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Abstract Different machine learning techniques and approaches were implemented
to detect the features ofCOVID-19, fromchestX-Ray andCTmedical images, aswell
as to identify them from other similar human-being lungs infection diseases. In this
work, Logistic Regression, Neural Networks, RandomForests, Decision Trees, kNN,
and CN2 Rule Induction are the machine learning models and classifiers that were
utilized to perform such detection and identification. The entire process according to
the importance of good parameters selection, and such performance was presented
and emphasized at different phases of models analysis and visualization. In our
presented method, the achieved classification accuracies were up to 95.5%. Our
work was implemented using Orange software, as a visual-based tool, and dedicated
for physicians with no experience in machine learning algorithms and programming
languages.

Keywords Coronavirus · COVID-19 · Features detection · Features extraction ·
Machine learning classifiers

1 Introduction

The Coronavirus disease pandemic, a.k.a. COVID-19 byWHO (World Health Orga-
nization) [1], is world widely spread affecting many people in different countries.
Since this virus does not have a well-known information as well as not match
any similar symptoms that occur by other well-documented and knowledge-based
viruses, medical concerns and emergency orders were firmly raised in many regions,
e.g. schools and businesses closures as well as stay-home orders, to protect lives
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and eliminate the disease outbreak excessively as well. For that, hourly data collec-
tions regarding infected areas, communities, and people are continuously gathered,
accumulated, and compiled to form visual representations of COVID-19 morbidness
cases and their spreading in different zones.

From the scientific and engineering point of view, themachine learning algorithms
and models can play a role in classifying and identifying the COVID-19 cases from
other similar human-being lungs infection diseases, such as Bacterial Pneumonia,
Viral Pneumonia, Pneumocystis, Streptococcus, and SARS, using chest X-Ray and
CT (Computerized Tomography) medical images. Some researchers were able to
have fairly classified results from such diagnostic images using different models of
ImageNet deep learning classifiers [2, 3], as described in [4–6].Alimadadi et al. stated
how governments, research institutes, and technological companies issued an urgent
call-to-action for AI (Artificial Intelligence) researchers to develop data mining tech-
niques and build open-source real-time analytical datasets to fight the COVID-19
pandemic and stop its spreading. Such that, the collection of large real-time diag-
nostic datasets of COVID-19 cases can give a better understanding of the COVID-19
patterns and spreading, aswell as improve the speed and accuracy of themedical anal-
yses when such diagnostic datasets are integrated with machine learning algorithms
[7]. Pinter et al. mentioned that due to the lack of necessarily diagnostically datasets
collection, the epidemiologicalmodelswere in challenge in thematter of higher accu-
racy delivery for a long-term prediction. They implemented the ANFIS (Adaptive
Neural-Fuzzy Inference System) andMLP-ICA (Multi-Layer Perceptron-Imperialist
Competitive Algorithm) as a hybrid machine learning algorithms approach to predict
the time-series of the infected individuals and their mortality rates, usingMATLAB’s
ANFIS toolbox. Moreover, their work can be considered as an initial benchmarking
tool for future research regarding the potential of machine learning algorithms in
COVID-19 pandemic prediction [8]. In the paper of Elaziz et al., a new machine
learning method was presented to classify the COVID-19 and non-COVID-19 cases
using chest X-ray images. The features extracted from such images using the method
of FrMEMs (Fractional Multichannel Exponent Moments) within a parallel work-
station to accelerate the overall computational process. Their work was evaluated
using two COVID-19 chest X-ray datasets that achieved accuracy rates of 96.09%
and 98.09% for the first and second datasets, respectively [9]. Sujath et al. presented
a model to predict the spread of COVID-19 in India, this approach was implemented
using differentmachine learningmodels, such asLinearRegression,MLP, andVector
Autoregression using the COVID-19 Kaggle repository datasets for the epidemio-
logical COVID-19 cases in India, only. Their work showed that the CI (Confidence
Interval), a way of quantifying the uncertainty of estimated results, was 95% for the
completely implemented machine learning models [10]. Ardabili et al. presented a
comparative analysis of differentmachine learningmodels, such asMLP andANFIS,
and soft computing models, such as GA (Genetic Algorithm), PSO (Particle Swarm
Optimization), and GWO (GreyWolf Optimizer), to predict the COVID-19 outbreak
and spreading. They demonstrated that the machine learning algorithms were effec-
tive tools and have more promising results than the soft computing models in the
COVID-19 pandemic prediction [11]. Brinati et al. described the amplification of
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COVID-19 viral RNA using the rRT–PCR (real-time Reverse Transcription–Poly-
merase Chain Reaction) is the current gold standard test for COVID-19 infections
confirmation. However, due to the rRT-PCRweaknesses, such as false-negative rates
of 15–20%, and a potential shortage of reagents, therefore faster, less expensive,
and more accessible testing methods, as alternative solutions, should be developed.
Two machine learning models were implemented to classify patients as either posi-
tive or negative to the COVID-19 infection using the hematochemical values from
the routine blood exams. In such two models, the accuracy ranges 82–86% and the
sensitivity ranges 92–95% with respect to the gold standard test. Moreover, a Deci-
sion Tree model was implemented as straightforward simple decision assistance for
the COVID-19 suspected cases [12]. Cheng et al. indicated that approximately 20–
30% of COVID-19 infected cases need hospitalization, while 5–12% of them may
require critical care in the ICU (Intensive Care Unit). In their work, they developed a
machine learning algorithm, as a risk prioritization tool, using Random Forest model
to predict the ICU requirements within the 24-h. Time-series information, labora-
tory data, vital signs, nursing valuations, and ECG (Electrocardiograms) signals were
used as input datasets for this model. These datasets were randomly split into 70% of
the training dataset and 30% of the test dataset. Then, this model was trained using
the tenfold CV (Cross-Validation) technique. The model’s performance and predic-
tion was evaluated on the test dataset, as the following: sensitivity of 72.8% (95%CI:
63.2–81.1%), specificity of 76.3% (95% CI: 74.7–77.9%), accuracy of 76.2% (95%
CI: 74.6–77.7%), and Area under ROC of 79.9% (95% CI: 75.2–84.6%). Thus, this
machine learning tool could improve the planning and the management of hospital
resources in more effective ways regarding the COVID-19 patients’ hospitalization
[13]. In the study of Rustam et al., different supervised machine learning models
were implemented to forecast the number of patients infected by COVID-19. Four
standard models, such as Linear Regression, Exponential Smoothing, LASSO (Least
Absolute Shrinkage and Selection Operator), and SVM (Support Vector Machine),
were developed to forecast the upcoming patients and results. The number of newly
infected patients, the number of recovered patients in the next 10 days, and the
number of deaths were the three prediction categories for each model. The Exponen-
tial Smoothing model had better forecasting results than the other models, followed
by the Linear Regression model, and then the LASSO model performed well in
forecasting the newly infected cases, recovery rate, and death rate. While the SVM
model performed poorly in the three prediction categories. The three models were
performed on the Johns Hopkins University’s COVID-19 repository datasets [14].

2 Materials and Methods

A large set of diagnosticmedical images of human-being lungs diseases, i.e. datasets,
has to be publicly provided to the scientific communities, to achieve the valuable
comparable results of identification and classification of COVID-19 cases. For this
reason, many medical datasets [15, 16] have been already published to stop the
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COVID-19 outbreak using vast sets of technologies and applied approaches, e.g.
machine learning algorithms. The aim of our work is to identify the best classifiers,
within the best CA (Classification Accuracy) scores, that classify the COVID-19
infected cases from other human-being lungs infected cases. As well as to provide
a convenient visual-based classification tool to physicians, without their need to
understand the deep knowledge of machine learning algorithms, the programming
languages, such as Python, the computational libraries, such as NumPy, Pandas, and
scikit-learn, and the abstraction platforms, such as PyTorch and TensorFlow. Our
work was fully designed, built, and implemented using the open-source machine
learning and data visualization tool Orange, from the University of Ljubljana [17].

Orange provides data analysis, data visualization, statistical distributions, and vast
sets of plotting tools, as well as its GUI (Graphical User Interface) allows the physi-
cians to focus on data analysis and manipulating, instead of coding, to accelerate the
diagnostically identification and classification workflows with ease. Our presented
workwithOrangewas performed using the datasets that were provided by theKaggle
repository [15], and the workflow was categorized into four proposed phases: (1)
Datasets Preparation Phase, (2) Training Dataset Operations Phase, (3) Test Dataset
Operations Phase, and (4) Prediction and Performance Phase. Furthermore, seven
machine learning algorithms were utilized, in this work, to have sufficient compa-
rable decisions regarding the best-chosen model for the best classification accuracy
to identify and classify the COVID-19 cases. These models are:

• Distances that computes the distances between the rows and columns in the
datasets, i.e. the cases [18, 19],

• Logistic Regression that classifies the cases using the non-linear Sigmoid function
(σ) [19, 20],

• CN2 Rule Induction that uses efficient induction of simple and comprehensive
rules in the form of (IF condition THEN predict case) to predict the cases [21,
22],

• Tree that splits the cases into nodes and leaves by labeling purity and forward
pruning [23, 24],

• Random Forest that classifies the cases using an ensemble of decision trees [25,
26],

• kNN (k-Nearest Neighbors) that searches for the k closest cases based on their
features and their averages as classification factors [27, 28], and

• Neural Network that classifies the cases within the MLP model using the
backpropagation method [29].

Note that all the aforementioned algorithms are supervised classifiers, except the
Distances, which is an unsupervised classifier.

Note that some of Orange’s toolboxes have been renamed in purpose to match
their underlying phases as well as their designated operations, for ease of follow and
understanding.
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2.1 Datasets Preparation Phase

The datasets were gathered from the chest X-Ray (of PA “Posteroanterior”, AP
“Anteroposterior”, APS “AP Supine”, and L “Lateral” captures [30]) and CT (of
Axial and Coronal scans [31]) medical images of COVID-19, SARS, Pneumocystis,
and Streptococcus infection cases. Since the number of these gathered images is
relatively small, the data augmentation technique is performed in this phase. The
data augmentation was achieved by enlarging the size of each medical image, i.e.
sample, in the datasets by increasing their (1) brightness by the factor of 16 and (2)
contrast by the factor of 32, to have a sufficient number of samples. A sufficient
number of samples yields a good identification and better classification accuracy
judgment, as well as fulfills Hoeffding’s Inequality generalization bound [32]. For
instance, to demonstrate Hoeffding’s Inequality, for any randomly selected size of N
COVID-19 and non-COVID-19 samples, the generalization bound for the probability
(P[·]) of such an event for any tolerance (ε > 0) is as stated in Eq. (1):

P[|v − μ| > ε] ≤ 2e−2ε2N (1)

where, μ is the probability of the COVID-19 samples in a bin consisting of COVID-
19 and non-COVID-19 samples, while v is the fraction of the selected COVID-
19 samples among the non-COVID-19 samples. Note that Hoeffding’s Inequality
formula mostly affects by how large N and the chosen ε are.

The ACDSee® photo editing software was used to implement such data augmen-
tation [33]. Note that other data augmentation methods, such as shape sheering,
angles rotation, and flipping/mirroring, were not used in this phase, due to the fact
that physicians usually check such diagnostic images in the normal straightway posi-
tion, as portraits. For fast data processing, the samples were scaled uniformly to the
dimensions of 128 × 128 pixels, and the resultant statistics of these samples are
summarized in Table 1.

Figure 1 demonstrates the preparation phase of these datasets that consists of the
following Orange toolboxes: (1) Import Images that loads the datasets locally, i.e.
from the computer, (2) Image Viewer that visually checks the loaded datasets, (3)
Adding Labels that generates the cases for each sample. Since these datasets are
non-labeled and most of the classifiers are supervised, then a column of labels, i.e.
classes, was generated regarding the samples’ filenames. Note that, each filename

Table 1 Infected samples
statistics

Infection case Number of samples

COVID-19 169

SARS 33

Pneumocystis 45

Streptococcus 51

Total = 298
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Fig. 1 Datasets preparation phase using orange toolboxes

corresponds to an infected case name, for instance the filename of the “COVID-
19-APSupine-Xray-1.jpeg” sample generates the “COVID-19” case as a label. (4)
WholeDatasets that lists thewhole labeled datasets, (5)Distributions that statistically
displays the labeleddatasets, and (6)Datasets Sampler that samples thewhole labeled
datasets into 70% of training dataset and 30%of test dataset, i.e. 209 training samples
and 89 test samples.

For more illustration, Fig. 2 illustrates the Image Viewer and Adding Labels
toolboxes of Orange.

Fig. 2 Orange image viewer (left) and adding labels (right) toolboxes
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Fig. 3 Orange whole datasets toolbox

Note that four labels were generated using Adding Labels toolbox with labels
as COVID-19, Pneumocystis, SARS, and Streptococcus. Figure 3 shows the Whole
Datasets toolbox of Orange

Finally, Fig. 4 demonstrates the Distributions and Datasets Sampler toolboxes of
Orange.

2.2 Training Dataset Phase

After the 209 samples, i.e. the training dataset, were received from the Datasets
Sampler toolbox from the Datasets Preparation Phase, they can be buffered and visu-
ally checked along with their generated labels using the Training Dataset toolbox.
Since these training samples contain no useful classifiable information, the Incep-
tion v3 Model (Training) toolbox is in need to represent this training dataset into its
vectorized equivalent representations, a.k.a. features. This toolbox generates 2048
numerical features for each sample that makes the next classification processes more
meaningful, and such features can be viewed using the Training Dataset Features
toolbox of Orange. Note that the Inception v3 Model (Training) toolbox is based on
Google’s Inception v3 CNN (Convolutional Neural Network) architecture [34] that
is trained on ImageNet.
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Fig. 4 Orange distributions (left) and datasets sampler (right) toolboxes, the sampling percentage
can be changed based on the model design and technical requirements

Then, these features alongwith their labels from the Inception v3Model (Training)
toolbox were fed to various machine learning classifiers for further identification
and classification of training dataset based on their features (and labels, if they were
supervised classifiers), as shown in Fig. 5. Note that, the calculated distances in the
Distances classifier were visualized using theHierarchical Clustering toolbox along
with the Hierarchical Clustering Viewer toolbox, the generated rules in the CN2
Rule Induction classifier were viewed through the CN2 Rule Viewer toolbox, the
generated tree with nodes and leaves in the Tree classifier were visualized using the
Tree Viewer toolbox.

2.3 Test Dataset Phase

After the 89 samples, i.e. the test dataset, were received from the Datasets Sampler
toolbox from the Datasets Preparation Phase, they can be buffered and visually
checked along with their labels using the Test Dataset toolbox, as shown in Fig. 6.
Since these test samples contain no useful classifiable information, the Inception v3
Model (Test) toolbox was applied here, and their features can be viewed within the
Test Dataset Features toolbox.
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Fig. 5 Training Dataset Operations Phase using Orange toolboxes, (left) the training dataset was
fed from the first phase then propagated to the Inception v3 Model for features generating, (middle)
predictions were calculated from themachine learning classifiers then forwarded to the fourth phase
for classification accuracies, (right) and the distances, rules, and trees can be viewed through the
viewers

Fig. 6 Test Dataset Operations Phase using Orange toolboxes, (left) the test dataset was fed from
the first phase, (middle) then propagated to the Inception v3 Model for features generating that fed
to the fourth phase for performance measurement, (right) and these features can be visually viewed
using test Dataset Features toolbox
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2.4 Prediction and Performance Phase

The received signals from the Training Dataset Phase, i.e. the predictions from the
machine learning classifiers, as well as from the Test Dataset Phase, i.e. the features
from the Inception v3 Model (Test) toolbox were fed to the Predictions toolbox,
to measure the performance and score the classification accuracies regarding the
best-chosen classifier for COVID-19 cases. The following Orange toolboxes were
implemented to compute such measurement and scoring, as illustrated in Fig. 7:

• Confusion Matrix: Shows the numbers of matched and unmatched samples from
the test dataset under the predicted and the actual cases that were judged by the
Predictions toolbox [35].

• Sieve Diagram: Visualizes the frequencies of cases based on a pair of classifiers
[36].

• Linear Projection: Plots the linear separation of cases concerning their classifiers
[37].

3 Methodology

In our presented work, an appropriate visual-based classification tool is provided that
targets the medical domain, especially for the physicians with less experience in the
machine learning philosophy and limited programming skills. Different distances,
rules, trees, tables, and plotswere obtained from the proposed sevenmachine learning
classifiers based on their different selection of parameters. For that, the following

Fig. 7 Prediction and
Performance Phase using
Orange toolboxes, (left) the
signals were received from
the second and third phases,
(right) and then the
performance measurement
and classification accuracies
scoring were achieved
through these three toolboxes
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Fig. 8 Distances and hierarchical clustering results of COVID-19 axial CT scans of 100% accuracy

configurable parameters for each machine learning classifier were chosen and tuned
to have the best human-classifiable results regarding COVID-19 infection cases
among other similar human-being lungs infection cases. Note that some parame-
ters have an insignificant effect or no effect at all on the classification results for
some classifiers.

3.1 Parameters of Distances Classifier

The Distances toolbox, along with the Hierarchical Clustering and Hierarchical
Clustering Viewer toolboxes, performs a good classification on the training dataset
with a small number of errors in clustering the cases, as demonstrated in Figs. 8,
9, and 10. Few cases in the clustering process have mismatched results, and the
explanations of these outcomes were left to the epidemiology specialists due to their
deep knowledge in this field. Our work provides an adequate and easy-to-use tool
for them. Note that the Distance Metric parameter is better to be set as Cosine when
dealing with images, in general.

3.2 Parameters of CN2 Rule Induction Classifier

The CN2 Rule Induction toolbox produces different rules, in the format of (IF
condition THEN predict case), and classification accuracies based on its Evalua-
tion measure parameter. Such that, when this parameter was set to Entropy [38] its
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Fig. 9 Distances and hierarchical clustering results of streptococcus L X-Ray images with one
mismatched case

Fig. 10 Distances and hierarchical clustering results of SARS PA X-Ray images with one
mismatched case
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Fig. 11 CN2 Rule Induction and Evaluation measure parameter as Entropy, lower classification
accuracy and higher induced difficult-to-read rules

classification accuracy was 53.9% and the generated number of rules was 43, as
shown in Fig. 11. However, when this parameter was set to Laplace accuracy [38],
its classification accuracy changed to 64% and the generated number of rules to 19,
as shown in Fig. 12. Therefore, the Laplace accuracy parameter produces more clas-
sification accuracy results with fewer easy-to-read induced classifiable rules. Note
that, the colored bars in theDistribution column represent the infection case: Blue for
COVID-19, Green for SARS, Orange for Streptococcus, and Red for Pneumocystis.

3.3 Parameters of Random Forest Classifier

The parameterNumber of trees does not influence at all on theRandomForest toolbox
CA performance and its results. Such that, when this parameter was set to 10, its CA
is 70.8%. While, when this parameter was set to 20, its CA still be at 70.8%.
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Fig. 12 CN2 Rule Induction and Evaluation measure parameter as Laplace accuracy, higher
classification accuracy and a few induced easy-to-read rules

3.4 Parameters of Tree Classifier

TheMin. number of instances in leaves parameter has no huge influence on the Tree
toolbox’s CA performance and its results. Such that, when this parameter was set to
2, its CA is 58.4% with a tree generating of 35 nodes and 18 leaves. While, when
this parameter set to 3, its CA changed to 59.6% with the same tree of 35 nodes and
18 leaves, as illustrated in Fig. 13.

The interpretability rules that generate the unbalanced binary tree, as shown in
Fig. 13, will be as follows:

• The parent node, root, generates the left-side child, node, when (n21≤ 0.283447).
• The root generates the right-side node when (n21 > 0.283447).
• The left-side and right-side nodes then generate their children in the same fashion,

and so on …

According to these interpretability rules, the percentile of cases was calculated
based on the nXXXX. Note that the n21, for instance, is one of the 2048 features
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Fig. 13 Orange Tree viewer toolbox of 35 nodes and 18 leaves tree at either 2 or 3 of the Min.
number of instances in leaves parameter selection

Table 2 CA based on
Number of neighbors and
Weight parameters

Number of neighbors Weights

Uniform Distance

5 68.5% 75.3%

10 61.8% 75.3%

that were obtained previously from the Inception v3 Model (Training) toolbox on the
training dataset.

3.5 Parameters of kNN Classifier

The kNN toolbox produces different CA based on Number of neighbors andWeight
parameters. Table 2 presents the generated CA based on these two parameters. Note
that, there were insignificant changes in its CA for the 5 or 10 selection of theNumber
of neighbors parameter as well as for theUniform orDistance selection of theWeight
parameter.

3.6 Parameters of Logistic Regression Classifier

The Logistic Regression toolbox generates different CA depending on the Regular-
ization type parameter. Therefore, when this parameter was set to Ridge (L2) [39],
then its CA was 95.5%. While, when this parameter was set to Lasso (L1) [40] then
its CA changed be 84.3%. Since the Lasso (L1) parameter shrinks the extreme values
of each sample towards its central values, then this could cause the loss of important
information during the classification process than the Ridge (L2) parameter. Note
that the Strength parameter was set to C = 1.
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3.7 Parameters of Neural Network Classifier

The Neural Network toolbox produces different CA based on its Neurons in hidden
layers, Activation, and Solver parameters. In our work, this classifier was imple-
mented as an MLP of 2 hidden layers, due to the MLP architecture of more hidden
layers had the same generated CAwith the same parameters selection. The following
activation functions of Logistic, tanh, and ReLU [41] as well as the solver optimizers
of SGD [42] and Adam [43] were selected in this work, due to their robustness and
non-linearity behaviors. Note that the Regularization parameter was set to 0.9 and
the Maximal number of iterations was set to 100. Table 3 states the generated CA
based on these three parameters.

The best-chosen CA was 91.0% for the MLP architecture of the (100 × 100 ×
4) neurons with ReLU activation and Adam solver parameters selection, as well as
of the (500 × 500 × 4) neurons with tanh activation and Adam solver parameters
selection. However, the small MLP architecture of (100 × 100 × 4) neurons was
chosen due to its fewer number of the utilized neurons that decrease the classification
time, rather than the medium MLP architecture of (500 × 500 × 4) neurons.

4 Results and Discussion

In our work, the obtained human-classifiable results were based on the following
factors: (1) the number of medical samples in the training and test datasets, (2) the
seven proposedmachine learning classifiers, (3) the selected and tuned parameters for
each classifier, and (4) the predicted probabilities. Moreover, the Predictions toolbox
was implemented to visually illustrate the predicted probabilities for the test dataset
based on their labels as well as the outcome signals from the classifiers based on
the training dataset. These predicted probabilities are CA, AUC (Area under ROC—
Receiver Operating Characteristic), Precision, Recall, and F1 (a weighted harmonic
mean of Precision and Recall) that used to compute the statistical performance of
a machine learning classifier [44], as demonstrated in Fig. 14. Note that, in this

Table 3 CA based on Neurons in hidden layers, Activation, and Solver parameters

Activation/solver Neurons in hidden layers (%)

100 × 100 × 4 500 × 500 × 4 1000 × 1000 × 4

Logistic/SGD 57.3 57.3 57.3

Logistic/Adam 57.3 57.3 57.3

tanh/SGD 78.7 88.8 86.5

tanh/Adam 85.9 91.0 85.4

ReLU/SGD 67.4 85.4 77.5

ReLU/Adam 91.0 79.8 65.2
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Fig. 14 Orange Predictions toolbox, (top) the blue bars show the strength of each classifier in
predicting the four infected cases individually or as a group, and (bottom) the predicted probabilities
(CA, AUC, Precision, Recall, and F1) of computing the statistical performance for each classifier

Predictions toolbox, the cases can be chosen individually or as a group to show the
best-chosen classifier(s) that predicted them, as denoted by the lengths, or strengths,
of the blue bars.

Moreover, other Orange toolboxes, such as Confusion Matrix, Linear Projection,
and Sieve Diagram, were implemented to calculate the correlations and illustrate
the projections between the training dataset and the test dataset for each machine
learning classifier.

4.1 Results from Confusion Matrix

Figure 15 illustrates the correlation between the actual and the predicted cases on the
samples from the test dataset as comparable matrices for each classifier regarding
the four infected cases. It was observed that the COVID-19 samples were more
classifiable under the Logistic Regression and Neural Network than the other clas-
sifiers, and especially for the Logistic Regression classifier since it has only four
mismatched COVID-19 cases with Streptococcus cases, then followed by the Neural
Network classifier that has eight mismatched COVID-19 cases with Pneumocystis
and Streptococcus cases.
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Fig. 15 Confusionmatrices for each classifier, and the Logistic Regression classifier performs well
on COVID-19 cases classification

4.2 Results from Linear Projection

As demonstrated in Fig. 16, the COVID-19 samples, as the blue dots, were selected to
be linearly projected with the Logistic Regression, Tree, Random Forest, kNN, and
Neural Network classifiers to check their accurate classification and performance.
It was visually noted that the COVID-19 samples were more classifiable under the
Logistic Regression and Neural Network than the other classifiers, and especially
for the Logistic Regression classifier due to a large number of blue dots around its
axis, then followed by the Neural Network classifier.

4.3 Results from Sieve Diagram

Orange Sieve Diagram toolbox provides the N samples visualization of the test
dataset along with a pair of classifiers, as well as shows the Sieve Rank (X2). The
darker blue regions are the stronger is the relationship of a given case for a pair of
classifiers. This can be influenced on theX2 aswell, so that the higherX2 gives a better
illustration of the stronger relationship for a given case among a pair of classifiers.
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Fig. 16 Linear projection of COVID-19 samples, as the blue dots, within the five classifiers, and
the Logistic Regression classifier performs well on COVID-19 cases classification

Figure 17 shows different Sieve diagrams for different pairs of classifiers, and it
was visually observed that the COVID-19 samples were more classifiable under
the pair of Logistic Regression and Neural Network classifiers. This observation
was based on darker blue regions and higher X2 than for other pairs of classifiers.
On the other hand, the COVID-19 samples were less classifiable under the pairs of
Logistic Regression and Tree/Random Forest/CN2 Rule Inducer classifiers, which
have lighter blue regions and lower X2.

5 Conclusions

When more medical images regarding the COVID-19 datasets have been clinically
provided and publicly available, this will open the chance to do more research in this
field as well as increase the number of samples to the classifiers, which yields to get
better modeling performance and classification accuracy. Hence, larger datasets of
various diseases’ cases will contribute to domore labeling assignments, however less
data augmentation would be required. The image scaling of 128 × 128 pixels was
chosen, in this work, for the purpose of fast processing time, but this downscaling
may also affect the hidden features of these diagnostic images, which gives at the
end no better features extraction and detection using the Orange Inception v3 model
toolbox. Our work was implemented using Orange software, a visual analytical
tool for epidemiology specialists that have little knowledge in machine learning
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Fig. 17 Sieve diagrams for pairs of classifiers, N is the number of test samples and X2 is Sieve
rank. (top-left) the pair of Logistic Regression and Neural Network classifiers performs well on
COVID-19 cases classification with darker blue regions and higher X2

techniques and limited programming skills, to allow them to focus on COVID-19
cases analysis and classification with ease of use and simplicity of understanding
and manipulating.

Some of the toolboxes’ parameters do not affect the overall workflow,while others
do. Table 4 describes the parameters that have been carefully chosen for better rules,
easy visualization, as well as higher performance and CA.

Based on Table 4, the Predictions toolbox demonstrates different CA for different
classifiers. The higher CA is, the better classifier does, as categorized by Table 5.
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Table 4 Parameters selection
for higher performance and
CA

Toolbox Parameter(s) Setting

Distances Distance metric Cosine

CN2 Rule induction Evaluation measure Laplace accuracy

Tree Min. number of
instances in leaves

3

Random forest Number of trees 10

kNN Number of
neighbors

5

Weight Distance

Logistic regression Regularization type Ridge (L2)

Neural network Neurons in hidden
layers

100 × 100 × 4

Activation ReLU

Solver Adam

Table 5 CA ranking for each
classifier

Classifier CA (%)

Logistic regression 95.5

Neural network 91.0

Random forest 76.4

kNN 75.3

CN2 rule induction 64.0

Tree 59.6

Based on the Confusion Matrix toolbox, as in Fig. 15 shown previously, the
Logistic Regression classifier has a better matching between the actual and the
predicted cases for the samples from the test dataset, and then followed by the Neural
Network classifier. While the Tree classifier has the worst matching pattern. There-
fore, this is in agreement with Table 5. Based on the Linear Projection toolbox, as
in Fig. 16 shown previously, the Logistic Regression and Neural Network classifiers
have the most COVID-19 cases projection along their axes than the other classifiers.
Therefore, this is in agreement with Table 5.

Based on the Sieve Diagram toolbox, as in Fig. 17 shown previously, the pair
of Logistic Regression and Neural Network classifiers have the most test samples
frequencies of COVID-19 cases, due to the darker blue regions and higher X2. There-
fore, this is in agreement with Table 5. Based on the careful parameters selection and
tuning for each classifier, the Predictions toolbox, the Confusion Matrix toolbox, the
Linear Projection toolbox, the Sieve Diagram toolbox, and the CA from Table 5, the
Logistic Regression model was the appropriate best-chosen classifier in identifying
and classifying the COVID-19 cases among the other similar human-being lungs
infected cases (SARS, Pneumocystis, and Streptococcus). The achieved CA for the
LogisticRegression classifierwas up to 95.5%.Figure 18demonstrates the completed
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layout of all connected phases, toolboxes, and signals to achieve the overall Orange
workflow for COVID-19 features detection and extraction using machine learning
classifiers.
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