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14.1  Introduction

PET/CT has a key role in final response assess-
ment after treatment in most types of malignant 
lymphomas, as well as in baseline staging and 
interim (mid-treatment) evaluation [1, 2]. Its 
application is widely established in Hodgkin 
lymphoma (HL) and aggressive B cell lympho-
mas, including diffuse large B cell lymphoma 
(DLBCL), primary mediastinal large B cell lym-
phoma (PMLBCL), and other related subtypes. 
Although recent recommendations suggest the 
use of PET/CT for baseline staging and response 
assessment in follicular lymphomas, mantle cell 
lymphoma (MCL), Burkitt lymphoma, and 
“nodal” T cell lymphomas [anaplastic large cell 
(ALCL), peripheral T cell (PTCL), and angioim-
munoblastic T cell lymphoma (AITL)], the accu-
mulated clinical experience with these subtypes 
is considerably less [1–7]. The role of PET/CT is 
much more controversial in non-follicular low- 
grade lymphomas and primary extranodal lym-
phomas other than DLBCL [6, 8].

The various lymphoma subtypes are not 
equally FDG-avid and this mainly depends on 
their histologic features, aggressiveness, and bio-
logic characteristics. “Routinely FDG-avid lym-
phomas” include HL, DLBCL, and other 
aggressive B cell lymphomas, lymphoblastic and 
Burkitt lymphoma, follicular and MCL, nodal 
marginal zone lymphoma, and systemic ALCL, 
since they are almost invariably 18-FDG-avid 
(>90% and usually >95–100% of the cases) [1, 2, 
9, 10]. Other aggressive T cell lymphomas, 
mainly the non-ALCL “nodal” types, such as 
PTCL and AITL as well as extranodal NK/T cell 
lymphomas, are typically but not invariably 
18-FDG-avid (>80–100% of the cases in various 
studies) [1, 2, 9, 10]. In contrast, other indolent 
lymphomas are even more “variably 18-FDG- 
avid.” Thus, several forms of extranodal lympho-
mas, including MALT and cutaneous B and T 
cell lymphomas, small lymphocytic, splenic mar-
ginal zone lymphoma as well as some rare lym-
phoma subtypes, may not be satisfactorily 
evaluated by PET/CT, displaying frequencies of 
FDG avidity between 50% and 80% [1].

14.2  PET/CT in Initial Staging

The rationale of using FDG-PET in the initial 
staging of lymphomas is based on its improved 
accuracy in determining disease extent, as com-
pared to conventional imaging [1, 2]. PET/CT is 
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more sensitive than CT, mainly because it can 
detect disease in normal-sized lymph nodes or 
facilitate the evaluation of extranodal disease [1, 
2]. The extent of disease upstaging or—less fre-
quently—downstaging varies according to histol-
ogy and will be discussed later. Further to more 
accurate staging, baseline PET/CT can facilitate 
the interpretation of the end-of-treatment (EOT) 
PET/CT response assessment serving as a basis 
for comparison. Finally, baseline PET/CT may 
provide new prognostic factors related to tumor 
burden and metabolic activity, which are increas-
ingly evaluated in detail, although they have not 
yet become standard prognostication tools.

14.2.1  Role of PET in the Initial 
Staging of Lymphomas

Baseline PET/CT is strongly recommended for 
initial staging of the routinely FDG-avid lympho-
mas [1, 2] (Figs. 14.1a, 14.2a, 14.3a, 14.4a, 14.5a, 
14.7a). In HL, the number and density of 

Hodgkin-Reed-Sternberg cells in the tumor vary 
and FDG uptake occurs mainly by the inflamma-
tory tumor microenvironment. PET/CT identifies 
25–30% more lesions and leads to upstaging an 
average of 18% of patients in various studies 
compared to conventional staging [2]. Conversely, 
up to 10% of the patients (average 4% in various 
studies) [2] can be downstaged [1, 2, 11, 12]. 
Such changes might lead to major treatment 
modification in up to 1/4 of the patients (average 
11% in the studies reviewed by Barrington et al.) 
[2]. In a more common scenario, the identifica-
tion of more disease sites may affect radiotherapy 
(RT) fields, even in the absence of stage shift 
[12]. However, most of the knowledge on treat-
ment approaches is based on conventional stag-
ing [11, 12]. Thus, it is not yet clearly proven that 
stage shift according to PET/CT should guide 
treatment decisions in HL. In addition, the clini-
cal benefit to be gained from the widening of the 
RT fields to include anatomically subclinical dis-
ease sites may be of concern with respect to 
potential long-term sequelae. This is becoming 

ba

Fig. 14.1 (a) Baseline staging in a patient with Hodgkin 
lymphoma. Intense FDG uptake is shown in a bulky medi-
astinal mass. Right cervical and right epiphrenic nodal 
involvement is also shown. (b) Post chemotherapy evalu-
ation revealed a residual mediastinal abnormality with 
FDG uptake higher than the mediastinal blood pool but 

not exceeding that of the liver. This would have been 
interpreted as positive, i.e., suggestive of residual active 
disease based on the 2007 IHP criteria. However, inter-
preted as Deauville 5-point scale score 3 (Table 14.1), it is 
now considered compatible with complete metabolic 
response based on the 2014 Lugano criteria (Table 14.2)

T. P. Vassilakopoulos et al.



111

ba c

Fig. 14.2 (a) Baseline staging in a patient with diffuse 
large B-cell lymphoma. Disseminated lymphadenopathy 
including a left pelvic mass and multiple focal osseous/
bone marrow lesions suggestive of bone marrow involve-

ment are consistent with stage IV disease. (b) Interim 
PET after two cycles of R-CHOP is completely negative. 
(c) Post R-CHOP evaluation is also negative, as correctly 
predicted by the negative interim examination

ba

Fig. 14.3 (a) Baseline staging in a patient with Hodgkin 
lymphoma, indicating cervical and mediastinal involve-
ment. Conventional staging had revealed mildly enlarged 
paraortic nodes, which were not demonstrable by PET/ 
CT. Thus, the patient was downstaged from clinical stage 
IIIA to PET-stage IIA. (b) PET/CT at the time of relapse 
in the same patient. PET/CT had been normalized follow-

ing ABVD × 6. Three months after the completion of 
involved field radiotherapy the patient presented with 
lumbar pain and elevated ESR and C-Reactive Protein 
levels. MRI revealed osseous abnormalities, which were 
confirmed by PET/CT. PET/CT normalized again after 
IGEV salvage chemotherapy and BEAM with autologous 
stem cell support

14 The Role of 18FDG-PET/CT in Malignant Lymphomas Clinical Implications
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a

c

b

Fig. 14.4 (a) Baseline staging in a patient with Hodgkin 
lymphoma. The patient had disseminated nodal disease, 
including a mass at the hepatogastric junction, and a posi-
tive bone marrow biopsy (stage IVB). (b) Interim PET 
after two cycles of ABVD revealed complete resolution of 
FDG uptake except of the hepatogastric mass, which was 
reduced in size and had residual FDG uptake just above 
that of the liver. Interim PET was interpreted as positive, 

Deauville score 4. The patient received intensified chemo-
therapy with six cycles of BEACOPP-escalated. (c) 
Negative end-of-treatment PET in the same patient. He 
remains in complete remission 8.5 years after the positive 
interim PET/CT (Courtesy of Drs Datseris I and 
Rondogianni Ph, Department of Nuclear Medicine and 
PET/CT, Evangelismos General Hospital, Athens, 
Greece)

particularly relevant, given the trend to adopt 
smaller RT fields and doses or even omit RT in 
appropriately selected patients.

The situation is similar in DLBCL, the com-
monest form of aggressive B cell lymphomas, 
and PMLBCL, in which PET/CT is also strongly 
recommended for initial staging [1, 2]. However, 
the effect on treatment decisions with standard 
rituximab-based chemoimmunotherapy may be 
less important, with the potential exception of 
abbreviated immunochemotherapy regimens 
in localized DLBCL. The effect on potential RT 
fields may not be so relevant in DLBCL, since 
RT is not routinely applied in the majority of 
patients in many centers.

In other routinely FDG-avid lymphomas, 
especially follicular lymphomas and MCL, PET/

CT is also recommended for initial staging [1, 2]. 
However, a meaningful impact on treatment 
strategy is not expected, since the disease is 
already disseminated in the vast majority of 
cases. In the unusual cases of early stage disease, 
mainly seen in a minority of patients with 
 follicular lymphoma (less frequently in NMZL 
and even more rarely in MCL), PET/CT may 
confirm that the disease is indeed localized and 
potentially curable with involved field or regional 
RT.  Baseline PET evaluation is generally not 
 recommended in lymphoma subtypes which are 
not routinely FDG-avid (Fig. 14.6) [1, 2].

PET/CT may also contribute to the identifica-
tion and histologic confirmation of transformed 
disease in patients with known indolent lympho-
mas. The degree of FDG uptake has been pro-
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Fig. 14.5 (a) Baseline staging in a patient with Hodgkin 
lymphoma demonstrating stage IIB disease with exten-
sive supradiaphragmatic nodal involvement. (b) Interim 
PET revealed a residual left axillary abnormality with 
FDG uptake above the surrounding background but below 
the mediastinal blood pool. Interim PET was interpreted 
as negative, Deauville score 2. The patient continued on 

ABVD. Posttreatment PET/CT was negative. Following 
involved field radiotherapy, the patient remains in com-
plete remission 8 years after the negative interim PET/CT 
(Courtesy of Drs Datseris I and Rondogianni Ph, 
Department of Nuclear Medicine and PET/CT, 
Evangelismos General Hospital, Athens, Greece)

ba c

Fig. 14.6 Extranodal marginal zone lymphoma of the 
left eye. A mass with increased FDG uptake is shown. 
Marginal zone lymphomas are not routinely FDG-avid. 

PET/CT is not routinely recommended either for baseline 
staging or for posttreatment evaluation in this entity

posed to be correlated with tumor grade, 
proliferative activity, and aggressiveness and to 
be of prognostic value [9]. Studies using semi-
quantitative measurements based on SUVmax 
suggest that SUVmax >10 is usually seen in 
aggressive or transformed indolent lymphomas 

[9]. The optimal threshold to detect Richter trans-
formation in chronic lymphocytic leukemia 
(CLL) may range between 5 and 10 with varying 
effects on sensitivity, specificity, positive and 
negative prognostic value and may differ in the 
era of novel agents [13, 14].
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Table 14.1 2014 Revised criteria for response assessment in malignant lymphomas

Complete response 
(CR)

Partial response 
(PR)

No response/stable 
disease (SD) Progressive disease (PD)

Pet-Based Criteriaa

Lymph nodes D5-PS score 1, 2, or 
3 (±residual 
masses)

D5-PS score 4 or 
5—but reduced 
compared to 
baseline—and 
residual mass(es) 
of any size
   •At interim 

evaluation: 
responding 
disease

   •At final 
evaluation: 
residual disease 
(treatment 
failure)

D5-PS score 4 or 
5—but no significant 
change in FDG uptake 
compared to baseline 
(applicable at both 
interim and final 
evaluation)

D5-PS score 4 or 5 and 
increase in FDG uptake 
compared to baseline 
(applicable at both 
interim and final 
evaluation)
AND/OR
New FDG-avid lesions 
consistent with 
lymphoma (applicable 
at both interim and final 
evaluation)
Biopsy or follow-up 
PET encouraged if 
lymphomatous nature 
of the lesion(s) is 
uncertain

Extralymphatic 
sites

D5-PS score 1, 2, or 
3 (±residual 
masses)b

Non-measured 
lesions

Not applicable Not applicable Not applicable

Organ enlargement Not applicableb Not applicable Not applicable
Bone marrow No FDG-avid 

diseaseb

Residual uptake 
higher than 
normal marrow 
but less than 
baseline (diffuse 
uptake permitted)c

No change from 
baseline

New or recurrent 
FDG-avid foci

Conventional (CT) Criteriaa

Target lymph 
nodes/masses and/
or extralymphatic 
sites

Nodal regression to 
LDx ≤1.5 cm AND
No extralymphatic 
sites

Up to 6 sites in 
total: ≥50% 
decrease in SPDd

Up to 6 sites in total: 
<50% decrease in 
SPD and no 
progressive disease 
criteria met

PPD progression of ≥1 
individual node/lesion, 
which should be 
abnormal (all the 
following):
• LDx >1.5 cm and.
  •  Increase by ≥50% 

from PPD nadir and.
  •  Increase of LDx or 

SDx (compared to 
nadir) by 0.5 cm or 
1.0 cm for lesions ≤2 
and > 2 cm 
respectively.

AND/OR new sites, 
defined as:
  •  Regrowth of 

previously resolved 
lesions.

  •  New node >1.5 cm in 
any axis.

 •  New extranodal site 
>1.0 cm in any axis; if 
<1.0 cm, it should be 
unequivocal and 
attributable to 
lymphoma
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Table 14.1 (continued)

Complete response 
(CR)

Partial response 
(PR)

No response/stable 
disease (SD) Progressive disease (PD)

Non-measured 
lesions

Absent No increase 
(regressed or 
absent/normal)

No increase falling 
into the definition of 
progression (see 
below)

Clear progression or 
new lesions

Organ enlargement Regression to 
normal

Spleen regression 
by >50% (in its 
length beyond 
normal)

No increase falling 
into the definition of 
progression (see 
below)

  • Prior splenomegaly: 
Increase of splenic 
length by >50% of the 
extent of its prior 
increase beyond 
baseline

  • No prior 
splenomegaly: Increase 
≥2 cm from baseline

Bone marrow Morphologically 
normal; negative 
IHC, if 
indeterminate

Not applicable Not applicable New or recurrent 
involvement

PET positron emission tomography, D5-PS Deauville 5-point scale, CT computed tomography, FDG fluorodeoxyglu-
cose, IHC immunohistochemistry, LDx longest transverse diameter of a lesion, MRI magnetic resonance imaging, PET 
positron emission tomography, PPD cross product of the LDx and perpendicular diameter, SDx shortest axis perpen-
dicular to the LDx, SPD sum of the product of the perpendicular diameters for multiple lesions
Terms used throughout this table: (1) Target lesions (target lymph nodes/masses and/or extralymphatic sites) or 
Measured Dominant Lesions: They include the dominant lesions, i.e., those which are the major determinants of 
response. They should include up to 6 of the largest nodes/nodal masses or extranodal lesions, being representative of 
the total tumor burden. Further selection criteria include: a. to be clearly measurable bidimensionally; b. to be located 
at as much as disparate anatomic regions as possible, including both mediastinal and retroperitoneal areas, if involved. 
Measurable nodes and extranodal lesions should have an LDx of >1.5 cm and >1.0 cm respectively. (2) Non-Measured 
Lesions: They include: a. any nodal or extranodal disease, which has not been selected as “Measured Dominant Disease” 
according to the above definition; b. lesions considered abnormal, but failing to fulfill the requirements for measurabil-
ity; c. any site of suspected disease, which is assessable but is difficult to be followed by quantitative measurements 
(serous effusions, bone lesions, leptomeningeal disease, etc.)
aPET-based criteria are recommended for FDG-avid lymphoma subtypes (defined in Chap. 4). Conventional (CT) crite-
ria are recommended for non-FDG-avid lymphoma subtypes (defined in Chap. 4)
bAn uptake higher than mediastinum or liver can be compatible with complete metabolic response, if observed at sites 
that might have high physiologic uptake or high uptake due to “activation” (i.e., chemotherapy or growth factor- 
induced), such as the Waldeyer’s ring, GI tract, spleen, or marrow. In such cases, FDG uptake at sites of initial involve-
ment should not exceed the surrounding normal tissue, even if this is “physiologically” high
cCaution: Persistent focal lesions might be further evaluated by MRI, biopsy, or a new PET
dFurther instructions to assess partial response, when small residuals are present, are provided in the corresponding 
article (see below). Adapted and modified from Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for ini-
tial evaluation, staging and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J 
Clin Oncol 2014; 32:3059–3067; (Table 3). Reproduced from “PET/CT in lymphomas: A case-based Atlas”, Springer 
2016, by the same Editors

Finally, baseline PET/CT may be used to deter-
mine the metabolic tumor volume (MTV) and total 
lesion glycolysis (TLG), which is a combined eval-

uation of both tumor burden and metabolic activity. 
These parameters—and other radiomic markers—
can be of prognostic significance, as described later.
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14.2.2  PET in the Assessment of Bone 
Marrow Involvement

Numerous studies have investigated the role of 
PET in the assessment of bone marrow (BM) 
involvement. The comparative accuracy of PET/
CT and bone marrow biopsy (BMb) highly 
depends on the specific lymphoma subtype under 
evaluation.

14.2.2.1  Hodgkin Lymphoma
According to current recommendations, bone 
marrow biopsy (BMb) can be omitted in HL, if 
baseline PET/CT is performed [1, 2]. The omis-
sion of BMb in this setting is also proposed by 
the latest version of the ESMO guidelines at a 
level of evidence III (from prospective cohort 
studies) and grade B strength of recommendation 
(generally recommended) [15]. However, a BMb 
still remains necessary in cases with no baseline 
PET/CT available. Indeed, PET/CT uncovers 
more cases of BM involvement [11, 16–19] while 
treatment decisions are not typically affected in 
the rare cases with a positive BMb but a negative 
PET/CT, as analyzed below. Patients with BM 
involvement by PET/CT may have similarly poor 
outcomes irrespective of BMb status, but this 
information is still based on rather limited data 
[16, 18]. Notably, PET/CT is suggestive of BM 
involvement only if focal lesions are present. In 
contrast, diffuse increased uptake, even with 
intensity >liver, is due to reactive BM changes 
caused by the cytokine milieu present in HL and 
should not be confused with BM involvement [1, 
2, 16–18, 20].

In a large study of 454 HL patients, who were 
staged by both PET/CT and bone marrow biopsy 
[16] (Fig.  14.4a), 6% (27 patients) had BM 
involvement. However, more than twice (13% or 
59 patients) had multi- (n = 31), bi- (n = 9), or 
unifocal (n  =  19) PET/CT bone lesions and a 
negative BMb. No cases of BM involvement 
were detected among patients with diffusely 
increased 18-FDG uptake. Only 4/454 patients 
(<1%) had a positive BMb in the absence of PET/
CT evidence of BM disease, and BMb did not 
lead to treatment modification, since all of them 
had already advanced disease (stage shift from III 

to IV). The experience of the German Hodgkin 
Study Group (GHSG) in the HD16–18 trials was 
similar [19]. Only 20/832 (2.4%) patients had a 
positive BMb but five fold more patients (n = 110) 
had a PET/CT evidence of BM disease. The neg-
ative predictive value was 99.9% as only 1/703 
patients without BM disease on PET/CT had a 
positive BMb. In both studies, patients with both 
positive PET/CT and BM biopsy had much more 
frequently multifocal lesions, suggesting that 
among patients with PET/CT-based evidence of 
BM involvement, those who also have positive 
BMb have more extensive BM disease. Similarly, 
only 1.1% of patients with HL and a negative BM 
PET/CT had a positive BMb in a meta-analysis of 
955 patients, including the first previously men-
tioned study [21] while the overall frequency of a 
positive BMb in the presence of a negative PET/
CT was 1.9% in a study of 1085 patients [22]. 
Our experience, based on 172 patients, is very 
similar, further demonstrating that there is not 
even a small high-risk subgroup [17, 23], in 
which BMb could offer additional information. 
Furthermore, it appears that the outcomes of 
patients with positive BMb and those with PET/
CT evidence of BM involvement but negative 
BMb are equally poor, but this should be further 
confirmed [16–18]. Thus, the biologic and prog-
nostic significance of BM involvement detected 
by means of PET/CT only appears to be similar 
to that of histologically proven BM disease in HL 
[16–18]. Finally, PET/CT might facilitate the 
identification of foci of increased uptake in order 
to guide bone marrow biopsy, since bone marrow 
involvement can be patchy and incremental infor-
mation could be lost.

14.2.2.2  Diffuse Large B Cell 
and Primary Mediastinal 
Large B Cell Lymphoma 
[24–33]

In DLBCL the frequency of BM involvement is 
10–15% and PET/CT is again suggestive of BM 
involvement only if focal lesions with increased 
uptake are present (Fig.  14.2a). BM involve-
ment may be either concordant (large cell) or 
discordant (small cell) compared to lymph node 
histology with an almost equal frequency [24]. 
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This phenomenon, which is of prognostic sig-
nificance, cannot be effectively demonstrated by 
PET/CT [25].

According to the 2014 Lugano recommenda-
tions, BMb could be safely omitted in DLBCL 
staged by PET/CT, because the probability of a 
positive BMb is low in the absence of focal BM 
lesions on PET/CT and, even in such cases, treat-
ment strategy is not typically affected [1, 2]. 
However, a BMb was still indicated for the detec-
tion of discordant histology in DLBCL, if this 
was relevant for patient management or required 
by a clinical trial [1, 2]. Extending these thoughts, 
current ESMO and NCCN guidelines propose to 
omit BMb if PET/CT is suggestive of BM 
involvement but keep BMb in staging procedure 
in case of a negative PET/CT in order to detect 
discordant or low-volume (<10–20%) BM 
involvement [34, 35]. The scientific basis for 
these recommendations is analyzed below.

Although BMb might be omitted in the major-
ity of DLBCL patients, it is more informative 
compared to HL, because more patients may 
have positive biopsies with negative PET/
CT. PET/CT reveals on average twice more cases 
of BM involvement than BMb in DLBCL 
[26–32].

However, in contrast to HL, approximately 
1/3 of patients with positive BMb (range, 
14–50%) have a negative PET/CT, accounting 
for 1.5–8% of the total DLBCL population in 
various studies [26–31, 33, 36]. If BMb is omit-
ted, several cases of BM involvement may be 
overlooked, but most of them have already fea-
tures of advanced disease and management is 
not affected (see Lugano recommendations [1, 
2]). This was recently shown clearly in a com-
bined analysis of the PETAL and OPTIMAL tri-
als [33]. However, PET+/BMb- cases may have 
a better prognosis than BMb + cases, so that BM 
involvement could be an adverse prognostic fac-
tor only if demonstrated at the histologic level 
[27, 29–32]. Thus, although of limited value, the 
exact role of BMB in DLBCL remains to be fur-
ther investigated [31, 32, 37]. Special caution 
should be taken in patients with no evidence of 
BM disease on PET/CT and apparently limited 
stage, who are scheduled for abbreviated immu-
nochemotherapy regimens, in whom a BMb 
would be most useful [15, 35].

In PMLBCL, the baseline probability of BM 
involvement is extremely low and it would be 
reasonable to omit BMb in the absence of rele-
vant findings in PET/CT, especially because a 
positive result would not alter treatment strategy 
[32, 38, 39]. However, there is no formal recom-
mendation on this for the time being.

14.2.2.3  Other Lymphoma Subtypes
In indolent lymphomas, including follicular lym-
phomas and MCL, BM biopsy remains the gold 
standard for the evaluation of BM disease, which 
is much more prevalent than in HL and 
DLBCL.  PET/CT may not reveal bone marrow 
involvement by low-grade lymphoma [9] and 
BMb cannot be omitted [1, 2].

14.2.3  Potential Prognostic Impact 
of Baseline PET Parameters

The calculation of total metabolic tumor volume 
(TMTV) by baseline PET/CT may provide a bet-
ter estimation of the true tumor burden compared 
to conventional imaging. Furthermore, total 
lesion glycolysis (TLG) provides a combined 
evaluation of both TMTV and intensity of meta-
bolic activity (SUV mean of each lesion) [40]. 
These parameters, which are derived from base-
line PET/CT, may provide important prognostic 
information in individual lymphoma subtypes.

Further to rather small studies in which TMTV 
was demonstrated as an independent prognostic 
factor for PFS [41] and OS [41, 42] in HL, the 
impact of TMTV and TLG has been significant in 
the context of randomized trials or larger patient 
series as well, both for early stage disease [43, 
44] and for advanced disease, where TMTV may 
stratify patients with a negative interim PET into 
distinct prognostic subgroups [45–48].

Similarly, small or medium-sized studies 
(<200 patients) have shown the prognostic impact 
of TMTV [49–53] and TLG [54, 55] in DLBCL, 
which appears to be independent from conven-
tional prognostic systems and molecular profil-
ing. In addition, a very recent large study of 
>1000 patients clearly demonstrated the additive 
impact of TMTV to the IPI in DLBCL in the 
form of International Metabolic Prognostic Index 
[56]. TMTV and TLG were also independent 
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prognostic factors after adjustment for IPI and 
cell-of- origin within the large population (>1000 
patients with DLBCL) enrolled in the GOYA trial 
comparing CHOP plus rituximab or obinutu-
zumab [57]. Furthermore, within the REMARC 
randomized clinical trial which included only 
patients with a response to R-CHOP (and conse-
quently more favorable prognosis), baseline 
TMTV still remained a strong independent prog-
nostic factor and this was independent from the 
administration of lenalidomide maintenance or 
not [58].

In PMLBCL, for which established and repro-
ducible prognostic factors are generally lacking, 
baseline PET parameters may also be valuable: 
Within the IELSG26 study, 103 patients were 
treated predominantly with R-MACOP-B (84%) 
or R-CHOP (16%), both followed by RT [59]. 
Baseline SUVmax, MTV, and TLG of the medi-
astinal disease were associated with outcome, but 
only high TLG, observed in 1/3 of patients, was 
an independent prognostic factor, overcoming 
the significance of the other PET parameters, 
bulky disease, and other conventional prognostic 
factors. The 5-year PFS and OS for patients with 
low vs. high TLG were 99% vs. 64% (p < 0.0001) 
and 100% vs. 80% respectively (p  =  0.0001) 
[59]. The prognostic significance of TMTV was 
confirmed by a LySA study as well as by MD 
Anderson and Dana Farber data under R-da-
EPOCH chemotherapy [60, 61].

Other baseline PET-derived metabolic 
parameters may also provide important prog-
nostic information in HL and aggressive B cell 
lymphomas. The distance between the 2 lesions 
that are farthest apart (Dmax or lesion dissemi-
nation), a measure of tumor dissemination, may 
add to the prognostic significance of MTV or 
even overcome it in DLBCL and cHL [62–64]. 
Metabolic heterogeneity refers to the intratu-
moral distribution of 18FDG uptake, which 
reflects the glucose metabolism of both the 
tumor cells and their microenvironment as well 
as other processes, such as necrosis, apoptosis, 
proliferation, and angiogenesis. High metabolic 
heterogeneity confers adverse prognosis in 
PMLBCL in addition to TLG [65]. In DLBCL, 
high metabolic heterogeneity does not correlate 
with TMTV and may also confer an adverse 
impact on prognosis [66, 67].

Baseline PET parameters have also been 
evaluated in other lymphoma subtypes. A high 
MTV predicted the outcome of high-tumor bur-
den follicular lymphomas independently from 
the well- established FLIPI2 prognosticator in a 
pooled analysis of 3 multicenter studies [68], 
while it predicted outcomes independently from 
cell-free DNA in another study [69]. In contrast, 
neither baseline MTV nor TLG or SUVmax pre-
dicted the outcome of follicular lymphoma 
patients treated within the GALLIUM study 
with Obinutuzumab or rituximab plus chemo-
therapy (predominantly bendamustine) fol-
lowed by antibody maintenance [70]. In MCL, 
baseline MTV and TLG—but not SUVmax—
were independent predictors of PFS in a series 
of 87 patients [71]. Baseline MTV also pre-
dicted PFS and OS in “nodal” T cell lymphomas 
independently from other clinical factors and 
had a synergistic prognostic impact with the T 
cell prognostic index (PIT) [72], while it was 
subsequently shown to offer prognostic infor-
mation independent from interim PET as well 
[73]. Similar data were recently published for 
TLG in peripheral T cell lymphomas [74]. 
Finally, a similar prognostic effect for TLG (and 
SUVmax) was shown in patients with extrano-
dal NK/T cell lymphomas [75].

Although interesting, all this information 
deserves further prospective evaluation in large- 
scale studies along with many established clini-
cal and biological prognostic factors before 
implemented in clinical practice. Standardization 
of the procedures is also essential for reliable 
clinical application.

14.3  PET/CT in Response 
Assessment After 
Completion of Therapy

14.3.1  Criteria for Response 
Assessment and Definitions 
of PET Positivity

The most important information provided by PET, 
as far as response evaluation is concerned, is the 
differentiation between viable lymphomatous tis-
sue and necrotic or fibrotic tissue within residual 
masses, which are apparent on CT. Furthermore, 
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EOT-PET/CT may uncover occult disease in nor-
mal-sized lymph nodes or bone marrow disease, 
which may not be demonstrable by trephine 
biopsy. In 2005, Juweid et  al. published a retro-
spective study in patients with aggressive NHL, 
predominantly DLBCL, who underwent PET and 
CT after 4–8 cycles of chemotherapy [76]. They 
noticed that patients otherwise categorized as CRu 
(Complete Remission unconfirmed) based on 
Cheson’s 1999 criteria were usually PET-negative, 
and, overall, had a favorable outcome with PFS 
similar to that of the CR group. Patients in partial 
remission (PR) had strikingly different outcomes 
when PET was negative or positive. In the “early” 
PET era, response assessment had been tradition-
ally based on the International Harmonization 
Project (IHP) criteria described in 2007 [77, 78]. 
According to that set of criteria, a positive PET at 
the EOT was defined in relation to the size of the 
residual lesion: For residuals <2 cm, any focal or 
diffuse FDG uptake above the background in a 
location not compatible with normal anatomy/
physiology was considered positive. However, for 
residuals ≥2 cm a mild uptake above background 
was still compatible with CR, i.e., PET positivity 
was defined as FDG uptake exceeding that of the 
mediastinal blood pool structures (Figs.  14.1b, 
14.2c, 14.4c, 14.7c).

More recently, the EOT response criteria 
were revised, adopting the Deauville 5-point 
scale (D5PS), which had been initially used 
for interim response assessment (Table 14.1). 
The D5PS was incorporated in the currently 
used Lugano criteria [1, 2]. According to cur-
rent recommendations any FDG uptake up to 
that of the mediastinal blood pool (corre-
sponding to D5PS 1–2) is considered compat-
ible with CR irrespective of the size of the 
residual mass. Furthermore, a low- grade posi-
tivity, higher than the mediastinal blood pool 
and up to the uptake of the liver (D5PS 3; 
Table 14.1), is also considered as a favorable 
response. Thus, clear PET positivity at the 
EOT is defined as any uptake above that of the 
liver, corresponding to D5PS 4 or 5 
(Figs. 14.1b, 14.2c, 14.4c, 14.7c). It should be 
noted that the D5PS score should be deter-
mined visually; the classification should not 
be relied on simple SUVmax comparisons 
between the uptake of the lesion and that of 
the liver or the mediastinal blood pool.

The currently used set of criteria for the evalu-
ation of response in malignant lymphomas incor-
porating both PET/CT and anatomic findings are 
summarized in Table 14.1 [1, 2, 32] (Figs. 14.1b, 
14.2c, 14.4c, 14.5c, 14.7c).

a b c d

Fig. 14.7 (a) Baseline staging in a patient with Hodgkin 
lymphoma: Extensive supradiaphragmatic as well as 
infradiaphragmatic involvement consistent with stage 
IIIB disease. (b) Interim PET after two cycles of ABVD 
revealed persistence of multiple nodal sites on both sides 
of the diaphragm with FDG uptake markedly greater than 
that of the liver. A new focal osseous lesion is also seen. 

Interim PET was interpreted as positive, Deauville score 
5. The patient continued on ABVD. (c) End-of-treatment 
PET after a total of six ABVD cycles demonstrated fur-
ther progression. The patient had progressive disease by 
conventional restaging as well. (d) Further progression 
later on, during disease course in the same patient. 
Multiple focal splenic lesions are noted
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14.3.2  Who Should Have an EOT-PET- 
Based Response Assessment 
and When?

PET/CT is routinely used for final response 
assessment in patients with HL and aggressive B 
cell lymphomas. It is also currently recom-
mended as the optimal tool for final response 
assessment in all other FDG-avid subtypes, espe-
cially in follicular lymphomas. However, the 
accuracy parameters related to EOT-PET depends 
on the precise histologic subtype, being highest 
for HL but lower for aggressive non-Hodgkin 
lymphomas. Although clearly recommended for 
final response assessment, PET/CT may not be so 
informative in low-grade follicular lymphomas 
and MCL, since these diseases are incurable and 
a negative PET/CT is merely reflecting an 
improved PFS and prolonged survival but not 
“true” disease eradication. When used in variably 
18-FDG-avid histologic subtypes, which is not 
recommended as a general rule, it is essential to 
have a baseline PET/CT available in order to con-
firm that the tumor is 18-FDG-avid (Fig. 14.6).

EOT-PET/CT evaluation should preferably be 
performed 4–6 weeks (and at least 3 weeks) after 
chemotherapy and immunotherapy and 
8–12 weeks after RT, in order to avoid false posi-
tive findings due to inflammatory processes and 
false negative due to stunning from cytostatic 
drugs [1, 2, 77, 78]. As far as interim PET is con-
cerned it should better be performed as close to 
the next chemotherapeutic cycle as possible (see 
next topic).

14.3.3  Clinical Data in Individual 
Lymphoma Subtypes

As already stated, accuracy parameters, i.e., posi-
tive and negative predictive value (PPV, NPV) of 
EOT-PET/CT, depends on the histologic subtype 
(Hodgkin lymphoma vs. individual subtypes of 
non-Hodgkin lymphomas), but also on the che-
motherapy regimen applied (standard or inten-
sive) and the a priori probability of relapse, as 
reflected by clinical stage or other prognostic 
factors.

14.3.3.1  Hodgkin Lymphoma
The long-term outcome of patients with HL who 
achieve a PET-negative status at the end of 
 first- line chemotherapy, depends on stage, che-
motherapy regimen, and use of RT, as summa-
rized in Table 14.2 [79–88]. Α negative PET/CT 
after standard ABVD chemotherapy predicts a 
5-year relapse-free survival (RFS) of ~95% in 
stages I/II, where ABVD is typically followed 
by RT (Fig. 14.5c), and ~ 80% in stages III/IV, 
in which only few patients are irradiated 
(Fig. 14.4c) [79].

Within the RAPID trial, patients with non- 
bulky clinical stage I/IIA and a strictly negative 
PET (D5PS 1 or 2) after ABVD×3 were random-
ized to receive 30 Gy involved field (IF)-RT or no 
further treatment, achieving a 3-year PFS of 97% 
versus 91% respectively (p = 0.026) [83]. In the 
German Hodgkin Study Group (GHSG) HD16 
trial of patients with localized, favorable HL 
(early stages) treated with ABVD×2, the 5-year 
PFS was 93% versus 86% who received consoli-
dative IF-RT or not, if EOT-PET was strictly 
negative (D5PS 1 or 2) [84]. Within the GHSG 
HD17 trial of patients with localized, unfavor-
able HL (intermediate stages) treated with inten-
sified therapy (BEACOPP-escalated ×2 plus 
ABVD×2) consolidative RT could be omitted 
without clinically meaningful loss of efficacy, if 
EOT-PET was strictly negative (D5PS 1 or 2). 
Even among patients with bulky disease, the 
5-year PFS was 97% regardless of the adminis-
tration of consolidative RT. [86] These data may 
have important implications for the design of 
follow-up strategies [89].

Regarding advanced HL treated with ABVD, 
the HD607 trial demonstrated that RT can be 
omitted in patients who achieve a negative PET 
status, defined as D5PS score 1–3, both at the 
interim and EOT evaluation despite the presence 
of bulky disease ≥5 cm [90]. The 6-year PFS was 
92% versus 90% for irradiated and non-irradiated 
patients and the difference was not significant 
whatever the definition of bulk (5, 7, or 10 cm) 
[91]. If advanced stage patients are treated with 
more aggressive chemotherapy such as 
BEACOPP-escalated or variants, the 5-year RFS 
for patients with a residual mass of >2.5 cm and 
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a negative post-chemotherapy PET/CT is approx-
imately 90% without RT [80], falling to 88% at 
10  years [87]. Within the HD15 study of the 
GHSG, this was comparable to the 85% observed 
as 10-year PFS in patients with conventional CR 
or residual masses <2.5 cm, who did not undergo 
EOT-PET/CT evaluation [87].

Despite additional RT, early stage patients 
who remain PET/CT-positive after ABVD che-
motherapy have a 5-year RFS of 40–65% 
(Fig.  14.1b) [81, 82, 88, 92]. Higher 18-FDG 
uptake is predictive of treatment failure in this 
setting and could have an impact on therapeutic 
strategies, but this needs further clarification [88, 
92]. In the above-mentioned RAPID trial, patients 
with favorable (defined as non-bulky) stage I/IIA 
HL who remained PET-positive (D5PS 3, 4 or 5) 
after ABVD×3 received one more ABVD cycle 
and IF-RT. The outcome was favorable for those 
with D5PS 3–4, but it was dismal for those with 
D5PS 5: The 5-year PFS was 95%, 88%, and 
62% for patients with D5PS score 3, 4, and 5 
respectively [88]. This difference was translated 
to overall survival difference as well. In the 
GHSG HD16 trials of early (favorable) stages, 
among patients receiving ABVD×2 plus IF-RT, 
the 5-year PFS was 93%, 88%, and 81% for 
patients with D5PS score 1–2, 3–4, or 4, respec-
tively, while the corresponding figures were 98%, 
94%, and 82% within the HD17 trial after 
BEACOPP-escalated ×2 plus ABVD×2 plus con-
solidative RT. [84, 86] This suggests that D5PS 
score  ≥  4 is an unfavorable prognostic factor 
despite additional RT (caution to be exercised to 
the definition of score 4; cases with conventional 
D5PS score 5 may have been included in the 
absence of new lesions).

In advanced stages, the figures are similar to 
early stages after ABVD, but it appears that, after 
more intensive chemotherapy such as BEACOPP- 
escalated, RT to >2.5 cm PET-positive residuals 
may be much more efficient for disease control 
with long-term RFS just below 85% [87]. The 
degree of conventional radiographic response 
appears to correlate with disease control after 
BEACOPP-based therapy and RT: Patients whose 
residual masses had been reduced by >40% in 

their largest diameter compared to baseline had 
similar outcomes with PET-negative patients 
with 4-year PFS of 92%. The prognosis was 
worse for patients with reductions ≤40%, who 
had a 4-year PFS of 73% [93].

14.3.3.2  Primary Mediastinal Large B 
Cell Lymphoma

A negative PET/CT after R-CHOP, R-MACOP-B, 
or R-da-EPOCH is associated with 90–95% cure 
rates in PMLBCL, even when RT is omitted in 
many patients [38, 39, 94–98]. According to the 
Vancouver experience, even patients with D5PS 
score 3 after R-CHOP may enjoy a > 90% long- 
term disease control rate without consolidative 
RT [97], which is similar to the outcomes 
achieved with RT in all these patients [98].

If irradiated, PET/CT-positive residual masses 
are effectively controlled in 65–70% of cases 
provided that the disease is responsive by con-
ventional imaging [39, 95, 96, 98, 99]. In particu-
lar the rate of long-term disease control in patients 
with D5PS score 4 following R-CHOP (or 
R-MACOP-B) is exceptionally high in the range 
of 80–87% [39, 97, 98]. Among the latter patients, 
those with D5PS score 4 and “lower” FDG uptake 
may have equally favorable outcomes compared 
to PET-negative patients with long-term PFS 
>90%, while those with higher SUVmax (for 
example ≥5) probably have significantly inferior 
outcomes [99, 100]. Although patients with 
D5PS score 5 have inferior outcomes [39, 98–
101] >40% of them can achieve long-term dis-
ease control with consolidative RT if they have 
achieved PR by conventional imaging [98]. 
However, salvage chemotherapy intending to 
autologous transplant is preferrable for patients 
with D5PS score 5 and conventionally defined 
stable or progressive disease [98].

If patients are treated with the more intensive 
combination R-dose adjusted-EPOCH (R-da- 
EPOCH), EOT-PET/CT can be interpreted more 
conservatively. Patients with D5PS scores 1–2 
are not candidates for consolidative RT, but RT is 
also omitted in patients with D5PS 3 and 4. Serial 
PET/CT evaluation typically shows regression or 
stability even in D5PS score 4 during follow-up 
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with no further intervention [102–104]. The few 
patients with D5PS score 5 after R-da-EPOCH 
can be effectively salvaged with RT if they have 
achieved PR by conventional methods but should 
be again forwarded to salvage chemotherapy 
intending to autologous transplant if they have 
conventionally defined stable or progressive dis-
ease [105].

Because of the considerable curative potential 
of RT, patients with PMLBCL should not be 
referred for high-dose therapy and autologous 
transplantation solely based on a positive PET/
CT after immunochemotherapy and this is espe-
cially true if the uptake is not marked [94]. It 
should be also noted that certain patients who 
have low-grade positivity after immunochemo-
therapy remain PET/CT positive at a similar 
degree after RT as well without experiencing dis-
ease progression, suggesting that mild positivity 
(at the lower range of D5PS score 4) may be 
compatible with cure in this entity [99, 101, 102]. 
Finally, the question whether RT could be safely 
omitted in PET-negative patients after immuno-
chemotherapy (other than R-da-EPOCH) is cur-
rently evaluated by the IELSG-37 randomized 
trial.

14.3.3.3  Diffuse Large B Cell 
Lymphoma

A negative PET/CT after R-CHOP carries a 
lower NPV in DLBCL compared with HL and 
PMLBCL [106–113]. The long-term event-free 
survival (EFS) in these patients after a negative 
PET/CT post R-chemotherapy is roughly 
70–85% (Table  14.3) and the probability of 
relapse may depend on their baseline relapse risk, 
as reflected by the International Prognostic Index 
(IPI) and its components [106, 109, 110], the cell 
of origin [106] as well as on the depth of conven-
tional radiographic response (CR versus PR) 
(Fig. 14.2c), the size of the residual mass, and the 
number of residual lesions [108].

Recently, two large studies including patients 
with predominantly advanced DLBCL evaluated 
EOT-PET after R-CHOP (or obinutuzumab- 
CHOP) using the D5PS [112, 113]. Both demon-
strated a 3-year disease control rate of 82–83% 
without consolidative RT. Within the GOYA trial 

including >1000 patients, a positive EOT-PET 
(D5PS score 4–5) was an independent prognostic 
factor after adjustment for IPI or the cell-of- 
origin. Unexpectedly, among patients with 
 complete metabolic response (D5PS score 1–3), 
those with IPI 0–2 had inferior 2.5-year PFS to 
those with IPI 3–5 (77% versus 88%, p < 0.0001), 
while ABC DLBCL expectedly fared worse than 
their GCB counterparts (2.5-year PFS 80% ver-
sus 89%, p < 0.05) [112]. According to the British 
Columbia experience on 723 patients, the 3-year 
disease control was 83% and inferior outcomes 
were predicted independently by baseline 
B-symptoms and BM involvement. The individ-
ual IPI factors were not independently associated 
with the outcome but the IPI per se and the cell- 
of- origin were not assessed. Interestingly, the 
outcome of patients with a negative EOT-PET 
was the same in the presence of bulky disease or 
not and independently of the presence of skeletal 
or craniofacial involvement, which were tradi-
tionally irradiated in some institutions [113]. The 
feasibility to omit RT in patients with bulky dis-
ease who achieve a PET-negative status follow-
ing R-CHOP-based therapy was also confirmed 
in the setting of the OPTIMAL randomized trial, 
which was limited to elderly DLBCL patients 
[114].

Patients with DLBCL who remain PET/
CT-positive after R-CHOP have a  <  40–50% 
probability to remain disease-free [107–110], but 
even this figure suggests that false positive find-
ings are not infrequent (Table 14.3). Within the 
GOYA trial only 12% of the 1092 patients had a 
positive EOT-PET defined as D5PS score 4–5 
and still enjoyed a 3-year PFS of 49% [112]. IPI 
was not predictive in this subgroup, but ABC 
DLBCL remained worse than GCB (44% versus 
63% disease control). Unfortunately, there was 
no mention of the potential impact of the exact 
D5PS score (4 versus 5), which may be critical 
for the outcome.

The British Columbia group also focused on 
the EOT-PET-positive subgroup and the role of 
RT. Among 723 patients with advanced DLBCL 
(stage III/IV or I/IIB or bulky) treated with 
R-CHOP, the rate of EOT-PET positivity was 
much higher reaching 25% (178/723) [113]. The 
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study was focused on patients who had not expe-
rienced disease progression until the time of 
EOT-PET, so that they were considered as 
responders with residual disease. Among the 178 
patients with a positive EOT-PET defined as 
D5PS score 4–5, 86 received RT and achieved a 
3-year time-to-progression (TTP) of 69%, which 
was only slightly inferior to EOT-PET-negative 
patients (83%). This impressive success rate 
should be further confirmed, since it depends on 
optimal patient selection. In contrast, the 3-year 
TTP for the 92 patients that had disease not ame-
nable to RT was only 33%. However, even in this 
unfavorable setting, 1/3 of the patients remain 
without disease progression. Notably, despite 
some overlap, the median SUVmax of progres-
sors was substantially higher to that of the minor-
ity of patients who remain in remission [16.3 (up 
to 36.0) versus 4.5 (up to 18.1)] [113].

14.3.3.4  Follicular Lymphoma
EOT-PET carries prognostic significance for 
patients with FL.  Dupuis et  al. reported that a 
positive EOT-PET after 6 cycles of R-CHOP sig-
nificantly affected PFS regardless of iPET status 
and FLIPI score [115]. A pooled analysis using 
EOT-PET/CT scans from 439 patients enrolled in 
three landmark studies (PRIMA, PET-FL, and 
FOLL05) showed that D5PS >4 was associated 
with significantly lower PFS (16.9 vs. 74 months 
for EOT-PET-positive and -negative patients 
respectively) [116]. Also, the secondary analysis 
of PET results from GALLIUM study reported 
that patients who achieved complete metabolic 
response had better PFS and OS irrespective of 
whether they received rituximab- or 
obinutuzumab- based treatment, or whether they 
achieved CR in conventional imaging [117]. 
Currently, restaging with EOT-PET is recom-
mended for prognostication, but not for treatment 
modification decisions or patient surveillance.

14.3.3.5  Mantle Cell Lymphoma
EOT-PET is considered optional in patients with 
MCL and its role remains unsettled, as treatment 

strategies in patients with MCL are heterogenous. 
A study of 32 cases treated with Rituximab- 
Bendamustine demonstrated that patients who 
achieved complete metabolic response by D5PS 
had significantly higher PFS [118]. Similarly, in 
a study of 72 patients treated with alternating 
R-CHOP/R-high-dose cytarabine, a positive 
EOT-PET (D5PS score 4–5) was associated with 
worse PFS [119]. The LyMA-PET project dem-
onstrated that SUVmax and D5PSS in iPET and 
EOT-PET had not prognostic significance; how-
ever SUVmax in iPET and ΔSUVmax (reduction 
of SUVmax between iPET and EOT-PET) in 
EOT-PET were associated with OS and PFS, 
respectively [120].

14.3.3.6  T Cell Lymphomas
The utility of EOT-PET in T cell lymphomas 
remains rather poorly defined, as T cell lympho-
mas consist of various histological subtypes with 
diverse clinical and biological characteristics and 
heterogenous treatment approaches. In a study of 
114 patients with PTCL, iPET had not prognostic 
significance but a positive EOT-PET (D5PS score 
4–5) was significantly associated with worse PFS 
and OS [121]. In another study of 140 patients 
with PTCL treated mainly with CHOP or CHOP- 
like regimens, the authors aimed to explore the 
role of interim (after 2 or 3–4 cycles of chemo-
therapy) and EOT-PET/CT.  PET positivity was 
again defined as D5PS score 4–5. Patients with 
positive interim PET had significantly compro-
mised 2-year PFS and OS.  EOT-PET was also 
predictive as the 2-year PFS and OS were 83% 
and 94% vs. 6% and 27% for EOT-PET-negative 
and -positive patients, respectively.

14.4  Interim Response 
Assessment

Early prediction of response to therapy is of 
major importance, not only as a powerful prog-
nostic factor but also as a potential basis for early 
treatment modification. Functional changes that 
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precede the anatomic ones could potentially be 
more accurate in predicting treatment response 
early in the course of therapy.

14.4.1  Who Might Benefit 
from Interim PET-Based Early 
Response Assessment?

Early response assessment has provided a major 
prognostic clue for patients with advanced HL or 
localized HL with adverse prognostic factors 
[122, 123] and provides a useful tool for early 
treatment intensification. The prognostic effect of 
interim PET (iPET) is less marked, although still 
significant, for patients with DLBCL, but it can-
not be used for early treatment modification in 
the absence of effective alternative chemother-
apy. In the specific setting of PMLBCL, the out-
comes according to iPET appear to be conflicting 
[124]. Data on other lymphoma subtypes, includ-
ing T cell lymphomas, are sparse. Relevant stud-
ies regarding iPET are discussed below.

The D5PS was initially described for the eval-
uation of iPET and remains the standard tool for 
this purpose in HL [1, 2]. In DLBCL, the D5PS is 
less reproducible and is associated with inferior 
prognostic discrimination. An approach based on 
the reduction of SUVmax between baseline and 
iPET (ΔSUVmax at a cutoff of 66%) is prognos-
tically superior and sufficiently reproducible. 
Thus, the calculation of ΔSUVmax is the recom-
mended approach for iPET interpretation in the 
specific setting of DLBCL (see below) [1, 2].

14.4.2  Clinical Data in Individual 
Lymphoma Subtypes

14.4.2.1  Hodgkin Lymphoma
According to the D5PS (Table 14.1), a negative 
iPET may not be nominally negative: Any posi-
tivity in previously involved sites with 18-FDG 
uptake up to that of the liver is acceptable as a 

favorable interim response (D5PS scores 1,2,3) 
and this assessment should be made visually 
(Fig. 14.5b). Any uptake higher than the liver is 
considered positive (scores 4,5) (Figs.  14.4b, 
14.7b). Using the D5PS, the International 
Validation Study demonstrated that, under ABVD 
chemotherapy, the 3-year PFS for patients with 
negative and positive iPET was 95% vs. 28% 
[125]. Such figures may apply not only to 
advanced HL, but also to intermediate stage HL 
(localized stages with ≥1 unfavorable features). 
However, the outcome of iPET-positive patients 
with localized disease and no adverse factors, 
especially no bulky disease, may be much better 
than the ~30% reported above [82, 122, 126]. 
Furthermore, the excellent outcome for iPET- 
negative patients with intermediate, and particu-
larly advanced, stages has not been reproduced in 
subsequent studies using ABVD, as discussed 
below.

Under BEACOPP-escalated, the NPV of iPET 
is also very high, with >90% of iPET-negative 
patients achieving continuous CR. Nevertheless, 
the PPV is much lower compared with ABVD- 
treated patients: Large datasets within the context 
of randomized trials have recently revealed PFS 
rates between 70% and  >  90% with continued 
BEACOPP-escalated for a total of 6  cycles in 
case of iPET positivity after the second cycle 
[127–130]. In the HD18 trial of the GHSG, 46% 
of advanced stage patients remained iPET- 
positive after BEACOPP-escalated ×2 (defined 
loosely as D5PS ≥3) and  ~  54% of them were 
still positive by the current definition of D5PS ≥4 
[131]. The 3-year PFS for all these patients was 
~93–94%; it was 91% for patients with D5PS ≥4.

14.4.3  Is It Reasonable to Modify 
Treatment of HL in Response 
to Interim PET Results?

In order to justify treatment modification in 
response to iPET result, two conditions must be 
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met: Firstly, the outcome of iPET-positive 
patients could be possible to improve by an alter-
native therapy, and, secondly, the NPV should be 
sufficiently high to avoid relapses in the vast 
majority of iPET-negative patients.

Regarding the first condition, there are over-
whelming data indicating that treatment intensifi-
cation may produce long-term PFS rates of ~65% 
(vs. ~30% expected based on historical data with 
continued ABVD) in patients with advanced or 
even intermediate (early unfavorable) stage HL, 
who remain PET/CT-positive after 2 ABVD 
cycles (Fig.  14.4b) [90, 91, 132–137]. This is 
typically achieved by switching chemotherapy 
from ABVD to BEACOPP-escalated for at least 
4 cycles [90, 91, 132–136, 138] but early salvage 
therapy and autologous stem cell transplantation 
may also produce similar results [139]. These 
data are summarized in reference #138.

Although clinical trials are mainly investigat-
ing PET-adapted therapy for advanced disease, 
the only randomized evidence for the superiority 
of treatment intensification with BEACOPP- 
escalated in HL comes from the H10 trial for 
localized stages [140]. In H10, 361/1925 (19%) 
of patients had persistent PET/CT positivity after 
ABVD×2, loosely defined according to the IHP 
criteria and roughly corresponding to D5PS 
score ≥  3. Only 97/361 (27%) had no adverse 
factors, while 264 (73%) had ≥1 risk factor. 
These 361 patients were randomized to receive: 
(1) 1 or 2 further ABVD cycles (according to the 
absence or presence of risk factors) plus 30 Gy 
involved node RT (standard arm) or (2) 2 cycles 
of BEACOPP-escalated plus 30  Gy involved 
node RT (experimental arm) irrespective of risk 
factor classification. PFS was improved by only 
2  cycles of BEACOPP-escalated with 5-year 
rates of 91% versus 77% in the experimental and 
the standard arm respectively (p  =  0.002). 
Importantly, a marginally significant but clini-
cally meaningful improvement was noted for 
5-year OS as well (96% versus 89%, p = 0.062) 

[140]. However, in a subsequent analysis pre-
sented in abstract form, it became evident that the 
benefit of switching to BEACOPP-escalated was 
limited only to patients with D5PS score 4–5, 
while those with D5PS score 3 were effectively 
treated by ABVD×2 plus RT. [141]

In the specific setting that first-line therapy is 
based on BEACOPP-escalated instead of ABVD, 
the long-term PFS of iPET-positive patients may 
be in the range of 70 to >90%, as stated above 
[128, 131]. In this setting, improvement of the 
outcome of iPET-positive patients appears diffi-
cult. For example, the addition of rituximab was 
not successful in improving the outcome of 
iPET+ patients after BEACOPP-escalated ×2, in 
the GHSG HD18 trial [131].

While the first of the required conditions is 
partially fulfilled, the second one is becoming 
particularly important for the final success of 
iPET-directed therapy: Although major early 
studies had shown that the NPV of iPET could be 
>90% under ABVD, more recent studies and 
maturing data suggest that it may not be so per-
fect as initially thought in patients with truly 
advanced HL: In the US S0816 trial, the 2-year 
PFS of 271 patients with stage III/IV HL treated 
with ABVD×6 was 82% (and was projected to be 
reduced to ~−70–75% at 4–5 years!) and did not 
differ according to the D5PS score (80%, 84%, 
and 81% for scores 1, 2, or 3) [134, 137]. In the 
RATHL trial, the 3-year PFS for iPET-negative 
patients with continued ABVD or AVD was 
84–86%, but it was only 82% for younger 
(<60 years old) stage III/IV patients [133]. Within 
the HD0801 trial (81% stage III/IV), the 2-year 
PFS was 81% [139], while the 3-year PFS was 
87% in the HD607 trial, which included only 
67% stage III/IV patients [90]. Smaller studies 
also provided similar results with long-term PFS 
for iPET-negative patients clearly <90% and as 
low as 71–77% [135, 136, 142]. These data have 
been extensively reviewed in reference #138. It is 
not currently known if there is a reproducible 
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subgroup of iPET-negative patients after ABVD 
who remain at a high risk of failure.

The a priori risk of failure as reflected by stage 
IV (or extranodal involvement) or other prognos-
tic factors may affect the NPV of iPET and 
should be further investigated [133, 136, 143]. A 
large mediastinal mass ≥ 7 cm was predictive of 
relapse in iPET-negative patients in another retro-
spective study [144]. The significance of any bulk 
≥5  cm was also demonstrated in strictly iPET- 
negative, non-bulky stage I/IIA patients in the 
RAPID trial [145]. Serum lactate dehydrogenase 
elevation was the only predictor of conversion 
from iPET-negative to EOT-PET-positive and 
anemia was modestly associated with PFS in the 
HD0801 study [146, 147], while only the IPS 
predicted—albeit loosely—treatment failure in 
iPET-negative patients of the HD0607 trial [148]. 
Within the latter trial, baseline TMTV and IPS 
could define 3 groups of iPET-negative patients 
with highly diverse outcomes: TMTV<471  mL 
and IPS 0–1 (7% of patients), either elevated 
(80% of patients) and both elevated 
(TMTV≥471 mL and IPS >1; 13% of patients) 
with 3-year PFS of 98%, 85%, and 56% [46]. 
Similarly, within the H10 trial for localized HL, 
TMTV >147 mL (observed in only 16% of iPET- 
negative patients) was associated with signifi-
cantly, but numerically slightly inferior outcome 
with 5-year PFS of 82% versus 95% for those 
with lower TMTV [43]. Biological prognostic 
factors may also be relevant, such as high content 
of CD68+ tumor-associated macrophages plus 
diffuse or rosetting PD1+ cells in the microenvi-
ronment or STAT1 negativity of tumor cells 
[149]. Persistence of residual TARC levels 
>800 pg/mL after ABVD×2 may also discrimi-
nate a rather small subgroup (19% of iPET- 
negative patients) with inferior outcome (4-year 
PFS 74% versus 89%) [150]. Despite all these 
data there is no evidence that any prognostic fac-
tor or combination can define a sizeable subgroup 
of iPET-negative patients with sufficiently poor 
outcome to justify a different approach from the 
beginning.

Apart from starting with ABVD and escalat-
ing to BEACOPP, an alternative iPET-driven 
strategy can be starting with BEACOPP-escalated 
and de-escalating chemotherapy in case of a neg-
ative iPET.

Very promising results have been reported 
by the LySA 2011 trial, in which this reverse 
iPET- driven strategy was applied to 823 patients 
with advanced stage HL according to the GHSG 
definition, i.e., stage III/IV or IIB with medias-
tinal bulk and/or extranodal involvement [127, 
128]. The standard arm consisted of fixed treat-
ment with BEACOPP-escalated ×6 and the 
experimental arm consisted of BEACOPP-
escalated ×6  in case of a positive iPET after 
2 cycles or BEACOPP-escalated ×2 plus ABVD 
×4 if iPET was negative. The study had a non-
inferiority design with a margin of 10%. The 
experimental arm was not inferior to the stan-
dard one with 5-year PFS rates of 86.7% versus 
87.5% [128]. The 5-year PFS for iPET-negative 
patients was similar for the two arms reaching 
~90%. For iPET-positive patients it was ~71%. 
It should be noted that iPET positivity was 
defined as metabolic activity exceeding 140% 
of the liver activity and only 12–13% of the 
patients remained iPET-positive after 
BEACOPP-escalated ×2 [127].

In the GHSG HD18 trial (again advanced 
stages according to the GHSG definition) the 
standard arm consisted of fixed treatment with 
BEACOPP-escalated (×8 or ×6 in a subsequent 
amendment) and the experimental arm con-
sisted of BEACOPP-escalated (×8 or ×6  in a 
subsequent amendment) in case of a positive 
iPET after 2 cycles or BEACOPP-escalated ×4 
(total cycles) if iPET was negative [130]. The 
definition of iPET positivity was D5PS 
score  ≥  3 and 48% of the patients remained 
iPET-positive. The 5-year PFS after BEACOPP-
escalated ×4 or ×6 in patients with D5PS score 
1–2 (iPET- negative) was ~91% in both arms 
and overall survival was numerically better 
with the abbreviated 4-cycle regimen [129]. 
The 5-year PFS for the iPET-positive popula-
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tion was ~88% (numerically higher in case of 
D5PS score 3 compared to ≥4) in sharp contrast 
with the 71% observed in the AHL 2011 trial 
with the same treatment. However, the rate of 
iPET positivity was 48% versus 12–13% in the 
two trials due to the different thresholds used 
and this is the possible explanation for this 
large discrepancy.

14.4.3.1  Diffuse Large B Cell 
Lymphoma

In DLBCL, iPET is also predictive of the out-
come after R-CHOP or similar immunochemo-
therapy, but differences are not so marked 
compared with HL.  The use of iPET to guide 
treatment decisions is not currently recom-
mended [1, 2] because there is still no proven sal-
vage therapy capable of improving the outcome 
of patients with a positive iPET, while the NPV 
of iPET is rather low.

As stated above, the D5PS is not so widely 
accepted in this setting, because of their moder-
ate reproducibility and prognostic capacity [151] 
(Fig.  14.2b). Alternatively, a satisfactory iPET 
response can be defined by a > 66% reduction in 
SUVmax between baseline and interim assess-
ment [1, 2, 151]. In the NHL International 
Validation Study, based on 114 DLBCL patients 
treated with standard R-CHOP-21 or intensified 
R-CHOP-14 or R-ACVBP-14, where no PET- 
driven treatment modification was made, the 
3-year PFS was 79% vs. 44% in patients with 
>66% and  ≤  66% SUVmax reductions after 
2  cycles of immunochemotherapy [151]. The 
66% SUVmax reduction criterion was superior to 
the D5PS in a subanalysis of the CALGB 50303 
trial (R-CHOP-21 or R-da-EPOCH), as well as in 
the UKCRN-ID 1760 and the SAKK 38/07 trials 
(both adopting R-CHOP-21 or R-CHOP-14), in 
which no treatment modification was made 
according to iPET results [152–154].

In the LNH-2007-3B trial, higher risk, 
young DLBCL patients randomly received 
either R-CHOP-14 or R-ACVBP-14 and under-
went iPET assessments after 2 and 4  cycles, 

which modified subsequent treatment strategy. 
The study confirmed that visual analysis was 
not accurate enough. The cutoff for SUVmax 
reduction was set at 66% for PET-2 and 70% 
for PET-4 [155]. The 4-year PFS according to 
PET-2 was 80% vs. 56%, while it was 84% vs. 
35% according to PET-4 [156]. The prognostic 
significance of iPET using the 66% SUVmax 
reduction criterion was also confirmed in the 
PETAL randomized trial and a GELTAMO 
phase 2 trial, both of which included treatment 
intensification for iPET-positive patients [157]. 
In the PETAL trial, 2-year PFS was 79% for 
iPET-negative versus 46% for iPET-positive 
patients despite treatment intensification in the 
latter (p < 0.0001). Using the D5PS the differ-
ence was much less marked and the corre-
sponding figures were 79% versus 71% 
(p  =  0.0068). Neither the addition of 2 ritux-
imab infusions in iPET-negative patients nor 
treatment intensification in the form of a 
Burkitt protocol resulted in any improvement 
in the outcome of patients with aggressive lym-
phomas [158]. The corresponding 2-year OS 
rates were 88% versus 59% (p < 0.0001). The 
prognostic significance of iPET was indepen-
dent from that of IPI [158, 159].

Overall, the use of the SUVmax reduction cri-
terion over the D5PS score in DLBCL is sup-
ported by the results of studies of fixed or 
PET- driven modified treatment as well as by 
expert opinions [151–161].

The prognostic significance of iPET in 
DLBCL in various studies using either or both of 
the above criteria, either under the same contin-
ued treatment or after treatment escalation, is 
summarized in Table 14.4 [111, 124, 151, 153–
159, 162–167].

14.4.3.2  Primary Mediastinal Large B 
Cell Lymphoma

At present, existing data are too limited to sup-
port the recommendation of interim response 
assessment and iPET-based treatment modifica-
tion in PMLBCL [168–170]. However, data on 

14 The Role of 18FDG-PET/CT in Malignant Lymphomas Clinical Implications
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iPET under R-CHOP-21  in PMLBCL are only 
derived from a small subgroup analysis of the 
PETAL trial [158]. A study from Memorial Sloan 
Kettering Cancer Center failed to show any 
impact of iPET on the outcome of PMLBCL, 
when treatment was modified in patients with 
positive findings: In detail, 51 patients received 
4  cycles of accelerated R-C1000HOP-14 and 
underwent iPET, which was negative in 53% of 
them [169]. A significant number of patients 
underwent biopsies of the iPET-positive mass, 
which were always negative [124]. Patients sub-
sequently received non-cross resistant therapy 
with 3 cycles of ICE with or without rituximab 
and no additional RT.  No difference in PFS 
emerged according to iPET result irrespective of 
the criterion used to define positivity. Similar 
results were reported by Lazarovici et  al. in a 
study of 36 patients, in which 16/17 patients with 
positive iPET had negative biopsies [171]. 
However, none of the iPET-positive patients had 
D5PS score 5 and treatment (mostly R- or 
G-ACVBP) was modified according to iPET 
result.

In a retrospective study of 30 patients, 
R-VACOP-B (n  =  19) or 11 R-CHOP (n  =  11) 
was continued irrespective of iPET result without 
consolidative RT. [170] A positive iPET was 
observed in 47% of patients. Their 3-year PFS 
was 57% versus 94% for those with a negative 
iPET (p  =  0.015). However, there was a trend 
towards inferior prognostic performance of iPET 
after R-VACOP-B. In another Chinese retrospec-
tive study of 49 patients treated with R-da- 
EPOCH or R-CHOP, the rate of iPET positivity 
was 37% and 10/18 iPET-positive patients had 
D5PS score 5. Treatment was modified in 7/10 
patients with score 5 and 1/8 with score 4. The 
2-year PFS rate was 93% versus 69% versus 20% 
for patients with D5PS score 1–3, 4, and 5 respec-
tively, with only score 5 conferring a clearly infe-
rior outcome despite frequent treatment 
modification [172].

Finally, the previously described PETAL trial 
included a small subgroup of 42 patients with 
PMLBCL. Using the ΔSUVmax criterion, only 
12% remained iPET-positive after R-CHOP×2. 
The 2-year FFTF was clearly superior for iPET- 

negative patients (89% versus 40%) despite treat-
ment intensification in case of iPET positivity; 
however, the 2-year OS was virtually the same 
(97% versus 100%) [168]. Obviously, the effect 
of Burkitt-like treatment intensification could not 
be adequately evaluated with only 5 iPET- 
positive patients [168].

14.4.3.3  T Cell Lymphomas
Interim PET positivity by the ΔSUVmax crite-
rion is also a strong prognostic factor in patients 
with T cell lymphomas. The rarity of these sub-
types has not permitted the development of sepa-
rate trials. In a subgroup analysis of 76 patients 
with peripheral T cell lymphomas (ALCL, AITL, 
or PTCL-NOS) enrolled in the PETAL trial, 25% 
remained iPET-positive after CHOP×2 by the 
ΔSUVmax criterion. This percentage was 33% 
for PTCL, AILT, and ALK-ALCL combined, but 
only 1/21 patients with ALK+ ALCL had a posi-
tive iPET [173]. In the subgroup of 55 patients 
with PTCL, AILT, and ALK-ALCL, the SUVmax 
reduction criterion provided the best discrimina-
tion in terms of PFS at the cutoff of 50% (and not 
66%) with 4-year PFS rates of 50% versus 0%. 
The same criterion at the cutoff of 66% and the 
D5PS (5 versus 1–4) provided very good, but 
slightly inferior discriminative capacity [173]. 
The extremely small number of events precluded 
an analysis in the 21 patients with ALK+ 
ALCL. However, treatment intensification with a 
Burkitt protocol failed to improve the outcome of 
iPET-positive patients, but this conclusion was 
based on the analysis of less than 20 patients and 
should be interpreted with caution [173, 174]. In 
extranodal NK/T cell lymphomas, iPET is also 
prognostically relevant [75], but data on potential 
treatment modification are lacking.

14.5  Impact of Interim and EOT- 
PET on Clinical Practice: 
Randomized Trials

Although the prognostic significance and the 
diagnostic accuracy of EOT-PET/CT have 
already been firmly established, studies evaluat-
ing PET-guided treatment decisions are only few 
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[83–86, 90, 91, 129–131, 140, 158, 175]. 
Evidence-based strategies for the implementation 
of iPET and/or EOT-PET are available only for 
HL and aggressive B cell lymphomas.

14.5.1  Hodgkin Lymphoma

14.5.1.1  Radiotherapy Questions
Four recent randomized trials have focused on 
the possibility of omitting RT in localized stage 
HL after a negative PET/CT. The non-inferiority 
EORTC H10 has been the most informative of 
them [140, 175]. The published results of H10 
suggest that RT cannot be safely spared after 
ABVD×2  in patients with stage I/II HL, who 
become strictly PET/CT-negative by the IHP cri-
teria [77, 78] (roughly corresponding to D5PS 
scores 1–2), especially in those without adverse 
risk factors: In H10, patients who became PET/
CT-negative after ABVD×2 were randomized to 
receive: (1) 1 or 2 further ABVD cycles (accord-
ing to the absence or presence of risk factors) 
plus 30 Gy involved node RT (standard arm) or 
(2) 2 or 4 further ABVD cycles (according to the 
absence or presence of risk factors) without RT 
(experimental arm). The study was prematurely 
terminated due to excess relapses in the no-RT 
arms [175]. More mature results revealed a clear 
difference in terms of 5-year PFS for patients 
without adverse risk factors (99% versus 87%, 
hazard ratio 15.8 with 95% CI 3.8–66.1), but a 
non-significant one for those with ≥1 adverse 
factors, including bulky mediastinal masses (92% 
versus 90%, hazard ratio 1.45 with 95% CI 0.84–
2.50). In any case however, non-inferiority of 
ABVD compared with combined modality could 
not be demonstrated for patients with a negative 
PET after ABVD×2 [140]. The design of the 
other 3 trials, namely RAPID, HD16, and HD17, 
rather resembled to an interim PET- than an EOT- 
PET- driven trial [83–86].

Overall, all published trials suggest that RT 
cannot be omitted after 2, 3, or 4 cycles of ABVD 
in patients with early favorable disease (stage I/
II—no adverse prognostic factors) and a strictly 
negative PET after 2 or 3 ABVD cycles without 
relevant loss in disease control (generally 

10–15% at 5 years; Table 14.2), although overall 
survival is not affected at all. Furthermore, it is 
not clear if omission of RT will be associated 
with an increased rate of very late relapses 
observed >5 years from initial diagnosis, which 
are typically not captured during the mid-term 
follow-up of randomized clinical trials [176]. On 
the contrary, in patients with early unfavorable 
disease (stage I/II and ≥  1 adverse factors) the 
benefit from consolidative RT in case of a strictly 
negative iPET (D5PS scores 1–2) appears to be 
minimal. Thus, surprisingly, RT can be omitted 
in this unfavorable subgroup—even in patients 
with bulky disease—with minimal loss in disease 
control and no impact on overall survival, pro-
vided that a total of 6 ABVD cycles are given. 
After more intensive chemotherapy consisting of 
BEACOPP-escalated ×2 plus ABVD×2, RT can 
be omitted if EOT-PET is strictly negative with-
out any loss even in disease control [85].

Whether RT can be omitted in patients with an 
iPET D5PS score 3 is unclear, since these patients 
were irradiated in the above randomized trials. 
However, both the RATHL [133] and the HD607 
randomized trial [90, 91] included a considerable 
percentage of patients with early unfavorable 
stages and the outcomes without consolidative 
RT appeared to be comparable in the D5PS score 
1–3 (iPET-negative) subgroup irrespective of the 
exact classification as 1, 2, or 3, again provided 
that 6 A(B)VD cycles were given. However, in 
the CALGB 50604 trial, after only 4 ABVD 
cycles and no consolidative RT, patients with 
non-bulky stage I/II HL with an iPET D5PS score 
3 had numerically lower 3-year PFS compared to 
D5PS score 1–2 (77% versus 94%) [177].

In advanced stage HL, RT is not considered in 
EOT-PET-negative patients without bulky dis-
ease, while it can be omitted in case of iPET and 
EOT-PET negativity (D5PS score 1–3) after 
ABVD ×6 in patients with bulky disease defined 
as dmax ≥5 cm [90, 91]. It appears that this is 
independent from the size of bulky disease (even 
if ≥10  cm) although HD607 was not powered 
enough to address this specific subgroup ques-
tion. As already mentioned, RT can be spared 
irrespective of the initial bulk in advanced HL 
patients with a negative PET and > 2.5 cm resid-
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ual abnormalities (and obviously in those with 
smaller or no abnormalities), if this response has 
been achieved by intensive chemotherapy with 
BEACOPP-escalated or similar regimens, 
because >88% of them remain disease-free at 
10 years [80, 87].

14.5.2  Chemotherapy Questions

Treatment intensification in the form of 
BEACOPP-escalated is recommended in patients 
with a positive iPET after ABVD ×2. There is 
clear evidence from the H10 trial that BEACOPP- 
escalated ×2 improves PFS and marginally overall 
survival in early unfavorable HL compared to 
ABVD ×2 plus the same consolidative RT. [140] 
Although not tested in any randomized trial of 
advanced HL, switching to 4–8  cycles of 
BEACOPP-escalated clearly improves PFS in 
iPET-positive patients with stages III/IV (or unfa-
vorable II) [90, 91, 132–138]. The RATHL 
approach using BEACOPP-escalated ×4 or 
BEACOPP-14 ×6 appears reasonable in terms of 
preserved efficacy with the least possible toxicity.

Apart from starting with ABVD, another 
iPET-driven strategy involves starting with 
BEACOPP-escalated and de-escalating chemo-
therapy in case of a negative iPET. However, 2 
different methods of de-escalation have been 
tested, as described above (sect. 14.4). 
Collectively, both the AHL 2011 and the HD18 
trial suggest that, if BEACOPP-escalated is the 
initial choice, 6 cycles should be given to strictly 
iPET-positive patients, while de-escalation can 
be either a total of BEACOPP-escalated ×2 plus 
ABVD ×4 or a total of BEACOPP-escalated ×4. 
The optimal threshold to define iPET positivity 
(more strict or looser) needs to be defined 
further.

Overall, iPET-adapted therapy appears attrac-
tive and has been adopted in everyday practice in 
many institutions. Randomized trials are not yet 
mature enough to examine the presence of a 
potential overall survival benefit over 
ABVD.  Whether an ABVD-first and escalation 
or BEACOPP-first and de-escalation is prefera-
ble is not clear [138].

14.5.3  Aggressive B Cell Lymphomas

14.5.3.1  Radiotherapy Questions
Few prospective trials have evaluated the omission 
of RT after abbreviated chemoimmunotherapy 
regimens in DLBCL. Lamy et al. reported that RT 
can be omitted in patients with non-bulky (<7 cm), 
localized (stage I/II) DLBCL if a strictly negative 
PET was achieved after R-CHOP-14 ×4. Overall 
patients received 4 or 6  cycles of R-CHOP-14 
according to baseline risk classification. The 
5-year EFS was 92% vs. 89% for patients who 
were randomized to receive RT or not and relapse 
rates were similar [178]. Interestingly, PET posi-
tivity was defined visually as “18F-FDG uptake 
above the mediastinum or surrounding back-
ground in a location incompatible with normal 
anatomy or physiology,” which is a very strict cri-
terion for PET-negative status. In another prospec-
tive trial of 132 patients with non-bulky (<10 cm), 
localized (stage I/II) aggressive B cell lymphoma 
(mostly DLBCL), the rate of PET positivity, 
defined as D5PS score ≥  4, was 11%. RT was 
omitted in patients with a negative iPET after 
R-CHOP-21 ×3 (D5PS score 1–3), who received 
R-CHOP ×4  in total without RT, while patients 
with positive iPET received involved field RT and 
subsequent radioimmunotherapy with ibritu-
momab tiuxetan. The 5-year PFS was 89% versus 
86% for patients with iPET- negative or positive 
respectively after R-CHOP-21 ×3 [179]. Similarly, 
indirect comparison of the OPTIMAL>60 and the 
RICOVER60 trials  suggests that RT can be spared 
in elderly patients with bulky DLBCL (>7.5 cm) 
who achieve a PET-negative status after R-CHOP-
14-based immunochemotherapy with a 2-year 
PFS for all bulky patients of 79% (irrespective of 
PET status or RT) [114].

All the above data suggest that RT can be 
spared in localized, non-bulky DLBCL even after 
abbreviated immunochemotherapy in case of a 
negative PET after 3–4 cycles of immunochemo-
therapy. It can also be probably spared in bulky, 
PET-negative patients irrespective of stage, as 
has been suggested by the British Columbia ret-
rospective experience as well [113].

In PMLBCL RT can be spared after R-da- 
EPOCH in patients with D5PS score 1–4 after 
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R-da-EPOCH based on the excellent results of a 
prospective trial [102, 103]. The results are also 
very encouraging after R-CHOP if RT is spared 
in patients with D5PS score 1–2 [97–99] or even 
score 3 [97]. However, there is still no evidence 
on this RT question from a randomized trial. The 
IELSG-37 trial is expected to shed light on this 
issue [180].

14.5.3.2  Chemotherapy Questions
The only randomized trial in the field of aggressive 
lymphomas is PETAL, which failed to demonstrate 
any impact of intensified treatment in iPET-positive 
patients with aggressive lymphomas under initial 
treatment with R-CHOP [158]. In a recently pub-
lished GAINED trial treatment was modified 
according to PET-2 and PET-4 results. The outcomes 
were similar for PET-2- negative/PET-4-negative 
patients who received intensive conventional immu-
nochemotherapy and PET-2-positive/PET-4-
negative patients, who received consolidation 
autologous stem cell transplantation, with 2-year 
PFS 90% versus 84%. The 2-year PFS was 62% for 
PET-4- positive patients. Although the above results 
suggest some improvement based on PET-driven 
therapy, this is not a randomized comparison of 
treatment strategies [181]. Thus, there is no estab-
lished “more effective” treatment for iPET- positive 
patients with DLBCL, who have inferior outcomes.

14.6  PET in the Setting 
of Autologous Stem Cell 
Transplantation (ASCT)

The evaluation of PET in patients with lymphoma 
undergoing ASCT was introduced early in the 
course of utilization of PET in clinical practice. 
Generally, published studies have included mixed 
(HL and NHL) patient populations: Patients with 
positive pretransplant PET have inferior out-
comes than those with negative studies. 
Pretransplant PET appears to be an independent 
predictor from established clinical risk scores at 
the time of relapse/progression [182]. In a meta- 
analysis of 12 studies, incorporating 630 patients 

with HL and aggressive NHL who underwent 
ASCT and had been evaluated with pre-high- 
dose chemotherapy PET examination, Terasawa 
et  al. reported a summary sensitivity of 69%, 
summary specificity 81%, similar prognostic 
accuracy among studies, and shorter PFS for 
patients with positive PET scan [183]. Another 
meta-analysis reported hazard ratios of 3.2 (for 
disease progression) and 4.5 (for death) for 
patients with positive vs. negative pretransplant 
PET [184].

In relapsed/refractory HL, patients who 
become PET-negative with salvage chemother-
apy and undergo ASCT have a long-term remis-
sion rate of 80–85% vs. 40–50% for those who 
remain PET-positive [185, 186], although the 
range for these figures among several published 
studies is much wider, as suggested in a another, 
more recent meta-analysis [187] (Fig.  14.8). 
These results demonstrate that failure to achieve 
a PET-negative status does not preclude ASCT in 
patients with HL, especially if they are chemo-
sensitive by conventional imaging. However, 
more standardized protocols are required for 
evaluation of pretransplant PET/CT in patients 
undergoing ASCT: It is not clear whether pre-
transplant PET should be evaluated by the D5PS, 
SUVmax-based, or other criteria. As a general 
rule, the decision to proceed to ASCT in relapsed/
refractory HL should be based rather on conven-
tional chemosensitivity criteria than on PET 
evaluation.

The D5PS has been evaluated in several studies 
with patients with scores 4—and particularly those 
with score 5—carrying a worse prognosis [185, 
188–191]. In addition the baseline MTV at initia-
tion of salvage therapy is a strong prognostic fac-
tor [189], while the residual pretransplant MTV 
may also provide independent prognostic informa-
tion within the unfavorable group of pretransplant 
PET-positive patients [188, 191]. The outcomes of 
PET-positive patients with low residual MTV are 
closer to those with a negative pretransplant PET 
than to patients with more bulky residuals [188, 
191]. Although such sophisticated methods may 
provide very promising risk stratification, they are 
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Fig. 14.8 (a) 18 FDG-PET before autologous stem cell 
transplantation in a patient with relapsed Hodgkin lym-
phoma: hypermetabolic lymph nodes at the upper medias-
tinum. (b) 18 FDG-PET 4 weeks after autologous stem 

cell transplantation: negative. (c) Relapsing disease 6 
months later. (d) The patient received additional radiation 
therapy and reached CR (PET negative)

not yet applicable in clinical practice and need fur-
ther standardization and validation.

The probability of further progression after 
ASCT remains high in relapsed/refractory 
HL. As shown in the AETHERA trial, the prob-
ability of progression in high-risk patients can be 
significantly decreased by consolidative treat-
ment with brentuximab vedotin, an anti-CD30 
monoclonal antibody linked to a microtubule 
poisson. Brentuximab vedotin consolidation was 
highly beneficial in patients with a positive PET 
prior to ASCT but had minimal or no effect on 
those who had already achieved a PET-negative 
status [192]. These data should be interpreted 
with caution because pre-ASCT PET was not 
required by the protocol and, therefore, it was not 
performed in all patients and was not centrally 
and uniformly evaluated. Although this informa-
tion was derived from an unplanned subgroup 
analysis, pre-ASCT PET might provide a clue to 
the optimal use of post-ASCT consolidation and 
should be further evaluated.

14.7  PET in the Era of Novel 
Agents

14.7.1  Programmed Death-1 (PD-1) 
Inhibitors

The introduction of Programmed Death-1 (PD-1) 
inhibitors nivolumab and pembrolizumab has 
provided very promising results in heavily pre-
treated patients with relapsed/refractory HL dur-
ing the last few years [193–198]. Promising 
results have also been reported for PMLBCL 
[199, 200]. Apart from producing a high  objective 
response rate with several durable remissions 
(>5 years) [197, 198] (Fig. 14.9a, b), PD-1 inhib-
itors may result in a transient tumor flare or pseu-
doprogression. For this reason, an attempt was 
made to modify the criteria for response assess-
ment to PD-1 inhibitors by describing the LYRIC 
classification [201]. The description of these 
revised criteria is beyond the scope of this review. 
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However, pseudoprogression appears to be a 
rather rare problem in relapsed/refractory HL, 
while new lesions may be also due to immune- 
related adverse events [202, 203].

As expected, PET/CT is superior to CT for 
response assessment during PD1 inhibitor treat-
ment for relapsed/refractory HL uncovering more 
patients with complete metabolic responses [204, 
205]. Responses are evident during the initial 
2–3  months and correlate with PFS and overall 
survival [193, 195–198]. Based on the analysis of 

the KEYNOTE-087 trial for pembrolizumab the 
classification of responses appears to be similar 
irrespective of the use of the Cheson 2007 or the 
Lugano 2014 criteria [206]. Finally, it should be 
noted that some patients do not achieve an objec-
tive radiographic or PET-based response, but con-
tinue to receive clinical benefit for variable time 
periods despite episodes of disease progression 
[195]. This strategy of “treatment beyond progres-
sion” was formally assessed within the protocol of 
the CHECKMATE-205 trial of nivolumab.

Fig. 14.9 (a) Fifty-two year old male with stage IIA clas-
sical Hodgkin lymphoma diagnosed on 2006, 10 years 
prior to this image, had a slow progression after ABVD × 6 
+ RT. He achieved a PR to IGEV salvage chemotherapy but 
declined ASCT approximately 5 years ago. Further ESHAP 
was too toxic and discontinued after 1 cycle. Brentuximab 
Vedotin was then instituted but the disease remained stable. 
The patient was initially unwilling and later ineligible for 
ASCT and remained on palliative therapy awaiting for a 
clinical trial with PD-1 inhibitor. Prior to PD-1 inhibitor 
initiation he had a very unusual disease localization with 
extensive esophagealgastric hypermetabolic mass 
(SUVmax 17.2), which caused dysphagia (left panel), 
regional small hypermetabolic lymph nodes (SUVmax 4.6) 
and hypermetabolic osseous/bone marrow involvement of 
the L4 vertebra. After the fourth PD-1 inhibitor infusion 
(pembrolizumab every 3 weeks) the patient had achieved a 
complete remission with a negative PET (second image 
from left, 3/2016). The patient remains in complete meta-
bolic response (CMR) 27 months after the introduction of 
pembrolizumab (third and fourth images on the right, dated 
6/2016 and 3/2017). (b) A 32 year old female with classical 
Hodgkin lymphoma, stage IIA, was diagnosed on 2012, 3 
years prior to this image. After ABVD × 6 + RT she 
achieved a PR and subsequently relapsed. Although she did 
not respond to ESHAP salvage chemotherapy, she under-
went ASCT, but progressed rapidly thereafter. She further 
received brentuximab vedotin, bendamustine and gem-
citabine-vinorelbine with rapidly progressive disease after 
each modality. Prior to PD-1 inhibitor initiation she had 
very extensive disease with generalized hypermetabolic 
lymphadenopathy, bulky mediastinal (SUVmax 9.6) and 

left lung localization (SUVmax 6.6) and multiple bone 
marrow hypermetabolic foci (SUVmax 7.2) associated 
with a positive bone marrow biopsy and B-symptoms (left 
panel). After the fourth PD-1 inhibitor infusion (pembroli-
zumab every 3 weeks) the patient had achieved a complete 
metabolic response (CMR) with a negative PET (right 
panel). The patient remains in CMR 27 months after the 
introduction of anti-PD-1 therapy with pembrolizumab. (c) 
A 62 year old female with stage IIISXB nodular sclerosing 
classical Hodgkin lymphoma, was diagnosed approxi-
mately 2 years prior to this image. Despite a negative 
interim PET after ABVD × 2, she developed progressive 
disease after the seventh ABVD cycle. She failed to respond 
to IGEV and ESHAP salvage chemotherapy, always devel-
oping progressive disease with B-symptoms, pruritus and 
worsening anatomic findings, thus being unable to undergo 
ASCT. She also failed to respond to Brentuximab Vedotin 
and rapidly developed symptomatic progressive disease 
after 2 cycles of BEACOPP chemotherapy. On March 2016 
she was started with the PD-1 inhibitor Nivolumab (3 mg/
kg every 2 weeks). Serial CT and PET evaluations demon-
strated lack of response, with some anatomic sites respond-
ing and others enlarging. However, the patient is 
asymptomatic and inflammatory markers (ESR, CRP and 
thrombocytosis) have been completely normalized. This 
type of sustained clinical response had never been achieved 
with conventional chemotherapy and Brentuximab Vedotin. 
It is now increasingly recognized that PD-1 inhibitors may 
induce relatively durable periods of meaningful clinical 
benefit in patients who have anatomically stable or slowly 
progressive disease [195]
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14.7.2  Chimeric Antigen Receptor 
(CAR) T cells

CAR-T cells are autologous T cells, modified 
ex  vivo to express receptors which combine 
antigen- binding and T cell activation properties. 
Currently CAR-T cell therapy is the most innova-
tive and promising treatment approach for 
relapsed/refractory DLBCL and related aggres-
sive lymphomas. Several studies have evaluated 
the prognostic role of PET/CT in the CAR-T cell 
treatment setting. Vercellino et al. highlighted the 
prognostic significance of TMTV, and aimed to 
create a prognostic model for early progression 
after CAR-T cell infusion by combining TMTV 
(>80 cm3) and clinical characteristics related to 
tumor burden, at the time of treatment [207]. 
Another study aiming to explore the prognostic 
role of different baseline quantitative metrics also 
showed that high TMTV (≥25 cm3) was associ-
ated with inferior PFS, whereas SUVmax was 
not of prognostic significance [208]. More stud-
ies are needed to define the optimal time point 
and prognostic role of PET/CT in patients treated 
with CAR-T cells.

14.8  Artificial Intelligence 
in F-FDG-PET/CT Scan

The recent applications of Artificial Intelligence 
(AI) in the field of medical imaging have created 
great expectations in cancer diagnostics and per-
sonalized treatment approaches. Machine 
Learning (ML) is a branch of AI that creates 
applications which learn “on their own” by rec-
ognizing patterns in input datasets. AI/ML in 
medical imaging encompasses a variety of appli-
cations (e.g., Convolutional Neural Networks—
CNN) which aim to eliminate the various biases 
that may affect image interpretation by humans 
and produce results comparable to expert radiol-
ogists. As extensively discussed in this chapter, 
F-FDG-PET/CT imaging has been broadly used 
in staging and response assessment in malignant 
lymphomas. Until today, just a few studies related 
to the applications of AI in PET imaging of lym-
phoma have been published, but definitely, sig-

nificant progress will be made during the 
forthcoming years.

Different methods and quantitative metrics 
(e.g., SUVmean, TMTV, TLG, etc.) in PET/CT 
have been used in order to quantify tumor bur-
den, evaluate treatment response, and estimate 
prognosis. AI is expected to better manage these 
tasks, as its applications may permit automatic 
quantification and register multiple parts of the 
body at the same time [209]. The main tasks of 
AI applications in PET/CT image processing are 
detection, segmentation, and classification. 
Detection refers to localization of an area within 
a medical image which contains an object of 
interest [210]. Examples include automatically 
characterizing lymphoma lesions or defining 
areas of High Normal Activity (Hina) such as 
bladder and kidneys [211]. Furthermore, the use 
of radiomics in PET-CT scan has shown great 
results in separating sites with HiNA, inflamma-
tory nonmalignant lesions, and malignant lesions 
as shown from Anunziata and Lartizien’s results 
[212, 213]. Segmentation is the process of demar-
cation and specific detection of the margins of an 
object of interest. Segmentation improves the 
ability of precise estimation of quantitative 
parameters and improves the methods of exact 
specification of tumor burden. It is very impor-
tant to estimate the risk stratification of each 
patient and predict the therapy response. In order 
to accomplish this, radiomic features such as 
standardized uptake value (SUV) and total meta-
bolic tumor volume (TMTV) are used [58, 214]. 
For example, TMTV and TLG could possibly be 
better estimated and in less time, through this 
procedure [215, 216]. Classification refers to the 
assignment of medical images into diagnostic or 
prognostic groups. Radiomics are usually used 
for this purpose in order to characterize lesions as 
normal or abnormal, or defining different histo-
logic subtypes of lymphomas [216]. Classification 
could also lead to better prognostication, espe-
cially in procedures which highly depend on indi-
vidual viewer’s experience, such as D5PS 
estimation [212].

The application of Delta radiomics, which 
compare the changes of a lesion before and after 
treatment may be a useful tool in order to esti-
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mate the therapy response and the prognosis of 
the patient [217]. It is crucial for the world’s 
institutions to contribute to everyday clinical 
practice’s amplification with AI algorithms in 
PET imaging [218].

Concluding, AI may provide promising and 
innovative tools for image processing, medical 
decision making, and prognostication. It is sure 
that several subjective and time-consuming pro-
cedures will be held automatically in the future. 
However, more time is needed to evaluate AI 
applications and produce reliable and robust 
results. Currently physician’s critical thinking 
remains invaluable beyond any doubt.

14.9  The Role of PET/CT 
in the Follow-Up 
of Lymphomas

Once a negative PET/CT has been achieved, rou-
tine follow-up of patients with HL and aggressive 
B cell lymphomas with PET/CT is not recom-
mended, because it does not affect survival and 
the risk of false positive findings outweighs any 
potential benefit of “earlier” identification of 
relapse and will lead to many unnecessary inva-
sive procedures to exclude relapses. There is also 
no role for PET/CT in the follow-up of other lym-
phoma subtypes.

Information regarding PET/CT restaging for 
relapsing or refractory lymphoma is rather lim-
ited (Fig. 14.3b). PET/CT may have a particular 
role in patients, mainly those with HL, who could 
be candidates for local treatment with curative 
intent.

14.10  Conclusions

FDG-PET is a unique tool for the assessment of 
malignant lymphomas, demonstrating high accu-
racy and strong prognostic significance. The 
implementation of PET/CT has altered the defini-
tion of response to treatment and has already a 
major impact on staging and the design of treat-
ment strategies. Although data are rapidly accu-
mulating, the exact role of PET/CT in guiding 

treatment decisions, especially in the mid- 
treatment (interim) setting, needs to be defined 
by randomized trials, many of which are ongo-
ing. Questions under investigation include the 
role of PET to decide about consolidation radio-
therapy, the potential of improving outcomes by 
early treatment intensification in interim PET- 
positive patients, or conversely, the possibility of 
treatment reduction in patients with negative 
interim PET.  Although some answers have 
already been obtained, evidence-based data on 
the appropriate use of PET in lymphomas are 
expected to be available shortly.
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