empirical, means of 
investigation. This typically involves invoking or creating some theoretical constructs 
in the considerations. Finally, a ‘theoretical perspective’ consists in adopting one or 
more theoretical approaches as part of the treatment of the problématique. 

There are different purposes of theories or, more modestly, theoretical frameworks 
in mathematics education, namely, to provide:

• explanation of observed facts or phenomena within the domain supposedly 
covered by the theory

• prediction of the (possible) occurrence of phenomena
• guidance for action or behaviour
• a structured set of lenses through which parts of the world can be investigated.
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Theories may also serve as a safeguard against unscientific approaches and proce-
dures or as protection against opponents who are sceptical or hostile to mathematics 
education research. There are basically two categories of theories (theoretical frame-
works) with regard to mathematics education research. Theories of or about math-
ematics education as an object deal with aspects of the teaching and learning of 
mathematics, for example, focusing on functions or on mathematical reasoning, 
whereas theories in or for mathematics education research are used by researchers 
in underpinning, framing and carrying out their investigations. As examples, we 
mention Piaget’s theory of schemes and the theory of statistical testing. We might 
add meta-theories (e.g., didactical engineering or the didactics of mathematics as a 
design science), which have mathematics education research as their object of study. 
However, we abstain from going further into such theories here. 

A number of observations can be made concerning the nature, place and role of 
theory in mathematics education. Firstly, the very notion and concept of ‘theory’ 
is gaining increasing importance in mathematics education research. Yet, there are 
no well-established, unified and exhaustive theories of/about mathematics educa-
tion as an object, neither in/for mathematics education research. The same is true of 
meta-theories about mathematics education research as an object. Instead, diversity 
prevails and does so to an increasing extent. Secondly, theories of/about and in/for 
mathematics education (research) used to be, and many still are, borrowed from other 
fields, for example: mathematics itself, including its history, epistemology and soci-
ology; statistics and psychometrics; general philosophical theories (especially about 
epistemology); general psychological theories (especially about learning and cogni-
tion); neuroscience; general theories of education and pedagogy (especially about 
curriculum and teaching); linguistic theories (including semiotics); and theories from 
the social sciences. However, we are now witnessing a strong movement away from 
‘theory borrowing’ only, towards ‘theory building’ (Lesh et al., 2014). Thirdly, our 
field is moving away from ‘fights’ between theoretical positions, towards bricolage 
(Cobb, 2007; Gravemeijer, 1994) and networking of theories (Bikner-Ahsbahs & 
Prediger, 2010; Prediger et al., 2008; Radford, 2008). 

Theories/theoretical frameworks of/about mathematics education as an object and 
in/for mathematics education research have different target levels (or grain sizes), 
ranging from local theories with a rather specific focus on a particular topic or issue, 
to medium-level theories with a broader, yet far from universal, focus on a generic set 
of topics or issues across several domains. As already mentioned, there are not really 
any global or grand theories that purport to cover all aspects of mathematics education 
or mathematics education research. Identifying, characterising and analysing local 
and medium-level theories is a massive task that goes far beyond the scope of a book 
chapter. So, we shall confine ourselves, here, to briefly listing candidates for theo-
ries of the two kinds. Local theories (theoretical constructs or frameworks) include 
the ‘concept definition’/‘concept image’ distinction (Tall & Vinner, 1981; Vinner & 
Hershkowitz, 1980) and the ‘theory of Grundvorstellungen’, i.e., fundamental math-
ematical ideas, (vom Hofe & Blum, 2016), both of which have a cognitive learning 
focus. Medium-level theories are the most prevalent ones and include Brousseau’s 
(1997) ‘theory of didactical situations’, which deals with aspects of the relationship
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between teaching and learning mathematics’ and Duval’s (2006) ‘semiotic regis-
ters’, which has an epistemological learning focus but does not deal with teaching. 
The theoretical status of such theories and theory germs is highly diverse and often 
unclear. The majority are primarily conceptual frameworks, inspired by philosophical 
considerations. To the extent they have empirical components, these are predomi-
nantly interpretive. The roles in mathematics education research and development 
of these constructions are numerous. Sometimes a theory first and foremost offers 
terminology. Sometimes a theory offers an overarching perspective from which math-
ematics education research can be conducted or viewed. Sometimes a theory aims 
to organise sets of observations and interpretations. And sometimes a theory offers 
a methodology for carrying out research. 

3 Placing the KOM Framework in the Landscape 
of Theoretical Frameworks 

In order to be able to place the KOM framework in relation to the set of notions dealt 
with in the previous section, we begin by briefly outlining the key components of 
this framework (Niss & Højgaard, 2011, 2019; Niss & Jensen, 2002). 

The fundamental idea behind the framework is to come to grips with what it means 
to do, or, more ambitiously, to master mathematics. In other words, what does it mean 
to possess mathematical competence? So, the primary focus is not to capture what 
it means to know mathematics but to capture what competent enactment of mathe-
matics amounts to. A related fundamental idea is that characterising mathematical 
competence should be of an overarching and generic nature and hence should not 
depend on any particular mathematical content, nor refer to any particular educa-
tion level. Thus, the KOM framework takes its point of departure in the following 
definition: 

Mathematical competence is someone’s insightful readiness to act appropriately in response 
to all kinds of mathematical challenges pertaining to a given situation. (Niss & Højgaard, 
2019, p. 12) 

A key issue then is to identify the most important constituents in mathematical 
competence, or differently put, in the (successful) enactment of mathematics. The 
approach taken is to focus on what can be considered the core of such enactment, 
namely posing and answering questions within, about, and by means of mathematics. 
The ability to pose and answer such questions requires mastery of the language and 
tools of mathematics. Taken as a whole, being able to pose and answer mathematics-
related questions and to master the language and tools of mathematics constitutes 
mathematical competence (not to be mixed up with competency). But what does that 
involve, more specifically?
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In the KOM framework this is conceptualised in terms of eight mathematical 
competencies (in plural), based on the following definition: 

A mathematical competency is someone’s insightful readiness to act appropriately in response 
to a specific sort of mathematical challenge in given situations. (Niss & Højgaard, 2019, 
p. 14) 

It remains to identify and describe what specific sorts of challenges are being 
referred to in this definition. Eight different competencies and corresponding chal-
lenges are identified in the framework (for further details, see Niss & Højgaard, 
2019). The first four of these, attempt to flesh out what it means to pose and answer 
questions in and by means of mathematics (Niss & Højgaard, 2019, pp. 15–16).

• Mathematical thinking competency—engaging in mathematical enquiry: The  
ability to relate to and pose the kinds of generic questions that are characteristic 
of mathematics and relate to the kinds of answers that may be expected to such 
questions. The competency also includes the ability to relate to the varying scope 
of mathematical concepts and terms, and to different categories of mathematical 
statements as well as to the nature and roles of abstraction and generalisation.

• Mathematical problem handling competency—posing and solving mathematical 
problems: The ability to pose (including identify, specify and formulate) and to 
solve different kinds of mathematical problems. This involves the ability to devise 
and implement solution strategies. The competency also includes the ability to 
critically analyse and evaluate attempted problem solutions.

• Mathematical modelling competency—analysing and constructing mathematical 
models: The ability to construct mathematical models in order to deal with extra-
mathematical questions, contexts and situations, as well as the ability to critically 
analyse and evaluate extant or proposed models.

• Mathematical reasoning competency—assessing and producing justification of 
mathematical claims: The ability to analyse or produce written or oral arguments 
(chains of statements linked by inferences) put forward to justify mathematical 
claims. 

Posing and answering questions in and by means of mathematics requires the 
ability to handle the language, constructs and tools of mathematics, which is concep-
tualised in terms of the following four competencies (Niss & Højgaard, 2019, 
pp. 17–18):

• Mathematical representation competency—dealing with different representations 
of mathematical entities: The ability to interpret, translate, move between, choose 
amongst and employ various types of mathematical representations (verbal, mate-
rial, symbolic, tabular, graphic, diagrammatic, visual), as well as the ability to 
relate to the uses, scopes and limitations of such representations.

• Mathematical symbols and formalism competency—handling mathematical 
symbols and formalisms: The ability to relate to and deal with mathematical 
symbols, symbolic expressions and transformations, as well as with the rules 
and formalisms that govern them. This ability has a receptive side—decoding, 
interpreting and assessing extant symbolic expressions and transformations—as
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well as a constructive side—introducing and employing symbols and formalisms 
in dealing with mathematical contexts and situations.

• Mathematical communication competency—communicating in, with and about 
mathematics: The ability to engage in different kinds of written, oral, visual or 
gestural mathematical communication, either as a recipient and interpreter of 
others’ mathematical communication or as an active, productive communicator.

• Mathematical aids and tools competency—handling material aids and tools for 
mathematical activity: The ability to deal with material aids and tools (physical 
objects or instruments, special papers or charts and digital technologies) designed 
to facilitate mathematical work. This includes critically analysing and reflectively 
employing such aids and tools in mathematical activity whilst paying attention to 
their affordances and limitations. 

There are four important remarks that should be made on these competencies. 
Firstly, the competencies are of a cognitive nature, i.e., no affective or volitional 
components are involved in their definition. It is not because such components are 
considered insignificant, on the contrary, but they are conceptually and substantively 
different from the cognitive ones and hence should not be mixed up with them. 
Secondly, as is evident from the above descriptions, each competency is born with 
an inherent duality between a receptive facet and a constructive facet. The recep-
tive facet is to do with an individual’s ability to relate to and navigate with respect 
to extant considerations and processes. The constructive facet focuses on the indi-
vidual’s ability to independently activate the competency and constructively employ 
it in dealing with given contexts and situations. Thirdly, it is a crucial idea that all the 
competencies are mutually overlapping, yet clearly distinct from each other. This is 
depicted in the so-called competency flower, Fig.  1.

Fig. 1 The mathematical 
competency flower (Niss & 
Højgaard, 2019, p. 19)
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Fourthly, the definitions and descriptions of the competencies presented above 
do not involve particular mathematical content or topic areas, nor particular educa-
tion levels. However, they do make sense across all such areas and levels. This is 
analogous to the usual characterisation of linguistic competence as consisting of 
four competencies (or two, if one prefers to pair them) (Gregersen et al., 2003): The 
ability to understand and relate to other people’s oral speech, the ability to under-
stand and relate to other people’s written texts, the ability to express and make oneself 
understood orally, and the ability to express and make oneself understood in writing.

The KOM framework also conceptualises an individual’s possession of each 
competency at a given point in time in terms of three (qualitative) dimensions: the 
degree of coverage, the radius of action and the technical level of possession. The 
degree of coverage specifies how large a part of the definitorial characteristics of 
the competency that individual masters. The radius of action concerns in how large 
a set of diverse contexts and situations the individual can activate the competency. 
Finally, the technical level specifies the set of mathematical concepts, methods, theo-
ries and results that the individual can activate when exercising the competency. The 
individual’s current possession of the competency then is represented as an idealised 
three-dimensional box composed of the components just mentioned. Progression in 
possession of a competency then amounts to an increase in one or more of these 
dimensions and a decrease in none, which corresponds to some form of expansion 
of the box. Also, if just one of these dimensions takes the ‘value zero’ for some indi-
vidual, the box collapses and hence that individual does not possess the competency 
at issue at the given point in time. 

Mathematical competence and the eight mathematical competencies that consti-
tute mathematical competence all are to do with people’s enactment of mathematics. 
However, the KOM framework also involves a characterisation of what it means 
to come to grips with the state and role of mathematics as a discipline, beyond 
the enactment of mathematics and the possession of mathematical competence. The 
framework identifies three kinds of overview and judgement concerning mathematics 
as a discipline (see Niss & Højgaard, 2019, pp. 24–25). The first of these is the appli-
cation of mathematics as it actually takes place within other disciplines or fields of 
practice, in science and society. The application of mathematics is always brought 
about—explicitly or implicitly—by way of mathematical models and modelling. The 
second kind is the historical development of mathematics, seen from internal as well 
as from socio-cultural perspectives, with a focus on the driving forces and mecha-
nisms behind this development. The third kind of overview and judgement concerns 
the nature of mathematics as a discipline, with an emphasis on the similarities and 
differences between mathematics and other fields and disciplines. These kinds of 
overview and judgement are all to do with posing and answering questions about 
mathematics as a whole, thus complementing the questions about the enactment of 
mathematics that are on the agenda in mathematical competence and competencies. 

Let us summarise the constructs of the KOM framework. The framework attempts 
to capture and characterise what it means to be able to enact mathematics with some
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degree of mastery and what it means to come to grips with the state and role of math-
ematics as a discipline. This is done by first introducing the theoretical construct 
of mathematical competence and its main constituent constructs in terms of eight 
distinct, but mutually overlapping, mathematical competencies, as well as three kinds 
of overview and judgement, which address the most significant aspects of mathe-
matics as a discipline as it manifests itself in culture, science and society. The first 
four competencies concern posing and answering questions within and by means 
of mathematics, whereas the last four competencies deal with mastering mathemat-
ical language, constructs and tools. The competencies are figuratively organised as a 
flower with eight petals. Each competency has a dual nature as it consists of a recep-
tive and a productive facet. The possession of a given competency is conceptualised 
in terms of three dimensions, which (are likely to) develop over time. The three types 
of overview and judgement are also to do with posing and answering questions, here, 
however, about mathematics, rather than within and by means of mathematics. 

The constructs just mentioned form the primary concepts of the KOM framework. 
There are also lots of secondary concepts in the framework that are involved in 
spelling out and detailing the primary concepts. 

The fundamental claims of the framework are that: (1) the enactment of mathe-
matics can, in fact, be comprehensively captured—conceptually—in terms of mathe-
matical competence and its constituent eight competencies (each of which has a dual 
nature) and their interrelations; (2) the competencies make sense in relation to any 
mathematical content and at any education level; (3) possession of a competency can 
be characterised in terms of three dimensions (degree of coverage, radius of action, 
technical level); and (4) the state and role of mathematics as a discipline can be char-
acterised in terms of three kinds of overview and judgement (the actual application 
of mathematics, the historical development of mathematics, the specific nature of 
mathematics). These claims can be perceived as the axioms of the framework. The 
framework also contains a number of derived claims: Mathematical competence (and 
competencies) and overview and judgement concerning mathematics as a discipline 
are two independent constructs in the sense that none of them can be determined in 
terms of the other, even though there is, of course, a multitude of connections between 
them. The eight competencies have a non-empty intersection but are, nevertheless, 
clearly delineated and distinct. If we focus on the exercise of any one of the compe-
tencies the others can be involved as ‘auxiliary troops’ in various ways, depending 
on the context and situation at issue. Both the fundamental and the derived claims 
are obtained by analytic reflection on mathematical activity and practices, rooted in 
experiences of a wide variety of mathematical enactment, as well as by conceptual 
analyses based on the definitions of the constructs. 

Against this background, we can now conclude that the KOM framework does 
not satisfy the criteria for a full-fledged theory as presented in Sect. 2. Rather it is 
a theoretico-analytic framework that perhaps may be perceived as a theory in the 
making, even though this would indeed be a long-term process. But a framework for 
what? For theoretical and empirical investigations of the mastery of mathematics in 
generic terms, as well as for overview and judgement concerning the state and role of 
mathematics as a discipline, both when it comes to individual human beings and to 
the explicit and implicit manifestation of these notions in curricula, teaching/learning
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materials, assessment and actual mathematics teaching. Such use is first and fore-
most of an analytical nature. However, the framework can also be used for normative 
purposes in the design of curricula, teaching/learning materials, modes and instru-
ments of assessment, teaching/learning environments and for the orchestration and 
implementation of teaching/learning activities. 

The KOM framework also contains a (largely normative) sub-framework for 
capturing the competencies of competent mathematics teachers. This sub-framework 
of course relates to the KOM framework, but in some respects, it can, in fact, stand 
alone. 

A competent mathematics teacher can effectively foster the development of 
students’ mathematical competencies. This of course requires that the teacher 
possesses these competencies him/herself, at least at a level corresponding to the 
education level at which he or she teaches. But much more than that is needed, namely 
didactico-pedagogical competencies specifically related to mathematics. The KOM 
framework identifies six such competencies.

• Curriculum competency, i.e., to analyse, relate to and implement existing 
mathematics curricula and syllabi and to construct (parts of) new ones.

• Teaching competency, i.e., to devise, plan, organise, orchestrate and carry out 
mathematics teaching, including creating a rich spectrum of teaching/learning 
situations; find, judge, select and create teaching materials; inspire and motivate 
students; discuss curricula and justify teaching/learning activities to students.

• Uncovering learning competency, i.e., to uncover, interpret and analyse students’ 
learning of mathematics as well as their notions, beliefs and attitudes regarding 
mathematics. This includes identifying and charting the learning development of 
the individual students.

• Assessment competency, i.e., the ability to identify, characterise and assess 
students’ learning outcomes and mathematical competencies, so as to assist and 
inform individual students and other relevant parties. This includes selecting, 
modifying, constructing, critically analysing and implementing a varied set of 
assessment modes and instruments to serve a variety of formative and summative 
purposes.

• Collaboration competency, i.e., the ability to collaborate with different kinds of 
colleagues within and outside mathematics, as well as with others (e.g., parents, 
authorities), about mathematics education and its conditions.

• Professional development competency, i.e., the ability to develop one’s own 
competency as a mathematics teacher (in fact a meta-competency), including 
participating in and relating to activities of professional development, such as 
in-service courses, projects, conferences; reflecting upon one’s own teaching and 
needs for development; keeping oneself updated on new developments and trends 
in research or practice. 

Although these mathematics teacher competencies make sense and are relevant 
irrespective of which notion of mathematical mastery teachers (are supposed to) 
adopt, they are instantiated in a special way if that notion is based on mathematical 
competencies as in the KOM framework.
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4 An Example Related to Mathematical Modelling 

The last half-century has witnessed an ever-growing interest within mathematics 
education circles in the application of mathematics in a wide variety of extra-
mathematical domains. A key feature of this development is the realisation that 
mathematical models form the crucial ingredient in the external application of 
mathematics. Hence, the construction of such models, also known as mathemat-
ical modelling, becomes highly significant. Initially, the interest in mathematical 
applications, models and modelling was primarily cultivated in circles preoccupied 
with tertiary education focusing on putting mathematics to use in different extra-
mathematical domains such as engineering, physics, life sciences and economics. 
At an early stage, only relatively few mathematics educators working in or on 
general mathematics education paid substantive attention to mathematical applica-
tions, models and modelling. From the 1980’s onwards, more and more mathematics 
educators at large became engaged in the teaching and learning of mathematical 
models and modelling as a domain of research and development. This is reflected in 
the step-wise establishment of an International Community of Teachers of Mathemat-
ical Modelling and Applications (ICTMA, cf. ictma.net), which was accepted as an 
affiliated study group of the International Commission on Mathematical Instruction 
in 2003. 

Within this community, various theoretical frameworks for research and develop-
ment have been produced over the years, many of which are relatively independent of 
other frameworks in mathematics education, especially in the early stages of devel-
opment in the field. Here, we focus on one such theoretical framework. Its core is 
the so-called modelling cycle, which consists of the conceptually necessary stages 
in the construction of any mathematical model, typically represented by a diagram 
(Niss & Blum, 2020). Different variants of the modelling cycle are in use in the field. 
They primarily differ in the extent to which they detail some stages of the modelling 
process more than others, but they are all derived from the same basic modelling 
cycle: 

1. Structuring and analysing a situation belonging to some extra-mathematical 
domain. 

2. Mathematising the situation, i.e., translating selected objects (and relations 
between them) and questions about them from the extra-mathematical situation 
into objects, relations and questions belonging to some chosen mathematical 
domain. 

3. Answering (by way of mathematical considerations) the mathematical questions 
arising from the mathematised situation. 

4. Translating the mathematical answers obtained in the mathematical domain 
back to extra-mathematical answers pertaining to the corresponding domain. 

5. Validating the model outcomes and evaluating the model with respect to its 
quality and its relevance for the purpose for which it was constructed. 

6. Modifying the model or constructing a new one in case the model is deemed 
deficient or unsatisfactory.
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The modelling cycle is to be perceived as an analytic reconstruction of the elements 
necessarily present, explicitly or implicitly, in any modelling process. It is not meant 
to be a description of the itinerary that concrete modellers must or do follow when 
actually performing modelling. Around the establishment of the modelling cycle, 
the community has developed a rich terminology coined to capture and describe a 
plethora of aspects of mathematical modelling, both per se and in relation to math-
ematics teaching and learning. This terminology now forms part of the ‘standard’ 
framework for research on the teaching and learning of mathematical modelling. In 
such research (and development), the modelling cycle constitutes a reference point 
used to frame and underpin research studies, be they empirical or theoretical. 

There is an intimate relationship between the framework focusing on the 
modelling cycle and the modelling competency of the KOM framework. As 
mentioned in Sect. 3, the modelling competency consists in the ability to construct 
mathematical models in order to deal with extra-mathematical questions, contexts and 
situations, as well as the ability to critically analyse and evaluate extant or proposed 
models. Attempts to detail the content of this competency oftentimes make use of the 
modelling cycle as outlined above. Some researchers (e.g., Maass, 2006) even speak 
of modelling competencies in the plural for the ability to undertake the individual 
processes in the modelling cycle, whereas others (e.g., Galbraith & Stillman, 2006) 
prefer to speak of the ability to undertake a given process in the modelling cycle, e.g., 
mathematisation, as a sub-competency. This difference corresponds to a difference in 
conceptual approach amongst two factions of mathematical modelling researchers, 
those who perceive the notion of modelling competency as nothing but an aggrega-
tion of a bunch of competencies and those who perceive modelling competency as 
a separate integral entity, in which a set of sub-competencies linked to the stages of 
the modelling cycle can be discerned. 

This section exemplifies how the KOM framework can constructively commu-
nicate with a framework, the modelling cycle, designed to underpin research and 
development on the teaching and learning of mathematical modelling. The two 
frameworks mutually fertilise each other in that each framework provides additional 
perspectives and concretisation to the other. Perhaps this is not too surprising, since 
some researchers have been engaged in developing both frameworks. 

5 An Example Related to Overview and Judgement 
Regarding the Historical Development of Mathematics 

Niss and Højgaard (2019) explained the relationship between mathematical compe-
tencies and overview and judgement concerning mathematics as a discipline as 
follows: 

... whilst the enactment of mathematics in a variety of challenging situations and the exercise 
of mathematical competencies do of course represent and draw upon crucial aspects of 
mathematics as a discipline, these aspects do not in and of themselves provide learners and 
practitioners with a structured and coherent knowledge about and image of mathematics as 
a discipline. (Niss & Højgaard, 2019, p. 24)
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As mentioned, the KOM framework’s three types of overview and judgement 
embrace essential features of mathematics as a discipline that are found crucial for 
mathematics’ relationships with nature, society and culture, as part of the notion 
of mastery of mathematics. In this section, we address the second type: overview 
and judgement concerning the historical development of mathematics, seen from an 
internal as well as from a socio-cultural perspective. 

In a similar way that mathematical modelling may serve both as a goal in and 
of itself and as a means for fostering mathematical understanding (Niss, 2009), so 
may the use of history of mathematics (Jankvist, 2009). For example, developing 
students’ mathematical modelling competency as part of a mathematics programme 
may be a curricular aim in itself, whereas using modelling to support the teaching of 
mathematical concepts—e.g., modelling instantaneous velocity motivates and under-
pins the concept of the derivative—is an example of using modelling as a tool for 
something else. Similarly, the history of mathematics may be used as a cognitive, 
pedagogical, or motivational tool, but it may also be seen and used as a goal in and 
of itself. This should not be confused with the history of mathematics viewed as 
an independent topic (as taught per se), but as a mathematics education goal in the 
sense of making students aware that mathematics has a history and has developed as 
a discipline over millennia. And this is where the KOM framework’s second type of 
overview and judgement enters the picture. 

The focus of this type of overview and judgement is the fact that mathematics 
has developed in culturally and socially determined environments and is subject 
to external needs within other disciplines and fields of practice, as well as being 
subject to internal goals serving its own theoretical aims. This type of overview and 
judgement is exemplified by questions related to how mathematics has developed 
through the ages; what internal and/or external driving forces have motivated the 
development; what types of actors were involved; what the interplay was with other 
scientific fields; etc. Addressing such questions is of course closely related to research 
on history, including history of mathematics. Hence, in order to develop this type 
of overview and judgement with students, one may draw on—connect—theoretical 
constructs from both research in history and on history of mathematics, as well as, 
of course, constructs from mathematics education research. We exemplify this in the 
following. 

One distinction from the field of history of mathematics that lends itself to the 
second type of overview and judgement is that between Whig and non-Whig historical 
writing. The notion of Whig history is due to the British historian Herbert Butterfield, 
who in 1931 defined this as a way of measuring the past in terms of the present 
(Butterfield, 1973). Differently put, “what one considers significant in history is 
precisely what leads to something deemed significant today” (Fried, 2001, p. 395). 
Kragh (1987) calls this type of history anachronistic and states that within such 
an historiography it is “considered legitimate, if not necessary, that the historian 
should ‘intervene’ in the past with the knowledge that he possesses by virtue of his 
placement later in time” (p. 89). Kjeldsen et al. (2004) state that a mathematician 
studying the history of his or her subject often is inclined to take such an approach 
and, hence, judge the contents of earlier mathematics by applying the standards
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of modern mathematics. Within the history of mathematics, Rowe (1996) refers to 
such historians as mathematical historians (as opposed to the cultural historians). 
Extreme examples of mathematical historians are members of the Bourbaki group, 
in particular, Jean Dieudonné and André Weil. For instance, in a discussion of why 
(and how) to do history of mathematics, Weil (1978) claimed that “it is impossible for 
us to analyse properly the contents of Book V and VII of Euclid’s without the concept 
of group and even that of groups with operators, since the ratios of magnitudes are 
treated as a multiplicative group operating on the additive group of the magnitudes 
themselves” (p. 232). A (cultural) historian, on the other hand, will approach the 
history from a non-Whig point of view and will, thus, “typically look for differences 
in the mathematics of different times and in different locations and explore historical 
changes in mathematics, without using modern ideas as a yardstick” (Kjeldsen et al., 
2004, p. 12). From the point of view of the second type of overview and judgement, 
which essentially aims to use history as a goal in mathematics education, it is clear 
that the sole use of the Whig approach to history cannot achieve this aim. This does 
not imply, of course, that such an approach has nothing to offer to mathematics 
education. A modern understanding of past mathematics can in fact shed light on the 
conceptual and structural features of past mathematics, as long as it is kept in mind 
that such an understanding is not identical to past mathematicians’ understanding of 
what they were doing. 

One way to pursue a non-Whig use of history in the mathematics classroom 
is by using primary historical source materials since these are not pre-digested by 
textbook authors and others —and are in fact open to students’ own interpretation 
(Fried, 2001). However, although rewarding, both in terms of history as a goal and 
history as a tool, the use of primary sources is demanding for students as well as for 
teachers (e.g., Jahnke, 2000). Still, if willing to go ‘the extra mile’, students’ learning 
outcome is indeed promising (e.g., Barnett et al., 2014; Jankvist, 2013; Kjeldsen & 
Blomhøj, 2012). Based on two experiences of using primary historical material, 
Kjeldsen et al. (2022) analysed the involved students’ reflections with respect to 
how and in what sense the work using such material developed what they refer to as 
the students’ (mathematico-)historical awareness—inspired by the Danish historian 
Jensen (2003). More precisely, they offer a categorisation of students’ reflections with 
respect to: (1) reflections on what mathematicians do when producing mathematics, 
providing students with some insights into ‘mathematics in the making’; (2) the extent 
to which the students look at the sources with an enlightenment purpose (‘observer 
history’) or from a forward-looking perspective (‘action history’); and (3) effects of 
developing historical awareness for students’ relationship with mathematics in their 
(future) lives. (To some extent, the first type concerns an anti-Whig perspective, 
whereas the second is more closely related to a Whig one.) This is to say that the 
notion of historical awareness may give some further ‘flesh’ to the second type of 
overview and judgement when it comes to using primary historical sources in the 
classroom. Hence, from a history of mathematics point of view, the second type 
of overview and judgement may be connected with the construct of distinguishing 
between Whig and non-Whig history.
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From a mathematics education research point of view, students’ overview and 
judgement of mathematics as a discipline consist of a complex combination of both 
knowledge—mathematical as well as historical—and beliefs about mathematics as a 
discipline (Jankvist, 2015). Now, beliefs are often defined as “lenses through which 
one looks when interpreting the world” (Philipp, 2007, p. 258). Beliefs are related to 
emotions and attitudes, yet they are of a cognitive and more stable nature. According 
to Green (1971), beliefs are organised in clusters, containing both central and periph-
eral beliefs. Beliefs within a cluster are interrelated. Hence, any change in beliefs 
may have consequences for the entire cluster, or for parts of it. Central beliefs can be 
psychologically important to their owner, which also partly explains why changing 
students’ beliefs may be both difficult and time-consuming (Green, 1971). In a 
context of using history of mathematics as an essential means for developing upper 
secondary school students’ overview and judgement regarding the historical devel-
opment of mathematics, Jankvist (2015) argued that changes occur first in students’ 
views. Here, we consider “views to be something less persistent than beliefs, but 
with the potential to develop into beliefs at a later point in time” (p. 53). Jankvist 
(2015) further defined students’ images of mathematics as a discipline to be made 
up of their beliefs as well as of their views. ‘Mathematics as a discipline’ refers to 
the fact that students may possess beliefs about different aspects of what they have 
experienced as mathematics. Hence, students’ images of mathematics as a disci-
pline are closely related to their overview and judgement. The knowledge part of 
the latter may come into play if we (with Green, 1971) distinguish between beliefs 
that are evidentially held and beliefs that are non-evidentially held. Evidentially held 
beliefs are based on experiences or reason, whereas non-evidentially held beliefs 
stem from other sources of influence (e.g., teachers, parents, society) or are derived 
from already existing beliefs. Non-evidentially held beliefs are typically rather diffi-
cult to change through reason and may be thought of as convictions that cannot be 
argued against. In the study reported by Jankvist (2015), the students were given 
an opportunity to become aware of their own beliefs (about mathematics as a disci-
pline) and then were confronted with evidence—in the form of concrete cases from 
the history of mathematics—to test their beliefs and views and possibly change them. 
Jankvist (2015) concluded: “Not until students have access to evidence—or counter-
evidence—are they likely to criticise rationally, reason about and reflect upon their 
images of mathematics as a discipline and possibly accommodate and change them” 
(p. 55). 

6 An Example Related to the Didactico-Pedagogical 
Competency of Uncovering Learning 

Uncovering students’ learning of mathematics is a complex and multifaceted under-
taking which is part of any mathematics teacher’s job; for example, when he or she 
is monitoring students’ learning outcomes of his or her own teaching, is providing
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formative feedback to students and other relevant parties, or when summatively 
assessing students’ learning, whether as part of high stakes testing or examinations 
or as part of marking students’ achievements throughout a certain period. 

The crux of this undertaking evidently lies in the conception of what mathemat-
ical learning is and what the constituents of such learning are supposed to be. Does 
mathematical learning consist in knowing and citing some set of singular facts, such 
as definitions, propositions and other results? In conceptually linking different math-
ematical entities across topics? In understanding mathematical ideas, principles and 
processes? In the ability to exert a set of procedural skills? In the ability to prove 
mathematical statements and reason mathematically in unrehearsed situations? In 
the ability to solve mathematical problems? In possessing (certain) mathematical 
competencies? Or in…? Thus, uncovering students’ learning is necessarily filtered 
through the notion of mathematical learning that directly or indirectly is adopted by 
the ‘uncoverer’. Depending on what specific notion is adopted, uncovering mathemat-
ical learning is related to the ways in which this notion is conceptualised in the theory 
and practice of mathematics education. As regards research on this theme, interplay 
with some of the multiple constructs and frameworks that deal with the notion of 
learning obviously becomes relevant or even necessary. For instance, if the notion 
focuses on, say, linking different mathematical entities across topics, frameworks 
dealing with the construction, interpretation and use of concept maps lend themselves 
to the research endeavour. If the notion focuses on, say, the ability to solve math-
ematical problems, it is evident that frameworks for mathematical problem solving 
(e.g., Schoenfeld, 2014) ought to be taken into consideration and if the notion rather 
focuses on students’ mathematical competencies, the KOM framework’s mathemat-
ical competencies naturally enter the stage. Other relevant constructs and frameworks 
attempt to characterise mathematical understanding (e.g., Freudenthal, 1991; Sier-
pinska, 1994) or mathematical reasoning and proof (e.g., Balacheff, 1980; Harel & 
Sowder, 2007) and so on and so forth. 

One thing is to settle the issue of what constitutes mathematical learning. Once this 
is in place, the next issue is whether and how it is possible to uncover actual students’ 
learning. What means are available for this purpose? Here, the means for uncovering 
students’ mathematical learning have a non-empty intersection with the means for 
assessing students’ learning outcomes, especially the more sophisticated modes and 
instruments that actually try to base assessment on insights into students’ learning. 
This implies that links with the numerous constructs and frameworks for assess-
ment in mathematics education (e.g., Niss, 1993; OECD, 2013; Stacey & Turner, 
2015) might well deserve to be explored. Suitable means for uncovering (and even-
tually assessing) students’ learning include: observation of classroom, group or indi-
vidual student work; face-to-face interviews; student portfolios; written question-
naires; student essays; student projects—short term or long term; student-produced 
posters; student lectures; student panel discussions; oral exams; written exam papers 
on problem tasks; etc. Each of these kinds of instruments can shed light on some— 
but not on all—aspects of students’ mathematical learning. In-depth uncovering of 
such learning needs an array of different modes and instruments.
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Uncovering students’ mathematical learning is but one of six mathematics teacher 
competencies in the KOM framework, as presented in Sect. 3. On a final and general 
note, it should be mentioned that this (sub-)framework can, of course, be compared, 
contrasted and connected with other frameworks for (mathematics) teacher capabil-
ities such as Pedagogical Content Knowledge (Shulman, 1987) and Mathematical 
Knowledge for Teaching (Ball, 1991). 

7 Potentials for Connecting and Networking with Other 
Theoretical Constructs 

Ideas concerning ‘networking’ of theories or theoretical perspectives have now 
been around for a couple of decades (see, e.g., Kidron et al., 2018). But what 
does ‘networking’ mean in this context? The very term suggests a graph-theoretical 
metaphor in which a set of nodes (also called vertices)—which here are theoretical 
entities such as theoretical perspectives, constructs, frameworks and theories—are 
connected (linked) pairwise in some way or another, thus forming a graph or a 
network. Links are typically called edges. It does not have to be the case that links 
exist between any pair of nodes and links may very well be of different kinds. The 
question in our context is what kinds of links are involved in the networks at issue? 
Here, as suggested by Prediger et al. (2008), a link may consist in comparing two 
nodes, or of contrasting them. It may also consist in combining them, coordinating 
them, making a synthesis out of them, integrating them, or using one as a means for 
the other. A fundamental issue for linking two theoretical entities is whether these 
represent two different ways of dealing with the same object(s) or phenomena, or 
whether they deal with different objects or phenomena. This is closely related to the 
even more fundamental issue of what the purpose of linking them is. It does not make 
sense to link two theoretical entities unless there is a purpose of doing so. Another 
issue is if a network contains only two entities or whether more entities are involved. 
Yet another issue is whether there is a logical or substantive ordering of two entities, 
such that one presupposes the other. 

Prediger et al. (2008) talk about connecting strategies with respect to theories. A 
connecting strategy presupposes the existence of an underlying purpose of connecting 
the theories involved, which the strategy is supposed to pursue. In their paper, Prediger 
et al. focus on one particular aspect of such strategies: the degree to which a given 
theory is integrated with the other theories considered in the enterprise. This gives 
rise to a one-dimensional scale, stretching from ‘ignoring other theories’ to ‘unifying 
globally’ (see Fig. 2).
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Fig. 2 Connection strategies for networking of one theory with one or several other theories (based 
on Prediger et al., 2008, p. 170) 

As regards the KOM framework, we gave three examples above of constructs that 
can be involved in networking with other constructs. 

The modelling competency of the KOM framework was connected to the 
modelling cycle construct in the field of the didactics of mathematical modelling. 
One purpose of connecting these constructs is that one construct can shed light 
on and deepen the understanding of the other. Invoking the modelling competency 
in research on the modelling cycle makes it possible to focus on what it takes for 
someone to be able to perform the various steps and processes in the modelling cycle. 
Invoking the modelling cycle in research on the modelling competency provides us 
with a framework to scaffold a detailed understanding of the specifics of this compe-
tency in a variety of contexts. Thus, the two frameworks serve as mutual fertilisers 
for one another. The linking of the two constructs takes the form of intertwining 
them, i.e., putting them in direct productive contact with one another without losing 
the ability to clearly distinguish between them. In other words, it would be to go too 
far to consider the connection an integration of the two constructs. 

Overview and judgement regarding the historical development of mathematics, 
another construct in the KOM framework, was connected to the distinction between 
Whig and non-Whig history, a general construct considered in history as a discipline, 
especially as regards the history of science, or more broadly the history of ideas. One 
purpose of this connection is that the Whig-non-Whig distinction can serve as one 
way, among others, to focus research on the historical development of mathematics 
as an element of mathematics education. Conversely, the construct of overview and 
judgement regarding the historical development of mathematics in an educational 
context can be one way of providing an exemplification of the nature and significance 
of the Whig-non-Whig distinction in research on the history of mathematics. The 
connection in play here is a combination of the two theoretical entities. 

Similarly, the purpose of connecting overview and judgement regarding the histor-
ical development of mathematics with the construct of mathematics-related beliefs 
is for the two constructs to fertilise one another. Research on students’ mathematics-
related beliefs can be given a focus by invoking students’ general views and under-
standing of the historical development of mathematics to (co-)shape their beliefs. 
And vice versa, research on students’ overview and judgement regarding the histor-
ical development of mathematics can be enriched by implicating their mathematics-
related beliefs. Here, the connection of the two constructs can be perceived as an 
example of coordinating two constructs. 

When it comes to connecting the uncovering of mathematical learning compe-
tency with other constructs, the purpose depends on which aspects of mathematical 
learning are in focus. If students’ development of mathematical competencies is
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in focus, the purpose of connection may be to consider methods for detecting and 
uncovering these competencies with given students, which would be an instance of 
combining two constructs. If instead, the learning aspect in focus is on uncovering 
students’ ability to relate different mathematical concepts and propositions across 
topics, the purpose of linking this sort of uncovering with frameworks dealing with 
concept maps may well be to use concept maps as a methodological means to assist 
the uncovering of the ability under consideration here. 

So far, we have concentrated on outlining how three specific constructs in the 
KOM framework can engage in networking with other selected constructs in math-
ematics education research. Due to the nature of the KOM framework and its 
overarching conceptualisation of mathematical mastery by means of eight math-
ematical competencies and three types of overview and judgement along with its 
six didactico-pedagogical mathematics teacher competencies, numerous other theo-
retical entities from mathematics education research naturally lend themselves to 
engage in networking with KOM constructs. In what follows, we briefly indicate a 
few other possibilities of connecting KOM constructs to other theoretical entities in 
mathematics education. 

Since any of the mathematical competencies can only be exercised and devel-
oped in dealing with mathematical subject matter, the so-called ‘Stoffdidaktik’, i.e., 
mathematics education research and development that addresses the structuring and 
sequencing of specific mathematical concepts, topics, methods, etc., which is espe-
cially cultivated in German-speaking communities, has a lot to offer. Examples of 
theoretical entities related to understanding that may be combined with elements of 
the KOM framework are Skemp’s (1976) classical distinction between relational and 
instrumental understanding or Vergnaud’s (2009) theory of conceptual fields (which 
also discusses mathematical competence explicitly). 

If we focus on the different aspects of the eight competencies there certainly 
are possibilities for connecting these constructs with more local theoretical entities 
addressing aspects related to these. Regarding the mathematical reasoning compe-
tency, for example, Harel and Sowder’s (2007) description of three overarching 
classes of so-called proof schemes, defined as that which, for a person or a community, 
constitutes ascertaining and persuading of the truth of some given statement, is an 
obvious candidate for networking. As final examples, we can link KOM’s representa-
tion competency with Duval’s (2006) framework of semiotic registers and represen-
tational shifts between them, whilst KOM’s aids and tools competency can be linked 
with the so-called instrumental approach (Guin & Trouche, 1998), which describes 
the process of instrumental genesis, i.e., the process of becoming acquainted with 
an artefact, say a digital one and making it a personal instrument (e.g., Geraniou & 
Jankvist, 2019). 

A multitude of other theoretical entities as candidates for networking with the 
KOM framework could be mentioned, but the ones listed suffice to suggest that this 
is likely to be a promising endeavour.



On the Mathematical Competencies Framework and Its Potentials … 35

8 Towards Mutual Fertilisation 

In the existing literature and in the previous sections we have encountered a variety of 
different ways to connect and network theoretical entities in mathematics education 
research. Connecting such entities should serve a purpose, and we have also encoun-
tered a variety of such purposes. When it comes to linking the KOM framework or 
some of its constructs with other theoretical entities, we suggest that at this stage 
of development, the general common purpose of such linking with a few exceptions 
is to obtain various forms of mutual fertilisation of the entities under consideration 
rather than to create new frameworks by synthesising or integrating them. However, 
it would be extremely valuable for furthering the theoretical development of our field 
to engage in analysing, comparing and contrasting different constructs and frame-
works in considerable detail in order to uncover their similarities and differences. 
In view of its complexity, multifaceted nature and multiple ramifications, the KOM 
framework is a rich source for such an undertaking. 
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The Mathematical Competencies 
Framework and Digital Technologies 

Eirini Geraniou and Morten Misfeldt 

1 Introduction 

There are rapid advances in technology and research have evidenced its great potential 
in mathematics education (e.g., Noss & Hoyles, 1996; Ruthven, 2011; Young, 2017). 
Technology-enhanced instruction with the support of well-designed digital tools 
has great benefits for students’ mathematical learning and for addressing students’ 
known difficulties with learning mathematics (e.g., Noss & Hoyles, 1996). Along-
side the benefits and opportunities of technology in mathematics education, there 
are numerous challenges for both teachers and students that need to be addressed. 
Hence why the technology-enhanced mathematics education has not always met 
expectations (e.g., Drijvers et al., 2010). The teachers’ perspectives and their abili-
ties to develop a new repertoire of appropriate teaching practices for technology-rich 
classrooms play a crucial role in identifying the best strategies for supporting the 
successful integration of digital technologies (DT) in the mathematics classrooms 
(e.g., Bozkurt & Ruthven, 2017). 

In recent decades, there have been a plethora of educational technologies offered 
to mathematics teachers, which can be helpful, but at the same time daunting. For 
example, Niss (2016) argued that DT can offer “marvels” and “disasters” to math-
ematics education. The outcomes of the use of DT very much depend on how 
it is perceived and used by students and/or teachers. As Niss (2016) wisely put
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it “The outcome crucially depends on the role and place of technology in the entire 
curriculum, […] and on the specific relationships that exist between that component 
and other curriculum components, as well as on the teacher’s design and implementa-
tion of the teaching–learning environment and of the instructional sequences that (are 
supposed to) take place within this environment. Of course, the outcome also depends 
on the nature of the digital affordances offered by the ICT systems at issue and on 
their technical and pedagogico-didactic quality” (p. 248). Mathematics teachers’ 
digital competencies are not sufficiently well-developed and, as a result, the provi-
sion of technology overwhelms teachers leading to sporadic, superficial and poten-
tially less effective use of DT. Considering that teachers’ competencies are positively 
correlated to teaching quality, which affects pupil outcomes (Kunter et al., 2013), 
then there is a need to consider mathematics teachers’ mathematical competencies 
(Niss & Højgaard, 2019) as well as digital competencies (Ferrari, 2012; Hatlevik & 
Christophersen, 2013). Being influenced by Geraniou and Jankvist’s (2019) work, 
which focussed on the interplay of students’ mathematical competencies and digital 
competencies and introduced the term mathematical digital competency, we argue 
that there is a need to look into teachers’ mathematical digital competencies too. 

To conceptualize competence or in other words, the set of skills students need to 
have and teachers employ to teach, we draw on Niss and Højgaard’s (2011, 2019) 
work regarding the KOM framework of mathematical competencies. This frame-
work introduces the concept of mathematical competence, a number of mathemat-
ical competencies and their potential in mathematical teaching and learning (Niss & 
Højgaard, 2011; Niss & Jensen, 2002). Niss and Højgaard (2011) offered a descrip-
tion of mathematical competence stating that it “comprises having knowledge of, 
understanding, doing, using and having an opinion about mathematics and mathe-
matical activity in a variety of contexts where mathematics plays or can play a role” 
(p. 49). In a more recent publication, as mentioned earlier, the same authors defined 
mathematical competence as “insightful readiness to act appropriately in response 
to all kinds of mathematical challenges pertaining to situations” (Niss & Højgaard, 
2019, p. 12). 

In light of the KOM framework regarding students’ mathematical competencies, 
Geraniou and Jankvist (2019) introduced Mathematical Digital Competency (MDC) 
in recognition of the need for learners to develop competence in using technology to 
solve mathematical problems. They proposed the possession of MDC if any of the 
following three characteristics are evident in students’ actions:

• MDC1—“Being able to engage in a techno-mathematical discourse. […]
• MDC2—Being aware of which digital tools to apply within different mathematical 

situations and context and being aware of the different tools’ capabilities and 
limitations. […]

• MDC3—Being able to use digital technology reflectively in problem solving and 
when learning mathematics” (Geraniou & Jankvist, 2019, p. 43).
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It is equally important to support teachers’ development of MDC to support 
their students’ development of MDC. We understand teachers’ mathematical digital 
competencies (MDCs) as the set of skills teachers need (or have) to select and 
implement technology in mathematics teaching and learning in productive ways. 

In their 2019 paper, Niss and Højgaard focussed on “What would an up-to-date 
conceptual account of the notions of mathematical competence and of mathematical 
competencies look like?” (p. 9). In this chapter we add to that question the potential 
impact technology may have on the notions of mathematical competence. Of course, 
one of the KOM mathematical competencies, the aids and tools competency, refers 
to DT and in particular how DT are designed to represent and facilitate mathematical 
work (Niss & Højgaard, 2019, p. 18), but we argue that DT play a role in all the 
KOM mathematical competencies. In more detail, we look into how technology 
may influence mathematical competencies, as shared in the KOM framework, the 
students’ eight mathematical competencies and meta-competencies and the teachers’ 
six mathematical competencies. We present each of those three sets of competencies 
in the KOM framework and exemplify how technology impacts and influences them. 
We conclude by discussing the potential need of revising the KOM framework to 
include mathematical digital competencies to support the argument that technology 
inadvertently transforms mathematical competencies. The aim of this chapter is to 
exemplify the impact of digital technologies on students’ and teachers’ mathematical 
competencies and meta-competencies and therefore build a case for the need for 
expanding the KOM framework’s notion of competencies, teacher competencies 
and meta-competencies (described as overview and judgement), in a way that goes 
beyond how MDC expands/augments the eight mathematical competencies. 

2 Mathematical Competencies1 

The KOM framework’s main mathematical competence is split into eight distinct, yet 
related, competencies, which are divided into two groups. The first group comprises 
the first four competencies and refers to “the ability to ask and answer questions in and 
with mathematics” (Niss & Højgaard, 2011, p. 50). The second group comprises the 
last four competencies and refers to “the ability to deal with mathematical language 
and tools” (Niss & Højgaard, 2011, p. 50). Below we define each of the eight 
mathematical competencies referring to Niss and Højgaard’s (2011, 2019) papers 
(Fig. 1).

1 This section restates concepts that were introduced in chapter one of this volume, in order 
for the chapter to be readable on its own. 
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Fig. 1 The eight overlapping mathematical competencies as diagrammatically presented by Niss 
and Højgaard (2019, p. 19) adapted from Niss and Jensen (2002) and referred to as the “KOM 
flower” 

2.1 First Set: Posing and Answering Questions 
in and by Means of Mathematics 

1. The Mathematical Thinking competency is about being able to relate to 

a. “and pose the kinds of generic questions that are characteristic of math-
ematics and relate to the nature of answers that may be expected to such 
questions” […] 

b. “the varying scope, within different contexts, of a mathematical concept 
or term, as well as distinguishing between different types and roles of 
mathematical statements (including definitions, if–then claims, universal 
claims, existence claims, statements concerning singular cases and conjec-
tures) and navigating with regard to the role of logical connectives and 
quantifiers in such statements, be they propositions or predicates”. […] 

c. and propose “ “abstractions” of concepts and theories and “generalization” 
of claims (including theorems and formulae) as processes in mathematical 
activity” (Niss & Højgaard, 2019, p. 15). 

2. The Mathematical Problem handling competency is about being able to 

a. “pose (i.e., identify, delineate, specify and formulate) and to solve different 
kinds of mathematical problems within and across a variety of mathematical 
domains” […] 

b. “critically analyze and evaluate one’s own and others’ attempted problem 
solutions” […]
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c. “devise and implement strategies to solve mathematical problems” (Niss & 
Højgaard, 2019, p. 15). 

3. The Mathematical Modelling competency is about being able to 

a. “construct […] mathematical models [...] to deal with extra-mathematical 
questions, contexts and situations”, […] 

b. “critically analyze and evaluate existing or proposed models, whilst taking 
purposes, data, facts, features and properties of the extra-mathematical 
domain being modelled into account, are the core of this competency.” 
[…] 

c. relate to and navigate “within and across the key processes of the “mod-
elling cycle” in its various manifestations (e.g., Blomhøj & Jensen, 2003; 
Blum & Leiß, 2007; Niss, 2010).” (Niss & Højgaard, 2019, p. 16). 

4. The Mathematical Reasoning competency involves the ability to 

a. “analyze or produce arguments (i.e., chains of statements linked by 
inferences) put forward in oral or written form to justify mathematical 
claims” 

b. “both constructively provid[e] justification of mathematical claims and crit-
ically analys[e] and assess[] existing or proposed justification attempts. The 
competency deals with a wide spectrum of forms of justification, ranging 
from reviewing or providing examples (or counter-examples) over heuris-
tics and local deduction to rigorous proof based on logical deduction from 
certain axioms” (Niss & Højgaard, 2019, p. 16). 

2.2 Second Set: Handling the Language, Constructs 
and Tools of Mathematics 

1. The Mathematical Representation competency is about the ability to 

a. “interpret as well as translate and move between a wide range of represen-
tations (e.g., verbal, material, symbolic, tabular, graphic, diagrammatic or 
visual) of mathematical objects, phenomena, relationships and processes”, 
[…] 

b. “reflectively choose and make use of one or several such representations 
in dealing with mathematical situations and tasks”, […] 

c. relate “to the scopes and limitations—including strengths and weak-
nesses—of the representations involved in given settings.” (Niss & 
Højgaard, 2019, p. 17). 

2. The Mathematical Symbols and Formalism competency is about the ability to
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a. “relate to and deal with mathematical symbols, symbolic expressions and 
transformations, as well as with the rules and theoretical frameworks 
(formalisms) that govern them, constitutes the key component of this 
competency” […] 

b. decode and interpret “instances of symbolic expressions and transforma-
tions, as well as formalisms, already present” 

c. introduce and employ “symbols and formalism in dealing with mathemat-
ical contexts and situations” (Niss & Højgaard, 2019, p. 17). 

3. The Mathematical Communication competency is about an individual’s ability 
to 

a. “engage in written, oral, visual or gestural mathematical communication, 
in different genres, styles and registers and at different levels of concep-
tual, theoretical and technical precision, either as an interpreter of others’ 
communication or as an active, constructive communicator, constitutes the 
core of this competency” (Niss & Højgaard, 2019, p. 17). 

4. The Mathematical Aids and Tools competency focuses on the ability to 

a. deal “with material aids and tools for mathematical activity, ranging from 
concrete physical objects and instruments, over specially designed papers 
and charts, to a wide spectrum of digital technologies designed to represent 
and facilitate mathematical work”. […] 

b. “put such aids and tools to constructive use in mathematical work, as well 
as to critically relate to one’s own and others’ use of such aids and tools”, 

c. pay “attention to the affordances and limitations of different mathematical 
aids and tools and choos[e] between them on that basis” (Niss & Højgaard, 
2019, p. 18). 

2.3 Exemplifying Technology Influence and Impact 
on Mathematical Competencies: Representation 
and Reasoning Competencies 

We present an example previously published by Jankvist and Geraniou (2021) to  
showcase the value, but also the influence and the impact of DT on students’ math-
ematical competencies. We focus though on two mathematical competencies, the 
representation competency and the reasoning competency. In this example, two 
British students, Oscar (15 years old) and Alice (13 years old), worked as a pair on 
a task involving interpreting Euclid’s Proposition 41 with the support of GeoGebra. 
Oscar was familiar with GeoGebra, whereas Alice had never used GeoGebra before 
this study. 

At first, the two students were presented with Proposition 41 of the Euclid’s 
Elements Book 1 (the Fitzpatrick translation into English, i.e., Fitzpatrick, 2008),
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Fig. 2 Proposition 41’s first sentence presented in both its original language Greek (left) and its 
translation in English (right) (as shared by Fitzpatrick, 2008) 

without any diagrams so as to investigate their interpretation of the worded propo-
sition (cf. Fig. 2), whilst being encouraged to use verbal comments and/or written 
diagrams (see Fig. 3). Both students seemed to interpret Proposition 41 correctly and 

Fig. 3 Students’ pen-and-paper diagram for Proposition 41, as presented in Jankvist and Geraniou’s 
(2021) paper (p. 9) 

produced a diagram on paper to represent it (mathematical representation compe-
tency). Next, they were shown the full original description of this Proposition 41 as 
presented in Euclid’s Elements Book 1 (Fitzpatrick, 2008) and here in Fig. 4 below 
and were asked to use GeoGebra to “create” the described situation. The objective 
was for students to discuss and articulate Proposition 41 in their own words and 
arguments so as to share their understanding of what the proposition states. 

Students’ ability to interpret what Proposition 41 stated and produce a diagram 
of their own that correctly represents the proposition, showcases their representation 
competency. They appreciated that their diagram on paper is a specific “static” case 
of a parallelogram and a triangle, but it was not clear if Alice in particular was able to 
recognize the generalizability of the proposition, whereas Oscar seemed to correctly 
interpret why their diagram was correct and matches what the proposition claims 
(Jankvist & Geraniou, 2021).
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Fig. 4 Euclid’s Proposition 41’s proof as shared in the Elements book (Fitzpatrick, 2008, p. 41) 

2.4 Exploration and Argumentation Using GeoGebra 

Alice and Oscar explored what Proposition 41 says by creating a construction in 
GeoGebra, similar to the one they had created earlier on paper (representation compe-
tency). They started off by creating a square, which is a special case of a parallelo-
gram, as they both agreed. By creating a parallel line to the base, they were able to 
then choose a point (point E in Fig. 5a) on that parallel line to construct a triangle 
with the same base as the square. 

As seen in Fig. 5, Alice experimented by dragging the top vertex of the triangle 
along the top parallel line, as prompted by Oscar. This process allowed Alice to trial 
numerous cases and offered her enough evidence to conjecture that any of these trian-
gles has indeed the same area as triangle ABD. This experimental process and the 
creation of potentially infinitely many cases of Proposition 41 in GeoGebra (repre-
sentation competency) would not have been possible on pen-and-paper. It allowed 
Alice, with the help of a knowledgeable other, Oscar, to reflect on their initial state-
ment and potentially recognize why the area of any triangle ABE is half the area of
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Fig. 5 Students’ GeoGebra constructions of Proposition 41, as presented in Jankvist and Geraniou’s 
(2021) paper (p. 11) 

the square ABCD (reasoning competency). In that sense, the DGS provokes conjec-
tures and encourages students to engage in suitable justifications, involving either 
geometrical or algebraic reasoning. 

Oscar relied on GeoGebra’s features to argue that the base of both the square 
(which was the special case of a parallelogram in their construction) and the triangle 
are the same, claiming that they were constructed in that way. Following the same 
argumentation process, he claimed that the height will remain constant as the top 
line, going through points D, C and E (see Fig. 5), is parallel to the base. Later on 
in the interview, when challenged by the researcher, he shifted to pen-and-paper to 
prove the proposition 41 and said: “So, base times height is double the area of the 
triangle and we know that the area of the triangle is base times height divided by 2. 
[Writes on paper: bh = 2 × (bh/2)] […] and we can simplify this. Cancel these two 
out [referring to the 2’s]” (Jankvist & Geraniou, 2021, p. 17—see Fig. 6). 

In the case of Oscar, it seems that he was confident with his written proof of 
Proposition 41 and used GeoGebra to validate his thinking and his proof on paper 
(see Fig. 6). He was certainly influenced by their GeoGebra interactions, but relied 
on his prior mathematical knowledge, in particular, the area of a parallelogram or 
a square and the area of a triangle to prove the mathematical relationship as stated

Fig. 6 Oscar’s proof on paper, as presented in Jankvist and Geraniou (2021, p. 18)
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in Proposition 41. Oscar seems to possess a deductive proof scheme, as argued by 
Jankvist and Geraniou (2021).

Alice, on the other hand, questioned what GeoGebra offers in terms of proving a 
mathematical statement such as Proposition 41. Perhaps “seeing” that the proposition 
is true by creating a GeoGebra construction, which allows for multiple cases to be 
trialled, is enough to convince her. 

Oscar: So, explain to me why you think the triangle is half the parallelogram. 

Alice: Because it’s between two parallel lines. And it’s the same base and height. 

Oscar: Okay, so you just said the proposition again. You haven’t really proved it. 

Alice: Because we’ve done two experiments and we proved the point? (dialogue presented 
in Jankvist & Geraniou, 2021, p. 17). 

This last claim by Alice in the above dialogue may lead us to believe that there 
is a potential lack of understanding of what “proof” is (Dreyfus, 1999),  whilst at the  
same time there is great “trust” in GeoGebra as a tool for exploring and justifying 
mathematical statements such as the one presented in Proposition 41. As Jankvist 
and Geraniou (2021) argued “we witness a classical case of a student, who jumps 
to general conclusions based on exploration via dragging as described by Mariotti 
(2006) and Mason (1991), which could be viewed as a development of an empirical 
proof scheme” (p. 15). 

Of course, we do not argue that GeoGebra is to be used for offering a math-
ematically valid proof. We argue that technology, and in this case GeoGebra, is 
an additional tool in students’ resources (or toolbox if we may say) that supports 
their mathematical work, but also enriches it. Students relied on their mathemat-
ical knowledge as well as their mathematical competencies and their knowledge 
of GeoGebra’s features and functionalities and their own skills in using GeoGebra. 
Students’ interactions with a tool, such as GeoGebra, enriched their experimen-
tation with a mathematical problem (exploring Proposition 41), enabled them to 
“see” the mathematics and the mathematical relationships using dynamic represen-
tations compared to the static representation presented on Euclid’s book of elements 
(mathematical representation competency) and argue about the mathematics using 
numerous cases to support their conjectures (mathematical reasoning competency). 
We can argue that GeoGebra “amplified” students’ mathematical competencies and 
offered a technology-enriched mathematical exploration. Students’ knowledge of and 
competencies in using GeoGebra in combination with their mathematical knowledge 
of the area of a triangle and a parallelogram and their mathematical representation and 
reasoning competencies, or in other words their mathematical digital competencies 
(Geraniou & Jankvist, 2019), led to a successful mathematical learning experience. 

3 Meta-Competencies 

In order to understand the broader nature of mathematics Niss and Højgaard have 
developed 2nd order competencies of overview and judgements. These “include
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insights into essential features of mathematics as a discipline in [their] notion of 
mastery of mathematics” (Niss & Højgaard, 2019 p. 24). They describe three types 
of overview and judgement: 

1. The actual application of mathematics within other disciplines and fields 
of practice 
This first meta-competency is a matter of seeing where mathematics is in play 
in various practices in society, including in places where mathematics is hidden 
in technologies and procedures (Misfeldt & Jankvist, 2020). More specifically 
“Mathematics is widely used for extra-mathematical purposes in a large variety 
of everyday, occupational, societal, scholarly and scientific undertakings. This 
use is brought about by the explicit or implicit construction or utilization of 
mathematical models. Exactly which people are in fact using mathematics? 
When, and in what contexts and situations do they use it and for what purposes? 
In what ways do they use it, and what are the competencies they possess and 
activate for so doing?” (Niss & Højgaard, 2019, p. 24). 

2. The historical development of mathematics, seen from internal as well as 
from socio-cultural perspectives 
This second meta-competency relates to knowing the history of mathematics 
and how the development of mathematics has happened in interlude with the rest 
of the society. The specific description is “Irrespective of which philosophical 
position one might take on the nature of the relationship between mathematics 
and reality, it is an undeniable fact that mathematics has developed as a disci-
pline over numerous millennia. It is also a fact that mathematics was sometimes 
and in some respects developed in close interaction with external needs within 
other disciplines and fields of practice, and sometimes and in some respects 
in “splendid isolation” whilst pursuing its own internal goals and serving its 
own theoretical needs. What are the forces and mechanisms behind the histor-
ical development of mathematics in society and culture? In what respects and 
under what conditions and circumstances is the development of mathematics 
primarily influenced by internal forces, respectively by external forces?” (Niss & 
Højgaard, 2019, p. 24). 

3. The nature of mathematics as a discipline. 
The last meta-competency considers the epistemological and ontological status 
of mathematics as a discipline. What properties are particular to mathematics 
and what properties are shared with other disciplines. It is described as follows: 
“As a scientific discipline mathematics shares some properties with other disci-
plines whereas several other significant properties are peculiar and specific to 
mathematics, in particular the ways in which mathematics obtains and justifies 
its results. What exactly are the properties that mathematics has in common 
with other fields and disciplines, what are the properties that are peculiar to 
mathematics, and what are the causes for the similarities as well as for the 
differences?” (Niss & Højgaard, 2019, p. 25).
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3.1 Exemplifying Technology Influence and Impact 
on Mathematical Meta-Competencies: Proofs Using 
Computers 

A good example of the impact of technology on mathematical meta-competencies is 
the discussion that the introduction of computers in proof work poses to the nature of 
mathematics as a discipline. One famous example of a computer proof is the proof 
of the four-colour theorem. The four-colour theorem is establishing the fact that all 
ordinary maps can be coloured with only four colours, in such a way so that there 
are no two adjacent regions with the same colour (see Fig. 7). 

The proof relies entirely on a detailed investigation of thousands of cases that 
no human will be able to perform in a lifetime. Hence the proof in part consists of 
a computer program performing this investigation, as well as its output (Appel & 
Haken, 1977; Appel et al., 1977). Such an approach to proofs has led to a debate about 
to what extent it still can be argued that mathematics is a priori, since the computer’s 
contribution to the evidence of a theorem is somehow equated with empirical knowl-
edge. This is an ongoing debate in the philosophical literature on the nature of 
mathematics, where the question of whether the a priori nature of mathematics can 
be maintained when the discipline accepts sentences that can only be proved using 
a computer.

Fig. 7 An illustration of the four-colour theorem from https://commons.wikimedia.org/wiki/File: 
FourColorMapEx.png

https://commons.wikimedia.org/wiki/File:FourColorMapEx.png
https://commons.wikimedia.org/wiki/File:FourColorMapEx.png


The Mathematical Competencies Framework and Digital Technologies 51

Some philosophers are suggesting that this type of example means that mathe-
matics ceases to be a priori, because of the unsurveyable nature of a computer-assisted 
proof (CAP). This position was clearly stated by Tymoczko (1979), and as described 
by the second author in a previous publication.

This line of argument was fleshed out by Tymoczko (1979) in connection to the computer-
assisted proof of the four-colour theorem (4CT) that was published in 1977 (Appel & Haken, 
1977; Appel et al., 1977). The proof is a prototypical CAP that combines a classical proof 
with a lemma where a large number of special cases are calculated using a computer. These 
calculations, however, are so numerous that the proof of the lemma ends up being “too long” 
to be read by any human mathematician in the sense that it cannot be read by a mathematician 
in a human lifetime (Tymoczko, 1979, 62). For this reason, Tymoczko categorizes the proof 
as unsurveyable; it cannot be read or understood in totality by any (human) mathematician. 
Thus, the published proof is a proof “where a key lemma is justified by an appeal to the results 
of certain computer runs or, as we might say, “by computer”. This appeal to computers ... is 
ultimately a report on a successful experiment” (Tymoczko, 1979, 63). When mathematicians 
nevertheless see the proof as acceptable and convincing they do so because they have faith 
in the computer experiment. (Johansen & Misfeldt, 2017 p. 113) 

Hence Tymoczko (1979) suggests that the influence of digital tools can lead to 
a mathematics that no longer is a priori—but much closer to empirical types of 
truth. On the contrary, there has been a recent push back from analytical philosophy, 
especially McEvoy (2008, 2013) who argues that mathematics continues to be a priori 
despite an active use of computer reasoning. The details of his argument is beyond 
the scope of this paper (see Johansen & Misfeldt, 2017 for an in-depth exploration 
of the problem), but both Tymoczko’s hard claim about the changes in mathematical 
reasoning and the fact that this is a living debate in the philosophy of mathematics 
shows that there is a severe impact of technology on the nature of mathematics as a 
discipline. 

One can of course ask what relevance this philosophical discussion has for math-
ematics teaching and learning practices? In the previous section, we saw how digital 
tools in the mathematical classroom influenced both reasoning and representation 
competencies for students. The fact that GeoGebra offers new ways to argue for 
mathematical results and explore mathematical phenomena is well established, but 
we suggest that the case of the four-colour problem, shows us that this change is 
not only a matter of new pedagogical possibilities in the classroom, it is also a 
manifestation of changes in the nature of the discipline. Hence the development of 
technology-supported proof schemes should perhaps be viewed as an obligation for 
a mathematics teaching that is up-to-date with the development of the discipline. 

4 Teacher Competencies 

The description of mathematics teacher competencies has two components; the first 
has to do with the pedagogical and didactic skills it takes to be a good mathematics 
teacher—expressed as six teacher competencies, and the second is a description 
of the eight mathematical competencies formulated in a way that highlights what
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aspects are needed to have in order to teach. In this part of the work, we focus on the 
six teacher competencies. The mathematical competencies of teachers are to a large 
degree redundant with the previous description of the eight competencies. 

Niss and Højgaard (2011) stress the interaction between mathematical competen-
cies and the competencies needed to be a mathematics teacher: 

Despite the fact that in the following chapters we describe these two components individually, 
it cannot be stressed enough that, in a good teacher, they are integrated in the sense that he or 
she can both apply competent mathematical points of view to every didactic or pedagogical 
problem, and relate to the didactic/pedagogical potential in the mathematical abilities and 
insights he or she possesses, as well as being able to bring these two components together 
in an integrated manner in teaching. (Niss & Højgaard, 2011, p. 84) 

In the following we describe how the six teacher competencies are defined, we 
will use direct quotations from the original report (Niss & Højgaard, 2011). 

4.1 Curriculum Competency—Being Able to Evaluate 
and Draw up Curricula 

The first teacher competency has to do with interpretation of learning standards 
and national curricula, and compare across various curriculum suggestions and 
participate in the development of curricula. Niss and Højgaard (2011) express this 
as: 

This competency comprises, on the one hand, being able to study, analyze and relate to every 
current or possible future framework curriculum for mathematics teaching at the relevant 
educational stage, and being able to evaluate these plans and their significance for one’s 
actual teaching. 

On the other hand, it comprises being able to draw up and implement different types of 
curricula and course plans with different purposes and aims at different levels taking into 
consideration the overarching frameworks and terms which may exist, both under current 
conditions and those in the expected future. (Niss & Højgaard, 2011, p. 86) 

4.2 Teaching Competency—Being Able to Think Out, Plan 
and Carry Out Teaching 

This competency has to do with planning, conducting and justifying teaching, as 
well as motivating and engaging with the students—it is a comprehensive and broad 
competency with many elements. Niss and Højgaard (2011) express this as: 

This competency comprises being able to, with overview and together with the students, 
think out, plan and carry out concrete teaching sequences with different purposes and aims. 

This involves the creation of an abundant spectrum of teaching and learning situations, 
including the planning and organization of activities for students and student groups with 
consideration being given to their characteristics and needs. It also covers the selection
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and presentation of tasks as well as the other assignments and challenges of the students’ 
activities. In addition, it comprises being able to find, judge, select and produce different 
types of teaching means and material. Furthermore, the competency involves being able to 
justify and discuss with the students the content, form and perspectives of the teaching and 
being able to motivate and inspire students to become engaged in mathematical activities, 
as well as being able to create room for students’ own initiatives in mathematics teaching. 
(Niss & Højgaard, 2011, p. 86) 

4.3 Competency of Revealing Learning—Being Able 
to Reveal and Interpret Students’ Learning 

The competency of revealing and interpreting student learning has to do with the 
teacher’s ability to conduct cognitive and emotional empathy with their students’ 
mathematical learning situation and use this to improve the learning situation for the 
students. Niss and Højgaard (2011) express this as: 

“This competency comprises being able to reveal and interpret students’ actual mathematical 
learning and mastery of mathematical competencies as well as their conceptions, beliefs of 
and attitudes to mathematics and it includes being able to identify the development of these 
over time. 

Part of the competency is being able to get behind the facade of the ways in which the indi-
vidual’s mathematics learning, understanding and mastery is expressed in concrete situations, 
with the intention of understanding and interpreting the cognitive and affective background 
for these.” (Niss & Højgaard, 2011, p. 87) 

4.4 Assessment Competency—Being Able to Reveal, 
Evaluate and Characterize the Students’ Mathematical 
Yield and Competencies 

The ability to evaluate and assess the students. It is related to the competency of 
revealing, but focussed on the assessment side (fairness, communication with the 
students) rather than on diagnosing the learning process. It has both a summative 
and formative side. Niss and Højgaard (2011) express this as: 

This competency comprises being able to select or construct, as well as utilize, a broad 
spectrum of forms and instruments to reveal and evaluate a student’s or student group’s 
mathematical yield and competencies, both during the course of teaching and at the end of 
it, and both in absolute and relative terms. 

Included in this is the ability to critically relate to the validity and extent of the conclusions 
reached via the use of the individual assessment instruments. This competency is a precondi-
tion for continuous assessment, i.e., assessment carried out during the course of teaching, and 
includes the ability to characterize the individual student’s yield and competencies and the 
ability to be able to  communicate with the student about the observations and interpretations
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made, and then help him or her to correct, improve or further develop his or her mathematical 
competencies. The same is true for final assessments, including examinations, even though 
the guidance in this situation is often of a different nature. (Niss & Højgaard, 2011, p. 87) 

4.5 Cooperation Competency—Being Able to Cooperate 
with Colleagues and Others Regarding Teaching and Its 
Boundary Conditions 

Cooperation is a general professional competency, also needed by mathematics 
teachers. Niss and Højgaard (2011) express this as: 

This competency comprises, first of all, being able to cooperate with colleagues, both subject 
colleagues and colleagues in other subjects, about matters of significance to mathematics 
teaching. Included in this is the ability to bring the above-mentioned four competencies into 
play in mathematical, pedagogical and didactic cooperative projects and in discussions with 
different types of colleagues. 

Secondly, the competency includes the ability to cooperate with people beyond the staff 
room, e.g., the parents of students, administrative agencies, the authorities, etc. about the 
boundary conditions of teaching. (Niss & Højgaard, 2011, p. 88) 

4.6 Professional Development Competency—Being Able 
to Develop one’s Competency as a Mathematics Teacher 

Similar to the cooperation competency—successful mathematics teachers also need 
to conduct professional development competency. Niss and Højgaard (2011) express 
this as: 

This competency comprises being able to develop one’s competency as a mathematics 
teacher. In other words, it is a kind of meta-competency. 

More concretely it involves being able to enter into and relate to activities that can serve 
the development of one’s mathematical, didactic and pedagogical competency, taking into 
consideration changing conditions, circumstances and possibilities. This is about being able 
to reflect on one’s teaching and discuss it with mathematics colleagues, being able to identify 
a developmental need, and being able to select or arrange as well as evaluate activities that can 
promote the desired development whether or not there is talk of external in-service training 
and further education courses, conferences or projects with colleagues and activities like, 
e.g., participation in study groups and research projects. It is also about keeping oneself up-
to-date with the latest trends, new material and new literature in one’s field, about benefiting 
from relevant research and development contributions, and maybe even about writing articles 
or books of a mathematical, didactic or pedagogical nature. (Niss & Højgaard, 2011, p. 88)
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4.7 Exemplifying Technological Influence on Teacher 
Mathematical Competencies—Introducing 
Computational Thinking into Mathematics; Curriculum 
Competency and Professional Development Competency 

Recently many countries have been implementing computational thinking in compul-
sory education. This has led to a range of decisions and challenges (who should teach 
this in school and in relation to which topic). In many cases, mathematics teachers 
are being included as part of the solution to this challenge. One example of this is 
the Sweden case. In 2017, the Swedish government decided to include programming 
in the national mathematics curriculum from grades 1 through 12. This integration 
thus concerned all mathematics teachers, leading to a major implementation and 
training challenge. To address this the ministry of education initiated the develop-
ment of a number of in-service training activities located at a digital portal, developed 
during “Boost for Mathematics” (a national in-service training program). Despite 
this initiative, Swedish mathematics teachers stated rather clearly that they did not 
feel ready to conduct teaching in programming when the change was initiated in 
2018 (Misfeldt et al., 2019). Hence this change challenged Swedish teachers both in 
relation to their curriculum competency and in relation to their professional devel-
opment competency. Clearly, the way that Sweden chose to include programming in 
the curriculum, has put significant pressure on teachers to learn new skills and take 
new objectives into their teaching. Currently, similar changes are happening globally 
(Bocconi et al., 2016; Kallia et al., 2021), and this will put pressure on the capacity 
of the educational systems and the teacher competencies in most of the world. 

5 Mathematical Competencies Under the Influence 
of Digital Affordances 

Without a doubt, technology appears widely in mathematics and mathematics educa-
tion, in many mathematics teaching- and learning situations. Of course, the type of 
technology used and how it is used varies. Discussing mathematical competencies, 
and in particular, the KOM framework is more important than ever as it allows us to 
focus on students’ mathematical development, as supported by their teachers, now 
that technology has taken a central role in the mathematics education community. 

Digital technology has clearly changed the learning environment in many cases. 
The emerging division of labour between techniques involving digital technolo-
gies and more classical techniques has been investigated in numerous mathematics 
education research papers. As Turner points out (in this book), with a quote from 
Gravemeijer et al. (2017):
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“today, basically all mathematical operations that are taught in primary, secondary and 
tertiary education can be performed by computers and are performed by computers in the 
world outside school.” [...and hence ...] we have to shift away from teaching competen-
cies that compete with what computers can do and start focusing on competencies that 
complement computer capabilities. (Gravemeijer et al., 2017, p. 107) 

This division of labour has for instance been investigated in relation to the use 
of Computer Algebra Systems, highlighting the problem of “blackboxing” and the 
related problematic tendency for the students’ mathematical activities to move in a 
pragmatic direction (Artigue, 2010). 

With reference to Niss’s (2016) descriptions of the potential marvels and disas-
ters that DT can bring to mathematics education, it is important to stress that we 
cannot expect DT to teach mathematics to children, instead we expect that “Digital 
technologies may serve to:

- enhance a wide variety of mathematical capacities and

- replace some mathematical competencies (Niss, 2016, p. 248). 

In a similar fashion, DT does not in itself support the development of specific 
mathematical competencies, but it can be the case. And on a similar note, specific 
technologies can enhance mathematical representation, reasoning or any one of the 
other competencies. But DT can also replace certain mathematical competencies 
more or less entirely, such as when CAS systems are used for solving equations (see 
for example Jankvist & Misfeldt, 2015) and hence symbol and formalism competency 
and reasoning competency. 

In the KOM framework, technology is discussed solely as part of the Tools and 
Aids competency. Even though we exemplified how technology impacts mathemat-
ical competencies focusing only on some of these competencies, we argue that tech-
nology appears in every mathematical competency and meta-competency. We are 
therefore proposing the addition of a “technology-enhanced” competence element 
in each mathematical competency. In our view, the KOM framework needs to be 
revisited and expanded by including a sub-competence within every mathemat-
ical competency that involves technology use, i.e., a technology thread of sub-
competencies (see for example Fig. 8 for a potential diagrammatic representation 
of a technology-enriched KOM flower). 

But let us now try and convince you by offering some further arguments about our 
proposition in light of our earlier discussions in this chapter. Technology has been 
developed to support mathematical operations (e.g., calculators) and explorations 
(e.g., graphic calculators, Desmos, GeoGebra, etc.) and both teachers and students are 
expected to develop certain skills to use such technology for mathematical teaching 
and learning. 

In example 1, we discussed how computers and in particular a dynamic geometry 
software (GeoGebra) influence students’ mathematical competencies, but also how 
students’ mathematical competencies influence their explorations and interactions 
with GeoGebra. We are claiming that there are synergetic processes taking place in
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Fig. 8 The KOM flower (Niss & Højgaard, 2019, p. 19) with the proposed “technology-enhanced” 
competence layer 

such an educational context. Oscar and Alice relied on their mathematical knowl-
edge of the area of a triangle and a parallelogram and their mathematical compe-
tencies to create a diagram and offer mathematically valid justifications for why 
Proposition 41 is true (MDC3). Alice seemed to rely on an empirical proof scheme, 
possibly triggered but certainly supported by GeoGebra, whereas Oscar seemed to 
rely on a deductive proof scheme and used GeoGebra to validate his conjectures and 
proof on paper. Undoubtedly, GeoGebra enabled both students to create a dynamic 
construction to explore the mathematical statement offered by Proposition 41 and 
trial numerous cases. Oscar was aware of GeoGebra’s capabilities and limitations 
and supported Alice in producing the dynamic construction (MDC2). 

Example 2 shows that the nature of mathematical argumentation and of what 
counts as mathematical truth is at stake when computers are used in mathematical 
proving activities. The example discusses the consequences of technology for the 
mathematical meta-competencies. However, there is a clear resemblance to example 
1 and the focus on mathematical argumentation. One can say that “modern” mathe-
matical reasoning processes that involve digital technology is exactly an example of 
the way that we as mathematics educators should refocus in the direction of compe-
tencies that complement rather than resemble what computers can do. This example 
shows two interesting points: (1) mathematical meta-competencies are affected by 
digital technology (as described in the example) and (2) there is a strong need 
to develop skills that complement what computers can do and allows students to 
maintain mathematical agency and curiosity. 

Example 3 shows something about how rapid the changes are in relation to tech-
nology and mathematics teaching. Clearly, the work with programming and compu-
tational thinking is currently affecting many mathematics teachers worldwide and 
calls for them to enact curriculum and professional development competency. Of
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course, the current rush for implementing programming and technology education 
in compulsory education is a special situation, but viewed in a more longitudinal 
fashion, digital technologies have been a challenge to the status quo in teaching and 
learning of mathematics for many years. Just to mention two important changes. 
Computer algebra systems and the problems with blackboxing of algebraic reduc-
tions has given rise to a number of pedagogical problems over the last 20 years. 
Likewise, the increased use of personalized learning environments and portals, that 
are supporting teaching and learning processes, are requiring teachers to change 
their practices. These changes call for teachers that have flexible teacher competen-
cies and are able to adapt to new technological situations without losing sight of the 
mathematical development of their students. 

In all these three examples, we showcased and discussed the interconnections 
between mathematical competencies and technology use for educational purposes. 
We considered how technology impacts mathematical work in society and industry, 
how technology influences mathematics as a research discipline, how technology 
supports and potentially enriches mathematical work in the classroom, and finally 
how technology has become a common theme in discussions regarding educational 
policy and the mathematics curriculum. Our discussions call for some augmentation 
of the current three elements of MDCs described in the introductory section, to 
include a Mathematical Digital meta-Competence: being able to discuss what is 
happening to the mathematics as a discipline when digital technologies come into 
the picture. 

We are furthermore suggesting an updated way to look at the interplay between 
technology and competencies. Not thinking of it as a meta-competency of the Tools 
and Aids competency, but allowing technology to take a more central role in each of 
the mathematical competencies described by the KOM framework (see Fig. 8 for a 
diagrammatic representation). We still strongly believe that the KOM framework and 
all mathematical competencies presented in that framework are crucial for students’ 
and teachers’ development regarding mathematics education. We put emphasis on the 
inevitable influence of technology and argue that mathematical digital competencies 
should be at par with mathematical competencies rather than being a sub-competency. 
Also, teacher competencies should evolve to allow for an effective management of 
the impact of technology in mathematics education. 

Relating to the work of Niss (2016) and Niss and Højgaard (2019), we are arguing 
for a need to have an additional layer in the KOM framework that takes into account 
technology influence across the eight mathematical competencies, as well as in rela-
tion to teacher competencies and meta-competencies. In fact, in the digital age, it is 
difficult to “escape” the influence and impact of digital technologies in mathematics 
education. As Niss (2016) argues “knowledge of and insight into what is variable 
and what is constant contributes to making us sharper and wiser” (p. 240). So, is 
it safe to claim that the use of DT in mathematics education is more of a constant 
these days? We do not think we can unless we define what we mean by “use of DT”. 
The use of powerpoint slides and perhaps an IWB is visible in most mathematics 
classrooms, but the use of GeoGebra, Desmos, excel and other mathematical digital 
tools is not always visible. To achieve any change in teacher’s practices, we should
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definitely study teachers’ practices and define the variables and constants. And we 
need to consider the influence of DT on mathematical competencies in detail and in 
relation to all aspects of mathematical competencies. As we have argued, DT influ-
ences all mathematical competencies as well as the meta-competencies and teacher 
competencies. 
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The Eight Mathematical Competencies



Processes of Mathematical Thinking 
Competency in Interactions 
with a Digital Tool 

Mathilde Kjær Pedersen 

1 Introduction 

Around the turn of the millennium, the term “mathematical competence” entered the 
discussion of mastering mathematics as a more comprehensive concept than proce-
dures, skills, knowledge and understanding (e.g., Niss & Højgaard, 2019; Stacey, 
2010). Around the same time, the role of digital technologies significantly increased 
in the teaching and learning of mathematics (Trouche et al., 2013). Studies of the 
conceptualization of specific mathematical concepts in relation to competencies and 
the use of digital tools have been carried out (e.g., Kendal & Stacey, 2000; Weigand & 
Bichler, 2010). With the discussion of mathematical digital competencies, Geraniou 
and Jankvist (2019) address the requirement students face to draw on both mathemat-
ical and digital competencies in learning situations. To capture the students’ math-
ematical competencies, Geraniou and Jankvist (2019) use the Danish mathematical 
competency framework, referred to as KOM, i.e., a framework describing what it 
means to master mathematics (Niss & Højgaard, 2019). Furthermore, to describe the 
interplay of mathematical and digital competencies, the authors apply the theoretical 
perspectives of Drijvers et al. (2013) instrumental genesis and Vergnuad’s (2009) 
conceptual fields.
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In their analysis, Geraniou and Jankvist (2019) address all the mathematical 
competencies in the KOM framework except the mathematical thinking competency. 
Without entering the discussion of mathematical digital competencies, I find it inter-
esting to investigate the interplay between students’ mathematical thinking compe-
tency and their use of digital technologies. However, since mathematical competen-
cies cannot be developed or exercised without working with a mathematical subject 
matter, and since aspects of a mathematical competency appear differently depending 
on the level of mathematics education (Niss & Højgaard, 2019), it is necessary to 
specify the contextual setting of the specific mathematical thinking competency I 
will investigate. 

In the subject of mathematics in upper secondary school, differential calculus 
plays an important role. Digital technologies, such as computer algebra systems 
(CAS) and dynamic geometry systems (DGS), can allow teachers to teach and 
students to study concepts of differentiability in new ways (Hohenwarter et al., 2008). 
However, incorporating digital tools into the learning of mathematical concepts can 
also lead to disasters, in which students objectify CAS procedures as mathematical 
objects (Jankvist et al., 2019). Niss (2016) argues that digital technologies may serve 
to enhance or replace mathematical competencies, depending on for what, when and 
how they are used. Contributing to the discussion of the interplay between mathemat-
ical competencies and the use of digital technologies, I address the following ques-
tions: (1) Which processes of the mathematical thinking competency can be identified 
as part of students’ work with instances of differentiability and non-differentiability? 
(2) How can these processes of the students’ mathematical thinking competency 
interact with the students’ use of a given digital tool? 

For this investigation, I present an empirical example of two students working with 
the concept of differentiability using both the dynamic graphic window and the CAS 
window of TI-nspire. Addressing the first question, I analyze the case through the 
lens of the mathematical thinking competency in order to identify the processes by 
which this particular competency appears in this case. When analyzing the students’ 
mathematical competencies, the analyses can benefit from the use of other theoretical 
frameworks and constructs within mathematics education research (Jankvist & Niss, 
2015). I also consider different perspectives on the use of digital technologies in 
mathematics education when analyzing the students’ use of these tools. The research 
practice Networking of Theories offers different strategies for networking theoretical 
approaches of mathematics education research (Prediger et al., 2008). Thus, to inves-
tigate the second question, I aim to illustrate the interaction between the students’ 
mathematical thinking competency and their use of a digital tool by applying the 
networking strategy combining, using key elements of the theoretical perspectives of 
instrumental genesis (Drijvers et al., 2013), conceptual fields (Vergnaud, 2009) and 
semiotic mediation (Bussi & Mariotti, 2008). In the following three sub-sections, I 
present the theoretical perspectives included in my analyses.
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2 The Mathematical Thinking Competency of the KOM 
Framework 

The KOM framework1 is a set of descriptions for mastering mathematics across insti-
tutional levels and mathematical topics (Niss et al., 2016). In the KOM framework, 
possessing overall mathematical competence is defined as “someone’s insightful 
readiness to act appropriately in response to all kinds of mathematical challenges 
pertaining to given situations” (Niss & Højgaard, 2019, p. 12). In the framework, 
mathematical competence is divided into eight distinct but mutually linked mathemat-
ical competencies. A mathematical competency is defined in relation to a specific sort 
of mathematical challenge, in contrast to general mathematical competence, which 
includes a variety of mathematical challenges. 

In the KOM framework, the mathematical thinking competency includes the 
processes of engaging in and reflecting upon mathematical inquiry (Niss & Højgaard, 
2019). To be more specific, it involves “being able to relate to and pose the kinds 
of generic questions that are characteristic of mathematics and relate to the nature 
of answers that may be expected to such questions” (Niss & Højgaard, 2019, p. 15, 
italics in original). I term these processes of the competency the question–answer 
aspect. 

In line with this aspect are the processes of 

distinguishing between different types and roles of mathematical statements (including defi-
nitions, if-then claims, universal claims, existence claims, statements concerning singular 
cases, and conjectures), and navigating with regard to the role of logical connectives and 
quantifiers in such statements, be they propositions or predicates (Niss & Højgaard, 2019, 
p. 15). 

For instance, to possess elements of the question–answer aspect, one needs to 
know the differences between the mathematical claims. I term these processes the 
mathematical statements aspect. 

Furthermore, the mathematical thinking competency includes the process of 
“relating to the varying scope, within different contexts, of a mathematical concept 
or term” (Niss & Højgaard, 2019, p. 15), which I term the scope of concept aspect. In 
relation to differentiability, this could include the meanings of differentiability for a 
given point, a given interval or a function as a whole. Moreover, it could include the 
different views of differentiability, from whether a function’s graph is smooth to the 
ε−δ definition. Lastly, the competency involves “relating to and proposing “abstrac-
tions” of concepts and theories and “generalization” of claims (including theorems 
and formulae) as processes in mathematical activity” (Niss & Højgaard, 2019, p. 15, 
quotation marks in original). I term these processes the generalization–abstraction 
aspect. With the aspects of scope of concept and generalization–abstraction, the 
mathematical thinking competency concerns mathematical conceptualization.

1 In this section, the mathematical thinking competency of the KOM framework is in focus, but for 
the chapter to be readable on its own, some of the concepts of the KOM framework are repeated 
from Chap. 2 (Niss & Jankvist, 2022) of this book. 
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3 Instrumental Genesis and Conceptual Fields 

The perspective of instrumental genesis describes the complex process of trans-
forming a tool into a useful mathematical instrument (Guin & Trouche, 1998); “use-
ful” in this context refers to the tool’s ability to help the user achieve an aim. Drijvers 
and colleagues describe instrumental genesis in terms of three dualities. The first 
duality is artefact-instrument, which distinguishes between the tool itself as a phys-
ical object (the artefact) and the tool as a psychological construct (the instrument) 
(Guin & Trouche, 1998). The second duality is instrumentation-instrumentalization, 
which concerns the direction of how the user interacts with the artefact. Instrumen-
tation refers to how the artefact’s configuration and features shape the user’s way 
of thinking and doing. In contrast, instrumentalization refers to the user’s way of 
thinking that directs the use of the artefact. (Drijvers et al., 2013) The third duality 
is technique-scheme, which, from a practical point of view, distinguishes between 
observable gestures (techniques) and unobservable cognitive structures that guide 
these techniques (schemes) (Drijvers et al., 2013). 

The notion of scheme comes from Vergnaud’s (2009) theory of conceptual fields. 
A conceptual field is a cognitive structure consisting of mathematical concepts and 
situations associated with each other, and “a scheme is the invariant organization 
of activity for a certain class of situations” (Vergnaud, 2009, p. 88, italics in orig-
inal). In the development of mathematical knowledge, Vergnaud (2009) distinguishes 
between operational and predicative forms of knowledge. The operational form is 
the knowledge of doing, and the predicative form is the knowledge of articulation. 
Schemes are part of the operative form of knowledge, whereas language and symbols 
are part of the predicative form. Schemes consist of several aspects, one of which 
involves the two operational invariants: concepts-in-action and theorems-in-action. 
Concepts-in-action are the concepts we associate with and find relevant in the given 
situation. Theorems-in-action are propositions—considered true, but not necessarily 
articulated—stating which activities we can carry out with the concepts-in-action 
(Vergnaud, 2009). 

Considering the concept of differentiability from the perspective of conceptual 
fields, differentiability builds on and connects to other concepts, such as linearity, 
slope, secant, tangent, limit and the derivative among others, all of which consti-
tute their own conceptual fields. Furthermore, with the notions of concepts and 
theorems-in-action, a conceptual field of differentiability can include different ways 
of understanding differentiability. It is these relations and conceptualizations within 
the conceptual fields that I find particularly relevant for the mathematical thinking 
competency’s scope of concept aspect (unfolded in the previous section). Further-
more, the dualities of instrumental genesis and the two-way interaction between user 
and tool can provide a deeper insight into the students’ way of thinking and therefore 
their mathematical thinking competency.
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4 Semiotic Mediation 

The perspective of semiotic mediation focuses on the involvement of an artefact 
(understood in the same sense as in the perspective of instrumental genesis) as a 
tool of semiotic mediation in a mathematics teaching and learning setting (Bussi & 
Mariotti, 2008). A tool of semiotic mediation is an artefact the teacher intentionally 
uses to mediate specific mathematical content through a didactical sequence. The 
word “intentionally” is important here, as one can never be certain that the students 
using the artefact will infer the teacher’s intended mathematical meanings (Bussi & 
Mariotti, 2008). This ultimately means that the artefact acquires a two-fold aim. It 
should be both an aid for the students to solve specific tasks and a tool of semiotic 
mediation related to specific mathematical knowledge (Bussi & Mariotti, 2008). 

To account for this two-fold aim, Bussi and Mariotti (2008) distinguish between 
three categories of signs that indicate a student’s progress from personal to mathemat-
ical meaning. The first category is artefact signs, which originate from the activities 
carried out with the artefact and are of personal meaning, based on experience. The 
second category is mathematical signs, which, in contrast, are signs of mathemat-
ical meaning related to the given mathematical content. The third category is pivot 
signs, which refer both to activities carried out with the artefact and to a mathemat-
ical domain. They function as a pivot in the progress from personal to mathematical 
meaning. Signs include different gestures, drawings and written and oral language 
(Bussi & Mariotti, 2008). With the framework of signs used in the a posteriori anal-
ysis of a teaching sequence, the process of semiotic mediation can bring forth aspects 
of students’ making-meaning when they interact with an artefact. 

5 Networking of Theories and the Roles of the Selected 
Theoretical Perspectives 

Networking of theories is a research practice developed to make different theoretical 
and methodical perspectives in mathematics education research communicate with 
each other. It offers strategies for networking on a spectrum according to the degree 
of integration, from understanding others and making understandable to integrating 
locally and synthesizing (Prediger et al., 2008). Two of these strategies, combining 
and coordinating, are typically used to study an empirical phenomenon in more detail 
than could be achieved using only one perspective; but they are used in different 
ways. Combining is when two juxtaposed analyses use different theoretical lenses to 
capture different aspects of the same empirical phenomena. In contrast, coordinating 
is when a conceptual framework consists of well-fitting elements from different 
theoretical approaches (Bikner-Ahsbahs & Prediger, 2010). Therefore, coordinating 
requires that the cores of the theoretical approaches in question are more compatible. 
Hence, an important element for networking of theories is the focus on the core of a 
theoretical approach (Prediger et al., 2008).
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Considering the core of the KOM framework, the authors behind the framework 
write in relation to the notion of mathematical competency: 

[t]he core of a mathematical competency is the enactment of mathematics in contexts and 
situations that present a certain kind of challenge. (Niss & Højgaard, 2019, p. 19) 

The entire framework is a broad description of mathematics as a practice and is 
not anchored in a given theoretical perspective (Niss & Højgaard, 2019). From a 
network perspective, this may create difficulties, as one cannot go back to its origins 
to determine how compatible it is with the cores of the other theoretical approaches in 
question. However, it is possible to combine the mathematical thinking competency 
with parallel analyses using other lenses to elaborate the empirical phenomena of 
students exercising the mathematical thinking competency in interactions with a 
given digital tool. 

As the KOM framework focuses on an individual’s cognitive actions for doing 
and dealing with mathematics (Niss & Højgaard, 2019), the theoretical perspectives 
to help elaborate the mathematical thinking competency in interplay with the use of 
digital tools should also focus on the individual’s cognition and actions. The theoret-
ical perspectives of instrumental genesis (Drijvers et al., 2013) and conceptual fields 
(Vergnaud, 2009) have previously been proven suitable to describe the interplay 
between students’ possession of mathematical competencies and the use of digital 
tools (Geraniou & Jankvist, 2019). Furthermore, I argue that the theoretical perspec-
tive of semiotic mediation offers a terminology to help us gain deeper insights into 
the students’ meaning-making of a digital tool. 

Instrumental genesis (Drijvers et al., 2013) and semiotic mediation (Bussi & Mari-
otti, 2008) are both based on the instrumental approach. The instrumental approach 
involves a Vygotskian perspective that emphasizes the use of instruments in learning 
processes but that also uses the Piagetian notion of scheme (Verillon & Rabardel, 
1995). The notion of scheme is re-elaborated by Vergnaud (1996), who also draws on 
a Vygotskian perspective, arguing how notions from Piaget and Vygotsky comple-
ment each other. Thus, the cores of instrumental genesis (Drijvers et al., 2013), 
conceptual fields (Vergnaud, 2009) and semiotic mediation (Bussi & Mariotti, 2008) 
are compatible. 

Since these theoretical approaches are compatible, they could potentially be used 
in a coordinated analysis of students’ interactions with digital tools in a mathe-
matics education setting. However, I have chosen to use these theoretical perspec-
tives to conduct juxtaposed analyses using the networking strategy of combining to 
study the phenomenon of students exercising the mathematical thinking competency 
when working with digital tools. Using the mathematical thinking competency as a 
coarse-grained framework, I analyze the empirical case presented below to focus the 
attention on the students’ processes of mathematical thinking competency for the 
subsequent finer-grained combined analyses. 

In the following two sections, I account for the method of the empirical study 
and present a case in which I illustrate how the students exercise the mathematical 
thinking competency through their interaction with a digital tool.
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6 Method and Selection of the Case 

The case presented in this chapter is taken from a larger empirical study carried out in 
autumn 2020 in the classical stream of Danish upper secondary school, called STX. 
In the empirical study, 29 students participated in two lessons on differential calculus, 
each lesson lasting 90 minutes. The students collaborated in groups of two or three in 
order to capture their thinking through their mutual discussions. The students worked 
from a premade TI-nspire worksheet and wrote their answers in an appurtenant Word 
document, both of which were screencast recorded. The students were also recorded 
using their webcams so that their participation and any relevant hand gesticulations 
could be analyzed. The tasks on which the students worked represented the main 
exercises of the two lessons in the empirical study. All pairs/groups worked on these 
tasks for between 20 and 60 minutes, though their work was interrupted by various 
events, such as the first lesson ending, the teacher giving an introduction, having 
to engage in-class discussion, waiting for help or discussing topics unrelated to 
mathematics. 

The video sequences of the students working on these tasks were first coded with 
the aspects of the mathematical thinking competency (described above) to identify 
relevant pieces of data. Analysis 1 below is an elaboration of this process for the 
given case. Based on this analysis, the case of Karen and Lily was selected, because 
the scope of concept aspect of the mathematical thinking competency was very clear 
in the initial coding, due to the students being persistent in their intuitive idea of 
differentiability (cf. Analysis 1). In order to elaborate on how the students interacted 
with and created meaning from the digital tool in relation to the scope of concept 
aspect of the mathematical thinking competency, the case was then analyzed using the 
perspectives of instrumental genesis and conceptual fields (Analysis 2) and semiotic 
mediation (Analysis 3). 

7 Data: Exploring Differentiability Using Secant Lines 

The case presents two students, Karen and Lily, working on a dynamic TI-nspire 
worksheet. This worksheet asks the students to investigate whether a given function 
f (depicted by the blue graph in Fig. 1) is differentiable for given values, where f 
is defined by 

f (x) =
{ 1 

15 x
3 − 1.2x2 + 5.4x + 1.8, −0.5 ≤ x ≤ 9 

1.8, 9 < x ≤ 15 

With two sliders in the top right corner, the students can move x0 on the x-axis 
and change the difference �x . In this way, students can observe differentiability as a 
numerical approximation to the slope of the tangent line (Hohenwarter et al., 2008).
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Fig. 1 Snapshot from TI-nspire, the interactive representation of a function (the blue graph) and a 
changeable secant line (the red graph) 

In the following dialogue, Karen and Lily work with the tool to investigate 
differentiability for x0 = 9. 
01. Lily: What does it mean for it to be differentiable? … When it is differen-

tiable… we should read about it at some point. That, when it has such a tip, 
then it is not differentiable. 

02. Karen: Yes, it is when it is curved. You should be able to walk from a to b 
and such [she grabs her book and reads out sections of the text]. Continuity. 
Called continuity when its graph is connected… from a… [she moves on to  
the paragraph on differentiability] and here, it should be without corners.2 

03. Lily: [Looks at the graph in Fig. 1] But I guess there are no corners in this 
one… But, when it is differentiable, then it is without corners, so there cannot 
be such a tip on it. … Because then it could slope differently-ish like this [she 
holds one of her hands in different directions]. 

04. Karen: But this one [the graph in Fig. 1] is soft.  
05. Lily: Yes, there are no corners. 

Karen and Lily cannot work out how the information from the book can help them 
investigate differentiability using the tool, and they ask for help. Through guidance, 
Karen sets x0 = 9 and controls the slider for �x . First, she does it for negative �x , 
but, because the slider jumps in small intervals, she ends up typing �x = −0.1, for

2 I translate the Danish word “knæk” as “corners”, to illustrate a graph having one or more sharp 
bends but still being connected. 
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which the secant slope is 0. Afterward, she types �x = 0.1, for which the secant 
slope is also 0. 

06. Mathilde: There [the secant slope] is also 0. So, now it approaches 0 from right 
and left, so it then approaches the same value. In this case, 0. 

07. Karen: Ah, so it is opposite, kind of like a mirror-ish? 
08. Mathilde: Yes, let’s say we worked with something that tended to 0 from the 

one side, but 
09. Karen: something different … then it would not be differentiable. Ok. For 

example, if it has a corner. 

The group moves on to investigate differentiability for x0 = 1. Karen types
�x = −0.1, for which the secant slope is 3.3, and then she types �x = 0.1, for  
which the slope is 3.1. 

10. Karen: Then, I guess, it is not differentiable. But, that does not make any sense. 
11. Lily: No, I don’t think it does. But, well, I guess it approaches the same, but 

it is not quite the same. Is it just because there is a little bit of difference in 
the slope. Well, they both approach 3 [she mumbles something]… but does it 
have to be the exact same? What if we take 0.01? 

12. Karen: I think so. Let us just try. [She types in�x = 0.01, and the secant slope 
is 3.19.] 

13. Lily: So it does… it does move closer to. It does approach… 
14. Karen: But it is just not. I think they have to be right on the opposite side. … 

I do not feel, it would make any sense if it is not [differentiable]. 
15. Lily: Yes, because there are no corners, or jumps or anything. 

From this, Karen and Lily presume differentiability, but, to be sure, they ask their 
teacher, who suggests they go even closer. Setting �x = ±0.0001, they get the 
secant slopes to 3.2 on both sides and confirm their presumption. The group moves 
on to another function, where they have to investigate differentiability for x0 = 10. 
For �x = 0.1, the secant slope is −0.1, and for �x to −0.1, the secant slope is 0. 

16. Karen: Oops, there it is not. Should we try more 0’s, or what? 

Fig. 2 Non-differentiable function at x = 10. The secant slope is 0 for �x = 0.00001 (left), and 
the secant slope is −0.1 for �x = −0.00001 (right)
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Fig. 3 Estimated slopes for the given x-values. The text translates as “That means that they are 
all differentiable, because it is continuous and without corners. Slope for x0 = 1 is 3.2 Slope for 
x0 = 3 is 0.0 Slope for x0 = 9 is 0.0” 

For �x = ±0.00001 the slope is still 0 (Fig. 2 left), respectively −0.1 (Fig. 2 
right). 

Karen and Lily seem to see a little corner around x = 10, and they try with �x = 
±0.000001. The secant slope is still 0 for positive �x and −0.1 for negative �x , 
and they conclude non-differentiability. Afterward, they get guidelines to calculate 
the derivative with TI-nspire CAS. Karen types in the given command for the first 
function with the value of x0 = 1, to which TI-nspire CAS gives the result 3.2. 

17. Karen: 3.2, ay! Ah, that was it… we did not calculate it. Should we then just 
[calculate it]? 

They go back to the graphic window again and estimate their values for the limit 
of the secant slope for �x approaching 0 (Fig. 3). 

Before using CAS on the last example, the students go back to the graphic inves-
tigation and write out their arguments for their conclusion of non-differentiability 
for x0 = 10 (Fig. 4). 

18. Karen: x is 10, and there we got that it was not differentiable in ours. 
19. Lily: Oh, yes. Should it not say undefined then? 
20. Karen: I think so. 

Karen types in the command to which the output is “undef” (the last calculation 
in Fig. 5). 

21. Lily: Great. It is so nice when it works. 
22. Karen: Great, yeah. It is the greatest when it actually works, and you finally 

… well, when you do not get it. It is really like ups and downs. 

Fig. 4 The students’ argumentation for differentiability and non-differentiability. The text trans-
lates as “We found out that x0 = 2 is differentiable (differential quotient = −1.33), but that x0 = 10 
is not differentiable. We found out that the slope of the secant for x0 = 10 is unequal when you 
come from a positive direction −0.1, but, when you come from a negative direction, the slope is 0”
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Fig. 5 Calculations of the derivative for specific values in TI-nspire CAS 

8 Analysis 1: Exercised Processes of the Mathematical 
Thinking Competency 

To identify which processes of the mathematical thinking competency the students 
exercise, I analyze the case through the lens of the four aspects of the mathematical 
thinking competency. At first, Lily asks the question of what differentiability means 
(Line 01), which illustrates processes of the question–answer aspect. She recognizes 
the task as a mathematical question and relates this to the nature of the expected 
answer to such a task. This prompts her to search for a definition or explanation of 
differentiability, so they know which results they can interpret as “yes, it is” or “no, it 
is not differentiable”. The students do not exercise the process of posing or relating to 
generic mathematical questions, which are also parts of the question–answer aspect. 

In the students’ search for an answer, relying on the explanation of differentia-
bility as a function whose graph has no corners (Line 02), the two students exercise 
processes of the scope of concept aspect. For instance, Karen connects her under-
standing of differentiability as a graph with no corners to the actions carried out with 
the tool (Line 09). Here, she relates the scope of differentiability when simply looking 
at the graph of the function to investigate the limit of the secant slopes graphically. 

Before starting their investigations, they intuitively consider the graph as being soft 
with no corners (Line 03–05). Hence, they presume that the function is differentiable. 
When they are to determine if the function is differentiable for x0 = 1, they calculate 
the secant slopes to be 3.3, respectively, 3.1 for �x = ±0.1. This makes Karen



74 M. K. Pedersen

conclude non-differentiability, despite it looks like it has no corners (Line 10). Lily 
tries to relate the two understandings of differentiability by interpreting the dynamic 
output of the tool, adding more 0s to �x (Line 09–15). This relation is also seen 
in the instance of non-differentiability (Line 16). Throughout the actions with the 
tool, the students’ intuitive view of differentiability as a graph with no corners guides 
the students’ extension of the scope of the concept of differentiability. 

When calculating the derivatives with CAS, they relate these results to their work 
with the tool (Line 17–20). Hereby, they expand their understanding of an answer of 
differentiability to include a result in the form of a number, or the output “undef” in the 
case of non-differentiability (Line 19–20). Hence, they return to the question–answer 
aspect of the mathematical thinking competency. 

This analysis illustrates that the work with instances of differentiability and non-
differentiability makes Karen and Lily exercise some processes of the question– 
answer aspect and some of the scope of concept aspect, but no processes of the math-
ematical statements or the generalization–abstraction aspect. Moreover, the students’ 
expressions in Line 18–19 also illustrate how the students find coherence between 
the answers and the varying scopes. In the following analyses, I elaborate on how 
these processes are exercised during the students’ work. 

9 Analysis 2: Beginning Instrumental Genesis 

In this section, I analyze the case using the perspectives of instrumental genesis 
and conceptual fields. In this case, the TI-nspire worksheet is the artefact at issue. 
Karen and Lily’s starting point is their concept-in-action “differentiability is shown 
by a graph with no corners” (Line 01–02). Thereby, they have an intuitive idea of 
the function being differentiable (Line 03–05). This understanding becomes part of 
their predicative form of knowledge, but with no connection to any operative form of 
knowledge. As they have no theorem-in-action to draw on, they cannot infer how to 
act with the artefact in relation to their predicative form of knowledge and they ask 
for help. This illustrates the difficulties of beginning the instrumental genesis when 
they have no initial schemes to rely on. 

The instrumentation of the artefact leads Karen to a theorem-in-action, saying that, 
for a function to be differentiable at a given point, the secant slope should be the same 
value for both negative and positive�x , close to the given point. This worked for the 
first instance (x0 = 9) with �x = ±0.1. Therefore, Karen and Lily use this scheme 
to investigate differentiability by copying the technique of setting �x = ±0.1 for 
the next point of interest (x0 = 1). As this gives them two different secant slopes, 
respectively, for �x = ±0.1, they get confused (Line 10–15). This instrumentation 
leads Karen to conclude non-differentiability, even though this conclusion does not 
match her initial concept-in-action of differentiability being a curved graph with no 
corners. 

Because of the mismatch between the tool-induced theorem-in-action and the 
book-induced concept-in-action, Lily is not sure non-differentiability is the answer.
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Although she cannot infer the exact limit, her scheme builds on the secant slope 
getting closer to something, which is observed by her technique of adding more 0s 
to �x . In Lily’s case, the duality of instrumentation-instrumentalization is essential. 
On the one hand, it is Lily’s way of thinking of “approaching” (Line 11) that directs 
the use of the slider for �x . On the other hand, the configuration of the tool and the 
constraints of the slider have encouraged her to think this way. 

With �x = ±0.0001, they conclude differentiability for x0 = 1, which matches 
the concept-in-action of “differentiability-as-no-corners”. This process illustrates 
how Lily’s actions make Karen adjust her thinking of differentiability. For Karen, 
the two secant slopes still have to be equal, but now in the sense of �x close 
enough to 0. Both Lily’s and Karen’s schemes are confirmed by the instance of 
non-differentiability, where the two secant slopes differ from each other, keeping 
their respective values, regardless of how close �x is to 0 (Line 16, Fig. 2 left and 
right). 

In the end, the CAS calculations of the derivatives also confirm their schemes, 
building on the instrumentation of the dynamic environment. Getting the exact value 
of the derivative puts the dynamic investigations into perspective and helps them 
develop a predicative form of knowledge in the form of arguments for differentiability 
and non-differentiability, respectively (Figs. 3 and 4). Also in this situation, the 
instance of non-differentiability functions as a confirmation, when Lily predicts the 
output to be “undefined” (Line 19), and, in this way, thinks with the tool. 

This analysis illustrates how the students relate to the varying scope of differentia-
bility from simply looking at the graph to estimating the limits of the secant slopes by 
relating their concept-in-action of “differentiability-as-no-corners” with their devel-
oped theorems-in-action from working with the tool. Through the development of 
schemes for using the dynamic worksheet as an instrument for determining differ-
entiability, the students’ two views on differentiability approach a conceptualization 
of differentiability with a similar scope. With the students’ development of predica-
tive knowledge, they expand their view on an expected answer of differentiability 
to include whether or not they can determine a limit. Therefore, this process also 
calls for them to exercise the question–answer aspect of the mathematical thinking 
competency. 

To explore how the students obtain sense and meaning out of their interaction 
with the tool, I will now analyze the case from the perspective of semiotic mediation. 

10 Analysis 3: Signs of Semiotic Mediation 

Like above in the analysis from the perspective of instrumental genesis, the artefact 
is the specific dynamic TI-nspire worksheet with the two sliders. From this perspec-
tive, we consider it a tool of semiotic mediation in relation to the specific tasks of 
investigating differentiability and the mathematical content of differentiability. 

Summing up their initial work with the artefact, Karen’s question “Ah, so it is 
opposite, kind of like a mirror-ish?” (Line 07) can be seen as an artefact sign of
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how she understands the secant slopes’ behavior in relation to differentiability. She 
connects this to the situation of non-differentiability and a graph with corners (Line 
09). Thus, the terms “corner” and “no-corner” become pivot signs that hinge the 
behavior of the secant slopes to the concept of differentiability-as-no-corners. This 
allows her to speak of differentiability on a more general level than just related to 
the specific tasks. 

In the next task for x0 = 1, where the secant slopes do not “mirror” around the 
given value, Karen concludes “Then, I guess, it is not differentiable. But, that does not 
make any sense.” This illustrates a discrepancy between her personal sense of differ-
entiability within the artefact and her differentiability-as-no-corners understanding. 
Lily, on the other hand, remains focused on the dynamic of the artefact, expressed 
by artefact signs like “it approaches…” (Line 12) and “it does move closer to…” 
(Line 14). With confirmation from their teacher, this leads to an agreement between 
the results in the artefact and the differentiability-as-no-corners understanding for 
both students, as they can see the graph has no corner at the given point. For Lily, 
the movements of the artefact confirm her understanding of “approaching”, and for 
Karen, the secant slopes do “mirror” around the given point for small enough �x . 

In the last task, Karen and Lily’s written answers show their move from artefact 
signs to mathematical signs, with the pivot sign “slope” hinging the observed in the 
artefact with the derivative obtained by CAS (Figs. 3 and 4). During the exercises in 
the dynamic artefact, Karen does not pay attention to the values of the limit but to 
whether the slopes are equal on both sides of the given x-value. Lily seems aware 
of the limit in some sense, expressed by artefact signs of “approaching”. When they 
return to the graphic investigations after calculating the first derivative, the exact 
values become their argumentation for whether the function is differentiable. In 
Fig. 3, they use the pivot signs of “corners” and “slope”, whereas in Fig. 4, they  
use the mathematical sign “derivative”. This indicates a move from the artefact and 
toward a more generalized concept of differentiability. However, the episode also 
illustrates that knowing the CAS command simplifies determining differentiability 
to whether the output is a number or the undefined-respond. 

This analysis illustrates that as part of the students’ meaning-making of their 
actions with and responses from the artefact they exercise the question–answer aspect 
of the mathematical thinking competency. Like in analysis 2, analysis 3 shows the 
importance of the individual tasks in relation to each other, which makes the students 
exercise the scope of concept aspect. Moreover, the attention to artefact signs and 
mathematical signs in analysis 3 indicates an initial, yet important, process of the 
generalization–abstraction aspect of the mathematical thinking competency, which 
analysis 1 did not capture.
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11 Discussion and Conclusion 

By viewing the same data through different lenses, the three analyses above illustrate 
processes of students’ mathematical thinking competency in interactions with the use 
of the TI-nspire worksheet. 

Analysis 1 uncovers which aspects of the mathematical thinking competency 
are exercised in the given case and which are not. The apparent processes of the 
mathematical thinking competency that the students exercise are of the question– 
answer and the scope of concept aspects. It is through the students’ work with 
multiple instances of differentiability and non-differentiability that the students get 
the opportunities to relate to the scope of the concept in different contexts and develop 
their conception of differentiability, as well as to relate to the expected answer for 
determining differentiability. 

Analyses 2 and 3 illustrate how these processes of mathematical thinking compe-
tency interact with the students’ use of the TI-nspire dynamic template and CAS. 
First, the case illustrates that the question–answer aspect is part of the instrumen-
tation of instrumental genesis. An expectation of the interplay between the mathe-
matical thinking competency and the use of digital tools could be that relating to an 
expected answer would influence the instrumentalization. Having an idea of what 
kind of answer to be looking for may influence how to use the tool. However, Anal-
ysis 2 of the case illustrates that relating to the expected answer develops through 
the instrumentation and the development of schemes. Not until then, the question– 
answer aspect is exercised in the instrumentalization aspect as well. Thus, in this case, 
instrumentation and to some extent instrumentalization interact with the exercise of 
the question–answer aspect. 

Second, the scope of concept aspect is exercised in the duality of instrumentation 
and instrumentalization. The students bring new operational knowledge including 
new-developed schemes into each new task, which develops both the instrumental 
genesis and the signs of the semiotic mediation as well as the scope of the concept 
of differentiability. Hereby, it seems that the students work on the individual tasks 
and relate these to each other, but do not generalize over the different instances. 
Nevertheless, illustrating the development from artefact signs to pivot and initial 
mathematical signs, Analysis 3 indicates that the students approach the conditions 
for the limit to exist and for the function to be differential at a more general level. 
This shows that the students’ work with the tool includes an initial process of the 
generalization–abstraction aspect toward a more generalized concept of differentia-
bility—an aspect of the mathematical thinking competency not obvious from the 
perspective of the mathematical thinking competency alone. 

Using the networking strategy of combining, the three analyses can be said to 
have separate foci. The first analysis (with the mathematical thinking competency as 
a coarse-grained framework) helped navigate the following analyses using the other 
selected theoretical perspectives. As juxtaposed analyses, each theoretical perspec-
tive adds to a networked understanding of students exercising the mathematical 
thinking competency while interacting with the given TI-nspire worksheet.
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The focus on enactment in the KOM framework fits well with the focus on inter-
action with the tool in the perspectives of instrumental genesis (Drijvers et al., 2013) 
and semiotic mediation (Bussi & Mariotti, 2008) as well as with the focus on the oper-
ational form of knowledge and the notion of scheme in the perspective of conceptual 
fields (Vergnaud, 2009). This indicates compatibility between the KOM framework 
and the theoretical perspectives applied in this study, thus, a potential for using the 
networking strategy coordinating. Hence, the theoretical perspectives can be pieced 
together as a conceptual framework to study the mathematical thinking competency 
in interaction with the use of a given digital technology. 

The three juxtaposed analyses also illustrate which processes of the mathemat-
ical thinking competencies the students do not exercise. First of all, the involved 
tasks do not initiate the mathematical statements aspect or the part of the generaliza-
tion–abstraction aspect involving the awareness of generalization and abstraction as 
mathematical activities. Nevertheless, it could be expected that the students would try 
to generalize more explicitly over the different instances of differentiability. Further-
more, having the view on differentiability-as-no-corners, the students could have 
asked why discontinuous functions or functions whose graphs have sharp corners 
are not differentiable and in this way add to the question–answer aspect as well 
as to the scope of concept aspect. Yet the results do indicate how single aspects 
of the mathematical thinking competency can be exercised in interaction with an 
explorative worksheet, like the TI-nspire worksheet presented in this chapter. Using 
an explorative environment can help students investigate both positive and nega-
tive instances of given mathematical concepts, processes or relations. However, it is 
important that the tasks supporting the students’ use of the tool guide the students’ 
explorations, for example, by clearly stating the interesting aspects and asking them 
to observe specific elements of the explorative environment. Finally, the tasks should 
explicitly ask the students to question the concept in different contexts, for instance, 
how the given concept is connected to other parts of the specific topic or how the 
given concept could be defined in other mathematical topics. 
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Mathematical Competencies Framework 
Meets Problem-Solving Research 
in Mathematics Education 

Mario Sánchez Aguilar , Martha Leticia García Rodríguez , 
and William Enrique Poveda Fernández 

1 Introduction 

Nowadays, the mathematical instruction of many students around the world is 
immersed in technological environments supported by the use of collaborative digital 
platforms, telecommunication software, and other digital technologies. The digital 
tools to which students are exposed in these instructional environments modify their 
ways of solving and proposing mathematical problems, as well as the way they 
express and communicate such problems and their solutions. The transformation of 
the processes of solving and posing mathematical problems in these instructional 
environments is so profound that the isolated use of theoretical frameworks may 
prove insufficient to fully grasp the emergence and development of the strategies 
implemented by the students in these kinds of technological environments. 

This chapter illustrates how the mathematical competencies framework (Niss & 
Højgaard, 2011, 2019) can function as an organizing framework for studying math-
ematical problem-solving processes supported by the use of digital tools. When 
used in combination with other compatible theoretical notions—as happens with 
some notions from research on mathematical problem solving—the mathematical 
competencies framework offers an enhanced analytical capability.
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Particularly, this chapter illustrates the potential of the networking of theories 
(Prediger et al., 2008) through a case study related to the mathematical work of 
a preservice mathematics teacher. A theoretical analysis of the problem-solving 
process of this future teacher when dealing with a geometrical problem aided by 
digital tools is presented as illustration. This chapter contributes not only to illus-
trating the potential of networking of theories as a research practice, but also to 
positioning the mathematical competencies framework as an additional theoret-
ical tool available to researchers interested in investigating people’s mathematical 
problem-solving processes. 

Before presenting the case study and its analysis, the following sections introduce 
the reader to a set of theoretical notions that are necessary to follow the analysis. It 
begins with an outline of the mathematical competencies framework and later intro-
duces the notion of networking of theories in mathematics education. Finally, some 
theoretical developments from problem-solving research in mathematics education 
are introduced. 

2 Mathematical Competencies: An Overarching 
Framework 

The mathematical competencies framework is derived from a Danish educational 
project called Competencies and Mathematical Learning (The KOM project), first 
reported by Niss and Jensen (2002). One of the driving forces behind this project 
was “to create valid and reliable forms of assessment of a person’s mastery of mathe-
matical competencies” (Niss & Højgaard, 2011, p. 8). Thus, the framework of math-
ematical competencies offers an overarching conceptualization of what it means for 
a person to be “mathematically competent”. 

At the heart of this conceptual framework is the notion of mathematical compe-
tence, defined as “someone’s insightful readiness to act appropriately in response to 
all kinds of mathematical challenges pertaining to given situations (Niss & Højgaard, 
2019, p. 12). Moreover, there are constituent components of mathematical compe-
tence called mathematical competencies defined as “someone’s insightful readiness 
to act appropriately in response to a specific sort of mathematical challenge in given 
situations” (Niss & Højgaard, 2019, p. 14). According to this framework, the math-
ematical competencies call “for ‘specific kinds of activation’ of mathematics in 
order to answer questions, solve problems, understand phenomena, relationships 
or mechanisms, or to take a stance or make a decision” (Niss & Højgaard, 2019, 
p. 14).
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Eight mathematical competencies1 constitute the notion of mathematical compe-
tence. Although usually presented separately, these competencies may overlap and 
interact, depending on the situation and context. The eight competencies can be 
grouped into two categories (Niss & Højgaard, 2019). The first is the category of 
competencies for posing and answering questions in and by means of mathematics: 

• Mathematical problem-handling competency; 
• Mathematical reasoning competency; 
• Mathematical modeling competency; 
• Mathematical thinking competency. 

The second is the category of competencies for handling the language, constructs, 
and tools of mathematics: 

• Mathematical representation competency; 
• Mathematical symbols and formalism competency; 
• Mathematical communication competency; 
• Mathematical aids and tools competency. 

The case study that is analyzed in this chapter shows an evident intertwining 
between the mathematical problem-handling competency and the mathematical aids 
and tools competency. However, this does not mean that other mathematical compe-
tencies are not involved in the case study—they are also activated but to a lesser 
degree. Due to their importance in the case study analyzed, we will describe these 
two competencies in more detail below. A more comprehensive account of all eight 
mathematical competencies can be found in Niss and Højgaard (2011). 

2.1 Problem-Handling Competency 

This competency relates to the capacity to pose and solve mathematical problems 
within and across a variety of mathematical domains. But what is meant by a 
mathematical problem? According to Niss and Højgaard (2011, p. 55): 

A (formulated) mathematical problem is a particular type of mathematical question, namely 
one where mathematical investigation is necessary to solve it. In a way, questions that can 
be answered by means of a (few) specific routine operations also fall under this definition 
of “problem”. The types of questions that can be answered by activating routine skills are 
not included in the definition of mathematical problems in this context. The notion of a 
“mathematical problem” is therefore not absolute, but relative to the person faced with the 
problem. What may be a routine task for one person may be a problem for someone else and 
vice versa.

1 There are small differences between the names of the mathematical competencies as presented 
in Niss and Højgaard (2011) and Niss and Højgaard (2019). In this chapter, we use abbreviated 
versions of the competencies’ names as presented in Niss and Højgaard (2019). 
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As noted by Niss and Højgaard (2019, p. 15), “a key aspect of this competency 
is the ability to devise and implement strategies to solve mathematical problems”. 
Niss and Højgaard (2011, p. 55) characterize this competency as follows: 

This competency partly involves being able to put forward, i.e., detect, formulate, delimitate 
and specify different kinds of mathematical problems, “pure” as well as “applied”, “open” as 
well as “closed”, and partly being able to solve such mathematical problems in their already 
formulated form, whether posed by oneself or by others, and, if necessary or desirable, in 
different ways. 

2.2 Mathematical Aids and Tools Competency 

In this competency, reference is made to the ability to put into productive use mate-
rial aids and tools as part of the mathematical activity. The material aids and tools 
considered in this competency may vary: blocks, rulers, abacuses, calculators, etc. 
As noted by Niss and Højgaard (2011), this competency involves having knowledge 
of the existence and properties of relevant tools used in mathematics, but also having 
an insight into their possibilities and limitations. It is important to note how Niss and 
Højgaard’s (2011) considerations about mathematical aids and tools are applicable 
to a wide range of digital tools such as software, mobile devices, digital platforms, 
etc. 

2.3 Facets and Dimensions of a Mathematical Competency 

All mathematical competencies are manifested either in a receptive facet or in a 
constructive facet. According to Niss and Højgaard (2019), in the receptive facet of a 
competency, the individual manifests the ability to “relate to and navigate with respect 
to considerations and processes which have already been introduced (typically by 
others) into a given context or situation” (p. 19), while in the constructive facet 
“the focus is on the individual’s ability to independently invoke and activate the 
competency to put it to use for constructive purposes in given contexts and situations” 
(p. 19). 

Moreover, individuals’ mathematical competence manifests in different contexts 
and situations but never in its full range; that is, it is not possible to exhaustively 
and completely possess a mathematical competency. For this reason, there are three 
dimensions that allow definition and characterization of the degree of possession of 
a competency by an individual: degree of coverage, radius of action, and technical 
level. The three dimensions are defined as follows: 

The degree of coverage of a competency is the extent to which all the aspects that define and 
characterize the competency form part of that individual’s possession of the competency. 
… The radius of action represents the range and variety of different contexts and situations 
in which the individual can successfully activate the competency. … [The technical level]
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denotes the level and degree of sophistication of the mathematical concepts, results, theories 
and methods which the individual can bring to bear when exercising the competency. (Niss & 
Højgaard, 2019, p. 21) 

As mentioned earlier, the mathematical competencies framework offers an over-
arching conceptualization of what it means for a person to be mathematically compe-
tent. Since it includes competencies related to the use of tools and the handling of 
mathematical problems, it is a theoretical approach that allows framing the study of 
people solving and proposing mathematical problems when they are supported by 
the use of digital tools. In particular, the mathematical competencies framework can 
readily be used as an organizing framework that could be networked with compat-
ible theoretical notions from the area of problem solving for analyzing the complex 
reality of students’ mathematical work on collaborative digital platforms. Later on, 
it is illustrated how the networking of these theoretical notions can allow a fine-
grained analysis of the ways people handle mathematical problems within techno-
logical settings. But before that, the notion of networking of theories in mathematics 
education is introduced in more detail. 

3 Networking of Theories in Mathematics Education 

The networking of theories arises as a way to take advantage of the wealth and variety 
of existing theoretical approaches in the field of mathematics education research. The 
diversity of theoretical lenses is considered a rich resource for grasping the complex 
reality of educational phenomena in mathematics instruction (Prediger et al., 2008). 

The networking of theories can be interpreted as a research practice consisting of a 
set of methods and strategies to connect theoretical approaches. This connection can 
have several purposes such as understanding others and making one’s own theories 
understandable, finding similarities and differences between theoretical approaches, 
understanding an empirical phenomenon or a piece of data, and developing a new 
piece of synthesized or integrated theory (Prediger et al., 2008). 

Within the range of networking strategies, there are two focused on providing 
deeper insights into an empirical phenomenon or a piece of data, namely combining 
and coordinating. According to Prediger and Bikner-Ahsbahs (2014), these strategies 
are mostly used for a networked understanding of an empirical phenomenon or 
a piece of data. Here comes into play the idea of triangulation since “combining 
and coordinating means looking at the same phenomenon from different theoretical 
perspectives as a method for deepening insights into the phenomenon” (pp. 119–120). 

The distinction between the strategies combining and coordinating depends on 
the degree of integration of theory elements with respect to their compatibility. While 
combining theoretical approaches does not necessitate the complete compatibility 
of the theoretical approaches under consideration, the coordination of theoretical 
approaches produces a conceptual framework with elements of different theories but 
with compatible cores (Prediger & Bikner-Ahsbahs, 2014; Prediger et al., 2008).
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Taking these ideas together, it could be claimed that the method for implementing 
a coordinating strategy consists of, first, verifying the compatibility of the theoretical 
approaches to be coordinated and, second, conducting an analysis in which the same 
phenomenon is analyzed from different theoretical perspectives in order to deepen our 
understanding of the phenomenon. To verify theoretical compatibility, it is necessary 
to confirm that the particular approaches or notions that are intended to be coordinated 
share epistemological assumptions, and that their key premises and definitions are 
shared or at least do not contradict each other. 

In the analysis presented later in this chapter, the coordinating strategy is used 
to analyze an empirical case. Such an analysis serves as an illustration of the ideas 
presented in this section. The following section presents an overview of some theo-
retical notions from problem-solving research, which will be used in coordination 
with the mathematical competencies framework. 

4 Some Theoretical Developments from Problem-Solving 
Research in Mathematics Education 

Problem solving is a well-established research area in the field of mathematics educa-
tion. Its main purpose is to understand and relate the processes involved in formulating 
and solving problems and use such understanding to promote students’ develop-
ment of mathematical knowledge and problem-solving competencies (Santos-Trigo, 
2020). 

A fundamental notion in mathematical problem solving is that of a problem. 
Schoenfeld (1985) refers to the notion of problem as follows: 

The difficulty with defining the term problem is that problem solving is relative. The same 
tasks that call for significant efforts from some students may well be routine exercises for 
others, and answering them may just be a matter of recall for a given mathematician. Thus 
being a “problem” is not a property inherent in a mathematical task. … The word problem 
is used here in this relative sense, as a task that is difficult for the individual that is trying to 
solve it. (p. 74) 

Another key notion in the area of mathematical problem solving is heuristics. An  
early definition of this notion can be found in Polya (1962/1981): “I wish to call 
heuristics the study that the present work attempts, the study of means and methods 
of problem solving.” (p. x, emphasis in the original). Nevertheless, a heuristic can 
also be understood as a “generic rule that often helps in solving a range of non-routine 
problems. … Heuristics are an important aspect of mathematical problem solving, 
especially if we refer to them as the capabilities for mathematical reasoning that 
enable insightful problem solving” (Mousoulides & Sriraman, 2020, p. 331). 

There are other theoretical developments emanating from mathematical problem 
solving. In particular, conceptual frameworks to characterize learners’ progress and 
success in problem-solving activities have been developed in this research area. One 
of the first models to characterize the process of solving mathematical problems was 
proposed by Polya (1945/1957). Polya’s model consists of four phases: understanding 
the problem, devising a plan, carrying out the plan, and looking back. Another widely
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used framework is the one proposed by Schoenfeld (1985). This framework helps 
to explain students’ problem-solving behaviors in terms of four dimensions: the use 
of basic mathematical resources or knowledge base, the use of cognitive or heuristic 
strategies, the use of metacognitive or self-monitoring and control strategies, and 
students’ beliefs about mathematics and problem solving. 

Schoenfeld’s (1985) work has served as inspiration and as a starting point for 
other theoretical developments within the mathematical problem-solving research 
area. Of particular relevance for the analysis presented in this chapter are the theo-
retical models that consider the role of digital tools—particularly the use of dynamic 
geometry systems (DGS)—in the process of mathematical problem solving (e.g., 
Jacinto & Carreira, 2017; Santos-Trigo & Camacho Machín, 2013). In the next 
section, a theoretical framework that considers the use of DGS into problem-solving 
processes is introduced. Notions of this framework are later coordinated with notions 
of the mathematical competencies framework for the analysis of a case study. 

4.1 A Framework for the Systematic Use of Technology 
in Mathematical Problem Solving 

The use of digital tools has a profound effect on problem-solving processes. 
According to Santos-Trigo (2020, p. 690), digital tools provide “new opportuni-
ties for teachers and students to represent, explore, and solve mathematical problems 
and to extend mathematical discussions beyond formal settings”. But what happens 
when subjects use systematically computational tools to make sense of the problem 
statement, represent, explore, and solve problems? This is a central question in the 
work of Santos-Trigo and Camacho Machín (2013), where they propose a framework 
to characterize ways of reasoning that emerge as a result of using digital tools when 
trying to solve a mathematical problem. 

The framework proposed by Santos-Trigo and Camacho Machín (2013) stems  
from the systematic observation of prospective and in-service mathematics teachers 
solving mathematical problems with the aid of digital tools—mainly with the support 
of DGS—and takes into consideration previous theoretical models for mathematical 
problem solving. These researchers acknowledge that digital tools such as DGS intro-
duce powerful heuristics to the problem-solving process such as dragging objects and 
finding loci of particular objects. The framework conceptualizes into the following 
four episodes the process of solving mathematical problems with the support of 
digital tools. 

The Comprehension Episode. As in Polya’s model (1945/1957), the compre-
hension episode refers to the process of understanding the problem statement by the 
problem-solver. Making sense of the problem statement is a fundamental step in any 
problem-solving approach. However, the comprehension episode considers the use 
of digital tools as a means of representing and exploring the problem with the inten-
tion of fully understanding it: “the use of the tool demands that the problem-solver
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thinks of the statement in terms of mathematical properties to use the proper soft-
ware commands to represent and explore the problem” (Santos-Trigo & Camacho 
Machín, 2013, p. 287). 

The Problem Exploration Episode. Once the problem statement has been under-
stood, the problem-solver is in a position to begin the exploration of the problem with 
the help of digital tools. This exploration can serve the solver to broaden the perspec-
tives from which the problem can be analyzed, but it can also be useful to formulate 
conjectures related to the problem that could later be confirmed or refuted. 

The Searching for Multiple Approaches Episode. This is a continuation of the 
previous episode. This means that in this episode the problem is approached by the 
solver from different perspectives (e.g., analytical, geometric) and using different 
resources. This can favor the contrast of strengths and limitations associated with 
each approach. Also, it is in this episode where the problem-solver has the opportunity 
to test their initial conjectures on the problem. 

The Integration Episode. This is an episode in which the different approaches 
and solutions to the problem are collectively presented and compared. This collective 
process favors the comparison of the different approaches, the identification of the 
scope of the proposed solutions, and the formulation of new problems. 

4.2 Coordination of Notions from Problem-Solving Research 
with the Mathematical Competencies Framework 

As mentioned before, the coordinating networking strategy is mostly used for a 
networked understanding of an empirical phenomenon or a piece of data. Further-
more, the coordination strategy must be implemented between theoretical approaches 
with compatible cores. So here, it is relevant to ask, are the mathematical compe-
tencies framework and the aforementioned theoretical framework coming from 
mathematical problem-solving research compatible? 

We think that the answer to the previous question is: yes, they are. First, a 
shared premise between the mathematical competencies framework and mathemat-
ical problem-solving research is to consider the ability to solve and propose mathe-
matical problems as a fundamental part of mathematical understanding. Second, the 
fundamental notion of problem as relative to the person attempting to solve it is also 
shared. Third, the mathematical competencies framework considers the use of tools 
and aids—including digital tools—in the mathematical activity, as is also considered 
in the framework proposed by Santos-Trigo and Camacho Machín (2013). Fourth, 
the ability to pose conjectures—which can be fundamental to a problem-solving 
process—is considered part of the mathematical thinking competency that involves 
being able to relate to and pose the kinds of generic questions that are characteristic 
of mathematics—including definitions, if–then claims, conjectures, etc. (see Niss & 
Højgaard, 2019, p. 15). 

The potential of this networking of theories will be illustrated with the analysis of 
a case study. It consists of the problem-solving process of a geometric problem with 
the help of a DGS, carried out by a prospective mathematics teacher. In the following
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sections, the geometric problem addressed by the prospective mathematics teacher 
is presented, and the context in which this problem was implemented is briefly 
explained. 

5 A Virtual Course on Euclidean Geometry for Prospective 
Mathematics Teachers 

The case study analyzed in this chapter consists of the solving process of a geometric 
problem by a future mathematics teacher identified by the pseudonym “Anna”. This 
case study was taken from a virtual course on Euclidean geometry, which is part 
of a training program for prospective Costa Rican lower secondary school teachers 
offered by the University of Costa Rica. This course is intended to promote future 
teachers’ understanding of geometry as an axiomatic theory and develop certain 
mathematical abilities. In particular, it is expected to strengthen their ability to solve 
geometric problems with the help of a DGS. 

The course lasted 12 weeks and was taught during the spring of 2020. The course 
was taught mainly asynchronously using the Moodle platform and using a Zoom room 
for synchronous meetings. Twenty-three Costa Rican future teachers in an age range 
of 19–22 years participated in the course. This is a course where future mathematics 
teachers study Euclidean geometric concepts, but also learn how to represent and 
manipulate them with the DGS GeoGebra. Additionally, the course emphasizes the 
exploration and solving processes of geometric problems using GeoGebra. 

The teacher in charge of this course is the third author of this chapter. He has a 
Ph.D. in mathematics education and possesses a broad knowledge of mathematical 
problem solving. His role was to introduce the topics of the course through the 
Moodle platform, to design mathematical problems for the students, and to give them 
feedback on their solution processes. In turn, the students went through the materials 
corresponding to the topics introduced by the teacher on the Moodle platform. They 
also solved geometric problems and sent their solutions through the Moodle platform 
in PDF, Word, or GeoGebra formats. This last type of format is used for data files 
developed with the GeoGebra software; through these files, students could show the 
teacher their GeoGebra-based explorations and solutions to the geometric problems, 
including text explaining the followed procedure step by step. 

5.1 A Geometric Problem and Some Prerequisites to Tackle It 

The illustrative case study presented in this chapter is based on the solving process 
of an open-ended geometric problem that was presented to students during week 10 
of the course. This geometric problem (known as Varignon’s theorem) was selected 
from an advanced stage of the course because it was expected that at this time the 
students would be more capable of solving geometric problems and handling DGS.
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Before the problem was presented to the students, they were introduced to 
the following topics related to the theme “parallelism and parallelograms”. These 
topics are part of the mathematical prerequisites considered necessary to address the 
problem: 

• Definition of parallel lines. 
• Two theorems for parallel lines: 

– Theorem A. If two lines in a plane are parallel to a third line, then they are 
parallel to each other. 

– Theorem B. The line segment formed by joining the midpoints of two sides of 
a triangle is parallel to the third side of the triangle. 

• Properties of the angles that are formed when cutting two parallel lines with a 
secant line. 

• GeoGebra construction of a line that is parallel to another line. 
• Definition of quadrilateral, parallelogram, rhombus, rectangle, and square. 

The problem was presented to the students through the following statement: 

Given any quadrilateral ABC  D  and a quadrilateral E FG  H  whose vertices are the 
midpoints of the sides of ABC  D, what properties does E FG  H  have? 

In addition, the problem statement was accompanied by a GeoGebra file that 
contained a dynamic representation of the problem (see Fig. 1). The instructions 
for the students were: (1) use the provided dynamic representation to explore the 
problem, (2) propose a solution to the problem, and (3) formulate new problems 
from the original problem and propose solutions for them.

Fig. 1 Representation of the problem provided to the students. The file allows the user to manipulate 
the represented figures by dragging their vertices
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In the next section, we present Anna’s solving process of this geometric problem. 
Following, we analyze this solving process with the use of a conceptual frame-
work generated by the coordination of theoretical notions from the mathematical 
competencies framework and mathematical problem-solving research.

5.2 Anna’s Solving Process of the Geometric Problem 

Anna is an 18-year-old prospective mathematics teacher enrolled in the previously 
described course. Her case was selected because Anna’s reports of the proposed 
solutions were explicit and detailed. Seven reports that she submitted over a two-
week period were reviewed. These reports allowed the reconstruction of Anna’s 
exploration and solution process of the geometric problem stated above. The reader 
may find it useful to use as a reference the representation of the problem located at 
https://www.geogebra.org/m/mkvps626 to follow the description of Anna’s solution 
process. 

5.3 Anna Formulates and Proves Conjecture 1 

Anna declares having used the dynamic representation of the problem provided by 
the teacher to drag around the points A, B, C , and D and formulates the following 
conjecture: 

Conjecture 1: “Regardless of the position of points A, B, C and D, the quadrilateral E FG  H  
seems to be a parallelogram”. 

To explore this conjecture, Anna uses the Relation tool in the GeoGebra system, 
which provides information about the possible relationship between two selected 
objects. Thus, Anna uses this tool to compare the opposite sides of quadrilateral 
EFG  H  and confirms that they are congruent and parallel (see Fig. 2).

Fig. 2 Excerpt from Anna’s report illustrating how she used the Relation tool in the GeoGebra 
system to verify whether EFGH is a parallelogram

https://www.geogebra.org/m/mkvps626
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Then, Anna presents in her report a proof of conjecture 1. The following is a 
translation and transcription of that proof:

Given ▢ABC D, E , F , G, and H are midpoints of AB, BC , CD, and DA, 
respectively. AC and BD  are its diagonals (see Fig. 3). 

Conjecture to be proved: ▢EFG  H  is parallelogram. 

(1)△ AB  D By definition of triangle 

(2)△ CB  D By definition of triangle 

(3) BD ||EH By theorem B 

(4) BD ||FG By theorem B 

(5) EH||FG By theorem A 

(6) △ BC A By definition of triangle 

(7) △ DC A By definition of triangle 

(8) CA||FE By theorem B 

(9) CA||GH By theorem B 

(10) FE||GH By theorem A 

∴ ▢EFG  H  is a parallelogram by definition of parallelogram (see 5 and 10) 

Fig. 3 Image included by Anna in her report to illustrate her proof that ▢EFGH is a parallelogram 

5.4 Anna Formulates Conjectures 2 and 3 and Proposes 
Three Problems 

Anna also reports having explored the relationship between the areas of the quadrilat-
erals ABC D  and EFG  H . One of her reports includes a screenshot of the GeoGebra 
system where we can observe that Anna added a grid to the plane and dynamically 
measured and displayed the areas of both quadrilaterals as dynamic text (see Fig. 4).
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Fig. 4 Excerpt from Anna’s report showing her use of the grid on the plane and the simultaneous 
and dynamic measurement of the areas of the quadrilaterals ABCD and EFGH 

Anna then formulates a second conjecture related to the relation of the areas of 
the quadrilaterals: 

Conjecture 2: “The area of E FG  H  is half the area of ABC  D”. 

Anna did not provide a formal proof of this conjecture. Rather, she explains that 
she dragged the vertices of ABC D  and observed that in some cases the parallelogram 
EFG  H  looks like a rhombus, a rectangle, or a square. She verified this observation 
by using particular cases of the quadrilateral ABC D  and using the grid as a reference. 
Thus, Anna proposes the following three problems: 

– Problem 1. Is there a possibility that EFG  H  is rhombus? What conditions must 
be met for this to happen? 

– Problem 2. Is there a possibility that EFG  H  is rectangle? What conditions must 
be met for this to happen? 

– Problem 3. Is there a possibility that EFG  H  is square? What conditions must be 
met for this to happen? 

Anna begins the exploration of the problems that she proposed herself, particularly 
problem 1. She reports having dragged the vertices of the rectangle ABC D, using as 
a reference the grid in the plane, and writes that in some cases a rhombus is formed. 
She also reports having drawn the diagonals of the rectangle EFG  H  and measuring 
the angle that they form when they intersect to verify that it is a right angle. She 
concludes her exploration with the following conjecture: 

Conjecture 3: “For E FG  H  to be rhombus, its diagonals must be perpendicular and bisect. 
This happens if ABC  D  is square or rectangle”. 

Anna’s solving process continues and leads to the formulation of a conjecture 
about the characteristics of EFG  H  when ABC D  is a non-convex quadrilateral. 
However, due to space limitations, we will leave the description of the process up to 
this point, and we will continue with its theoretical analysis in the next section.
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6 A Networked Analysis of Anna’s Solving Process 

The analysis of Anna’s solving process of the geometrical problem is started by 
applying the mathematical competencies framework while trying to identify the 
potentialities and limitations that this framework offers for the analysis of a solution 
process. We complement the analysis by using one of the episodes considered in the 
framework proposed by Santos-Trigo and Camacho Machín (2013). 

6.1 Mathematical Competencies Framework 
as an Overarching Framework for Analyzing Anna’s 
Problem-Solving Process 

If we analyze Anna’s solving process through the lens of the mathematical compe-
tencies framework, it is possible to identify what other mathematical competencies 
come into play in her solving process in addition to the mathematical problem-
handling competency. For instance, it is evident that Anna uses the mathematical 
aids and tools competency which manifests itself through her confident use of the 
GeoGebra system, for example, when she uses the relation tool to get information 
about the possible relationship between two selected objects. Likewise, it could be 
argued that Anna brings into play the mathematical thinking competency due to 
her apparent understanding of the meaning of a conjecture and a proof. Also, the 
mathematical representation competency is activated in Anna’s handling and explo-
ration of the representations of geometric objects in GeoGebra, for example, when 
she drags around the vertices of a parallelogram to formulate conjectures. All these 
mathematical competencies are manifested by Anna in a constructive facet. 

Continuing with this analysis, it could be further argued that other competencies 
are activated during Anna’s solution process—albeit perhaps with a lesser degree 
of coverage because only some aspects that define and characterize the competen-
cies are put into play. These include, for instance, the mathematical symbols and 
formalism competency and the mathematical communication competency due to the 
mathematical symbols and formal rules involved in developing and expressing her 
proof of Conjecture 1. Probably also the mathematical modeling competency should 
be considered since she explores geometrical models and their features. 

Furthermore, the mathematical competencies framework allows us to charac-
terize in more detail the mathematical competencies activated in Anna’s problem-
solving process through the dimensions of a competency degree of coverage, radius 
of action, and technical level. As an illustrative case, we consider Anna’s mathemat-
ical problem-handling competency. It is difficult to express precisely the magnitude 
of these dimensions, because they are qualitative in nature (Niss & Højgaard, 2019, 
p. 22) and the mathematical competencies framework does not provide a reference
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point or any tool that facilitates the partial ordering of a competency possession. In 
the case of Anna’s mathematical problem-handling competency, it is fair to claim 
that it has a broad degree of coverage because she demonstrates the ability to iden-
tify potential solutions to the proposed problem, but she also shows the capability to 
propose new geometrical problems by herself. The radius of action of the competency 
manifested through this case study is more limited since her problem tackling compe-
tency only manifests itself in a geometric context—although this does not imply that 
Anna cannot solve mathematical problems in other contexts and situations. Finally, 
the technical level that Anna’s competency implies is not basic since it involves the 
knowledge and application of definitions and properties of various geometric objects, 
as well as theorems associated with the properties of those objects. A similar anal-
ysis can be conducted for the other mathematical competencies involved in Anna’s 
problem-solving process. 

As we have illustrated, the mathematical competencies framework can help formu-
late a clear description of the competencies that an individual activates when solving 
a mathematical problem aided by digital tools. However, by coordinating this frame-
work with notions from mathematical problem solving research, it is possible to 
unpack more details about Anna’s activation of those various competencies. The next 
section illustrates how a theoretical coordination like this one is useful in exploring 
these elements at a finer grain size. 

6.2 Producing a More Fine-Grained Analysis Through 
the Coordination of Theoretical Notions 

Research on mathematical problem solving has developed theoretical notions related 
to the trajectories that individuals usually follow when trying to solve mathematical 
problems with the help of digital tools. The coordination of these notions with the 
mathematical competencies framework can produce a more fine-grained analysis of 
Anna’s mathematical problem-handling competency. 

For instance, the framework proposed by Santos-Trigo and Camacho Machín 
(2013) indicates that the problem-solving process supported with DGS initially goes 
through comprehension and exploration episodes. We assume that there is an under-
standing of the problem on the part of Anna that is confirmed in her way of exploring 
and conjecturing about it. However, if we zoom in and focus the analysis on the 
problem exploration episode—that is, the moments in which the individual conducts 
the exploration of the problems with the aid of digital tools—we will be able to appre-
ciate smaller components of problem-handling competency in action. An example is 
the heuristics that the individual puts into play in the exploration process. In the case 
of Anna, it is possible to see that the heuristics of dragging vertices and measuring 
line segments and angles were essential for Anna to be able to identify patterns and 
formulate conjectures. The application of these two heuristics together with the use 
of the grid in the plane was fundamental to verify the proposed conjectures. In turn,
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these conjectures were the raw material for Anna’s suggested solutions and posed 
problems. 

Zooming in on the problem-solving episodes and paying attention to the heuristics 
that the problem-solver enacts in such episodes allows us to more clearly appreciate 
the way in which the different mathematical competencies are manifested and inter-
twined. For example, when Anna is exploring Conjecture 1, she uses the relation 
tool in the GeoGebra system which provides information about the possible rela-
tionship between two selected objects. The heuristic of comparing two geometric 
objects through the relation tool is a manifestation of Anna’s mathematical aids and 
tools competency, particularly of her knowledge of the possibilities of the GeoGebra 
system and her ability to put that knowledge into productive use. However, Anna also 
manifests the ability to interpret the outcomes generated by the relation tool. That is, 
by confirming with the help of the DGS that the opposite sides of the quadrilateral 
EFG  H  are parallel and congruent (see Fig. 2), Anna concludes—and later proves— 
that EFG  H  is a parallelogram. However, we argue that Anna would not be able to 
interpret the outcomes of the relation tool without having some knowledge about the 
properties of parallelograms. In other words, in order to interpret the relation tool 
outcomes, Anna must also activate her mathematical representation competency, in 
particular, her knowledge about representations of geometric objects. 

7 Conclusion 

The mathematical competencies framework is an overarching framework that allows 
for identifying the different competencies—and dimensions of these competencies— 
that an individual brings into play by being involved in some type of mathematical 
activity. In the particular case of solving mathematical problems, the mathematical 
competencies framework allows us to identify what other competences individuals 
put into play when trying to solve mathematical problems, beyond the somewhat 
obvious mathematical problem-handling competency. We have argued and illustrated 
that the mathematical competencies framework can function as a platform compat-
ible with theoretical developments of mathematical problem-solving research, which 
in turn allows us to deepen our understanding of mathematical problem-solving 
processes through a fine-grained analysis of its evolution and development. 

We hope that the modest theoretical exercise that we present in this chapter will 
inspire other mathematical problem-solving specialists to explore the possibilities 
and potentialities of the networking of theories for the analysis of the problem-solving 
process.
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Mathematical Modelling and Digital 
Tools—And How a Merger Can Support 
Students’ Learning 

Britta Eyrich Jessen and Tinne Hoff Kjeldsen 

1 Introduction 

Mathematical modelling is as most parts of mathematics education increasingly 
affected by the use of digital technologies. According to Siller and Greefrath (2010), 
when merging modelling and technology more advanced calculations and realistic 
problems can be addressed, potentially serving both pedagogical, psychological, 
cultural and pragmatic aims for the teaching of modelling. However, in a subsequent 
study they identify the non-impact of the use of technologies on students’ develop-
ment of modelling competency when engaged with traditional tasks. They conclude 
that the technological tool “cannot simply be seen as a facilitator of learning mathe-
matical modelling, at least not if the tasks are not changed”. (Greefrath et al., 2018, 
p. 243). This means, if we wish to capture the potential pedagogical, psychological, 
cultural and pragmatic aims of including technologies in modelling, we need to under-
stand the potential roles played by digital tools and how they affect the modelling 
activities in order to design modelling activities supporting students’ learning. In 
this chapter, we contribute to this by analysing two case studies designed with the 
aim of supporting students’ development of modelling competency and learning 
content knowledge while explicitly drawing on digital tools. We discuss how the 
digital resources affect the modelling activities and learning outcomes by pursuing 
the following research question:
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How can the merger of mathematical modelling and digital resources support students’ 
learning of mathematical knowledge together with development of their modelling and 
mathematical digital competencies? 

Furthermore, we will discuss potentials and pitfalls for students’ learning of 
mathematics when merging modelling and digital resources. 

Mathematical modelling covers a number of different theoretical constructs (e.g., 
see Barquero & Jessen, 2020; Niss & Blum,  2020), however in this chapter we 
delimit ourselves to address mathematical modelling from perspectives explicitly 
related to modelling competency. According to Niss and Højgaard (2019) “Mathe-
matical competence is someone’s insightful readiness to act appropriately in response 
to all kinds of mathematical challenges pertaining to given situations” (Niss & 
Højgaard, 2019, p. 12), which again should hold true for the modelling compe-
tency defined as “being able to construct […] mathematical models, as well as to 
critically analyse and evaluate existing or proposed models, whilst taking purposes, 
data, facts, features and properties of the extra-mathematical domain being modelled 
into account”, (Niss & Højgaard, 2019, p. 16). Niss and Blum (2020, p. 13) present 
several theoretical constructs that reflect the relation between mathematics and the 
real world, which draw on the notion of sub-competencies. Here we employ the 
modelling cycle described by Blomhøj and Jensen (2007), depicted in Fig. 1, where 
the sub-competencies are indicated by the arrows (a)–(f) covering: formulation of task 
based on the perceived reality, systematisation, mathematisation into a mathematical 
system, mathematical analysis, interpretation, or evaluation against the mathemat-
ical system before validating the model against the perceived reality. Blomhøj and 
Jensen (2007) stress that these sub-competencies cannot stand alone, which is why

Fig. 1 The six step modelling cycle (Blomhøj & Kjeldsen, 2006) adapted from Blomhøj and Jensen 
(2007)
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students’ experiences, theory and data available, must be taken into consideration 
regarding what constitutes modelling competency. These are relevant aspects for our 
case studies.

To analyse the learning potentials and their realisations with respect to modelling 
competency and mathematical digital competency (Geraniou & Jankvist, 2019) we  
need a theoretical tool that allows us to tune in on the role played by the digital tools, 
which is not captured by the modelling cycle in Fig. 1, nor in the versions suggested 
by Siller and Greefrath (2010). For this, we use the media-milieu dialectics from the 
Anthropological Theory of the Didactic (ATD). Our analysis is based on strategies 
for networking theories in terms of ‘coordinating and combining’ as described by 
Prediger et al. (2008, p. 172). In the following, we present the two cases before intro-
ducing the media-milieu dialectics and mathematical digital competency. That is, we 
follow the methodology coined parallel analysis by Prediger and colleagues (2008), 
by first presenting the phenomenon to be studied followed by a short presentation of 
the theoretical construct employed for the analysis and applied to the phenomenon 
before changing to the next theoretical construct, see also Bikner-Ahsbahs et al. 
(2014) and Kidron et al. (2014). By comparing and contrasting the findings provided 
through the parallel analysis from the three perspectives, we discuss the potentials 
of merging digital tools and modelling. Thus, from the lenses offered by the media-
milieu dialectics, modelling competency and mathematical digital competency we 
seek to narrow the gap of knowledge concerning potential roles played by digital 
tools in modelling processes. 

2 First Case Study—Pirates of the Caribbean 

Our first case study is a teaching activity developed by Danish upper secondary math-
ematics teachers as part of an in-service course on how to teach inquiry-based in math-
ematics as required by reformed curricula. The didactical notions taught were trans-
posed elements of task design from the perspective of ATD (Jessen & Rasmussen, 
2020). The course was 7 sessions where small groups of teachers from different 
schools, worked and developed activities together in ways adopting elements of 
Japanese lesson study to ensure the continuous shared development and evaluation 
of teaching practices (Jessen, 2019). The case study is an activity on the introduction 
of vectors in grade 11. The problem posed by the teachers were the following: 

Q0: You are a captain in the Golden Days of piracy in the Caribbean and you are to guide your 
ship from Havana to Santo Domingo (see the attached map). Your crew covers ‘landlubbers’, 
‘treasure hunters’ and sailors. They only answer to directions formulated as: ‘go 20 miles 
south, then 30 miles southeast (SE) and then 100 miles north west (NW)’. A while ago you 
made the distance from Aruba to Montserrat in 3 days and you expect to travel by the same 
average speed this time. 

What orders would you give your crew and when do you expect to arrive? (Jessen et al. 
2021)
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The students had two hours for solving the problem in groups. They were asked 
to share their preliminary solutions twice during the two hours. The teachers had 
prepared a GeoGebra file, with an ancient map of the Caribbean Sea imported, 
where the mentioned cities were marked as fixed points. Furthermore, the teachers 
had created a function called ‘vector from beginning point’, assuring vectors to 
appear between the two points defining them. Finally, the students were told where 
in the textbook they could find information about vectors and handed out a picture of 
a compass rose. There is no obvious optimal sailing route from Havana at the north 
coast of Cuba to Santo Domingo in the Dominican Republic placed at the south coast 
of Hispaniola. Therefore, the problem invites the students to inquire and explain their 
choices. 

From the planning group attending the professional development course, the usual 
teacher of the class taught the lesson. The rest of the planning group observed the 
teaching, took notes and video recorded the sharing sessions. All student groups had 
to present, which they did by connecting their computers to the projector showing 
their work in GeoGebra. The episodes below are based on the video recordings of 
the students’ sharing sessions. 

During the first plenum presentation, most groups have been working on question 
Q0, determining the optimal sailing route by placing points and connecting those 
with line segments. This is related to Q0, but different from it. Several groups were 
content with these initial routes, but did encounter challenges, when calculating the 
length of the route and how to translate the line segments into instructions for the 
crew. Moreover, the line segments were of different length, why to sum them was 
perceived cumbersome by the students. To figure out what instructions to give the 
crew, the students tried to measure angles between the line segments and the x-axis 
in the coordinate system. They did not succeed. Some groups decided to search for

Fig. 2 Students’ initial compass rose in GeoGebra
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the notion of vector by ‘googling’. This gave them short videos showing how to work 
with vectors in GeoGebra. They learned the syntax for writing vectors in the input 
field. This gave them vectors starting from (0,0) in the coordinate system. Then they 
created the compass rose shown in Fig. 2. The group had created the optimal route 
by copying and dragging ‘unit vectors’ from this compass rose into a long sequence 
in the map in GeoGebra. The first student presenting this work remarked that it made 
it easier to calculate the length of the route. They argued how the length of each 
compass rose vector, −→ui , had to be added the number of times they appeared in the 
route. Then the route could be described as:

c1 · −→u1 + c2 · −→u2 +  · · ·  

where ci ∈ N denotes the number of times vector −→ui is used in the optimal route. 
After the group had presented this, the teacher asked a specific group: 

T: “Didn’t you encounter the notion of ‘unit vector’ when reading parts of the suggested 
pages in the textbook? Did you notice what defines a unit vector?” 

The students were quiet for a while, mumbling, then one student replied: 

S1: “we are not sure what you are asking for, but at least their length is 1”. 

T: “Yes, does this hold true for those unit vectors?” [points to the whiteboard showing the 
students’ version of Fig. 2]. 

Students from several groups are mumbling and another student answers: 

S2: “No, all the vectors need to end at the [circumference of the] unit circle, the angles are 
not all correct there” [pointing at the figure]. 

In the second plenum session, most groups had continued working on creating 
optimal routes using the notion of vector. Some groups referred to what they have read 
in the suggested pages of the textbook, but other groups had used internet searches. 
They found the Cartesian coordinate representation and the geometric representation 
of magnitude and direction and improved their compass roses in GeoGebra, e.g., 
defining the north east unit vector as: 

−−→uN E  =
(
cos(45◦) 
sin(45◦)

)

One group found that instead of connecting the same vector several times in a 
row, they could prolong it as they called it, by multiplying the unit vector with the 
number of vectors needed. Another group added that in fact they could multiply the 
vector with any real number. Thus, scalar multiplication was introduced. 

Eventually, the students needed to find the length of the route. Some groups argued 
that since the unit vectors had length one,

∣∣−→ui

∣∣ = 1, the length of the route could be 
described as: 

c1 ·
∣∣−→u1

∣∣ + c2 ·
∣∣−→u2

∣∣ +  · · ·  =  c1 + c2 +  · · ·
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Another group decided to create their entire route as one vector 

−−→utotal = k1 · −→u1 + k2 · −→u2 +  · · ·  

Then they wrote the syntax in the input field computing the length of the entire 
route:

∣∣−−→utotal

∣∣
During their presentation, it was shown within their shared GeoGebra file how 

the length of the actual sailing route was equal to the direct line between the two 
cities, though it went across land. Initially the group did not find this strange, but after 
discussing why some groups got significantly longer routes, the students discovered 
that 

c1 ·
∣∣−→u1

∣∣ + c2 ·
∣∣−→u2

∣∣ +  · · · �= ∣∣c1 · −→u1 + c2 · −→u2 +  · · ·∣∣
The lesson ended by the teacher asking the groups to write their answer to Q0 in 

a document and hand it in together with their GeoGebra worksheets. The students 
left the class wondering how multiplication works for vectors. 

3 The Second Case Study—Anaesthesia 

The second case study is a project on how to build models for administering drugs 
during surgery. It is part of a larger group of projects that is developed for a 
two semester first year university course on mathematical modelling of dynamical 
systems of which every student worked with six projects in groups of 4–6 students. 
The course was designed to teach calculus through a modelling and problem oriented 
approach to develop (parts of) the students’ modelling competency. The anaesthesia 
project is also discussed by Blomhøj and Jensen (2003), who analyse how the formu-
lation of the modelling problem and the supervision through dialogues with each 
group support students’ development of modelling competency with special focus 
on the sub-processes (c), (d) and (e) in Fig. 1. Here we focus on the role of MatLab 
as an essential digital tool in the modelling projects. Below we present just enough 
of the students’ work with the anaesthesia modelling problem in order to analyse 
the potentials of the project and the role of MatLab. This will naturally have some 
similarities with the analysis by Blomhøj and Jensen (2003) regarding modelling 
competency. However, our analysis of the role played by the digital tool, MatLab, 
goes beyond the scope of their paper. 

Each modelling project is driven by a problem guiding the students’ work and 
taking point of departure in a data set. Each project comes with an introduction
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to the context of the problem (called ‘Background’) and a collection of ‘hints’ of 
which some can be seen as sub-problems guiding the students’ independent work 
(Blomhøj et al., 2008c). Each group of students documented their work in a report. 
The reports were required to contain a description in prose of the system modelled, 
a diagram (if feasible) illustrating the dynamics, the delimitation of the system and 
considerations hereof. Data should be presented, described and reflected upon, a 
mathematical representation of the system (equations, graphs or similar) should be 
described, along with discussions of the parameters of the model including possibili-
ties of estimating values for them. Numerical and analytical analyses, interpretations 
and discussions of model results with respect to the original problem, and finally, 
a concluding discussion of the model(s)’ status and applicability (Blomhøj et al., 
2008c, p. 3). The requirements for the report and the formulation of the problem 
of the project with hints were designed in accordance with the modelling cycle 
and the mathematical themes covered to ensure students’ development of modelling 
competency and learning of mathematical knowledge within calculus. 

The problem of the anaesthesia project was: How to dose anaesthetics during 
surgery? The problem was based on models that are parts of a training simulator, 
which has been used at Herlev Hospital in Denmark by medical staff in charge of 
anaesthetics (Fig. 3). 

Fig. 3 A copy of the first page of the anaesthesia project and the data. Every project description 
begins with a box containing a question, here “How to dose anaesthetics during surgery?”. The data 
table shows the concentration of the drug pancuronium in the bloodstream at different times after 
the injection of 4 mg drug at time t = 0. (After Hull, 1979). (Blomhøj et al., 2008c, pp. 57–58)
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The students worked with the project during three weeks along with regular classes 
of the course (2.5 h twice a week). Two sessions were reserved for students’ group 
work where they worked together, discussed their project with other groups working 
on the same problem and used the teacher as a supervisor for discussions and help. 

Guided by the first set of ‘hints’/sub-problems, the students. 

• constructed a curve from data of the logarithm of the concentration of drug in the 
bloodstream as a function of time (see Fig. 4), 

• drew a two-compartment diagram from which they derived a system of differ-
ential equations for the concentration of drug in the bloodstream and the tissue 
respectively (see Fig. 5), 

• derived expressions for the eigenvalues, α and β, in terms of the parameters 
a1, a2, a3, and tried to convince themselves that the eigenvalues are none-equal, 
negative real numbers. 

The students used their existing knowledge, their modelling competency devel-
oped through their previous projects in the course (the anaesthesia project is in the 
group of the 5th projects), MatLab and their textbook to produce the plot in Fig. 4 
(and a similar plot with linear approximations for the time intervals [0, 0.5] and [0.5, 
4.5], respectively) and an expression for the eigenvalues in terms of the parameters 
in the model. Dealing with algebraic manipulations, estimating upper bounds for 
expressions and rewriting them as expressions they know for certain are positive or 
negative, are not standard procedures for them.

Fig. 4 Plot of data from the table in Fig. 3. Time in hours from the injection is on the first axis and 
the logarithm of the concentration in μ-gr/l is on the second axis
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Fig. 5 Compartment diagram and system of differential equations of the dynamics of the flow of 
drug between the bloodstream and the tissue 

In the second set of ‘hints’, the students were first asked to solve the system of 
differential equations analytically. Many students turned to MatLab, as they had done 
in their previous projects, to use MatLab to solve the system and draw graphs of the 
solutions. These students did not initially reflect upon the fact that their MatLab 
procedure requires numerical values for the parameters, which they did not have at 
this point, and hence the syntax failed. Thus, MatLab ‘forced’ the students to return 
to the analytic work for deriving solutions with symbols for the eigenvalues and the 
parameters. Secondly, the students were asked to estimate the eigenvalues and the 
parameter a2 such that the logarithm to the function describing the concentration 
of pancuronium in the bloodstream fits the given data. This required the students 
to combine their knowledge of the analytic solution as a sum of two exponential 
functions, the sign of the eigenvalues and their knowledge of straight lines in semi-
log plots to judge and take actions on how to estimate the eigenvalues. Their existing 
knowledge included reading semi-log plots and estimate parameters for exponential 
functions through linear regression performed in MatLab, which was elaborated by 
their work with the semi-log plot (Fig. 4), which does not resemble a straight line.

For this, they received two further hints: to consider what the curve looks like for 
later time values, and show the following relations between the eigenvalues and the 
parameters: 

a2a3 = αβ and a1 + a2 + a3 = −(α + β) 

Focusing on the last part of the plot in Fig. 4, several groups usually turned to 
MatLab to perform linear regression and received an exponential function as the 
solution. However, this does not fit the events around the time when the drug initially 
was injected. Gradually, during dialogue with the teacher and fellow students (see 
also Blomhøj & Jensen, 2003), these groups realised, that the initial curve looks 
similar, and through linear regression they gained another exponential function. This 
led the groups to raise several questions: How can it be that the analytic solution 
seems to be the sum of two exponential functions for the entire period? How can the
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solution be one exponential function in one time interval and another exponential 
function in another interval? Can one of those be equal to zero? Some groups graphed 
both functions in the same MatLab window, discovering when one and the other is 
dominant. The students used the estimates for the eigenvalues together with the 
relations between the eigenvalues and the parameters to derive estimates for a1 and 
a3. Lacking only one parameter (a2), the students could now use their MatLab syntax 
to solve the systems of differential equations by altering the value of a2.. For each 
value of a2., they plotted the corresponding solution, and compared with the plot of 
data until they reached a sufficiently good fit with data. This qualitative approach of 
finding the best fit made the students uneasy, not trusting their own judgement for 
estimating the parameter. 

During the construction of the anaesthesia model, the students realised the neces-
sity of algebraic skills, mathematical representation and reasoning competencies in 
order to be able to use mathematical modelling. With estimates for all parameters, 
they used MatLab to plot the functions representing the concentrations of drug in 
the bloodstream and in the tissue (Fig. 6). Thus, they had developed a ‘mathematical 
laboratory’ for monitoring the amount of drug. They used this laboratory to, finally, 
answering the original question of how to dose pancuronium during surgery. They 
extended their compartment model by implementing a drop, adjusting their mathe-
matical model accordingly and used MatLab to experiment with various plans for 
continuous intravenous dosing to ensure that the amount of drug in the tissue stays 
between the thresholds of risking the patient wakes up and the critical limit where the 
drug becomes dangerous. They used MatLab to validate their plan for administering 
a steady state of drug in the tissue for a two hours surgery, as shown in Fig. 6. 

Fig. 6 Solutions to the system of differential equations solved by MatLab. The left side shows the 
plot of the concentration of drug in the bloodstream with an injection of 4 mg drug at time t = 0. 
The right side shows the plots of the concentration of drug in the bloodstream (blue) and in the 
tissue (green) for the extended model with a drop implemented in the compartment model, where 
a steady state is reached and maintained for 2 hours
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4 Media-Milieu Dialectic Through the Herbartian Schema 

In our analysis we are drawing on the notion of media-milieu dialectic from ATD 
(Chevallard, 2007), since this allows us to analyse conditions and constraints for 
strategies pursued by students (Kidron et al., 2014). In our cases, this means how the 
design and the digital resources further or delimit students’ work with the modelling 
problems at stake. When discussing the interplay between media and milieu, we 
employ the Herbartian schema to depict the dynamics between the two and when 
one resource changes role from media to milieu and vice versa. The Herbartian 
schema is different from cognitive schemes, though the students’ engagement with 
the dialectic between media and milieu might lead to development of their cognitive 
schemes. The Herbartian schema describes the dynamics of a didactic system, S, 
which consists of a group of learners X , studying the question Q under guidance of 
Y (Chevallard, 2007). X can be a whole class of students, a smaller group of students 
or a single student, s. Similarly, Y can be a group of supervisors, a single teacher, 
y, or  Y = ∅, in case of self-study processes. The system consisting of X, Y and 
Q brings into being (denoted by ) a ‘personal answer’, A♥, to  Q. We depict the 
didactic system as: 

A♥ is personal since it is not to be found in textbooks, webpages etc., but is the 
result of a joined process of X andY interacting with the milieu, M , which Chevallard 
(2008) defines as “a fuzzy and changing set of didactic ‘tools’ of different kinds that 
X , acting under the supervision of Y , has to bring together ( )” (Chevallard, 2008, 
p. 2). The process is depicted in the developed Herbartian schema: 

The milieu,M , consists of existing answers, A♦ 
i , in terms of students’ previously 

developed knowledge (the rhombus indicates that these are equal or similar to official 
or shared knowledge within the specific domain), works,W j , drawn upon, which 
can be textbooks, webpages and all kinds of resources produced to disseminate 
knowledge, but also videos and newspaper articles etc. and data, Dk , which can be 
generated through experiments, be collected from databases or provided as part of 
the problem. The data can be both quantitative and qualitative (Chevallard, 2019): 

M =
{

A♦ 
1 , A

♦ 
2 , . . . ,  A♦ 

l , W1, W2, . . . ,  Wm, D1, D2 . . . ,  Dn

}

All elements of the milieu are considered media which “designate here any repre-
sentation system of a part of the natural or social world addressed to a certain audi-
ence” (Chevallard, 2007, p. 1, our translation), brought together as being relevant for 
the study of Q. Hence the didactic milieu of the Herbartian schema covers media
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supporting and nurturing the study of Q and “can include an a-didactic milieu in the 
sense given by TDS, that is, a system of objects acting as a fragment of ‘nature’ for Q, 
able to produce objective feedback about its possible answers” (Kidron et al, 2014, 
p. 158, where TDS is short for Theory of Didactic Situations (Brousseau, 1997)). 
Thus, in the modelling context the validation takes place against the perceived reality, 
why media representing this must be part of the milieu. The dialectic of the media 
and the milieu can be described as drawing on knowledge from media using it to 
search for new knowledge to be tested in the milieu and converted to media. Media 
and milieu refer to the functioning of an object in a learning process. That is, digital 
tools play the role of media, when used for more pragmatic purposes as providing 
answers to be studied or to be used when developing A♥. When digital tools are used 
for exploring notions or validating answers, we consider them as milieu for the study 
of Q. Similarly, the teachers or student peers can both provide answers to be studied 
(being media) or they can validate answers provided by other students (representing 
the milieu). 

4.1 The Dialectics and Piracy 

The didactical system describing plenum sessions from the first case study consists 
of 

where Xi represents each of the student groups, guided by the single teacher, y, 
studying the question of guiding a ship around the Caribbean Sea, Q0. During the 
first sharing session the class derives a preliminary answer denoted A1 

♥. The idea 
was to construct the route as line segments or by (some unit) vectors added together. 
The initial work of each group can be described by the system: 

The answers shared during plenum sessions vary but guide the study towards the 
development of A1 

♥, reflecting different group answers. The milieu brought together 
by the groups and the teacher can be described as: 

M =
{

A♦ 
1 , A

♦ 
2 , A

♦ 
3 , A

♦ 
4 , A

♦ 
5 , . . .  W1, W2, W3, . . .  D1, D2, Q0, Q0

′
}

The data is the map in GeoGebra, D1, and the time spent on the previous trip, D2. 
The students drew on existing answers such as how to construct fixed and movable 
points, line segments, measuring length and angles in GeoGebra, which is represented 
by A♦ 

1 , A
♦ 
2 , A

♦ 
3 , A

♦ 
4 , A

♦ 
5 … The teacher brought into the milieu the GeoGebra func-

tion ‘vectors from beginning point’, specific pages of the textbook and the compass
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rose, W1, W2, W3. Initially the students chose to answer the question Q0
′: What is 

the optimal route? Their answers were validated against the milieu containing the 
original question, Q0, requiring the instructions to be understandable for sailors. 
Here their initial answer failed, which created the need for the students to study the 
notion of vector and exploring the milieu leading to searches for further media. We 
see from the video recording that they refer to resources found as web searches. 
We denote these as ‘…’ in the Herbartian schema, not knowing them exactly. Thus, 
we can conclude that the nature of the question and students’ existing knowledge 
about GeoGebra and geometry made it possible for the students to engage with the 
problem, formulate initial hypotheses of an answer and created the need to study 
further media, driving the modelling process. 

Some students experimented with the notion of vectors, some by constructing the 
compass rose in GeoGebra to build the route. GeoGebra became the milieu where 
students have decomposed the knowledge studied from media, reconstructing this as 
answers for Q0. Thus, students gained the ability to draw vectors digitally, apply them 
for preliminary solutions for the modelling problem at stake. Further, we observed 
how the students became media for each other. Some groups got inspired by the 
compass rose in GeoGebra as to secure instructions comprehensible for sailors. The 
idea presented in Fig. 2 is an answer, AXi,1 

♥, for the presenting group, but becomes 
a work, W ♦ 

Xi,n 
, to be studied by other groups. During the following dialogue initiated 

by the teacher regarding unit vectors, the answering group validated the compass 
rose against their newly gained knowledge on unit vectors and existing knowledge 
on the unit circle, correcting their initial perception of the notion. All became works 
to be studied by other groups. Hence, the plenum session captured episodes where 
the digital tool both acts as media and as milieu. Such processes were also observed 
regarding the students’ presentations, which means that the students continuously go 
forth and back between decomposing and reconstructing answers or engage in the 
dialectic between media and milieu. 

Similar dynamics are found in the second session, where several groups used 
the idea of unit vectors, which led to discussions of sums of vectors leading to 
multiplication with scalar, calculation of length of vectors and the sum of those. 
The constructions of elaborated answers are based on further media studied (in the 
textbook, web searches etc.) employing new notions and syntax in the milieu offered 
by the map in GeoGebra. GeoGebra plays the role as milieu when demonstrating the 
‘paradox’ that: −−→utotal = k1 · −→u1 + k2 · −→u2 +  · · ·  does not entail

∣∣−−→utotal

∣∣ = k1 ·
∣∣−→u1

∣∣ + 
k2 ·

∣∣−→u2

∣∣ +  · · · . This validation led the students to study the media on properties 
of the sum and length of vectors and how to calculate those. Thus, media invited 
for explorations within the milieu, validating the answer, which led to further study 
of media. Thus, what is seen from this analysis is the fuzzy nature of mathematical 
modelling when modelling the optimal sailing route and how the digital tools delimit 
their first answers, when students believe it to be sufficient to use their existing skills 
within GeoGebra and later, the option of adding vectors providing them with a 
different measure, than what they asked for. However, the GeoGebra combined with 
the specific phrasing of Q0, the works proposed by the teacher, students’ autonomous
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web searches drove the process of testing, adjusting and evaluating continuously 
improved models. 

4.2 Dialectics and Anaesthetics 

In our second case, we have, during the two project sessions, didactical systems 
consisting of a group of students working under the guidance of the teacher—and 
occasionally by other groups, but a significant amount of self-study occur. We depict 
this as: 

The milieu consists of: 

M =
{

A♦ 
1 , A

♦ 
2 , A

♦ 
3 , . . . ,  W1, W2, W3 . . . , . . .  D1, Q0, Q1, Q2, . . .

}

Here we denote the problem formulation with sub-problems as Q0, Q1, Q2, .... 
The problem came with a data set of the decay of the concentration of drug in 
the bloodstream as a function of time, D1. The problem was formulated in relation 
to what had been taught previously, why students’ existing knowledge in terms of 
existing answers A♦ 

1 , A
♦ 
2 , A

♦ 
3 , . . .  are considered the natural resource for answering 

the problem, Q0. If not all answers are well enough established it is suggested that 
students restudy the course material. There is a reference to a paper by Hull (1979) 
retrieved by some groups where other groups used general web searches, represented 
as W1, W2, W3… It varies between groups how much the milieu is developed when 
engaged with the project. 

The first set of sub-problems, Q1 − Q3, draws on previous answers developed 
by the students A♦ 

1 , A
♦ 
2 , A

♦ 
3 , . . .  concerning the plot of data, the construction of 

the compartment diagram and the system of differential equations, leading to the 
derivation of expressions of the eigenvalues in terms of the parameters in the model. 
During their work with the characterisation of the eigenvalues, students’ previously 
gained knowledge and the textbook acted as milieu, where some of them consulted 
their upper secondary textbooks as media. The gained knowledge constituting the 
first answers became media to be restudied for the second set of sub-problems. Thus, 
we see an emphasis put on revisiting the content knowledge when building elements 
of the model through answering the sub-questions and less experimentation and 
evaluation against the perceived realty, which is mainly mathematical. 

In the second set of sub-problems, some groups wanted to use MatLab for solving 
the systems of differential equations (i.e., as media), though not knowing how to 
type the equations, which made them realise the need for further analysis. Thus, 
MatLab prompted the students for reconstruction of their mathematical knowledge 
before allowing MatLab to provide the answers. In this episode, MatLab functioned
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both as media and as milieu. When fitting the curves to estimate the value of a2, 
the students used MatLab for explorations, why MatLab functioned as the milieu 
for exploration and validation. In the final part of the project where the students 
answered a concrete version of the original problem of how to administer the drug 
during an operation, MatLab again functioned as milieu—both when the students 
experimented with how to implement a drop in the model, and when they eventually 
used MatLab for validating their dosing plan. Thus, by explicitly identifying when a 
tool as MatLab function as media or milieu in the students’ process of study, we can 
see how the students’ knowledge about needed and relevant input for MatLab and 
potential answers initially delimits the modelling process. However, most students 
demonstrate the maturity to revisit their mathematical work to match relevant input 
for MatLab. Knowledge about these dynamics is relevant to know to design the 
scaffolding of the modelling activity providing the students with sufficient openness 
to demonstrate autonomy and still being able to engage with the problem, learning 
both mathematics and developing modelling competency. 

5 Mathematical Digital Competency and Modelling 

Mathematical digital competency is a recent construct that builds on the competence 
framework by Niss and Højgaard (2019). The competence framework covers in 
total eight competencies, where modelling is one of them. Another is the aids and 
tools competency covering the ability to know of and how to use various aids and 
tools when engaged in mathematical activity and critically reflect upon when to 
use those aids and tools (Niss & Højgaard, 2019, p. 18). This also links to other 
descriptions of digital competence (Ferrari, 2012). However, Geraniou and Jankvist 
(2019) claim that a definition must take into account how the processes of using 
digital tools transform those tools into mathematical instruments affecting students’ 
cognitive schemes referring to Vergnaud (2009) and support students’ learning of 
mathematical concepts as it has been argued by Artigue (2002) and Guin and Trouche 
(1999). 

When digital tools become instruments rather than artefacts, situations emerge 
where “a tool can shape and affect a student’s thinking and actions” (Geraniou & 
Jankvist, 2019, p. 36), though this is often the result of a long process where the 
tool initially have had a pragmatic value as e.g., advanced calculator, but gradu-
ally becomes an environment for explorations and construction of new knowledge 
gaining an epistemic value. The latter is to be strived for, as Artigue (2010) have  
argued that the pragmatic purpose of digital tools can have little or negative impact 
on students’ learning outcomes. Based on relations between theoretical constructs 
regarding digital tools and learning processes within mathematics, Geraniou and 
Jankvist propose the following definition of mathematical digital competency as: 

Being able to engage in a techno-mathematical discourse. […] Being aware of which digital 
tools to apply within different mathematical situations and contexts, and being aware of 
the different tools’ capabilities and limitations […] Being able to use digital technology
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reflectively in problem solving and when learning mathematics. (Geraniou & Jankvist, 2019, 
p. 43) 

This definition of mathematical digital competency captures more nuances of 
what it means insightfully to employ digital tools when engaged in mathematical 
activities including modelling processes and prompts the idea of mathematical digital 
competency shaping mathematical thinking. This indicates that digital technologies 
shape the modelling processes more than what is captured by the work of Siller and 
Greefrath (2010), though still depending on the nature of the modelling problem 
posed. 

5.1 Competencies and Piracy 

Revisiting the first case study from the perspective of modelling, the students are 
eventually able to model the sailing route using vectors to provide sound instructions 
for the crew. The route is constructed based on the ‘perceived reality’, represented by 
the data D1 and D2. Though the situation is not real, it nurtures students’ willingness 
to systematise and mathematise the problem. The domain of inquiry is delimited by 
D1, the sketching environment and the requirement of using vectors. The students’ 
experience with GeoGebra and the geometric notions A1 − A5, made the students 
reformulate the task handed out to Q′, ignoring theory on vectors. The mathemati-
sation using the A1 − A5, proved insufficient when validating the route against the 
perceived reality of manoeuvring ships centuries ago. This prompted the students 
to study theory of vectors, W1, W2, . . ., re-mathematising the problem. The insights 
gained from evaluating the second modelling of the route, using the compass rose of 
Fig. 2, led the students to revisit the theory in terms of unit vector and unit circle. After 
a new mathematical analysis, the groups modelled routes answering the problem. 
From this we see that students demonstrated capacity and willingness to engage in 
all aspects of mathematical modelling furthering their modelling competency. 

From the perspective of mathematical digital competency, we consider both 
GeoGebra and the web searches as tools employed by the students. The tools func-
tion both as media and works to be studied, but also as the milieu against which 
knowledge is decomposed and reconstructed as answers in terms of suggested routes. 
Throughout the two lessons, students mainly worked in the digital environment using 
the discourse of the program, though linked to the discourse of geometry and in partic-
ular vectors. They discussed advantages of Cartesian definition, but also magnitude 
and direction linking this to the unit circle. This demonstrates their familiarity with 
the program and their ability to engage in techno-mathematical discourse, which 
is further developed through the notion of vectors. The tool certainly shaped their 
initial approach to the problem, but they also demonstrated reflective use of the tool 
and ability to search for further knowledge through web searches, improving their
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capabilities within GeoGebra. The experimentation carried out in the program indi-
cated limitations with respect to their understanding of the syntax of finding length 
of vectors and a limited understanding of the notion itself. They partly resolved 
this by sharing their work with the class realising their mistake. This demonstrates 
how the milieu, in terms of other groups and the digital tool, shaped the thinking 
of the students, which we consider an illustration of students being “able to use 
digital technology reflectively in problem-solving and when learning mathematics” 
(Geraniou & Jankvist, 2019, p. 43). In particular, the analysis through media-milieu 
dialectic emphasises how this emerge. 

5.2 Competencies and Anaesthesia 

In the second case, we have a modelling problem, which design is based on the 
modelling cycle (Blomhøj & Jensen, 2007). The students were guided by the ‘hints’ 
or sub-problems to overcome the challenges of the mathematisation, though freely 
employing the mathematics required to characterise the eigenvalues and deduce a1 

and a3 in terms of a2 after determining the eigenvalues, interpreting back and forth 
between graphical and algebraic representations of the model as described above. 
When estimating a2, the students fitted their model against the data from reality 
provided by the teacher. In the last part of the project, the students experimented freely 
with the model, extending it by adding a drop or implementing a time schedule for 
giving a new dosis. Thus, we can argue that they engaged in all phases of the modelling 
cycle, except (a) ‘the formulation of task’, and (maybe) (b) ‘systematisation’, as 
argued by Blomhøj and Jensen (2003), since these are provided in the description of 
‘background’ in the problem formulation of the project, see Fig. 3, furthering their 
mathematical knowledge and modelling competency. 

With respect to the mathematical digital competency, not all students were able 
to engage in a techno- mathematical discourse at the outset of the project work, 
and initially some of them were not able to use MatLab reflexively. They seemed to 
perceive MatLab as this black box providing them with answers. However, by revis-
iting the sub-problems, students realised the need for reformulating the problem, 
solving parts of it with pen, paper and algebraic reasoning in order to develop the 
problem into a problem that fits MatLab syntax, which allowed them to get the 
answers needed for the development of their model of the dosing problem. From 
student reports and the media-milieu dialectics analysis, we see that MatLab moved 
from having a pragmatic value to an epistemic value in this specific context. The 
modelling activity and sub-problem supported the dialectic between media and 
milieu, in which MatLab played a significant role when solving the system of differ-
ential equations. The ‘laboratory’ the students created in MatLab for the dosing 
problem created a mathematical ‘microscope’ to ‘look’ into the tissue (of the brain) 
without having direct access. This illustrated the power of mathematical modelling 
for the students in a very direct manner. The students did neither discover nor explore 
new mathematical notions, as in the vector project. However, the students gained
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security concerning MatLab as an essential tool for modelling processes and the 
project developed their mathematical digital competency as awareness of when to 
use the tool, what is needed before the tool can be used and for what. The case of 
anaesthetics both developed elements of modelling competency and mathematical 
digital competency. 

6 Discussion and Concluding Remarks 

Returning to our research question concerning how the merger of mathematical 
modelling and digital resources can support students’ development of mathematical 
knowledge and their modelling and digital competencies, including the discussion 
of potentials and pitfalls for students’ learning of mathematics in this context, we 
see potentials in both cases. Both problems are designed such that digital tools are 
required in the solution process. In the vector project, GeoGebra is chosen explicitly 
as the milieu capturing the perceived reality. When students engage with the problem, 
GeoGebra also becomes media, providing answers to be studied, which means further 
evaluation, systematisation and mathematisation. All elements allowing modelling to 
be a driver for learning mathematical knowledge. In the anaesthetics project, MatLab 
is required implicitly, since the design of the problem and the reality modelled lead 
to expressions, systems of differential equations and numerical analyses impossible 
to complete by pen and paper. MatLab kept changing role between functioning as 
milieu or media. Thus, we might argue that these modelling problems, in contrast 
to the study presented by Greefrath and colleagues (2018), take the digital tool into 
consideration and allow the presence of the digital tools to frame the problems. The 
digital tool becomes more than an advanced calculator to which certain mathematical 
work can be outsourced but shapes the thinking and the modelling process of the 
students. In this sense, the digital tools further the students’ learning by nurturing their 
experimentation through constructions of preliminary models, which are validated 
against reality using the tools. Thus, pedagogical aims of inquiry combined with a 
digitalisation of education are gained in those projects. 

However, in both cases we also see elements of students demonstrating a naïve 
trust in the digital tools as the strategy for solving advanced problems. At university 
level, we see this when students go directly to MatLab before considering if and 
how to state the problem in terms of what can be handled by MatLab. In the case 
of piracy, students trust any answer provided by GeoGebra as correct, despite the 
graphing showing the absurdity of the answer, when calculating the length of the 
route. Here the mistake was corrected by validation during plenum session, which 
was an explicit part of the design of the vector project. In the anaesthetia project, the 
sub-problems were designed to guide the students realising the need for analytic ‘pen 
and paper’ work in combination with MatLab, and dialogue with fellow students and 
the teacher was an essential part for realising the learning goals (for this last part, see 
also Blomhøj & Jensen, 2003). Those episodes indicate that the productive merger 
between modelling and digital tools requires ‘scaffolding’ in the design for how



Mathematical Modelling and Digital Tools … 117

to overcome unproductive use of the digital tools. When this is done deliberately, 
we can argue that the merger of modelling and digital tools potentially can further 
students’ mathematical modelling and digital competencies and nurture the learning 
of mathematical knowledge. 
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Lower Secondary Students’ Reasoning 
Competency in a Digital Environment: 
The Case of Instrumented Justification 

Rikke Maagaard Gregersen and Anna Baccaglini-Frank 

1 How Does the Use of Digital Technology Influence 
Students’ Mathematical Reasoning Competency? 

The work presented in this chapter is part of a broader research problem stemming 
from the following Danish education context that, however, is arguably an important 
matter in other countries. In Denmark, the Mathematical Competencies framework 
(KOM) (Niss & Højgaard, 2019) highly influences the curricular goals (UVM, 2019). 
KOM defines a mathematical competency as “…someone’s insightful readiness to 
act appropriately in response to a specific sort of mathematical challenge in given 
situations” (Niss & Højgaard, 2019, p. 6). In all, there are eight distinct yet interrelated 
competencies; here, we will be focusing in particular on the reasoning competency. 

Although KOM, which was developed at the start of the century, acknowledges 
digital technology in mathematical practices, it does not account for the prevalence 
and the role that digital technologies now play in mathematics programs at all educa-
tional levels. In Demark, GeoGebra is the primary dynamic geometry environment 
(DGE) used early on for mathematics teaching (Højsted, 2020b). Indeed, DGEs are 
considered to support students’ mathematical reasoning competency (e.g., Højsted, 
2020a). For example, they can support students in connecting mathematical theory 
with empirical explorations or identifying geometrical invariants as key properties 
of geometrical figures and relationships (e.g., Højsted, 2020c; Leung et al., 2013; 
Sinclair & Robutti, 2013).
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Our work stems from the need to deepen digital technology aspects of KOM’s 
competencies descriptions, as Geraniou and Jankvist (2019, 2020) advocated at 
a practical and theoretical level. Specifically, we intend to contribute to partially 
bridging this research gap by offering a theoretical tool to analyze how a digital 
interactive environment like GeoGebra can contribute to lower secondary school 
students’ reasoning competency in a mathematical domain at the crossroads between 
algebra and geometry. 

This contribution is also quite relevant from an internationally broader perspective. 
Indeed, in addition to being a DGE, GeoGebra features an “algebra view” with 
the symbolic representations of items that appear in the graphic view. This is a 
feature shared by computer algebra systems (CAS) in general that has been studied 
especially in the context of functions and related concepts in calculus (e.g., Artigue, 
2002; Drijvers et al., 2013; Lagrange, 2010, 2014; Takači et al., 2015). However, the 
potential of dynamic geometry and algebra environments is yet to be fully unveiled 
(Hohenwarter & Jones, 2007), especially at the lower secondary school level. 

In the following paragraphs of this section, we will clarify what is intended in 
the KOM framework by reasoning competency and how we intend to approach it. 
Then we will provide an overview of our conceptual framework, explaining how 
we adopted each construct, connecting it with others, to reach the theoretical tool 
that we designed by putting it in relation to Toulmin’s argumentation model (from 
now on Toulmin’s model) and the Theory of Instrumental Genesis. We will then use 
the tool designed to study students’ argumentation processes in an interactive digital 
environment; specifically, we analyze excerpts from two students’ efforts at solving a 
task in GeoGebra in which the objects in play are described algebraically and graph-
ically. Finally, we will discuss our findings, leading to the notion of instrumented 
justification to frame the process captured by the analytic tool. 

1.1 Reasoning Competency in the KOM Framework 

The reasoning competency includes the ability: 

• to produce oral or written arguments (i.e., chains of statements linked by 
inferences) and to justify mathematical claims; 

• to critically analyze and assess existing or proposed claims and justification 
attempts. 

So the competency explicitly considers justification, hinting at various forms 
of justification, ranging from reviewing or providing examples to rigorous proof 
(Niss & Højgaard, 2011, 2019). Niss and Højgaard (2019) also note that reasoning 
goes beyond justifying theorems and formulae, extending to the justification of any 
mathematical conclusion obtained through mathematical methods or inference.
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This way of describing reasoning competency—especially the first ability 
presented—resonates highly with research on argumentation. Indeed, we situate 
our work within this discourse, and we use “argumentation” to refer to all processes 
aimed at producing and validating mathematical claims. 

Many studies have shown that students can struggle with both identifying the 
relevant properties and structuring a mathematical argument (e.g., Duval, 2007). 
Moreover, when engaging in argumentation, students might rely on authorities such 
as standard formulas, teacher’s statements, or technology instead of their mathemat-
ical knowledge (Harel & Sowder, 2007; Lithner, 2008). Argumentation commonly 
aims to change the epistemic value of a mathematical claim (Duval, 2007). Consis-
tently with Jeannotte and Kieran (2017), we consider justification a specific type of 
argumentation process “… that, by searching for data, warrant, and backing, allows 
for modifying the epistemic value of a narrative.” (Jeannotte & Kieran, 2017, p. 12). 

1.2 Designing an Analytical Tool from a Complex 
Theoretical Panorama 

Our work is situated in a rather complex conceptual framework that we need to 
clarify, explaining mutual relationships between the theoretical approaches and the 
theoretical constructs we use. As discussed above, the broad framework within which 
we situate this work in the KOM is a quite general framework organizing the main 
competencies needed to become a proficient mathematician. However, it lacks detail 
for students’ uses of digital technology. The compatibility of KOM with a theory 
designed specifically to analyze students’ use of digital technology has already been 
explored by Geraniou and Jankvist (2019). Using the same theories, we take a step 
into further analytic detail to gain insight into students’ reasoning processes, specif-
ically justification seen as a particular process of argumentation supported by digital 
technology. To do this, we use Toulmin’s model, designed to capture the structure 
of argumentations and adapt it to the context of a digital interactive environments 
using the scheme-technique duality from the Theory of Instrumental Genesis (TIG). 
We do this with the intention to understand the empirical phenomenon of students’ 
justification processes in a digital environment. 

The analytical tool we introduce here is re-elaborated from the one presented in 
Gregersen and Baccaglini-Frank (2020). The TIG describes how an artifact such 
as GeoGebra can become an instrument for an individual who engages in solving a 
task (Rabardel & Bourmaud, 2003). Moreover, Drijvers et al. (2013) have elaborated 
within the TIG three dualistic processes; we consider the scheme-technique duality. 
Techniques are considered the “visible part” of doing that relies on the “invisible 
part”, the solver’s schemes, that direct and organize techniques. Moreover, schemes 
contain concepts and rules which regulate actions. This duality assumes that part of 
the scheme can be inferred from observing actions.
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Fig. 1 Basic elements in 
Toulmin’s argumentation 
model (Toulmin, 2003) 

Traditionally, the TIG has been applied to gain insight into students’ learning 
processes solving specific mathematical tasks using a digital environment, for 
example, finding the solutions of an equation with CAS (e.g., Artigue, 2002; Jupri 
et al., 2016). In our case, students will be using GeoGebra to solve mathematical 
tasks, but they might also be arguing in favor of or against certain claims arising in 
their solution process, and we are interested in capturing this. The scheme-technique 
duality alone is not sufficient, as we want to gain insight into students’ justification 
processes, as particular argumentation processes, so key structural aspects should 
not get lost. 

We, therefore, use Toulmin’s model (Toulmin, 2003) to keep track of 
these processes. In Toulmin’s model, the claim is a statement of the speaker, uttered 
with a certain indication of likelihood called the qualifier. This is supported by data 
that is facts and warrants that are inference rules which connect the data to the claim. 
Finally, the rebuttal denotes conditions for or limits of the claim. Figure 1 depicts 
such a model, as introduced by Toulmin (2003). 

Commonly for Toulmin’s model, the unit of analysis is a finalized argument 
restricted to a single sentence. However, a key aspect of the justification processes 
we aim at capturing is the change of the qualifier of a claim, possibly leading to the 
rejection or restatement of the original claim. Therefore, our units of analysis consist 
of students’ actions (including utterances and gestures, both technology-mediated 
and not) between their first utterance of a claim and a restatement of the claim, that 
we call re-claim, involving a change in the qualifier. The qualifier can then be inferred 
from the student’s actions; for example, a statement can be uttered with hesitation, 
or if a student continues to search for data, we can infer that the student is not yet 
convinced that the claim is true. The qualifier can change from “possible” to “more 
possible”, “less possible”, “true”, or “false”. To change the claim’s qualifier, the 
students argue in favor or against the initial claim as they generate data that constitute 
factual evidence. Figure 2 shows a generic diagram of our adapted Toulmin’s model, 
our new analytical tool: in the top right corner, noted in gray, is the first uttered claim 
along with a qualifier; below is the re-claim, with a new qualifier.

A second feature of our analytical tool is that a technique frame appears next 
to the data. This is because the main source of data, as students attempt to justify 
claims in a digital interactive environment like GeoGebra, is the effect of their use 
of techniques (as described in the TIG). The invisible schemes direct and orga-
nize actions with or on the data, but they also contain conceptual elements and 
rules that regulate actions (Drijvers et al., 2013). Such rules can be seen in the 
model as warrants, which are inference rules that connect the data to the claim.
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Fig. 2 Adaptation of Toulmin’s model: an analytical tool for students’ justification processes in a 
digital interactive environment

In short, we look at actions as warrants connecting data to claims: we make infer-
ences on the students’ (usually implicit) warrants, through their verbal utterances and 
visible actions, to gain insight into their justification processes and, more in general, 
into their reasoning competency. For example, since warrants consist of inference 
rules connecting data to the claim, they direct how data is interpreted as evidence 
(Baccaglini-Frank, 2019). Making such inferences about students’ warrants, thanks 
to the structural setup provided by the tool, seems to be completely coherent with 
Toulmin’s (2003) statement about warrants being potentially implicit. 

A justification process can be made up of various justification sub-processes 
(Pedemonte, 2007). Each of the sub-processes constituting units of analysis can 
be analyzed using the tool in Fig. 2. Since a justification sub-processes can build on 
previous sub-processes, for the same student or pair of students (see the following 
section), analyses of successive sub-processes through the analytical tool may contain 
long lists of data and warrants. For this chapter, we do not graphically link succes-
sive justification sub-processes, but we take into account previous units by recalling 
relevant data and warrants previously generated and used in the new unit analyzed. 

2 Method  

In the case introduced below, the task that the students are solving is taken from 
a sequence of tasks designed by the first author. It stems from her doctoral work, 
with the general aim to explore the potentials of basic tools in the algebra view of 
GeoGebra (e.g., typed-in expressions, sliders, variable points) concerning students’ 
justification processes. The sequence of tasks was assigned to students in pairs in 
three 7th grade classrooms in two 90-min sessions. All students had prior experience 
using GeoGebra. 17 pairs agreed to be recorded as they worked on the tasks, capturing 
their screens, faces, and voices to make more accurate inferences, especially about
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the qualifiers of their claims. The transcriptions in this chapter have been translated 
from Danish to English. 

The students were asked to work in pairs so that through the interaction with a peer, 
we could gain more insight into the students’ justification processes. This approach 
is common in the use of Toulmin’s model in mathematics education research (eg., 
Fukawa-Connelly & Silverman, 2015; Knipping, 2008; Pedemonte, 2007). Acknowl-
edging that Toulmin’s model originally only takes into account a single individual’s 
argumentation, we keep track of discrepancies between each student’s position with 
respect to their warrants by labeling warrants that seem to be held by one (and not 
the other) student. If students seem to hold the same warrant, we do not label it. 

2.1 Task Design 

In the task we consider in this chapter, students are given the points A = (1, s), and 
B = (s, 1) (see Fig.  3) and asked to construct a point C, dependent on s, so that C 
and A move in parallel [directions]. Then they are asked: Can C = B? If so, when? 

The algebra view and its tools are accessible, but the toolbar is restricted to 
the cursor, the line construction tool, the parallel line construction tool, and the 
perpendicular line construction tool (see Fig. 3). This design choice was made to 
ensure that the students used the tools accessible in the algebra view. Previous tasks 
introduce the trace tool to create a trace mark of dynamic points dependent on the 
variable by dragging the slider. The slider can also be animated to make the variable 
change “on its own”. This was not introduced, but it was used by some students, 
including those presented in the case here. The default range of a variable represented

Fig. 3 GeoGebra setting of the task. To the left is the algebra view. From top: a slider for the 
variable s, points A, B, and a possible construction of C, all dependent on s and displayed in the 
graphics view on the right with the coordinate plane 
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by a slider in GeoGebra is [−5, 5]; it can be changed, but for this task, it was left to 
this default setting. 

We now provide a preliminary analysis of the task concerning possibilities it 
offers for the students’ justification processes. For our students’ age group, we only 
expected justifications less formal than proof. 

The mathematical concepts at play are variable points on the coordinate plane, 
equality, parallelism, and intersection of lines (or segments). How these concepts 
are represented in GeoGebra’s graphic view increases the complexity. Although the 
task refers to “parallel movement”, students who see this mathematically as points 
belonging to parallel lines may have a deeper insight into how to solve the task. We 
will clarify how the mathematical concepts can come into play in the solution of the 
task. 

The lines, and therefore parallelism and intersection, are indirectly represented. 
One of the coordinates of each point is defined by a variable, so the points move 
on the plane as the variable is changed. The coordinates of each point do not just 
refer to a single point on the plane but to a set of points restricted by the limits of 
the variable ([(−5), 5] as set by default), describing a segment that is either parallel 
or perpendicular to the x-axis. These segments can be represented by activating the 
trace of the variable point describing it when the slider is dragged. If the slider is 
animated (i.e., it moves automatically), it provides the opportunity of focusing on 
the movement of the dependent objects, in this case, points A, B, and C. With the 
coordinates given, points A and B have the same coordinates when s = 1, but B and 
C cannot be equal, that is, they cannot occupy the same place on the screen at the 
same time. However, the position and movement of A, B, and C can be altered by 
changing the expression containing s of their coordinates, either by adding a term 
or changing the coefficient. The latter also changes the length (and hence the set of 
points) described by the trace mark. 

Depending on the students’ knowledge of generality, they may approach the task 
“Can C = B? If so, when?” in different ways. If they only consider the specific point 
C that they construct, C = B only if their point C intersects with B in a single point, 
with fixed coordinates, that hence need to be identical for both B and C. If, instead, 
the students consider C as a set of points on a specific line parallel to the trace of 
A, for example, x = 2, the point of the intersection of the traces left by C and B 
identifies a possible equality. If the students consider C as the set of all points on any 
line parallel to the trace of A, the answer could be a general expression such as “C 
= B, if C = (d, 1 d s)” or C = (d, s − (d − 1)), when s = d. Of course, this is beyond 
our expectations for the students in this study. 

2.2 Presentation of the Case 

We selected episodes from the work of two 14-year-old girls, Em and Isa, because 
they were one of the two pairs of students in the larger study who answered that it is 
possible to have B = C. Figure 4 presents the GeoGebra applet, with the points and
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Fig. 4 Screenshot of Em and Isa’s screen showing trace marks from A, B, and C. Replication: 
https://www.geogebra.org/m/khjnewpm 

line constructed as they started the task. It displays: points A = (1, s) and B = (s, 
1), along with point C = (2, s), constructed by the students, and a line connecting B 
and A, which is unrelated to the task at hand. The trace is active for all three points, 
and the animations are turned on for the slider of s. 

3 Analysis of the Students’ Justification Process 

In all excerpts, Isa is controlling the computer. The first author acted as a teacher-
interviewer in the classroom along with the regular math teacher. 

In the transcription, “what is done” and authors’ notes are enclosed in square 
brackets. The transcript is presented in three excerpts that capture the main justi-
fication sub-processes of their general justification process. After each excerpt, we 
provide its analysis through our analytical tool. We label reappearing warrants in 
bold: the label WE concerns Warrants of Equality of points, WP concerns position 
and behavior of points, and WT concerns Traces.

https://www.geogebra.org/m/khjnewpm


Lower Secondary Students’ Reasoning Competency … 127

Excerpt 1: justification sub-process 1 

1 Isa Okay then, can C be equal to B? 

2 Both [Observe GeoGebra until line 10]. 

3 Em Collide, collide, collide—no 

4 Isa No, they cannot be equal to each other. Because these [points at A then B with cursor], 
they can be equal to each other. 

5 Isa But C can’t. 

6 Em They will never collide. 

7 Isa That is because C, C is too slow. 

8 Em It is too far away. 

9 Isa Yes. 

10 Em It is too far away. 

11 Isa At least the C we have made cannot. 

12 Isa [Types answer: “no it cannot”]. 

13 Isa Okay, justify your answer [Reads from written assignment]. 

14 Em But there will probably be some that can if they are further away (Fig. 5). 

Fig. 5 Justification sub-process 1 through the lens of the analytical 

Notice that the rebuttal leads to an opposing claim (line 14): “But there will 
probably be some that can” with the qualifier possible. This opposing claim becomes 
the students’ Claim 2.



128 R. M. Gregersen and A. Baccaglini-Frank

Excerpt 2: justification sub-process 2 

Em and Isa gesture how the points move on the screen. Then they go back to observing 
the screen. 

15 Isa Okay… Ehm… Wait a minute. If we do like this. [Stops animation, edit C to (2, 
2s), and start the animation]. 

16 Both [Observe the animation]. 

17 Isa Okay, so no. Why does it not? [Clicks the back arrow and C returns to C = (2, 
s)]. 

18 Both [Observe the animation]. 

19 Isa Hmm, let’s see. 

20 Em They will never collide. 

21 Isa They will never, ehm, it can never be C equal to B because C is too slow. 

22 Em Because C moves parallel to A. 

23 Isa Yes 

24 Em And when A and B collide, then C is next to it. All the time, so it will never be 
able to get there, unless… 

25 Isa What? 

26 Isa No not unless. It just can’t (Fig. 6). 

Fig. 6 Justification sub-process 2 through the lens of the analytical tool



Lower Secondary Students’ Reasoning Competency … 129

Since claims 1 and 2 stated in excerpt 1 are opposing, this change in the qualifier 
for claim 1 also inflicts change in the qualifier for claim 2, which goes from possible 
to false. 

Excerpt 3 (after an intervention of the researcher): justification sub-process 3 

At this point, the first author intervenes, prompting the students to continue searching 
for a possible “collision”, implying that she disagrees with their re-claim 1. She then 
guides them to stop the animation and consider the position of C. She suggests: “… 
try and move it [the slider] so that B collides with the trace of C”, and she suggests 
exploring the x- or  y-value for C. Then excerpt 3 follows: 

27 Isa So, let’s see. Look. 

28 Em Wait a minute. Must it [point B] collide with A at the same time? 

29 Isa No not at the same time, it [point C] just needs to be parallel with A. 

30 Em Okay, okay. 

31 Isa And the lines don’t need to have the same length. 

32 Em Yes. 

33 Isa [Clicks to edit the y-value of C—this also makes the trace disappear in the 
graphics view]. 

34 Em Can we do like this, and then we need to move C down there [points at (0, 2)]. 

35 Isa Yes, but how do we do that? 

36 Em Right, now it [point C] starts at two, so it starts there. Can we get it to start 
further down? [points at (2, 2) then (0, 2)]. 

37 Isa Oh yeah, it starts here [points at (2, 2)]. 

38 Em Can you get it to start at minus one? 

39 Isa [Edits C from (2, s) to (−1, s). Starts animation.] 

40 Both [Observe the screen]. 

41 Em Wait, they might collide. A still collides, so no. 

42 Isa No, but we need to change… 

43 Isa [Stops animation]. 

44 Em So we get it to start a little further down, then it might do like this. [Gestures on 
the screen how C and B approach (1, 1) to collide. C from 4th quadrant and B 
from 2nd quadrant]. And A then, something, it will be before. 

45 Isa Yes, but it is s we have to change. 

46 Em Is it s we have to change then? 

47 Isa Yes, can we do like this then? 

48 Isa [Edits C to C = (2, 0.5s), Starts animation]. 

49 Both [Observe screen]. 

50 Em It [point C] is still moving parallel with A, Isa. 

51 Isa Yes, it is supposed to do that. 

52 Em B and A still collide at the same time! 

53 Isa Yes, but C is a little behind, C is half the time behind al-ways, okay. [Collision 
of C and B happens for s = 2].
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54 Em So, they can do it! 

55 Isa Yes! 

56 Em Oh, so it was just a little too fast (Fig. 7). 

Fig. 7 Justification sub-process 3 through the lens of the analytical tool 

Again, as claims 1 and 2 are opposing, the change in the qualifier for claim 2 
inflicts a change in the qualifier for claim 1, shifting it from true to false.
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4 Results and Discussion 

In this section, we discuss findings from the analyses of Em and Isa’s overall justi-
fication process. Specifically, we discuss the two main claims that the students put 
forth, focusing on their mutual relationship given by the changes in their qualifiers. 
Then, we give an overview of the students’ instrumented techniques and warrants 
used to generate and interpret data and discuss the insight we gain on the students’ 
reasoning competency. 

4.1 Claims and Qualifier Change 

Em and Isa argue for two opposing claims: 

Claim 1: B and C cannot be equal. 
Claim 2: B and C can be equal. 

As the two claims are opposing, an increase in the qualifier of Claim 1 toward 
true leads to an implicit decrease in the qualifier of Claim 2 toward false and vice 
versa. This is illustrated in Table 1. 

Table 1 The changes of qualifiers of the two claims from the initial claim throughout the three 
justification sub-processes 

Initial claim Sub-process 1 Sub-process 2 Sub-process 3 

Claim 1 Possible More possible True False 

Implicit change ↓ ↑ 
Claim 2 Possible False True 

Arrows indicate the implicit decrease in the qualifier of one claim in relation to the increase of the 
other 

For Isa and Em, claims 1 and 2 correspond to two possible responses to the 
question in the task. Precisely what spurs Claim 2 about the possible equality of 
B and C is unclear. Neither student refers explicitly to the trace marks left by C 
and B or to their intersection. Claim 2 seems to be related to the rebuttal in line 
11: “At least the C we have made cannot”, suggesting that the students extend the 
constructed point C to all points on the trajectory x = 2. The students seem to be 
seeking phenomenological evidence of a “collision” between B and C to further 
convince themselves of Claim 2. As they fail to produce a collision in the second 
justification sub-process, the qualifier of Claim 1 shifts to true, while Claim 2 shifts to 
false. After the researcher’s intervention, suggesting that the “collision” is possible, 
the students persist and eventually produce an example of C = B. The students seem 
to view this as evidence confirming Claim 2 and leading to the rejection of Claim 1.



132 R. M. Gregersen and A. Baccaglini-Frank

4.2 Instrumented Techniques, Data, and Warrants 

The students use the following two techniques (Tn): 

T 1: start the animation of the slider in the algebra view, then observe the screen 
where the trace is turned on for all points; 
T 2: edit the coordinates of a point in the algebra view, then use T 1. 

T 2 can be further subdivided into: 

T 2C : edit coefficient for a variable. 
T 2T : edit a term in the constant coordinate. 

In Excerpt 1, T 1 generates the data that leads to Claim 1 (line 3). The students 
describe the points as moving and the equality of points as “collision” rather than as 
an intersection of lines. For point C, they seem to perceive the situation differently: 
Isa talks about C as “too slow” (lines 7 and 21), from which we infer the warrant “the 
speed of animated points influences when points can be equal”. On the other hand, 
Em describes C in relation to other points: “too far away” (line 8 and 10) “C is next 
to it” (line24) (“it” refers to where A and B collide). We infer the warrant here to 
be: “the reciprocal positions of points at a given time influence when the points can 
be equal”. This suggests that animating the slider can give the impression of points 
moving along parallel and perpendicular trajectories, as discussed in the preliminary 
analysis of the task. 

T 2C is used twice and T 2T once to produce a collision of C and B, as evidence 
of Claim 2. Both techniques are used in trial and error strategies. T 2T is first used in 
Excerpt 2, but it does not produce the collision. Without discussing the data generated, 
the students return to the original description of C. Em suggests that “because C is 
parallel to A” (line 22) and as “A collides with B”, Claim 2 will never be possible. 
We infer this justification process to rely on the warrant WEo, “B can only collide 
with one other point”, that feasibly emerges in Excerpt 1 from Isa’s words: “No, they 
cannot be equal to each other. Because these [points at A then B with cursor], they 
can be equal to each other” (line 4). WEo seems to be used again twice in Excerpt 3, 
but not by Isa (line 29). Em seems to value this (mathematically false) warrant (lines 
50 and 52); it is only when she sees the collision of B and C that she abandons WEo. 

Conceivably, without the author’s intervention, the students would have settled 
with Claim 1. However, such an intervention spurs the students to continue searching 
for evidence for Claim 2. Indeed, in Excerpt 3, Em suggests to “move it [C] further 
down” (lines 34 and 36), but neither student knows how to accomplish this. Em 
tries to use T2T to do this, but as she changes the x-value, point C moves in an 
unexpected (for her) way, horizontally instead of vertically. By enacting T2C , Em is  
able to edit the coefficient of s to 0.5, relying on the warrant WPc, “The positions 
and movements of a point are influenced by changing the coefficient of the variable 
in the coordinate set”. This results in the desired collision that the students interpret 
as evidence strongly supporting Claim 2.
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We note that the students never seem to consider the trace alone as evidence 
in support of Claim 2, even though the first author had given a strong hint in this 
direction: only one warrant seems to refer to the trace. Moreover, the students seem 
to refer to specific lines or trajectories (though lines are never mentioned explicitly) 
through the names of the points moving on them. This leads them to speak of A and 
C as “being parallel”. However, eventually, Em refers to the movement of A and C 
as being parallel (line 50). We see this as a small step toward the distinction between 
“colliding points” and “intersecting lines”, which we see as key in the students’ 
potential progress in this mathematical domain. 

5 Discussion 

In this section, we start by discussing the specific situation of Isa and Em in relation 
to the reasoning competency; then, we reflect upon what is gained by the analytical 
tool we designed and used and on the theoretical implications of the coordination of 
the TIG and Toulmin’ model. 

5.1 How Does Isa and Em’s Use of Digital Technology 
Influence Their Reasoning Competency? 

Isa and Em engage in justification by using GeoGebra to generate, explore, and 
interpret data. As mentioned in the case presentation, most pairs of students did not 
argue for possible equality of points B and C since they only considered the point C 
constructed initially, without thinking about tweaking its coordinates. On the other 
hand, Em and Isa seem to reach a conception of C as the set of points on the trajectory 
x = 2. We see this as an essential step in Em and Isa’s mathematical reasoning that 
allowed them to make significant advances in their exploration and reasoning. 

Isa and Em’s data generation is limited by the techniques they implement, 
primarily T 2C and T 1, which do not include adding a term to the expression containing 
the variable. Whether the data they generate is interpreted as evidence for or against 
a claim relies heavily on their warrants. While Em relies very much on the warrant 
WEo (B can only collide with one other point), Isa interprets the data through the 
warrant WEd (B can collide with different points at different values of s). Such 
warrants lead to interpretations of the data as that constitute primarily phenomeno-
logical evidence (Baccaglini-Frank, 2019) of their claims. This is also the case for 
warrants WEs (the speed of animated points influences when points can be equal) 
and WPr (the reciprocal position of points at a given time influences when the points
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can be equal). However, the warrant WEd, and more so the warrant WPc (the posi-
tions and movements of a point are influenced by changing the coefficient of the 
variable in the coordinate set), start to establish relationships between the dynamic 
points and the algebraic expressions. 

We believe that interpreting the movements and positions of points in relation to 
the expressions in the coordinate sets in the algebra view could have helped activate 
(or construct) more profound mathematical knowledge. 

5.2 Gaining Insights into Argumentation Processes 
in a Digital Environment 

The adaption of Toulmin’s model to the context of a digital interactive environment 
through the use of the scheme-technique duality has led to an analytical tool that sheds 
light on how the duality can play out in justification processes in a digital interactive 
environment. Our analytical tool provides the techniques as ways of generating data, 
inferring warrants thanks to the schemes-technique duality, and it shows how data is 
interpreted as evidence for a certain claim. 

In particular, the tool provides structure to the observed justification processes, 
organizing visible elements and allowing us to make inferences about the implicit 
warrants and the qualifier. Indeed, through the inferred warrants, we interpret the 
visible parts of the argumentations and their relations that provide insight into the 
students’ more general reasoning competency. Since a warrant is an explicit hypoth-
esis about students’ conceptions (and misconceptions) relative to the mathematical 
concepts they are grappling with, the students’ warrants are what allow them to 
interpret feedback from the digital environment as evidence for their claims. For 
example, the warrants WPc (the positions and movements of a point are influenced 
by changing the coefficient of the variable in the coordinate set) and WEs (the speed 
of animated points influences when points can be equal) reflect the students’ concep-
tualizations of point C, which they seem to see as a “generalized” point relative to 
the value of s and to the expression in the coordinate set. Such warrants allow the 
students to interpret the generated data as different sets of C. Through such warrants, 
obtaining evidence for a claim becomes a matter of generating data that “represents” 
the claim. 

Further, the student’s development and exploration of techniques empower them 
to generate further data in their justification processes. Techniques that involve both 
the graphical view and the algebraic view might further activate their reasoning 
competency, as we noted earlier.
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5.3 Theoretical Implications of Adapting Toulmin’s Model 
Through the Scheme-Technique Duality 

We start by noting that the two theoretical approaches we consider are not symmet-
rical. The TIG draws on developmental psychology studied by Gerald Vergnaud 
and partly on cognitive ergonomics (Artigue & Trouche, 2021; Rabardel & Bour-
maud, 2003). Later the construct of technique from the Anthropological Theory of 
the Didactic was adopted and reinterpreted within the TIG (Artigue & Trouche, 
2021), leading to the development of the scheme-technique duality (Drijvers et al., 
2013). On the other hand, Toulmin’s model is not a theory but an analytical model. 
This makes it more flexible and applicable across sciences (Toulmin, 2003). It was 
originally positioned in the discipline of law (Toulmin, 2003), although its use in 
mathematics education has been extensive. 

Despite the asymmetry outlined above, we see the conceptualization of knowledge 
as the main linkage between the scheme-technique duality and Toulmin’s model. In 
Toulmin’s model, data is observable factual knowledge that can imply more implicit 
knowledge in the form of warrants. In the duality, knowledge appears in terms of 
schemes that are partly visible, thanks to the related techniques (Drijvers et al., 2013). 
There is a parallel distinction between the observable and the implicit that has allowed 
us to link warrants to the notion of schemes and data (and its generation) techniques. 
Hence, we can see techniques as “windows” onto the students’ knowledge about the 
objects at play (warrants), as they generate, notice, and interpret observable facts 
(data) as evidence of their claims in a justification process. 

In our effort to understand the specific phenomenon of student justification 
processes in a digital environment, we also found ourselves in need of adapting the 
units of analysis. This led to the conception of sub-processes of justification within a 
greater process. Moreover, the sub-processes that correspond to the units of analysis 
capture the transition from a “claim” to a “re-claim”, which is structurally different 
from Toulmin’s original model. Indeed, rather than a static, finished argument, our 
sub-processes capture the formation of arguments aimed at changing the qualifier 
of a claim or reformulating the claim itself as a “re-claim”. Such adaptation of the 
unit of analysis makes Toulmin’s model more compliant with the scheme-technique 
duality. 

The adaption of Toulmin’s model to the context of argumentation in a digital 
interactive environment seems to provide a significant tool for particular types of 
argumentation processes that we refer to as instrumented justification. We conclude 
with the proposal of a definition for such a process. 

Instrumented justification is a process through which a student modifies the qual-
ifier of one (or more related) claim(s) using techniques in a digital environment to 
generate and search for data and warrants constituting evidence for such claim(s).
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6 Concluding Remarks 

In this chapter, we set out to contribute to a deepening of digital technology aspects 
of KOM’s (Niss & Højgaard, 2019) reasoning competency. We have approached 
this by developing an analytical tool by adapting Toulmin’s argumentation model 
through the scheme-technique duality from the Theory of Instrumental Genesis to 
define and capture students’ processes of instrumented justification. The tool has 
provided us with a lens through which to gain insight into how the students’ use of a 
digital environment is intertwined with their justification processes and hence with 
their reasoning competency. In a digital environment like GeoGebra, the students’ 
interpretations of the objects represented are key in how the students consider them 
as evidence for a claim. 

The theoretical developments presented in this chapter should, in our future 
research, be put under further scrutiny to consider how they align with other aspects 
of the TIG and the KOM; for example, how processes of instrumental genesis in 
the context of instrumented justification unfold, as well as other interesting aspects. 
To do this, we see potential in using a networking approach (Prediger et al., 2008) 
that conceives this first attempt of ours as a form of coordination between the TIG 
and Toulmin’s model, where Radford (2008) suggests a comparison of principles, 
methodology, and paradigmatic questions to consider the compatibility between the 
coordinated elements. 

Finally, from a mathematical teaching/learning point of view, the case of Em and 
Isa that we investigated in the chapter revealed a tension between what they referred 
to as “colliding points” and a yet implicit notion of intersecting trajectories. Initially, 
the students argued that B = C was not possible as the “collision” did not occur. To 
overcome this interpretation, we conjecture that it is necessary for the students to 
reach a generalized conception of C, as any point on any vertical line instead of the 
specific point (e.g., C= (2, s)) that moves in a certain way along the vertical line. Such 
a generalization would entail overcoming the specific dynamic behavior of point C 
and conceiving its dynamism in a more general way. We see this as closely related to 
a broader issue of dynamism and temporality of mathematical objects, as discussed, 
for example, by Sinclair et al. (2009). The fine-grained analyses obtained through 
our analytical tool suggest that awareness of students (mostly implicit) warrants 
used in instrumented justification processes, and thus related to specific techniques 
carried out within the digital environment, can provide precious insights into their 
mathematical reasoning competence. 
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Takači, D., Stankov, G., & Milanovic, I. (2015). Efficiency of learning environment using GeoGebra 
when calculus contents are learned in collaborative groups. Computers & Education, 82, 421–431. 
https://doi.org/10.1016/j.compedu.2014.12.002 

Toulmin, S. E. (2003). The uses of argument (2nd ed.). Cambridge University Press. (Updated 
Edition). 

UVM. (2019). Fællesmål for faget matematik. [Common objectives for the subject of mathematics]. 
https://www.emu.dk/grundskole/matematik/faelles-mal

https://doi.org/10.1007/s11858-008-0095-y
https://doi.org/10.1080/00207390903372395
https://doi.org/10.1080/00207390903372395
https://doi.org/10.1093/teamat/hru018
https://doi.org/10.1007/s10649-013-9492-4
https://doi.org/10.1007/s10649-013-9492-4
https://doi.org/10.1007/s10649-007-9104-2
https://doi.org/10.1007/s10649-019-09903-9
https://doi.org/10.1007/s10649-006-9057-x
https://doi.org/10.1007/s11858-008-0086-z
https://doi.org/10.1016/s0953-5438(03)00058-4
https://doi.org/10.1016/s0953-5438(03)00058-4
https://doi.org/10.1007/s11858-008-0090-3
https://doi.org/10.1007/s11858-009-0180-x
https://doi.org/10.1007/s11858-009-0180-x
https://doi.org/10.1007/978-1-4614-4684-2_19
https://doi.org/10.1007/978-1-4614-4684-2_19
https://doi.org/10.1016/j.compedu.2014.12.002
https://www.emu.dk/grundskole/matematik/faelles-mal


Mathematical Representation 
Competency in the Era of Digital 
Representations of Mathematical Objects 

Ingi Heinesen Højsted and Maria Alessandra Mariotti 

1 Introduction 

Any mathematical activity involves the use of representations of mathematical 
objects. The necessity of representations emerges from the fact that mathematical 
objects are abstract ideas that are not perceptually available except through semi-
otic representations (Duval, 2006). Ability in dealing with representations is there-
fore an important constituent of mathematical competency. In the KOM framework, 
representation competency concerns being able to manage representations, that obvi-
ously includes treating and converting within and between different representations 
(Niss & Højgaard, 2011, 2019), but also any other ability concerning the meaningful 
and effective use of semiotic representations in accomplishing mathematical tasks. 

Historically, different ways of representing mathematical objects have evolved as 
new technologies become available. In mathematics education research, the nature 
and role of representations in mathematics learning and teaching has received ample 
attention, not least since the introduction of digital tools (Balacheff & Kaput, 1996; 
Goldin & Janvier, 1998a, 1998b; Janvier, 1987; Kaput, 1998; Morgan et al., 2009; 
Vergnaud, 1998). Once the use of digital tools in mathematical activities became 
customary, new types of representation systems were established and in this context 
new abilities become necessary to exploit the new potentialities offered. From a 
didactic point of view, an important issue arises concerning which new abilities
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that new digital representation systems require and how such abilities can be devel-
oped at school in order to support or perhaps not impede students’ development of 
representation competency. 

The aim of this chapter is to contribute to outlining what the possession of repre-
sentation competency constitutes in the context of digital representations of mathe-
matical objects and propose criteria for such competency, also discussing implica-
tions for educational practice to exploit the new representation systems. We claim that 
geometric knowledge plays a fundamental role in interpreting graphical representa-
tions of mathematical objects (to be elaborated later), and, therefore, we focus on 
the case of representations in geometry and, in particular, on digital representations 
of geometrical objects in a dynamic geometry environment (DGE). The following 
research question guides our effort: What characterizes development and possession 
of representation competency in the context of digital representations of mathematical 
objects? 

After the introduction of pertinent conceptual frameworks and constructs in the 
next section, we analyze empirical examples of students working in DGE. Based 
on the specific cases, we then discuss a more general development of representation 
competency in the context of digital representations of mathematical objects. From 
a networking of theories perspective, we then consider the relationship between 
the KOM framework and other external theoretical constructs employed in our 
discussion. 

2 Conceptual Frameworks and Constructs 

In the following three subsections, we elaborate on representation competency from 
the KOM framework; dynamic representations of geometrical objects in DGE; 
and then we outline the fundamental role of geometric knowledge in interpreting 
graphical representations of mathematical objects. 

2.1 Representation Competency in the KOM Framework 

Mathematical representation competency concerns, in basic terms, an individual’s 
ability to deal with different representations of mathematical objects, phenomena, 
problems or situations. 

It comprises being able to interpret different kinds of mathematical representations 
as well as being able to translate and move between an extensive range of such math-
ematical representations (e.g., verbal, symbolic, graphic). This includes awareness 
not only of the connections between different forms of representations of the same 
object, but also awareness of the “scopes and limitations—including strengths and 
weaknesses—of the representations involved in given settings” (Niss & Højgaard,
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2019, p. 17). On the basis of such awareness, the competency includes being able 
to select and utilize particular representations in order to deal with certain tasks or 
contexts. 

As with each of the other competencies in the KOM-framework, the representation 
competency comprises a productive side, which refers to oneself being able to carry 
out the constituents of representation competency. The competency also comprises 
an investigative side, which pertains to the ability to follow, comprehend, analyze, 
and assess another subject’s mobilization of representation competency (Niss & 
Højgaard, 2011). 

Elaborating on the affordances of digital technologies in relation to the develop-
ment of mathematical competencies, Niss (2016) considers that digital technologies 
may 

help generate student experiences of mathematics-laden processes and phenomena that 
might be difficult to obtain by other means; create platforms and spaces for exploration 
in which mathematical entities can be investigated through manipulation and variation; 
produce static and dynamic images of objects, phenomena, and processes that are otherwise 
difficult to capture and grasp; create connections between different representations of a given 
mathematical entity [...] (p. 248) 

A digital technology that comprises affordances, which may support several of 
the aspects outlined above, are dynamic geometry environments. 

2.2 Representations of Mathematical Objects—from Paper 
and Pencil to DGE 

Since the introduction of DGE in the mid 1980s (Oldknow, 1997), much has been 
written about the potentialities and complexities emerging in the move from paper 
and pencil geometry to dynamic geometry. 

A DGE can be considered as a microworld that mimics a theoretical system, 
usually Euclidean geometry (Balacheff & Kaput, 1996; Healy & Hoyles, 2002). This 
type of environment offers a new kind of dynamic representation of geometrical 
objects that are produced as a result of construction tools, which induce certain 
geometrical properties, chosen by the user (Laborde, 2005). Subsequently, using the 
dragging tool, the user may manipulate the figure while its constructed properties are 
preserved. The dependency relations between the elements of the figure that were 
induced in the construction process are locked in a hierarchy of dependencies, which 
decide the behavior of the object during dragging (Hölzl et al., 1994). As stated by 
Laborde (2005), a crucial feature of dynamic representations is 

their quasi-independence of the user once they have been created: when the user drags one 
element of the diagram, it is modified according to the geometry of its constructions rather 
than the wishes of the user. This is not the case in paper-and-pencil diagrams […] (p. 161).
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The possibility of dragging a figure while its constructed properties are preserved, 
has been widely recognized as an affordance that may support development of mathe-
matical reasoning, generalization and the development of conjectures (e.g., Arzarello 
et al., 2002; Baccaglini & Mariotti, 2010; Healy & Hoyles, 2002; Laborde, 2002, 
2005; Leung, 2015). According to Laborde (2005), the relationship between percep-
tual and theoretical aspects of a diagram is favored in dynamic representations in 
a DGE, because the behavior of the new kind of representation during dragging is 
controlled by Euclidean theory. 

However, there are at least two layers of complexity involved in competency in 
interpreting these dynamic representations: firstly, it involves being able to interpret 
dynamic dependency, i.e., awareness of dependency relations between the objects’ 
movements through dragging. Studies have shown that students’ competency in 
interpreting the dynamic dependency relations inherent in the dynamic represen-
tations is not immediate. For example, Talmon and Yerushalmy (2004) found that 
junior high and graduate students predicted a dynamic behavior that was “contrary 
to the behavior that would be expected based on the order of construction” (p. 114). 
Secondly, it involves being able to perform a mathematical/geometrical interpretation 
of dynamic dependency in terms of logical dependency between geometrical prop-
erties. This ability is not immediate for students, either. For example, the classroom 
experiments reported by Arzarello et al. (2002) showed “that the software itself does 
not grant the transition from empirical to generic objects, from perceptive to theoret-
ical level” (p. 71). Efficacy in managing the geometrical interpretation of dynamic 
phenomena in a DGE, that is of dynamic representations, can be considered a highly 
demanding competence concerning a new type of representation of mathematical 
objects. 

2.3 The Fundamental Role of Geometrical Knowledge 
in Dealing with Representations 

As outlined above, we intend to consider the competencies that are required to treat 
representations of geometric objects, in particular, we will consider representations 
in a DGE. This is a somewhat specific focus, however, in our view, it may provide 
a fundamental contribution. As a matter of fact, any contribution about the needs 
in terms of competencies required to manage graphical representation of geomet-
rical objects—e.g., to be productive in problem-solving or conceptualizing geomet-
rical objects—can give us enlightenment on what kind of competencies are needed 
for interpreting and using effectively graphical representations of any mathematical 
object.
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Let us consider the paradigmatic example of the graphical representation of a 
function in a Cartesian System, commonly called a graph. Actually, we have at least 
three different representations for functions: tables, formulas, and graphs. As far 
as the graph is concerned, it is a set of points, and a geometrical object; thus, any 
drawing of it, is not a mere pictorial representation, it is the representation of such 
a geometrical object. The way we view, conceptualize, and analyze the graph of a 
function is therefore affected by competencies that we develop for interpreting the 
representation of geometrical objects, competencies that can be reinvested in the 
elaboration of the graphic representation of the function, even though a function is 
not a geometrical object per se. 

Geometric intuition plays an important role beyond geometry itself: we mention only its 
fundamental role in mathematics. Starting with the concept of continuity, which is based on 
the intuition of the continuity of a line, one recalls the presentation of functions by means 
of curves, the complex plane, etc. (Alexandrov, 1994, p. 366) 

Hence, sharing Alexandrov’s claim, we consider geometry to be a particular funda-
mental type of knowledge, because it constitutes the basis to elaborate on graphical 
representations of mathematical objects, though not specifically geometrical objects. 
A mathematician may consider the graphical representation of a function as more 
immediate, more intuitive (Fischbein, 1999). However, this is not true simply because 
it is an image, rather because such an image can benefit of an expert’s interpreta-
tion as the representation of a geometrical object. As a matter of fact, the refined 
interpretation that is at the base of such intuition is not available for a novice, at 
least not in the same way that it is for the mathematician, because the mathematician 
has already developed specific high demanding representation competencies, i.e., he 
or she possesses somewhat of a “mathematical eye” (Mariotti & Baccaglini-Frank, 
2018). 

In the following we present examples illustrating different developmental stages of 
representation competency in the context of interpreting representations of geomet-
rical objects in a DGE. At the same time, the examples will show how specific tasks 
can foster students’ awareness of geometrical interpretation of dynamic images. 

3 Method and Context 

We present two case studies of Danish 8th grade students (age 13–14) working 
together in pairs using GeoGebra on a shared computer to solve tasks from a work-
sheet. The students had basic knowledge of the software layout and tools for construc-
tion from previous GeoGebra experience. In the selection of data, we chose, based 
on the teacher’s assessment, a high achieving pair, Sif and Ole, and an average/low 
achieving pair, Dan and Jan, in order to show examples of students at different devel-
opmental stages in relation to possessing representation competency in the context 
of interpreting representations of geometrical objects in a DGE.
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The students are working on a particular type of task, denominated “dependency 
tasks” (Højsted & Mariotti, 2020), which are characterized by a twofold aim: firstly, 
the aim is to support students in becoming aware of dynamic dependency, which is 
dependency between objects’ movements during dragging in a DGE. Such awareness 
is needed in order to interpret dynamical representations of geometrical objects, and 
therefore, we argue, it is a constituent of representation competency. The first aim 
is fundamental and a prerequisite for a second aim, which is to support students 
in interpreting dynamic dependency geometrically as logical dependency between 
geometrical properties. 

Each task starts with a construction part, asking the students to perform a partic-
ular construction using certain GeoGebra tools. The tasks then follow the task design 
heuristic of Predict-Observe-Explain (White & Gunstone, 2014, pp. 44–65), in which 
the students are required first to predict what will happen to certain elements of the 
construction during dragging, then to observe what actually happens, and finally to 
explain discrepancies between prediction and observation. According to the objective 
of a dependency task, the three related requests are expected to foster students’ aware-
ness of the geometrical interpretation of what happens on the screen: the possible 
discrepancy between prediction and observation can lead students to come back to 
the construction process in the attempt to resolve differences, and in so doing gaining 
awareness of dependency relations. The formulations of the three specific tasks are 
presented in the next section together with the analysis of the examples. 

Data was collected in the form of video, screencast, and written products. The 
data is analyzed, in the form of transcripts of verbal utterances as well as gestures 
that were captured on video, in order to find evidence of students’ awareness of the 
abovementioned aim. That is, do they grasp dynamic dependency, and are they able 
to interpret the dynamic dependency geometrically? Hence, our analytical approach 
comprises investigating, to what extent the students have developed an interpretative 
frame that enables them to predict and/or describe the result of a dragging action 
in terms of the dynamic dependencies that are embedded in the construction, and 
secondly, if the students are able to explain their perceptual experience on the basis 
of geometrical properties. 

4 Presentation of Data and Ensuing Analysis 

We first present and analyze data collected from the high achieving pair of students, 
Sif and Ole, as they work on tasks 1–3, followed by medium-low achieving students, 
Dan and Jan, working on the same tasks. The two cases will highlight different 
possession and development of representation competency.
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Sif and Ole—task 1 

In task 1, the students are required to construct two points, A and B, and the midpoint 
C, using GeoGebra´s midpoint tool. We follow the events as Sif and Ole reach task 
1d, in which they have to predict: 

95 Sif: [reading task formulation 1d] What do you think happens to the other 
points when you drag point C? Guess and justify first. 

96 Ole: It’s all moving together. 

97 Sif: Then everything moves because C must be in the middle. Then they will 
move in relation to C? [the tone indicates a question and she looks at Ole] 

98 Ole: I think so. 

99 Sif: Then one could imagine that it was just a line moving around (Fig. 1) 

Fig. 1 Sif moves her hand to represent a line going through the three points. The movement 
indicates that it remains parallel to the initial line 

100 Ole: Yes exactly, in parallel. 

101 Sif: Okay, so we just say that everything will move relative to point C. 
[writing] 

103 Sif: Yes, because it must be in the middle in relation to C. [Sif tries to drag 
point C] 

104 Ole: Oh! 

105 Sif: One cannot move C. [Sif writes down] 

109 Sif: Ehhh, and why can’t you? … 

The students expect the dynamic representation to move as a rigid structure (line 
96–103). Their prediction is grounded in a geometrical interpretation, meaning that 
they are justifying their prediction by referring to the geometrical properties, which 
they induced in the construction process (line 97, 101, 103). While Sif says that the 
structure will move around (line 99), her gesture (Fig. 1) suggests that the movement 
of the line is restricted to an orthogonal translation, remaining parallel to the initial
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position. Ole understands her suggestion and makes it explicit (line 100). Appar-
ently, the students expect dynamic dependency relationships in GeoGebra to be non-
hierarchical. In the literature, the discernment between locked and free objects, that 
is independent and dependent objects, is sometimes referred to as parent/child rela-
tionship (e.g., Talmon & Yerushalmy, 2004). In GeoGebra, it is not possible to drag 
dependent objects (children) that are derived from independent objects (parents), and 
since the midpoint C is derived from points A and B, it is a locked object that cannot 
be dragged.1 The students’ ability to interpret this aspect of dynamic representations 
is yet to be developed, i.e., this part of the representation competency is still not 
matured, however, apparently the conflict between prediction and control spurs the 
students’ interest (line 104–109). 

The teacher was in the vicinity and chose to intervene at this point. However, his 
intervention did not support the students in grasping the phenomena they observed. 
Rather, the teacher shifted their attention from the non-draggable midpoint to the 
draggable points A and B, explaining what they already knew and giving an author-
itarian argument (see also Chap. Teachers’ Facilitation of Students’ Mathematical 
Reasoning in a Dynamic Geometry Environment: An Analysis Through Three Lenses 
of this book) (Højsted & Mariotti, 2020). Without resolving the cognitive conflict, 
the students moved on to the next task. 

Sif and Ole—task 2 

Sif has constructed line f through points A and B as requested in task 2a. 

153 Sif: (Reading task formulation 2b) What do you think happens with line f 
when you drag point A or B? First guess and justify your guess to your 
mate. 

156 Sif: Ok, if you drag A or B, then… then the line changes. So it changes its 
slope, does it not? 

157 Ole: Yes 

158 Sif: It doesn’t change length because that line is 

159 Sif/Ole: (speak at the same time) Infinite 

174 Sif: But it does not make a difference to the line how far there is between 
the points 

180 Sif: (reading task formulation 2c) What is the relationship between the line 
and points A and B? 

185 Sif: (writing the answer and talking out loud) A and B determine the slope. 

Sif and Ole are able to interpret the dynamic representation, showing signs of 
awareness of the dependency relation between the points and the line, and they are

1 Other DGE, however, do allow dragging the dependent points, e.g., Geometer Sketchpad (Mack-
rell, 2011). Being able to interpret dynamic representations (development of representation compe-
tency) is therefore a non-trivial task—the behavior of the dynamic representations during dragging 
is grounded not only in geometry, but also in software design choices. 
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Fig. 2 Reconstruction of Sif´s construction 

therefore able to predict the movement of the line when dragging the points (line 156– 
157, 160, 185). They also show awareness of the infinite length of the line (158–159). 
They provide a geometrical interpretation referring to the geometrical properties of 
the objects they observe: the points, the line, its slope, and length. Since there is 
only a line, their idea of slope is not geometrically consistent, however, it seems that 
the students are implicitly considering the spontaneous reference to the horizontal 
direction, as if the line was embedded in a horizontal/vertical reference system, which 
they may have previously experienced in GeoGebra. This conceptualization belongs 
to the projection of a spontaneous reference frame coming from our experience 
of the physical world, where the horizontal laying/vertical direction constitutes the 
privileged organizing frame. We expect the students to be framing the image and 
interpreting it according to this frame. 

Sif and Ole—task 3 

According to the instruction in task 3a, Sif has constructed line f through points A 
and B and the parallel line g through point C, using the parallel line tool (Fig. 2). 

254 Sif: (reading task 3b formulation aloud) What do you think happens with 
line g when you drag points A or B? Guess first and justify your guess 
to your mate 

259 Sif: (writing and talking) It will move, depending on line f ’s 
(movement/position? she does not finish her sentence) 

260 Sif: (reading) Examine afterwards what happened. 

(Sif drags point B, Ole is talking to another student, he has lost concentration completely) 

268 Sif: Oh, this is so cool. So, the gap between the lines, it is not the same, but 
they keep laying… OLE, concentrate! 

270 Ole: Sorry 

271 Sif: The space between the lines is not the same, but they remain parallel 

273 Sif: Satisfying. 

274 Sif: We agree that they remain like that 

278 Sif: In fact, I thought they might keep the same length between them, but 
that didn’t happen.
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It seems Sif expected line g to remain parallel and maintain the same distance from 
line f. Perhaps the usual expression of the definition of parallelism has influenced 
her prediction, hence she is surprised. The dependency relation is explicitly stated “it 
will move, depending on line f´s” (line 259) although the sentence was not finished. 
She is surprised and seems also intrigued when she experiences that the lines remain 
parallel, yet the distance is not maintained (line 268–278). 

308 Sif: (reading 3d) What is the relation between line f and line g? 

309 Sif: They are parallel. Can we just write that? 

310 Ole: Yes 

311 Sif: But it is line  f that determines. I mean, it decides, it remains just as it is. Ok 

Sif is able to geometrically interpret the dynamic representation, highlighting 
the parallelism between the two lines as the invariant property. In addition, Sif´s 
final utterance “it is line f that determines” “it decides, it remains just as it is” (line 
311) indicates her awareness of the hierarchical dependency relation between lines 
f (independent object) and g (dependent object), and it is a sign of her emerging 
awareness of the hierarchical dependencies that are embedded in dynamic DGE 
constructions. 

Jan and Dan—task 1 

Dan and Jan constructed two points, A and B, and the midpoint C, using GeoGebra´s 
midpoint tool. They are working on task 1.d and about to make a guess about what 
happens if they drag midpoint C: 

33 Jan: I think that when you move point C, then they move [likely means A and B] 

35 Jan: so if we move it here, and then drag it [talking about point C], then they 
move like this (moving hand up and down, see Fig. 3) 

Fig. 3 Jan moving his hand up and down as if it were a line going through points A, B, and C
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36 Dan: move along in parallel 

37 Jan: hm, is it called parallel?… 

38 Jan: Yes, parallel to 

39 Dan: Horizontally 

40 Jan: Like if you have a stick… and lift it in the middle (Fig. 4) 

Fig. 4 Jan simulates holding the middle of a stick and moving it up and down 

42 Dan: and in parallel 

43 Dan: The sides [the extreme of the stick] move along 

44 Jan: Exactly 

48 Jan: Let’s try (Tries to drag C) 

49 Jan: Nothing is happening… It should. (They are puzzled) 

52 Jan: (asks some other students) Did something happen for you with C? (does not 
get a response) 

53 Dan: Nothing happened (writing and talking) 

54 Jan: You are not supposed to use this one? (clicks on “Move graphics view” 
command, which can be used to move the viewing screen around the plane), 

55 Dan: no, that one (indicating the “Move” command, which is used to drag 
elements) 

56 Jan: …What’s next? (they move on to the next task) 

Jan has difficulty in describing the movement he expects (line 33–44), however, 
it seems his interpretation of the dynamic representation is that the construction will 
move like a rigid system. They use the image of a stick (line 40), unveiling that 
they expect the construction to be constrained. Also, they use the geometrical term 
“parallel” (line 36, 37, 38, 42), though the notion of parallelism is not an appropriate 
mathematical interpretation of the dynamic representation; however, it is consistent 
with Danish everyday language use of the term to describe something happening at 
the same time. Their interpretation is not grounded in geometry, that is, they are not
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reflecting about or addressing the geometrical properties of the construction, which 
they induced. Rather, their interpretation is grounded in everyday life experiences 
of physical objects, for instance, lifting the middle of a stick results in the whole 
stick being elevated. When the construction does not behave as expected, they are 
puzzled, ask their peers, and look for an answer in the software, before writing that 
nothing happened, and moving on to the next task (line 52–56). 

Jan and Dan—task 2 

Jan uses the line tool and clicks twice on the screen, thereby constructing line f 
through points A and B. They are now about to make a prediction. 

111 Jan: Ok, (reading the task formulation 2b) what do you think happens with line f 

112 Dan: (continuing the reading) when you drag points A or B 

113 Jan: ehh (gesturing with his hands, it is not clear what he means) 

115 Jan: ehh, it moves (gestures with his hand from side to side in a curving 
movement, like tracing a semicircle) (Fig.  5) 

Fig. 5 Jan “draws” a semicircle with his index finger 

117 Jan: I think A will be the midpoint for B and vice versa 

118 Dan: What? (getting ready to write) Ok, A becomes the midpoint for B? 

119 Jan: no A (marks point A on screen with his finger)… (stops for 3 s) [seems to 
be thinking, choosing his words] 

120 Jan: When you drag A, B becomes the midpoint and when you drag B, A 
becomes the midpoint. 

(Jan makes a circular gesture with his finger on the screen, now drawing a full circle) 

126 Jan: Yes! Then I think it [point A] will move, (does a circular motion), with a 
radius of that which is between them [in danish “med en radius på det der 
er mellem dem” indicating radius AB]. In a circle you can move them 
around 

128 Dan: What?

(continued)
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(continued)

129 Jan: I don’t know how [does not seem sure how to formulate his thoughts] 

132 Dan: (Tuts, gesturing that he doesn’t understand/is frustrated) Write. (hands 
over pencil and textbook to Jan) 

137 Jan: So if we drag A (marks point A on screen with finger) then it should very 
well be able to go all the way around B with a radius of what is in between 
them. 

(Jan moves point A around) 

140 Jan: Ok it was maybe… (seems insecure about his previous answer) 

141 Dan: No… let’s answer the question 

145 Jan: B becomes the midpoint of A 

156 Jan: (reading task formulation 2c) What is the relation 

157 Dan: (continuing the reading) between the line and points A and B? (Fig. 6) 

Fig. 6 Reconstruction of Jan’s construction 

158 Jan: Eh … that … that the relation … when you drag one of the points … you 
can move it around the other point (gesturing with his hand in a circular 
motion) 

160 Dan: around what? 

161 Jan: They are always on a parallel line 

In Jan´s prediction (lines 115–137) he seemingly projects onto the construction 
dependency properties that are not there. He seems to expect that the points A and B 
are movable, but that the length AB will be preserved, hence that A can be dragged 
on the circle with center B and radius AB and conversely, B can be dragged on the 
circle with center A and radius AB. 

The students mention several times that if one point is dragged, the other becomes 
its midpoint. It may be because they interpret it as the center of a circle with radius 
AB. However, later when they have found out that the length AB is not preserved 
(line 140), they still talk of point B becoming the midpoint of point A (line 145). 
Hence, in their interpretation of the dynamic representation, they are neither capable 
of correctly predicting the dependency between objects’ movements during dragging, 
nor able to interpret geometrically, using the geometrical terms correctly to describe 
what they saw during dragging. In particular, the use of the term “midpoint” does



152 I. H. Højsted and M. A. Mariotti

not seem to correspond to the correct geometrical notion, rather to a more general 
meaning as “something that stays in the middle”, which might also refer to the 
center of a circle. The term “parallel” is used frequently by this pair of students, 
here and in the previous task, with different meanings that are not mathematically 
consistent; in this case it seems that “parallel” indicates that the line is straight, or 
perhaps just that some properties are maintained during dragging, perhaps the term 
“parallel” is intended to express invariance. Even if they use geometrical terms “A, 
B, line, midpoint, parallel, radius”, they do not produce a geometrical interpretation. 
They do not grasp the geometrical relationship between the points and the line: the 
geometrical terms are used to describe what they imagine or what they observe, but 
not consistently with the geometrical properties of the constructed figure. 

Jan and Dan—task 3 

Jan has constructed line f through points A and B and the parallel line g through 
point C, using the parallel line tool. They are now about to make a prediction. 

255 Jan: (reading task formulation 3b) What do you think happens with line g when 
you drag points A or B? Guess first and justify your guess to your mate. 

258 Jan: When you drag points A and B… eh, it runs parallel to it (gestures with his 
hand as a line, moving back and forward). 

260 Dan: It runs parallel to it. 

265 Dan: (Dan laughs) What are you saying? It just runs in parallel? 

268 Jan: Yes, If I drag B.. down here for example, (gesturing with his hands, two 
lines which remain parallel) then it stays parallel (Fig. 7) 

Fig. 7 Jan gestures two lines remaining parallel. The added red lines show the direction of Jan´s 
hands 

270 Dan: It stays parallel… So try and do it 

(Jan drags point B) 

271 Jan: You see, it’s always parallel. 

273 Jan: wooooooo… yes 

310 Jan: (reading 3d) What is the relationship between … 

311 Jan: It is that, no matter what, no matter what, they are parallel (gesturing with 
his hands two parallel lines) (Dan writing)

(continued)
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(continued)

313 Dan: No matter what… (he forgot what Jan said, and does not understand 
himself ) 

314 Jan: Can’t you remember that? 

315 Dan: No matter what, they are parallel (Writing). Now we’re done (they shake 
hands) 

Jan is to some extent becoming aware how the software works. In his interpretation 
of the dynamic representation, he seemingly projects dependency properties onto the 
construction and expects that they are maintained during dragging (line 268). While 
he has predicted incorrectly in tasks 1 and 2, he predicts correctly in task 3, and is 
satisfied with his achievement (line 273). The expression “runs in parallel” (line 260) 
is used to describe the motion when the two lines remain parallel during dragging. 
He does not justify his prediction referring to dependency relations or geometrical 
properties induced in the construction process; hence we cannot claim that he has 
reached a geometrical interpretation. However, his words and his gestures witness 
the emergence of awareness of hierarchical dependencies. This is not the case for 
Dan. Though the workload is shared, Jan is the one who tries to understand and solve 
the tasks, while Dan just writes the answers. Dan finds the tasks difficult and does 
not seem to understand much of what is going on (line 132, 265). 

5 Discussion 

We see in task 1d, that both pairs of students do not immediately expect the rela-
tions between elements to be hierarchical. In the case of Sif and Ole, the conflict 
between what they predicted and what they experienced in task 1d, may be seen as 
the starting point of a chain of events, where they act, observe, and become aware 
of the hierarchical nature of dependencies in a DGE. In task 3, we see Sif, in partic-
ular, indicating her awareness of the hierarchical dependency relation between lines 
f and g. In general, Sif and Ole´s ability to interpret the dynamic representation 
geometrically is demonstrated in ascending moves (Arzarello et al., 2002), from 
their perceptual experience to geometrical properties, i.e., they explain what they 
observe on the basis of geometrical properties. We view these as signs of develop-
ment of representation competency, and such a competency seems to become more 
consolidated and evolve further during the three tasks, till it encompasses hierarchical 
dependency relations in DGE. The case indicates that dependency tasks can support 
students in interpreting dynamic figures, both at a basic level, where the students  ́ can 
interpret dynamic dependency, and at a more advanced one, that they can interpret 
dynamic dependency geometrically. 

Dan is not actively participating in trying to solve the tasks and seems to have 
no comprehension of the functioning of the program or of the geometry that is 
embedded in it. Instead, Jan projects properties onto the construction, which are not 
there (expected A to be the midpoint of B and vice versa). We could argue that Jan is
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just starting to develop an interpretive frame; however, even if he is trying to interpret 
what he observes and uses geometrical terms, his interpretation does not seem to be 
anchored in geometry. This case shows that interpreting dynamic representations is 
a non-trivial task, and that even if the DGE task design is an important constituent 
of supporting this awareness, the task design and the technology that is exploited is, 
in and of itself, not sufficient. To support this pair of students, it would be important 
that the teacher intervenes to make students aware of this geometrical interpretation, 
as pointed out by Arzarello et al. (2002) “the teacher plays a very important role in 
students’ approach to theoretical thinking. Technology itself cannot bring about an 
educational change” (p. 71). 

The cases that we presented show examples related to the use of a specific digital 
technology, a DGE, with the aim of characterizing what the development and posses-
sion of representation competency constitutes in the context of graphical dynamic 
geometrical representations of geometric objects. However, we consider this to be 
only the first step in developing representation competency, in accordance with our 
main claim about the fundamental role of geometrical knowledge in dealing with 
representations. The second step involves dealing with graphical dynamic geometric 
representations of any mathematical object. 

If we attempt to generalize our example to graphical representations of any math-
ematical object, which is the research aim that we set out to explore, then this ability 
resonates with what Dreyfus (1994) coined as “visual reasoning”, which describes 
the ability to reason analytically about visual images, in “visually-based analytical 
thought processes” (p. 109). Sif and Ole are able to reason analytically about the 
dynamic figure, referring to geometric properties in their prediction and to explain 
any observed phenomenon appearing on the screen. According to Dreyfus, visual 
reasoning can be conducive in learning mathematics, however, it “is based on exper-
tise—it will be unhelpful if not impossible for the uninitiated” (p. 116). This is the 
case with Dan and Jan, who clearly need the intervention of the teacher. 

While our cases refer to geometric objects, other studies deal with what may 
typically be thought of as non-geometrical mathematical objects that are represented 
geometrically, e.g., if we return to Dreyfus’ (1994) paper, he refers to students’ 
successful development of “visual reasoning” in Artigue’s (1989, as cited in Dreyfus, 
1994) study, in which the students work exclusively with graphical representations, 
studying differential equations “based on reasoning with functions that are not given 
explicitly by a formula” (Dreyfus, 1994, p. 117). The students successfully manage 
to “infer graphical information about curves from graphical information about their 
derivatives” (p. 117).
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6 Networking Representation Competency and Other 
Theoretical Constructs 

The KOM frameworks description of representation competency plays an important 
theoretical role in this chapter; however, we have also adopted theoretical constructs 
external to the KOM framework. 

Reflecting on the functioning of these constructs, we can recognize their impor-
tance in relation to different aspects of our analysis. Some of the constructs relate 
to the specific context of DGE and its potentialities, e.g., dynamic dependency and 
dependency tasks (Højsted & Mariotti, 2020) or the relationship between perceptual 
and theoretical aspects of a diagram (Arzarello et al., 2002; Laborde, 2005). Other 
constructs are used to elaborate on the fundamental role of geometrical knowledge 
in dealing with representations, e.g., geometric intuition (Alexandrov, 1994), while 
some contribute to a fine-grained analysis of what it means to possess representation 
competency in the context of digital representations of mathematical objects, e.g., the 
possession of a “mathematical eye” (Mariotti & Baccaglini-Frank, 2018) or abilities 
in visual reasoning (Dreyfus, 1994). Additionally, we can add our own theoretical 
contribution comprising the hypothesis of two steps in the representation competency 
in relation to digital representations of mathematical objects. The first step concerns 
the ability to interpret and use representations of dynamic geometrical objects, which 
we argue involves two layers of complexity, firstly, being able to interpret dynamic 
dependency, and secondly, being able to interpret dynamic dependency geometri-
cally, i.e., as a logical dependency between geometrical properties. The second step 
concerns the ability to interpret and use representations of non-geometrical objects 
through a geometrical interpretation. 

From a networking of theories point of view, the theoretical constructs used seem 
conducive to elaborate on the broad description of representation competency that 
is provided in the KOM framework, in order to fit the specific context of digital 
representations of mathematical objects. 

7 Conclusion 

Our contribution focuses on the general issue of representation and in particular on 
the ability needed for using and interpreting representations of mathematical objects, 
which is a part of mathematical representation competency. We set out to identify 
what characterizes development and possession of representation competency in the 
specific context of digital representations of mathematical objects. We hypothesize 
two steps of this competency, a more basic one, which is ability to interpret and 
use dynamic representations of geometrical objects. We have argued that this first 
step comprises at least two layers of complexity, (1) being able to interpret dynamic 
dependency, (2) being able to interpret dynamic dependency geometrically. The 
identification of the first step is supported by our empirical examples, in which Sif and
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Ole show signs of possessing this aspect of representation competency to some extent, 
and we found that working on the specific dependency tasks seems to support further 
development: an emerging awareness of hierarchical dependency relations appears. 
This pair of students is able to use and interpret dynamic geometrical representation 
of geometrical objects. This first step can be considered as a bridge toward achieving 
the second step, which is the ability to interpret geometrically the use of graphic 
representations for non-geometrical objects. 
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New Demands on the Symbols 
and Formalism Competency 
in the Digital Era 

Linda Marie Ahl and Ola Helenius 

1 Introduction 

When Russell and Whitehead published the first edition of Principia Mathematica 
in 1910–1913, the interest in the roles of symbols and formalism in mathematical 
reasoning was greatly revived. Russell and Whitehead were unsatisfied with how 
elementary mathematics like whole numbers relied on intuitive reasoning. They 
thought that unless mathematics is put on completely formal grounds, the ugly head 
of self-reference might always lurk in the background and allow false statements to 
be proved which would be mathematical blasphemy. To rectify the situation, they 
developed a finite symbol system where every admissible inference was explicitly 
described. This allowed elementary arithmetic to be developed without any reference 
to real-world inferences whatsoever (Russell & Whitehead, 1973). The core of their 
contribution is an extreme use of mathematical symbol systems and formalism. 

The story of Principia Mathematica serves as an important backdrop because 
it displays that advanced mathematical reasoning is possible in purely symbolic 
systems. But when we learn mathematics, we have initially almost no access to the 
symbol systems we end up using. How we initially understand the symbol systems 
has to be grounded in the experiences we have access to, and becoming competent in 
reasoning with the help of symbol systems has to be learned. But what does it mean 
to master mathematical symbol systems and formalism and how does the develop-
mental progression look? One way of speaking about this is in terms of mathemat-
ical competence: “Mathematical competence is someone’s insightful readiness to act

L. M. Ahl (B) 
Uppsala University, Uppsala, Sweden 
e-mail: linda.ahl@edu.uu.se 

O. Helenius 
University of Gothenburg, Gothenburg, Sweden 
e-mail: ola.helenius@ncm.gu.se 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
U. T. Jankvist and E. Geraniou (eds.), Mathematical Competencies in the Digital Era, 
Mathematics Education in the Digital Era 20, 
https://doi.org/10.1007/978-3-031-10141-0_9 

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10141-0_9&domain=pdf
http://orcid.org/0000-0002-1928-7537
http://orcid.org/0000-0002-0609-7064
mailto:linda.ahl@edu.uu.se
mailto:ola.helenius@ncm.gu.se
https://doi.org/10.1007/978-3-031-10141-0_9


160 L. M. Ahl and O. Helenius

appropriately in response to all kinds of mathematical challenges pertaining to given 
situations” (Niss & Højgaard, 2019, p. 12). Within this view, a major constituent of 
mathematical competence is the competency of handling mathematical symbolism 
and formalism (Niss & Jensen, 2002). The framework for mathematical competence 
(hereafter the KOM framework) may be used for designing curricula on any level of 
mathematics education (Niss & Højgaard, 2019). However, to be useful in teaching 
practice, the competency description requires thoughtfully designed activities, based 
on an idea of progress in students’ knowledge. Since no description of such devel-
opmental progress is covered by the KOM framework, we need additional theory to 
put the competencies to work. 

In this chapter, we will argue that while the competence framework from Niss and 
Jensen provides a powerful way of viewing mathematical symbolism and formalism, 
the framework lacks features needed to explain how a learning progression involves 
becoming a competent user of mathematical symbolism and formalism might look. 
We will also argue that an elaborate understanding of the symbolism and formalism 
competency is particularly important in the digital era. Our aim is therefore threefold: 
first, to argue for the possibility to network the competence framework with theories 
from Vergnaud as well as with an elaborated view on how symbol systems are 
constructed; second, to argue for a way of thinking about progress in conceptual 
knowledge based on an epistemological shift from meaning-making in situations and 
iconic representations to meaning-making in mathematical symbol system; third, to 
exemplify how the ways of working associated to the digital era put new demands 
on the symbols and formalism competency. 

The outline of the rest of this chapter is as follows. First, we will elaborate theo-
retically on symbol systems. We will then move on to present a theoretical account of 
how symbol systems can emerge from intuitively accessible forms of mathematical 
reasoning. We develop this theoretical account by building on work by Vergnaud 
which we refine by merging it with the symbol system theory. We will then go on to 
briefly introduce the framework for mathematical competence (hereafter the KOM 
framework) developed by Niss and Jensen and describe why it makes sense to network 
the KOM framework with the Vergnaud-based work. Thereafter, we carry out this 
networking to elaborate on the symbols and formalism competency from a learning 
progression point of view. As the title promises, we will also problematize new 
demands on the symbols and formalism competency in the digital era. Therefore, we 
examine an example from elementary programming in a block-based programming 
environment and explain how it challenges the relationship between symbolism and 
intuition in elementary school mathematics. We close with a conclusion concerning 
new demands on the symbols and formalism competency in the digital era, namely 
that the same class of concrete situations can be conceptualized and formalized in 
competing ways in block programming code versus mathematics.
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2 The Nature of Symbol Systems 

A symbol can be any kind of mark, inscription, gesture, sound, etc., that is under-
stood to stand for something else, like an object, relationship, or idea. In semiotics, 
the totality of something standing for something else is called a sign. A sign is 
composed of a signifier that stands for or denotes a signified. Signs, in general, can 
have natural causes like thunder is a sign for the presence of lightning or a particular 
form of buzzing sound can be a sign of a signified mosquito (Saussure, 1974). Signs, 
in general, can also have an iconic relationship between the signified and the signi-
fier, like how can denote a smiling human face. The concept of a symbol, in most 
traditions, is taken to mean a token of human construction that has no causal relation-
ship with what it stands for in opposition to signs where the signifier has an iconic 
relationship to the signified (Brandon & Hornstein, 1986). If the physical token IIII 
appears in a discussion about quantities, you will have a good chance of figuring out 
what it might mean even if you did not see the physical token before. The token IIII is 
iconic relative to its meaning as signifying a quantity. We can, for example, directly 
manipulate the token IIII and obtain I and III, signifying how the quantity four can 
be constructed from one and three. There is no corresponding way of manipulating 
the token 4 to obtain any information on the quantity it represents because it is not 
iconic. If the token 4 appears, you have no chance of drawing inferences about its 
quantitative meaning unless someone told you what the token is supposed to stand for 
or used the token 4 in some communicative circumstance where its meaning could 
be inferred. The form of the token 4 has no relation to its meaning except through 
discursive association. 

So, while a symbol is characterized by being a token with no physical connection to 
what it is set to signify, in symbol systems, physical manipulation of the placement 
of symbols in relation to other symbols regularly shifts the meaning in what is 
symbolized in specified ways. We will exemplify after a formal description of how a 
symbol system can be understood. The description we will use comes from Harnad 
(1990), and according to him and the ones he builds on, a symbol system is: 

1. a set of arbitrary physical tokens that are 
2. manipulated on the basis of “explicit rules” that are 
3. likewise physical tokens and strings of tokens. The rule-governed symbol-token 

manipulation is based 
4. purely on the shape of the symbol tokens (not their “meaning”), i.e., it is purely 

syntactic and consists of 
5. "rulefully combining” and recombining symbol tokens. There are 
6. primitive atomic symbol tokens and 
7. composite symbol-token strings. The entire system and all its parts—the atomic 

tokens, the composite tokens, the syntactic manipulations both actual and 
possible and the rules—are all 

8. “semantically interpretable”: The syntax can be systematically assigned a 
meaning (e.g., as standing for objects, as describing states of affairs) (Harnad, 
1990, p. 336).
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Mathematics is full of symbol systems satisfying these rules. Most well-known is 
probably the base ten position system for expressing numbers. The standard way of 
expressing definite integrals, the standard way of expressing function with the notion 
f (x), coordinate systems, and the associated (x, y) notation to denote points in the 
plane are other examples. Mathematical symbol systems are regularly intertwined. 
For example, in the notational system for functions, we write f (10) to express the 
value of the function f at x = 10. We then use the base ten positions system. Symbol 
systems can also build on each other. For example, the decimal system recycles the 
base ten position system. It adds only the decimal point symbol and extends the place 
value evaluation system to include negative powers of 10. 

Let us look a little closer at how whole number arithmetic is extended to rational 
number arithmetic through a symbol system extension (Mendelson, 2008). Again, it 
is done by adding only one single atomic symbol, ÷ or /. Whole number arithmetic 
is symbolized with the ten digits, +, −, =, and ·. We then introduce / by saying 
that a/b should have the same role in the symbol system as a symbol c for which 
a = b · c holds. Note that this is a rule expressed without /, that is, in the symbol 
system we already had. We can then go on to set up the substitution rule a/b = c/d 
if a · d = b · c and the transformation rules (a/b) · (c/d) = (a · c)/(b · d) and (a/b) + 
(c/d) = (a · d + c · b)/(b · d). After checking a set of conditions that ensure that the 
syntax of our new extended symbol system is well defined (something that takes a 
few pages in a standard book in abstract algebra or elementary number theory and 
also includes taking special care of 0 and 1) we can now operate in our new symbol 
system. Effectively, we added only one atomic symbol token and some manipulation 
rules for it that all fell back on the existing rules of the previous system. After doing 
this, we can formulate a relatively short list of conditions for which sentences are 
allowed (e.g., a/(b + c) is allowed, but a/+b· is not allowed) and which substitution 
and transformation rules exist. Then, we can operate with a/b. We should note that 
we did not follow the definition of the symbol system above fully, as we did not 
express all rules in terms of tokens with no meanings as point 4 states. Going down 
that route would be to go full Principia Mathematica and since it takes Russell and 
Whitehead 200 pages to reach the conclusion that 1 + 1 = 2, such a demonstration 
would not fit this chapter. 

By defining the rules of the new system, like above, we get a new system that 
satisfies points 1–7 in the symbol system definition, mostly by inheritance from the 
previous system. In particular, the symbol / was introduced with no external meaning 
being assigned to it (fulfilling point 4). But what about point 8, the requirement of 
the new system to be semantically interpretable? One interpretation would be that 
since we already had additive inverses for all numbers in the whole number system, 
we would perhaps like to also have multiplicative inverses. The symbols a/b give 
us exactly that because by using the rules we introduced we can show that for any 
a (except 0) a · 1/a = a/a = 1, and any a/b (a, b not 0) a/b · b/a = 1, so the new 
elements have inverses too. So, we have created a new object where we can both add, 
subtract, multiply, and divide freely; a field in mathematical terms, more specifically 
the field of rational numbers.
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In school mathematics, however, the symbol a/b is not introduced in the above way 
at all. Instead, a/b is used to denote several different but related situations, like equal 
sharing, equal grouping, and part-whole relationships, i.e., division and fractions. 
The manipulation rules are rather derived from the situations the symbol is set to 
signify than from the rules of additive and multiplicative arithmetic. Why will the 
manipulation rules derived from these different situations match up and why will they 
match up with the symbolically derived manipulation rules? The truth is that they will 
not match up exactly and a principal difficulty in acquiring competence in dealing with 
mathematical symbols and formalism comes down to dealing with this mismatch. 
This manifests the complicated relationship between mathematical meaning-making 
and mathematical symbolism. We will introduce theories from Vergnaud to explain 
this relationship further. 

3 The Symbol Grounding Problem 

How symbols get their meaning is a problem in philosophy and cognitive science 
alike: The symbol grounding problem (Harnad, 1990). To date, there is no conclusive 
theory for how abstract symbols acquire meaning in the mind. Even in the case of 
numerical cognition, there are competing theories (Leibovich & Ansari, 2016). But 
for the acquisition of school mathematics, we can give a pretty good description of 
how symbols usually acquire their meaning. 

We base our reasoning on previous work (Ahl & Helenius, 2021a) based on 
theories by Vergnaud (1998, 2009). Vergnaud’s theorization is characterized by an 
interest in the roles enunciation and symbolization play in conceptual development. 
Vergnaud pays great attention to the knowledge that is not yet symbolized and cannot 
be expressed other than in action. Building on Piaget, Vergnaud calls knowledge 
in action operative knowledge and knowledge that can be expressed in words and 
sentences or other symbolic forms for predicative knowledge. To theorize opera-
tive knowledge, he uses Piaget’s concept of schemes, the invariant organization of 
behavior for a certain class of situations (Vergnaud, 1998). We will not go further into 
scheme theory in this chapter, but invariants and classes of situations are fundamental 
for our theorization. An invariant is something that stays the same as the situation 
varies within its class. For example, situations where you have two sets of discrete 
objects and decide to view them as one set, form a class. The “putting together” 
idea is invariant across such situations and can form a basis for the mathematical 
operation addition. 

Armed with the idea of invariants and classes of situations and their interdepen-
dence, Vergnaud views a concept as a triplet C = C(S, I, R), the set of situations, S, 
where the concept is meaningful, the invariants, I, and the representations, R, that can 
be used to represent invariants and situations (Vergnaud, 1997). The three elements 
should be thought of as intertwined in how concepts are psychologically structured 
and used. From an analytical point of view, it makes sense to separate them though. 
The invariants that form the core of a concept will on one hand manifest their meaning
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in situations and on the other hand in representations. We categorize representations 
in two forms, namely iconic representations and non-iconic representations which 
are almost always elements of symbol systems. It is important to note that situations 
and iconic representations can be grouped together in the sense that meaning-making 
can be based on direct experience, while the meaning of symbol systems can only 
be picked up from discursive inferences. From a symbol grounding perspective, the 
meaning of a symbol can either be grounded in relations in the symbol system, it can 
come from invariants in a situation, or invariants in iconic representations (Ahl & 
Helenius, 2021b). For example, the concept of a simple closed continuous curve in 
two-dimensional space can come from the situation of a string tied into a loop on 
the floor not crossing itself. In a coordinate system on paper, we can draw curves 
not intersecting themselves and let them end where they started and have an iconic 
representation of a simple closed continuous curve. Formally, we can define a simple 
closed curve in the plane by saying that it is an injective continuous map� : S1 → R2 

from the circle to the plane. Similarly, subtraction could be based on the classes of 
situations where you have some number of things and take some away. It can be 
based on the iconic images in Fig. 1 or a − b can be defined by relations in symbol 
systems: as the number c such that a = b + c. 

? ? 

70 

40 ? 

748 

48 

Fig. 1 Iconic representation of difference and hence subtraction constructed from the idea of two 
parts making up a whole. The whole is represented by the top bar, and the bottom row represents 
two parts making up the whole, with one missing—the difference. Three variants are displayed. A 
representation building on unit squares that you can count, a representation where the magnitudes 
are represented by the lengths or the bars and the numbers on them, and a generalized model where 
only the numbers on the parts give information on the quantities involved 

Vergnaud emphasizes that schemes and their invariants can never be faithfully 
represented in symbol systems or by any other semiotic means (Vergnaud, 1998). 
We will exemplify. The symbol system a/b and its composition rules and additive 
manipulation rules are typically introduced by using two similar but nonidentical 
iconic part-whole representations. In Fig. 2, most would agree that the iconic repre-
sentations in column A all represent 3/4 since three out of four items are colored. 
The form of these items is not considered to impact the meaning, as long as all 
forms are the same. And most would agree that the iconic representation in column 
C represents 3/2. One whole and one half, so together three halves. But what about 
column B? Depending on how we choose to look at it, it can be 3/4 or 3/2. This is 
disturbing since the elements in column B are just rigid transformations of either the 
bottom elements in column A or the elements in column C. So, there can be no rigid 
rule that maps either the representations of type A or the representations of type C 
onto the symbol system a/b.
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A B C 

Fig. 2 3/4 in column A, 3/2 in column C, and both 3/4 or 3/2 in column B 

While we often may want to believe that symbol system manipulation and compo-
sition rules are some kinds of crystallization of situations or iconic representations, 
it is rarely if ever so simple. Duval remarks that “a mark cannot function as a sign 
outside of the semiotic system in which its meaning takes on value in opposition to 
other signs within that system” (Duval, 2006, p. 110). But, as long as concepts are 
based on iconic representations, the signs can very well take on a meaning which is 
in opposition with other signs. The figure in column B, seen as a sign signifying some 
a/b, can represent both 3/4 and 3/2. Duval continues and claims that all mathematical 
symbol systems are based on rules of representation formation (Duval, 2006). This is 
true in the sense that within the symbol system itself, there must be clear evaluation 
and manipulation rules, but when it comes to what a symbol system represents in 
terms of different iconic representations or situations, the rules are not necessarily 
clear. The same symbol from the same system can have several different and partly 
conflicting representations in the form of invariants in situations or iconic repre-
sentations. We have in previous work expressed this by saying that mathematical 
symbols are conceptually polysemic. They represent several but related meanings 
(Ahl & Helenius, 2021a, 2021b). 

We also claim that in conceptual development, concepts are often first introduced 
by observing invariants in situations and iconic representations (Ahl & Helenius, 
2021a). The symbols initially work as labels, and the symbol system manipulation 
rules are derived from invariants in the situations or iconic representations. But at 
some point, an epistemological shift has to occur. The main meaning-making has to 
be considered to be in the symbol systems and the relation they entail. Mathematical 
symbol system rules are never allowed to include contradictions and therefore act as 
an arbiter concerning which invariants in associated situations and iconic represen-
tations should count as valid. By acting on the arbiter’s judgment, more fine-grained 
rules for interpreting situations and iconic representations must be invented to rein-
stall some elements of uniqueness. In the part-whole case displayed in Fig. 2, we can 
observe that the idea of parts and wholes will not suffice to sort out the contradictions.
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But if we introduce the idea of a unit, we are on solid grounds again. If we decide 
the unit is one circle, column B represents 3/2. If we decide the unit is a half-circle, 
column B represents 3/4. Hence, the contradiction in symbol system representation 
led us to refine the invariants, making them on one hand more precise but on the 
other hand less intuitive and more reliant on refined explanations. 

4 Networking KOM and the Symbol Grounding Theory 
into a Coordinated Conceptual Framework 

The Danish KOM project (Niss, 2003; Niss & Jensen, 2002) is a prominent way of 
trying to explicate what knowing in mathematics might mean. The main tenet in this 
view of mathematical knowledge is that mathematical competence in general, that 
is, the ability to involve mathematics to deal with a range of situations or contexts, 
can be subdivided into overlapping but distinct mathematical competencies and that 
mathematical competence, in general, is constituted by the set of such competen-
cies. We will argue why it is possible to coordinate the KOM framework with the 
Vergnaud-based theories we have presented above. We will use theory as a structured 
set of lenses (Niss, 2007) through which the phenomena of handling mathematical 
symbols and formalism may be investigated. By networking theoretical constructs 
from the KOM framework (Niss & Jensen, 2002) with theoretical constructs from 
Vergnaud’s theories (e.g., Vergnaud, 1998, 2009), we aim to gain a deeper insight into 
the phenomena in contrast to what could be observed and explained with one theory 
alone. The way we network is through coordinating constructs. The possibility to 
coordinate theoretical constructs into a conceptual framework for analysis hinges on 
three crucial factors. First, the theories in the conceptual frameworks should be built 
by well-fitting elements (Prediger et al., 2008). Second, the philosophy that serves 
as the point of departure for observing the processes and objects in the respective 
frameworks should align. Third, the theories should differ somewhat in their focus, 
for example, by addressing different grain sizes. 

The KOM framework and Vergnaud’s theories have well-fitting elements for 
analyzing the symbols and formalism competency. Both the KOM framework and 
Vergnaud’s theories, “The theory of conceptual fields” and “A comprehensive theory 
of representation”, address student’s learning, with a special focus on students’ 
actions in situations. “Competence is someone’s insightful readiness to act appropri-
ately in response to the challenges of given situations.” (Niss & Højgaard, 2019, p. 12)  
In a comprehensive theory of representations (Vergnaud, 1998), students’ schemes, 
the invariant organization of behavior for a certain class of situations, are at the 
core for analyzing knowledge. The operational invariants, concepts-in-action, and 
theorems-in-action are the main concepts in the analysis which signals Vergnaud’s 
analytical interest in knowledge in operative form. Similarly, “the competencies can 
be used as an analytic means for describing and characterizing the state of affairs
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concerning the competencies pursued (or not pursued) in a given segment of math-
ematics education.” (Niss & Højgaard, 2019, p. 25) Further, Vergnaud theorizes 
and highlights the connections between students’ actions in the operational form 
of knowledge and the predicative form of knowledge and to make that analysis he 
uses the ubiquitous operational invariants, the role of enunciation of invariants, and 
how they are constituted in action as well as in symbolic form. As we will show in 
our analysis this fits very well with the constitution of the symbol and formalism 
competency from the KOM framework. 

The philosophy that serves as the point of departure for observing the processes 
and objects align, since both the competencies, the conceptual field, and the theory 
of representation are cognitive. While competence, in general, can be viewed as a 
continuum from cognitive traits to actual observed behavior (Blömeke et al., 2015), 
the KOM framework departures from a cognitive point of view in the characteriza-
tion of what it means to be mathematically competent (Niss & Højgaard, 2019). 
Vergnaud draws mainly on Piaget in his theory building, but with impact from 
Vygotsky concerning the pivotal role of language. For Vergnaud, knowledge is adap-
tation in the Piagetian conceptualization. Development is understood as growth in 
student’s conceptual fields by acquiring additional effective schemes to deal with 
certain classes of situations (Vergnaud, 2009). Schemes are certainly cognitive in 
nature. Thus, both theoretical perspectives we are networking with are concerned 
with knowledge in action and view that knowledge as a cognitive trait. This makes 
them philosophically compatible. 

The theories differ in their grain sizes. While Niss and Højgaard’s (2019) compe-
tency description describes the demands on students handling mathematical symbols 
and formalisms competency, without further explicating how this process is carried 
out, Vergnaud’s theoretical constructs give us a lens to detail students’ cognitive 
process when putting the competency to work. On a coarse grain size, the KOM 
framework gives us a lens for what to direct our attention to when analyzing 
the symbols and formalism competency. On a fine grain size, Vergnaud gives us 
theoretical concepts for analyzing students’ actions with particular mathematical 
objects. 

5 Symbolism and Formalism as a Mathematical 
Competency 

One of the eight distinct competencies in the KOM framework is the mathematical 
symbol and formalisms competency. In the KOM framework, each competency has 
a receptive side, typically dealing with interpretation and understanding of mathe-
matics that is already present in some circumstances, and a constructive side, typically 
dealing with employing or using some mathematics to deal with in some situation. 
We will spend this section on decomposing the symbols and formalism competency
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and will pay particular attention to the receptive and constructive sides. We use the 
description of the competency from a recent update by Niss and Højgaard: 

The ability to relate to and deal with mathematical symbols, symbolic expressions and 
transformations, as well as with the rules and theoretical frameworks (formalisms) that 
govern them, constitutes the key component of this competency. On the receptive side, 
this competency is to do with decoding and interpreting instances of symbolic expressions 
and transformations, as well as formalisms, already present, whereas the constructive side 
focuses on introducing and employing symbols and formalism in dealing with mathematical 
contexts and situations. (Niss & Højgaard, 2019, p. 19) 

To be able to analyze what cognitive difficulties might be involved when devel-
oping the symbolism and formalism competency, we will decompose it into a 
schematic diagram (Fig. 3). The decomposition partly relies on analyzing the verbal 
description of the competency cited above and partly relies on coordinating this 
description with the theories based on Vergnaud’s work and the symbol system 
theory we have introduced. 

mathematical symbols 

transformations 

symbolic expressions 

rules 

theoretical frameworks 

formalisms 

decoding 

interpreting 

introducing 

employingmathematical contexts 

mathematical symbol systems 

d 

rsituations iconic 
representations 

Fig. 3 Mathematical symbolism and formalism competency decomposed 

According to our description of symbol systems, we integrate the symbols and 
rules part of the competency description into the concept of a symbol system and 
display it in the box to the right. The multiplicity of such boxes indicates that several 
such systems might overlap and be in play at once. The arrow d indicates relating to 
the symbol systems by decoding or interpreting them. A question not dealt with in 
the KOM framework is what the symbols should be decoded into or interpreted as. In 
line with our previous reasoning, we claim that the target of the decoding/interpreting 
can essentially be of three types, indicated by dotted lines in Fig. 3: situations, iconic 
representations, and (possibly different) symbol systems. We also note that what 
is labeled as mathematical contexts and situations in the KOM framework largely 
overlaps with what we have dealt with as situations and iconic representations which 
explains why we overlap these boxes in our schematic description. The arrow c 
represents when elements in some mathematical contexts (situation or iconic repre-
sentation) are understood by employing or introducing symbol system elements to 
denote or label them. 

In the KOM description of the symbols and formalisms competency, it is hard 
to sense what progress in this competency might mean. In general, the KOM report 
handles progress in terms of three dimensions: the degree of coverage that concerns 
how much of the competency the person masters; the radius of action that covers the 
different mathematical subfields where the person can apply the competency; and the
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technical level concerning the complexity level within some field at which the person 
can act out the competency (Niss & Jensen, 2002). While these dimensions can help 
in sorting out to what degree a person possesses a competency, they say practically 
nothing on possible developmental progressions. Vergnaud’s theory of conceptual 
fields, on the other hand, is specifically developed to understand progression on a 
medium and long-term basis, including, as we have seen, the role of symbolism. For 
example, it follows that the operative form of knowledge typically precedes the pred-
icative form. The meaning of some symbolism is typically first grounded in invariants 
in classes of situations and iconic representations. That means that in Fig. 3 the arrow 
c initially has a role of enunciating invariants and using invariants from multiplicities 
of situations and iconic representations to motivate symbol system manipulation and 
interpretation rules when a new conceptual field with new notations is encountered. 
At this point, the decoding/interpretation (arrow d) functions as inverses of the enun-
ciation rules. But later, as we have argued, the multiplicities of symbol system rules 
will overrule certain invariants in the situations and iconic representation and how 
the icons and situations should be mathematically interpreted. So, the understanding 
of the relevant invariants in situations and iconic representations has to be refined. 

In summary, the formulation of the symbolism and formalism competency 
together with the three dimensions of evaluation gives a good basis for under-
standing what the competency is about and for evaluating it. By coordinating the 
competency with the Vergnaud derived theories, we also gain access to a compat-
ible theory of the development of the competency. The key point is the complicated 
relationship between situations/iconic representations and symbol systems and their 
interchanging roles for acting as the grounding factor. We will now move on to apply 
these insights by analyzing how the introduction of digital tools might affect the 
development of the symbolism and formalism competency. 

6 Challenges in the Digital Era 

In the KOM framework, the handling of digital tools is handled by the aids and 
tools competency. In this section, we show that the inclusion of digital tools into 
the mathematics classroom can also have profound effects on the symbol grounding 
problem and hence the development of the symbol and formalism competency. On 
one hand, the operation of the tools themselves may require specific formalism, 
but more interesting for us is that digital tools might also give access to different 
situations and iconical representations that may, or may not, support the creation of 
some established mathematical meaning (Jankvist & Misfeldt, 2015; Jankvist et al., 
2019). 

In this section, we will explore how the inclusion of digital tools may influence the 
symbol grounding problem and hence the symbolism and formalism competency. 
Our exploration will be guided by a classic geometrical task and how it might be 
solved by creating a program in the programming environment Scratch. The task is 
given in Fig. 4.
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Fig. 4 What is the length of 
the side of the square? 

14cm 

7cm 

9cm 

Without digital tools, a standard solution in geometry could be to realize that we 
only need to know the length of the diagonal since the length of the side can then 
be obtained by dividing by

√
2. By drawing the diagonal and using the properties 

of similar triangles, you can then set up some equations involving ratios and the 
Pythagorean theorem and eventually find the length of the diagonal. Such a solution 
would incorporate formalism in labeling sides in triangles, setting up relationships, 
solving equations, and so on, but not formalism related to coordinate geometry or 
vector geometry. 

What can a solution in Scratch entail? We will discuss this question by analyzing a 
situation that Scratch code codifies. How could you walk the solution to the problem 
on a field in real life? Like this: Mark out any point where you happen to stand. In any 
direction, you happen to have your nose pointing, walk 14 steps, turn 90° left, walk

Fig. 5 Result of running a Scratch program
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7 steps, turn 90° right, walk 9 steps. Turn toward your original mark and count the 
steps back. You now know the length of the diagonal and can calculate the side length 
as before. Let us call what we just described a walking and turning (wt) situation. A 
central part of the Scratch block programming environment is a codification of the 
wt-situation type by commands like move? steps and turn? degrees. A virtual object, 
a so-called sprite, can be controlled on the Scratch screen by such commands and 
can also have its path drawn. Appendix shows a Scratch program where our walked 
solution is operationalized. The result is in Fig. 5.

Let us now analyze wt-situation, screen drawings, Scratch code, and corre-
sponding mathematics in terms of situations, iconic representations, and formalism. 
First, the wt-situation is operationalized in Scratch formalism and produces Scratch 
screen iconic figures from the coded movements. Potentially, the wt-situation and 
related code could be related to vector geometry formalism, which is, however, not 
normally a part of elementary schooling. Some of the Scratch code deals with coordi-
nates in terms of x and y values, and the Scratch screen has an underlying coordinate 
structure. This can on one hand be seen as a code version of mathematical coordi-
nate formalism, albeit in an implicit way since our Scratch screen does not include 
any visible coordinate axes. On the other hand, potentially, both the mathematical 
coordinate formalism and the Scratch coordinate formalism could be grounded in 
an everyday situation, based on coordinate style naming of locations on a field. 
The finished drawing on the Scratch screen could also be seen as an iconic version 
of standard Euclidean style geometrical formalism. There is, however, no real way 
of creating a drawn square (or any other figure) except going through coordinate 
or movement Scratch code formalism. Therefore, exploring shapes through Scratch 
would have to go through introducing coordinate or movement style formalism, either 
in Scratch code or in Scratch code as well as in mathematical formalism. In Fig. 6, 
we have schematized all these connections. Solid lines represent connections that we 
consider manifested in typical lessons with where Scratch is used to draw figures by

Situation: walking and turning situation 

Scratch code of 
walking and turning 

Iconic: Scratch screen 
representing movements 

Iconic: Scratch screen 
representing points in the plane 

Situation: points with locations Mathematical coordinate formalism 

Vector geometry formalism 

Standard geometry formalism 

Scratch code point 
coordinate formalism 

Iconic: Scratch screen 
representing drawn gures 

Fig. 6 Points and movements situations, mathematical and Scratch formalisms; scratch screen 
iconic imagery; all interacting
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letting a sprite move on the screen. Connections that we consider unusual for elemen-
tary school, but that potentially could be included, like for example vector geom-
etry, are represented by dotted lines. Note in particular that not all possible connec-
tions have lines. For example, there is no connection between Scratch screen move-
ments and standard geometry formalism, because such geometry cannot represent 
movement.

With this example, we want to illustrate that the introduction of the programming 
environment does not only introduce a new type of formalism. The programming 
environment also introduced new situations and iconic representations. For similar 
situations, different invariants might be chosen for operationalization in coding versus 
in mathematics. For example, in Scratch when a sprite represents some positions, 
it does not only represent the coordinates but also a direction, but neither in vector 
geometry nor coordinate geometry can a point have a direction. It should also be 
noted that in standard school geometry, and the figure in Fig. 4 is treated with no 
reference to either coordinates or vector geometry. The figure produced through 
Scratch is the same, but cannot be produced without the code versions of coordinates 
and vectors. Moreover, the complexities that are the results of different situations 
and iconic representations grounding the same symbol system might be multiplied 
because the programming introduces even more situations and iconic representations 
that may need to be considered. In a purely mathematical setting, we claimed that the 
symbol system should eventually serve as an arbiter and clear up how invariants need 
to be interpreted. But this role might be challenged when program code formalism is 
introduced in a way that operationalizes invariants in situations differently than the 
mathematical formalism does, like in the case of a “point” having direction. While 
all new connections might create new ways of introducing, explaining, and applying 
mathematical matters, the didactical challenges should not be underestimated. 

In terms of the symbols and formalism competency, new questions arise. Should 
the competency include employing mathematical formalism to denote elements 
inside a computer program or from the product of a computer program? Should 
it include interpreting mathematical symbolism in terms of computer code or in 
terms of iconic representations, or situations that are related to the program code? 
This is far from the same problem dealt with by the aids and tools competency, where 
the focus is on using, for example, programming to deal with mathematical matters. 
In the case we have presented, the programming environment introduces a formalism 
world of its own as well as new types of situations and iconic representations to be 
dealt with. 

7 Conclusion 

We have shown that the symbolism and formalism competency is deeply related to 
issues of mathematical conceptualization and meaning-making. From the develop-
mental, Vergnaud-based theoretical perspective we employed, the symbolism and 
formalism competency will have different roles depending on how mature a concept 
is within an individual because the degree to which meaning-making resides in
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symbol system relations varies. By networking the symbolism and formalism compe-
tency with the Vergnaud-based theory, we could decompose the competency. On one 
hand, we got a more comprehensive and holistic description of how concepts like 
symbolic expressions, transformations, theoretical frameworks, and formalism used 
to describe the formal side of the competency stick together. These concepts all have 
a place under the symbol system theory umbrella. On the other hand, we could also 
describe how the concepts of decoding symbols and employing symbols used in 
the description of the symbolism and formalism competency can be interpreted and 
show that there are three distinct types of targets for such decoding, namely situa-
tions, iconic representations, and (possibly other) symbol systems. These results in 
some sense mimic the analysis made by Duval (2006) who discusses transformations 
within and between registers and characterizes registers as either monofunctional or 
multifunctional and as discursive or non-discursive. Symbol system, in the sense we 
have used the term, is mostly covered in the category of monofunctional discursive 
representations and iconic representations could be either mono- or multifunctional 
non-discursive representations in Duval’s categorization. Situations, as we have used 
the concept, are not really represented in Duval’s works. While some of our analysis 
has counterparts in Duval’s work, we think the categorization into situations, iconic 
representations, and symbol systems are probably easier to think about for teachers 
and hence more applicable for discussions of teaching, in particular in relation to the 
symbolism and formalism competency and how it can be taught. 

In the second part of the chapter, we analyzed new demands on the symbolism 
and formalism competency raised by the inclusion of digital tools, in particular block 
programming. Our analysis indicates that the symbolism and formalism competency 
must be developed alongside a progression where the meaning of concepts shifts from 
residing in situations and iconic representations to residing in relations in symbol 
systems. If one believes this analysis, then it is evident that the inclusion of any new 
experiential arena that brings in both new formalism, new iconic representations, and 
new ways of coding situations, alongside established mathematical iconic represen-
tations and formalism, will place higher demands on the symbolism and formalism 
competency. The analysis we provided gives a rather precise description of the nature 
of the challenge, namely that established mathematical objects (like a square) might 
come about through situations coded with new (programming) formalism that has 
unclear or complicated relationships with established school mathematics. Typically, 
when analyzing relationships between programming and mathematical formalism, 
the focus is on different meanings given to a particular symbol or concept, like the 
equal sign or the concept of a function (Partanen & Tolvanen, 2019). Our analysis 
shows that the challenges go much deeper. 

To conclude, the KOM framework and in particular the identification and descrip-
tion of a symbolism and formalism competency is a powerful tool for thinking 
about one of the most important aspects of mathematical knowledge. Coordinating 
the competency with the more fine-grained theories based on Vergnaud’s work 
gives access to understanding of the complications involved when developing the 
symbolism and formalism competency. This is why the networking of the KOM 
framework with the Vergnaud-based theories is a worthwhile effort.
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Activating Mathematical 
Communication Competency When 
Using DGE—Is It Possible? 

Cecilie Carlsen Bach and Angelika Bikner-Ahsbahs 

1 Introduction 

When students work collaboratively on mathematical issues using digital tools, their 
communication and handling of the tool develop in an intertwined manner. More 
specifically, students may use new words when using Computer Algebra Systems 
(CAS) (e.g., Schacht, 2015), or they may describe mathematical objects dynamically 
when using Dynamic Geometry Environments (DGE) (e.g., Jones, 2000). However, 
the use of a digital tool may also limit mathematical communication in favour of more 
pragmatic talking, which serves to conduct the practical activity rather than serving 
any communicative purposes. Jungwirth (2006) has called this kind of communi-
cation empractical talk in her investigation of students’ use of CAS. These results 
indicate that the relationship between using a digital tool and communicating mathe-
matically is not straightforward. As mathematical communication is highly relevant 
for learning mathematics (Morgan et al., 2014), there is a need to untangle its relation 
to using digital tools and more specifically to reason out its contribution to developing 
mathematical communication competency. 

In previous case studies, we showed that mathematical communication and the 
use of DGE are interrelated: A mechanical-random DGE use was related to emprac-
tical communication, suppressing to put mathematical communication competency 
into practice, while a theoretical-resourceful DGE use dovetailed nicely with more
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dialogical communication, showing a high level of mathematical communication 
competency (Bach & Bikner-Ahsbahs, 2020). This chapter builds on these case 
studies and aims to characterise mathematical communication when using DGE in 
tool-based mathematical communication and to describe how it relates to the activa-
tion of students’ communication competency initiated by a cognitively demanding 
task situation (Klieme et al., 2009) for mathematical communication within a digi-
tally enhanced environment. Activation is not passive but entails acting related to the 
concept of competency. Given that the students use DGE, we ask: 

RQ1: How is mathematical communication related to the use of DGE? 
RQ2: How does the use of a digital environment activate mathematical commu-
nication competency? 

To answer these research questions, we take a networking of theories approach, 
where we coordinate two theoretical perspectives: (1) mathematical communication 
and (2) instrumentation of using a digital tool. First, we embed mathematical commu-
nication competency in a background theory of communication that distinguishes 
between two communication genres—mathematical conversation and empractical 
communication. We then account for new cases of student pairs solving the same 
task as in the first trial of the case study with DGE and investigate them based on the 
two theoretical approaches. Finally, we add in-depth theorising of all the results by 
considering our approach as a case of theory networking. 

2 Theoretical Framework 

Research on the networking of theories has revealed a landscape of networking strate-
gies used to relate theories and to further develop these relations. In this paper, we 
conduct case studies, for which we use the strategy of coordinating, which is “looking 
at the same phenomenon from different theoretical perspectives” (Prediger & Bikner-
Ahsbahs, 2014, p. 119). It is used when “a conceptual framework (in the sense 
of Eisenhart, 1991) is built by fitting together elements from different theories for 
making sense of an empirical phenomenon” (Prediger & Bikner-Ahsbahs, 2014, 
p. 120) with the aim of theorising the phenomenon, which in our case is tool-based 
mathematical communication. 

Research in networking of theories requires clarifying the term ‘theory’. To this 
end, we draw on the notion of theory introduced by Radford (2008). Thus, a theory 
(P, M, Q) “(…) can be seen as a way of producing understandings and ways of action 
based on: a system, P, of basic principles (…) a methodology, M, (…) and a set, Q, 
of paradigmatic research questions (…)” (p. 320). The methodology M justifies and 
encompasses ways of collecting data and methods related to P. Q considers typical 
schemes of questions relevant for P and M. By coordinating the two theories involved 
in our case studies, we can define a linking principle and a linking methodology, 
allowing us to reach the strategy of integrating locally (see Sabena et al., 2014). 
Thus, we can further theorise the phenomenon under investigation.
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2.1 Mathematical Communication 

The background theory of mathematical communication is placed in psycholinguis-
tics based on the work of O’Connell and Kowal (2012), who point to the cognitive 
nature of linguistic resources used in a social setting of speaking and listening. Verbal 
communication is defined as an activity that “brings persons together somehow by 
means of spoken discourse” (p. 10), and whereas “discourse emphasises a corpus, 
communication emphasises social engagement” (p. 11). In this paper, the discourse 
is mathematical. When communicating, at least two individuals are participating 
and two concepts, listener and speaker, identify the participants’ roles. Listening is 
different from hearing: Hearing is passive, whereas listening is active and includes 
validating the speaker’s meanings and participation by “stance, gesture, gaze, nods 
and other signs of active engagement, including brief comments, which nonetheless 
leave the listener in listener’s mode” (p. 6). 

Within verbal communication, O’Connell and Kowal (2012) distinguish between 
two communication genres, conversation and empractical communication. Partici-
pating in a conversation is an important element in everyday life and demands that 
the participants are active, acting as both listener and speaker and showing qualities 
of common responsibility, such as turn-taking, equal participation, open-endedness 
and verbal integrity. When taking turns to speak, each utterance is related to the 
previous utterance of the others or oneself, where no hierarchical relation is perma-
nently established. Open-endedness entails readiness to listen (also to oneself) and 
to move the communication forward. Verbal integrity entails that “one means what 
one says and says what one means. And one listens not only with a receptive heart 
but with an honest effort to review fairly what one receives from a speaker” (p. 21). 
Furthermore, “[p]revarication, trifling, prejudice, dogmatism, stubbornness (…) all 
these perspectives on the part of either listeners or speakers preclude verbal integrity” 
(p. 22). Empractical communication (cf. Bühler, 1934/1990) is less coherent than 
a conversation. It is a way of communicating where non-linguistic, practical activ-
ities dominate. This means that the talking is related to and based on the practical 
activity and its context, accompanied by many breaks (O’Connell & Kowal, 2012). 
For example, one of the participants may have a source of power, such as using the 
mouse when only one computer is available, thus causing a lack of turn-taking. In 
case a child uses the compass for the first time to draw a circle, she may think aloud 
“there, look …” indicating where to fix the centre, but it is not understandable outside 
the context. 

We will refer to communication as mathematical when the discourse concerns 
mathematics, hence involving mathematical representations, concepts, objects or 
activities (Niss & Højgaard, 2011). We can distinguish between two genres—math-
ematical conversation and empractical mathematical communication. Empractical 
mathematical communication is subordinated to a practical activity related to math-
ematics, like drawing a circle. In this case, the communication focuses on the prac-
ticality of the activity and the mathematical content is addressed via this practicality 
rather than verbally. For example, students may use the word solve when using
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CAS (Jungwirth, 2006), or when using DGE, students’ explanations are influenced 
by dynamic features (Jones, 2000). Mathematical conversation, however, concerns 
communication in, with and about mathematics, to which the qualities of a conversa-
tion apply, including turn-taking, open-endedness and verbal mathematical integrity, 
verbal mathematical integrity meaning that “one means what one says and says what 
one means” (O’Connell & Kowal, 2012, p. 21) with respect to one’s mathematical 
knowledge. 

2.1.1 Mathematical Communication Competency 

Mathematical communication competency concerns being able to express oneself 
mathematically using mathematical terms and words, as well as understanding and 
interpreting other people’s mathematical expressions (Niss & Højgaard, 2011). As 
we focus on oral communication between two students in this paper, the aim is for 
the students to have a dialogue showing mathematical conversation qualities, as a 
conversation involves the ability to interpret each other’s mathematical expressions 
(listening) and to express oneself mathematically (speaking) (O’Connell & Kowal, 
2012). To show mathematical communication competency, the communication must 
be of a mathematical nature, meaning that it entails the use of different mathematical 
words as well as words that are relevant in a mathematically related context. In a 
situation involving functions, these could be equation, graph, slope and variables. 

Mathematical representations are important in mathematical communication. 
When students show mathematical communication competency, they deal with 
different mathematical media for representing mathematical objects (i.e., visual, 
written, oral and gestural) (Niss & Højgaard, 2019). In terms of functions, it could 
be tracing a graph, building an equation by a description in natural language or 
creating a table. 

2.2 Instrumental Genesis and Instrumentation Profiles 

Instrumental genesis concerns the process of a student becoming able to use a digital 
tool in a given task in which the tool transforms from being an artefact to an indi-
vidual instrument for a class of situations (Guin & Trouche, 1998). In this process, 
instrumentation means that a tool affects the student’s actions and learning through 
building of cognitive schemes, thereby determining how the student is able to utilise 
the digital tool in connection with a task (Artigue, 2002). 

Instrumentation processes vary depending on the students’ mathematical under-
standing. Observing students using CAS, Guin and Trouche (1998) defined five 
work methods characterising students’ instrumented actions, also called instrumen-
tation profiles. The profiles involve a variety of instrumentation processes due to 
their complexity and re-organisation of activity, including students’ understanding of 
mathematical objects, their knowledge about the tools and their ability to choose how
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to solve a task. We describe the profiles based on three different ways of approaching 
tools: (1) Information tools: theoretical knowledge, the ability to communicate with 
peers/teachers and to use a tool or paper and pencil. (2) Understanding tools: 
the ability to use the available information tools and to do semantic interpretations 
(i.e., decoding and translating between the involved representations), comparisons 
and logical inferences. (3) Commando processes: the ability to choose understanding 
tools. 

The instrumentation profiles (see Guin & Trouche, 1998, pp. 214–216) are:

• Random: Students experience difficulties using either the digital tool or paper and 
pencil. Work is identified as copy-and-paste or trial-and-error strategies and there 
is no verification of work.

• Mechanical: Students are limited to using the digital tool, mostly doing simple 
calculations or investigations and avoiding mathematical reasoning. If the students 
reason, they tend to refer to the tool. Commando processes are rather weak.

• Resourceful: Students use a combination of several methods with paper and 
pencil, digital tools and theory. Commando processes are average. Often students 
compare and combine results from different resources and their way of investi-
gating varies.

• Rational: Students primarily use paper and pencil. Students’ command processes 
are strong, and they rely on mathematical inference when reasoning.

• Theoretical: Students show mathematical understanding and can therefore use 
their knowledge systematically. Their understanding of tools is good as well as 
their ability to use the tools. They verify their results. 

2.3 Previous Results 

Bach and Bikner-Ahsbahs (2020) found two relationships between students’ commu-
nication and their way of using GeoGebra. The relationship is depicted in Fig. 1.

Our studies showed that empractical mathematical communication and 
mechanical-random instrumentation profiles appeared when students were immersed 
in the practical activity of using GeoGebra. Activating and practising mathe-
matical communication competency in empractical talk seemed critical where 
listening was scarce, and speaking was reduced. This was different in math-
ematical conversation.1 Mathematical conversation appeared in parallel with a 
theoretical-resourceful instrumentation profile, where students showed mathematical 
communication competency.

1 Bach and Bikner-Ahsbahs (2020) labelled such communication participatory communication. 
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Fig. 1 Illustration of the relationships between mathematical communication and instrumentation 
profiles based on the results presented by Bach and Bikner-Ahsbahs (2020)

3 Methodology 

In the first trial of the case study, 9th-grade students (aged 14–16) from the same 
class worked in pairs on a task concerning functions as covariation (Bach & Bikner-
Ahsbahs, 2020). In this chapter, we present data from the second trial collected 
in three 8th-grade classrooms (aged 13–15), where the task from the first trial was 
adjusted to the 8th-grade. We present examples from data collected in the second trial 
of the case study. We analyse three episodes from two perspectives: (1) mathematical 
communication competency shown in the communication genres and (2) instrumen-
tation profiles in the way the tools are used. We then relate both perspectives in each 
case and finally merge all results to theorise them as a case of networking. Thus, we 
follow an argumentation thread of theory building rather than theory testing. 

3.1 The Task 

Our task aims at cognitively activating mathematical communication competency 
and the use of GeoGebra. The design utilises ideas from Johnson and McClintock 
(2018) concerning functions as covariation. It demands to understand dependent 
and independent variables and how these change together related to the dynamic 
co-change (a term used by Schou & Bikner-Ahsbahs, 2022) of a rectangle and a 
function graph in the geometric window. The task is split into two parts with students 
working in pairs with a computer each. In this chapter, we focus on one part: The 
Rectangle. The task consists of eight subtasks involving a GeoGebra template (Fig. 2). 
Figure 2 shows a rectangle ABCD inserted in the coordinate system. The width of AD 
is fixed to be 3, whereas the length of AB varies. Point A can be dragged vertically. 
When dragging A, point P’s coordinates change as these are defined by the height 
AB (P’s x-coordinate) and the area of ABCD (P’s y-coordinate).
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Fig. 2 The GeoGebra template (https://www.geogebra.org; inspired by Johnson & McClintock, 
2018) 

First, the students explore the relationship between the rectangle and point P. Then, 
they individually fill in a predefined table concerning the relation between the height 
and the area of the rectangle (Table 1). Afterwards, the students model the equation of 
the functional relationship (y= 3x) and draw its graphical representation in GeoGebra 
as point P moves on. Finally, they clarify the dependent and the independent variables. 

Table 1 The relation between height and area 

Height of AB (cm) 1 3 4 7 10 

Area of the rectangle, ABCD 

3.2 Data Collection 

Data was collected from three classes in October–November 2020.2 The students 
were introduced to linear functions and GeoGebra in a minor course (three weeks)

2 This was during the COVID-19 pandemic with students in and out of isolation, which caused a 
few changes to the classes. 

https://www.geogebra.org
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before starting the task. Thus, the topic of functions was rather new to the students, 
but the task was built on familiar geometrical concepts. We included high-achieving 
student pairs: (1) Because the errors they make are likely to be made by low 
achievers—not vice versa; (2) to compare these results with those from the first trial 
(Bach & Bikner-Ahsbahs, 2020). The teacher chose the student pairs by assessing 
their level of proficiency-based participation in class, assignments and national test 
results. 

The data consists of videos from the classrooms, screencasts from the students’ 
computers (filming their screens, recording sound and webcam), stand-alone videos 
of the pairs’ collaboration and student worksheets. The worksheets were in paper 
form in two of the classes, while Word was used in the third one. The data 
was transcribed verbatim in Danish. Relevant episodes have been translated into 
English keeping the character of Danish wording as far as possible. 

3.3 Presenting and Analysing Data 

In the following sections, we present three cases, each followed by analyses of 
mathematical communication competency, including communication genres and 
instrumentation profiles, respectively. 

To identify the communication genre in the episodes, we consider the following 
three criteria based on the description of mathematical communication competency 
from a psycholinguistic perspective: 

1. Listener and speaker: Do the students express themselves mathematically, and 
do they actively listen to one another (e.g., by turn-taking and listening)? 

2. The media of communication and the relations between them (e.g., written, oral, 
visual or gestural). 

3. The communication genres shown (mathematical conversation or empractical 
mathematical communication). 

Finally, we conclude whether the students show mathematical communication 
competency or not. 

To analyse the students’ use of GeoGebra, we identify their instrumentation 
profiles based on three aspects: 

1. The mathematical knowledge involved in solving the task (e.g., their under-
standing of the functions). 

2. The information tools involved (e.g., mathematical theory, GeoGebra, peers, or 
paper and pencil). 

3. Strategies for solving the task (e.g., trial and error) (Guin & Trouche, 1998).
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4 Case A: Andrea and Bea 

Two students, Andrea and Bea, work together on functions during the course. For 
the purpose of this case, the students first fill in their tables individually (Tables 2 
and 3). When filling in the table, Andrea drags point A until reaching the expected 
height of AB. Then she identifies the area. Bea fills in the table by looking at point 
P(1, 3), and then she fills in the table by calculating: 3 · 3 = 9; 4 · 3 = 12; 7 · 3 = 21; 
10 · 3 = 30 without using GeoGebra. Finally, Bea opens GeoGebra again and drags 
point A from 1 to 10, checking her results. 

Table 2 Andrea’s results 

Height of AB (cm) 1 3 5 7 10 

Area of the rectangle, ABCD 3 9 12 21 30 

Table 3 Bea’s results. Bea also adds extra heights with the corresponding areas 

Height of AB (cm) 1 3 4 7 10 

Area of the rectangle, ABCD 3 9 12 21 30 

After filling in the tables, Andrea and Bea discuss the relationship between the 
rectangle and point P. They begin by discovering that Andrea made an error (Table 
2). It is presented in Transcript 1. 

1 Andrea Mmh. I got 4 first. It is probably wrong. In the second one, I also got 9. 

2 Bea Okay. What about the fourth? [Bea refers to the height of AB]. 

3 Andrea 4? That one I haven’t made. I think, [for AB = 4 in the table] But for 
the third, I also got 12 [the field in the third column and second raw 
says 12, but it is wrong for AB = 5]. 

4 Bea Okay. I got this. Well, because the width is 3 all the time, right? 
[pointing with her mouse at line BC]. So here now, it’s on 2 [dragging 
point A so AB becomes 2], so it’s just two times 3, four times 3, six 
times 3, 10 times 3 [opening her Word document again]. 

4 Bea Okay. Should we move forward? Construct the function for the relation 
between AB and the area of the rectangle. What type of function is it? 
[reading from the task description]. 

5 Andrea Mmh. 

6 Bea Isn’t it just something like every time the height of AB increases, it’s 
multiplied by 3? 

7 Andrea Mmh [sounds like a yes/yes maybe]. 

8 Bea Could it be something like x times 3 is the answer? [meanwhile, she 
writes: “x”, then “xx3 =”3 ]. 

9 Andrea Of AB? Yes.

3 In Denmark, students may write x as a multiplication sign. 
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10 Bea Yes, because then you take x. It can be any number. As an example, let 
us say 3, which you multiply by 3 and then you get the answer. And 
then, four times 3 and then you get the number. seven times 3 and so 
forth. 

Afterwards, Bea asks the teacher for help to define the function equation and draw 
the graph. 

4.1 Analysing Mathematical Communication 

The roles of listener and speaker: Andrea and Bea respond to each other’s expres-
sions, by continuing and talking related to the other student’s latest expression (e.g., 
lines 1–2, 2–3). When acting as listener, they participate by validating each other’s 
utterances, showing open-endedness until line 10, as the dialogue stops. Media of 
communication: Andrea and Bea use many media forms: written, oral and visual. 
They both use tables (e.g., lines 1, 2, 3) and they use the GeoGebra template actively 
(e.g., line 4). The students explore the relationship between the numbers included in 
the table. However, Andrea’s results in the table are wrong, but by communicating 
Andrea and Bea reach an agreement (see lines 6–10). Communication genre: The  
students communicate actively, practising turn-taking and negotiating the results 
(lines 3–4). They show open-endedness, as they move the conversation forward 
(e.g., lines 3–5), and verbal mathematical integrity, as they respect each other’s 
mathematical expressions, and participate equally in the communication. They use 
mathematical notions (e.g., lines 4 and 8) and bring the use of GeoGebra actively into 
their communication (e.g., line 4). Thus, we may identify their communication genre 
as mathematical conversation putting mathematical communication competency into 
practice, as both participate actively by expressing themselves and interpreting each 
other’s expressions. 

4.2 Analysing Instrumentation Profiles 

Mathematical knowledge: Both students rely on mathematical knowledge and their 
understanding of the expected relationship at point P, between the height and the area 
of the rectangle (lines 6–10). Although Andrea made an error, she is aware of it (line 
1). Information tools: The students, particularly Bea, use mathematical inference 
and compare the representations at play (lines 3, 4). Their mathematical knowledge 
and GeoGebra serve as information tools (e.g., line 4). Strategies: Checking the
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results from the calculations using previous reasoning shows that the students also 
have verification techniques, which they use to validate their results by means of the 
tool, too (line 4). 

Andrea and Bea display a theoretical work method due to the use of mathematical 
knowledge and verification of results, and since they do not rely only on paper-and-
pencil techniques or GeoGebra. 

4.3 Summarising Case A 

Andrea and Bea show a combination of a theoretical work method and math-
ematical conversation. Their level of mathematical understanding and tool use 
denotes mathematical conversation, in which they draw mathematical inferences 
and compare results. GeoGebra as a tool is embedded in their conversation, yet their 
communication has the qualities of a conversation. 

5 Case B: Caroline and Diane 

Two students, Caroline and Diane, collaborate most of the time during the course 
about functions. However, Diane did not participate in the previous session 
concerning linear functions, and her knowledge about functions is therefore limited. 
Both students fill in the table (Table 1) correctly. To solve the subsequent task, in 
which the students have to define the function equation and draw the graph, they 
have the following dialogue. 

11 Caroline The function of P. So it is on 4 now, that is the side length [Caroline just 
looks at the GeoGebra without changing anything.]. P, it can… P is 
equal to… AB times… P is equal to AB times… AB times x. AB times 
x… AB times x. AB, side length. Height. AB is equal to the height. 
Height and then 

12 Diane Then we write that AB is equal to the height. 

13 Caroline I just need to figure out what we have… to do the function. 

14 Caroline AB is equal to the height and x is equal to … the height … x is equal to… 

15 Diane The width. 

16 Caroline By the x-axis, it is equal to 

17 Diane The width. 

18 Caroline The height. x is equal to the height on the axis [x-axis, red.]. 

[… Another student comes in, they talk about something irrelevant]. 

19 Caroline y, it’s 12. Ohh, it’s so difficult. I don’t know what to do. [laughing and 
bringing her hands to her head]. 

20 Diane Well, it’s really difficult.
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21 Caroline But it’s easy to see. The side length is 4, like the point on the x-axis and 
the area of this figure is 12, and then that is y, so I think y is 12 in this 
example. Wait then. Now, I’m writing x = 4 and  y = 12 and then the 
width is equal to, it’s 3. 

Then I just write four times 3 is 12, so x times 3 equals 12 [The teacher 
comes in and chitchats and leaves again…]. 

22 Caroline 3 times x is equal to y. x times 3 is equal to y. y is equal to x times 3. x  
times 3. x  times 3. x times A times B. x times A times B is equal to, is 
equal to, x times B is equal to y, which  is…  

I don’t know how to write it so it counts for all. 

23 Caroline [after a short while] What we know is that the side length, it’s the 
position on the x-axis and the area is located on the y-axis [she points 
with her pen at the coordinate system in GeoGebra]. And 3, that’s just a 
number we need to have since it is the width of this one [points to the 
rectangle]. 

After this talk, the students take a break. 

5.1 Analysing Mathematical Communication 

The roles of listener and speaker: Caroline and Diane are not participating equally 
in the communication situation, and they do not have the same preconditions to do 
so, as Diane did not participate in the previous session. Diane expresses that it is 
difficult (line 20), and Caroline responds that “it’s easy to see” (line 21). Caroline 
expresses herself mathematically, yet she lacks open-endedness as she does not listen 
(e.g., 12–13 and 15–18). In line 13, it sounds like Caroline is talking to herself and 
not to Diane as Caroline says, “I need to…”. Diane listens and turn-takes (e.g., lines 
15, 17 and 20). It seems that Caroline does not show verbal integrity, as she works 
on the task, and not responding to Diane’s suggestions (e.g., lines 14–20). Differ-
ences in relation to mathematical understanding impair verbal integrity in this case. 
Media of communication: Caroline and Diane primarily communicate orally. Yet, 
they refer to and look at the GeoGebra template (e.g., line 21), but without taking 
advantage of the dynamicity embedded in GeoGebra (lines 11 and 23), and they write 
notes in the worksheets. Communication genre: The communication is embedded 
in the practical context, making it difficult to understand outside of this context (e.g., 
lines 11 and 22). Caroline and Diane’s communication is hierarchical; turn-taking, 
open-endedness and verbal integrity are missing. Their communication is emprac-
tical in this situation, and they do not show mathematical communication compe-
tency. Lack of verbal integrity seems to be important, as communication competency 
entails mathematical communication with different people showing different levels 
of mathematical proficiency.
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5.2 Analysing Instrumentation Profiles 

Mathematical knowledge: Caroline has more knowledge about functions than 
Diane, who did not participate in the prior lesson. Caroline and Diane (as a group) do 
semantic interpretations by translating the involved representations and comparing 
features of P with the properties of the rectangles (e.g., lines 11 and 21). Yet, they 
do not refer to their functional relationships. Information tools: Caroline and Diane 
both show insufficient information tools, meaning that they do not exploit the possi-
bilities of the tool in the situation, as they do not interact with it. Strategies: Caroline 
and Diane’s strategy is to solve the task without dragging in the tool (they do not 
drag in this situation). They compare the representations in GeoGebra and reason 
based on the template (static) and its representation (lines 14, 21 and 23). 

Caroline and Diane display a random work method due to their avoidance/lack 
of knowledge of or engagement with the tool, and due to the limited mathematical 
knowledge they show concerning functions. 

5.3 Summarising Case B 

Caroline and Diane show a combination of a random work method and empractical 
communication. The dynamic features of GeoGebra are not exploited—GeoGebra 
is idle in the situation. Their communication is empractical because it is hierarchical 
and lacks verbal integrity, turn-taking and open-endedness. 

6 Case C: Emma and Frida 

Two girls, Emma and Frida, communicate about the relationship between the 
rectangle and point P. 

24 Emma How do you know that P is an intersection? 

25 Frida Wait, mm, can I borrow your rubber, please? 

26 Frida Find the intersection P in… 

27 Emma How do you know it’s an intersection, Frida? 

28 Frida It stands here [Frida finds P in the algebra window where it is an 
intersection]. Try to see if you go up here. P is an intersection. 

29 Emma Mmh. 

30 Frida [Frida is humming her own melody]. Mmh, I think, I don’t know much 
about this. 

31 Emma Ugf [Emma is dragging her rectangle up and down, reducing the height 
to zero.].
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32 Frida I think that the intersection decides, how, decides, of… 

33 Emma It’s like, if you want to draw. The rectangle’s height and area. 

34 Frida [Frida writes on paper]. I think that the intersection is defined by… the 
rectangle [reading out loud]. 

35 Frida Yes, so if we change. 

36 Emma So P moves askew to the right [grabs the mouse again]. 

37 Frida And … 

38 Frida The rectangle’s… area [she drags point P so the figure and point P 
change]. 

39 Frida Okay, then we change. 

40 Emma Well, if it moves askew to the right, more and more. 

41 Frida Okay, then wait two seconds, two seconds. If we only change the width, 
what happens then? 

42 Emma But then, no, no, if you change the width. You cannot drag point D up 
[vertically, red.]. D cannot physically move upwards. It can only move to 
the side like this. Because then it moves up and down and the others as 
well [Emma is on point D in the rectangle in GeoGebra to illustrate]. 

6.1 Analysing Mathematical Communication 

The roles of listener and speaker: Emma and Frida both participate in the activity, 
and they both express themselves and interpret each other. They build on and respond 
to each other’s expressions (e.g., lines 24–25). This means that they both act as 
listener and speaker. Yet sometimes they lack open-endedness (e.g., lines 32–34). 
Media of communication: The pair communicates orally while discussing what to 
write on the worksheet. They use the GeoGebra template as they communicate and 
drag in GeoGebra (e.g., lines 28 and 42), but they seem to be having trouble when 
translating between the visual representations and verbal expression (lines 36 and 40). 
Communication genre: Emma and Frida use various mathematical notions, such as 
intersection4 when they refer to point P (e.g., lines 32 and 34). The communication 
is context-dependent, focusing on the activities of dragging in GeoGebra rather than 
on communicating mathematically (e.g., line 38). Yet, the language also includes 
words that are normally not part of the mathematical vocabulary (e.g., askew in line 
36), and their expressions are empractical. For instance, “it stands here” (line 28) 
and “So P moves askew to the right.” (line 36). The expressions also include some 
kind of movement, e.g., they say that P is moving (lines 36 and 42). In this situation,

4 ‘Intersection’ stems from their use of GeoGebra, and it is not part of the task, which complicates 
the situation. 
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their communication is empractically embedded in the use of GeoGebra with a lack 
of turn-taking and open-endedness, meaning that they do not explicitly interpret 
each other’s mathematical expressions or react mathematically. Thus, the two do not 
express mathematical communication competency. 

6.2 Analysing Instrumentation Profiles 

Mathematical knowledge: Emma and Frida do not express mathematical knowledge 
concerning the concept of function as covariation. They drag all points of the rectangle 
and explore their properties, not realising that the shape changes from a rectangle to a 
trapezoid (line 42). Emma and Frida are confused about P’s relation to and movement 
as regards the rectangle and the “intersection” as they try to define P (lines 26, 28 and 
34). Thus, the students are struggling with the mathematical content. Information 
tools: Emma and Frida use each other as well as GeoGebra as primary information 
resources trying to solve the task. For instance, by looking in the algebra window 
(line 28) and by dragging (lines 31, 38 and 42). Strategies: To find a solution, the 
students search in GeoGebra by dragging (lines 31, 38 and 42). 

Emma and Frida follow a mechanical work method as they do not show enough 
mathematical knowledge, and they reason through using the tool practically. They 
are not yet capable of using the tool, adapting to its affordances as part of the 
instrumentation process. 

6.3 Summarising Case C 

Emma and Frida follow a mechanical work method and communicate empractically. 
The use of the tool is embedded in their communication, and they try to find answers 
with respect to the tool. 

7 Summarising the Results 

Based on the results from Bach and Bikner-Ahsbahs (2020) (Fig. 1) and our analyses 
in this chapter, we found three kinds of relations between the use of the digital tool 
and the students’ mathematical communication: 

1. Tool-embedded mathematical conversation: The conversation shows verbal 
integrity, turn-taking, equal status of participants, etc. The students also have 
a theoretical and/or resourceful work method emphasised by the instrumentation 
of the DGE and their understanding of the mathematical content. E.g., Case A, 
Case 3 (Bach & Bikner-Ahsbahs, 2020).
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2. Tool-embedded empractical mathematical communication: The communica-
tion is embedded in the context of the tool and focuses on an activity, where 
mathematics is addressed via the tool. Work methods are either mechanical or 
random, indicating that mathematical knowledge is not shown in the situation. 
For mechanical methods, students refer to the tool when reasoning. E.g., Case 
C, Case 1 (Bach & Bikner-Ahsbahs, 2020). 

3. Tool-idle empractical mathematical communication: The dynamic features of 
the DGE are not exploited, but idle. It is empractical communication due to the 
existing hierarchy, reduced turn-taking and verbal mathematical integrity. The 
work method is random as the students show severe difficulties, both with paper 
and pencil and GeoGebra. E.g., Case B, Case 2 (Bach & Bikner-Ahsbahs, 2020). 

The results from the second trial confirm the results from the first trial but 
in a differentiated way. Empractical communication is related to the random-
mechanical instrumentation profiles, while mathematical conversation is related 
to the theoretical-resourceful instrumentation profiles. In the latter, communica-
tion competency is intensely shown, whereas communication competency is not 
observed in the former. When the students show empractical communication, the 
focus is on the practicality of engaging with DGE (RQ2) rather than communicating 
mathematically. 

8 Reflections on the Theory Networking Conducted in This 
Study 

As the prior section reveals, two different kinds of empractical mathematical commu-
nication appear—tool-embedded and tool-idle. In the former, the dynamicity of 
the DGE is exploited, whereas in the latter, the template is considered a static repre-
sentation, its dynamic potential not being exploited but left idle. We will now reflect 
on these results by adopting a networking of theories approach. Thereby, we consider 
the two trials as cases of theory networking. We apply the strategy of coordina-
tion leading to local integration by “putting together a small number of theoretical 
approaches into a new framework” (Prediger & Bikner-Ahsbahs, 2014, p. 120). Our 
reflection is guided by the notion of theory introduced by Radford (2008). This notion 
allows us to operationalise local integration (see Sabena et al., 2014) as linking two 
theoretical approaches by elaborating a new concept. The aim is to provide an answer 
to a new paradigmatic research question (RQ1), founded by a linking principle and 
a linking methodology.
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8.1 Four Types of Tool-Based Mathematical Communication 

When using a tool, actions and cognition are related (Vérillon & Rabardel, 1995), 
and when communicating orally, speaking and listening are based on the cognitive-
linguistic resources in use (O’Connell & Kowal, 2012). Hence, when communication 
is related to tool use, both cognitive resources and cognitive processes guide speaking 
and listening related to acting with the tool. We call such mathematical communica-
tion tool-based. The new concept of tool-based mathematical communication will 
now be conceptualised based on our empirical results. 

Table 4 shows all the types of tool-based communication we found. Originally, two 
types of tool-based communication were evidenced in our data of the two trials—tool-
embedded mathematical conversation and tool-embedded empractical mathematical 
communication. In the former, mathematical competency is put into practice, but not 
in the latter. However, when investigating empractical mathematical communication 
more in-depth, Case B does not fit well into the strong tool-embedded nature of 
empractical communication, because the students do not exploit the dynamic nature 
of GeoGebra. The dynamic potential of DGE rather idles as the students refer to the 
template as a static representation. This is similar to Case 2 elaborated by Bach and 
Bikner-Ahsbahs (2020). 

Table 4 Four types of tool-based mathematical communication 

Embedded digital tool use  

(related to the dynamic 
nature of representations) 

Idle digital tool use  

(related to static 
representations or the 
template given) 

Mathematical 
conversation 

Tool-embedded 
mathematical conversation 
(Cases: A & 1)  

Conjecture: Tool-idle 
mathematical conversation 

Empractical 
mathematical 
communication 

Tool-embedded empractical 
mathematical 
communication (Cases: C & 
3) 

Tool-idle empractical 
mathematical 
communication (Cases: B & 
2) 

As the instrumentation profiles are developed with CAS (Guin & Trouche, 1998), 
and dynamicity is missing in CAS, the distinction between tool-embedded and tool-
idle talk is not relevant in CAS-related instrumentation profiles, but it is relevant for 
DGE. Therefore, we distinguish between two ways of utilising DGE: tool-embedded 
and tool-idle. When we relate the two types of utilising the tool to the two mathemat-
ical communication genres in a crossing table, four relations appear three of which 
are found in our data. Tool-idle conversation has not yet been observed in our data. 
However, we may predict that this type of communication exists empirically, for



194 C. C. Bach and A. Bikner-Ahsbahs

instance, when students show a rational instrumentation profile (Guin & Trouche, 
1998), or if a task requires proving a conjecture, where mathematical knowledge is 
required rather than acting with the tool. 

8.2 Tool-Based Mathematical Communication: A Case 
of Local Integration 

We will now justify why the phenomenon of tool-based communication can be 
regarded as a case of local integration. The linking principle (P) assumes that tool-
based mathematical communication is a particular type of communication linking 
cognitive-linguistic resources with cognitive action schemes developed during instru-
mentation, which emerge in connection with communicating and acting. For instance, 
in empractical communication, cognitive action schemes may activate cognitive-
linguistic resources that are related to the practicality of the activity, whereas in 
conversation, the reverse may be the case. The four types of tool-based mathematical 
communication lead to a differentiated vision of four types of tool-based mathemat-
ical communication that answer our research question 1. This result raises a new kind 
of paradigmatic research question, which is: what types of tool-based mathematical 
communication can be found empirically with respect to a specific digital tool? The 
linking methodology (M) consists of three steps: (1) Analysing the cases from the two 
theoretical perspectives and linking them; (2) identifying dimensions for a crossing 
table, which allows structuring the empirical cases; (3) reflecting the results in the 
crossing table theoretically with respect to the affordances and possibilities of the 
tool in the communication. 

However, in our networking case, empirical evidence is still scarce, as we only 
bring in three additional cases. Furthermore, tool-idle mathematical conversation 
could not be identified in the data, and tool-idle and tool-embedded empractical 
communication still require further elaboration based on empirical data. Thus, we 
have proceeded toward local integration of the two theoretical approaches into the 
phenomenon of tool-based mathematical communication, but we have only been 
partially successful. 

9 Conclusion 

Tool-based communication draws on two different kinds of cognitive resources— 
linguistic mathematical resources on the one hand and instrumental action schemes 
on the other. Our results indicate that when learning to use a digital tool, the students 
do not easily activate and practise both kinds of cognitive resources in parallel. They
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rather foreground one kind of resource, determining how to use the other. There-
fore, expecting students to use a DGE template and to simultaneously show math-
ematical communication competency in class may set them in a complex situation, 
in which both mathematical knowledge and instrumentation are crucial. However, 
when using digital tools, the focus must at some point shift to the activity of handling 
the tool, which then would lead to practical context-embedded communication; that 
is, empractical mathematical communication not holding the qualities of a mathe-
matical conversation. In empractical tool-based communication, mathematics comes 
into play via the tool, where activating and practising mathematical communication 
competency is hardly possible. Consequently, when expected to communicate in 
a tool-based manner, the students may be faced with a ‘double-bind’ situation in 
which they will barely be able to fulfil both requirements: learning to use a digital 
tool and simultaneously developing mathematical communication competency. This 
raises the critical question of how students can be enabled to develop mathematical 
communication competency in tool-based communication. 

Additional research is needed to further explore the four types of tool-based 
mathematical communication, involving a variety of task situations and students, 
and investigate, in which kinds of communication genres mathematical communi-
cation competency can be fostered and under what conditions communication tilts 
to empractical talk. This would provide more theoretical as well as practical insight 
into how to improve mathematical communication competency when using digital 
tools. 
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An Embodied Cognition View 
on the KOM-Framework’s Aids 
and Tools Competency in Relation 
to Digital Technologies 

Morten Misfeldt , Uffe Thomas Jankvist , and Eirini Geraniou 

1 Introduction 

The prevalence of and the role that digital technologies (DT) play in the mathe-
matics programmes at all educational levels around the world is today significantly 
different than it was in 2002 when the KOM-framework (Niss & Højgaard, 2011, 
2019) was first launched. Dynamic Geometry Software (DGS), such as GeoGebra, is  
increasingly used at both primary and secondary levels. Computer Algebra Systems 
(CAS), such as Maple, TI-Nspire, WordMath, etc., are an integral part of the upper 
secondary school mathematics programmes—even mandatory at the final national 
written assessments (Jankvist et al., 2021). In the light of the escalated situation 
concerning DT, there seems to be a need for providing a deepening of the DT 
aspects of mathematical competencies descriptions (e.g.‚ Geraniou & Jankvist, 2019; 
Jankvist et al., 2018). And this is not only from a practice perspective but also from 
the perspective of doing research related to the use of technology in the mathematics 
programmes—or any other educational system relying on competencies descriptions 
of mathematics.
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This chapter focuses on the KOM-framework’s aids and tools competency and 
investigates its application in the digital era of mathematical learning. The aids and 
tools competency may be viewed as distinguishing between more classical material or 
physical tools (e.g., centicubes, rod systems, abacuses, rulers, compasses, protractors, 
specially lined paper, cardboard for folding or cutting) and digital tools (e.g., calcu-
lators, computers and mathematical software, such as CAS and DGE). Although this 
distinction, at first sight, may appear straightforward, new available software such as 
virtual manipulatives may somewhat blur this picture—not least since some of these 
also aim at illustrating and explaining actual physical manipulatives. In the literature, 
it is well argued that physical manipulatives may provide learners with an element 
of embodied cognition of a given mathematical process or object (e.g.‚ Clements, 
2000). Surely, the effects of adding physical and virtual manipulatives to mathematics 
teaching have been both discussed and researched. In the reform wave of the 1980s, 
manipulatives were considered important and promising and were thus widely imple-
mented. This led to several reflections and precautions expressed as an awareness to 
“advise [teachers] to view the appropriateness and limitations of the materials for the 
purpose of leading to and authenticating a part of formal mathematics” (Hart, 1993, 
p. 27), as well as simply noticing that “Although kinaesthetic experience can enhance 
perception and thinking, understanding does not travel through the fingertips and up 
the arm” (Ball, 1992, p. 47). Despite these disappointments, manipulatives persist to 
be an important part of teaching mathematics, and their educational value—if used 
meaningfully—stands uncontested (Bartolini & Martignone, 2014). 

The digital development in general, and the widespread use of digital technolo-
gies and tools in the mathematical classroom in particular, has led to developments 
of virtual manipulatives. Some research (e.g.‚ Tran et al., 2017) discusses how to 
“mirror” the affordances of physical tools within virtual tools, while others simply 
compare the educational value of physical and virtual manipulatives (Hunt et al., 
2011). Other studies concern newly invented bodily actions to be associated with 
certain mathematical processes, e.g., multiplication and conceptions (e.g., Drijvers‚ 
2019; Mariotti & Montone, 2020; Sinclair et al., 2020). Largely, these studies 
draw on aspects of embodied cognition (e.g., with reference to the early works 
of Lakoff & Núñez, 2000), or even explicate a combination of embodied cogni-
tion and the instrumental approach—embodied instrumentation approach (Drijvers, 
2019; Shvarts et al., 2021). 

In a Mathematics Education in the Digital Age (MEDA) conference paper 
(Jankvist et al., 2018), we have previously argued for the potential combination of 
KOM’s aids and tools competency with elements of the instrumental approach (e.g., 
Guin & Trouche, 2002), since these two complement each other in certain desirable 
ways, at least if we restrict ourselves to “usual” DT such as CAS and DGE. We 
include the previously presented example and analysis from the MEDA paper in this 
chapter, but expand our scope by taking into consideration also new virtual manip-
ulatives (e.g., Mariotti & Montone, 2020; Soury-Lavergne, 2021). More precisely, 
we ask the question:
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What do the instrumental approach and the embodied instrumentation approach 
offer to the discussion of students’ aids and tools competency in situations involving 
digital technologies? 

We provide two examples in this chapter. Firstly, one of constructing slope fields 
showing solutions to a differential equation, showcasing the differences between 
two different approaches relying on use of DT. Second, two different examples of 
virtual manipulatives: one that mirrors physical manipulatives, a ruler, in a virtual 
setting; and one that relies on newly invented finger motions to simulate a mathe-
matical process, in this case, that of multiplication. These examples serve as input 
for discussing answers to the research question above—and their respective anal-
yses to yet a discussion of the potential of connecting these theoretical constructs 
from a networking of theories perspective. And if not “truly” networked (Bikner-
Ahsbahs & Prediger, 2014), then at least how they may complement each other in 
order to enrich our understanding of how the theoretical constructs of embodied 
cognition and instrumental genesis, respectively, can facilitate the understanding of 
the mathematical aids and tools competency in the digital era. 

2 The Mathematical Competency of Aids and Tools 

Niss and Højgaard (2019) define “A mathematical competency is someone’s 
insightful readiness to act appropriately in response to a specific sort of mathe-
matical challenge in given situations” (p. 14, italics in original). A mathematical 
competency “focuses on the activation of mathematics to deal with a specific sort 
of challenge that actually or potentially calls for “specific kinds of activation” of 
mathematics in order to answer questions, solve problems, understand phenomena, 
relationships or mechanisms, or to take a stance or make a decision” (p. 14). 

The KOM-framework operates with eight distinct, yet mutually related, math-
ematical competencies: mathematical thinking; problem tackling; modelling; 
reasoning; representation; symbols and formalism; communication; aids and tools. 
Each of these competencies consists of a producing side and an analytical side. The 
aids and tools competency, “consists of, on the one hand, having knowledge of the 
existence and properties of the diverse forms of relevant tools used in mathematics 
and having an insight into their possibilities and limitations in different sorts of 
contexts, and, on the other hand, being able to reflectively use such aids” (Niss & 
Højgaard, 2011, pp. 68–69, italics in original). It continues: 

Mathematics has always made use of diverse technical aids, both to represent and maintain 
mathematical entities and phenomena, and to deal with them, e.g., in relation to measure-
ments and calculations. This is not just a reference to ICT, i.e., calculators and computers 
(including arithmetic programmes, graphic programmes, computer algebra and spread-
sheets), but also to tables, slide rules, abacuses, rulers, compasses, protractors, logarithmic 
and normal distribution paper, etc. The competency is about being able to deal with and relate
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to such aids. […] Since each of these aids involves one or more types of mathematical repre-
sentation, the aids and tools competency is closely linked to the representation competency. 
Furthermore, since using certain aids often involves submitting to rather definite “rules” and 
rests on particular mathematical assumptions, the aids and tools competency is also linked 
to the symbol and formalism competency. […] (p. 69) 

In their recent account of the eight mathematical competencies, Niss and Højgaard 
(2019) further elaborate: 

For millennia mathematics has made use of material aids and tools for its undertakings, 
from carved bones, counting pebbles (calculi), blocks, cords, rulers, compasses, abaci, slide 
rulers, mechanical instruments and machines, calculators, computers, tablets, smartphones 
and so on and so forth. Such aids and tools offer particular kinds of material representations 
of mathematical objects and processes, which typically require separate and particular theo-
retical and practical introduction and training before being put to use. This, together with 
the fact that by being artefacts such aids and tools have many physical properties without 
any bearing on mathematics, gives rise to particular challenges for being able to deal with 
them in a thoughtful manner in mathematical contexts and situations. (p. 18) 

Again, the specificities related to tools of a digital nature is somewhat subtle. 
However, we may obtain some insights into Niss’s view on this matter from another 
text published after the KOM-framework’s coming into being. Niss (2016, p. 248) 
states that DT on the one hand may “enhance a wide variety of mathematical capac-
ities”, but on the other hand, also may “replace some mathematical competencies”, 
which is not desirable. Among enhancement of mathematical capacities, Niss (2016) 
mentions that DT can: 

[…] help generate student experiences of mathematics-laden processes and phenomena that 
might be difficult to obtain by other means; create platforms and spaces for exploration 
in which mathematical entities can be investigated through manipulation and variation; 
produce static and dynamic images of objects, phenomena and processes that are otherwise 
difficult to capture and grasp; create connections between different representations of a given 
mathematical entity; help solve hard or otherwise inaccessible computational problems; 
perform rule-based symbolic transformations and manipulations; support the production of 
mathematical texts; and create platforms for individualised training and assessment. (p. 248) 

Among the things that DT cannot do for the teaching and learning of mathematics, 
Niss (2016) mentions: 

[…] replace students’ creation of meaning and understanding of mathematical concepts 
and results; replace reasoning and sound and critical judgement; replace problem-solving 
competency; replace symbols and formalism competency, including the ability to perform 
basic computations; construct, interpret, or validate mathematical models; and replace the 
work needed to understand “what?,” “how?,” and “why?” in mathematics. (pp. 248–249) 

3 The (Embodied) Instrumental Approach 

One of the frameworks on DT in mathematics education that has previously been 
applied in connection to the Danish KOM-framework is the instrumental approach 
(e.g.‚ Geraniou & Jankvist, 2019; Jankvist et al., 2018) (also sometimes referred to
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as the “theory of instrumental genesis”). Drijvers and colleagues (2013) present the 
instrumental approach in terms of three dualities. 

Firstly, the artefact-instrument duality describes the lengthy process of an artefact 
becoming an instrument in the hands of a user, which is referred to as instrumental 
genesis. 

Secondly, the instrumentation-instrumentalisation duality concerns the relation-
ship between the artefact and the user, i.e., how the user’s knowledge directs the use 
of an artefact (instrumentalisation), and how a tool can shape and affect the user’s 
thinking and actions (instrumentation). The process of instrumentation is closely 
connected to the digital tool serving an epistemic purpose, which means that it is 
used to create understanding or support learning within the user’s cognitive system. 
By contrast, when DT are used to create a difference in the world external to the user, 
it is said to serve a pragmatic purpose (Artigue, 2002; Lagrange, 2005; Trouche, 
2005). DT serves of course both pragmatic and epistemic purposes, but any use 
which is only, or mainly, pragmatic is according to Artigue (2010) of little—or even 
negative—educational value. 

Thirdly, the scheme-technique duality concerns “the relationships between 
thinking and gesture” (Drijvers et al., 2013, p. 26). From a practical perspective, tech-
niques can be seen as “the observable part of the students’ work on solving a given 
type of tasks (i.e., a set of organised gestures) and schemes as the cognitive founda-
tions of these techniques that are not directly observable, but can be inferred from the 
regularities and patterns in students’ activities” (ibid., p. 27). For Vergnaud (2009), 
concepts are psychological entities fundamentally related to actions. Vergnaud refers 
to this relation as a scheme, and it can be defined as implicit or explicit ways of 
organising behaviour, involving also the necessary knowledge to act meaningfully 
in certain situations. Hence, a scheme combines intentions and actions with concep-
tual knowledge. Furthermore, schemes enable us to understand the conceptualisation 
process by linking gestures and thoughts through the encountering of various situa-
tions. Conceptualisation here refers to the process in which learners develop concepts 
and make connections in their knowledge. Drijvers et al. (2013) define a scheme as 
“a more or less stable way to deal with specific situations or tasks, guided by devel-
oping knowledge” (p. 27). These three dualities can be used as analytical constructs in 
exploring how the use of artefacts, such as DT, can shape the learning (and teaching) 
of mathematics (e.g., Geraniou & Jankvist, 2019). 

In the past, there have been some initiatives to use DT that offer embodied experi-
ences. For example, the Calculator Based Ranger (CBR), a small motion detector to 
be connected to the TI Graphing Calculator, and therefore used in Distance Sensor 
Activities in mathematics lessons.1 These provided students with an embodied expe-
rience to explore and interpret distance-time graphs, supported by the CBR tool. 
Students were given the opportunity to connect their physical activity of walking 
with its graphical representation and therefore support their learning about the rate 
of change of a linear graph and the motion of an object in terms of distance versus

1 See: https://www.mydigitalchalkboard.org/portal/default/Resources/Viewer/ResourceViewer? 
action=2&resid=60193. 

https://www.mydigitalchalkboard.org/portal/default/Resources/Viewer/ResourceViewer?action=2&amp;resid=60193
https://www.mydigitalchalkboard.org/portal/default/Resources/Viewer/ResourceViewer?action=2&amp;resid=60193
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time. Taking such activities into account, we may certainly agree on how powerful 
embodied experiences are, and how technology may support such experiences and 
students’ emerging cognition. Drijvers (2019) argues for the importance of an inte-
grative approach between embodied cognition and instrumental genesis for enriching 
mathematical practices and learning, pointing out that we should consider the bene-
fits and the limitations, the opportunities and the challenges when using physical 
tools as well as digital tools. Of course, there may be differences in how phys-
ical tools, in the light of the theory of embodied cognition, can influence and in 
fact transform mathematical thinking, compared to how mathematical thinking is 
transformed in the case of DT use in accordance to the instrumental approach. 
Embodied experiences lead to sensorimotor schemes (e.g., Arzarello et al., 2009; 
Maschietto & Bartolini-Bussi, 2009), whereas instrumental approaches are known 
to lead to instrumentation schemes as paved by the lengthy process of instrumental 
genesis (e.g., Roorda et al., 2016). In an effort to explore the co-existence of such 
schemes, Drijvers (2019) introduced the idea of embodied instrumentation approach, 
which is defined as learning that occurs during techno-physical interaction with any 
DT. This approach “explores the co-emergence of sensorimotor schemes, tool tech-
niques and mathematical cognition, and offers a design heuristic for ICT activities 
which align the bodily foundations of cognition and the need for instrumental gene-
sis” (p. 22). Some further research on embodied instrumentation has been carried out. 
For example, Alberto et al. (2019) explored how a student used both her own body 
and a digital tool to solve trigonometric equations, and thus showed how embodied 
instrumentation promoted trigonometric problem-solving. 

3.1 Embodied Cognition 

In more general terms, embodied cognition can be described as the idea that body 
and mind are more intimately connected than we usually think. Embodied cognition 
contests the dualistic idea that the body and the mind are separate and replaces it with 
a conception of cognition as an entanglement of bodily experience and thought— 
seen as one joint experience instead of two separate processes (McNerney, 2011). An 
important consequence for mathematics—and mathematics education—thus consists 
in avoiding seeing mathematics and mathematical insights as the product of a “pure 
mind”. Rather it should be viewed as a consequence of our human embodied cognition 
and social interaction. This means that human experience, language and representa-
tions become crucial elements when trying to understand the nature of mathematics 
as well as the experience of doing and comprehending mathematics (de Freitas & 
Sinclair, 2014; Menary, 2015). 

In their book, “Where mathematics comes from”, Lakoff and Núñez (2000) take  
the insights that cognitive science offers about the human mind as an outset for 
understanding mathematics as a human endeavour. Their key method is to point 
to generative conceptual metaphors that ground mathematical concepts in human
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experience. This leads to an analysis that roughly considers, for example, mathe-
matical sets as grounded in the experience of collecting objects, and arithmetic and 
numbers as grounded in comparing such collections. Negative numbers are viewed 
as grounded in experience of direction, and infinity and continuity in experiences 
of iterative processes that go on and on. Furthermore, these concepts are linked 
metaphorically, e.g., the number line connects numbers with continuity and infinity. 

Another important consequence of the embodied approach to cognition is that 
it highlights the importance of “the surroundings/environment” for cognitive work. 
By using language, representations or other artefacts with which humans are able to 
augment their cognitive capabilities, and—in relation to mathematics—shape their 
potential for mathematical insights. Such cognitive tools allow anchoring, gener-
ation of overview, conceptual blending and further investigation of mathematical 
phenomena (Johansen & Misfeldt, 2020; Menary, 2015). Menary (2015) describes 
this as a process of enculturation, where there is a delicate interplay, not only between 
the mind and the body but also between the cognitive (body-mind) processes and the 
surrounding environment. One shapes one’s cognitive niche by active use of tools, 
representations and metaphors (Menary, 2015). The shaping does not happen in a 
vacuum but is sanctioned by both natural phenomena (such as those described by 
Núñez, 2009) and by logic, culture and tradition. 

In their book, “Mathematics and the body”, de Freitas and Sinclair (2014) criti-
cised the approach to embodiment suggested by Lakoff and Núñez (2000), because 
the latter “remain committed to an immaterial mathematical concept” (de Freitas & 
Sinclair, 2014, p. 200). Instead, de Freitas and Sinclair take their departure in Barad’s 
(2007) agential realism in order to develop an embodied theory of the role played 
by materiality (tools, manipulatives, language and representations) in school math-
ematics. Barad’s key idea of agential realism (developed in an analysis of modern 
physics) can be seen as a strong rejection of the individualist “brain in a vat” approach 
to understand how humans make sense of the world. Rather she views phenomena as 
a constant interaction between various material and nonmaterial agents. In that sense, 
human understanding of mathematical concepts and phenomena are inseparable from 
the bodily experienced representations, and tools that mediate interaction between 
them. Furthermore, de Freitas and Sinclair’s (2014) work builds on Châtelet’s (2000) 
notion of virtual mathematical objects: “a state of being that is both physical and 
mathematical” (cited from de Freitas & Sinclair, 2014, p. 201), meaning that they 
are governed by both logical rules and by material experiences. The physical and 
mathematical aspects are seen as two different dimensions of a virtual concept, and 
these two dimensions are always present in mathematics. 

3.2 Body-Artefact System 

In his paper on embodied instrumentation, Drijvers (2019) described a gap between 
the embodied and the instrumented strategies to understand mathematical cognition. 
He claimed that these approaches “share some similar theoretical bases, and can be
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coordinated and aligned in a meaningful way” and that an embodied instrumentation 
approach may “reconcile the embodied nature of instrumentation schemes and the 
instrumental nature of sensorimotor schemes” (pp. 21–22). In line with Drijvers 
(2019), we will look at embodiment and instrumentation as closely related, but rather 
than focusing on the interaction between these two approaches, we will study how 
the approaches both support and extend, our understanding of the use of aids and 
tools in mathematics. 

Building on this theoretical approach, Shvarts et al. (2021) further developed 
the idea of a “body-artefact functional system” that takes departure in the interplay 
between goal-directed activities and the affordances that artefacts and the environ-
ment provide to meet one’s bodily potential. This view combines instrumental genesis 
with considerations about what types of thinking that are possible from our bodily 
outset. In this sense, the body-artefact functional system views the body potential in 
the light of both the intentions in play and the environment and artefacts available.

Fig. 1 Instrumental genesis from a radical embodied point of view. This diagram shows the body-
artefact functional system as defined by Shvarts et al. (2021), and is redrawn from that paper (their 
Fig. 3, p. 455)
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Where the instrumental genesis approach studies the development of a person-artefact 
constellation in relation to goal-directed activity, the body-artefact functional system 
carves out the bodily potential for developing strategies and approaches with the 
artefact in the environment (Fig. 1).

4 First Example: Slope Fields 

The first example stems from our own practice. The first and second authors have 
both taught slope fields to the mathematics education students at the Danish School 
of Education, Aarhus University. Although the approach to teaching this topic has 
changed over the years, the aids and tools competency has always been in focus.2 

In 2009 and 2011, the approach was on learning how to programme a computer to 
create slope fields of simple differential equations. This was done both with the free 
CAS system, Wiris, and with the DGS, GeoGebra. The activities were based on a 
constructionist approach in the sense that there was a focus on students developing 
their own mathematical tools (Papert, 1980). In 2013, 2015 and 2017, the approach 
was changed to use Wolfram Alpha instead, i.e., to simply call commands that plot 
the slope fields. The reason for this change was multi-faceted, but one of the main 
problems experienced with the first approach was that it simply was too much work 
and effort to create the string of code required to plot a slope field. The amount of 
knowledge about loops/sequences, and about how to plot vectors in a lattice that 
are needed in order to develop one’s own slope field plot with tools like Wiris or 
GeoGebra, did not seem to be worthwhile. Rather it—in this specific case—moved 
the students’ focus away from the numerical solutions of differential equations. 

One example showcasing the differences between the two approaches is how to 
create a slope field showing solutions to the equation: dy/dx = sin(x)sin(y) (Fig. 2).

Fig. 2 The command line in GeoGebra for a ‘home made’ slope field

2 This example and the subsequent analysis in terms of both the aids and tools competency and the 
instrumental approach was initially presented at the 2018 MEDA conference (Jankvist et al., 2018). 
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Fig. 3 Coarse ‘home made’ GeoGebra slope field versus smooth Wolfram Alpha plot 

The resulting slope field looked rather coarse. On the contrary, if the differential 
equation is typed into Wolfram Alpha, you immediately get the stepwise solution as 
well as an illustration of the solution curves. In this case, the image from Wolfram 
Alpha is more illustrative and detailed (see Fig. 3).

4.1 Analysis of the First Example 

From a competencies’ perspective, the example above calls for students to apply their 
aids and tools competency to, firstly, know that there exists DT for constructing slope 
fields and that this can be beneficial in cases where differential equations cannot be 
solved analytically. Secondly, the aids and tools competency may come into play, if 
students are to choose between the two different approaches laid out above, i.e., is it 
more beneficial, also from a learning point of view, to program one’s own plotter, or 
is it perfectly fine to use the already made app, e.g., that of Wolfram Alpha, knowing 
that it will blackbox several of the underlying processes? 

In terms of the artefact-instrument duality, we see that the choice of technology 
for visualising slope fields has consequences reaching further than just this specific 
task and topic. The resulting instrumental genesis leads to students’ familiarity and 
control over the tool they use. Even though both tools are relevant from a mathe-
matics education point of view, they are very different, and familiarity with each of 
these tools might influence the learning of mathematics further. The instrumentation-
instrumentalisation duality, as well as the scheme-technique duality, can be used to 
look at the details in these differences. The case where GeoGebra is used to create 
slope fields clearly brings the tool to a use that might not be directly intended by 
the creators of GeoGebra, and it clearly pushes the software a little out of the usual 
scenario (for instance by creating a lattice as a sequence of sequences in order to 
place a line segment at each lattice point). This means, on the one hand, that the 
students will be required to instrumentalise GeoGebra and take control over it (and 
this can obviously benefit their future ability to use GeoGebra). On the other hand, 
the focus of the work with GeoGebra is on creating a lattice, and perhaps on control-
ling the length of the line elements (they can get rather large or small—making
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the image incomprehensible). Hence, this use of GeoGebra is instrumentalising the 
students to focus more on the procedure of creating the slope field (deciding on a 
lattice, and “programming” a procedure for setting line segments from each point) 
than on the actual layout of the slope field. The instrumented techniques obtained 
might focus on a number of technical concerns that are of little relevance to under-
standing the involved mathematics, which might (this is a hypothetical analysis) 
pollute the students’ scheme of differential equations and (numerical) solutions to 
such. Hence, in this case, the instructor needs to pay special attention to bringing 
into play the students’ schemes of numerical and analytical solutions to differential 
equations in relation to the slope field plot. Seen as an embodied activity the “side-
ward sliding” of the activity becomes even more obvious. The cognitive challenge 
dealing with placing a relevant lattice on the plane, and controlling the placement 
and size of the line segment really do require cognitive activity that can meaningfully 
build on embodied cognition—but the focus is far from being centred on differential 
equations, and more related to the practicalities of constructing slope fields. 

The work with Wolfram Alpha, however, is focussed directly on the visuals of 
the slope fields, blackboxing everything leading to this image. Furthermore, the case 
of working with a differential equation and visualising the family of solutions does 
seem to be considered by the developers of Wolfram Alpha. Writing the differential 
equation into the system automatically gives access to the solution (including—in 
the premium version—a stepwise solution replicating a paper-and-pencil solution) as 
well as relevant visualisations of families of solutions. The students’ instrumentation 
of Wolfram Alpha is thus almost salient. The instrumentalisation might go in different 
directions depending on the focus of the teaching and the abilities and preferences 
of the students. Wolfram Alpha allows for the development of a completely black-
boxed trial-and-error technique, where the student simply tries various commands 
in the command field and sees if the input is somehow interpretable with regard to 
the task at hand. Such a technique might not lead to the development of a strong and 
relevant scheme for differential equations (for related discussions, see Jankvist & 
Misfeldt, 2015; Jankvist et al., 2019). However, the DT allows students to investi-
gate and explore mathematics without the technical barriers that were experienced 
when programming in GeoGebra. This may lead students more directly to consider 
families of solutions to differential equations, which should force them to activate 
their schemes related to, for example, what it means to be a solution to a differential 
equation as well as, say, the difference between numerical and analytic solutions to 
differential equations. 

5 Second Example: Virtual Manipulatives 

As a second example, we concentrate on virtual manipulatives, and how such digital 
resources have been created to represent physical manipulatives and physical tools 
taking into account the affordances and limitations of DT. In the subsequent analysis,
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Fig. 4 Students are expected to drag the ruler and place it beneath the red rod so as to measure its 
length and identify which is the correct answer out of the 4 provided 

we discuss how these digital resources may create opportunities for learners to have 
embodied experiences with the support of DT (Drijvers, 2019). 

Calculators, tablets, smartphones and smartwatches can be used as the “current” 
digital media for accessing mathematical features (e.g., Drijvers, 2019). Virtual 
manipulatives—or in other words “digital entities whose manipulation on the screen 
makes it possible to represent a mathematical concept, a relationship or a procedure” 
(Moyer-Packenham et al., 2002, as cited in Soury-Lavergne, 2021, p. 4)—have made 
more frequent appearances in the mathematics classroom in the last decade or so. 
A crucial affordance of these digital resources is how they enable the learner to 
“dynamically” interact with them (e.g., Moyer-Packenham, 2016), and therefore be 
supported in a mathematical task. For example, the “virtual” ruler in the Mathletics 
application,3 in which students are prompted to drag and place the ruler beneath 
the red rod, so as to measure its length (see Figs. 4 and 5) is a virtual manipulative 
designed to support young students’ measuring competency.

3 See: https://www.mathletics.com/uk/. 

https://www.mathletics.com/uk/
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Fig. 5 The student places the ruler under the red rod and can see that the length is 13 cm 

Other examples of virtual manipulatives can be found in other online applica-
tions, such as the Mathigon’s polypad from the Mathigon online interactive math-
ematics textbook.4 This offers students the opportunity to manipulate visual repre-
sentations of mathematical shapes and concepts involved in the topics of: geometry 
(such as 2D shapes for exploring their properties); number (such as number lines for 
understanding order of numbers); fractions (such as fraction bars or wall for inter-
preting equivalence of different fractions); algebra (such as balance scale for solving 
equations); and probability (such as coins, dice and spinners to use for exploring 
experimental probability). 

There are also tools involving multi-touch screen technology that offer the oppor-
tunity to look into an embodied approach when a learner uses them. Such tools are 
TouchCounts (TC) and TouchTimes (TT), created by Nathalie Sinclair and Nicholas 
Jackiw.5 TC is designed to support children in developing a strong number sense 
by enabling them to use their fingers, eyes and ears to create and manipulate their 
own numbers and therefore learn to count, add and subtract (e.g., Sinclair & Heyd-
Metzuyanim, 2014). TT is designed to enable children to use their fingers to carry out

4 See: https://mathigon.org/ and https://youtu.be/vwyIZsi0b98 by following the link: https://mat 
higon.org/polypad. 
5 See: http://touchcounts.ca/ and http://touchcounts.ca/touchtimes/index.html. 

https://mathigon.org/
https://youtu.be/vwyIZsi0b98
https://mathigon.org/polypad
https://mathigon.org/polypad
http://touchcounts.ca/
http://touchcounts.ca/touchtimes/index.html
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Fig. 6 Numbers 1, 2, 3, 4 and 5 represented in TouchCounts 

multiplications (e.g., Bakos & Sinclair, 2019; Sinclair et al., 2020). They can use two-
handed gestures to create their own factors and products and therefore learn about 
multiplicative relationships. In both these applications, numbers are represented with 
a circle and the mathematical notation of the number in question presented inside 
that circle. So, for example, the numbers “1”, “2”, “3”, “4” and “5” are represented 
in TC as shown in Fig. 6. 

5.1 Analysis of the Second Example 

From a competencies’ perspective, the examples presented above encourage students 
to apply their aids and tools competency to recognise a mathematical tool, as this 
is represented virtually in a digital tool. In the Mathletics example, such a tool is 
the ruler, and in the Mathigon, example, there are a number of virtual manipula-
tives designed as online interactive dynamic representations of the static real-life 
mathematical shape (2D shape on paper), object (such as a dice) or tool (such as a 
ruler). Even though all these virtual manipulatives are carefully designed to repre-
sent real-life manipulatives, students are still expected to activate their representation 
competency to be able to identify these in the digital tool. Or in other words, students 
are expected to have the knowledge of the properties of the tool even if it is presented 
in a “diverse” form of a digital resource. They are also expected to recognise how 
they are meant to use these virtual manipulatives in the digital learning environment 
in light of the affordances of that learning environment. The fact that these tools are 
designed to mirror the tangible object, their manipulation in the digital medium is
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different to the manipulation of the tangible object in real life. The example with the 
“virtual ruler” in the Mathletics application could be perceived as a virtual manipu-
lative that just resembles a “real-life” tool and its proposed or expected use in this 
environment is an imitation of what the user/learner would do when using a physical 
ruler to measure one dimension of a real-life object or its two-dimensional represen-
tation on paper. Having the mathematical competency of using a ruler to measure a 
given length, provided that one is familiar with the functionality of “drag & drop” 
(digital competency), which exists in many digital tools used in education, then one 
should be able to carry out the given task with minimal support by the teacher. The 
digital ruler is actually designed for embodied cognition; it supports direct compar-
ison between sizes and hence builds on some of the central embodied metaphors. 
It combines this with the aids and tools competency and a well-organised repre-
sentation in a synergetic fashion. The ruler is a tool—and the Mathletics version of 
this tool supports the externalisation of cognitive processes together with the basic 
embodied experience of comparing sizes. Such a virtual ruler for training measure-
ment can of course also be designed with more complex epistemic agendas. For 
example, if the ruler did not begin with zero (but for example with a random whole 
number) the manipulative would support more abstract thinking about measuring 
and measurement. 

In the TT and TC applications, students are encouraged to recognise a visual 
representation of a number, similar to a 2D counter, that is a circle—but with the 
mathematical notation of that number added inside the circle. Children use their 
fingers to tap on the screen and create the next number in the numerical sequence, 
counting up. These actions are certainly directly linked to embodied instrumenta-
tion. The tools involve an action of embodied cognition that is empowered by the 
affordances of digital technologies. The connection to bodily experience is facil-
itated both by the way this tool enhances metaphors of sets and small numbers 
and because of the very direct way that the tool supports two-handed gestures and 
bodily memory. When placed in such a didactical situation, the learner’s mathemat-
ical knowledge and competencies will influence the way the tool is used, involving 
certain “gestures-on-screen” and “dragging interactions” (instrumentalisation). At 
the same time, the way the tool is used will affect the mathematical learning process 
and the learning outcomes (instrumentation). The learner’s mathematical knowledge 
and the aids and tools competency form a certain scheme, which then prescribes the 
learner’s actions (as presented in the scheme-technique duality of the instrumental 
genesis). The dragging of a virtual manipulative can be perceived as the technique in 
the scheme-technique duality—that we take the liberty of referring to as a “virtual 
gesture”. When carrying out a mathematical task in a digital learning environment, 
possessing aids and tools competency can result in acting meaningfully and drag-
ging virtual manipulatives in a meaningful way, indicating an enriched mathematical 
learning experience. As Drijvers (2019) argued, “instrumental genesis is not just an 
individual process, but is part of social learning processes and institutionalisation 
within the specific educational context” (p. 16). In the second example, the specific 
educational context is the learning of counting and multiplying within the TC and
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TT applications, and the use of the virtual manipulatives in Mathletics and the Math-
igon’s Polypad. Students’ interactions with such virtual manipulatives, may well be 
influenced by past social experiences involving tangible manipulatives, which can 
lead to virtual manipulatives becoming institutionalised. 

6 Discussion of Connecting Theoretical Perspectives 

We began this chapter by asking what the instrumental approach and the embodied 
instrumentation approach have to offer to the discussion of students’ aids and tools 
competency in situations involving digital technologies. We have replied to this ques-
tion by providing examples of tool use in two different mathematics teaching situa-
tions. In relation to the first example, the KOM-framework offers a rather limited anal-
ysis in terms of the aids and tools competency. It does, however, articulate students’ 
needs to know about the digital tools’ strengths and weaknesses, not least in relation 
to specific mathematical representations, which the instrumental approach does not 
do as explicitly. The instrumental approach focuses more directly on the students’ 
interactions with the DT, rather than merely addressing students’ knowledge about 
these. The embedded notion of scheme enables us to address students’ concep-
tual understanding in relation to differential equations and solutions of such. This 
insight is not new—as mentioned we have previously provided a similar analysis 
(Jankvist et al., 2018). Yet, as argued above, recent theoretical developments and 
foci within mathematics education point to the fact that the instrumental approach 
might provide a better understanding of students’ work with DT, if it is related to 
discussions of embodiment—as for example, Drijvers (2019) suggests. Hence, in 
the second example, we see that the aids and tools competency builds also on the 
ability to use tools as a way to activate embodied cognitive metaphors, and as a way 
of supporting and designing the use of gestures in reasoning and meaning-making. 

Furthermore, the interplay between the embodied instrumentation approach, as 
introduced by Drijvers (2019) and Shvarts et al. (2021), and KOM’s aids and tools 
competency makes it interesting to ask the question of how aids and tools support 
embodied and distributed cognitive processes—simultaneously. For one, aids and 
tools can activate embodied cognition and make students use their bodily experience 
in mathematical meaning-making processes. Of course, aids and tools can automate 
and simplify mathematical cognitive processes. Yet, the entanglement of these two 
types of processes is, in our view, as delicate as it is important. 

Rather than viewing distributing cognitive processes to aids and tools, as a process 
of toning down or even giving up embodied meaning-making, we believe that it 
should be viewed as a process of domesticating and balancing the degree to which 
embodied processes are foregrounded. Embodied cognition plays a vital role also in 
abstract mathematics. Yet, in order to work with abstract mathematics, competencies 
in working with aids, tools, symbols and representations in a goal-directed manner 
shaping these tools in light of the task at hand, are critically important. Some of the 
local processes might be much better described with the instrumental approach than
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with embodied cognition, but this should not lead to disregarding the importance 
of the body. The competency to use aids and tools to activate embodied cognitive 
processes is important, and it is entangled with the ability to steer the instrumental 
genesis process in a productive and meaningful direction obtaining a balance between 
distributing/disembodying and (re)embodying these tools. 

Referring back to Niss’ (2016) comments of caution when integrating DT into 
mathematics teaching and learning, it seems clear that an embodied cognition and 
instrumentation approach to using DT is not about “replacing mathematical compe-
tencies”. It is about creating bodily means for generating meaning and understanding 
of mathematical concepts, results and processes. It is at the core of mathemat-
ical concept formation, mathematical thinking and reasoning. It is about becoming 
acquainted with the abstract. It is an embodiment of the “what?”, “how?” and “why?” 
in mathematics. 

Hence, from our perspective, the connection—or networking—of these perspec-
tives appears both feasible and quite promising in relation to looking deeper into 
students’ possession and development of mathematical competencies in the digital 
era. Surely, there are fundamental issues to be addressed, e.g., if the discussion of 
to what extent the underlying philosophies of learning of the theoretical approaches 
of mathematical competencies and embodied instrumentation are at all compatible, 
and if so, then on which terms and to what extent. Such discussion and analysis, 
however, goes beyond the scope of this chapter. Here we have merely pointed to 
the potential of connecting KOM’s aids and tools competency with the constructs of 
embodied cognition and instrumentation and illustrated this through the analyses of 
two examples. The reason for this, as discussed previously, is the entrance of new 
virtual manipulatives, which challenge the existing frameworks “on the market” in 
relation to their explanatory power. 
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Mathematics in Action: On the Who, 
Where and How of the Constructions 
and Use of Mathematical Models 
in Society 

Raimundo Elicer and Morten Blomhøj 

1 Introduction 

Mathematics, as a discipline, has several meanings and thus plays different roles in 
society. As a social activity, it may be conceived of as a pure or applied science, a 
school subject, or even an aesthetical position (Niss, 1994). Amongst this plurality 
of meanings, mathematics is also a “system of instruments, products as well as 
processes that can assist decisions and actions related to the mastering of extra-
mathematical practice areas” (p. 367). Davis and Hersh (1986) portrayed this role 
as the prescriptive function of mathematical models in society, whereby, aside from 
its descriptive and predictive functions, it “leads to human action or automatically 
to some sort of technological action” (p. 120). Therefore, mathematics is embedded, 
more or less explicitly, in activities that transcend disciplinary boundaries, informing 
and shaping human action with real-world consequences. This recognition, known 
as mathematics in action (e.g., Skovsmose, 1994), has become one of Critical Math-
ematics Education’s (CME) core preoccupations as a research programme (Ernest 
et al., 2016; Valero et al., 2015). Some remaining non-trivial research questions are 
whether, to what extent, and how such a critique of mathematics in action belongs 
in classroom praxis. 

It is no surprise that the reality of mathematics in action is a reason to teach and 
learn mathematics and its applications in school. Niss (1996), however, made a clear 
distinction between (real) reasons and justifications or arguments. The former may
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be historical, implicit and fussy, whereas the latter becomes activated and explicit, 
and their solidity is subject to scrutiny. In this regard, Blum and Niss (1991) identified 
different types of justifications for teaching mathematical models and applications, 
among which the so-called critical competence argument focuses on (p. 43): 

… preparing students to live and act with integrity as private and social citizens, possessing 
a critical competence in a society, the shape and functioning of which are being increasingly 
influenced by the utilisation of mathematics through applications and modelling. 

The critical argument or justification has mathematics in action as a premise 
and presumes that there is a teaching practice that can, in fact, activate a critical 
competence. In the context of teaching and learning mathematical modelling and 
applications, Kaiser et al. (2006) bundled justifications and teaching practices as 
perspectives. The critical perspective entails that “critiquing modelling is part of the 
learning that takes place in the process of doing modelling, and one of the aims is to 
produce critical, politically engaged citizens” (Barbosa, 2006, p. 296). 

One way of positioning this perspective is by utilising the highly influential KOM 
framework. The KOM project, first reported in Danish (Niss & Jensen, 2002), is an 
effort to understand and categorise a general mathematical competence into eight 
interrelated mathematical competencies and three types of overviews and judge-
ments about mathematics (Niss & Højgaard, 2011). We deem the critical perspec-
tive on modelling to be framed by the KOM framework not as a competency but 
as an overview and judgement. It becomes necessary to distinguish it from the 
mathematical modelling competency that belongs to the same framework and is 
addressed, for example, in Blomhøj (2020), and Blomhøj and Jensen (2007). The 
critical perspective is distinct from others, as it calls not only to be critical with 
and in mathematical modelling but also about mathematics in action. In the KOM 
framework, modelling competency engages mainly with the first two prepositions. 
However, in the overviews and judgements, mathematics becomes ‘the object of 
explicit treatment, reflection and articulation’ (Niss & Højgaard, 2011, p. 74f). The 
three overviews and judgements concern the application of mathematics (OJ1), its 
historical development (see, e.g., Thomsen & Clark, 2022), and its nature as a disci-
pline (see, e.g., Østergaard & Sun, 2022). Therefore, reflecting about mathematics 
in action is framed as OJ1, the overview and judgement about the actual application 
of mathematics within other disciplines and fields of practice. 

In their description of overviews and judgements, Niss and Højgaard (2011, 2019) 
did not engage in any particularities of the digital era. Recent research has shed light 
on links between the use of digital technologies and some of the mathematical compe-
tencies, in particular about aids and tools (Jankvist et al., 2018), problem tackling 
(Geraniou & Jankvist, 2019) and representation (Pedersen et al., 2021). This chapter 
aims to build this up further and explore how digital tools enter the picture regarding 
OJ1. First, we discuss how to theoretically frame OJ1 as an observable construct 
by drawing on the distinction between reflections that are internal and external 
to the modelling process (Blomhøj & Kjeldsen, 2011). Secondly, we borrow the 
instrumentation-instrumentalisation duality from the theory of instrumental genesis 
(Artigue, 2002) to account for students’ use of digital technologies in mathematical



Mathematics in Action: On the Who, Where… 221

modelling. Lastly, we argue for the potential of digital technologies to develop OJ1 
by networking on these theories (Prediger et al., 2008). We illustrate these chal-
lenges by reflecting on two projects from our teaching experience at the Department 
of Science and Environment at Roskilde University. 

2 OJ1, Internal and External Reflections 

As discussed above, the critical perspective on modelling stands on the premise 
of recognising mathematics in action. In the KOM framework, Niss and Højgaard 
(2019, p. 24) phrase this assumption as follows: 

Mathematics is widely used for extra-mathematical purposes in a large variety of everyday, 
occupational, societal, scholarly and scientific undertakings. This use is brought about by 
the explicit or implicit construction or utilisation of mathematical models. 

From that point of departure, they provide a characterisation of this overview and 
judgement. Beyond the reasons and arguments, we need to address and frame what 
it means to experience it. Niss and Højgaard (2011) did so by proposing a set of 
archetypical questions quoted in Table 1, first column. 

Table 1 OJ1 in question form 

Niss and Højgaard (2011, p. 75) Niss and Højgaard (2019, p. 24) 

Who, outside mathematics itself, actually uses 
it for anything? 

Exactly which people are in fact using 
mathematics? 

What for? 
Why? 
On what conditions? 
With what consequences? 

When, and in what contexts and situations do 
they use it and for what purposes? 

How? 
By what means? 
What is required to be able to use it? 

In what ways do they use it, and what are the 
competencies they possess and activate for so 
doing? 

The second column in Table 1 shows how Niss and Højgaard (2019) organised 
these questions into three in revisiting the KOM framework, which we interpret as 
overarching objects of reflection. Activating and observing OJ1 requires a theoretical 
framing that accounts for such reflective stance towards the who, where and how of 
mathematics in action. 

Reflective knowing is a theoretical construct derived from John Dewey’s notion 
of reflective inquiry (Dewey, 2015/1938). Skovsmose (1992, 1994) rescued Dewey’s 
philosophy as a fundamental step to blur the line between knowing and doing. 
However, he was critical of Dewey’s optimism about the scientific method, thus 
proposing a reflective knowing that, additionally, implies critiquing what is learned 
(Alrø & Skovsmose, 2002). Instead of a definition, Skovsmose (1994, Chap. 6) delin-
eated a set of entry points or worry questions to adjust the lens towards students’
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reflections. This framework allows for distinguishing mathematical-oriented, model-
oriented and context-oriented reflections (Skovsmose, 1998). 

As part of developing a didactical theory of mathematical modelling (Kaiser et al., 
2006; Niss & Blum,  2020), Blomhøj and Kjeldsen (2011) focused on characterising 
reflections in the process of mathematical modelling. They defined reflection as a 
“deliberate act of thinking about some actual or potential action aiming at under-
standing or improving the action” (p. 386). Moreover, they acknowledged that they 
could only be analysed through communicative acts. From here, they distinguished 
between internal and external reflections, depending on whether they refer to steps 
within the modelling cycle (see, e.g., Blomhøj, 2004) or to the use and consequences 
of the model. 

2.1 A Competency and an Overview 

We have previously argued that OJ1 and modelling competency are distinct. However, 
they are not disjoint. In the KOM framework, mathematical modelling competency is 
defined as “a person’s insightful readiness to autonomously carry through all aspects 
of a mathematical modelling process and to reflect on the modelling process and on 
the actual or potential use of the model in a particular context” (Blomhøj & Jensen, 
2007, p. 48). By this definition, mathematical modelling competency consists of a 
productive side—being able to perform modelling—and an analytical side—being 
able to grasp and critically analyse extant models (Blomhøj & Niss, 2021). 

Both aspects are closely related to the modelling process and involve reflections 
related to the sub-processes in the modelling cycle (Blomhøj, 2004). This type of 
relations can be characterised as internal reflections. They can be an integrated part 
of the modeller’s work or a retrospective analysis of a modelling process performed 
by people not involved in the modelling process. Examples of questions initiating 
internal reflections are: “Why did we formulate the problem as we did? … Which 
essential elements did we include in our system and why? … What were our reasons 
for mathematising the system as we did? On what grounds did we estimate the 
parameters? …Why do we think that the model is valid concerning our problem, or 
why not?” (Blomhøj & Kjeldsen, 2011, p. 558). 

Additionally, exercising modelling competency may provoke reflections on the 
roles and functions of mathematical models in application contexts. These are char-
acterised as external reflections because they are not related to the modelling cycle 
(Blomhøj & Kjeldsen, 2011). They can take the form of reflections on the effects of 
the application of a model. These could be from an ethical, political, or economic 
perspective, as indicated in some of the projects mentioned above. They may also 
address general side effects caused by applying a mathematical model in a societal 
context, as Skovsmose (1990) pinpoints. These are (1) a reformulation of the problem 
in hand to be suitable for investigation through mathematical modelling, (2) changes 
in the discourse about the problem in the direction that is either pro or contra to the 
model and possible adjustments of the model, (3) a limitation of the possible actions 
taken into consideration to those that can easily be evaluated in the model, and (4)
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a delimitation of the group of people who can take part in the discussion and act 
as a basis of critique. Awareness of and experiences with such phenomena provide 
grounds for students’ external reflections concerning the use of mathematical models 
in societal contexts. 

Overall, the notions of reflective knowing and external reflections allow us to frame 
OJ1 as an observable construct. In principle, the who, where and how of mathematical 
modelling in society are external to the learners’ modelling process. However, we 
further need to frame the contribution of digital tools to the mathematical modelling 
process of OJ1. 

3 Networking of Theories and Digital Tools 

The proliferation of numerous theoretical frameworks developed for specific 
purposes is an ongoing challenge to mathematics education as a field of research 
(see, e.g., Goos, 2018). As a response, Prediger et al. (2008) and Prediger and Bikner-
Ahsbahs (2014) introduced the notion of the networking of theories, a continuum of 
strategies ranging from ignoring others to the eventual consolidation of a unifying 
global theory. The choice of a strategy depends on the purpose and the particular 
phenomenon that the researchers attempt to illuminate. 

One prominent approach to theorising the use of tools—digital or otherwise—in 
mathematics education is the theory of instrumental genesis (TIG, e.g., Trouche, 
2005). The theory stands on the basis that “an instrument is a mixed entity, part 
artefact, part cognitive schemes that make it an instrument” (Artigue, 2002, p. 250). 
Instrumental genesis refers to the process by which an artefact turns into an instru-
ment. This process is bidirectional. The subject provides potentialities and eventually 
transforms an artefact into an instrument through its instrumentalisation. Conversely, 
the instrument provides opportunities for appropriating new schemes of instrumented 
action through the instrumentation of the subject. 

There are recent examples of networking KOM with other frameworks dedi-
cated to digital technologies, such as TIG and other aspects of the broader instru-
mental approach (Vergnaud, 2009). For example, Jankvist et al. (2018) compared 
and combined KOM’s tools and aids competency with TIG and the notion of 
scheme. To define a mathematical digital competency, Geraniou and Jankvist (2019) 
networked KOM’s mathematical competencies with frameworks of digital compe-
tencies through the lenses of the TIG and the theory of conceptual fields (Vergnaud, 
2013). One common finding is that mathematical competencies tend to be too broad 
to analyse students’ interactions with digital tools in the learning process. Further, 
the instrumental approach does not account for learners’ awareness and choice of 
appropriate tools, their affordances and limitations. 

In what follows, we focus on networking the construct of internal and external 
reflections in mathematical modelling and the instrumentation-instrumentalisation 
duality from TIG. Our main argument is twofold. For one, these theoretical constructs 
may address the same unit of analysis, but, consistent with the literature, they account
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for observable aspects at a different granularity. However, TIG has the potential to 
provoke critical reflections about the use of mathematical models in society through 
an implemented anticipation concerning digital instruments. To illustrate our claims, 
we offer examples from our own teaching experiences in a natural science bachelor 
programme in two different settings: a course in statistical modelling and a bach-
elor students’ modelling project. According to Blum and Niss (1991, p. 43), a critical 
competence enables students to “recognise, understand, analyse and assess represen-
tative examples of actual uses of mathematics”. Therefore, we begin by describing 
the real-life events that contextualise each of the teaching experiences. 

4 Statistical Models and the Use of Hydroxychloroquine 

During the outbreak of the COVID-19 pandemic, fast publication of scientific 
research on the spread, diagnosis, and potential treatments ensued. Early studies 
reported anecdotal recovery when using the antimalarial agent hydroxychloroquine 
(HCQ) to treat COVID-19 patients. Media outlets and some political leaders echoed 
the promise of HCQ as a cure for the disease. Nonetheless, evidence of its efficacy 
is far from settled (Das et al., 2020). In response, the World Health Organisation 
(WHO) called for conducting randomised trial studies that provide more conclusive 
evidence. 

The first author and his co-lecturer used the dataset from one such study in the 
course Statistical Models at Roskilde University in the fall of 2020. The contents 
of this bachelor’s course include probability distributions, parametrical and non-
parametrical hypothesis tests and linear regression. Apart from homework assign-
ments, the evaluation involves developing and discussing a group project based on a 
selected dataset from actual scientific research. Moreover, due to institutional deci-
sions, students used Python as a programming language and Jupyter Notebooks as 
working environments for the first time, while their prior courses had used MatLab. 
They received a brief description of the study and the dataset displayed in Table 
2—COVID-19.

Table 2 COVID-19 survival and age 

Treatment Age Survival Total 

Dead Alive 

Hydroxychloroquine <50 19 316 335 

50–69 55 355 410 

70+ 30 172 202 

Standard treatment <50 19 298 317 

50–69 31 365 396 

70+ 34 159 193
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As a general rule, the dataset should not be able to be solved straight-forward with 
the methods available in the course. Students must handle a non-routine problem that 
entails manipulations, decisions and eventual trade-offs. In particular, students were 
familiar with contingency tables for two categorical variables, while the dataset in 
Table 2—COVID-19 represents three: treatment (HCQ or standard), age group (<50, 
50–69 or 70 or above) and survival (dead or alive).

In summary, the students reached two conclusions. First, age was significantly 
associated with decreased survival. Second, only in the age group of 50–69 years 
was the type of treatment associated with survival, in that HCQ curbed it. They did so 
by performing a total of five χ 2 hypothesis tests (choosing α = 0.05) for contingency 
tables, separating the dataset into each treatment for the first conclusion and the three 
age groups for the latter. 

As instructed, the group submitted a seven-page report and three pages of 
appended code. We now focus on traces of internal and external reflections related 
to OJ1 questions and whether instrumental genesis plays a role. 

Regarding the who question, students only knew about the author of the study 
(WHO) through the dataset they received. The provided digital instruments did 
not mediate this information. However, they phrased their conclusion, positioning 
patients as decision-makers: 

… it definitely is not recommendable for patients to choose the hydroxychloroquine treatment 
over standard treatment if they are in the age between 50 and 69. (emphasis added) 

The choice of treatment on behalf of patients—whether factual or not—is external 
to the modelling cycle. The appropriate conditioning of such a decision according 
to a demographic group is internal. Both reflections are coordinated and represent 
a crucial aspect of probabilistic literacy in the context of risk (Borovcnik, 2016). 
A digital instrument played a role here, although it was not a Jupyter Notebook 
but an Excel spreadsheet, as shown on the report screenshot in Fig. 1. Students used 
Jupyter Notebooks to solve class examples, but a new situation with three categorical 
variables challenged their associated schemes. The instrumentalisation of available

Fig. 1 Separation in the three age groups in Excel
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scripts was only possible through another instrument to divide and visualise the 
resulting datasets.

The where question addresses the extra-mathematical context, purposes and 
consequences. An explicit statement illustrates this external reflection when 
presenting their dataset: 

The goal of our study is to analyse the data and conclude if hydroxychloroquine has any 
effect on COVID-19 survival in these three specific age groups. 

To some degree, the consequences are explicit in the conclusion quoted earlier. 
However, their project did not address the reach of such studies in national and 
international healthcare guidelines or the continuation of research on particular drugs. 

The mechanisms and competencies accounting for the how question are evident 
in students’ work. Their project consisted, after all, of a step-by-step journey of 
mathematical concepts and procedures applied to decision-making in an extra-
mathematical context. Two aspects are worth mentioning. 

First, probabilistic modelling is implicit, and the instrumentalisation of program-
ming has pragmatic value instead of an epistemic one (Artigue, 2002). A hypoth-
esis test presumes that, under the null hypothesis, a statistic resulting from what 
was observed and what is expected in a random experiment follows a mathemat-
ical model, that is, a distribution. Students did not incur such reflections, and their 
commented code in Fig. 2 illustrates it. For them, the expected frequencies under the 
null hypothesis and the χ 2 statistic were mere results of using formulae. 

Fig. 2 Sample code computing expected frequencies and test statistic 

Second, and on a more positive note, students reflected on the role of hypothesis 
tests as grounds for their statistical reasoning. After displaying all P-values and 
respective conclusions, they commented: 

Considering that the research is observational, we can conclude only that the association is 
not due to chance. 

A randomised controlled study is experimental, but the error forces them to explain 
what they are testing with their calculations, aside from cause and effect, that is the 
extent to which the differences in survival probabilities can be explained by chance
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alone. The careful phrasing of their conclusions was consistent with this reasoning. 
For example: 

For patients outside this age group [50–69], our test results could not provide evidence that 
one treatment is better than the other. (emphasis added) 

Overall, the students instrumentalised Jupyter Notebooks pragmatically. However, 
it allowed them to reach concrete and consistent results, which, in turn, are the 
substance of their external reflections. This is mainly the case for the who and 
how questions of OJ1. Moreover, these reflections are intertwined or mediated by 
internal reflections connected to the modelling and reasoning competencies (Niss & 
Højgaard, 2011). 

5 Epidemiology as a Domain for Students’ Modelling 
Projects 

Models and modelling are essential in the epidemiology of infectious diseases 
(Anderson & May, 1992). Fundamental concepts and phenomena related to 
epidemics caused by infectious diseases are defined and understood by means 
of mathematical models. These are indispensable when epidemics are described, 
predicted, or regulated through restrictions, testing or vaccination programmes 
(Bailey, 1986). Thus, the epidemiology of infectious diseases is an exemplary case 
of the role and function of mathematical modelling in an interdisciplinary field of 
research in the biomedical domain. 

In Denmark, there are several cases of healthcare politics issues in which mathe-
matical models have played important roles. The COVID-19 pandemic is a clear 
example. Figure 3 shows an iconic picture of the Danish Minister of Health,

Fig. 3 Minister of Health Magnus Heunicke at a press conference on March 10, 2020. Copyright 
© TV2
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presenting what was hereafter referred to as the red and green curves. These curves 
represent the number of infected people expected in a scenario with and without 
restrictions on social and societal activities. The red curve exceeds the capacity for 
the intensive care of infected individuals, while the green curve stays below this 
capacity. The US health authorities have used the same diagram (Roberts, 2020). 
Although it is a conceptual model to support political decisions and communication 
about the necessity of installing restrictions, the diagram is presented as a result of 
a mathematical model.

The Danish vaccination programme against measles, mumps and rubella (MMR), 
launched in 1984, was decided based on a cost–benefit mathematical model. Later 
information campaigns for reaching a critical level of immunity in the population 
have also used model results. A mathematical model also showed that the prevalence 
of Chlamydia in young age groups is caused by a subpopulation with much higher 
contact rates than the average. Based on these results, in 2011, the municipality 
of Copenhagen launched a campaign for home testing against sexually transmitted 
Chlamydia infection targeting teenagers and young people and the tracing of contacts 
is done backwards to increase the chances of finding persons with high contact rates. 
In 2019, Denmark extended a vaccination programme against the human papillo-
mavirus (HPV) to include boys and girls from 12 years of age. The programme is 
argued for based on a mathematical model that estimates it can cause a 90% reduction 
in the prevalence of cervical cancer (Statens Serum Institut, 2021). 

Since 1992, the second author of this chapter has supervised students’ mathemat-
ical modelling projects in the natural science bachelor’s programme at Roskilde 
University. Blomhøj and Kjeldsen (2018) analysed in detail how this form of 
problem-oriented project work constitutes a solid and successful learning environ-
ment for developing students’ mathematical modelling competency, including OJ1. 
This learning environment has been developed in parallel with two theoretical pillars. 
First, the theoretical understanding of mathematical modelling competency in the 
Danish KOM project (Niss & Højgaard, 2011, 2019) and, second, the theoretical 
understanding of a mathematical modelling process and related student reflections, 
including the Critical Mathematics Education’s stance on mathematics in action 
(Blomhøj & Kjeldsen, 2011). Modelling projects in this programme can be seen 
as a rather extreme realisation of the holistic approach to mathematical modelling 
(Blomhøj & Jensen, 2007). Over the years, several projects in this programme have 
been modelling projects within the domain of epidemiology. A common point of 
departure for these projects has been the simple susceptible-infectious-recovered 
(SIR) model for the outbreak of an infectious disease caused by a virus in a closed 
population. 

Typically, the students begin by reproducing the development of the SIR model 
from its basic assumptions, ending with three coupled ordinary differential equations 
that cannot be solved analytically. However, they are introduced earlier to MatLab, 
and some know how to use it to solve and analyse systems of differential equations 
numerically. As a case of implemented anticipation (Niss, 2010), the students need 
to develop a clear idea about how to analyse a system of differential equations
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numerically in MatLab before engaging in compartment modelling, which would 
result in such a mathematical object. 

Through different analyses, it became clear to the students that the purpose of 
the simple SIR model is to understand the fundamental mechanisms and phenomena 
involved in infectious epidemics rather than to describe real epidemiological data or 
predict the courses of actual outbreaks (Blomhøj, 2020). 

In this type of project, there is a close interplay between the technical level and 
the problem they want to illuminate and investigate in their project. The technical 
level lets students activate their modelling competency, particularly in compartment 
modelling and their tools and aids competency in using MatLab and other digital 
resources for implementing and analysing the model. 

5.1 A Bachelor Project on the Modelling of Influenza 
Epidemics 

To illustrate the aforementioned interplay, we describe and analyse a project on 
influenza epidemics and the strategy in Denmark for vaccination against influenza. 
The Danish policy is to offer free influenza vaccines for people older than 65 and 
high-risk groups with specific chronic diseases. Students wanted to analyse this 
strategy and possibly suggest an alternative. The project was conducted by a group 
of four students and was documented in the project report (Jørgensen et al., 2002). 
Translations of excerpts from Danish are our own. 

Their underlying hypothesis was that it might be more efficient, under a societal-
economic rationality, to offer free vaccines to age groups with higher contact rates, 
try to reach the level of herd immunity, and protect the elderly part of the population 
indirectly. 

Reflections internal to the modelling cycle led to model one generic Danish 
influenza season of 120 days representing the winter season—December, January, 
February and March—and to assume a constant population size. Moreover, a critical 
step in the modelling process was deciding how to represent different age groups and 
their interactions in the model. The group designed their model population according 
to five age groups: 1–5, 6–15, 16–25, 26–64 and 65–75 years. In the model, vacci-
nation is given prior to an epidemic outbreak, and it is assumed to cause immu-
nity in 75% of vaccinated individuals in all groups. They decided—supported by 
their supervisor—to develop the simplest possible model that utilised age-depending 
contact rates. Each of the five age groups consisted of a simple susceptible-infectious-
recovered (SIR) model. In each time step in the numerical solution, the actual infec-
tion rate was calculated from the number of susceptible people in the group, the five 
different contact rates and the number of infectious people in the five groups. 

An incursion into the who question came as a result of assigning parameter values. 
They assumed the cure rate, that is, 1/the average period of being infectious, to be
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1/3 per day for all age groups. However, the group searched the literature for age-
dependent contact rates and found that such rates have been estimated in a few cases 
based on previous epidemics in Asia (1958) and Hong Kong (1969): 

Therefore, we will make a point of departure in the contact rates developed by Longini et al. 
(1978) since they are well-founded and the population structure is built-in. (p. 51, emphasis 
added) 

This internal reflection on their mathematisation step is grounded in the external 
reflection of the use of such models. By well-founded, they refer to Longini and 
colleagues’ scientific work and healthcare authorities who collected relevant data. 
Moreover, as a case of students’ instrumentation, they took advantage of working 
with a matrix representation of these rates in MatLab. The population structure is 
built in the estimates in the form of 5 × 5 matrices. 

Students’ reflections on the where of OJ1 stemmed directly from their problem 
formulation (p. 9): 

Is it possible to prevent influenza epidemics through a vaccination programme? And what 
is the best strategy for distributing vaccines to the population? 

As a core result and answer to the first part, the group stated that, according to 
their model, it was possible to prevent an influenza epidemic through vaccination in a 
situation where the entire population was susceptible to the virus. If the vaccine were 
distributed equally across age groups, it required the immunisation of 1.5 million 
individuals. If the two younger age groups are vaccinated, herd immunity in the 
population could be reached with one million vaccinated individuals. Therefore, there 
are strong arguments for considering alternative strategies for vaccination against 
influenza. 

However, the group discussed further social consequences in a section titled ‘From 
Model to Action’, calling to: 

…evaluate whether one should take action on the grounds of these results to change the 
current vaccination strategy. We can envision that a vaccination programme would find 
popular opposition. (p. 72) 

They referred to the dilemma between using vaccination to protect individuals 
against possibly severe health conditions and using vaccination as a tool for opti-
mising the societal handling of a healthcare problem. It is not evident that the work 
with the digital artefact prompted this reflection directly but indirectly through the 
results of its use, that is, as a consequence of its procedures. 

Regarding the how of OJ1, the group reflected that their model could not directly 
answer the second part of their problem formulation. However, they used the model to 
compare and analyse different vaccination strategies. In particular, they showed that, 
according to the model, vaccination of the oldest age group reduced the attack rate 
in that group by 40% and the general attack rate by only 4%. If the same number of 
vaccines were given to the 6–15-year-old group, the general attack rate was reduced 
by 30%. Thus, for the oldest age group, it was only slightly better to have all vaccines 
than to give them to the 6–15 year age group, and for the population in general, this 
strategy would be nearly eight times more efficient.
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The instrumentalisation of MatLab to solve and simulate made it possible for the 
students to investigate these scenarios relevant to their problems. In this process, the 
students were enabled to ask questions and suggest parameters that they otherwise 
would not have observed. However, the students developed their model in close 
interplay with ideas of how to implement it in MatLab. Aside from the case of the 
matrix representation of contact rates, the following disclaimer placed above the 
appended code is worth highlighting: 

Most of our programmes are built to simulate influenza over any given number of years. 
However, we have not made use of this feature, which may seem useless. However, we 
value the opportunity to increase the simulation period, which is why it is preserved in our 
programmes, while the models only run for one year. (p. 81, emphasis added) 

All students in the group had some experience with MatLab, and two were partic-
ularly skilful programmers in general. This experience, illustrated by the openness 
of their code, suggests instrumentation of the students towards a broader under-
standing of the SIR model. The parameter values were simply choices of variables 
instances. During the project, and in interplay with their understanding of the SIR 
model, MatLab was developed into an instrument for the students, enabling them to 
set up and analyse a compartment model for influenza epidemics. 

Overall, in modelling projects in epidemiology, students engaged in critical reflec-
tions about assumptions and choices in the modelling process (internal) and how 
mathematical models are used or can be used to support or evaluate healthcare poli-
cies (external). Students had opportunities to develop their modelling competency 
and their OJ1. The latter focused on the role and function of mathematical modelling 
in epidemiology, understood both as a research area and groundwork for political 
decisions. 

6 Discussion 

We have described two cases of students’ projects from our teaching experience 
that used mathematical models to assist decisions in extra-mathematical contexts. 
In both cases, the instrumentalisation of digital artefacts—Jupyter Notebooks and 
MatLab—carry a pragmatic value (Artigue, 2002) in computing P-values for hypoth-
esis tests, solving paired differential equations and simulating scenarios. However, 
these results and interpretations provoke and give substance to reflections associ-
ated with the actual application of mathematics. That is particularly the case of how 
mathematical models are constructed and used for making decisions, as students’ 
task is to experience such a process. Students recognise where the application of 
mathematical models has intended and unintended consequences, but the mediating 
role of digital instruments is not evident. An opportunity may arise by using digital
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media to search for data and contextual information, as Radakovic (2015) highlights 
in his pedagogy of risk. 

Nonetheless, students use digital instruments to visualise and mathematise the 
disaggregation of a sample or population into age groups. This feature is particular 
to the data involved in the problems; it concerns direct effects on people’s wellbeing. 
In other words, the students’ instrumentation can trigger reflections on agency issues, 
that is, on who is acting upon mathematical arguments. 

Our approach focuses on students’ reflections on who, where and how mathe-
matics is applied, that is, on KOM’s OJ1 archetypal questions (Niss & Højgaard, 
2011, 2019). We distinguished between internal and external reflections (Blomhøj & 
Kjeldsen, 2011). Additionally, the theory of instrumental genesis provided the 
language that allowed us to pinpoint the role of digital instruments in such reflec-
tions, considering the duality of instrumentation and instrumentalisation (Artigue, 
2002). This fussy endeavour illustrates the acknowledged issue of the proliferation 
of theories in mathematics education as a research field (Prediger & Bikner-Ahsbahs, 
2014). 

This diversity of theoretical constructs can be untangled through appropriate 
networking strategies (Prediger et al., 2008). The notion and distinction of internal 
and external reflections from the developing didactical theory of mathematical 
modelling make the OJ1 construct understandable. It is achieved by operational-
ising archetypal questions (who, where and how) as observable in communicative 
acts, whether oral or written. Furthermore, internal and external reflections, as well 
as TIG (Trouche, 2005), work as “a language of descriptions of an educational prac-
tice” (Silver & Herbst, 2007, p. 56). However, they described different aspects of such 
an educational practice. The former adjusts the lens towards the students’ insights 
about their mathematical modelling process and eventual extra-mathematical uses; 
the latter focuses on the interaction between students and digital instruments (Python 
and MatLab programming). This juxtaposition of theoretical approaches is a combi-
nation in which elements need not fit as well as in a coordination strategy (Prediger 
et al., 2008). 

As a final point, the COVID-19 pandemic has shown that mathematical models 
play an essential role in describing and predicting the pandemic’s course and evalu-
ating the consequences of possible interventions and treatments. However, the models 
and their basic assumptions have only been displayed and discussed in public to a 
minimal degree, calling for the need for external reflection and OJ1 in the general 
public. The connection with a coherent teaching practice is still a non-trivial enter-
prise (Blomhøj & Elicer, 2021). We hope this chapter encourages researchers to 
network the theoretical complexity of teaching for reflective knowing by integrating 
particular aspects of the digital era into the picture.
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Perspectives on Embedding 
the Historical Development 
of Mathematics in Mathematical Tasks 

Marianne Thomsen and Kathleen M. Clark 

1 The Second Type of Overview and Judgement 

The KOM framework includes three types of overview and judgements, which are 
seen as related to eight mathematical competencies. However, overview and judge-
ment have a more comprehensive character; they regard mathematics as a disci-
pline and its relationship with nature, society, and culture (Niss & Højgaard, 2019; 
Niss & Jensen, 2002). Within the KOM framework the mathematical competencies, 
overview and judgement, and the mathematical content areas are interconnected in 
different ways depending upon which competency, mathematical content, and type 
of overview and judgement are chosen to be in focus in a given teaching and learning 
unit. The second type of overview and judgement, the historical development of 
mathematics, seen from internal as well as from socio-cultural perspectives (Niss & 
Højgaard, 2019), is among other things, characterized as including these questions: 

What are the forces and mechanisms behind the historical development of mathematics in 
society and culture? In what respects and under what conditions and circumstances is the 
development of mathematics primarily influenced by internal forces, respectively by external 
forces? (p. 24) 

This chapter’s focus is on how these questions can be embedded in mathematical 
tasks concerning working with the same geometric content and various geometrical 
reasoning related to respectively an original source and GeoGebra. Our perspective 
of including original sources in mathematics classrooms is to support students to gain 
insights in “another view of the landscape of mathematical concepts, techniques, and
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theorems” (Fried, 2011, p. 22). From the second type of overview and judgement 
perspective, the word another takes on great significance. The various perspectives 
between working with an old original source and new digital technologies (e.g., 
GeoGebra) give opportunities to create situations where students and the teacher can 
discuss different ways of working with—as an example—types of geometrical proof 
(e.g., Thomsen & Olsen, 2019). This can be characterized as seeing the change in 
the possibilities for working with related mathematics in different ways—different 
concepts and techniques can be related to work with the same theorems. In this 
chapter we analyse and give examples from two different empirical cases. Both 
concern students’ work with the interplay between GeoGebra and Euclid’s Book IV, 
Proposition 6: To inscribe a square in a given circle. The first case stems from the 
first author’s PhD project. The second one concerns in-service teachers in a graduate 
course module presented by the second author. From an internal view one might say 
that the mathematics does not change in these cases, but the way one can work with 
it and reason about it changes. From an external and a socio-cultural perspective, 
working with digital technologies in many countries is a part of current mathe-
matics education and it affects students’ learning possibilities (e.g., Artigue, 2002; 
Trouche et al., 2013). Among other things, it tends to require that students can benefit 
from reflecting upon what that means for their possibilities of working with math-
ematics and thereby support their development of the second type of overview and 
judgement. This can be exemplified by working with the similarities and differences 
between the text in the original source and the visual representations in GeoGebra. 
These visual representations can emerge by using buttons in GeoGebra, e.g., “regular 
polygon,” which relate to the text in the original source as a rather complex figure. 
Such reflections can be seen as a part of the second type of overview and judgement. 

2 The Anthropological Theory of the Didactic 

In the perspective of the Anthropological Theory of the Didactic (ATD), the explicit 
focus is on the institutional condition for teaching. ATD emphasizes four types of 
didactic transpositions between four different types of knowledge: Scholarly knowl-
edge, Knowledge to be taught, Taught knowledge, and Learned/available knowl-
edge. The didactical transposition goes backward and forward between these four 
types of knowledge (Chevallard & Bosch, 2014). One might characterize the KOM-
Project and Euclidean geometry as Scholarly knowledge; however, the way that this 
is interpreted in the framework of the Danish national curricula can be characterized 
as Knowledge to be taught, while teaching materials and the task designs can be 
categorized within the Taught knowledge. Finally, the way students are presented 
with opportunities and are able to work with these can be considered as a type of 
Learned/available knowledge. In this chapter we particularly focus on the type of 
learned/available knowledge related to the second type of overview and judgement. 
Each type of knowledge consists of a praxeology. A praxeology is divided into 
two blocks which are also connected: (1) A praxis block (i.e., a know-how block),
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including the type of task and the technique to solve the task and (2) A theoret-
ical (“logos”) block (i.e., a know-why block), including the technology and theory 
(Chevallard et al., 2015). Regarding the logos block Bosch and Gascón (2014) stated: 

The logos block contains two levels of description and justification of the praxis. The  first  
level is called a “technology,” using here the etymological sense of “discourse” (logos) of  
the technique (technè). The second level is simply called the “theory” and its main function 
is to provide a basis and support of the technological discourse. (p. 68) 

It is possible to follow different didactical transpositions of the use of Euclid’s 
Elements in school mathematics through time (Winsløw, 2012). In the case of using 
digital technologies such as GeoGebra, some of the Euclidean notions and the proofs 
are hidden from students and the propositions in Euclid’s Elements can help to 
reveal these (e.g., Thomsen, 2021). In the view of a praxeology you can say that the 
logos block is hidden in many of the techniques GeoGebra offers, which affects the 
technology related to the praxis block. While one can characterize the propositions 
in Euclid’s Elements as being the theory in the logos block, these are both related to 
the original source and GeoGebra. The theory can also rely on various possibilities 
of technologies, and this depends on which techniques the students use to work on 
the task. The dialectical relationship between the praxis and logos block does not 
automatically fit together (Chevallard et al., 2015). 

With regard to what we present in this chapter, we subscribe to the idea that there 
might be a gap where it is possible for students while using digital technologies 
to know the “praxis” part of a praxeology, yet the “logos” part might not be as 
well developed. Working with the interplay between original sources and digital 
technologies might have the potential to support the dialectical relationship between 
the praxis and logos block. 

3 Hypothesis and Research Goal 

Our hypothesis is that being aware of the second type of overview and judgement 
and trying to embed that perspective in mathematical tasks—e.g., by working with 
the interplay between original mathematical sources and GeoGebra—might be one 
way to support the possibilities to observe and empower the dialectical relationship 
between the praxis and the logos block. To investigate this hypothesis, we use the 
networking strategy called combining and coordinating, which “are mostly used 
for a networked understanding of an empirical phenomenon or a piece of data” 
(Prediger & Bikner-Ahsbabs, 2014, p. 119). This means that the research goal of this 
chapter is both to create and describe a theoretical combination and to investigate 
our hypothesis. Both parts are related to the analysis of the two empirical cases we 
address in this chapter.
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4 Combined and Coordinated Theories 

Besides the didactical transposition and praxeology from ATD and the second type 
of overview and judgement from the KOM framework, we also combine and coor-
dinate approaches, distinctions, and notions from the research fields of history of 
mathematics and digital technologies in mathematics education. 

Within the research domain of history of mathematics in mathematics education, 
Jankvist (2009) distinguished between using history as a tool and as a goal. With 
regard to history as a tool, the focus is on students’ learning of mathematics (in-
issues) and when considering history as a goal, then meta-issues provide the turning 
point and the “focus is on the developmental and evolutionary aspects of mathematics 
as a discipline” (Jankvist, 2009, p. 239). Regarding Jankvist’s (2009) categorization 
Fried et al. (2016) stated: “Thus, reading a source deepens the mathematical under-
standing on both levels, on that of doing mathematics and on that of reflecting about 
mathematics” (p. 218). An emphasis on the second type of overview and judgement 
is aligned with history as a goal and “it is obvious that if overview and judgement 
regarding this development is to have any weight or solidness, it must rest on concrete 
examples from the history of mathematics” (Jankvist, 2013, p. 639). In our empirical 
cases Euclid’s Book IV, Proposition 6 is the concrete example, which is the setting 
for the teaching and learning sessions. 

Within the research field of digital technologies, Artigue (2002) relies on Cheval-
lard’s term praxeologies and stresses the techniques to include the distinction and 
tension between having a pragmatic value (the productive potential) and an epistemic 
value (the supporting understanding potential). Artigue uses the term technology 
related to digital technologies, thereby the technology and theory are combined into 
a single “theoretical” component in the logos block within the former distinction 
(Artigue, 2002). Furthermore, Artigue (2002) uses the term instrumental genesis 
(see also Trouche, 2016; Verillon & Rabardel, 1995) for other interpretations of the 
instrumental genesis) when it comes to using digital technologies. Artigue (2002) 
emphasized: 

For a given individual, the artefact at the outset does not have an instrumental value. 
It becomes an instrument through a process, called instrumental genesis, involving the 
construction of personal schemes or, more generally, the appropriation of social pre-existing 
schemes. (Artigue, 2002, p. 250) 

Here Artigue described personal schemes as the appropriation of social pre-
existing schemes. The construction of personal schemes and the instrumental genesis 
also relies on the discursive environment individuals are offered through their 
participation in different institutional structures. 

Lagrange (2005) emphasized that digital technologies require new techniques and 
that “push button” techniques challenge the traditional paper and pencil techniques. 
The notion of instrumental distance (Haspekian, 2014) takes into account the distance 
between the didactical potential connected to respectively, paper–pencil mathematics 
and to the mathematics a specific digital tool enables one to work with, e.g., between 
the dynamic and static figures in geometry software and paper–pencil geometry, 
respectively:
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It intends to take into account, beyond the “computer transposition” (Balacheff, 1994), the 
set of changes (cultural, epistemological or institutional) introduced by the use of a specific 
tool in mathematics “praxis.” (Haspekian, 2014, p. 247) 

Since this notion also relies on cultural, epistemological, or institutional changes, 
we think it fits well into our foundation of combining and coordinating within this 
presented theoretical line, which mainly relies on ATD. On the one hand, we consider 
that using original mathematical sources as a part of the task allows the cultural, 
epistemological, and institutional perspective of the source to be embedded in the 
task. On the other hand, using digital technologies—in this case GeoGebra—has 
the potential to work with the possible tension between the way one can work with 
the mathematics represented in the source and the way one can work with the same 
mathematics in GeoGebra. This affords potential to create situations where these— 
or perhaps more realistically, fragments of these—can be explicit and thus support 
more empowering institutional connections resulting from praxeological analysis. 
This allows us to analyse both a task and students’ work with it from the perspective 
of an overall praxeology including two praxeologies. One is related to the part of 
the task, which focuses on the original source, and one is related to the use of 
GeoGebra. We investigate whether students’ work with such kinds of tasks sharpens 
their reflections about different ways of working with geometrical reasoning through 
time and thereby support their development of the second type of overview and 
judgement. Furthermore, we wish to determine if this can be seen as a part of a 
bridge building between the praxis and logos blocks. 

5 The Empirical Cases 

In this section, we present two cases in light of ATD and from the perspective of 
both the second type of overview and judgement and from a Euclidean perspective. 
The first case we present stems from a teaching module in the beginning of a 7th 
grade (students aged 12–14 years old) mathematics class in a Danish elementary 
school. The module primarily focused on students’ work with the interplay between 
Euclid’s Book IV, Proposition 6 and GeoGebra. The teacher and students had not 
previously worked with an original source, but they seemed to be quite familiar in 
using GeoGebra. The duration of the entire teaching module consisted of six modules: 
one of 180 min in duration, two of 90 min each, and three of 45 min each. We focus 
on a pair of students who worked with a specific part of a task. 

The second case concerns in-service teachers’ work on a task that also focused 
on the interplay between Euclid’s Book IV, Proposition 6 and GeoGebra. It involves 
three students who participated an asynchronous online course (“Using History in the 
Teaching of Mathematics”) offered in Spring 2021. Fourteen students—all teachers 
at middle school, high school, or university—took the course, 12 of whom were 
pursuing a master’s degree in Curriculum and Instruction, with a major in Mathe-
matics Education. We focus on the experience of three students during a one-week 
module in the course focused on primary sources from Euclid’s Elements (or, rather, 
versions of Euclid’s Elements): one middle school teacher (StA) and one high school
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Fig. 1 An example of an English translation of Euclid’s elements, Book IV, Proposition 6 (Joyce, 
1998) 

teacher (StB), neither of whom had taught or were currently teaching a course on 
Geometry, and another high school teacher (StC), currently teaching Geometry (and 
had approximately eight years’ experience teaching the subject). The three students 
chose to form a group to work on the content for the Euclid module during the course. 
This case also focuses on a task similar to the one in the first case. 

The tasks we focus on in the empirical cases comprise an excerpt of a task 
connected to one aspect of Euclid’s Book IV, Proposition 6 (see the circled excerpt of 
Proposition 6, Fig. 1). In the first case the students worked with Eibe’s (1897) trans-
lation into Danish of Euclid’s Elements. In the second case, students used Joyce’s 
(1998) version of Book IV, Proposition 6 (given in Fig. 2a, b). 

5.1 Analysis of the Empirical Cases 

The analysis is divided into two parts. The first part is related to the mathematical 
content of the tasks. The learned/available knowledge of the tasks concerns working 
with the interplay between this aspect of the proposition and GeoGebra, via a praxeo-
logical analysis. Because of the similarities of the tasks related to the first and second 
case (see Fig.  2a, b), we have chosen to merge both into a single analysis. The second 
part of the analysis is related to examples of students’ responses to the last question in 
the task related to (1) Artigue’s distinctions between epistemic and pragmatic value, 
(2) Lagrange’s notion of “push button” techniques, and (3) Haspekian’s concept of 
instrumental distance. This part of the analysis will be divided into two parts corre-
sponding to each of the cases. Both the first and the second part of the analysis are 
connected to the second type of overview and judgement.
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5.2 Part 1—Tasks from the Perspective of Praxeologies 

The highlighted excerpt and the student tasks/questions are given in Fig. 2a, b.1 

We have chosen to focus on tasks associated with this particular part of the original 
source because it is the phase where Euclid begins the proof of why this is an inscribed 
square in a given circle.

Fig. 2 a Focal tasks for the first empirical case (a reconstruction from Danish into English). The 
text from Euclid’s proposition related to task 1 states: “Then, since BE equals ED, for  E is the center, 
and EA is common and at right angles, therefore the base AB equals the base AD.” The text related 
to task 2 states: “For the same reason each of the straight lines BC and CD also equals each of the 
straight lines AB and AD. Therefore the quadrilateral ABCD is equilateral.” (Joyce’s (1998) English 
translation of Euclid’s elements, Book IV, Proposition 6). b Focal tasks for the second empirical 
case. These excerpts use the same text as given in Fig. 2a from Joyce’s (1998) English translation 
of Euclid’s elements, Book IV, Proposition 6)

1 This way of working with the interplay between an original source and GeoGebra was inspired to 
some extent by Olsen and Thomsen (2017). 
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Task 1 in case 1 and task 4 in case 2 are both related to the excerpt of the text 
in Euclid’s proposition. However, tasks 2 (case 1) and 5 (case 2) are related to the 
use of GeoGebra in slightly different ways. In task 2 the students are asked to use 
GeoGebra to be convinced in another way than the source provides and in task 5 the 
students are asked to use GeoGebra to assist them in being convinced. We address 
this difference in part 2 of the analysis. First, we make a common praxeological 
analysis for the tasks presented in Fig. 2a, b.

If we consider the two tasks as parts of the same task, then we may also consider 
two praxeologies comprising a single praxeology: one which is closely connected 
to the Euclidean proposition and one which is related to investigating and becoming 
convinced by using GeoGebra. Both praxeologies relate to the same mathematical 
content and the same task, which is to be convinced and convince others (inspired 
by e.g., Harel & Sowder, 2007), that the bases AB and AD have the same length. The 
first part of the task is closely related to the original source text. Here, the language, 
notions, and way of building up mathematical arguments are connected to Euclid’s 
proposition. The second part of the task is related to the use of GeoGebra and here 
students can answer the question in multiple ways. Consequently, it depends on 
the way they choose to use GeoGebra. However, it is possible for students to use 
GeoGebra to answer the first part of the task and to also use the original source to 
assist in answering the second part of the task. 

If we focus on the praxis block in the praxeology related to task 1 and 4, the first 
part of the task, where students describe in their own words the mathematics in the 
excerpt of Euclid’s text, the technique is to read, understand, and find words that 
describe the meaning of the text. When we examine the logos block, we might say 
that the technology is related to the mathematical content concerning: (1) radii in a 
circle have equal length from the center to the circumference and (2) two triangles 
with respectively two equal sides and the angles contained between them are equal— 
in this case two right angles—then the bases are equal. If we continue to look at the 
theory part, one might say that it is an expression of deductive reasoning, general 
arguments, and relying on axioms and concepts. This might be considered the static 
geometry of Euclid. 

If we then focus on the praxeology related to task 2 and 5, which requests that 
students use GeoGebra to solve the task, our analysis takes a little different form, 
because here we use Artigue’s (2002) linking of the technology and theory part of 
the logos block into a single combined theoretical block. Furthermore, we divide 
the technique into a part which has epistemic value and a part which has pragmatic 
value—in these cases the “push-button” technique can be seen as a part hereof. 
In these cases, the praxis block includes a type of task that can be formulated as 
convincing oneself and others by using GeoGebra. As well, the technique can be 
an expression of epistemic value if students use GeoGebra in different ways and 
formulate related convincing arguments. The technique can be an expression of 
pragmatic value if students use buttons in GeoGebra without further argumentation, 
thus only relying on the outcome of e.g., the “push-button” technique. The theoretical 
block, the combined logos block, can include various mathematical concepts and 
areas depending on which techniques students decide to use to solve the task. These 
could include given lengths with numbers, the grid, regular polygon, circle tools, etc.
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Here numbers or the grid show the length; the arguments can be based on examples or 
general argumentation and on both static and dynamic geometry. Since GeoGebra is 
based on Euclidean geometry, to some extent we can say that the theoretical part—the 
logos block—is based on Euclidean geometry, even though this might not explicitly 
and visibly rely on axiomatic deductive reasoning. These differences between the 
two praxeologies can be defined as the instrumental distance, which constitute the 
intersection space in the students’ work with the interplay between the original source 
and GeoGebra. 

The aim of asking students to work with the same mathematical statement (i.e., 
the mathematical content) in two different ways was to make it visible for students 
that this is in fact possible. Having a tool like GeoGebra can be seen as a historical 
and cultural development compared with the tools that are the foundation of Euclid’s 
propositions. Emphasizing these differences can also be seen as a way of making it 
visible for students that the way of handling the mathematics and the mathematics 
itself has developed over time. We see this as an example of how the second type 
of overview and judgement can be embedded in tasks and by working through the 
interplay of original sources and GeoGebra. 

5.3 Part 2—Case 1 Analysis 

This analysis focuses on a pair of grade 7 students’ work. First, we present their 
written assignment (Table 1). Second, we show a screen capture from their work 
connected to their work with Euclid’s Book IV, Proposition 6 (Fig. 3). And finally, 
we present a transcribed excerpt from their dialogue connected to their work with 
this proposition.

Table 1 An example of a group’s work (translation to English from their written answers in Danish) 

The questions in the task The students’ written 
answer 

The students’ supporting illustration 

Try with your own words to 
describe what Euclid is 
writing 

That BE + ED is the same 
line 

They have the same 
length—On a square all 
sides are the same length 

Can you be convinced 
about and convince others 
that base AB is equal to 
base AD in another way in 
GeoGebra? 

“by eye”—“by thumb”
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Fig. 3 Group 1’s GeoGebra screen capture (an excerpt) 

The following transcribed excerpt is from the dialogue between the students at 
the beginning of their work with task 2 (Fig. 3b, the screen capture):

S1: (Reading the task aloud) For the same reason each of the straight lines BC 
and CD also equals each of the straight lines AB and AD. Therefore, the 
quadrilateral ABCD is equilateral. 

S2: (Summarizes) Ok, they are all equal length. That is cheating a little because 
now I have (points at each of the sides of the square, which has a number 
for the length attached to each side). 

Both: (They laugh and say together, while they point of each side) this is 6 cm, 
this is 6 cm, this is 6 cm, and this is 6 cm. 

S1: And therefore, this is an equilateral square. 
S2: (Refers to the written length in GeoGebra) What if it did not say so? 
S1: Then it will still be equilateral, you can see that. 

The students continued their investigation in GeoGebra, e.g., trying to draw an 
equilateral quadrilateral, without a grid. This work in GeoGebra seems to be based 
on a discussion of how they can use their hands to show the angle of 90°. Here they 
talk about the space between their thumb and the rest of the fingers while stretching 
the thumb as far out as possible from the rest of the fingers. They ended up writing 
as an answer to task 2: “by eye”—“by thumb.” On the one hand this might indicate 
that they were not able to make a mathematical argumentation by working with the 
interplay between this statement of Book IV, Proposition 6, and GeoGebra. Instead, 
they lean on the visualization GeoGebra offers and their own judgement by assessing 
it from their immediate look at it. On the other hand, it indicates that they are aware 
of the fact that the angles in a square are 90 degrees and that they have to build their 
mathematical argument thereon.
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We consider when it becomes clear to students that they actually just get the answer 
from using GeoGebra as an example of what Lagrange (2005) called “push button” 
techniques. In some way the embedded second type of overview and judgement in 
the tasks confront the students with the fact that there is an instrumental distance 
here between the way the proof is built in the original source and what GeoGebra 
offered. A sign of this is when S1 stated “that it is cheating a little” and referred to 
the value of the length attached to each side as given in GeoGebra. S2 seemed to 
completely agree with this statement. This, combined with their laughing and way of 
pointing at each side while stating the length of it, can be analysed as their acquired 
awareness, which is related to the second type of overview and judgement. If we look 
at it from the perspective of Artigue’s notions of epistemic and pragmatic values, it 
would have actually been easy for students if they had just accepted the result because 
this provided a fulfilling answer. They could have stated that they were convinced by 
GeoGebra. In this way, GeoGebra could be characterized as having a pragmatic value 
on the students’ “push button” technique to solve the task. However, the students do 
not seem to be completely satisfied with the answer, because it might seem like S2 
prompted them to continue their investigation by asking, “What if it (the outcome 
in GeoGebra of the length of the side of the square) did not say so?” Therefore, we 
cannot deduce, though we can assume, that the students acquired an awareness of 
the instrumental distance between the way they worked with this task connected to 
the original source and then in GeoGebra. We also see this as a sign of having the 
second type of overview and judgement embedded in an explicit way in the tasks, 
while working with the interplay between original sources and GeoGebra, because 
it points out that the students can be convinced in another way by using GeoGebra 
rather than only through the original source. 

5.4 Part 2—Case 2 Analysis 

In this case students were asked to explain in their own words what Euclid meant by 
his text, and they were also asked to explain how GeoGebra supported them in being 
convinced about that base AB is equal to base AD. In these tasks the second type of 
overview and judgement are embedded in a more hidden way, because the students 
were asked to use GeoGebra in a supportive manner connected to the original source. 

The students’ approach to task 4 (Fig. 2b) reflected their recent experience and 
familiarity with geometric ideas. In particular, StA2 and StB, who had not previously 
taught geometry, explained the first part of Euclid’s proof as: 

StA: He is explaining how we know the side lengths of the square are all equal. 
By describing what we know about the construction, that is the evidence that 
they are equal and therefore a square.

2 For the second empirical case we use StA, StB, and StC to designate Student A, B, and C, 
respectively. 
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StB: I think Euclid was proving why triangle AEB is congruent to AED. He outlined 
that since line segments BE and DE are congruent (since E is the center of 
the circle and bisects the diameter), AE is reflexive (shared between the two 
triangles), and the angle between those two line segments is a right angle, the 
two triangles are congruent (as we teach now: SAS congruency). Therefore, 
the remaining sides, AB and AD, are also congruent. 

Whereas StB taught advanced courses in her high school and likely was more familiar 
with reasoning through mathematical arguments (as evidenced by her outline of the 
argument that Euclid made), StA provided more of a summary of what Euclid’s 
argument entailed (the fact that all four sides of the quadrilateral were equal in length). 
However, as a high school geometry teacher, StC gave an explanation similar to StB: 

StC: Since E is the center of the circle and also the midpoint of each diameter, 
segments BE and ED are congruent. In addition, we know that angles BEA 
and DEA are right angles due to the perpendicular diameters and we know AE 
is congruent to AE due to the reflexive property. Knowing these conditions, 
we can determine triangles BAE and DAE are congruent using either the 
side-angle-side postulate or the leg-leg theorem. From here, we can use the 
concept of corresponding parts of congruent triangles are congruent (CPCTC) 
and deduce that segments AB and AD are congruent. 

StC’s proof technique is similar to that which she would expect of her own students. 
However, unlike StB’s response, which was situated to “describe what Euclid means” 
(as given in the task), StC set out to provide the details to prove base AB equals the 
base AD. 

Interestingly, when the students were asked to discuss whether they were 
convinced that bases AB and AD are equal and in what way GeoGebra assisted 
in convincing them, only StB and StC recognized that GeoGebra provided a tool 
to confirm the argument they had just made in task 4. Although she stated she 
was convinced, StA was unable to provide a valid argument for the congruence 
of segments AB and AD. 

StA: Yes, because the base AB and AD are both constructed from lines that are of 
equal length and extending from the same center point at the same angle. 

StB: Based on Euclid’s proposition and GeoGebra, I am convinced that AB and AD 
are congruent. I can visually see that the line segments are of equal lengths, 
but I also understand based on triangle congruency why that must work. 
GeoGebra was extremely helpful in confirming this because I was able to see 
the exact measurements of each line segment I constructed. 

StC: I am convinced that base AB equals base AD, mainly due to my experience in 
geometry. In addition, GeoGebra shows me the segment measurements for 
as many constructions as I can make and visually proves the segments are 
congruent.
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Fig. 4 StB’s GeoGebra 
figure to accompany task 5 

Even though StA, StB, and StC completed the module tasks as a group (in both 
asynchronous and real-time sessions), GeoGebra held a different role for their sense-
making while working the original source. For StA, GeoGebra served only as a 
measurement tool and not as a sense-making tool. Consequently, in this way we 
can consider the pragmatic value that GeoGebra possesses in terms of students’ 
ability to employ “push button” techniques to perform the given task. StB found that 
GeoGebra provided her with confirmation of the results as well as relationships (e.g., 
equal lengths (results) and congruence) that the proof provided, thus we recognize 
that GeoGebra held more epistemic value for her. As well, StB was the only one of 
the three who provided her GeoGebra sketch to accompany her responses (Fig. 4). 

Finally, StC had similar views to StB. However, in a follow up asynchronous 
discussion, she stated that she was “not a super fan [of GeoGebra], but it’ll do.” She 
also noted that “it can show the relationships I would typically show students.” In 
this way, by using the verb “show,” StC positions her view of GeoGebra as more of 
a demonstration tool, as opposed to a powerful sense-making tool and this serves 
as a similar example to what we detected in the first case; that is, StC’s “showing” 
results or relationships as a type of “push button” technique. Furthermore, as the only 
Geometry teacher in the group, she was convinced “mainly due to [her] experience 
in geometry.” This could be attributed to her intuition, her experience with similar 
numerical and conceptual arguments, or something else entirely. With regard to task 5 
then, GeoGebra took a secondary role in her being convinced. However, it seemed to 
be common for the students that they—while working with the tasks—reflected upon 
the differences between the techniques associated with respectively (1) the original 
source, (2) their prior knowledge of geometry, and (3) their use of GeoGebra. Thus,
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we can assert that they also, to some degree, reflected in a manner related to the 
second type of overview and judgement. 

6 Discussion and Conclusion 

In both cases, students incorporated their prior knowledge of geometry in their work 
with the presented tasks. In the light of Artigue’s (2002) description of how an artifact 
becomes an instrument and has an instrumental value to a given individual, we might 
say that both the original source and GeoGebra can be seen as artifacts placed in a 
context of a mathematical task, which the students draw upon their “appropriation of 
social pre-existing schemes” (Artigue, 2002, p. 250). At the same time, students’ work 
with these tasks seem to influence their awareness of the different ways of working 
with a mathematical context related to different artifacts and therefore represent a 
“new part” of their “appropriation of social pre-existing schemes.” In the two cases it 
seemed that students explicitly attended to tasks with an awareness of the historical 
development of mathematics seen from the inside (e.g., using the words and tools 
provided via the text of Euclid’s proposition) and this awareness is different when 
considering other tools along with Euclid’s text (e.g., the various tools and modes 
provided in GeoGebra). When examining the cases in light of ATD and the combined 
theoretical perspective we have presented and used to analyse them, we assert that 
this difference in the way one is able to work with the mathematics is a result of 
human activity, both in Euclid’s proposition and in the construction of, for example, 
the “buttons” in GeoGebra and which can also be seen as a change from socio-cultural 
perspectives. 

Our hypothesis was that working with the interplay between original sources 
and GeoGebra, by focusing on the second type of overview and judgement, might 
support an empowering of the dialectical relation between the praxis and logos block 
in a praxeology. Although we cannot definitively conclude this from the two cases 
presented, we do claim that subtle hints of this exist. In the first case, we witness 
students doubting if it is appropriate to just take the result of the “measurement 
button.” We take students’ laughing about how easy it seemed to solve the task 
in GeoGebra and their continued investigation as a sign of their awareness of the 
possible gap between the praxis block and logos block and as a sign that they wanted 
to use techniques in GeoGebra which have a more epistemic value. In other words: 
As a result of their awareness of their use of “push button” techniques and the 
“instrumental distance,” they show signs of an empowered relation between the 
praxis block and the logos block, even though they did not find a really convincing 
mathematical argument, it continued to be based somewhat on their intuition related 
to the visualization GeoGebra offered. 

In the second case, Students B and C reflected on how GeoGebra supported the 
mathematical proof in the original source and both refer to GeoGebra as a supporting 
tool because of the visualization and the measurement tool it offers. Student B saw 
GeoGebra as a tool which supported an alternative between an empirical example
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and the more general proof. In this sense it seemed like the interplay between an 
original source and GeoGebra supported an empowering of the relation between the 
praxis block and the logos block. Student C had a more critical stance regarding 
the use of GeoGebra, in which she appeared to rely on a previous critical attitude 
toward GeoGebra and it remained unchanged, for example, as a more critical and 
reflective approach to the work with GeoGebra throughout the module. Even though 
we assumed that embedding the second type of overview and judgement in the task, 
by focusing their work on the interplay between original sources, has the potential 
for empowering the relation between the praxis block and the logos block, it did not 
seem to just happen when students worked with these tasks. As a result, we conclude 
that the role of the teacher or the instructor seems to be important, and it is one of 
the reasons why we believe it is important to work with tasks like those presented in 
this chapter in both pre-service and in-service teacher education programs. 

We have used the networking strategy called combining and coordination 
(Prediger & Bikner-Ahsbabs, 2014) of the included theories to analyse two particular 
cases. This combination of theories can also be used to analyse other cases, which 
concern working with the interplay between the history of mathematics—including 
original sources—and digital technologies. In one way, students are supported in 
being aware of the instrumental distance and when they use “push button” tech-
niques while working with geometry in GeoGebra. This is in contrast to the way 
content is presented in the original source, which can be seen as a way of supporting 
students in developing the second type of overview and judgement. Furthermore, this 
can give them a view of whether the technique they use to solve a task has a pragmatic 
or an epistemic value. In our cases we did not explicitly use these distinctions and 
notions; this is one of the reasons we focused on when the second type of overview 
and judgement is embedded in the tasks. 

We have chosen to consider some aspects of the KOM framework as a praxe-
ology. Related to these cases, the praxis block consists of a task related to Euclidean 
geometry. In these cases, the technique is related to students’ use of their reasoning 
competency, but we have not expounded on this part because our focus is on the 
second type of overview and judgement. In terms of a praxeology, we see that as an 
aspect of technology. Finally, we see these three levels as they are described in the 
KOM framework as included in supporting the development of students’ mathemat-
ical mastery. In terms of a praxeology, this can be seen as the theory level and thus, 
connecting the different elements in the KOM framework can be seen as a didac-
tical theory within the ATD framework. We have added Jankvist’s (2009) distinction 
between using history as a goal and as a tool. To some extent this distinction makes 
visible, or rather, supports the assertion that we base this chapter on the second type 
of overview and judgement and have it in mind as a goal itself. Based upon the 
distinction between epistemic and pragmatic value (Artigue, 2002), the notions of 
“push-button” technique (Lagrange, 2005) and of instrumental distance (Haspekian, 
2014) rely on and stress the notions of a praxeology. We also find that this theoretical 
combination has the potential to be developed into the networking strategies called 
synthesizing, in which one puts “together a small number of theoretical approaches 
into a new framework” (Prediger & Bikner-Ahsbabs, 2014, p. 120). Furthermore,
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this framework is based on theories, theoretical distinctions, and notions within the 
overarching field of research in mathematics education, the research field of digital 
technologies, and the research field of history of mathematics. 
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Facilitating Teachers’ Reflections 
on the Nature of Mathematics Through 
an Online Community 

Maria Kirstine Østergaard and Dandan Sun 

1 Introduction 

One of the key aspects used to capture mathematical mastery in the so-called KOM-
project “Competencies and Mathematical Learning” (Niss & Højgaard, 2011, 20191 ) 
is the overview and judgment connected to the nature of mathematics as a discipline. 
So part of a mathematics teacher’s job is to develop students’ understanding of 
the characteristic features of mathematics. This clearly requires that mathematics 
teachers themselves have a deep insight into specific traits of mathematical thought 
processes and activities (Niss & Højgaard, 2011). Then the question of how this 
insight should be acquired and developed during teacher training becomes important. 
This chapter addresses this issue. Specifically, digital technology is used as a key 
element to achieve this goal. The internet has changed the way we communicate 
with each other, and has furthermore considerably changed the way we relate to 
each other (Borba et al., 2016). Sharing knowledge and experience with others, 
which constitutes an essential part of effective professional learning, can take place 
not only face-to-face but also in online communities, allowing teachers to engage 
with each other in a convenient and flexible way. Recent studies of online teacher

1 The report on the project was first published in Danish in 2002. Although the framework was 
recently revised in Niss and Højgaard (2019), here we refer to the 2011 edition because of the 
significantly more thorough description of mathematical overview and judgment. 
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communities find that the supportive quality of online communities can effectively 
stimulate reflections on the professional practice by confronting teachers with new 
perspectives (e.g., Lantz-Andersson et al., 2018; Unwin,  2015). 

In this chapter, we investigate how such an online community can facilitate 
teachers’ reflections on the nature of mathematics as a discipline in a way that 
strengthens and connects their knowledge and beliefs. In a qualitative case study 
involving a Chinese teacher participating in a formally organized online community, 
we thus seek to address the following research question: 

When aiming to develop teachers’ overview and judgment concerning the nature 
of mathematics, how can an online community provide opportunities for gaining 
experience with and reflecting on mathematics as a discipline? 

For this purpose, we combine the notion of overview and judgment with theo-
retical constructs connected to beliefs. We investigate the case of a teacher who 
is part of a larger in-service online teacher education program and engages in 
online discussions about the nature of mathematics (specifically about mathematical 
proof). Applying theories about mathematics-related beliefs to help us understand 
the teacher’s overview and judgment thus provides us with a framework for analysis, 
both in regard to an assessment of the character of the teacher’s views on the nature of 
mathematics and a possible development in his overview and judgment concerning 
this aspect. 

The case explores in depth the development of the teacher’s overview and judg-
ment concerning the nature of mathematics in the digital environment. The first part 
of the chapter explains the notion of mathematical overview and judgment and its 
connection to both beliefs and knowledge. It is followed by a thorough description of 
the methodology, including the organization of the online teacher education program 
and the data collection. Subsequently, we present and analyze the case, leading to a 
discussion of the potentials of an online community for the professional development 
of teachers’ overview and judgment. 

2 Mathematical Overview and Judgment 

Since 2002, when the first Danish edition of the KOM framework (Niss & Højgaard, 
2002) was published, the competency framework it presents has had a significant 
impact on the Danish mathematics program on all educational levels, including 
teacher education. The report describes mathematical competence as relying on two 
pillars: eight action-oriented competencies (which are not to be confused with the 
overall concept of mathematical competence), and three forms of overview and judg-
ment. While the competencies enable an individual to act appropriately in mathemat-
ical situations, overview and judgment provide the knowledge and views (or beliefs) 
about mathematics as a discipline that are necessary to make meaningful and appro-
priate choices by relating mathematics to nature, society, and culture. Thus, both 
aspects are required to master mathematics: Overview and judgment concerning
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mathematics as a discipline alone do not make a person mathematically competent; 
one must also be able to act in mathematical situations. Conversely, these actions 
draw on overall knowledge and ideas about mathematics as a discipline, although 
the purpose of mathematical overview and judgment exceeds a qualification of the 
ability to act: 

Having an overview and being able to exercise judgment are of significant importance for 
the creation of a balanced picture of mathematics, even though this is not behavioral in any 
simplistic way. The point is that the object of this judgment is mathematics as a whole and 
not specific mathematical situations or problems. (Niss & Højgaard, 2011, p. 74) 

Niss and Højgaard (2019) identify mathematical overview and judgment as “insights 
into essential features of mathematics as a discipline”. The three forms of overview 
and judgment (OJ) concern: 

OJ1. The actual application of mathematics within other disciplines and fields of 
practice. 

OJ2. The historical development of mathematics, seen from internal as well as 
from socio-cultural perspectives. 

OJ3. The nature of mathematics as a discipline. 

Our focus in this chapter is on OJ3; therefore, we will mainly elaborate on the 
character of this, and leave it to the reader to study the first two in depth. 

Niss and Højgaard exemplify OJ3 with questions connected to the nature of 
mathematics (Niss & Højgaard, 2011, p. 77):

• “What is characteristic of mathematical problem formulation, thought, and 
methods?”

• “What types of results are produced and what are they used for?”
• “What science philosophical status does its concepts and results have?”
• “How is mathematics constructed?”
• “What is its connection to other disciplines?”
• “In what ways does it distinguish itself scientifically from other disciplines?”
• Etc. 

Paying attention to teachers’ overview and judgment concerning questions of 
this kind is an important part of teachers’ professional development. In order to 
develop students’ OJ3, teachers themselves should have insight into the characteristic 
features of mathematics. Moreover, teachers’ OJ3 to some extent reflects what Ernest 
(1989) identifies as teachers’ philosophy of mathematics, which has a huge influence 
on teachers’ teaching in the classroom. To be more specific, teachers’ OJ3 may 
embody their position with regard to three views: a problem-solving view, which 
characterizes mathematics as “a dynamic, continually expanding field of human 
creation and invention”; a Platonist view, which characterizes mathematics as “a 
static but unified body of knowledge”; and an instrumentalist view, according to 
which mathematics is perceived as “a set of unrelated but utilitarian rules and facts”
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(Ernest, 1989, p. 249). Hence, when reflecting upon the questions connected to OJ3, 
the teacher in the case described in this chapter may to some extent modify his 
position with regard to these three views. 

The case can be connected to many of these questions, as it describes a teacher’s 
reactions to, thoughts about, and reflections on mathematical proof. Proof is regarded 
as central to the discipline of mathematics and the practice of mathematicians, an 
essential component of doing, communicating, and recording mathematics (Schoen-
feld, 1994). It can be related to the nature of mathematics in many ways. Proof 
may be considered as a method and as a way of thinking and building mathemat-
ical arguments. In this sense, teachers’ overview of proof is closely related to the 
characteristics of mathematical thought and methods as well as the construction of 
mathematics, i.e., the first and forth questions listed above. It may also be considered 
as a form of result, which is closely linked to the second question. Furthermore, the 
teacher in the case discusses more philosophically related issues about for example 
the validity and limitation of proofs—issues that relate to the third question in the 
list. 

Niss and Højgaard (2011) emphasize the importance of making the characteristics 
of mathematics as a discipline a separate and independent subject of interest and 
consideration if a conscious and critical insight into these characteristics is to be 
developed. Hence, when seeking to develop in-service teachers’ OJ3, it is necessary 
to consider how we can promote such interest in and consideration of the nature of 
mathematics through an online community. And since OJ is based on both knowledge 
and beliefs about mathematics, such considerations must include how this promotion 
might contribute to a change or a modification of both of these aspects and their 
interrelationship. We first turn our attention toward the concept of beliefs in order to 
understand how they might be changed. 

3 Beliefs About Mathematics 

As Furinghetti and Pehkonen (2002) pointed out, the concept of beliefs is defined in 
many—and sometimes even contradictory—ways in the field of mathematics educa-
tion. Furthermore, related terms are often used as synonyms to beliefs, which can 
make it rather complicated to navigate in the affective field of educational research. 
McLeod’s (1994) categorization of affect can be useful, as it divides affective factors 
into three dimensions: beliefs, attitudes, and emotions. This categorization is repeated 
by Philipp (2007), who defines beliefs as “lenses through which one looks when 
interpreting the world” (p. 258), and elaborates: 

(…) psychologically held understandings, premises, or propositions about the world that 
are thought to be true. Beliefs are more cognitive, are felt less intensely, and are harder to 
change than attitudes. Beliefs might be thought of as lenses that affect one’s view of some 
aspect of the world or as dispositions toward action. Beliefs, unlike knowledge, may be held 
with various degree of conviction and are not consensual. Beliefs are more cognitive than 
emotions and attitudes. (Philipp, 2007, p. 259)
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According to Green (1971), beliefs are always arranged in belief systems and 
related in a quasi-logical structure. This means that relations between beliefs do not 
necessarily follow an objective logic but follow the individual’s subjective under-
standing of logical relations. However, due to the quasi-logical structure, these rela-
tions are not stable, and they may change. But not only the relations between beliefs 
are changeable. As stated in the citation above, beliefs themselves can be changed, 
although it might be difficult. The stability of beliefs is connected to their psycholog-
ical importance to the person holding them, making central beliefs harder to change 
than more peripheral beliefs. 

Another influential factor when it comes to changing beliefs is the way in which 
the beliefs are held (Green, 1971).Evidentially held beliefs are supported by evidence 
(e.g., experience) that can be verified, whereas non-evidentially held beliefs are not, 
even though some other beliefs may be given as reasons for them. When beliefs are 
evidentially held, they can be changed with reason or further evidence. In contrast, 
non-evidentially held beliefs are not as likely to be changed or modified by presenting 
new evidence or reasonable arguments. Green (1971, p. 48) exemplifies a non-
evidentially held belief with the attitude: “Don’t bother me with facts; I have made 
up my mind”. 

Regardless of the evidentiality of a person’s beliefs, they can be both difficult 
and time consuming to change, depending on their centrality. Changing a belief is 
not easy because it will not only affect the belief in question, but also the belief(s) 
which it supports, and then the entire structure of a belief system might be in danger. 
However, because an evidentially held belief is based on evidence, so are its related 
and derived beliefs, and thereby the new evidence will be adaptable to these too. 
And if a change in beliefs is to last, it is essential that the experiences or reasons on 
which the beliefs are built become objects of reflection. It is in the reflection that 
relations between beliefs are established, considered, and assessed (Green, 1971). 
Thus, when aiming to change someone’s beliefs, one must not only provide access to 
new information and opportunities for gaining new experience, but also make room 
for reflections upon these. Such considerations of course also apply when seeking 
a development in a person’s OJ, since beliefs play an important part here. Niss and 
Højgaard also emphasize the importance of making the mathematical perspectives 
that are included in the three forms of OJ “the object of explicit treatment, reflection, 
and articulation” (Niss & Højgaard, 2011, pp. 74–75). 

In the words of Dewey, reflection—or reflective thinking—can be defined as 
an “active, persistent and careful consideration of any belief or supposed form of 
knowledge in the light of the grounds that support it, and further conclusions to 
which it leads” (Dewey, 1933, p. 118). For a belief to be an object of reflection thus 
presupposes that it is in fact a conscious belief. However, many of our beliefs are held 
at an unconscious (or implicit) level and have never been articulated (Furinghetti, 
1996). If we are not asked about our beliefs or presented with information that is 
related to them, we do not necessarily think about them or become aware of them 
(Lester, 2002). A way for unconscious beliefs to become conscious can be to be 
given the opportunity to articulate them, thus “awakening” the beliefs by external 
motivation (Furinghetti, 1996). In the case presented later in this chapter, one of
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the goals for the online community is to provide such opportunities for the teacher, 
thereby facilitating reflections that can lead to a development in his OJ3. In addition, 
reflections on the nature of mathematics may also stimulate the teacher to modify 
his position somewhat with regard to the abovementioned three views connected to 
the philosophy of mathematics (Ernest, 1989). 

As seen above in the quote by Dewey, reflection is not only connected to beliefs, 
but also to (supposed) knowledge, which furthermore constitutes an essential part of 
mathematical OJ. In the next section, we focus on how these concepts are related. 

4 The Relationship Between OJ, Beliefs, and Knowledge 

As mentioned, Niss and Højgaard (2011) describe mathematical OJ as being based 
on knowledge as well as beliefs about mathematics as a discipline. Thus, when 
seeking to develop teachers’ OJ, both aspects must be considered. The relationship 
between knowledge and beliefs is, however, a long-standing topic of discussion. 
The factor of truth plays an essential role: “knowledge is valid with a probability of 
100%, whereas the corresponding probability for belief is usually less than 100%”. 
(Furinghetti & Pehkonen, 2002, p. 43). In other words, a belief that is actually true 
but based on guessing or assumptions can never be classified as knowledge. Still, a 
person or a group of people can consider a belief to be true—and thus as knowledge— 
until it is proven wrong, which again complicates the distinction between beliefs 
and knowledge. As Green (1971) notes, a belief can only be(come) knowledge if 
it is based on evidence. However, when considering knowledge and beliefs, some 
researchers suggest a perspective that pays attention to how teachers view a statement 
instead of whether the statement is ontologically true (Philipp, 2007). 

Although certainly not the same, beliefs and knowledge are closely linked 
(Thompson, 1992). Furinghetti and Pehkonen (2002) distinguish between “objec-
tive (official) knowledge that is accepted by a community and subjective (personal) 
knowledge that is not necessarily subject to an outsider’s evaluation” (p. 43), and 
further argue that beliefs could be considered as subjective knowledge. Differenti-
ating between knowledge and beliefs based on whether one can respect disagreeing 
positions, Philipp (2007) argues that one person’s belief may be another person’s 
knowledge. Jankvist (2015) states that “to decide whether a given answer or state-
ment is a belief, or if it is in fact knowledge, is quite difficult, sometimes probably 
impossible” (p. 53). In terms of developing OJ, it may be productive to regard knowl-
edge as evidence based on which beliefs may be held. Knowledge then not only 
constitutes an essential part of a person’s OJ, but also functions both as evidence 
and as a basis for reflections on beliefs, making knowledge an important founda-
tion in developing evidentially held beliefs. In the following sections, we present an 
example of how such a development can be facilitated through an online community 
for Chinese teachers.
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5 Method  

5.1 Context and Setting 

The research in this chapter was part of a larger in-service teacher education program 
in which teachers’ beliefs about mathematics and mathematics teaching were chal-
lenged mainly by the history of mathematics, and in an online environment (Sun, 
2021). The one-year program was divided into two parts: the first half focused on 
studying materials, and the second half focused on practicing in the classroom. All 
the activities revolved around nine topics, such as the sum of angles in a triangle, irra-
tional numbers, and functions. Although the history of mathematics definitely played 
an important role in changing the teachers’ beliefs, the research in this chapter focuses 
on the other noteworthy independent variable of the project, namely technology. And 
even though various factors may have influenced the professional development of 
the teachers during the program, especially their overview and judgment concerning 
the historical development of mathematics, i.e., OJ2, we here focus on their devel-
opment of OJ3, thus illustrating the potential for developing OJ3 through an online 
community. Hence, in the case described below, the topic communicated through 
the online environment was chosen specifically to challenge the teachers’ views on 
the nature of mathematics. 

A mini-app (a sub-app embedded in the most popular Chinese multi-functional 
media app WeChat) was designed for sharing historical passages related to different 
mathematical topics with 63 voluntary lower secondary school teachers from 14 
provinces in China. With this mini-app, the teachers could conveniently read mate-
rials chosen by a researcher in mathematics education (the second author of this 
chapter). The purpose of these materials was to offer the teachers new knowledge 
or make them aware of knowledge that they already possessed, perhaps adding new 
perspectives or placing their knowledge in new contexts. 

Another important role of the mini-app was to provide the teachers with the 
possibility to express their views and thus articulate their beliefs, making these 
more conscious. In this way, the shared materials, as well as the following thought-
provoking questions, were to function as the external motivation that “awakened” 
possible unconsciously held beliefs, and provided the knowledge (or evidence) on 
which they could be based. In the mini-app, teachers could leave a comment after 
the passages they read, and write down what came into their mind after reading, 
including ideas and doubts. More importantly, the mini-app enabled the teachers to 
have discussions with other teachers and made them aware of views that differed from 
their own, which helped them reflect on their beliefs. In a way, the technology—in 
this case the mini-app—made various opinions more easily available to the teachers 
than what would have been possible in real life. 

In addition to the mini-app, another important element of the online environment 
was online seminars. These seminars took place in the first half year after the teachers 
had finished reading the materials about a specific topic, usually every other week. 
Although it might have been possible to find a similar group of teachers interested
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in the same topic to have a discussion without digital technology, it would definitely 
have been more challenging. It is both time and energy consuming for teachers to 
gather, even if they live in the same city. In a real-life setting, the biweekly seminars 
would thus have been almost impossible to organize. With the help of technology, 
the teachers could access the meetings just by clicking on a link, and then they could 
listen to and have discussions with others. Furthermore, the comments in the mini-
app gave the teachers more time to reflect. They could pause anytime to think more 
about an interesting comment, they could come back later and read it again, and 
they could even discover what other teachers thought about the matter—all of which 
improved the conditions for reflection. 

In the case described in this chapter, six short passages related to the topic “the 
sum of angles in a triangle” were sent to the participating teachers via the online mini-
app, usually one passage every other day, in order to challenge their OJ3, especially 
concerning mathematical proof. Most of the passages were related to the history 
of “the sum of angles in a triangle”, including thoughts about the way it was discov-
ered, and different ways to argue or prove that the sum of angles in a triangle is 180°. 
They were chosen from historical books and papers, but reformulated by the second 
author in order to make them more accessible to the participating teachers. The time 
spent on the mini-app varied among the teachers. It is estimated that more than half 
of the teachers spent at least half an hour reading and commenting on this particular 
topic in the mini-app. 

To instigate the teachers’ reflection on the nature of mathematics and to establish 
a common ground for discussion, the teachers were presented with several thought-
provoking questions at the end of some of the passages, for example: “Is this a proof? 
Why or why not?”; “What kind of argument is convincing in mathematics?”; “Why do 
we prove?”; “What is the role of proof?”; and “Is a proposition being proved always 
true?”. We have previously argued that these questions and considerations about 
mathematical proof can be connected to OJ3. Furthermore, most of the questions 
were intended to both uncover and challenge the teachers’ beliefs about proof. Also, 
when teachers argue why they hold a certain belief, knowledge is very likely to be 
involved. 

Subsequently, the teachers were invited to a joint online meeting with the atten-
dance of the second author of this chapter, who was managing the project. Here, 
teachers could have real-time communication to help deepen their reflections. 

5.2 Data Sources and Analysis 

Various kinds of data were collected during the discussion, including comments and 
discussions in the mini-app and a video recording of the online meeting. The data 
thus indicate if and how the online community might facilitate the reflections that 
are needed to change beliefs as well as the possible changes in their OJ3. To reveal 
more possible reflections hidden in the visible conversation, we selected one teacher 
who participated in both the written and the oral dialogues as an example of the
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potential of this form of online community in relation to developing teachers’ OJ3. 
The sampling here was information-oriented (Flyvbjerg, 2006), i.e., the case could 
provide a great deal of information to answer the research question. 

A short interview with the teacher was conducted and recorded. Here, he was 
asked to elaborate on excerpts of the discussions and to give his overall opinion on 
the opportunity to see different opinions and communicate with other teachers and 
researchers in relation to fostering and supporting reflection. 

We analyzed the data by applying the theoretical concepts described above. Signs 
of beliefs, knowledge, and reflection were identified and characterized in regard to 
their interrelations as well as centrality, evidentiality, and status of consciousness. In 
addition, we reviewed how digital technology might have facilitated and contributed 
to the teacher’s awakening and articulation of his beliefs, his access to and use of 
knowledge, and his opportunity for reflection, i.e., his OJ. 

6 The Case of Teacher Li 

This case illustrates how a teacher (Li) reflected on an issue connected to the char-
acteristics of mathematical problem formulation, thought, and methods. In the mini-
app, the teachers were asked to give their view on the role of proof in mathematics. 
This led to a comprehensive exchange of opinions among the teachers. First, Li 
described his perception of the role of proof in mathematics and in teaching: 

Li: It [proof] lays a foundation for mathematical research. It is also helpful in 
exercising logical thinking, and it affects language expression, way of thinking 
and work style. 

Another teacher, Zhao, then asked him to elaborate on his comment, which 
encouraged Li to articulate his beliefs, making them more conscious or detailed: 

Zhao: What do you mean when you say that proof can influence work style? 
Li: When deductive proof becomes a kind of mathematical competency for 

someone, he or she will deal with problems in a strict and standardized way, 
with reasonable evidence, and step by step.... This means proof affects the 
style of doing things. 

However, contributions from other teachers, e.g., Sung, made Li consider his 
understanding of the matter, which he stated later in another comment: 

Li: Sung mentioned […] that new conclusions can be found by proof, which is 
different from my previous understanding of proof. I used to think that proof 
was only carried out within a fixed range, but now it seems that proof can also 
be used to find new conclusions outside the range. 

The “fixed range” here means the range composed by the proposition we already 
know; that is to say, teacher Li used to think that we can only prove a known propo-
sition with another known proposition. His statement indicates that his belief about
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proof only being “carried out within a fixed range” was held unconsciously. It seems 
that he had not thought about the matter before and did not become aware of this 
belief until Sung brought it up. Inspired by Sung, Li noticed his unconscious beliefs 
and reflected more on them, including trying to find evidence. Not only did this 
input cause Li to rethink his own perception, but he even chose to articulate and 
share his reflections with the others—a gesture which again might have encouraged 
others to express their thoughts and doubts. From Ernest’s (1989) perspective of the 
philosophy of mathematics, teacher Li seemed to modify his view on the structure 
of mathematics from regarding mathematics as a more static but logic structure to 
regarding it as a continually expanding field. Thereby, it could be said that Li took a 
small step from a more Platonist view to a problem-solving view, or at least that the 
consistency with the problem-solving view increased in relation to this part of his 
OJ3. 

The discussion continued at the real-time online meeting. Afterwards, Li made a 
new comment in the mini-app, this time also considering teaching perspectives: 

Li: I used to think that deductive reasoning is not conducive to cultivating students’ 
innovation and discovering new conclusions. After listening to other teachers’ 
ideas, I found that proof is an important way to discover unknown conclusions. 

The new belief that “proof can be used to discover” thus seemed to have become 
more central to Li in his belief system concerning teaching. He used to think that 
proof “cannot be used to discover” and it “is not conducive to cultivating students’ 
innovation”, which means that Li’s belief about the role of proof itself was closely 
related to his belief about the role of proof in mathematics teaching and learning. 
Hence, Li reflected on the role of proof not only in a mathematical context, but also 
in relation to how his modified understanding of the role of proof might affect his 
teaching. It was not only in a mathematical sense that he changed his views on the role 
of proof, but he also considered what part it might play in developing his students’ 
mathematical understanding, hence putting the role of proof in a didactical context. 

Li indicated in the interview that he continued his reflection on the matter, 
connecting it to his mathematical knowledge and thus basing his changed beliefs 
on evidence: 

Li: I’m thinking that it makes sense, because if you look through Euclid’sElements, 
many results are retrieved from just 5 axioms, right? And even though he wrote 
more than 400 theorems, it can go on and on. […] There is no ceiling for proof. 
It is open. It can move forward and discover new things. 

In summary, the process of Li’s change in beliefs began with inputs from the 
researcher in charge of the app, in the form of texts and related questions. These 
questions started Li’s own thinking, but it was the confrontation with other teachers’ 
views, beliefs, and knowledge that contributed to this process by drawing his attention 
to unconsciously held beliefs and rethinking his understanding. He reflected on the 
reason for his beliefs and linked it to other related beliefs concerning teaching. Finally, 
he connected his reflections to his knowledge, making his beliefs evidentially held.
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The question is if this process would have taken place without the availability of 
the app and the flexibility offered by this form of online community. Li described 
his general experience with the program in the interview: 

Li: I am presented with many opinions on [mathematical issues]. Without this, 
[…] I certainly would not have thought about it. I cannot consider such things 
every day. […] if one does not see other things or listen to other opinions, he 
will be the frog in the well. 

The last remark refers to a famous Chinese fable about a frog who lives in a well 
and believes the sky is only as big as what he can see. In other words, Li clearly felt 
that the communication with other teachers broadened his perspective on mathemat-
ical issues. Furthermore, Li explained that the online environment made everything 
quite convenient, not limited by time and space. He pointed to an advantage of the 
combination of the mini-app and the online meeting: 

Li: Before the real-time online discussion, we need to learn and think. The text 
communication in the mini-app is a prerequisite for ensuring an effective 
online discussion. First, we think, and then we can come up with insightful 
perspectives to communicate during the online meeting. 

There is no doubt that Li experienced a development in his OJ3 through his 
participation in the project. Original beliefs were articulated, challenged, reevaluated, 
and reflected upon. The reflection process involved new knowledge and contexts, 
making his beliefs based on evidence. In this way, it appears that Li’s knowledge and 
beliefs about the nature of mathematics have increased in quality, detail, and range. 

7 Discussion 

As beliefs act as filters that affect what one sees (Pajares, 1992), it is not easy 
for people to see things they do not believe, even with new experience. Therefore, 
different voices are of vital importance for critical reflection. As the presented case 
shows, the nature of the digital media provides excellent conditions for reflection: the 
teachers in the program are in a short-time span presented with many different ques-
tions, views, and perspectives on a subject, which is in line with existing research on 
online communities mentioned in the introduction. In this case, the teacher highlights 
how this form of communication increases his thinking and broadens his perspectives 
by providing access to inputs from many colleagues. 

With the case of Li, we have illustrated in which ways digital technology in the 
form of an online community might contribute to teachers’ reflection processes and 
furthermore to the development of their OJ3, making specific aspects of the nature 
of mathematics “the object of explicit treatment, reflection and articulation” (Niss & 
Højgaard, 2011, pp. 74–75). Firstly, the shared materials and the related thought-
provoking questions from the researcher as well as the comments and questions 
from other teachers provide the external motivation needed to make the participants
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aware of unconscious beliefs, conflicting evidence, other possible contexts etc. This 
can foster an increased curiosity that might inspire further investigation and thought 
processes. Conflicting positions of the teachers thus incite them to check their own 
positions, making their beliefs more objective. Secondly, the discussions in the online 
community encourage teachers to articulate, explain, and argue for their beliefs, 
thus making unconscious beliefs conscious, and conscious beliefs more detailed and 
nuanced, as seen in the case of Li reflecting on the role of proof. Thirdly, Li connects 
his existing knowledge to his modified belief, thereby making it evidentially held. 
This is not caused directly by technology, but is triggered by the online environ-
ment. In addition, other teachers’ knowledge about mathematics (and the way they 
connect it to their beliefs) is very likely to be shared in the online environment, which 
plays an important role in regard to developing evidentially held beliefs. When other 
perspectives and new knowledge are included in the teachers’ reflections, they can 
be connected to the beliefs that might be in a process of change or modification and 
thereby become part of the evidential foundation. Moreover, these new perspectives 
can put existing beliefs into new contexts, changing or adding relations between 
beliefs. 

On top of this, the combination of the app and the online meeting seems to work 
very well in facilitating teachers’ reflection, as noticed by Li. The app provides an 
essential factor in relation to deep reflection, namely time. It allows teachers to read 
inputs as many times as they need, consider them, and read them again. When they 
meet for the online discussion session, they have had an excellent opportunity to 
think about the issues and the different perspectives of the issues. This is a very good 
basis for a peer discussion and might be the factor that enables them to discuss quite 
complex matters about the nature of mathematics and relate them to their teaching. 
It provides an opportunity for a very thorough and profound reflection on their own 
knowledge and beliefs and the relations between these. 

One might argue that all of these aspects apply to any of the three forms of OJ, 
maybe even to any subject. This may be true. However, the nature of mathematics 
is often an implicit concept that is seldom a basis for discussion, and teachers can 
normally perform teaching without thinking about it consciously. In this case, the 
formal organization of the online community provides opportunities for the teachers 
to focus on the underlying characteristics of their subject, for example the construc-
tion of mathematics, mathematical thought processes, or the character of mathemat-
ical results. It allows them to discuss the nature of mathematics at an explicit, deep, 
and philosophical level, and to discover implicit knowledge and unconscious beliefs. 
And most importantly, they are given room to reflect, which is essential for devel-
oping overview and judgment concerning the nature of mathematics as a discipline. 
To some extent, the reflections on OJ3 furthermore influence teacher Li’s philosophy 
of mathematics, which is a more implicit concept and very difficult to change, which 
reflects the importance of making the OJ3 the object of reflection. 

With that said, the teachers’ OJ2 on the historical development of mathematics 
might also be influenced because of the teachers’ engagement with and reflections 
on the historical development of mathematics. Furthermore, their OJ2 has actually 
played a role in the reflections and beliefs that teachers had about the nature of
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mathematics as a discipline. Moreover, the teachers in the case not only discussed 
mathematical topics and issues in a mathematical context, but they also related these 
issues to the other frame of reference that they have in common, namely the teaching 
of mathematics, making this an object of discussion and reflection as well. Hence, the 
online community and the communication between the teachers may contribute to the 
development of another part of the KOM-framework: the didactic and pedagogical 
competencies related to teaching mathematics, perhaps particularly the professional 
development competency. 

8 Final Remarks on Networking of Theories 

In this research, teachers’ development of OJ3 is the main variable in focus. However, 
the KOM-framework alone cannot explain why this development might occur. In 
other words, questions or dimensions of OJ3, like the characteristics of mathe-
matical thought and methods, and the construction of mathematics, are helpful in 
making researchers gain an insight into what changes take place in teachers’ reflec-
tions on the nature of mathematics, but they do not give any information about the 
mechanism behind this change. As OJ3 is a combination of knowledge and belief, 
we have applied constructs of beliefs theory from psychology, like unconscious 
beliefs, beliefs with evidence, and the relationship between knowledge and belief. 
Combining theories from psychology and mathematics education can contribute to 
understanding beliefs more deeply (Rolka & Roesken-Winter, 2015). Hence, by using 
elements of networking, this combination of theoretical constructs thus contributes 
to understanding how an online community provides opportunities for gaining expe-
rience with and reflecting on mathematics as a discipline, thereby influencing the 
development of overview and judgment. 
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Broadening the Scene



Teachers’ Facilitation of Students’ 
Mathematical Reasoning in a Dynamic 
Geometry Environment: An Analysis 
Through Three Lenses 

Ingi Heinesen Højsted , Eirini Geraniou , and Uffe Thomas Jankvist 

1 Introduction 

In mathematics education research, numerous theoretical constructs and frameworks 
have been developed to describe the complex processes involved in teaching and 
learning mathematics. These constructs and frameworks may be classified in terms 
of the scope or the level of detail, which they provide concerning certain phenomena 
(Bikner-Ahsbahs & Prediger, 2010). An example of a broad analytical framework is 
the Danish KOM1 framework (Niss & Højgaard, 2011, 2019), which is best known for 
its description of what mathematical mastery entails through its specification of eight 
mathematical competencies. The notion of mathematical competencies has gained 
substantial traction in mathematics education research in recent years, and has also 
played a role in relation to the framework of the international PISA assessments (Niss 
et al., 2016). At a national level—in Denmark—the KOM framework has permeated 
the national mathematics programmes and curricula at primary, lower secondary and 
upper secondary school levels as well as in mathematics teacher education since it 
saw the light of day in 2002 (in Danish).

1 The KOM acronym translates to “Competencies and Mathematical Learning”. The framework 
was originally published in Danish in 2002 and in English in 2011. 
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Something else, which now permeates the mathematics programmes in Denmark, 
is the use of digital technologies, typically Computer Algebra Systems (CAS) in 
upper secondary school and Dynamic Geometry Environments (DGE) in lower 
secondary and primary school (Jankvist et al., 2019). Except for mentioning math-
ematical software in relation to mathematical tools and aids, the KOM framework 
does not allocate much attention to the role of digital technologies as part of the 
teaching and learning of mathematics (Jankvist et al., 2018). Due to the number of 
challenges surrounding teaching with digital technologies in the Danish classrooms 
(e.g., Iversen et al., 2018; Jankvist et al., 2016), it makes sense—also at a theoret-
ical level—to address the potential of combining or even networking the KOM’s 
description of teacher competencies with a framework that deals explicitly with the 
introduction of digital technology into the mathematics classroom, and the role of 
the teacher in orchestrating the teaching/learning process. The Theory of Instru-
mental Orchestration (TIO) (Drijvers et al., 2010; Trouche, 2004), is an example of 
a fine-grained theoretical framework, which concerns the specific role of the teacher 
in supporting students’ development of instruments (from an instrumental genesis 
perspective) in a technology-rich mathematics classroom. 

By coordinating elements and constructs from the KOM framework and TIO, we 
examine the role of a teacher through a series of episodes from a teaching sequence, 
where the educational aim is to support students’ development of mathematical 
reasoning competency in a context involving a DGE. We use the notion of justi-
ficational mediations (JM) (Jankvist & Misfeldt, 2019, 2021; Misfeldt & Jankvist, 
2018) to articulate the coordination of KOM and TIO. The question that we seek to 
answer through our analysis is: 

How can we understand the role of the teacher in a DGE teaching sequence 
that aims to support students’ development of mathematical reasoning competency 
through three different lenses, namely KOM, TIO and JM? 

Next, we present the two theoretical frameworks of KOM and TIO, including also 
the notion of justificational mediations, since this shall serve as a “bridge” between 
the two theoretical perspectives for our specific case. 

2 KOM’s Mathematics Teacher Competencies 

We begin with the KOM framework and its mathematics teacher competencies, also 
sometimes referred to as didactico-pedagogical competencies. The Danish KOM 
framework (Niss & Højgaard, 2011, 2019) introduces a competency-based approach 
to describe what mathematical mastery entails, across mathematical topics and educa-
tional levels. The framework comprises eight mathematical competencies, one of 
which is the reasoning competency, which at its core, concerns the ability “to analyse 
or produce arguments (i.e., chains of statements linked by inferences) put forward in 
oral or written form to justify mathematical claims” (Niss & Højgaard, 2019, p. 16). 
We will take a closer look at the reasoning competency later—for now, however, 
we address the lesser-known part of the framework, namely its six competencies of
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mathematics teachers. These outline “a range of specific mathematical didactic and 
pedagogical competencies” (Niss & Højgaard, 2011, p. 85), which a mathematics 
teacher should possess: 

• Curriculum competency entails being able to acquire knowledge about the 
curriculum and to analyse and evaluate its significance for teaching, as well as 
being able to develop and implement course plans adhering to curriculum and 
overarching frameworks. 

• Teaching competency involves being able to develop and carry out teaching 
sequences. This includes the orchestration of different teaching and learning situ-
ations, with consideration to the target students, and being able to choose appro-
priate tasks and teaching materials, being able to motivate and inspire students 
and incorporate their ideas in the lessons. 

• Competency of revealing learning consists of being able to understand and inter-
pret student learning and to which degree they possess the mathematical compe-
tencies. Furthermore, it covers being able to understand the cognitive and affective 
cause for the students’ conceptions and beliefs regarding mathematics. 

• Assessment competency comprises being able to choose or develop formative and 
summative evaluation methods to reveal students’ possession of mathematical 
competencies, and knowing the limitations of said methods. In addition, being 
able to communicate the results and help students to improve accordingly. 

• Cooperation competency consists of being able to cooperate with other mathe-
matics teachers and colleagues in other subjects, as well as with agents outside 
the institutions such as parents or authorities, on issues relevant for mathematics 
education. 

• Professional development competency is a meta-competency in relation to the five 
above-mentioned competencies, as it concerns being able to develop one’s compe-
tency as a teacher. This includes being able to reflect on one’s developmental needs 
and being able to choose activities that will promote this development. 

3 Instrumental Orchestration 

In the instrumental approach to tool use (Artigue, 2002) a distinction is made between 
artefacts and instruments. Technological tools such as DGE are viewed as artefacts 
that may become instruments for an individual, as the artefact is appropriated for 
usage. An instrument is the psychological construct involving the utilization of 
artefacts in (mathematical) situations. The artefact is not an instrument from the 
outset, but in the process of instrumental genesis, cognitive schemes are developed 
(Vergnaud, 2009), which intertwine technical and mathematical knowledge, so that 
the individual can use the artefact purposefully, hence transforming the artefact into 
an instrument. 

Trouche (2004) coined the term instrumental orchestration to highlight the neces-
sary external steering of students’ instrumental genesis, which is, in the context of 
mathematics education, usually performed by a teacher. Trouche (ibid.) described two
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central elements of instrumental orchestration, didactic configurations and exploita-
tion modes. Didactic configurations comprise the teacher’s organization of the arte-
facts in the teaching/learning environment in relation to the treatment of the mathe-
matical situation at hand. It includes organization of students’ or teachers’ workspace 
and time spent on activities. Exploitation modes concerns the manner in which the 
teacher utilizes the didactical configuration in order to reach the goals set out for the 
activity. This comprises deliberations on the choice of mathematical tasks, the role 
of the artefact in these tasks and how this may support students’ development of the 
intended instrument. 

The didactic configurations and exploitation modes concern aspects of teaching 
sequences, which may be prepared before a teaching sequence is undertaken. Drijvers 
et al. (2010) added a third element to instrumental orchestration, by introducing the 
term didactical performance, which addresses the instrumental orchestration created 
by teachers “on the spot” during a teaching sequence. It entails the ad hoc decisions 
made, in order to deal with emerging situations in the learning/teaching environment, 
such as students’ questions, dealing with unexpected situations regarding the artefact 
or the mathematical task. 

4 Justificational Mediations 

The use of digital technologies—in particular CAS but also DGE—in mathematics 
education is often analyzed using the instrumental approach to mathematics learning 
(e.g., Trouche, 2005). One critical concept in the instrumental approach is that 
of mediation that designates how tools support goal directed activities, and hence 
mediate between a student and his/her goal. The literature highlights a critical distinc-
tion between epistemic and pragmatic mediations referring to whether the students 
aim at understanding certain phenomena or at solving specific tasks (Artigue, 2002; 
Rabardel & Bourmaud, 2003). 

When working with the use of CAS in the context of proofs and proving activities, 
Misfeldt and Jankvist (2018) describe four core questions/aspects about how CAS 
mediate proving. Aligning with the instrumental approach, this can be conceptual-
ized as using CAS for justificational mediations (Jankvist & Misfeldt, 2019, 2021; 
Misfeldt & Jankvist, 2018). The notion of justificational mediations is equally rele-
vant when using DGE, such as GeoGebra, for reasoning and proving activities (e.g., 
Gregersen & Baccaglini-Frank, 2020). In the context of DGE, Misfeldt and Jankvist’s 
(2018) four questions/aspects can be reformulated into: 

• (JM1). Do the teachers or students use DGE’s features to establish truth? To what 
extent does the DGE’s output act as a warrant in an argument? 

• (JM2). Does the teachers’ or the students’ use of DGE allow interaction and 
experimentation? This highlights the degree to which the teacher or the students 
can change parameters, explore phenomena etc., and therefore to what extent the 
students still have agency, when working with DGE in relation to proofs.
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• (JM3). Is the argumentation inductive, deductive or authoritarian? What type of 
conviction (or proof scheme, see Harel & Sowder, 2007) is in play and what type 
of warrant does DGE provide? 

• (JM4). Does the argument highlight important aspects of the proof or the 
mathematical relationships? 

Both the second and the fourth aspects are to some extent related to epistemic 
mediations. Misfeldt and Jankvist (2018) argue that these four aspects of justifica-
tional mediation more or less capture the important aspects of using digital tools in 
proving activities. 

5 Methods 

The study took place in a Danish lower secondary school in a grade 8 mathematics 
classroom (13–14 year old students). The preparation for the study consisted of a 
researcher and the teacher meeting to discuss the material in order to develop a 
shared understanding of the aim and learning goals of the teaching sequence. These 
preparatory discussions also served in unveiling any preconditions of the students 
and the teacher, in particular concerning their GeoGebra experience. The teacher 
described himself and his students as basic/intermediate users of GeoGebra with 
knowledge about the structure of the geometry part of the programme, e.g., how to 
use the tools for construction and measuring. 

The researcher assumed a teacher-supporting role during the teaching sequence, 
especially during the start-up phase. In the first lesson, which we report on in 
this chapter, the researcher supported the class teacher in orchestrating the class 
discussions that took place. 

The data was collected in the form of screencast recordings from every pair of 
students and external video of three chosen groups as they were working on the tasks. 
These recordings also captured audio from student–teacher interaction during task 
work, and from the class discussions. In addition, the students’ written answers were 
collected. 

6 The Teaching Sequence 

The design entailed a three-week DGE teaching sequence, in which the mathemat-
ical aim was to support students’ development of the reasoning competency (Niss & 
Højgaard, 2019). The teaching sequence included 15 tasks that were handed to the 
students in a printed version. The students worked in pairs sharing one computer, 
using GeoGebra to solve the tasks, and writing their answers in the handout. The 
students were paired and asked to work together and argue about their solving steps 
for two reasons; on the one hand, being able to communicate and justify one’s
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reasoning to others is a characteristic of reasoning competency and hence a learning 
goal of the teaching sequence, on the other hand, it helps us as researchers to have 
a “window” into the students’ thinking processes when it comes to interacting with 
the DGE. At the end of every lesson, class discussions followed to further elab-
orate crucial mathematical ideas, but also share students’ solving strategies and 
understanding. 

In the design of the teaching sequence, certain potentials of DGE were utilized. 
A seminal feature of DGE is the possibility of representing geometrical properties 
visually in the form of invariants that can be observed during the use of the drag 
mode. The properties of the figure are locked in a hierarchy of dependencies, which 
are determined by the construction procedure; the environment that is mimicking 
Euclidean geometry; and design choices by the software developers. In the literature, 
dragging is highlighted as a means to support the development of mathematical 
reasoning and conjecturing in geometry (e.g., Arzarello et al., 2002; Baccaglini-
Frank & Mariotti, 2010; Edwards et al., 2014; Laborde, 2001; Leung, 2015). The 
design intention was to exploit the affordance of dragging so that students could 
investigate constructions in order to produce and investigate conjectures, which they 
made beforehand. 

Reasoning in DGE in relation to the drag mode, involves awareness of the fact 
that it is dependencies between objects, which decide the outcome of dragging. 
Therefore, in order for the students to be able to interpret what they see on screen 
during dragging, the objective of the initial tasks of the teaching sequence was to 
divert students’ attention to the fact that invariants, which are observable during 
dragging, reveal logical relationships between geometrical objects in GeoGebra. 

Task 1 was a “dependency task” (Fig. 1). In the construction part, the students 
were encouraged to use the GeoGebra tool “midpoint”, which causes the midpoint 
C to be derived from points A and B.

Fig. 1 Task 1 of the teaching sequence, where question 1(b) is “What do you think happens to the 
other points when you drag point A? Guess first, and justify your guess to your partner”, followed 
by the same question in relation to dragging points B and then C
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Afterwards the students are asked to predict-observe-explain (White & Gunstone, 
2014) what happens during dragging in three sub questions concerning each element 
of the construction.

Most students predicted correctly in relation to dragging points A and B, whereas 
no students in the data collected predicted correctly in relation to dragging point C. 
In GeoGebra, derived objects can be locked so that they may not influence objects 
from which they are derived—in the literature sometimes referred to as parent/child 
relationship (e.g., Højsted & Mariotti, 2021; Talmon & Yerushalmy, 2004). Predom-
inantly, a “child” cannot influence its parent in GeoGebra, hence, A and B are free 
objects in the student’s construction, and may be dragged, while C may not be 
dragged. The teacher seemed not to be aware of this or at least he does not explain 
or help the students explain why it is not possible to drag point C. 

Task 4 required students to construct a robust right-angled triangle, as shown in 
Fig. 2. By “robust”, we refer to a triangle that will maintain certain properties, in this 
case it will remain a right-angled triangle, even when you drag its vertices and enlarge 
it or change its position on GeoGebra’s workspace (Healy, 2000; Laborde, 2005). 
The task design is in line with what Mariotti (2012) coined “construction tasks”, 
which encourage students to construct robust figures with specified invariants. The 
students are then required to describe their construction method and explain why the 
figure retains its properties. This is related to justifying a mathematical claim, which 
is a characteristic of reasoning competency (Niss & Højgaard, 2019, p. 16).

Fig. 2 Task 4 of the teaching sequence, where question 4(b) is “Describe how you made it” and 
4(c) is “Why does it remain a right-angled triangle when you drag the points? Explain to your 
partner”
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In the next section, we present a series of episodes taken from two maths lessons 
in the form of student–teacher interaction that occurs while two students, Susan and 
Oliver, are working on task 1, task 4 and on the subsequent class discussions.

7 A Series of Episodes in Light of Justificational Mediations 

In these episodes, the class teacher and the researcher (the first author of this chapter) 
worked with a class of 20 students. We focus on a group of two students and their 
interactions with the teacher (T) and researcher (R). Reflecting upon the justifica-
tion mediation perspective discussed earlier, we will be looking at how the teacher 
and the researcher addressed students’ mathematical reasoning focusing on the four 
questions/aspects related to justificational mediations. 

In the following, we see the dialogue that emerges between Susan, Oliver and the 
teacher as they are working on task 1d. Susan and Oliver are puzzled that they could 
not move point C, so the teacher intervenes.2 

(124) T: What do you think is possible to move? 
(125) Oliver: So, the two other points. 
(126) Susan: A and B. 
(127) T: Yes, you can move A and B because that was what he (the researcher) said, 

you know, it’s a dynamic program. That is, C will always be the midpoint, 
that is, C is automatically moved if A and B are moved. 

(128) Oliver: Yes, exactly. 

In terms of justificational mediation, the teacher showcases that GeoGebra is 
indeed a dynamic environment that allows interaction and experimentation (JM2). 
However, his comments here may not be considered as a scaffold for utilizing 
GeoGebra (considering its restrictive functionality, i.e., point C not being drag-
gable) and therefore reach a mathematically valid justification for the phenomenon 
in question, neither does his additional comment: 

(124) T: If you do not move A and B, then C stays the same. (This explanation 
does not make it clearer, why C should not move.) 

(125) Susan: Okay. 

In the above comments, the teacher also puts emphasis on the mathematical rela-
tionship between the three points, A, B and C (element of JM4). However, we 
cannot claim with much confidence that his argumentation here explains “why” 
this phenomenon occurs. On the contrary, his comments indicate how GeoGebra 
becomes the authority that convinces both the teacher and the students of the correct-
ness of their claim (line 127). The GeoGebra tool therefore provides an element of 
an authoritarian argumentation (JM3).

2 The numbering of lines corresponds to the full transcript in Højsted (2021). 
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In the next lesson, students were working on task 4. The teacher approached two 
students to take a closer look at their screens. 

(562) Susan: We made them like this. 
(563) T: Ah, so you have made the line segments invisible. (He means lines.) 
(564) Susan: Yes, we have made it in two different ways. 
(565) T: Yes?  
(566) Susan: Oliver has made such an angle of a given size. 
(567) Oliver: I just made… 
(568) T: If you do that, right. 

(The teacher takes over the computer.) 

(569) T: Is it just me or does one of them not get locked then? 

(Tries to drag point E,.) 
Oliver used the tool “angle with given size” clicked twice on the screen and chose 

an angle of 90° (points E, F and E, emerge). Oliver then connected the points using 
the tool “polygon”. From this method, E and F are free points, while E, is locked as 
the 90° anticlockwise rotation of E about F (Fig. 3).

(570) Susan: Yes, this one gets locked (referring to point E,). 
(571) Oliver: Yes, but here the D point is locked. 
(572) T: Yes, and that’s the right-angled triangle. So, one can 

say that this one has both. So it’s another method to 

Fig. 3 From the screencast recording, we see Oliver’s constructed right-angled triangle in 
GeoGebra (on the right), using the “angle with given size” feature. Susan is illustrating that point 
E, is locked. Point F is barely visible in the corner of the right angle in the smaller triangle
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make it. But here it is also locked (mouse marker on 
point E), because it must be 90° (mouse marker on point at point F), 
right? (His explanation does not clarify why it is different in the two 
constructions.)

The teacher’s explanations continue to rely heavily on the construction process, 
focusing on the DGE construction process output as a way to justify (JM1). There 
seems to be a missed opportunity here for some justificational mediation. We would 
expect the teacher to ask probing questions such as: Why is this angle always 90°? 
What happens to point E, when we drag point E? Which relationships are induced 
when we use the angle with a given size tool? 

The same pair of students is then visited by the researcher (R), who asks about 
the two different constructions they made. 

(614) Susan: We have made it in two ways. 
(615) R: Cool. How did you do it? 
(616) Susan: Well, one of them, so we made this one first (points at line f on the 

screen). 
(617) R: A line? 
(618) Susan: The line f . And then we made a parallel. Excuse me, not a parallel, 

one that intersects perpendicularly. 
(619) R: Aha…. 

In more detail, Susan used the tool “line” by clicking twice on the screen (hence 
points A and B emerge and the line f through them) and then the tool “perpendicular 
line” clicking on the plane (point C emerges) then on line f (line g emerges) (see 
Fig. 4). She then uses the GeoGebra feature “intersect” between lines f and g (point 
D emerges). Finally, she connects the points CBD using the features “polygon” and 
“hides” lines g and f as well as point A. From this method, point D is derived and 
hence locked in GeoGebra, while C and B are free. 

Susan is not finished explaining how her construction was completed, but Oliver 
wants to explain his, so he interrupts. Both students seem to be excited about their 
constructions and keen to share their methods for creating them. 

(620) Oliver: And then another one we used [is an] angle of a given size, made a 
right angle, and we just put a polygon in it. 

(621) R: Smart.  
(622) Susan: Yes, in addition, we put an intersection between the two 

(lines f and g) and then we formed a polygon. 

In the above dialogue, Oliver described how he used GeoGebra’s features to create 
the required construction, but also implicitly claim that it is a correct construction 
as he used the GeoGebra tool to create the mathematical objects, i.e., perpendicular 
lines, 90° angle and a polygon. The GeoGebra’s authority is yet again used for 
the student’s argumentation (JM3). We could of course debate about the extent to
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Fig. 4 Susan’s construction of the right-angled triangle in GeoGebra (on the left), using the 
perpendicular lines tool to create a robust right angle 

which the GeoGebra output could act as a warrant in arguing the “correctness” of 
the students’ construction. It is also worth mentioning how students’ knowledge 
of creating a right angle by constructing perpendicular lines helped them in their 
solution, which indicates that they may be able to justify the correctness of their 
construction by highlighting mathematical relationships (indications of JM4). We 
cannot, however, make any strong claims about their argumentation, since they did 
not explicitly elaborate their thinking, offering any reasoning, but instead assumed 
that the researcher would immediately “see” what they were doing. 

In the next dialogue, the second aspect of justification mediation becomes more 
evident (JM2). The researcher and the students display how their use of GeoGebra 
allows experimentation and discuss the impact of dragging certain points of their 
construction. Such experimentation allows them to investigate special cases and also 
reflect upon special mathematical relations of objects within their constructions and 
may lead to mathematically valid arguments and the formation of a mathematical 
proof (JM3 and JM4). 

(623) R: And how, ehh… Can you also drag point C? 
(624) Susan: Yes, these two I can drag both of them (C and B from her 

construction). 
(625) Susan: Here you can’t drag both (marks point E’ from Oliver’s construction). 
(626) Oliver: You can’t drag in D (from Susan’s construction).
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(They are trying to advocate their own constructions, while downgrading the other 
construction.) 

(627) R: Okay. 
(628) Oliver: And in C (the third point F in his construction, where the right 

angle is). 
(629) Susan: But here you can drag this (F). You can’t do that here (point D in 

her triangle, where the right angle is). 
(630) R: No, because there… This is the intersection of g and f . 
(631) Susan: Yes, exactly. 
(632) R: Okay, super. 
(633) Susan: Yes.  

In the above episode, the students were preoccupied with who made the best 
construction. They discussed which construction had the most free points and sort of 
agreed that the constructions were equally good because there were two free points 
(they did not notice the constraint of Oliver’s triangle always being isosceles). From 
the point of view of the aim of the task, both constructions were acceptable—the 
important part was that the students seemed to have developed an awareness of the 
fact that dependencies between elements of figures decide the outcome of dragging 
in GeoGebra. Therefore, they were able to describe why their figure remained a right-
angled triangle, referring back to the construction method and using a geometrical 
interpretation. Once again, this could be linked to the first justification mediation 
(JM1), since the students use GeoGebra’s features to establish truth, but also to the 
fourth one (JM4), since they refer to (or argue about) important aspects of the math-
ematical relationships between their constructed objects in GeoGebra. One could 
also say that their interactions so far imply using GeoGebra as the authority for an 
authoritarian argumentation justificational mediation (JM3). 

There was a plenary discussion after each lesson, during which the teacher encour-
aged students to reflect upon all the tasks that they worked on during the GeoGebra 
activity. At the end of the first lesson, they started off by discussing task 1 on 
constructing two points, A and B, and their midpoint, C. The teacher repeated the 
task situation, and asked the class to describe what happens when point A is dragged. 

(386) Susan (In plenary): B stays the same place, but C will move after point A to 
stay in the middle. 

(387) R (In plenary): Yes. 
(388) R (In plenary): A, B and C (writing on the whiteboard). So, when I drag A, 

then you say that B stays and point C moves, so if I move it here, down here, 
then C moves down here too. Why does it do that? 

(389) Susan (In plenary): Because C must stay in the middle. 
(390) R (In plenary): Because C must remain in the middle. That is exactly right. 

It is the relation between these objects, as I call them. The relation between 
these points, that is, we said to GeoGebra that we want the midpoint between 
A and B. Therefore, when you drag in A, the point C remains the midpoint 
all of the time. Because you have given the command to the program that 
we must have the relation that C must be the midpoint between A and B.
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It seems that the student relies on the fact that the point C is the midpoint and by 
construction must remain in the middle. The teacher elaborates on Susan’s point by 
emphasizing how they used GeoGebra’s features to construct the midpoint, which 
induces geometrical properties that are maintained during dragging, and therefore 
it is “true by construction”. During the plenary discussions, the teacher on several 
occasions adopted the strategy of elaborating students’ constructions by reiterating 
and explaining their methods of constructions in GeoGebra. 

At the end of the second lesson, they discussed the task concerning the robust 
right-angled triangle: 

(753) T (In plenary): Can anyone help with the word robust. What was that? Susan? 
(754) Susan (In plenary): So, even if you, for example, have a right-angled triangle, 

if you move some of the points, then it remains right-angled. 
(755) T (In plenary): Yes. We have at least one or two free points that we can drag, 

and it still remains a right-angled triangle no matter what we do, right? That 
means that one cannot just put three random points and make a polygon, 
even though one might say, okay, this one is actually right-angled, because 
then when I start dragging it, I also drag at the right-angled angle, right? 
Ehhh, how did you make it? There are several different solutions. Can you 
try to put words on how you did? 

Three pairs of students put forward their construction method, while the teacher 
mirrored the students’ description on the whole class screen. The teacher discussed 
the different ways in which students constructed the right-angled triangle and show-
cased the relevant GeoGebra features that are exploited in an implicit attempt to 
justify the correctness of their constructions. The teacher still seemed to rely heavily 
on “how” constructions were made in GeoGebra and subsequently justified why 
the triangle remains a right-angled one based on the way it was constructed. The 
GeoGebra features therefore, once again, became the warrant for the correctness of 
the construction and the justification for the triangle remaining a right-angled one 
(JM1). 

Reflecting upon all the interactions discussed above, the teacher seemed to mainly 
ask for what the students have done, and consequently what happens during drag-
ging. There were a few occasions when the teacher and especially the researcher 
would ask the students to explain why they have done it and why that, which they 
observe, happens. For example, the researcher asked Susan to explain why the point 
C moves (line 388). From the view of understanding, asking more “why” questions 
may encourage a deeper understanding of the onscreen phenomena, and provide an 
anchoring for a possible mathematical interpretation, i.e., explaining in terms of the 
induced geometrical properties and logical dependencies (JM4).
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8 Analysis from a TIO and JM Perspective 

From the point of view of TIO, we will relate the data presented previously to the 
notions of didactic configurations, exploitation modes and didactical performance, 
while referring to the previous JM analysis. 

We described earlier, the organization of the artefact (DGE) in the teaching 
sequence, which in TIO terminology refers to the didactic configuration of the 
sequence. This preparation was mainly performed by the researcher prior to meeting 
with the teacher to present the teaching sequence and answer any questions that arose 
(prior but also during the study). As mentioned, the didactic configuration included: 
the organization into student pairs that were to work together using one artefact in 
order to foster explicit reasoning; the organization of the lessons into iterative cycles 
consisting of the students working on tasks using the artefact, followed by classroom 
discussions, in which the artefact was projected onto the whiteboard in order for 
solving strategies and key learning aims to be elaborated upon; and a lesson plan 
(time schedule for each task) for the three week teaching sequence. 

The exploitation modes of the didactic configuration are also described in the 
teaching sequence section. The tasks were designed with the intention to exploit the 
artefact, specifically the drag mode in DGE, in order to foster students’ develop-
ment of mathematical reasoning competency. Dragging in DGE was the instrument 
intended to be developed by the students in order to conjecture, investigate, justify 
and reason about geometrical properties of figures using the task design heuristic of 
predict-observe-explain. Hence, the task design is consistent with the aim of using 
DGE according to JM2. The exploitation modes were predominantly prepared by the 
researcher prior to the sequence and discussed with the teacher, which also received 
the exploitation modes in the form of written guidelines concerning the educational 
goal of the teaching sequence. 

While the above-mentioned exploitation modes were planned before the teaching 
sequence was undertaken, our data revealed that additional exploitation modes were 
used. For example, the teacher seemed to use probing and clarifying questions in order 
to reveal the students’ solving steps related to the artefact so that the teacher could 
guide them further (e.g., lines 562–572), often referring to the DGE construction 
process output (JM1). Another exploitation mode, which was evident throughout 
the episodes, is how both the teacher and the researcher were expected to use well-
articulated justifications related to the DGE in an effort to promote the use of similar 
justifications by the students, e.g., mirroring the students’ utterances in classroom 
discussions and elaborating on their DGE mediated justifications (lines 386–390). 

These strategies adopted by the teacher without prior instruction, may also be 
viewed as the teacher’s didactical performance, since they are “on the spot decisions” 
made by the teacher in order to deal with emerging situations concerning the artefact 
and the tasks. Several examples of the teacher’s didactical performance were evident 
in the episodes, for example asking the students to explain their construction method 
(lines 562–572, 614–633) (JM1) and posing probing questions, apparently in order 
to help the students understand, e.g., why the midpoint C could not be dragged
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(lines 124–129). However, the teacher did in fact not help them understand the 
phenomena of derived points not being draggable in GeoGebra, but rather gave an 
authoritarian argument “you know, it’s a dynamic program” (line 127), consistent 
with JM3. In terms of TIO, the incident may be considered a missed opportunity in 
relation to the students’ development of the intended instrument, and therefore an 
ineffective didactical performance. From the data analyses we also notice that the 
didactical performance often involved asking the students “how” questions related 
to the construction process rather than “why” questions. Of course, the construction 
process is of essential importance, since it is where the theoretical properties of 
the construction are induced, which decide the outcome of dragging. However, the 
students are meant to use a tool as an instrument that allows them to interpret and 
make sense of what they perceive in the DGE as they try to drag, we propose that 
a strategy (didactical performance), which may prove useful, is to ask more why 
questions and therefore require justifications and understanding of what happens on 
screen. 

Reflecting on our analysis from the point of view of TIO and justificational 
mediations, we notice that our attention becomes centred on the development of 
the instrument and to what extent the preparatory steps of the sequence, such as 
task design, classroom and lesson structure, are aligned with the development of 
the intended instrument, and the types of justificational mediations that emerge. 
In addition, we consider to what degree the on the spot actions performed by the 
teacher, e.g., posing probing questions, are supportive of the instrumental genesis 
and justificational mediations that are consistent with the educational aim of the 
activity. 

9 Analysis from a KOM Teacher Competencies and JM 
Perspective 

We will now relate the data from the teaching sequence to the six teacher compe-
tencies from the KOM framework: curriculum competency; teaching competency; 
competency of revealing learning; assessment competency; cooperation competency; 
and professional development competency. The analysis is linked with the previous 
JM analysis. 

We explained the rationale behind the a priori design of the teaching sequence 
in relation to its educational aim. The overarching goal of developing mathemat-
ical reasoning competency is consistent with the Danish lower secondary school 
curriculum, mathematics common goals (Børne- og Undervisningsministeriet, 2019). 
Therefore, the design of the teaching sequence involves aspects related to curriculum 
competency. However, in this case it is the researcher’s curriculum competency 
that is in effect. The outlining of the sequence and task design is clearly related 
to teaching competency, which involves being able to develop teaching sequences to 
meet learning aims, including the orchestration of teaching/learning situations and
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choosing adequate tasks. Again, it is the researcher’s teaching competency that was 
activated. 

When the teacher asks the students to explain their construction method (lines 
562–572, 614–633), using mainly the DGE output as a warrant (JM1), or when the 
teacher mirrors and refines the students’ DGE mediated justifications in classroom 
discussions (lines 386–390), these actions may be regarded as a realization of the 
teachers’ teaching competency, in particular the part of the competency that concerns 
the incorporation of students’ ideas in the lesson. The teaching competency is defined 
in rather broad terms, in fact, the phrase “being able to […] carry out concrete teaching 
sequences with different purposes and aims” (Niss & Højgaard, 2011, p. 86) in the 
characterization of the competency, may be interpreted so broadly that it can encom-
pass every action performed by the teacher in the presented episodes as well as each of 
the types of justificational mediations. From this point of view, we suggest that most 
teacher actions showcased a reasonably developed teaching competency, however, 
the missed learning opportunity concerning hierarchical dependencies in GeoGebra 
(lines 124–129) indicates a weakness in the teacher’s teaching competency, in which 
the teacher employed an authoritarian argument (JM3). The teacher seemed unaware 
of the hierarchical dependencies, which serves to illustrate that teaching competency 
is intricately connected to knowledge of the artefact being used and its potentialities 
in relation to the overarching learning goal of the teaching sequence—mathematical 
reasoning competency. Since we do not have data concerning the teacher’s ability to 
justify and discuss his choices regarding the teaching approach, we cannot analyze 
in relation to this part of teaching competency. 

The teacher showcased some level of competency of revealing learning when he 
asked probing and clarifying questions, seemingly in order to reveal the students’ 
solution process related to the artefact (e.g. lines 614–633). However, for the most 
part the teacher asked “what” questions related to the construction process (indicating 
JM1), which by itself does not necessarily give insight into the level of understanding 
possessed by the students, whereas more “why” questions might further have revealed 
the level of student learning. From the data, we cannot infer to what extent the teacher 
understands the affective causes for the students’ conceptions and beliefs concerning 
the mathematics at play in the lessons, which is a characteristic of the competency 
of revealing learning. 

Since assessment competency involves the ability to choose evaluation methods 
that reveal the students’ possession of mathematical competencies, we can argue that 
the teacher’s ability is partially lacking in this regard. Inquiring about the construction 
method in “how” questions only scratches the surface (e.g., lines 562–572), and may 
not allow assessment of whether or not the students have developed awareness of the 
fact that there are dependencies between objects in dynamical figures that decide the 
outcome of dragging. 

We are unable to significantly utilize the notions of cooperation competency and 
professional development competency in our case. In order to evaluate the teacher’s 
ability in relation to cooperation competency, we would need more data concerning 
the teacher’s cooperation with other colleagues. What we can report is that the teacher 
showed the ability to cooperate with the researcher in order to pursue the learning goal
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of the sequence. Since professional development competency concerns the teacher’s 
ability to identify and reflect on his own developmental needs in relation to the other 
five teaching competencies, we would need more information from the teacher to 
make a meaningful analysis, for example by carrying out a longitudinal research 
study where we observe the teacher’s professional development over time. 

10 Potentials for Networking KOM and TIO Bridged 
by JM 

The previous analyses in terms of KOM, TIO and justificational mediations may 
be seen as a first step in potentially reaching a greater degree of integration and 
synthesizing of these differently focused theoretical constructs, as per a networking 
of theories approach (Bikner-Ahsbahs & Prediger, 2014). While KOM’s competen-
cies for teaching are of a more general nature, and in no way explicitly deal with 
the circumstances surrounding the use of digital technologies in teaching, instru-
mental orchestration does exactly this. When different theoretical frameworks are 
combined—or networked—attention should of course be paid to the frameworks’ 
reciprocal coherence, and in case this exists, then at which level the different frame-
works are integrated. Prediger et al. (2008) introduce a “scale” of networking strate-
gies stretching from “ignoring other theories” to “unifying globally”. In terms 
of potential networking, our study would be located in between, consisting of 
the strategies for coordinating and combining, i.e., strategies mostly used for a 
networked understanding of an empirical phenomenon or piece of data, or strate-
gies for synthesizing and integrating (locally) which is when “theoretical approaches 
are coordinated carefully and in a reflected way [that] goes beyond understanding 
a special empirical phenomenon” (Bikner-Ahsbahs & Prediger, 2010, p. 496). The 
instrumental approach has proven well-suited for networking with other theoret-
ical constructs (Drijvers et al., 2013); also in relation to the KOM framework (e.g., 
Geraniou & Jankvist, 2019; Højsted, 2019, 2020). For that reason also, the instru-
mental approach’s construct for teaching, i.e., the instrumental orchestration, appears 
an obvious choice for networking with KOM’s six teacher competencies. Still, as 
the analysis of the empirical case illustrates, when it comes to networking aspects 
of these two aspects locally, a mediator may be needed. For us, the notion of justi-
ficational mediations served as such “glue” or better yet, as a way of bridging the 
frameworks of KOM and TIO. 

More precisely, the justificational mediations we observed the teacher using 
provided us with a window on which didactico-pedagogical competencies the teacher 
relied upon as well as choices of strategies to use, when orchestrating the teaching 
practices and students’ learning involving GeoGebra. We observed the teacher using 
GeoGebra’s features as a warrant to establish truth, but also observed students’ and 
teacher’s interactions involving experimentation by changing parameters in a given 
task and exploring the “instant feedback” received by GeoGebra. Furthermore, we
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noticed the teacher using GeoGebra as a tool for convincing students of certain math-
ematical facts, but also to highlight mathematical relationships. Such justificational 
mediations supported the teacher in promoting students’ mathematical reasoning by 
utilizing important features of the GeoGebra dynamic geometry environment. 

In that way, since justificational mediations pertain to the role of technology 
(here DGE) in relation to justifications, it became an analytical hinge between the 
instrument and the mathematical reasoning competency in play. It thus qualified our 
analysis of the teacher actions, allowing us to analyze which warrants and justifi-
cations were appreciated in the DGE teaching/learning situation, and if these were 
coherent with the learning aim of the teaching sequence—to utilize potentialities 
of the instrument to support development of mathematical reasoning competency. 
For example, when the teacher resorts to an authoritarian argument (JM3) in order 
to justify that midpoint C cannot move (line 572) it allows us to analyze that as 
an ineffective didactical performance (TIO) and a weakness in relation to teaching 
competency (KOM), because the action does not support the students to understand 
that derived points are locked in GeoGebra, i.e., the action does not support the 
intended instrumental genesis, and the justification is not coherent with the develop-
ment of reasoning competency. The example also served to illustrate that teaching 
competency and effective didactical performances are intricately connected with the 
teacher’s own knowledge of the potentialities of the instrument in relation to the 
mathematical aim, in this case, reasoning competency. 

Surely, the construct of justificational mediations need not be the only possible 
bridge, when combining KOM and TIO. Yet, in a teaching and learning situation 
where focus is on students’ work with DGE in relation to mathematical reasoning 
this made sense. If, however, focus had been more closely related to any other of the 
eight mathematical competencies of KOM (cf. earlier), then a different theoretical 
construct would potentially serve better as the “glue”. For example, if concerned with 
mathematical representations, Duval’s (2006) classification of semiotic registers and 
register shifts might make for a more obvious choice (e.g., Jankvist & Geraniou, 
2019). 

11 Conclusion 

Our aim was to consider the development of a somewhat networked frame to encapsu-
late the mathematics teacher’s practice in a technology rich environment. We wanted 
to reflect on how different theoretical frameworks and constructs (KOM, TIO and 
justificational mediations) help us capture what is at stake, but also how they comple-
ment each other in reaching successful learning outcomes for both students and their 
teachers. In order to argue that JM can act as a mediator between KOM and TIO, we 
showed, on the one hand, how JM can be used naturally in KOM and TIO separately, 
while on the other hand, how JM can be used as a “hinge” between KOM and TIO. 
As Prediger et al. (2008) claim:
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The empirical scope of theories can be widened by coordinating and integrating new aspects 
into its empirical component, seldom changing its core. One instance of this effect is the 
coordination of theories of different grain sizes as presented by Halverscheid (2008), Gellert 
(2008) and Arzarello et al. (2008) who could capitalize on the research of other traditions. 
(Prediger et al., 2008, p.165) 

Using KOM allowed us to maintain a focus on the didactico-pedagogical compe-
tencies for teaching. Using TIO supported us in maintaining a focus on the arte-
fact/instrument, i.e., GeoGebra. Finally, using justificational mediations allowed us 
to reflect upon the teacher’s mediations, when relying on their own mathematical 
competencies and their orchestrations in light of GeoGebra’s functionalities and the 
learning goals for students. Applying those three lenses, KOM, TIO and justifica-
tional mediations, enabled us to capture different levels of analysis, which could 
be a synthesizing result, as follows: KOM’s teacher competencies provide concepts 
to describe the practice of a mathematics teacher in broad terms, highlighting the 
competencies any mathematics teacher should possess. However, using the view of 
Instrumental Orchestration, it is possible to make a more fine-grained analysis of the 
context specific practice of the teacher in a technology rich environment. The empir-
ical scope of the KOM framework can thereby be widened by integrating aspects from 
TIO. Justificational mediations then support teachers in identifying the best strategies 
(or mediations) in utilizing both their mathematical competencies and their instru-
mental orchestrations in supporting students’ mathematical learning, which in the 
given empirical case, comprises reasoning competency. 
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Mathematical Competencies 
and Programming: The Swedish Case 

Kajsa Bråting , Cecilia Kilhamn , and Lennart Rolandsson 

1 Introduction 

The ongoing implementation of programming in school curricula around the world 
has been staged in various ways. For instance, in England, programming was made 
part of a new subject, “Computing”, whilst Finland and Sweden have adopted a blend 
of cross-curriculum and single subject integration with the strongest link to mathe-
matics (Bocconi et al., 2018; Mannila et al., 2014). In this chapter, we focus on the 
latter, that is, when programming is integrated in school mathematics. Specifically, 
we zoom in on the Swedish case where programming has been included in the math-
ematics syllabus in close connection to the core content of algebra, which makes 
the Swedish case unique (Kilhamn & Bråting, 2019). The aim of this chapter is to 
gain knowledge about how the Swedish way of implementing programming affects 
students’ opportunities to develop mathematical competencies. 

We will report on three different substudies from an ongoing Swedish research 
project concerning the implementation of programming in school mathematics 
(Bråting et al., 2021), discussing the new programming content in relation to some 
of the mathematical competencies developed by Niss and Højgaard (2019). The 
project as a whole is theoretically embedded in Chevallard’s (2006) framework of
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how knowledge is transposed between different instances of the educational system. 
Given that the implementation of programming is at an early stage, the project focuses 
on how the national curriculum is interpreted and operationalized in textbooks and 
teaching materials, and further by the teachers. 

In the first substudy, a programming task in a recently published Swedish textbook 
for secondary school is analysed in detail, focusing on semantic and syntactic aspects 
of concepts appearing in both mathematics and programming. In the second substudy, 
we report on Swedish mathematics teachers’ views of how programming can enhance 
students’ development of mathematical competencies. The substudy is based on 
interviews with twenty Swedish mathematics teachers who, as early adopters, teach 
programming within the frames of their ordinary mathematics lessons. Finally, in 
the third substudy, we describe how one of these teachers develops a lesson using 
programming for mathematical modelling. 

To explore in what ways programming could contribute to learning in mathematics 
we have used the KOM framework (Niss & Højgaard, 2019) as an analytical lens, 
looking for aspects of the described competencies in our data. Five of the eight KOM 
competencies were clearly visible in the data:

• Mathematical thinking competency is described as “involving the competence 
to relate to and pose the kinds of generic questions that are characteristic of 
mathematics” (Niss & Højgaard, 2019, p. 15) and to use and relate to mathematical 
statements in various roles and contexts.

• Mathematical problem handling competency includes posing and solving mathe-
matical problems, using different strategies and evaluating solutions.

• Mathematical modelling competency concerns situations where mathematics is 
used in contexts outside mathematics through construction and evaluation of 
mathematical models.

• Mathematical representation competency consists of the ability to interpret, make 
use of and move between a variety of representations, such as verbal, material, 
symbolic or graphic.

• Mathematical aids and tools competency concerns the ability to handle aids and 
tools for mathematical activity, including both traditional tools and a variety of 
digital technologies. 

We commence with a brief historical survey of how programming and digitaliza-
tion have made their way into the Swedish school curriculum. In order to clarify the 
Swedish case, we thereafter provide a comparison between the competencies from the 
KOM project based on Niss and Højgaard (2019) and the so-called abilities included 
in the Swedish national curriculum (Boesen et al., 2014; Swedish National Agency 
of Education, 2011). Finally, the three substudies are described and discussed. Each 
substudy ends with short takeaways summarizing the most important conclusions.
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2 Programming in the Swedish School Curricula 

The earliest signs of programming in Swedish school curricula appeared in the 1980s. 
The two topics Computer literacy (Swedish: Datalära) and Computing (Swedish: 
Datakunskap) were implemented in lower secondary school (grades 7–9) and upper 
secondary school (grades 10–12), respectively (Swedish National Board of Educa-
tion, 1983; 1984). In both the topics, societal aspects were emphasized whilst 
technicalities in coding were more or less suppressed (Rolandsson & Skogh, 2014). 

Computer literacy was taught at lower secondary and first year of upper secondary 
school within the two subjects Civics and Mathematics. At the time, it was unusual 
to find more than five computers per school (Söderlund, 2000), therefore the subject 
mainly focused on theory and coding with pencil and paper. In a detailed syllabus 
from 1984 (Swedish National Board of Education, 1984), it was made clear that the 
coding part should not receive too much attention. Instead, mathematics was to be 
in focus, in connection with problem-solving, and the time allocated to syntax and 
logics in programming languages was minimized. However, the syllabus embraced 
other topics as well: measuring and communicating with computers, computers in 
society and working with digital tools, that is, in modern terminology databases, 
word processing and spreadsheets. Considering that schools had to invest in computer 
technology, and that teachers were in desperate need of in-service training, Computer 
literacy received a slow start. Teachers also criticized the subject, arguing that it 
mainly concerned the translation of mathematical algorithms to code without any 
further reflections (Riis, 1987). 

Computing was taught at upper secondary school as a subject on its own. It 
comprised a diverse palette of topics, including fundamental knowledge about 
computers and computer programming principles, software development, numer-
ical methods and statistics, and their connection with society. The technical aspect of 
the subject was discussed amongst curriculum developers, who initiated the develop-
ment of a structural programming language (Comal) and a school computer (Compis) 
as a way to strengthen this aspect. At the time, software development was not part of 
any teacher training, which gave rise to a revised syllabus in 1984 where an extensive 
number of commentaries were added to the subject Computing. 

In the 1994 Swedish curriculum reform, Computer literacy was removed and 
the subject Computing was replaced with Programming, but only for a minority 
of students at upper secondary level (Swedish National Ministry of Education, 
1994a, 1994b). Computers were mentioned in various subjects, with a focus on 
the computer’s potentials for calculations, data processing, word processing and 
information retrieval. It was not until 2018 in connection to a revision of the Swedish 
2011 curriculum that programming reappeared as a mandatory topic, now through all 
school levels as an aspect of digital competence (Swedish National Agency for Educa-
tion, 2018). Digital tools are emphasized across the revised curriculum, whereas 
programming is pointed out specifically as a new content in the subjects Mathe-
matics and Technology. In particular, digital tools and programming are included in 
connection with mathematical concepts and methods:
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[…] pupils should be given opportunities to develop knowledge in using digital tools and 
programming to explore problems and mathematical concepts, make calculations and to 
present and interpret data. (Swedish National Agency of Education, 2018, p. 58) 

In the mathematics syllabus, programming is integrated in the core content of 
problem-solving in both lower and upper secondary school and in the core content 
of algebra in grades 1–9. Within the algebra content, stepwise instructions as a base 
for programming are introduced in grades 1–3, whilst in grades 4–9 the focus is 
on how algorithms can be created and used in programming. Moreover, in grades 
4–6, programming takes place in visual environments and in grades 7–9 in textual 
environments. 

3 Relating the KOM Competencies to the Swedish National 
Curriculum 

The Swedish national curriculum documents include a syllabus for mathematics that 
all schools are obliged to follow. Since 2011, the syllabus starts with a description 
of the overarching aims and a specific definition of five abilities (Swedish National 
Agency of Education, 2011; 2018). The formulation of these five abilities was much 
influenced by the development of theories about mathematical competencies that 
were prominent during the first decade of the twenty-first century (Boesen et al., 
2014; Kilpatrick et al., 2001; Niss & Jensen, 2002). The word ability (Swedish: 
förmåga) is in this context to be understood as a skill or a competence that develops 
over time through teaching and practice, not as an innate quality. 

To highlight similarities, we have compared the abilities defined in the Swedish 
syllabus with the competencies in the Danish competency framework (KOM) 
described by Niss and Højgaard (2019), and display an overview of the comparison 
in Table 1. 

The two categories of competencies described in the KOM framework (left column 
in Table 1) are visible, although implicit, in the Swedish syllabus. However, we note 
that in category 1, dealing with asking and answering questions in, with and about 
mathematics, the mathematical thinking competency does not have an equivalent in 
the Swedish syllabus. The ability closest related to a mathematical thinking compe-
tency is the “ability to use and analyse mathematical concepts and their interrela-
tionships”, which, of course, does not cover all that could be included in the KOM 
competency. 

In category 2, dealing with mathematical language and tools, procedural skills 
and the use of mathematical tools are described in quite different ways in the two 
documents. The KOM framework does not include procedural skills, claiming that 
“procedural skills are necessary but not sufficient for the exercise of a competency” 
(Niss & Højgaard, 2019, p. 20), whereas in the Swedish syllabus procedural skills 
are explicitly included in the abilities. In the ability to choose and use appropriate
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Table 1 A comparison between the Swedish syllabus for compulsory school, grades 1–9 (Swedish 
National Agency of Education, 2018) and the Danish competency framework (Niss & Højgaard, 
2019) 

Competency in the KOM project Mathematical ability in the 
Swedish syllabus 

Category 1: Posing and 
answering questions in and by 
means of mathematics 

Problem handling 
competency 

Ability to formulate and solve 
problems using mathematics and 
assess selected strategies and 
methods (include the choice and 
use of tools) 

Modelling competency 

Reasoning competency Ability to apply and follow 
mathematical reasoning 

Mathematical thinking 
competency 

Ability to use and analyse 
mathematical concepts and their 
interrelationships 

Category 2: Handling the 
language, constructs and tools of 
mathematics language and tools 

Representation 
competency 

Ability to use mathematical 
forms of expression to discuss, 
reason and give an account of 
questions, calculations and 
conclusions 

Symbols and formalism 
competency 

Communication 
competency 

Aids and tools 
competency 

Ability to choose and use 
appropriate mathematical 
methods* to perform 
calculations and solve routine 
tasks 

* Methods include the choice and use of tools, for example, digital tools and programming 

mathematical methods, mathematical representations are intertwined with the arte-
facts that are used to produce and work with them. What is meant by a mathematical 
method in the syllabus is unclear, but there are some examples given in the list of 
knowledge requirements, for example: “using symbols and concrete materials or 
diagrams” or “measurements, comparisons and estimates of length, mass, volume 
and times” (Swedish National Agency of Education, 2018, pp. 60–61). Such activ-
ities require the use of tools of different kinds, and students are assessed on their 
ability to choose, apply, account for and discuss their methods. 

In summary, the Swedish syllabus covers many of the competencies in the KOM 
framework, but describes them in terms of abilities, with an emphasis on the use 
of these abilities. Mathematical thinking is an implicit aim in the descriptions of 
abilities, but not explicitly mentioned, and the Aids and tools competency is implicitly 
included in the notion of “mathematical methods”. 

Considering the rapid increase of digital tools, including programming, in school 
mathematics, it is important to bear in mind how Niss and Højgaard describe digital 
tools as “particular kinds of material representations of mathematical objects and
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processes” (2019, p. 18). Some such tools have been developed primarily for math-
ematics education, such as dynamic geometry software like GeoGebra and Desmos. 
Others have been developed for programming, such as Scratch and Python. The 
fact that programming has been included in mathematics in the Swedish curriculum, 
gives rise to questions about in what way the tools used have bearing on mathematics 
and how their incorporation into the classroom practice will transform mathematics 
teaching and learning. 

4 Research Results 

In this section, three substudies taken from our research project about the integration 
of programming in Swedish school mathematics are presented and discussed in view 
of mathematical content and mathematical competencies. In the first substudy, we 
analyse a programming task in a recently published Swedish textbook of program-
ming in mathematics, intended for both lower and upper secondary school. In the 
second substudy, we report on Swedish teachers’ views on which mathematical 
competencies they think students can develop through programming. Finally, in the 
third substudy, we look closer at one of these teachers who demonstrates an activity 
where students learn patterns by using programming as a tool. 

4.1 Substudy 1: Programming in Teaching Materials 
for Mathematics 

This substudy is included in our project’s investigation of government produced 
teaching materials and commercially produced textbooks in mathematics. The selec-
tion of the material is made according to their popularity and diversity. Qualitative 
content analyses are conducted with respect to the programming content. Here, we 
will focus on a task in a newly published Swedish textbook about programming to 
be used within the subject mathematics (Sanoma Utbildning, 2018). The textbook 
offers students opportunities to learn the basics of the programming language Python 
whilst solving mathematical problems. The textbook consists of twelve lessons with 
examples and tasks, for which the students do not need any prior programming 
knowledge. The task considered here belongs to the lesson on nested instructions, 
that is, instructions that include other instructions. We selected the task as it demon-
strates semantic and syntactic differences between programming and mathematics. 
These differences will be described and discussed with respect to the mathematical 
thinking competency and the representation competency. 

The task consists of a program that finds all twin primes in the closed interval from 
2 to 100. A twin prime is defined as a pair of primes that differ by 2, for instance (3, 
5) and (41, 43). As Fig. 1 (lines 1–5) shows, the program begins to define a function
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Fig. 1 A program in Python that finds twin primes in the closed interval 2–100 

isPrime ( n) which tells whether a given integer n is a prime or not (n % x means 
n modulo x). Thereafter, in lines 7–10, the program loops through the interval 2– 
100 and uses the function isPrime to check for pairs of primes that differ by 2. 
Whenever twin primes are found by the code, the output will be displayed on the 
screen. 

4.1.1 Mathematical Thinking Competency 

We begin to take a closer look at the function isPrime (line 1–5). This function 
determines whether a given integer n is a prime by checking all possible dividers up 
to n itself. This is realized in a for loop where the function checks whether the result 
of the modulo operation n % x is equal to 0. That is, the function checks whether the 
remainder is equal to 0 after dividing the input value n with the variable x in the loop. 
The function returns the Boolean values True or False depending on whether the 
input value is a prime or not. Further down in the code, in line 9, the program calls 
the function isPrime to find out if the values a and b, respectively, are primes. 

Let us discuss the functionisPrime in view of the mathematical thinking compe-
tency, especially the part that involves the ability to relate to mathematical concepts 
in different contexts (see Niss & Højgaard, 2019). As Table 1 shows, this part aligns 
with the Swedish ability to “use and analyse mathematical concepts”. The func-
tion in this program shows some important semantic differences of a function in 
the contexts of programming and mathematics. In school mathematics, a function is 
always a relation between two sets of numbers, whereas in programming a function 
can return values that are non-numbers. In our task the function isPrime returns 
a Boolean, that is, either True or False (lines 4 and 5). Furthermore, in program-
ming a function does not need to be a relation. In this textbook, a function is defined 
as a number of lines of code that you can call later, which is exactly what happens in 
line 9 in our program. The tricky thing is that in programming a function can mean
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different things; sometimes it can refer to a mathematical function and sometimes to 
something that more resembles a process (Bråting & Kilhamn, 2021). 

In the Swedish case with programming integrated in the mathematics syllabus, the 
semantic difference between functions in mathematics and programming gets crucial. 
In Niss and Højgaard’s (2019) terminology, the scope of the function concept gets 
expanded when the domain where the function concept was first introduced gets 
enlarged. What they have in mind here is an expansion from functions defined by 
explicit algebraic expressions to functions defined in set-theoretic terms. That is, the 
meaning of the concept is the same, even though we can define functions in different 
ways. This is not the case in our example where the function concept actually has 
different meanings in the contexts of mathematics and programming. 

4.1.2 Representation Competency 

Another important semantic, as well as syntactic, issue is the usage of the equal 
sign in the program in Fig. 1. In line 8, the equal sign (=) in b = a + 2 represents 
an assignment. In programming, an assignment is realized by first evaluating the 
expression to the right-hand side of the equal sign. The resulting value is then assigned 
to the variable on the left-hand side. In our task, b is assigned the value you get by 
evaluating the expression a+2 (line 8). This usage of the equal sign differs from how 
it is normally used in mathematics, where the equal sign represents an equivalence 
relation. That is, the symbol “=” is included in both programming and mathematical 
notation, although representing different meanings (see also Altadmri & Brown, 
2015; Bråting & Kilhamn, 2021). 

To clarify this difference, the assignment b = a + 2 in line 8 in Fig. 1 will be 
compared with the relation b = a + 2 in the following mathematical problem: 

Alice (a) is 2 years younger than her sister Bea (b), together they are 18 years 
old. How old are Alice and Bea, respectively? 

This problem can be solved by letting b = a + 2 and a + b = 18, which leads 
to the solution a = 8 and b = 10. Here, the expression b = a + 2 represents the 
relation between Alice’s and Bea’s ages. It might be tempting to interpret this as 
an assignment as in line 8 in Fig. 1, but it is not. The difference is that, in contrast 
to an assignment, a relation holds all the time. Alice is always two years younger 
than Bea. The assignment b = a + 2 in line 8 is instead temporal. The first time 
we enter the loop, in line 7, a is equal to 2 and b is nothing. When we move on to 
line 8, a is still equal to 2 but b is now assigned the value 4. The second time we 
run the loop, in line 7, a is equal to 3 but b is still 4. In line 8, a is still equal to 3 
but b is now assigned the value 5. That is, a and b do not always differ by 2. An 
essential difference between programming and mathematics is that in programming 
everything is realized in stepwise instructions executed in order, one after the other. 
In mathematics, there exists no such time aspect (see Bråting & Kilhamn, 2021).
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Let us now focus on the two consecutive equal signs (==) in line 3 in Fig. 1. In  
Python, the symbol == is used as a relational operator that evaluates if two entities 
are equal. In our task the program tests if the result of the modulo operation n %  
x is equal to 0, that is, if the remainder is 0 after dividing the input value n with 
the loop variable x (line 3). Here, the meaning of the double equal sign (==) is  
similar to the meaning of the relational equal sign (=) in mathematical notation. 
This can be summarized as follows: In programming, the double equal sign (==) 
often represents a relational equality whilst the single equal sign (=) represents an 
assignment. In contrast, in mathematics the single equal sign (=) always represents 
a relational equality (see Bråting & Kilhamn, 2021). 

4.1.3 Takeaway from Substudy 1 

The program in Fig. 1 demonstrates both semantic and syntactic differences between 
mathematics and programming. First, the meaning of the function isPrime clearly 
differs from the meaning of a mathematical function. Second, the equal signs show 
that the same symbol can represent different meanings in programming and mathe-
matics. Third, the meaning of the double equal sign == corresponds to the meaning 
of the equal sign (=) in mathematical notation, that is, different symbols can represent 
the same meaning. An additional example of the third issue is the modulus operator 
in our program. It has the same meaning in mathematics and programming but is 
represented with different symbols; % in programming and mod in mathematics. 
Figure 2 summarizes this as it illustrates similarities and differences regarding the 
meaning of some operations (the semantics) and the symbolic representations of 
these operations (the syntax) in mathematics and programming.

Fig. 2 Syntactic and semantic similarities and differences of operators in mathematics and 
programming
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Our analysis shows that Niss and Højgaard’s description of representation compe-
tency in terms of “the ability to move between a wide range of representations of 
objects and symbols” (2019, p. 17) is essential when programming is integrated in 
mathematics.

4.2 Substudy 2: Teachers’ Views on Programming 
in Mathematics 

When programming was new in the Swedish mathematics syllabus, we interviewed 
twenty teachers who were identified as “early adopters” because they were enthusi-
astic about the implementation of programming in school and had started teaching 
it on their own accord. The teachers represented grades 1 through 9 (age 7–15) from 
schools in 14 different municipalities in various parts of Sweden, teaching mathe-
matics and sometimes also technology. Many of them had extended responsibility for 
implementing digital technology in their schools. Each interview took around 30 min, 
was audio recorded and transcribed. The interviews were semi-structured focussing 
the following general topics: teacher background and experience; the role of program-
ming in mathematics; important concepts; sources of inspiration; an example of a 
good lesson (Kilhamn et al., 2021). Each teacher was asked to describe at least one 
programming activity s/he identified as a good activity in mathematics, and to talk 
about what students learned through the activity. 

Programming, as it is described by the teachers, mostly refers to creating, debug-
ging or tinkering with a code, either unplugged (for example writing instructions for 
a friend or using a mini-robot with simple buttons), block coding in Scratch or text 
coding in Python. A few of the teachers do not make a distinction between “pro-
gramming” and “digital tools” such as Excel or GeoGebra, whilst others make that 
distinction clearly, emphasizing the fact that programming is new to them although 
digital tools in general are not, as one teacher says: “It is easier to make use of digital 
tools than actual programming”. 

In an attempt to understand which mathematical competencies these early adopters 
think students can develop through programming, a summative content analysis was 
conducted (Hsiu & Shannon, 2005), beginning with a word search on the transcripts. 
Every time one of the chosen words was mentioned by an interviewee, an excerpt was 
saved with the word embedded in its context. The words included in the search were 
words connected to competencies in the KOM framework or abilities described in the 
Swedish syllabus, that is, various inflections of the words displayed in Table 1 (i.e., 
thinking/to think). All excerpts including each specific word were then compiled, and 
a detailed analysis was made of the excerpts for the two most frequently used words. 
For each teacher, the excerpts were summarized and encapsulated in a condensed 
statement in English that captured the essence of his/her point of view. The statements 
were then compared and similar views were merged to create an overview of the 
different views that were represented in the data (Table 2).
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Table 2 Total number of instances of words found in the transcripts of 20 interviews 

Number of teachers (n = 20) Total number of instances 

Problem-solving 17 (85%) 35 

Thinking 16 (75%) 29 

Tool, digital tool 8 14 

Competence, digital competence* 7 13 

Concept, conception 7 13 

Ability (Swedish: förmåga) 5 8 

Communication 3 3 

Calculation 2 2 

method 1 1 

Reasoning, representation, forms of 
expression, model/modelling, 
procedure 

0 0 

* Including the Swedish term “digitalisering” when referring to students 

4.2.1 Mathematical Problem Handling Competency and Mathematical 
Aids and Tools Competency 

Problem-solving is mentioned in relation to programming 35 times in the data. Some 
teachers highlight that programming develops problem-solving ability, others talk 
about programming as a tool for problem-solving. 

1. Programming is mainly about problem-solving 

Teachers emphasize that students develop problem-solving strategies and ways of 
thinking that are valuable when solving problems in mathematics. This view includes 
descriptions of the problem-solving process as well as connections to logical thinking, 
exemplified here by a teacher who works in grades 1–3: 

Programming is logic as an aspect of problem-solving. Having a complicated problem that 
you do not quite understand, and then breaking it up into smaller sequences and solving 
one at a time. This is often too abstract in mathematics problems, but when it comes to 
programming it is the natural approach. When it doesn’t work they [students] find out why. 
They see the problem-solving process in a new way. I think this way of thinking can be 
useful even when working traditionally with pen and paper. 

2. Programming can be a tool for problem-solving 

Teachers who present this view emphasize that students first need to learn how to use 
the tool, which means that it is not until upper secondary school that students will 
actually use programming as a problem-solving tool. A teacher for grades 7–9 says: 

We solve problems using programming, but on this level you actually do not need program-
ming to solve the problems. Often pen and paper is actually quicker, even for the students. 
But later on, when they get to more complex problems, they might need programming. We 
do it on simple tasks to learn how, for later use.
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In addition to the two views described above, some teachers also talk about 
the different roles programming plays in different school subjects. In the Swedish 
curriculum programming is also included in technology, where teachers refer to 
the use of programming to solve real-world problems of a different, more practical 
character: 

Programming in technology is used more to solve problems. In mathematics it is more a tool 
for mathematical understanding, making it more difficult to find good examples in maths. 

Another teacher trivializes the role of programming in mathematics to that of 
coding, that is learning the tool, and then later applying the tool in technology: 

They learn coding in mathematics, so that they can use it later to program larger systems in 
technology. 

4.2.2 Mathematical Thinking Competency 

Although thinking is not mentioned at all in the Swedish syllabus, 75% of the early 
adopters talk about thinking in various ways connected to programming. It is clear 
that they see the development of students’ thinking as an important goal. They use 
different words to describe the ways of thinking that were supported by programming, 
where logical thinking and computational thinking were the most frequent. Here are 
some examples: 

Working with programming in a textbook usually misses the goal. The goal is logical thinking 
and problem-solving. Textbooks are often too simple and too superficial. (teacher, grades 
1–3) 

Logical thinking is an ability in mathematics. (teacher, grades 4–6) 

In the early grades it is mostly about computational thinking. Unplugged programming 
activities. They look for mistakes, they adjust, they try again, over and over. Once they get 
into computational thinking they can start programming and learn the tool. (teacher, grades 
4–6) 

Other aspects of mathematical thinking that are mentioned by the teachers in 
relation to programming are: sequential thinking, analytical thinking and algorithmic 
thinking. Furthermore, the teachers who talk about thinking often refer to several 
types of thinking at the same time, and frequently also in relation to problem-solving. 
A typical example is the following quote: 

Programming is all about logical thinking. I work with the six steps of computational thinking. 
Computational thinking, and working in small steps, that is precisely how we work with 
problem-solving. 

4.2.3 Takeaway from Substudy 2 

Teaching goals related to logical thinking and problem-solving seem to stand out 
when teachers embrace programming in mathematics. According to the teachers in 
this study, programming can enhance students’ problem-solving in different ways.
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Whether or not this is actually useful in school mathematics and enhances what Niss 
and Højgaard (2019) describes as Mathematical problem handling competency is still 
to be seen, since some teachers express concerns that programming is more useful for 
problem-solving in higher grades and/or in technology. It is clear that the inclusion of 
programming adds a new tool that students need to learn, thus providing opportunities 
for developing the Mathematical aids and tools competency. Furthermore, teachers 
acknowledge that programming provides many opportunities for students to develop 
Mathematical thinking competency. 

A difference between the teachers’ views and the curriculum is that the teachers 
do not emphasize using programming as a procedural method or as a tool for calcu-
lations, nor as a form of expression or a new system of representation. The results 
imply that the teachers and the curriculum are not very well aligned. 

4.3 Substudy 3: A Mathematical Pattern in Code, a Teacher’s 
Example 

In this substudy, we look closer at John, and his work on developing students’ 
modelling competency (Niss & Højgaard, 2019). John is one of the early adopters 
from the previous substudy. He has a long experience working with computers and 
shows confidence in using programming as a tool for teaching mathematics. In the 
interviews (substudy 2), we noticed that John’s teaching about patterns and general 
expressions differed from how it is normally done. We found that interesting and 
suitable for the scope of this chapter. 

Over the years, John and his students have used different programming environ-
ments such as Scratch, Micro:Bit and Arduino. Before the interview, John attended 
an in-service training course in programming. Further below, we describe a program-
ming activity adapted to students in grade 7, designed by John himself. It draws from 
the technical features included in Colaboratory, an online programming environment 
by Google. In previous lessons the students have worked with other patterns by hand 
in a traditional way. Together they also constructed a code in Python to describe a 
pattern where a configuration of markers grew each time with an additional three 
markers, starting with 5. Figure 3 shows the code they came up with: a sequence 
of instructions that computes and prints the figure number and its corresponding 
number of markers.

Fig. 3 Code for a pattern constructed in collaboration
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Fig. 4 Figures 1–3 depicting the pattern 

In the following activity, the students are asked to create a program that counts 
the number of white squares in the pattern illustrated in Fig. 4, for any given figure 
number.

According to John, the students usually accept the activity and deploy the program-
ming tools to compare the outcome with the number of white squares in each figure. 
John expects the students to explore and redesign the code through many iterations, 
and also wants them to add comments that explain each line in the code. Most of 
the students start with the previous code (see Fig. 3) and tinker with it, eventually 
working out the correct formula for the number of white squares (white_squares 
= 3* figure_number + 1). 

John then asks the students to change the code slightly, making it print the figure 
number for a large number of white squares, for example the figure number with 508 
white squares. According to John, this is a pivotal point as the activity transforms 
into a need for the mathematical abstraction of n. The students usually accept the 
challenge, even if the number of the figure is high and distant. The magic in the activity 
emerges as John tells them how to remix the code such that it traverses all the figures 
from one to a distant number (lines 1–3, Fig. 5). The abundance of information on the 
screen draws the students’ attention, as the answer can be extracted. One solution, 
commonly suggested by John’s students, is shown in Fig. 5. 

Finally, at the end of the lesson, John has prepared a revised version of the code 
(Fig. 6). It is a version where the user submits two numbers of white squares in two 
consecutive figures (stored in the two variables n1 and n2), and the value of the 
nth figure into another variable (theNthFigure ). The revised version prints the 
number of white squares in the nth figure. Although John considers that version too 
advanced for most of his students, he believes it will encourage them to see what is 
possible with code. 

Fig. 5 The code traverses all the figures from one to one hundred
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Fig. 6 The code handed to the students at the end of the lesson 

4.3.1 Modelling Competency 

According to John, textbooks in school commonly unfold the abstraction of the 
general number n in a pattern task without any deeper implications for students’ 
learning. It is common, he says, to start with some questions about the number of 
white squares in figures 1, 3, 10 and so on, then to ask, for example, for the figure 
number that holds 50 white squares. Finally, the textbooks usually ask for the general 
expression that gives the number of white squares in figure n. John claims that such 
activities make no sense to the students, and often they give up before they reach the 
general expression. 

In contrast, he encourages the students in the activity to discover and implement 
the mathematical abstraction implicitly, as they accept a challenge to tinker with 
the code to make it become the representation of the pattern. In that constructionist 
spirit, John expects the students to embrace the expression early on in the process, 
and develop a profound understanding of the general number n. In that manner, the 
students discover on their own that (1) there are actually different ways of writing 
the formula, (2) once you have the formula the program will give you all the other 
answers in no time. In this way, a general expression becomes a meaningful starting 
point rather than a meaningless end point of an activity. Furthermore, according 
to Duval (2006) the mere work of translating between the language of the code, 
natural language and conventional mathematical notation will increase the students’ 
understanding of the general expression. 

In the interview, John also emphasizes the importance of other competencies 
from computer science, as the students have to handle code errors (syntax, runtime 
and logic). According to John, skills in code debugging are important for learning 
mathematics, as such the students develop competencies related to perseverance and 
being meticulous. John challenges his students to initiate their own enquiries, and 
appreciates when some of the students take it to a higher level adding more code to 
suppress runtime and logic errors such as division by zero or input of non-numbers. 
Syntax errors do not necessarily have to do with mathematics, but can reveal insights 
as they draw attention to the details in the algorithm. Overall, an important feature 
of the activity is that it embraces error handling that challenges students to expand 
their knowledge as they develop mathematical modelling competency.



308 K. Bråting et al.

4.3.2 Takeaway from Substudy 3 

In this substudy, the teacher has exchanged the traditional way of introducing the 
idea of the nth number with an activity based on code remixing. Instead of letting the 
general expression become the end point of the task the teacher asks them to write a 
program where the general expression is the starting point. In the process of modi-
fying the code and critically analysing and evaluating what the code actually does, 
students have to deal with runtime and logical errors before the code could be used 
beneficially. The activity is a good example on how students apply a programming 
environment and a programming language to construct a mathematical model, and 
how they analyse, evaluate and make changes to that model. 

5 Concluding Remarks 

Considering the rapid implementation of programming in Swedish school math-
ematics and the fact that the teachers who now teach programming are educated 
mathematics teachers with very limited programming skills, we believe that the 
Swedish case is challenging. In this chapter, we have highlighted that Swedish 
teachers must have a thorough understanding of how mathematical concepts can 
be used and denoted in programming environments. Especially since semantics and 
syntax in mathematics and programming sometimes differ and sometimes overlap. 
When programming is integrated in the mathematics syllabus, the mathematical 
content obviously gets enlarged, but as we have demonstrated, the formation of 
mathematical competencies and abilities is also affected. 

All three substudies have shown how programming can be fruitfully employed to 
develop some of the mathematical competencies. In particular, we have found that 
teachers who are early adopters explicitly talk about problem-solving and mathe-
matical thinking competencies. The emphasis on mathematical thinking and logic 
is strikingly different from the learning goals described in the curriculum. The 
current Swedish national curriculum has been strongly influenced by standard-based 
curriculum reforms, where measurable outcomes are emphasized. Such a curriculum 
framework “gives precise accounts of the knowledge and skills that students are to 
achieve; a focus on assessment criteria that are aligned to this framework; and the 
introduction of high-stakes tests, such as exams based on specified performance 
requirements” (Sundberg & Wahlström, 2012, p. 348). Since mathematical thinking 
competency is not easy to define in terms of knowledge requirements and assess-
ment criteria, it follows that this competency is left out, in favour of the outcomes of 
thinking practices, expressed in terms of for example applying, choosing, using and 
evaluating. With programming now entering the scene, we see two quite different 
possible paths outlined by the curriculum and the early adopters: the curriculum 
emphasizes programming as a set of tools that students are to learn, whereas the
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teachers see it as an opportunity to develop mathematical thinking and problem-
solving skills. We hope the teachers’ voice will be the strongest in this choice of 
path. 
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Coordinating Mathematical 
Competencies and Computational 
Thinking Practices from a Networking 
of Theories Point of View 

Andreas Lindenskov Tamborg and Kim André Stavenæs Refvik 

1 Introduction 

Recently, we have seen renewed interest in computational thinking (CT) as a subject 
of relevance in mathematics education. For example, Norway, France, and Sweden 
now include CT and/or programming in their mathematics curricula. In research, one 
can also see studies of CT elements in mathematics education from both theoretical 
(e.g., Brennan & Resnick, 2012; Weintrop et al., 2016) and empirical perspectives 
(e.g., Benton et al., 2017, 2018; Borg et al., 2020; Buteau et al., 2020). These efforts 
to connect CT and mathematics are important if we are to constructively embrace the 
potential of CT with the continuation of existing practices in mathematics. Especially 
since CT remains an ambiguous term with several definitions—of which the majority 
give primary emphasis to computer science (e.g., Wing, 2006)—this chapter seeks to 
identify the most relevant mathematical competencies (MCs) for coordination with 
CT practices from a networking of theories point of view. Our starting point for 
this effort is Weintrop et al.’s (2016) taxonomy for computational thinking practices 
and Niss and Højgaard’s (2002, 2019) mathematical MCs. These frameworks are 
particularly well-suited to this purpose, since Weintrop et al.’s (2016) definitions 
are developed in science and mathematics contexts, and the KOM framework has 
become a widely acknowledged common point of reference for articulating MCs 
(Niss & Højgaard, 2019). By coordinating these theories, we identify and articulate
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the specific MCs that are most relevant when students engage in the CT practices 
described by Weintrop et al. (2016). We consider this an initial step in building an 
overview of the possible relevant connections to pursue when introducing CT to the 
mathematics classroom. We thus seek to answer the following research question: 
What MC and CT practices are relevant to coordinate from a networking of theories 
approach? 

We begin the paper by outlining existing studies on the relation between CT and 
mathematics education and situating the contribution of this paper in this context. 
Next, we describe the frameworks we intend to network and our approach to coordi-
nating them. Finally, we analyze the most relevant MCs in the CT practices described 
by Weintrop et al. (2016) as well as discuss the affordances and constraints of the 
individual frameworks as well as the benefits achieved from coordinating them. 

2 Related Work 

CT was first coined in Papert’s (1980) book, Mindstorms, where he introduced a 
simple programming language called LOGO. LOGO is a mathematical micro world 
where students can navigate an interactive landscape by means of mathematical 
thinking. For instance, students can navigate a turtle who would leave a trail in the 
micro world, which could be used to draw geometrical figures. Influenced by Piaget’s 
concept of constructivism, Papert’s main idea was that LOGO would enable students 
to learn mathematics by expressing their ideas in the micro world. Papert’s ideas, 
however, never had a mainstream break-through, and it was not until Wing (2006, 
2008, 2011) re-introduced CT as a relevant component of education that CT again 
gained traction. Wing (2006) modified Papert’s thoughts and defined CT as “the 
thought processes involved in formulating a problem and expressing its solution in a 
way that a computer—human or machine—can effectively carry out” (p. 33). Wing’s 
(2006) definition thus emphasizes computer science concepts, such as abstraction 
and algorithms; however, the impact of CT on core topic teaching and learning 
has increased the relevance of studying CT’s relation to mathematics. As argued by 
Geraniou and Jankvist (2019), digital competencies and MCs are not typically seen as 
a connected whole but as separate entities. They bridge this gap by networking theo-
ries [instrumental genesis (Drijvers et al., 2013) and conceptual fields (Vergnaud, 
2009)] for studying mathematics learning in technology-rich contexts. While this 
work considers digital MCs broadly, other studies have focused explicitly on CT in 
mathematics education. Pérez (2018) has e.g., argued that mathematics and CT histor-
ically shared a focus on logical structures and modelling (Gadanidis et al., 2017) but  
that mathematics and CT education exist within two distinct epistemological frames. 
The frame of mathematics is associated with being a mathematician and engaging 
in mathematical practices, while the frame of computational thinking emphasizes 
productive actions and their role in task optimization. However, several studies have 
indicated that integrating CT and mathematics can support students’ understanding 
of mathematical concepts (Calder et al., 2018; Caspersen et al., 2018; Cui & Ng,
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2021; Ejsing-Duun & Misfeldt, 2015; Husain et al., 2017), mathematical argumen-
tation (Kaufmann & Stenseth, 2021), and problem-solving (Ng & Cui, 2021). Most 
existing research however studies CT in relation to specific mathematical subject 
matter areas. The work of Weintrop et al. (2016), on which we build this chapter, is 
one exception. Their taxonomy identifies relevant CT practices in a mathematics and 
science context identified from tasks and interviews. This work describes CT prac-
tices that could be considered relevant for inclusion in mathematics teaching, with 
a secondary focus on how these practices relate to existing mathematics curricula. 
This chapter contributes to related literature by identifying the most relevant MCs 
for coordinating with these practices. Below, we introduce the frameworks we draw 
on to achieve this goal. 

3 CT  and  KOM  

Weintrop et al. (2016) define a taxonomy for CT practices in mathematics and science 
education. Their practices focus on computer science applications and aim to develop 
a foundation for discussing how CT relates to mathematics education. Their definition 
provides a set of actionable guidelines for teachers to follow when introducing CT 
to mathematics education as well as a shared language for teachers to better under-
stand and systematically develop their teaching practices (Weintrop et al., 2016). 
The definition features four main practices—data practices, modelling and simu-
lation practices, computational problem-handling practices, and systems thinking 
practices. Each practice includes five to seven taxonomic levels built from existing 
literature, educational activities and standards documents from the United States, 
and interviews with mathematicians and scientists (Weintrop et al., 2016). The prac-
tices are developed for a high school teacher audience and address their need to 
‘prepare students for potential careers in these fields’ (Weintrop et al., 2016, p. 128). 
By focusing on CT practices, the authors reach a definition that emphasizes what is 
relevant for highschool students to learn. Building on this work, this chapter seeks 
to identify the relevant MCs when students engage in these practices and thereby 
develop a stronger foundation for connecting CT to mathematics education. To do 
so, we coordinate these practices with the KOM framework. 

The KOM framework was introduced in 2002 and developed “the concepts of 
mathematical competence and mathematical competencies with particular regard to 
their possible roles in the teaching and learning of mathematics” (Niss & Højgaard, 
2019, p. 10). KOM includes eight MCs: mathematical thinking, problem handling, 
modelling, reasoning, representation, communication, tools and aids, and symbols 
and formalism. Niss and Højgaard (2002) describe their focus on competencies as an 
alternative to a traditional focus on curriculum content and as a framework that can 
be applied both descriptively and normatively. KOM is not intended to stand alone 
when designing lessons but to be combined with other subject matter areas, where 
the MCs can be weighted differently depending on the context (Niss & Højgaard, 
2019). The KOM framework does not pay explicit attention to the role of digital
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technology in mathematics (although technology plays a role in, e.g., the tools and 
aids competency); rather, it is concerned with identifying the components of being 
mathematically competent, and has led to the wide theoretical and empirical usage 
of the framework in research (see, e.g., Niss & Højgaard, 2011). In this chapter, we 
consider the KOM framework as a natural starting point from which to articulate 
possible relations between mathematics and CT due to KOM’s wide use and since it 
is recognizable to both educators and researchers in mathematics education. 

4 Method  

In our investigation of the most relevant MCs in CT practices, we build on the 
networking of theories tradition (Prediger & Bikner-Ahsbahs, 2014; Prediger et al., 
2008), which describes a number of ways (and degrees to which) of how different 
theories can be brought into the dialogue. We mainly draw on the coordinating theo-
ries approach, which is described as “well-fitting elements from different theories” 
(Prediger et al., 2008, p. 11), and it is recommended to include an analysis of the 
relationships between the different elements of these theories. Weintrop et al. (2016) 
describe new CT practices enabled by computational tools and their potential for 
students’ learning. The KOM framework, on the other hand, defines a number of 
general MCs that can be brought into play in a variety of combinations depending 
on the subject to be taught. We coordinate these theories using Weintrop et al.’s 
(2016) practices as a starting point, from which we analyze the most relevant MCs 
for coordinating. At each taxonomic level for the four practices, we carefully study 
each of the eight competencies. Through this process, we identify relevant competen-
cies based on both an immediate resemblance in wording (e.g., ‘problem-solving’, a 
term that appears in both KOM and CT) and on similar work processes or activities 
described in the two frameworks. An example of the latter is data visualization (level 
5 in the data practices taxonomy), in which we identified aspects of the mathematical 
representation competency to be highly relevant (e.g., when choosing an adequate 
representation of specific data). 

The KOM framework focuses on competencies, while the CT taxonomy focuses 
on practices. Consequently, it is important to point to the differences between compe-
tence and practice as concepts to coordinate them adequately. The KOM framework 
describes a competence as “someone’s insightful readiness to act appropriately in 
response to the challenges of given situations” (Niss & Højgaard, 2019, p. 12). In  
this respect, competencies exceed a mere skill or knowledge in that the competence 
concept emphasizes one’s ability to appropriately use abilities in a particular situa-
tion. In comparison, Weintrop et al. (2016) describe their understanding of practices 
as similar to that of the Next Generation Science Standards (NGSS): 

Following the example set by the NGSS, we have chosen to call these ‘practices’ as opposed to 
‘skills’ or ‘concepts’ in order ‘to emphasize that engaging in scientific investigation requires 
not only skill but also knowledge that is specific to each practice. (NGSS Lead States, 2013, 
p. 30)
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This definition of practices regards the ability to activate a combination of skills 
and knowledge. In this respect, CT and KOM differ in the emphasis given to appropri-
ately adapting abilities to a specific situation. What can be gained from coordinating 
CT and KOM is identifying how MCs can be relevant in ensuring students’ engage-
ment in CT practices is adapted to the specific situation in question. In addition to our 
analysis of the frameworks described above, we also include an example of how such 
coordination takes place (or could take place) in concrete mathematical tasks. We 
have found these tasks from relevant international sources to exemplify our claims. 

5 Analysis—Coordinating CT Practices and KOM 

5.1 Data Practices 

Weintrop et al.’s (2016) definition of data practices include students’ ability to 
propose systematic data collection, run simulations to create data, manipulate data 
with computational tools, analyze data, draw conclusions based on findings, and use 
computational tools to produce data visualizations. KOM does not treat data as an 
independent mathematical competency, but it is a subject area of statistics (Niss & 
Højgaard, 2002) and has been mentioned as relevant for the modelling competency 
(Niss & Højgaard, 2019) (Table 1). 

As seen above, we argue that the mathematical thinking and tools and aids compe-
tencies are relevant at all the taxonomic levels. Computational tools have changed 
how, at what speed, and what type data can be collected, and data collection uses 
computational tools for defining collection protocols as well as recording and storing 
data (Weintrop et al., 2016). Mastering the data practice will enable students to 
propose systematic data collection protocols and identify “how these can be auto-
mated with computational tools when appropriate” (Weintrop et al., 2016, p. 136). 
We find the tools and aids competency relevant to coordinate, since this MC focuses 
on choosing between different available computational tools and the ability to make

Table 1 An overview of the relation between data practices and MCs 

Thinking Problem 
handling 

Modelling Reasoning Representation Symbols 
and 
formalism 

Communication Tools 
and 
aids 

Data 
collection 

Creating 
data 
Manipulating 
data 

Analyzing 
data 
Visualizing 
data 
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constructive use of those chosen in a specific situation (Niss & Højgaard, 2019). 
Different tools are relevant in different phases of data collection (e.g., designing the 
collection protocol and data recording), and the tools and aids competency is relevant 
in determining the appropriate phase for individual tools. 

Collecting data also involves identifying adequate data sources and collection 
strategies. Here, we find the mathematical thinking competency relevant, since this 
MC includes the ability to relate to general questions specific to mathematics as well 
as to the types of possible answers to such questions. Data collection is typically 
associated with searching for an answer to a given question, and, to define appropriate 
data sources and collection strategies, the ability to relate to mathematical questions 
and answers and the relation between them is relevant. 

We find the modelling competency relevant in, for instance, creating data, which 
refers to using computational tools to generate data about phenomena that are theo-
retical in nature and cannot be easily observed/measured from existing data (Wein-
trop et al., 2016). This practice will typically involve aspects of modelling, since 
the phenomena data is created to explore needs to be described using mathematical 
concepts and language. This can be seen as constructing mathematical models of 
extra-mathematical situations by “taking various aspects data, facts, features and 
properties of the extra-mathematical domain being modelled into account” (Niss & 
Højgaard, 2019, p. 16). 

Manipulating data includes “sorting, filtering, cleaning, normalizing, and joining 
disparate datasets” (Weintrop et al., 2016, p. 136) that may serve analysis or commu-
nication purposes, which enables students to reshape datasets into more useful 
formats. When manipulating data for further analysis, we find it relevant to coor-
dinate with the representation competency. This MC includes the ability to interpret 
and translate representations of “mathematical objects, phenomena, relationships and 
processes, as well as of the ability to reflectively choose and make use of one or several 
such representations” (Niss & Højgaard, 2019, p. 17). It is relevant since, for instance, 
joining disparate datasets often includes identifying an appropriate representation for 
the multiple data sources in question. If the purpose is for students to communicate 
data more efficiently with others, we also find the mathematical communication 
competency relevant, which includes the ability to more clearly communicate data 
manipulations in various formats. 

The mathematical reasoning competency is, for example, relevant in data anal-
ysis. Data analysis can be achieved using different strategies, including “looking for 
patterns or anomalies, defining rules to categorize data, and identifying trends and 
correlations” (Weintrop et al., 2016, p. 136). Computational tools make it possible 
to conduct more reliable and efficient data analysis, which has become increasingly 
relevant due to the amount of large datasets. We also find the mathematical reasoning 
competency relevant to coordinate, since it includes the ability to analyze and develop 
arguments to justify mathematical data analysis claims—either orally or via writing 
(Niss & Højgaard, 2019)—and since identifying trends and correlations typically is 
accompanied by justifications.
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Example 

An example of how modelling and simulation practices and MCs are combined can 
be found in a course developed in Denmark called ‘Update Dices’.1 This course 
instructs students on how to model dice with different numbers of sides, run simula-
tions, and perform statistical analyses of how often more than half of the differently 
numbered dice will have the same pips under different conditions (e.g., where the dice 
has 3 or 6 sides and that there are 6, 100 or 150 dice). The task instructs students in 
modelling and simulating these operations using Excel spreadsheets and GeoGebra, 
in which there are also different representation tools to visualize the results of the 
simulations (e.g., histograms). Students are also introduced to the theorem in proba-
bility theory called the Law of Large Numbers, which states that the results of trials 
will move closer to the expected value of the trials with the more trials performed. 
By increasing the number of dice rolls in their simulations, students are able to 
explore this theorem in their own work. Students are thus both engaged in practices 
of collecting, creating, and analyzing data regarding dice rolls. In particular, the tools 
and aids and modelling competency are relevant here, since students use Excel to 
model the dice rolls, changing the model of the dice to represent a different number 
of pips with each trial. 

5.2 Modelling and Simulation Practices 

Modelling and simulation practices concern students’ abilities to ‘create, refine, and 
use models of a phenomenon’ (Weintrop et al., 2016, p. 136). Using computational 
models, students can design, build and assess mathematics and science models to 
understand a mathematical or scientific concept, find and test solutions, and assess 
the computational model’s capabilities and limitations. In this practice, we particu-
larly found the tools and aids, modelling, and problem-handling competencies to be 
relevant (Table 2).

The modelling competency is relevant to coordinate when using computational 
tools to understand a concept, which includes that new tools allow students to system-
atically interact and inquire phenomena in realistic, virtual environments with far 
more control than in the natural world (Weintrop et al., 2016). The modelling compe-
tency is relevant here, since using a computational tool to understand a concept 
includes analyzing the foundation and properties of the model as well as assessing 
the range of information that can be extracted from the model (Niss & Højgaard, 
2019).

1 https://xn--tekforsget-6cb.dk/wp-content/uploads/2020/09/Opdater-terninger-8.kl_.-matematik-
22.09.20.pdf. 

https://xn{-}{-}tekforsget-6cb.dk/wp-content/uploads/2020/09/Opdater-terninger-8.kl_.-matematik-22.09.20.pdf
https://xn{-}{-}tekforsget-6cb.dk/wp-content/uploads/2020/09/Opdater-terninger-8.kl_.-matematik-22.09.20.pdf
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Table 2 An overview of the relation between modelling and simulation practices and MCs 

Thinking Problem 
handling 

Modelling Reasoning Representation Symbols 
and 
formalism 

Communication Tools 
and 
aids 

Using 
computational 
models to 
understand a 
concept 
Using 
computational 
models to find 
and test 
solutions 
Designing 
computational 
models 

Constructing 
computational 
models 
Troubleshooting 
and debuggin

We also find the representation competency relevant, since using a model to 
decode a concept typically includes interpreting the mathematical representation 
of that concept in the model (Niss & Højgaard, 2019). The tools and aids compe-
tency is also relevant, since using a computational model often involves considering 
the affordances and constraints of the tools used to model the concept as well as 
reflectively operating and navigating within the model (Niss & Højgaard, 2019). 

Moreover, we find the reasoning competency relevant to coordinate with 
modelling and simulation practices. This MC is relevant at the third taxonomic 
level, assessing computational models, which relates to students’ understanding of 
the relation between a model and what the model represents. This taxonomic level 
also concerns whether elements of a phenomenon have been omitted, simplified, 
augmented, or decreased in a particular model. This practice allows students to 
understand and articulate a model’s validity by ‘identifying assumptions built into 
the model’ (Weintrop et al., 2016, p 137). Also, the reasoning competency is rele-
vant here since it includes analyzing or producing arguments (orally or in writing) to 
justify mathematical claims and considers both the ability to provide justifications as 
well as critically assess and analyze these proposed justifications (Niss & Højgaard, 
2019). Specifically, the ability to critically analyze and assess a proposed justification 
is relevant when students need to understand and articulate a model’s validity from 
the assumptions built into it. 

Lastly, we find the problem-solving competency relevant to coordinate with 
constructing computational models. This CT practice concerns encoding a model 
to aid computer interpretation—either in conventional programming or by “manip-
ulating graphical interfaces or defining sets of rules to be followed” (Weintrop et al., 
2016, p. 138)—which allows students to build models of their own ideas instead of 
re-using the work of others. The problem-handling competency concerns the ability 
to pose and solve mathematical problems, critically analyze and assess suggested
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and attempted solutions, and devise and implement strategies to solve problems. We 
find this competency relevant since constructing a computational model includes 
posing and solving mathematical ideas as well as developing and iteratively devising 
strategies to solve the specific problem at hand (Niss & Højgaard, 2019). 

Example 

An example of the relevance of coordinating of MCs and modelling and simulation 
practices can be found in a Danish task where grade 8 students were asked to construct 
a digital artifact that can detect and signal when the level of noise in a given room is too 
loud.2 Students were encouraged to measure the level of noise produced by different 
sounds and explore the relative noise of these sounds in different settings using a 
sound meter downloaded onto their mobile devices. They were also encouraged to 
develop a digital design based on the sound meter that prompts people to lower their 
voices when a high level of noise is detected. The task took the students through 
a number of iterations in which they assessed the digital artifact’s functionality. 
Through these iterations, the students tested, assessed the (re-) design of the artifact, 
and constructed computational models while simultaneously modelling the sounds 
into a measurable unit under the specific properties of the environment, which is at 
the core of the modelling competency. This task also exemplifies the relevance of 
the problem-handling competency, since, through the design iterations, the students 
critically analyzed and assessed their own attempted solutions to the problem of noise 
at their school and subsequently devised and implemented an improved strategy. 

5.3 Computational Problem-Solving Practices 

Computational problem-solving practice has a strong relation with computer science, 
and it is central to mathematical inquiry (Weintrop et al., 2016). Weintrop et al.’s 
(2016) version of problem-solving is derived from computer science and focuses 
on practices where computational tools play a central role. Engaging in these 
practices includes reframing the problems to be solved using computational tools 
as well as understanding, modifying, and creating relevant computer programs; 
assessing different approaches and solutions; developing reusable solutions; iden-
tifying, creating, and using computational abstractions; and troubleshooting and 
debugging (Table 3).

In our view, the problem-handling and tools and aids competencies are particu-
larly relevant to coordinate with the computational problem-solving practice. The 
problem-handling competency includes being able to pose or solve mathematical 
problems, the critical analysis and evaluation of one’s own and others attempts to 
solve a problem, and devising and implementing problem-solving strategies (Niss &

2 https://xn--tekforsget-6cb.dk/wp-content/uploads/2020/09/R%C3%B8de-%C3%B8rer-5.kl-mat 
ematik-22.09.20.pdf. 

https://xn{-}{-}tekforsget-6cb.dk/wp-content/uploads/2020/09/R%C3%B8de-%C3%B8rer-5.kl-matematik-22.09.20.pdf
https://xn{-}{-}tekforsget-6cb.dk/wp-content/uploads/2020/09/R%C3%B8de-%C3%B8rer-5.kl-matematik-22.09.20.pdf
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Table 3 An overview of the relation between computational problem-solving practices and MCs 

Thinking Problem 
handling 

Modelling Reasoning Representation Symbols 
and 
formalism 

Communication Tools 
and 
aids 

Preparing problems 
for computational 
solutions 
Programming 

Choosing effective 
computational tools 

Assessing different 
approaches/solutions 
to a problem 
Developing modular 
computational 
solutions 
Creating 
computational 
abstractions 
Troubleshooting and 
debuggin

Højgaard, 2019). Weintrop et al.’s (2016) computational problem-solving prac-
tice does explicitly include elements in this regard (e.g., modifying and creating 
computer programs capable of solving problems, assessing approaches and solutions, 
and reframing problems to be solved through computational tools and debugging); 
however, these practices always take place in digital environments or involve digital 
tools. Therefore, the mathematical tools and aids competency is equally relevant in 
this practice. Specifically, this competency involves constructively using tools and 
aids in mathematical work and choosing between different types based on their affor-
dances and limitations. This MC is pivotal in computational solving practices and 
at the very core of several of this practice’s taxonomic levels—especially the third 
taxonomic level (choosing computational effective tools) in it’s considering ‘require-
ments and constraints of the problem and the available resources and tools’ (Weintrop 
et al., 2016, p. 139). This level thus clearly relates to students’ ability to pay attention 
to the affordances and limitations of tools and aids in relation to a particular problem 
at hand. At the fourth taxonomic level (assessing different approaches/solutions to a 
problem) the problem handling and tools and aids competencies are likewise relevant, 
since assessing computational problem-solving strategies will facilitate students’ 
ability to consider how the strategies’ use of tools relate to the problem at hand. 

As shown in Table 3, we argue that, at the second taxonomic level (program-
ming), the symbols and formalism competency is relevant to coordinate in addition 
to the problem handling and tools and aids competencies. In Weintrop et al.’s (2016) 
work, programming includes the ability to understand and create programs—both 
from scratch and by modifying programs developed by others and understanding 
general programming concepts (i.e., conditional logic, iterative logic, and recur-
sion). In this practice, we consider the symbols and formalism competency relevant 
to coordinate, since it concerns “the ability to relate to and deal with mathematical 
symbols, symbolic expressions and transformations, as well as with the rules and
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theoretical frameworks (formalisms) that govern them” (Niss & Højgaard, 2019, 
p. 17). Programming languages are an integral part of programming, and, although 
the symbols in programming languages are not identical to mathematical symbols, 
students require the ability to decode and employ symbolic expressions and trans-
formations in a mathematical context, which relates to the symbols and formalism 
competency (Niss & Højgaard, 2019). 

The competencies relevant to coordinate with this CT practice is in developing 
modular computational solutions, which Weintrop et al. (2016) describe as making 
it easier to ‘incrementally construct solutions, test components independently, and 
increase the likelihood that components will be useful in future problems’ (p. 139). 
This level concerns students’ practice of focusing on the individual parts of a solution 
to a problem as well as understanding how they affect the overall solution and can be 
integrated as components of solutions in future problems. Mastering this practice will 
enable students to “develop solutions that consist of modular, reusable components 
and take advantage of the modularity of their solutions in both working on the current 
problem and reusing pieces of previous solution when confronting new challenges” 
(Weintrop et al., 2016, p. 139). Here, we find the modelling competency relevant. This 
MC focuses on implementing mathematics when dealing with ‘extra-mathematical 
questions, contexts and situation’ (Niss & Højgaard, 2019, p. 16) and includes both 
the ability to construct as well as critically analyze and evaluate models by consid-
ering the data, facts, features, and properties of the extra-mathematical domain. In 
the practice of developing modular computational solutions, this competency is rele-
vant, since students need to consider how to modularly address the data, properties, 
and features of the problem to modularly solve it. 

Creating computational abstractions is defined as “the ability to conceptualize and 
represent an idea or a process in more general terms by foregrounding the important 
aspects of the idea while backgrounding less important features” (Weintrop et al., 
2016, p. 139), and it enables students to ‘identify, create and use computational 
abstraction’ (ibid., p. 140). Here, we find the mathematical thinking, representation, 
and communication competencies relevant. According to Niss and Højgaard (2019), 
the mathematical thinking competency involves “relating to and proposing abstrac-
tions of concepts and theories (…) of claims” (p. 15). In creating computational 
abstractions, the ability to interpret, translate, and move between representations, 
which are key aspects of the representation competency (Niss & Højgaard, 2019), is 
relevant. Moreover, when students are required to engage in written, oral, or visual 
mathematical communication in different genres to construct abstractions of an idea, 
the communication competency is also relevant. 

Example 

To exemplify our findings, we draw on a mathematical problem from a Swedish 
textbook in mathematics3 that challenges students to use Python as a computational 
tool to solve it. The problem we used is called ‘pattern with coins’. The students are

3 Translated from ‘Mönster med Mynt’ from the book, Räkna med kod, published by Sanoma 
Utbildning (2018). 
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first introduced to three figures with the coins (The first figure has one 10-coins and 
four 1-coins, the second figure has two 10-coins and six 1-coins, the third figure has 
three 10-coins and eight 1-coins). 

The problem poses six tasks for the students. In tasks 1 and 2, students are asked 
to figure out how many coins the fourth and the fifth figure would have. The third task 
presents students with a number sequence (5–8–11–14), which matches the number 
of coins in the figures, and a program written in Python, which prints the ten first 
numbers in the number sequence. The students are asked to modify the program to 
print the 100 first numbers in the sequence. Furthermore, after that, students are to 
modify the program to write only the numbers in the sequence that are less than 100. 
In the fourth task, the students are asked to find how many coins are used in figure 
number 100. For the fifth task, students are asked to develop a program where one 
puts in the figure number, and the program prints the number of coins in the figure 
and the value of the coins in the figure. The sixth and final task is to identify how 
many coins one needs to build all the figures from number 1 to 100 and find how 
much the coins are worth. 

A central part of the task is that students solve it using Python; it therefore relates 
to preparing the problem for computational solving and programming. The task also 
exemplifies the relevance of the problem handling and tools and aids competencies; 
the problem-handling competency is relevant, since it features the ability to solve 
both open and closed problems formulated individually and in groups. Since the 
problem is solved using Python, the tools and aids competency is also relevant in 
terms of students making constructive use of it to handle the mathematical problem 
in question. 

5.4 Systems Thinking Practices 

Systems thinking practices concern understanding, assessing, and designing systems 
and students’ ability to systematically understand a complex system and the relation-
ships among its parts. It includes communicating information about, defining, and 
managing the complexity of systems. While the other CT practices in Weintrop et al.’s 
(2016) framework seems to have several clear overlaps with mathematics education, 
this practice perhaps appears slightly more foreign to our understanding of conven-
tional mathematics education. Likewise, and contrary to the other taxonomic levels of 
CT, systems thinking is not addressed explicitly in the KOM framework. However, 
we find several MCs to coordinate with this practice, specifically the modelling, 
tools and aids, reasoning, and communication competencies. The modelling compe-
tency features the ability to construct and critically analyze/evaluate existing models 
(Niss & Højgaard, 2019). As mathematical models often have several parts, this MC 
is relevant, since constructing or analyzing models will include the ability to manage 
these parts’ relations. Table 4 illustrates our interpretation of the most relevant MCs 
to coordinate with Weintrop et al.’s (2016) systems thinking practices.
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Table 4 An overview of the relation between systems thinking practices and MCs 

Thinking Problem 

handling 

Modelling Reasoning Representation Symbols 

and 

formalism 

Communication Tools 

and 

aids 

Investi gating 

complex 

systems as a 

whole 

Understanding 

the relationship 

within a system 

Thinking in 

levels 

Communicating 

information 

about a system 

Defining 

systems and 

managing 

complexity 

As evident in Table 4, the great relevance of coordinating the reasoning compe-
tency with systems thinking practices can be observed. Specifically, the reasoning 
competency involves the ability “to analyse or produce arguments (i.e., chains of 
statements linked by inference) put forward in oral or written form to justify mathe-
matical claims” (Niss & Højgaard, 2019, p. 16). We consider this ability to be rele-
vant in justifications of how the different elements of a system interact (the second 
taxonomic level), which Weintrop et al. (2016) defines as “the ability to identify the 
different elements of a system and articulate the nature of their interactions” (p. 141). 

The communication competency is relevant to coordinate with the taxonomic 
level, communicating information about a system. Weintrop et al. (2016) describe 
this practice as “the ability to communicate information of what has been learned 
about a system in a way that makes the information accessible to viewers who do 
not know the exact details of the system from which the information was drawn” 
(p. 141), and it also includes developing effective visualization and infographics. 
Niss and Højgaard (2019) describe this competency as engaging in communication 
about different mathematical concepts with precision. When taught in a mathematics 
education context, the communication competency is thus relevant to maintain this 
precision. As this taxonomic level also includes efficiently using visual communica-
tion to justify a chain of statements about the system, the tools and aids competency 
is also relevant to the use of various tools for effective visual communication as well 
as the selection of an appropriate tool in this regard based on in its affordances and 
constraints. 

Example 

In this section, we elaborate on the connections between the KOM framework and 
systems thinking practices at each taxonomic level, exemplifying some of these 
connections using a specific problem (Fig. 3) from PISA’s 20034 problem-solving

4 https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/testqu 
estions-pisa2003.htm. 

https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/testquestions-pisa2003.htm
https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/testquestions-pisa2003.htm
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section. In the presented problem, students are instructed to develop a library system 
using a flowchart, which we consider a systems thinking practice (as described by 
Weintrop et al., 2016). The main practice involved in this problem is understanding 
a system as a whole and communicating information about that system. In order to 
develop a solution to this problem, students need to understand how the different 
parts of the system are included in the flowchart and therefore understand the system 
as a whole while also creating a clear visual presentation of their solution. In this 
problem, we view the mathematical communication and reasoning competencies as 
relevant, as the communication competency could help the students with precision 
in visualizing the solution and use the visualization to efficiently make a justification 
for that solution, which could then invoke the mathematical reasoning competency. 

6 Discussion 

Weintrop et al. (2016) explicitly aim to augment existing pedagogy and curricula 
rather than radically change existing practices. From a mathematics education point 
of view, their descriptions of CT practices are relevant in mathematics teaching and 
there are expected benefits of teaching them to students. Their definition does not, 
however, explicitly address what mathematical capabilities are required of students 
to engage in these practices and achieve their goals. While the taxonomy helps in 
de-mystifying CT in mathematics and science contexts by identifying the concrete 
practices it encompasses, it leaves the relations among these practices and existing 
mathematics education relatively un-articulated. Thus, for mathematics teachers, it 
is still not obvious how and to what extent their current teaching is relevant for CT. 
KOM, on the other hand, focuses on MCs from a relatively mathematics-centred and 
a historic point of view. It is in part this aspect of the framework that makes it such a 
useful place for stakeholders in mathematics education to meet conceptually. Since 
2002, when KOM was first published, it has become clear that mathematics education 
is likely to be subjugated to changes outside of mathematics, exemplified by the role 
of CT in the mathematics curriculum of several countries. CT is, however, still an 
ambiguous term with several competing definitions, which makes it problematic 
to compare it with traditional, well-known subject matter areas, such as algebra and 
statistics. By building on Weintrop et al.’s (2016) definition of CT practices specific to 
mathematics and science teaching and coordinating this with KOM, we have taken the 
initial steps in articulating the MCs that would enable stronger cohesion and greater 
synergy when integrating CT in the mathematics classroom. Overall, our analyses 
found several MCs to be relevant in this regard, with the tools and aids, modelling, 
and the problem-handling competencies identified as specifically important. In the 
tools and aids competency, the ability to assess usage and reflectively choose among 
several available tools has become increasingly important as the question is often 
rather which tool to use rather than whether to use a tool. Modelling also appears as a 
relevant competency for most of Weintrop et al.’s (2016) practices—and not only the 
modelling and systems thinking practice, as might be assumed. There are thus several
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overlaps with both constructing and analyzing computational models “whilst taking 
purposes, data, facts, features and properties of the extra-mathematical domain being 
modelled into account” (Niss & Højgaard, 2019, p. 16). 

We have used example activities and problems to show how the connection 
between MCs and CT practices could be relevant. However, the connections we 
propose are not explicit within the examples, meaning that teachers themselves have 
to identify the possible MCs invoked while engaging in different CT practices. We 
believe that our work contributes to teachers’ ability to identify the possible links 
between CT and KOM within a mathematical context. However, we see this as a 
challenge for them due to their reported lack of confidence in teaching CT in mathe-
matics (Vinnervik, 2022). Therefore, we argue that this chapter can help change the 
focus on specific tools to instead focus on what is in it for mathematics and how CT 
could play a role in developing students’ MC. 

Previous studies connecting CT and mathematics have found that there is no guar-
antee that combining these subjects will increase students’ mathematical capabilities; 
however, systematic efforts to train students in CT using high-quality teaching mate-
rials can lead to progress in students’ CT capabilities (Boylan et al., 2018). As shown 
in this chapter, mathematical competencies have the potential to support students in 
their appropriate use of CT practices, tools, and work processes in a situation-specific 
manner. Likewise, the current trends in international education policy are likely to 
call for more studies on how mathematics education can benefit from CT. As indi-
cated by previous studies in contexts where CT is integrated in the mathematics 
curriculum, teachers report not feeling confident teaching this subject (Vinnervik, 
2022). This chapter has investigated and articulated the relations between CT prac-
tices and MCs, providing an initial theoretical basis from which to conduct a more 
in-depth analysis into domain-specific areas of mathematics. It is thus our hope that 
this chapter can represent a first step toward investigating what existing mathematics 
education practices that are relevant in a CT context, thus making CT more accessible 
to teachers than what seems to be the current case. 

7 Conclusion 

This chapter sought to address the following research question: What MCs and CT 
practices are relevant to coordinate from a networking of theories approach? 

The most relevant MCs activated when engaging with the CT practices described 
by Weintrop et al. (2016) were found to be mathematical aids and tools, mathemat-
ical modelling, and problem handling. The CT taxonomy focuses on how computa-
tional tools can support and enrich students’ mathematics and science development. 
This leads to the mathematical aids and tools competency playing a vital role when 
engaging in CT practices, especially digital technology. From investigating relevant 
MCs to coordinate with CT practices, we see that CT practices could reach their full 
potential through the activation of different MCs. We also found that the mathematical
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representation, thinking, reasoning, representation, and communication competen-
cies could also potentially complement students’ abilities in the practices described 
in the CT taxonomy. 

This chapter provides insight into articulating CT in the context of mathematics 
education and MCs. In our analysis, we found that there is potentially useful connec-
tions between CT practices and MCs from a mathematical education perspective. 
However, there is a need for more empirical studies investigating how engaging in 
CT practices plays a role in developing students’ MCs and the relation between these 
within the mathematical classroom. 
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A Rich View of Mathematics Education 
and Assessment: Mathematical 
Competencies 

Ross Turner , Dave Tout , and Jim Spithill 

1 Introduction 

As this chapter discusses and uses terminology about test development, and closely 
references PISA, this section provides some background information. Every three 
years the PISA survey provides comparative data on the performance of 15-year-olds 
in reading, mathematics and science literacy. In each PISA survey administration, 
one of the domains is the focus. Its framework and assessment are reviewed and new 
assessment content developed. In PISA 2012, mathematics was the major domain, 
and new framework and test development occurred, with the test development shared 
across seven different test development teams spread across the globe. 

PISA defined mathematical literacy as ‘An individual’s capacity to formulate, 
employ, and interpret mathematics in a variety of contexts. It includes reasoning 
mathematically and using mathematical concepts, procedures, facts and tools to 
describe, explain and predict phenomena. It assists individuals to recognise the role 
that mathematics plays in the world and to make the well-founded judgements and 
decisions needed by constructive, engaged and reflective citizens.’ (OECD, 2013a). 

The framework that sits behind PISA establishes the parameters that need to be 
met by the test developers in writing the assessment tasks and questions. In PISA, 
and in other assessments, the tasks begin with a stimulus (see, for example, the three 
sample assessment questions in Figs. 1, 2 and 3). One or more questions then follow 
based on the same stimulus material. The set of questions that derive from the same

R. Turner (B) · D. Tout · J. Spithill 
Australian Council for Educational Research, Melbourne, Australia 
e-mail: ross.turner@acer.org 

D. Tout 
e-mail: dave@multifangled.com.au 

J. Spithill 
e-mail: jimspithill48@gmail.com 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
U. T. Jankvist and E. Geraniou (eds.), Mathematical Competencies in the Digital Era, 
Mathematics Education in the Digital Era 20, 
https://doi.org/10.1007/978-3-031-10141-0_18 

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10141-0_18&domain=pdf
http://orcid.org/0000-0003-0212-5360
http://orcid.org/0000-0002-2398-9072
http://orcid.org/0000-0001-7086-4718
mailto:ross.turner@acer.org
mailto:dave@multifangled.com.au
mailto:jimspithill48@gmail.com
https://doi.org/10.1007/978-3-031-10141-0_18


330 R. Turner et al.

CLIMBING MOUNT FUJI 
Mount Fuji is a famous dormant volcano in Japan. 

CLIMBING MOUNT FUJI: Question 2 

The Gotemba walking trail up Mount Fuji is about 9 kilometres (km) long. 

Walkers need to return from the 18 km walk by 8 pm. 

Toshi estimates that he can walk up the mountain at 1.5 kilometres per hour 
on average, and down at twice that speed. These speeds take into account 
meal breaks and rest times. 

Using Toshi’s estimated speeds, what is the latest time he can begin his 
walk so that he can return by 8 pm? 

........................................................................................................................... 

© OECD Publicly released PISA questions. See: 
http://www.oecd.org/pisa/pisaproducts/pisa2012-2006-rel-items-maths-ENG.pdf 

Fig. 1 Climbing Mount Fuji: question 2 (OECD, 2013b, pp. 19–21) 

stimulus makes up what is called a unit or task. Test developers often use the word 
item to refer to the stimulus and each individual associated question within a unit, 
and this term is used throughout this chapter. In PISA, for the main focus domain, 
hundreds of new items are written. These items are then used in what is called a 
Field Trial in all participating countries. This is critical in the quality assurance 
processes used in PISA, as it enables all the tasks and items to be checked for their 
measurement properties and checked regarding language and cultural factors. The 
quality assurance process also saw all participating countries review all proposed 
test material, providing feedback on such matters as accessibility to their 15-year-
old learners, and hence having input into the items finally selected for inclusion in 
the survey. Only the best-performing items are used in the final, Main Study. 

The other critical role of the Field Trial is that the statistical methods used allow a 
large number of questions (items) to be placed on the same scale of difficulty relative
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to each other, independent of the students taking the test. This is referred to as the item 
difficulty. This is critical because it enables a broad, representative spread of items to 
be selected for the Main Study so that all students, whatever their assumed abilities, 
can be catered for across the many, varied countries that participate in PISA. After 
the Main Study, new item difficulties are calculated, and this allows the construction 
of described proficiency scales, used for reporting of PISA outcomes, and the profile 
of aggregated abilities of the students in each participating country can be estimated 
more accurately against different levels or bands on the reporting scale. 

2 PISA and the KOM Competencies 

Significant initial collaboration occurred between researchers working across both 
PISA and the KOM framework. PISA was first administered in the year 2000, and 
this was also the year in which the ‘KOM task group’ was established, as introduced 
and described in Niss (2003). 

… a committee was appointed in Denmark in 2000, by the Ministry of Education and other 
official bodies, to conduct a project to explore the terrain of mathematics teaching and 
learning and to see what could be done to improve the state of affairs. The project was given 
the name ‘the KOM project’ (KOM – in Danish – stands for ‘Competencies and the Learning 
of Mathematics’). The committee, which was chaired by the author of this paper, published 
its official report in October 2002. (p. 117) 

An endnote in that paper refers to the close connection between the KOM project 
and the then-nascent PISA assessment of mathematics: 

It should be noted that the thinking behind and before the Danish KOM project has influenced 
the mathematics domain of OECD’s PISA project, partly because the author is a member of 
the mathematics expert group for that project. That influence is reflected in PISA’s notion of 
mathematical literacy and its constituents. (Niss, 2003, p. 124) 

To clarify the terminology in use in this chapter about the competencies, we note 
following Niss and Højgaard (2019) that overall mathematical competence comprises 
a set of eight specific mathematical competencies, through which an individual enacts 
their mathematical knowledge and skill in response to some mathematical challenge. 
This volume provides a perspective on some of the links between those eight ‘KOM 
competencies’ and the development and implementation of the PISA mathematics 
framework and assessment, particularly over its early years of operation. We also 
note a somewhat different and shifting terminology used in the PISA context to 
capture more or less the same ideas. 

For the current purpose, we note the close similarity between the KOM compe-
tencies and the original conception of competencies within PISA (OECD, 1999). 
However, we wish to focus largely on the KOM-inspired set of competencies that 
were referred to by the OECD assessment framework for PISA 2012 (OECD, 2013a)
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as ‘fundamental mathematical capabilities’. These competencies underpinned the 
PISA 2012 assessment of mathematics, including both the component delivered in 
traditional paper-based form in each PISA survey administration to date, delivered to 
65 participating countries/economies and the innovative computer-based assessment 
of mathematics (CBAM) that was undertaken in 2012 by 32 participating coun-
tries/economies. Our objective is to show how the KOM competencies were used in 
the PISA assessment context, and, for example, how this may help reduce the risk of 
a narrow focus on lower-order mathematical procedural skills and knowledge that is 
a hallmark of so much of elementary mathematics teaching, learning and assessment. 

The influence on PISA mathematics of the thinking and work underlying the KOM 
project can be seen in the initial PISA mathematics assessment framework, and in 
the several subsequent frameworks that guided PISA implementation over its first 
two decades (see OECD, 1999, 2004a, 2004b, 2013a, 2019). 

For further background to the design and operation of PISA in its early years, an 
overview of PISA is provided in Turner and Adams (2007). 

3 The Appearance and Application of Competencies 
in the PISA Context 

The opening stanza of the OECD’s framework for the inaugural PISA mathematics 
assessment that took place in 2000 reads as follows: 

The mathematical literacy domain is concerned with the capacity of students to draw upon 
their mathematical competencies to meet the challenges of the future. (OECD, 1999, p. 41) 

Eight mathematical competencies are then listed and described (OECD, 1999, 
p. 43), which is essentially an early version of what became the KOM competencies. 
The eight initial PISA competencies are labelled thus: mathematical thinking skill ; 
mathematical argumentation skill; modelling skill; problem posing and solving skill; 
representation skill; symbolic, formal and technical skill; communication skill; and 
aids and tools skill. With some modifications,1 that set of mathematical competencies 
remained as one of the major organising principles underpinning the assessment 
frameworks for the triennial PISA assessments of mathematics from 2000 through 
to 2018. 

As the implementation of PISA unfolded during the first decade of this millen-
nium, the mathematics component of PISA underwent something of a change in 
its emphasis. In the first PISA implementations, particularly reflected in the 2003 
assessment when mathematics first took its turn as the major assessment domain,

1 For the PISA 2012 framework, seven ‘fundamental mathematical capabilities’ are listed (commu-
nication; mathematising; representation; reasoning and argument; devising strategies for solving 
problems; using symbolic, formal, and technical language and operations; using mathematical 
tools). These directly reflect seven of the eight KOM competencies, with the KOM ‘mathematical 
thinking competency’ not included. 
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part of the development of the mathematics component focused on three ‘compe-
tency clusters’ as the key way of thinking about cognitive mathematical demand. 
After the 2003 assessment, in the years leading up to the 2012 implementation when 
the mathematics domain again took centre stage as the main component of PISA, 
the individual competencies were placed much closer to the centre of activity. This 
affected at least two aspects of the PISA survey: the way student accomplishment 
on the PISA mathematics survey was reported; and the approach taken by the test 
developers to their assessment item development task. 

Note that the set of competencies referred to in the PISA 2012 framework were 
labelled as ‘fundamental mathematical capabilities’. In this chapter, ‘competencies’ 
is the term used to refer both to the formulation in documents from PISA 2012 and 
its subsequent surveys, and as a more generic reference reflecting the KOM usage. 

3.1 Use of Competencies to Describe Mathematical 
Accomplishments in PISA 

As mentioned above, the OECD reports and describes the aggregated levels of mathe-
matical proficiency demonstrated by surveyed learners in each participating country 
through a set of described proficiency scales (OECD, 2004b). Technical aspects 
of those proficiency scales are described in detail in the various PISA technical 
reports (e.g., Adams & Wu, 2003). The scales developed and used for PISA 2003 
show something of the way the competencies were used to craft language describing 
different levels of mathematical proficiency. Reporting of PISA outcomes, in partic-
ular descriptions of the cognitive demands of PISA mathematics assessment tasks 
as seen in the various OECD documents providing commentary on the survey mate-
rial, drew on analysis of the degree of activation of the competencies required in the 
solution of assessment questions (OECD, 2004a, 2004b). The shift in emphasis from 
‘competency clusters’ to the individual component competencies can readily be seen 
in the way the item commentaries published by OECD following the 2003 and 2012 
PISA surveys respectively were phrased (see OECD 2004a, 2004b). 

3.2 Research, Exploring the Difficulty of PISA Assessment 
Questions Against the Different Mathematical 
Competencies 

Leading up to the PISA 2012 survey, the development of the new PISA mathematics 
assessment framework and tasks was informed by an expert evaluation of the extent 
to which tasks required activation of various mathematical competencies as students 
attempted to solve the assessment questions.
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An extended research investigation was undertaken by a working group of 
members of the PISA mathematics expert group, led by one of the current authors, in 
order to test the importance of the competencies in relation to the cognitive demands 
of PISA mathematics tasks, and in particular to ascertain the usefulness of the compe-
tencies to inform predictions of the relative difficulty of the assessment items used 
in PISA. 

… experts involved in PISA implementation have looked closely at PISA mathematics 
survey questions and have judged the extent to which successfully answering those questions 
demands activation of various mathematical competencies that reflect the PISA framework. 
For the purpose of that investigation, six competencies have been given operational defi-
nitions and each of these competencies has been described at four levels. It is recognised 
that the six chosen competencies overlap to some extent and that they frequently operate in 
concert and interact with each other; nevertheless, the goal has been to treat each competency 
as distinctly as possible. (Turner, 2012, p. 3)  

That material (the six selected competencies, their operational definitions and 
level descriptions) was used as the basis of a purpose-built rating scheme, by a 
number of mathematics education experts, to independently rate a large number 
of PISA mathematics assessment items. Items were rated against each of the six 
competencies, on a four-point scale. The ratings were then analysed together with 
empirical data on the PISA item difficulties. The objectives of the analysis were to 
answer these questions: What is the level of agreement among raters when they apply 
the competency rubric? Does each of the competencies capture different dimensions 
of cognitive complexity in the tasks? To what extent do ratings of the cognitive 
complexity account for (predict) the difficulty of the tasks for students? (Turner & 
Adams, 2012, p. 2).  

Some early outcomes of the working group were presented as part of a sympo-
sium at the 2012 annual meeting of the American Educational Research Association 
(AERA), in Turner (2012) and in Turner and Adams (2012). The analysis presented 
in the latter paper indicated support for key elements of the research investigation. 
It was noted that while the expert ratings generated indicate considerable consis-
tency, the data do not support reliance on the competency ratings made by any one 
individual alone. If the scheme is to support such an outcome then further work 
still needs to be done on the content—possibly on both the definition of the cate-
gories and the description of the rating levels (Turner & Adams, 2012, p. 5).  It  was  
further concluded that the variables [competencies] appear generally to be picking 
up somewhat distinct aspects of item demand (Turner & Adams, 2012, p. 12); and 
that the expert ratings from application of the scheme by a small number of experts 
can predict 70–80% of the difficulty of PISA survey items (Turner & Adams, 2012, 
p. 13). 

The preliminary work provided support for the research team to continue as well as 
evidence that could be used as the basis of formulating adjustments to the operational 
definitions, and the descriptions of activation levels for each competency. This was 
subsequently done, with a view to increasing the consistency with which the material 
could be used by different independent raters. A further report of this work is in Turner 
et al. (2013), with a subsequent report in Turner et al. (2015) in which updated
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operational definitions and level descriptions are published. The version that was 
used to guide test development for PISA 2012 is provided in the Appendix to this 
chapter. 

4 Use of the Competencies in PISA 2012 Test Development 

The PISA 2012 test development process made extensive use of the thinking and tools 
developed during that previous research investigation into the relation between PISA 
item difficulty and the potential need for activation of a selected set of mathematical 
competencies in order to undertake particular mathematics tasks. 

There are many challenges in writing quality test items in numeracy or mathe-
matical literacy (e.g., see Tout & Spithill, 2015). One key challenge for large-scale 
assessments, such as in PISA, which is aimed at broad and diverse populations, 
is the need to create an assessment with items that are suitable for estimating and 
describing multiple proficiency levels within the target populations. This means that 
the assessment content needs to contain items that range across different aspects of 
mathematical literacy and vary in their cognitive demand from very easy and acces-
sible through to difficult and challenging in order to be able to scale and describe 
student performance across the full range of the expected proficiency continuum of 
learners in the PISA assessment cohort. 

Use of the PISA 2012 version of the KOM competencies supported and enhanced 
the ability of test developers to successfully create a comprehensive and broad set of 
mathematical literacy assessment tasks for PISA 2012. Turner et al. (2015) outlined 
the theoretical and practical issues associated with the development and use of 
these competencies as the basis of a rating scheme for the purpose of analysing 
mathematical problems. 

4.1 Targeting the Difficulty Level of Assessment Tasks 

The PISA 2012 test developers were given training in the use of the rating scheme. 
They used the 2012 version of the scheme (see Appendix) which consisted of oper-
ational definitions of six competencies (communication; devising strategies; math-
ematisation; representation; using symbols, operations and formal language; and 
reasoning and argument), along with descriptions of four levels of activation of each 
competency from a minimum score of 0 through to a maximum score of 3. As 
discussed below, a seventh competency, using tools, which is one of the eight ‘KOM 
competencies’, was also used for reviewing the separate computer-based assessment 
items used in PISA 2012. 

Application of the rating scheme to provide a total relative competency score 
for each item from 0 through to 18 assisted test developers to better estimate and 
anticipate each question’s relative level of difficulty in advance, before any collection
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of empirical data or evidence about the actual performance of the items in the field. 
Predicting the level of difficulty of items at an early stage helps facilitate a spread 
of items across the breadth of the expected levels of skills of the target population. 
Knowledge about such factors that affect item performance and difficulty is very 
useful for test developers. 

4.2 Enhancing the Spread of Cognitive Demands Across 
Assessment Tasks 

As well, knowledge about a range of different factors that can separately be used 
to target different cognitive aspects of a mathematical literacy task can be used to 
create a more diverse set of test items that help identify and describe a broad spectrum 
of student performance. The insights and knowledge provided by the competencies 
and their different levels of applicability to each mathematical context, situation and 
underpinning mathematics skills build test developers’ awareness of different aspects 
of each task and helps guarantee that different cognitive aspects can be highlighted, 
or not, in particular questions. This is elaborated further below with some examples 
of how this can work with some sample questions. 

Such insights and knowledge also help to reduce extraneous factors that can cause 
an item to be harder than it should (e.g., overload of text, or high-level formal repre-
sentations) and this helps improve item reliability and validity. In parallel with this, 
awareness of the role of the competencies helped reduce the risk of a high emphasis 
on lower order, procedural mathematical skills and knowledge, by highlighting that 
there were several different competencies that needed to be addressed across the 
pool of items. For example, the Using Symbolic, Formal and Technical Language 
and Operations competency most explicitly address procedural actions and it is only 
the lowest level, level 0, that addresses such low-level procedures and processes and 
requires the activation of ‘only elementary mathematical facts, rules, terms, symbolic 
expressions, or definitions (for example, arithmetic calculations are few and involve 
only easily tractable numbers)’. Having items that needed to cover the other levels 
of activation and across multiple competencies helps avoid an over-representation of 
standard mathematical actions. 

As mentioned above, the mathematical competencies also helped in the interpre-
tation and description of the resulting statistics about actual student performance 
and how to explain and describe the relative levels of performance of students across 
different PISA proficiency levels (see OECD, 2013; Turner et al., 2015).
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4.3 Applying the Competencies in PISA 2012 

The teams of test developers engaged in developing the PISA 2012 mathematics 
assessment items were initially informed about the set of competencies and trained 
in how to use and apply them when writing test items, typically focusing on one 
competency at a time and controlling the level of demand for activation of that 
competency. Templates for writing the test items included a table for each test devel-
oper to review, rate and score each item against the competencies. As part of the 
quality assurance processes used, the teams of writers panelled the test items (see 
Tout & Spithill, 2015) and at these panels, the ratings against the competencies were 
reviewed and moderated. This reviewing and revision process not only improved 
and enhanced the test questions themselves but also enabled the test developers to 
come to agreed understandings, positions and perspectives regarding the different 
competencies and their detailed descriptions. 

The total score of the competency ratings was used as an estimate of each item’s 
difficulty. The lead test developer monitored the item pool as it was built up and would 
advise test developers about any gaps identified—both in terms of the different PISA 
framework parameters as specified in the blueprint that needed to be met across the 
pool of test items, but also in relation to the need to target the different competencies. 
It should be noted that the latter competency targets were not specified within the 
PISA framework and were hence not formally measured or reported against. 

5 Using the Competencies to Highlight Some Differences 
Between Digital and Paper-Based Assessment Tasks 

As part of the PISA assessment of mathematical literacy in 2012, a parallel, optional 
computer-based assessment of mathematics (CBAM) instrument was constructed. 
Given the compulsory paper-based component existed, it was not the aim to just make 
a digital version of the paper-based assessment. Instead, the new set of CBAM items 
aimed to reflect the use and application of mathematics within authentic twenty-first 
century contexts and to also use the technology to ask different types of questions. 
CBAM attempted to emphasise different aspects of mathematical literacy which 
were not as readily assessed in a paper-based format. For instance, the assessment 
incorporated calculations that could be automated ‘behind the scenes’; utilised spatial 
and visual simulations and manipulatives not possible in pencil-and-paper formats; 
and enabled problem-solving strategies based on the observation of patterns and 
trends and of the effect of manipulations and actions. As well, items were able 
to simulate computer-based applications such as spreadsheets, drawing tools and 
graphing tools (for further information about CBAM in PISA 2012 see Bardini, 
2015; Hoogland & Tout, 2018; Stacey & Turner, 2015; Tout & Spithill, 2015). 

Using the competencies as a lens, this section undertakes a new review of two sets 
of 2012 test items, in order to see if there were any noticeable differences in cognitive
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demands between the paper-based and computer-based items in PISA 2012. Using 
publicly available paper-based PISA items from 2012 (see OECD, 2013b) and a set 
of PISA 2012 CBAM units that are available to the authors, two sets of comparable 
items were used. There were 22 items in the CBAM item set and 23 items in the 
paper-based set and they were quite similar in their overall difficulty level and spread 
across the PISA construct parameters of context, content and cognitive processes. 
The authors had access to the agreed, moderated competency ratings for each item. 

Two of the competencies rated very similarly across both the paper-based and 
CBAM sets of items (Communication and Devising Strategies); while the paper-
based items were slightly higher in Using Symbolic, Formal and Technical Language 
and Operations and Mathematising. The CBAM item set was slightly higher in 
reasoning and argument. There appeared to be a significant difference in only one 
common competency and that was in Representation where the CBAM items were 
rated at much higher levels overall. 

5.1 The Representation Competency 

In the samples chosen, most of the CBAM items (15/22) were rated as 2 or 3 in 
this competency, compared with the paper-based items where only seven items of 
23 were rated at that level. As well, quite a few rated only as 0 in the Representation 
competency. The average value rating across the two sets was 1.0 for paper-based 
versus 1.9 for CBAM items, respectively. The Appendix shows the description for 
this Representation competency and also the different levels of activation of this 
competency. 

5.2 A Comparison of Two Items 

Using this competency as a lens, two 2012 PISA items—one a paper-based item and 
the other a CBAM item—are used as examples to see if it is possible to illustrate 
what the differences are and to consider why this difference might exist. 

The paper-based item is question 2 in the Climbing Mount Fuji unit and the CBAM 
item is question 2 in the unit called CD Production (see Table 1; Fig.  2). Both units 
arose out of the test developer’s personal experiences or interests. Climbing Mount 
Fuji was written by a test developer who had an active interest in walking that enabled

Table 1 PISA 2012 score data for two items (OECD, 2014b, pp. 406–420) 

Question Scale score Proficiency level OECD average % correct 

Mount Fuji question 2 642 5 14.3 

CD production question 2 686 6 8.4
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CD PRODUCTION: Question 2 

Use the graphs and price calculator to find the rule for how the price of 
replication is determined. 

Write the two missing values in the rule below to show how price, P, re-
lates to number of copies made, n, for replication. 

P = . . . . . .n + . . . . . . . . .  

© OECD 

Fig. 2 CD production: question 2 (OECD, 2011a) 

him to create an authentic scenario incorporating skills related to speed, distance and 
time. The CD Production unit arose out of the test developer’s own experiences in 
having a CD produced for a resource he was writing and getting published at the 
time, so the charges and formulae sitting behind the scenario are based on actual costs 
and charges (adapted to the fictional world of Zedland). Both items covered the same 
PISA content area (Change & relationships) and PISA cognitive process (Formulate). 
Use of these categories is described in the PISA Mathematics Framework (OECD, 
2013a).

In the paper-based Climbing Mount Fuji item, the main cognitive demands in 
terms of the Representation competency relate to understanding and working within 
the one representation—the text. There are no other representations used—and the 
illustration is decorative and is not necessary for solving the problem at hand. While 
it is possible that in order to solve the problem, a student may construct a simple 
representation of the given information to help understand and think through the 
embedded relationships, this was not required and therefore should not be counted 
as part of the item’s representational demand. In this case, level 0 is appropriate for 
the Representation competency.
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The CBAM CD Production item incorporates a number of interactive elements and 
different representations not available in a paper-based assessment task. For example, 
in this item, the menial, calculation-dependent work of creating and interpreting a 
table of values has been automated ‘behind the scenes’ (hence invisible to the test-
taker) and the values of the variables and functions for the two linear graphs can 
be easily manipulated to generate values and be seen visually on the screen. This 
enables a stronger focus on understanding and interpreting the mathematics sitting 
behind the context. 

As with the Climbing Mt Fuji example, CD Production requires reading and 
understanding the text, however, it also requires a broader understanding of the 
different representations used—both the graphical representations and the accompa-
nying application, the price calculator. This interaction, along with the three different 
representational styles and sources of critical information, means this item requires 
much more substantial decoding and interpretation; and translating between and 
using, different representations of mathematical situations and information. The 
question also requires the student to provide an answer in a more formal mathe-
matical representation that has not been used elsewhere. It could be argued that the 
item pushes up towards Level 3, although it does not really require the student to 
devise a representation that captures a complex mathematical situation. For this item, 
it is appropriate to rate it therefore at Level 2 for Representation. 

As illustrated by these two examples and looking at the other CBAM items, 
the requirement to be able to interpret, decode, use, understand and move between 
different representations is much more common in the CBAM items compared with 
the paper-based items. This is enabled by the ability in the CBAM items to incorporate 
a range of different representations, including dynamic and interactive actions and 
processes, like the graph and the calculator app in the CD Production item. By their 
very nature, the paper-based items are static. 

There are other aspects of the set of PISA 2012 CBAM items that also support the 
use and understanding of higher levels of representation, such as enabling different 
representations including simulations such as spreadsheets, drawing tools, graphing 
tools; the use of manipulatives; being able to observe changing patterns and trends; 
and handling information based in a web environment. This aspect is also illustrated 
in the example discussed below, Star Points (see Fig. 3). This also means that the 
CBAM items are more representative of the twenty-first century digital world we live 
and work in and their associated mathematical actions using different technologies, 
different tools and applications. This indicates that representation in the digital world 
is critical and that this aspect could be considered in the use and enhancement of 
the existing KOM competencies, where digital and technological aspects is mainly 
referenced under the mathematical aids and tools competency. 

The application of the Representation competency in CBAM items highlighted 
benefits of using the mathematical competencies to underpin the test development 
in PISA 2012. It gave the test developers the ability to focus on the different 
aspects of the digital platform through making them think how they could more 
explicitly address different representations of mathematical information in a digital 
environment compared with a traditional paper-based environment. In addition,
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it helped explicitly incorporate the use and application of different 21st Century 
representations, which also helped make the items more authentic. 

5.3 Using Mathematical Tools 

A seventh mathematical competency, Using mathematical tools, was not used in 
the first iterations of the paper-based PISA mathematical literacy framework and its 
set of mathematical competencies. The Using mathematical tools competency was 
described as encompassing physical tools such as measuring instruments, as well 
as calculators and computer-based tools and applications that are becoming more 
widely available as we move further into the twenty-first century. This competency, 
also reflecting a corresponding KOM competency, involves knowing about and being 
able to make use of various tools that assist mathematical activity and also knowing 
about the limitations of such tools. 

Based on the development of the CBAM components of PISA 2012, the 
Using mathematical tools competency was partially reintroduced. The 2012 PISA 
framework stated: 

Previously it has been possible to include the use of tools in paper-based PISA surveys in only 
a very minor way. The optional computer-based component of the PISA 2012 mathematics 
assessment will provide more opportunities for students to use mathematical tools and to 
include observations about the way tools are used as part of the assessment. (OECD, 2013a, 
p. 31) 

As a consequence of the introduction and development of the CBAM component 
of PISA 2012, the test development team rated the CBAM items against three levels 
of this competency. The ratings varied from a score of 0 where there was no use 
of tools or their use was not relevant, through to a maximum score of 2, where 
the understanding and use of one or more tools or applications was a significant 
component of solving the problem. In the sample set of 22 CBAM items, 17 were 
rated at being at levels 1 or 2. Some of the mathematical tools and applications 
used in the CBAM items included measuring tools, spreadsheets, online calculators 
and related applications (e.g., currency converters), simulations and manipulatives 
were made available, alongside drawing and graphing tools. As well there was an 
inbuilt, online calculator incorporated into the PISA CBAM application that could 
be accessed when needed by the student. 

The CD Production item discussed above required the understanding and use of 
mathematical tools through the manipulation and input of values into the Price Calcu-
lator application and the resulting illustrated points on the linear graphs. Without 
that ability to use and interpret the provided interactive tools, the student would have 
been unable to determine the solution to the question. Using mathematical tools was 
a critical cognitive component of solving this item. 

As a further illustration of the types of tools used in the PISA 2012 CBAM items, 
Fig. 3 shows one of the items in the unit called Star Points.
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STAR POINTS: Question 1 

Shown above are four flat shapes. In Shape 1, the point S is a star point 
because, wherever you place P, the line SP always stays within the shape. 
But in Shape 2, the point S is not a star point because there are some 
lines SP, as in the example shown, that go outside the shape. 

Create a star point for Shape 3 and a point that is not a star point for 
Shape 4. 

© OECD 

Fig. 3 STAR POINTS: question 1 (OECD, 2011b) 

In this item, students needed to familiarise themselves with an interactive spatial 
tool provided in the unit to draw a point or a line, learn how to manipulate the tool and 
then to use it to understand what was defined as a Star Point. The latter questions in 
this unit focused on the use of this spatial concept to resolve issues related to the best 
locations for positioning security cameras in a building. The solution of the question 
was entirely predicated on the successful use, understanding and application of this 
manipulative, interactive tool. 

The performance of this item in PISA 2012 is summarised in Table 2. 

Table 2 PISA 2012 score data for star points question 1 (OECD, 2014b, pp. 406–420) 

Question Scale score Proficiency level OECD average % correct 

Star points question 1 562 4 29.6 

The fact that the Using mathematical tools competency was only used for writing 
and reviewing the 2012 CBAM items and not the paper-based items, in itself, tells 
a story about the breadth of skills that were able to be incorporated into the CBAM 
items that could not as easily be addressed in the paper-based items. This competency 
gave the test developers the ability to address and include a range of different tools and
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applications that could only be made available within a digital platform, in contrast 
to limitations they had in the paper-based items. It also helped explicitly incorporate 
the use and application of different 21st Century technologies, tools and applications, 
which once again helped make the items more authentic. 

6 Rating a Task Using the Competencies 

The Appendix describes the version of six KOM competencies as used in PISA 2012. 
It is essentially a rubric for assigning Levels 0 to 3 to each competency. Using the six 
competencies each with a maximum score of 3, alongside a maximum score of 2 for 
Using mathematical tools, the theoretical maximum sum of the competency ratings 
was 20. In the sample of paper-based and CBAM items referenced here, the highest 
score given was 15. 

For the six easiest items as determined by the psychometric analysis of the PISA 
field trial (a step in the item development process) the mean competency rating sum 
score was 7.8, with a range of 4–13 out of 20. For the six hardest items the mean 
was 12.7, with a range of 11–15. It is instructive to note that none of the items came 
anywhere near the maximum possible score of 20. This makes sense when choosing 
items that had to be doable in the short time frame of the PISA test administration. Any 
possible items that might be scored at Level 3 in more than three of the competency 
rating criteria would likely be too complex for students to analyse and complete in 
just a few minutes. Such items would have a very low correct response rate and would 
therefore not provide useful information about the performance of the wider student 
cohort. 

Table 3 show the breakdown in competency rating levels for the three sample 
items analysed above. 

Test developers made a point of considering the rating scores in more detail, in 
terms of the Level descriptions presented in the Appendix:

• Communication (‘COM’): Climbing Mount Fuji at Level 1 is a more familiar 
and relatable context that can likely be understood without ‘repeated cycling’ to 
‘decode and link multiple elements’ which is required at Level 2 in the other two 
items. 

Table 3 Competency ratings for three items 

Unit name PB/CB Item ID COM STR MAT REP SYF RES TLS SUM 

CD 
production 

CB CM015Q02 2 3 0 2 3 2 2 14 

Star points CB CM020Q01 2 3 0 3 0 3 2 13 

Climbing 
Mount Fuji 

PB PM942Q02 1 3 2 0 2 2 0 10
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• Devising Strategies (‘STR’): In each of the three items, a ‘multi-stage strategy’ 
is needed and with an aspect where students ‘compare strategies’ (Level 3).

• Mathematising (‘MAT’): The two computer-based items are Level 0; in CD 
Production the mathematical model sits in the background as a given and in 
Star Points the ‘the situation is purely intra-mathematical’. In Climbing Mount 
Fuji the ‘variables, relationships and constraints are clear’ (Level 2).

• Representation (‘REP’): CD Production is Level 2, requiring students to ‘translate 
between and use different standard representations of a mathematical situation’. 
Star Points is Level 3 as it requires students to ‘compare’ cases that distinguish 
what a star point is or is not. Climbing Mount Fuji could be solved by systemat-
ically tabulating times and stages which would involve a minimal representation 
(Level 0).

• Using Symbolic, Formal and Technical Language and Operations (‘SYF’): CD 
Production is a formal mathematical context requiring ‘mathematical technique 
and knowledge to produce results’ (Level 3), even as the calculations are provided 
in the computer-based model. Star Points is essentially a geometrical rather than a 
symbolic task that does not require any calculations, so Level 0 applies. The classi-
fication of Climbing Mount Fuji would depend on the approach taken by a student; 
adopting a more formal algebraic approach whereby they ‘construct a representa-
tion’ would be Level 2. There is a trade-off here with the score for Representation, 
which can happen when trying to separate closely related competencies.

• Reasoning and Argument (‘RES’): CD Production and Climbing Mount Fuji 
require students to ‘reason from linked information sources’, so Level 2. Star 
Points requires students to ‘create chains of reasoning to check or justify 
inferences’ and in a novel geometric context, which pushes it to Level 3.

• Using mathematical tools (‘TLS’): This is straightforward, with CB items having 
tools that are integral to finding a solution (both rated at Level 2) and the paper-
based item being Level 0. 

7 Benefits of Using the Competencies as a Lens in PISA 
2012 

Overall, the use of the PISA version of the KOM competencies enhanced the imple-
mentation of the mathematical literacy assessment in PISA 2012. Not only did the 
research on the relation between the difficulty of PISA assessment items and the acti-
vation of different mathematical competencies support the development and descrip-
tion of the proficiency descriptions, but the associated rating scheme based on the 
competencies gave the PISA test development team a lens by which to assess and 
review their test items and supported their ability to develop a broad range of test 
items that incorporated different aspects of seven different competencies. 

As illustrated by the above examples, using the competencies as a lens enables 
an analysis and comparison of sets of test items and the underpinning mathematical
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competencies needed to solve them. The ratings and descriptions of each compe-
tency enable this to be done coherently. The authors believe this is a proactive and 
constructive way that the competencies can be used and probably not just in relation 
to assessment development. 

This goes back to the original conception of mathematical literacy from PISA 
2000: the capacity of students to draw upon their mathematical competencies to meet 
the challenges of the future. It looks behind and beyond an immediate assessment to 
a contemporary view of the potential future of mathematics education, particularly 
in schools. In an extensive discussion of this issue, Gravemeijer et al. (2017) draw  
attention to the bigger picture as follows: 

We might add that, today, basically all mathematical operations that are taught in primary, 
secondary and tertiary education can be performed by computers and are performed by 
computers in the world outside school. This reveals a tension between what is going on 
in society and what is going on in schools… This does not mean that there is no need any 
more for learning mathematics, but what mathematics is important to learn changes… In this 
respect, we may re-emphasise our earlier remark that we have to shift away from teaching 
competencies that compete with what computers can do and start focusing on competencies 
that complement computer capabilities. (p. 107) 

Having the competencies as a lens certainly helped PISA address the shortcomings 
of a ‘procedural knowledge and skills’ view of what mathematics education is about. 

8 Conclusions 

The mathematical competencies deployed as part of the OECD’s PISA survey 
borrowed heavily from the KOM competencies framework and have had a major 
influence in several spheres of activity of mathematics education practitioners and 
researchers. The competencies have provided a key organising structure in the way 
PISA defined mathematical literacy and in the way, mathematical proficiency was 
analysed and understood within the PISA context over the first two decades of its 
global operation. The competencies have been central to the discourse about the 
cognitive demand of PISA mathematics tasks. They have been central in the way 
different levels of mathematical proficiency have been described in the reporting of 
PISA outcomes. 

Using research that shows a strong relationship between the demand for activation 
of the mathematical competencies as learners undertake PISA survey items and the 
difficulty of those assessment items, test developers have been able to use a structured 
approach to item design for both paper-based and digital assessment instruments. 
That approach helped test developers to ensure the most important cognitive elements 
were present in the suite of tasks they developed for both online and off-line delivery 
and informed their expectations regarding task difficulty. The competencies provided 
researchers with a lens through which to see fundamental aspects of mathematical 
competence playing out in an international large-scale assessment context.
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The new, brief, analysis undertaken above that used the competencies to compare 
different aspects of the digital platform compared with a traditional paper-based 
delivery, highlighted some significant differences between two of the competencies: 
Representation and Using tools. In both cases, CBAM digital items were of a much 
higher cognitive level than similar items in the paper-based format. The competencies 
helped explicitly address the use and application of 21st Century representations and 
interactive digital tools and applications, as discussed by Hoogland and Tout (2018). 

The competencies helped the PISA survey to assess a wide range of mathematical 
understandings and applications, avoiding any potential over-emphasis on the use 
and reproduction of procedural knowledge and skills in an assessment context. The 
set of competencies was seen as an effective, developmental framework that was 
dynamic and evolving in parallel with the PISA mathematical literacy assessment 
and as such can play an important and critical role in moving forward in mathematics 
education in a digital world. 

The lessons learned through these research and development efforts inspired by 
the KOM competency framework are providing tools and approaches with applica-
bility in other mathematics-related contexts, especially in the way learner progress 
is understood and described. 

The KOM competencies give researchers and assessment professionals a valuable 
and independent lens through which their efforts can become more systematic and 
purposeful. 

Appendix: Item Rating Scheme Using PISA Fundamental 
Mathematical Capabilities (27 Feb, 20122 )

2 Previously unpublished internal working draft. 
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