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Abstract Detection of respiratory symptoms has long been an area of extensive
research to expedite the process of machine aided diagnosis for various respiratory
conditions. This chapter attempts to address the early diagnosis of respiratory condi-
tions using low power scalable software and hardware involving end-to-end convo-
lutional neural networks (CNNs). We propose RespiratorNet, a scalable multimodal
CNN software hardware architecture that can take audio recordings, speech informa-
tion, and other sensormodalities belonging to patient demographic or symptom infor-
mation as input to classify different respiratory symptoms. We analyze four different
publicly available datasets and use them as case studies as part of our experiment
to classify respiratory symptoms. With regards to fitting the network architecture
to the hardware framework, we perform windowing, low bit-width quantization,
and hyperparameter optimization on the software side. As per our analysis, detec-
tion accuracy goes up by 5% when patient demographic information is included in
the network architecture. The hardware prototype is designed using Verilog HDL
on Xilinx Artix-7 100t FPGA with hardware scalability extending to accommodate
different numbers of processing engines for parallel processing. The proposed hard-
ware implementation has a low power consumption of only 245 mW and achieves an
energy efficiency of 7.3 GOPS/Wwhich is 4.3 better than the state-of the-art acceler-
ator implementations. In addition, RespiratorNet TensorFlow model is implemented

H.-A. Rashid (B) · H. Ren · A. N. Mazumder · T. Mohsenin
University of Maryland, Baltimore County, Baltimore, MD 21250, USA
e-mail: hrashid1@umbc.edu

H. Ren
e-mail: rhaoran1@umbc.edu

A. N. Mazumder
e-mail: arnabm1@umbc.edu

T. Mohsenin
e-mail: tinoosh@umbc.edu

M. M. Sajadi
Institute of Human Virology, School of Medicine, University of Maryland, College Park, USA
e-mail: msajadi@ihv.umaryland.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Adibi et al. (eds.), The Science behind the COVID Pandemic and Healthcare
Technology Solutions, Springer Series on Bio- and Neurosystems 15,
https://doi.org/10.1007/978-3-031-10031-4_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10031-4_4&domain=pdf
mailto:hrashid1@umbc.edu
mailto:rhaoran1@umbc.edu
mailto:arnabm1@umbc.edu
mailto:tinoosh@umbc.edu
mailto:msajadi@ihv.umaryland.edu
https://doi.org/10.1007/978-3-031-10031-4_4


86 H.-A. Rashid et al.

on NVIDIA Jetson TX2 SoC (CPU+GPU) and compared to TX2 single-core CPU
and GPU implementations to provide scalability in terms of off-the-shelf platform
implementations.

Keywords Multimodal CNN · Scalable respiratory symptoms detection · Low
power embedded · Audio detection · FPGA

1 Introduction

Most of the people are not that much of conscious with breathing and respiratory
health and overlook the fact that their lungs are important organs that are susceptible
to infections and damages.Acute respiratory infections, aswell as chronic respiratory
illnesses such as asthma, chronic obstructive pulmonary disease, and lung cancer, are
examples of respiratory diseases. Because the symptoms of respiratory diseases are
frequently quite similar, this may lead to confusion and misinterpretation. Making
a prompt and correct diagnosis is critical for the treatment of the respiratory related
diseases. This may have disastrous effects if the virus spreads further, especially
during pandemics like the COVID-19 pandemic. The outbreak of highly contagious
COVID-19 and other respiratory infections have placed tremendous strain on the
healthcare system. COVID19 causes symptoms such as dry cough, fever, fatigue,
dyspnea, and shortness of breath that vary in severity at various stages of the devel-
opment of the disease and correspond differently with certain races, genders, and age
groups. In combination with dry cough, fever was registered by over 70% of COVID-
19 confirmed patients [1]. Clinical case studies indicate that the young population
is less likely to experience related symptoms of COVID-19 in contrast with the
elderly, which is the most affected group [2]. However, as mentioned 5earlier, these
respiratory related symptoms are not unique for only present threat COVID-19. A
wide range of chronic and infectious diseases include pulmonary disorders and they
develop respiratory symptoms due to the essential organ that they affect, the lung,
whose auditory signals detected by various diagnostic instruments are among the first
to be studied by a medical expert. As a result, establishing a diagnostic differentiator
is critical for determining a fast and accurate diagnosis of respiratory symptoms and
taking necessary measures.

Cough is a common sign of respiratory illnesses [3]. Cough is a common lung
illness sign and a normal human defensive mechanism to protect the respiratory
system Korpáš and Tomori [4]. During treatment, analyzing the cough sound may
provide useful information about the coughing pathophysiological processes that lead
to specific cough patterns Korpáš et al. [5]. Changes in cough sound are regarded
as a crucial indication of the progression of respiratory illness and the efficacy of
treatment Korpáš et al. [5]. Because coughs are often seasonal, a cough classifier or
detector must have a very low false alarm rate to be regarded clinically trustworthy.
Furthermore, this systemmust be very sensitive to variations in cough noises in order
to identify any unusual occurrence [6].
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Our previous works show promising results on detecting various respiratory
diseases from cough sounds and respiratory sounds [7–9]. This chapter introduces
RespiratorNet, a scalable and multimodal deep Convolutional Neural Network
(DCNN) model running on tiny processors (e.g. tiny FPGAs and processors on
cell-phones and tablets) to assess patients similar to what doctors do at triage and
telemedicine, using passively recorded cough audio, speech, and self-entry informa-
tion (such as age, gender and fever). The proposed software and hardware framework
is scalable and can potentially have a great impact by bringing proactive healthcare to
users’ finger tips and to estimate the necessity of whether they need to attend clinics
and have themselves further examined with the use of more specialized test-kits or
facilities. This chapter is extensive extension from our previous work [8]. The main
contributions of this work include:

• ProposeRespiratorNet, a scalablemultimodalCNNsoftware hardware framework
that can take audio recordings and speech recordings from individuals along with
demographic information and other entries of the subject and be configured for
classifying respiratory symptoms. RespiratorNet allows the software and hard-
ware to quickly integrate new sensors data that are customized to various types
of scenarios.

• Perform input audio window size tuning, network architecture optimization and
extreme bitwidth quantization, with the goal of reducing computation complexity
and memory size for low power hardware implementation while meeting the
accuracy requirements.

• Design a parameterized and flexible hardware in verilog HDL for different
input modalities and numbers of processing engines (PE) that replicate the
RespiratorNet architecture for low power deployment.

• A comprehensive FPGA hardware implementation and benchmarking of the
proposed work with different three case studies, and comparisons with the
state-ofthe-art FPGA implementation results.

• Implement the TensorFlow model of RespiratorNet on embedded Nvidia Jetson
TX2 board and measure its implementation characteristics for various CPU and
GPU configurations.

2 Related Work

Audio based medical diagnosis has recently become an active area of research with
the advancement of different machine learning and deep learning algorithms. Convo-
lutional Neural Network (CNN) and Long Short Term Memory (LSTM) Networks
have shown impressive performance in image and time-series classification tasks
[10–12] as well as audio recognition tasks [9, 13, 14]. Using chest-mounted sensors,
Amoh and Odame [15] used both DCNNs and recurrent neural networks (RNNs) to
classify cough sound. Deep learning was used to detect sleep apnea in Nakano et al.
[16]. DCNNs showed promising performance in the heart sound classification in Ryu
et al. [17]. Lung sounds were classified using DCNN in Aykanat et al. [18] and RNN
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[19]. Although the reported accuracy is quite high, these researches were done on
unpublished data set which limit the reproducibility and further improvement of the
work on this domain. The 2017 InternationalConference onBiomedicalHealth Infor-
matics (ICBHI) [20] presented a benchmark respiratory audio data set to promote
research into the classification of respiratory sound systems. Since then, researchers
proposed various algorithms [21–24] using different deep learning techniques to
classify respiratory cycle anomalies such as the precise locations of wheezes and
crackles within the cycle of each respiratory sound recording. That dataset helped
the researchers to propose a number of algorithms to identify respiratory cycling
irregularities such as the exact position of the wheezes and crackle within the cycle
of every sound recording in the respiratory system. Acharya and Basu [25] proposed
Log quantized deep CNN-RNN based model for respiratory sound classification for
memory limited wearable devices. Recently, a research group from MIT already
showed Covid-19 diagnosis using cough recording with high accuracy Laguarta
et al. [26]. Two different datasets [27, 28] were published to classify multiple envi-
ronmental sound which include cough sounds among the other classes. Recently, a
group from EPFL published one of the biggest crowd sourced cough datasets [29].
These dataset help researchers to address audio classification based healthmonitoring
systems which is in demand now-a-days due to Covid-19 pandemic.

3 RespiratorNet Framework

The high level overview of the proposed RespiratorNet framework is presented in
Figure 1. RespiratorNet can take any kind of audio recording from the user and clas-
sify accordingly. RespiratorNet can also process human speech and classify whether
there is any sign of shortness of breath in the speech. Moreover, to fine tune the clas-
sification accuracy, RespiratorNet can take numeric information as input related to
demographic or symptoms vectors. We evaluated RespiratorNet with human cough
sounds, recorded speech, and respiratory sounds integrated with demographic infor-
mation which is explained in the following section. The detailed architecture of
the RespiratorNet framework is presented in Fig. 2. As the input is in the form of
audio recordings, it is divided into window frames to extract features, since the right
windows to distinguish between static and continuous signals are crucial.Windowing
involves first standardizing the independent variables and then creating sliding T
windows with S growing over the results. If the channels are referred by M in the
multimodal signals, then window images of shape 1T M are created with a label
assigned to each window image as the label of the current time step. As a result, a
window image at location Tt has previous states for each data point from (t T + 1)
… t where t is represented as the timestep. Then the window frames are forwarded
into the CNN layers for necessary feature extraction and classification.

Our CNN layers are flexible in terms of number of layers.We can decide particular
number of CNN layers based on the evaluation case studies. To extract the correlation
between the one-dimensional audio signals, we used one-dimensional CNN layers in
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Fig. 1 The proposedmultimodalRespiratorNet framework to classify respiratory symptoms. Some
of the input information is auditory, such as the sound and frequency of coughing and speech that
can detect patient’s shortness of breath. Other input data can be sensed or entered manually such
as demographic information. RespiratorNet is flexible and scalable in the sense that it allows the
device to quickly integrate new sensors data that are customized to various types of scenarios, such
as home appointments, hospital visits or even identification of symptoms in public settings with
non-contact sensors

Fig. 2 The detailed architecture of the proposed flexible RespiratorNet in which end-to-end CNN
is implemented that can be used for cough detection, dyspnea detection, and respiratory sound
detection with/without the integration of other input vectors such as demographic information. The
input and computation will differ according to the audio window size selected

the beginning of the model. The feature map size reduction is done by striding in the
CNN layers. When we get the required small feature map size, the output is flattened
and then forwarded to a number of fully connected layers to isolate sufficient window
frame information with interconnections between nodes. At the end, the output is
seen in the form of the probability distribution of the last fully layer with Softmax
activation function.

In previouswork, authors showed that if the domain specific knowledge is concate-
nated with the deep learning model, it improves the model accuracy. Based on this
intuition, we have given flexibility to ourmodel to process numeric information in the
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form of input vectors in parallel to the feature extraction. After the audio processing
with the CNN layers, these input vectors containing numeric data is concatenated
with the flattened output from the convolution framework of the classificationmodel.
This concatenated output is further processed through the fully connected layers to
finalize the output label.

4 Experimental Results and Analysis

In this section, RespiratorNet is evaluated using three respiratory symptoms bearing
case studies including Cough detection, Dyspnea Detection and Detection of Respi-
ratory Sound with Demographic Information and in depth analysis and experimental
results are provided.

4.1 Case Study 1: Cough Detection

We evaluated RespiratorNet for cough detection on three different datasets: ESC-50
Piczak [28], FSD Kaggle2018 [27], and Coughvid [29].

ESC-50 The ESC-50 dataset contains a total of 2,000 audio recordings of normal
environmental sounds. It has 50 equally distributed classes including “coughing”, so
that each class has 40 audio recordings. All the audio recordings are 5 s in length,
and are stored as single-channel audio waveform files at 44.1 kHz sampling rate.
The dataset is originally divided into 5 folds with 400 audio recordings per fold. For
each cross-validation round, we use 3 folds as train set, onefold as validate set, and
onefold as test set.

Input sound duration is a key factor here to better distinguish sounds across the
50 classes. During preprocessing, we first load each audio recording with the default
44.1 kHz sampling rate and apply initial audio-wise regularization to the range of−
1 to 1. Next, we crop the audio recording into windows, and discard silent windows
if the window-wise maximum amplitude is less than a certain threshold. Each extract
window has the same label as the audio recording which it is cropped from. At last,
we apply the (−1, 1) regularization again to each window individually.

We consider awindow and its label as one instance ofmodel input. However, since
the sound of an audio recording may only exist in some of the extracted windows, we
evaluate the predictions at audio recording level by probability-voting Piczak [28].
Specifically, we sum up all the softmax model outputs for every window extracted
fromone test audio recording, andmake a prediction based on the summed-up output.

Models are trained using stochastic gradient descent (SGD) with a momentum
of 0.6 for 100 epochs under the categorical cross-entropy criterion. The learning
rate is initially defined as 0.01, and then it is decreased according to the convergence
performance. For silent window removal, the amplitude threshold is 0.2. Thewindow
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stride is always 0.25 s. We used Tensor-Flow Abadi et al. [30] for implementation
of the models and associated methods and Librosa [31] for audio processing.

Figure 3a shows the accuracy results for this applications with respect to window
size. As evident in Fig. 3a, all the experiments show similar performances on overall
accuracy metric. As for the performance on cough detection, 1 s windows show good
and balanced performance of extracting distinctive feature. Thus, a window size of
1 s is chosen for our implementation scenario.

FSDKaggle2018 Similar to ESC-50, the FSDKaggle2018 dataset contains 41 sound
classes and cough is one of them. There are 11,073 audio recording samples, where
each of the audio recordings is an uncompressed PCM 16 bit, 44.1 kHz, mono audio
file. The dataset is separated into a train set with approximately 9.5 k samples and a
test set with about 1.6k samples. The audio recordings spread unequally amongst the
41 classes for both the train set and the test set, with a similar category distribution
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between them. Out of the 9.5k samples in the train set, 3.7k were listened by human
participants and were annotated with ground truth label. The rest 5.8k samples have
non-verified annotationswith. The estimated accuracyof the non-verified annotations
for each class is at least 65–70%. In contrast to the train set, the test set contains only
manually-verified annotated samples.

To take fully use of both verified annotated audio recordings and non-verified
annotated audio recordings, we handle them differently during training. Firstly, we
train the model with verified annotated audio recordings only for initial convergence.
Then, we use the entire train set to fine-tune the model. However, before each fine-
tune round, we relabel the non-verified annotations. The new label is generated by
mixing up the non-verified annotation and the prediction of the audio recording by
the current model, with a mix-up ratio same as the ratio between the non-verified
annotations quality and the test accuracy of the current model.

Same as our work on the ESC-50 dataset, we use 44.1 kHz sampling rate and same
window extraction method. Meanwhile, we apply normalization and silence filtering
during preprocessing and sliding window probability-voting at testing. The model
hyper-parameters are also the same except training epoch number and learning rate
decay. We consider the overall top-3 accuracy and recall score of the cough class as
our metrics to assess the proposed architecture on cough detection. Figure 3b shows
the accuracy results for this applications with respect to window size. As evident in
Fig. 3b, all the experiments show similar performances on overall top-3 accuracy
metric. As for the performance on cough detection, 2 s windows show good and
balanced performance of extracting distinctive feature. Thus, a window size of 2 s is
chosen for our implementation scenario.

CoughVID CoughVID is a crowdsourced dataset for machine learning researchers
aiming to find the connections between COVID-19 diagnosis and cough sound
features. It provides over 20,000 cough recordings donated by participants, as well as
a wide range of other subjects such as ages, genders, geographic locations, and espe-
cially, COVID-19 statuses. As a quality check, the dataset organizers include a ML
based cough detection result for each audio recording as well, which is a probability
of how likely the audio recording contains at least one cough sound.

As an initial step of taking fully advantages of this dataset for COVID-19 research,
we evaluate our previous work on cough detection with it. In details, we use models
trained on the ESC-50 dataset to predict cough existence, and compare with an
assumed ground truth based on the affiliated probability. We consider two cough
existence prediction schemes here. For the first one, we predict the audio recording
contains cough if cough class is among the top-5 predictions of the sliding-window
probability-voting results. For the second one, if at least one window gives a cough
prediction among the top-5 predictions, we consider the audio recording has cough.
As recommended by the dataset organizer, the assumed ground truth labels are gener-
ated by whether the affiliated cough existence probability is greater than 80% or not.
Figure 3c shows the results for both schemes by different input window sizes, in
accuracy of exist and non-exist binary prediction.
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4.2 Case Study 2: Dyspnea Detection

We also assess the efficiency of RespiratorNet on dyspnea detection, with a dataset
collected from our participants. For each participant, we record two audio recordings.
One is the sound of reading an article paragraph normally, and the other one is reading
the same paragraph after some strenuous exercises, so that some gasp sounds would
be included. We label the two audio recordings as normal and dyspnea accordingly.
The recordings are recorded by various devices and then re-sampled at a sampling
rate of 44.1 kHz. Each recording has a length between 30 and 60 s. After window
extraction with different configurations, we could have about 3000 windows to be
divided into train, validation, and test sets, while making sure that no window in the
test set is overlapped with any window in the train set.

Most of the model configurations are the same as the previous work. One differ-
ence is that we do not apply silence filtering for this case study, due to the fact
that audio recordings may include gasps. The other one is that we use window-wise
prediction at testing, since we are doing a binary classification on the relatively small
dataset. It is obvious from Fig. 3d that the window size of 5 s and 7 s works better for
the model of dyspnea detection. The number of computation would be increased by
a higher window size. We therefore chose to use the 5 s window for this application.

4.3 Case Study 3: Detection of Respiratory Sound
with Demographic Information

In Sects. 4.1 and 4.2, we evaluate the performance of RespiratorNet only with audi-
tory input. In this one, we also include demographic information. The dataset [32] we
use for this case study comprises 920 recordings collected from 126 participants with
annotations unequally disperse among 8 forms of respiratory conditions, including
Upper Respiratory Tract Infection (URTI), Asthma, Chronic Obstructive Pulmonary
Disease (COPD), Lower Respiratory Tract Infection (LRTI), Bronchiectasis, Pneu-
monia, and Bronchiolitis. The length of each recording varies from 10 to 90 sonds,
often be controlled with 20 s samples.

While the majority of this dataset are COPD-diagnosed participants, by taking
only audio recordings captured by Welch Allyn Meditron Master Elite Electronic
Stethoscope, one of the four devices used for this dataset,wegenerate a randomsubset
encompassing 63 participants. We split it into a semi-balanced train and a test set of
52 and 11 participants that include 5 types of pulmonary classes. In consequence,
we eliminate Asthma, Pneumonia, and LRTI.

Each selected audio sample is cut into 5 s windows with a stride of 1 s for data
augmentation. Therefore, about 1600 windows are generated from the total 2000s of
the training dataset, and 368 windows are generated from the total 460 s testing data.

The selection of the 5 swindow is empirically inferred from the experience varying
from 1 to 10 s.
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Table 1 Respiratory sound classification accuracy and model complexity with and without taking
the demographic information into account

DCNN characteristics Sensitivity (%) Accuracy (%)

URTI Healthy COPD Bronchiec Bronchiol Test

Without demographic
info

21 66 96 88 4 78

With demographic info 16 72 100 88 15 83 (+5%)

We performed a series of experiments, from audio input only, to merging the age
group information with auditory signal. Table 1 contrasts the two sets of studies,
suggesting that the COPD and healthy conditions are diagnosed with higher accu-
racy and resulting in a total test accuracy increased by 5% when the demographic
information is taken into account.

5 Hardware Architecture Design

The hardware architecture must be built with special care for accurate processing
and functionality in order to incorporate RespiratorNet for the detection of cough
and dyspnea along with the classification of respiratory sounds with demographic or
symptoms details. This applies to basic design needs such as parallel calculation and
effective memory sharing. This architecture is also modeled mainly to comply with
the latency requirement with a low area and utilization overhead. In order to achieve
the required performance and power efficiency requirements, the hardware archi-
tecture thus implemented here is reconfigured to any number of filters, processing
engines (PEs) and layers for any model.

5.1 FPGA Design Flow and Framework

The main blocks that dominate the logic flow and memory footprint in terms of
computation and resources are explained below:

The Convolution module performs 1D and 2D convolution depending on the
software architecture requirement. The control unit defines the functionality of the
convolution by using the address generator to address the convolution process dynam-
ically, involving stride and corner case scenarios. The Fully Connected module
represents the functionality of the fully connected layers where all the neurons are
connected to each other. The block is also guided to a matrix vector multiplication
with proper addressing by the control unit and an address generator. The gener-
ated data are collected in the PE array. The PE array uses uses a multiplier and an
adder with ReLu activation feature to duplicate the MAC process. This module also
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spreads the data into various arrays to allow parallel processing, depending on the
number of PEs initialized in the parameters. All the necessary modules have been
integrated in the Topmodule. Furthermore this block also maintains a logic flow and
controls the data path to PE array, Convolution and the Fully connected modules.
The demographic/numerical information used in the case study 3 is provided in
Symptoms/Demographic Vector block. The numerical information shall be stored
as an one dimensional vector which after processing, is concatenated to the feature
map memory. The control unit supervises this concatenation process, while the state
machine controls the layer flow after the concatenation.

The finite-state machine (FSM) controls the process flow and logic for convolu-
tional and fully connected layer operation. The address generated through the layer
functionality is sent to the on-chip Block RAM (BRAM) memory instantly where
each of the memory locations has a data width of 8-bits. Consequently, the input
data from the feature map passes through the multiply-accumulate unit inside the PE
array, and the product of the computation is saved on the output memory through
ReLu activation logic. The PE logic is implemented only through a pipeline of an
adder, a multiplier, and an accumulator which saves resources. The PE array ensures
parallel execution of the convolution setup as evident from the Fig. 4, where 8-bit
values are read from the feature map memory but n 8 values are processed from
weight memory for parallel operation where n is equal to the numbers of PEs in the
array. The output from each PE continues storing these values until all values are
received. As a result, the PE arrays are completely independent of each other in terms
of data dependency.

5.2 Effect of Parallelism

One of the goals of this work is to introduce scalability in the hardware with regards
to serial and parallel operation as per the requirement of different applications. Espe-
cially, in deep convolutional neural networks, convolutional layers dominate the
computation overhead which directly affects the latency and throughput of the hard-
ware. Hence, it is imperative to find the sweet spot for efficient parallelism existing
within the convolutional layers. Among all the parallelism mechanisms studied
in [33], output channel tiling provides the best throughput in FPGA fabric which
performs convolution across multiple output channels for a given input channel,
simultaneously. As a result, we also design the parallelism based on output channel
tiling in our hardware. The outcome of the parallelism approach is illustrated in
Fig. 5, in terms of the energy efficiency of our hardware accelerator under different
data width precision. Our RTL (Register Transistor Level) design can achieve an
energy efficiency up to 12.7 GOPS/W when implemented for 8 PEs. Similarly, the
performance threshold for 2 and 4 PEs go up to 5.7 and 7.3 GOPS/W, respectively.
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Fig. 4 RespiratorNet hardware architecture designed for the case studies that includes feature
map memory and weight memory addressed by the convolution and fully connected modules to
fetch data into the Processing Engine (PE) array. The PE array conducts MAC operations and
temporarily saves data to the output memory. The control logic of the top defines the functionality
of the convolution and fully connected modules. The symptoms vector are only used in Case
Study 3 where demographic information and audio samples are supplied to the model. This data
is concatenated to the feature map memory to process the finishing fully connected layers of the
model. In the top module, finite-state machine manages the concatenation logic

5.3 Quantization: Fixed Point Precision Analysis

All the case studies explored in this work use the quantization level of 8 bits. Going
below this level does not provide an appropriate trade-off in terms of hardware
performance and model accuracy which is clearly visible from Fig. 6. In the software
side, the quantization is applied on kernel weights, bias, and activations for all the
convolution layers and fully-connected layers, other than the first layer and the last
layer. According to Fig. 6, our model shows acceptable performance while shrinking
the model size even to 1/8 of the original 32-bit model. Thus, our proposed hardware
architecture has been implemented using a data width of 8-bit fixed-point precision
for all four case studies. Even though the change of the data width does not amount
to any variation in functional behavior, it affects the operating frequency and power
consumption which in turn alters the energy consumption of the hardware. So, it
is pivotal to figure out an operating frequency that is consistent with different data
width precisions to properly analyze the effect of changing bits over the on-chip
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energy consumption. In this case, our hardware framework runs at a frequency of
80MHz to investigate the variation in energy consumption ranging from 16-bit down
to 8-bit fixed-point precision as shown in Fig. 7a. As evident in the plot, an 8-bit
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Fig. 7 a Illustration of the trend for FPGA energy consumption against different fixed point
precision on the respiratory sounds dataset network and b breakdown for power consumption in the
proposed hardware for a setting of 8 PEs running at 80 MHz
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implementation over its 16-bit counterpart results in an energy saving of 4.5%without
much deviation in themodel classification accuracy for the respiratory sounds dataset
network. The proposed hardware utilizes 8 PEs to implement all the different model
configurations explored in this work. With a configuration setting of 8 PEs and 8-bit
fixed-point precision, most of the on-chip dynamic power is dedicated to BRAMs
with only a fraction of the total dynamic power being utilized in clocks, signals,
logic, and other areas as highlighted in Fig. 7b. Also, per our analysis, as the number
of processing engines increases, the power consumption of the BRAMs and DSPs
increases to accommodate the parallel processing of the framework.

6 Hardware Implementation and Results

6.1 FPGA Implementation

On the Artix-7 100t FPGA (Field Programmable Gate Array), the previously
mentioned software frameworks are implemented at a clock frequency of 80 MHz.
The design of the RTL (Register Transistor Level) is defined in Verilog HDL and
synthesized using the Xilinx Vivado 2018.2 tool for the FPGA portion. The option
for the Artix-7 100t FPGA comes from the fact that the applications are targeted for
embedded implementation of low power, making this component ideal for our objec-
tive, with only 135 BRAMs as onchip memory. The results tabulated in the 2 table
represent the output of the hardware in this work for the various case studies. In terms
of computation, the model with the highest overhead is the one that detects diseases
from respiratory sound analysis. The energy consumption of 836 mJ is considerable
in this case, with 6 billion operations. Depending on the calculations and size of the
model, our RTL design has different results, with energy efficiency varying from 4.1
GOPS/W to 7.3 GOPS/W.

TheTable 2 compares various recent hardware designs aimed atCNNacceleration.
Ma et al. [34] offers a scalable hardware platform that demonstrates the versatility to
deploy CNN architectures in high-level synthesis and optimization. In Huang et al.
[35] implementation of a 23 layer, SqueezeNet is introduced. In addition to this on
Jafari et al. [10], a low-power multimodal CNN system is accelerated using the same
Artix-7 FPGA component used in our work. Our proposed system, when compared,
is and 4.3 more energy efficient than the [10, 34] implementations. Although the
design is marginally ahead in terms of energy efficiency in Huang et al. [35], with a
consumption of less than 33, our work draws significantly low power.
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Table 3 Deploying the RespiratorNet model to commercial off-the-shelf devices including a dual-
core Denver CPU, a quad-core ARM A57 CPU, and a combination of ARM CPU+Pascal GPU
from the NVIDIA TX2 board

Configuration CPU
Freq
(MHz)

GPU
Freq
(MHz)

Power
(mW)

Latency
(s)

Performance
(GFLOP/s)

Energy
(J)

Energy
efficiency
(GFLOP/s/W)

Denver CPU 345 – 881 10.0 0.019 8.81 0.021

2035 – 3170 0.9 0.215 2.85 0.068

ARM A57
CPU

345 – 1168 3.7 0.052 4.32 0.045

2035 – 4425 0.6 0.322 2.66 0.073

TX2
CPU+GPU

2035 1300.5 9106 0.1 1.935 0.91 0.210

6.2 NVIDIA Jetson TX2 Implementation

The trained TensorFlow model of RespiratorNet was implemented on embedded
NVIDIA Jetson TX2 platform for evaluating the energy-latency trade-off. Trading
off between the computation complexity and the classification accuracy, trained ML
models can be deployed to tiny processors and edge devices (e.g. tiny FPGAs, a
cell-phone, tablet). At least two hardware-level characteristics are attributed to all
DCNN models: the model size and the number of operations per inference, all of
which are upper-bounded by the platform resources to which they are deployed or
by the inference deadline. Both the hardware resource constraints and the diagnostic
latency should follow the application objectives while bringing all the components of
the system together. After setting the batch-size to 1, two mobile CPUs like Denver
(dual-core) and ARM-Cortex A57 (quadcore) as well as an embedded CPU+GPU
implementation with different frequency settings are deployed on the trained model
of RespiratorNet. The TX2 development board has been used to calculate all of the
parameters as it provides precise on-board power measurement. Table 3 summarizes
the implementation. From the Table 3 it can be seen that Denver CPU with a low
frequency setting dissipates the least power and takes 10 s to classify one frame.
However, the most energy efficient implementation, ARM CPU+GPU, dissipates
approximately 10 more power compared to Denver to classify the same frame in
0.1 s. For both the cases, we provided a 5 s frame of recording to the memory.

7 Conclusion

In this chapter, to identify various respiratory symptoms,we proposeRespiratorNet, a
scalable multimodal CNN software hardware architecture that can take audio record-
ings, speech information, and other sensor modalities from patient demographic or
symptom information.Weevaluate anduse four distinct publicly accessible databases
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as case studies to identify respiratory symptoms as part of our experiment. The
hardware prototype for RespiratorNet is also scalable and flexible to accommodate
different input modalities, data width bit precisions and parallel processing engine
numbers. The proposed implementation of hardware has a low power consumption
of o 245 mW and achieves an energy efficiency of 7.3 GOPS/W that is 4.3 times
higher than the implementations of state-of-the-art accelerators. Furthermore the
RespiratorNet TensorFlow model is implemented on the NVIDIA Jetson TX2 SoC
(CPU+GPU) toprovide scalability in termsof off-the-shelf platform implementations
and is compared to TX2 single-core CPU and GPU implementations.
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