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Abstract Pandemics are epidemics that spread rapidly over countries or continents.
They are large-scale outbreaks of contagious diseases that can significantly increase
morbidity andmortality and cause substantial economic and social harm. If not prop-
erly controlled, the hospitals, physicians, and care staff become overloaded, driving
the exponential growth of the infected population. Therefore, the early diagnosis of
the infected would help to break the transmission chain. Artificial intelligence (AI)
methods and deep networks have proven their outstanding performance in many
fields. In this chapter, we discuss the potential use-cases of AI in controlling the
COVID-19 pandemic. We introduce general concepts of AI in the diagnosis and
screening of COVID-19. We also highlight common problems and pitfalls in devel-
opingAImethodswith experiments on actual data.We ascertain the certainty of inter-
pretable AI models for a trustful diagnosis. We study the state-of-the-art techniques
in the diagnosis of COVID-19. We examine some of the experiences in controlling
the COVID-19 pandemic and discuss why AI was not used to its full potential in
the COVID-19 pandemic. Finally, we propose some future works to prevent the
discussed problems in future pandemics.
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Acronyms

AI artificial intelligence
ML machine learning
NLP natural language processing
KNN K-nearest neighbors
SVM support vector machine
AUC area under the curve
CT computed tomography
MRI magnetic resonance imaging
CXR chest X-ray
API application programming interface
PCR polymerase chain reaction
SOTA state of the art
PET positron emission tomography
NIH National Institutes of Health
WHO World Health Organization
HMS health monitoring system
PHO Ontario Health Services
RSNA Radiological Society of North America
GPS global positioning system

1 Introduction

Pandemics are epidemics that spread rapidly over the globe. If not properly
controlled, the hospitals, physicians, and healthcare staff become overloaded, which
results in substantial morbidity and mortality and causes significant economic and
social harm. During the pandemics such as COVID-19, patients flock to hospitals at
any time of the day, andmany others check in with the mildest symptoms. Healthcare
workers need to be present at all times, and severe fatigue can affect their perfor-
mance. As a gold standard, the Polymerase Chain Reaction (PCR) test is used to
confirm the presence of COVID-19. However, PCR is time-consuming and has high
false-negative rates. Therefore, in some medical centers, they have been replaced by
Computerized Tomography (CT)-scan imaging (A non-invasive imaging technique
that gives detailed three-dimensional images from the body). CT-scan diagnosis by
a specialized radiologist is faster, contains more details about pneumonia, and can
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provide a quantitative measurement of the severity of infection [1]. However, experts
are not always available, and pandemics can exacerbate these conditions.

In these situations, accurate and rapid diagnosis of the disease effectively prevents
the outbreak of a pandemic. However, factors such as the increasing workload of
physicians and lack of expert radiologists in a pandemic make screening and identi-
fying suspicious patients difficult and slow [2]. However, due to the high transmission
rate of the COVID-19 pandemic, rapid diagnosis of the disease is necessary. Artificial
intelligence (AI) systems can pressure off the medical centers by assisting physicians
in speeding up the diagnosis and treatment procedures. They can also help the physi-
cians to make early predictions and efficiently manage the available resources to
control the spread of disease.

Artificial Intelligence is the ability of a computer to perform tasks commonly
associated with intelligent beings [3]. The core of an AI system is its knowledge
processing unit. The system uses this unit to acquire knowledge and perform specific
tasks [4]. In Machine learning (ML), an important domain in AI, rules are learned
from data and used to make accurate decisions. Computers have advantages over
humans that make them more suitable to perform specific tasks. They can perform
calculations much faster, have more memory to remember what is essential, and
are perpetually available. They never get tired, never change modes, and no internal
state affects their decision-making process. For example, the COVID-19 diagnosis
of CT-scan takes up to 15 minutes for a radiologist, while it takes only a few seconds
for an AI-based method [5]. Another challenge in the COVID-19 pandemic is distin-
guishing between COVID-19 pneumonia and other bacterial and non-COVID-19
viral pneumonia types. AI can help inexperienced physicians improve their ability
to correctly diagnose different types of infections [6]. In addition, compared with an
experienced thoracic radiologist, AI can achieve higher sensitivity than radiologists
at the early stages of the disease when the lack of human-visible abnormalities in
CT-scan exist [7].

Resource planning is utilized in hospitals to determine whether the hospital can
care for a patient’s needs. However, planning becomes a challenge during a pandemic
with overburdened hospitals and limited resources. The goal is to save as many lives
as possible. In this case, they have no choice but to admit patients based on the
severity of their condition and the possibility of their survival. Some patients do not
need to be treated in the hospital. However, for others, hospitalization is essential.
Therefore, determining the condition of each patient and predicting the required
facilities becomes vital. AI can help with resource planning by learning complex
patterns from symptoms, historical and clinical data. Currently, many AI models are
being used to predict overall mortality for the next few months or even a year [8].
These methods use various information such as blood biomarkers, age, gender, and
disease background of the patient to achieve accurate predictions [9].

During a pandemic, patients with varying degrees of severity are admitted to
hospitals. However, not all of them need to be hospitalized. Moreover, hospitals can
be a source of further infection, especially during a pandemic. For example, a study
reported that 41% of 138 hospitalized patients with COVID-19 were infected after
being admitted to a hospital [10]. The Health Monitoring System (HMS) allows
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patients to be monitored remotely. HMS is an advanced technology alternative to
traditional patient and health management. It consists of a wearable wireless device,
such as a wristband with a sensor, equipped with software for the specialist to access
important medical information [11]. AI can help to monitor the patients on two
levels. First, it can assess the condition more frequently than a physician to warn for
irregularities. Second, it can also predict the patient’s health condition to adopt the
required precautions in the coming days.

Infectious diseases such as COVID-19 can spread from person to person by phys-
ical contact, droplets, saliva, or airborne [12]. Because of the rapid spread of the
COVID-19 virus, it has a high rate of infection [13]. To prevent the outbreak of the
disease, one approach is to implement a patient tracking system that immediately
alerts individuals who have had recent contact with known cases of the disease during
their viral period and prompt them to become isolated [14]. There are several ways to
track down individuals who have had contact or interaction with patients affected by
the COVID-19 virus. For example, by collecting data from Bluetooth-based tracking
applications, GPS and social graphs, video surveillance, and CCTV cameras. Further
information can be gathered from card transaction data, internet search and social
media monitoring, text data, and network-based Application Programming Inter-
faces (APIs), which are intermediary programs that connect two other apps together.
Automated systems powered by AI can be designed to analyze different data types
and model a tracking system to control the pandemic [14–16]. However, challenges
such as technical limitations, socioeconomic disparities, data privacy and security
risks, and ethical issues still lie ahead [17, 18].

The following section describes the general concepts and guidelines for using an
appropriate AI system to manage the COVID-19 pandemic, focusing on diagnostic
and screening tasks. Then, we explain the potential problems and pitfalls of AI-based
methods using experiments with actual data. In section three, we elaborate on the use
of AI to facilitate various operations in a pandemic. In section four, we describe the
State-Of-The-Art (SOTA) AI systems used to diagnose COVID-19. The last section
discusses the obstacles to exploiting AI’s full potential in the current COVID-19
pandemic and proposes future works to make AI more effective in a pandemic.

2 A Guideline to Develop AI Models for Diagnosis
and Screening

Continuous screening and rapid diagnosis are two of the most frequent tasks in
controlling a pandemic. The function of the standard COVID-19 screening test is
to identify people with a higher risk of spreading the disease. Since asymptomatic
transmission plays a significant role in a pandemic, using screening tests to classify
patients becomes very important to reduce the outbreak of the disease. The purpose of
these tests is not to confidently detect the virus but to identify the suspicious patients
and isolate them to minimize the rate of infection. For example, chest X-ray (CXR)
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images are used for screening COVID-19 as they are widely available, inexpensive,
fast, and contain helpful information for detecting COVID-19 infections [19–23].
In addition, some studies have shown that magnetic resonance imaging (MRI), PET
imaging, and ultrasound can be used for diagnosis and screening. However, they are
not usually used in clinical practice [24–30].

On the other side, the goal of diagnostic tests is to detect the presence or absence of the virus
in suspected patients of COVID-19. These tests may also identify the cause, location, and
severity of the disease. If the screening result indicates the presence of the disease, diagnostic
tests are required to confirm the infection. For instance, the PCR or CT-scan tests can confirm
the presence of COVID-19 [1, 31–33].

There is awide range of data sources for the detection of a virus.Usually, the easier,
faster, and more available the data collection, the less accurate it becomes. Generally
speaking, during the COVID-19 pandemic, the data range starts with mobile applica-
tionswidely available and fast. It continues toPCR testing andCT-scan images,which
are more accurate and less available. As mentioned above, screening tests require
simple and rapid data collection, while diagnostic tests require more accurate data.

As described above, screening is conducted over a larger population. However,
an expert is not available to assess the test in many cases. Although diagnosis is
performed over a selected population, their number is still high in a pandemic,
resulting in the extreme tiredness of the experts. In addition, there is a shortage
of experts in some regions. AI can help in both tasks and assist the medical staff in
making more accurate and rapid diagnoses. We provide a guideline for how an AI
system can be trained for such tasks. We also describe the general concepts and the
common problems and pitfalls in screening and diagnosis with several real-world
examples [34–37].

2.1 Training, Testing, and Further Validation of AI Models

In the supervised learning approach for an ML model, everything starts from data.
We do not embed the knowledge of how to decide or how to calculate in the model.
Instead, we let the model learn its optimal configuration from the data. ML problems
fall into three general categories of classification, regression, and clustering. There
are a limited number of groups in classification problems, and the goal is to identify
the group for each sample in the dataset. For example, in classification, the goal is to
determine whether a person has a specific disease. In regression, each sample is asso-
ciated with a continuous number, and the goal is to calculate that number. Calculating
the percentage of infected lung regions in pulmonary diseases with pneumonia is an
example of this category. In clustering, the samples do not have any assigned groups
or numbers, and the goal is to group samples with similar patterns in the collected
data. For example, clustering patientswith different symptoms in an unknowndisease
can lead experts to the disease’s possible stroke paths.

The procedure of deploying anAImodel for a classification problem is depicted in
Fig. 1. In a classification problem, the dataset consists of multiple samples from each
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Fig. 1 The procedure of deploying an AI model for a classification problem

group or class. At first, the dataset is divided into three sets; training, validation, and
test. Next, the training data is used to obtain the parameters of the model. A model
may perform well on the training data but only learns the appearance of the samples
as they are repeated in the training process. This phenomenon is called overfitting. To
avoid over-fitting, multiple augmentations are applied to the input sample. For image
data, rotation, geometric transformations, and changing brightness are examples of
common augmentations. Finally, the trained model is evaluated on the validation
data to make sure it has learned the general properties of the data. In addition to
evaluation metrics, interpretations of the network may also be used as an extra check
to validate the reasons behind the model’s decisions.

Different architectures and training procedures lead to various performances of
the model on training and validation sets. The one with the best performance on vali-
dation data is selected as the final model among the trained models. In evaluating the
performance on validation data, redesigning, and retraining the model, the validation
set is observed multiple times. Therefore, the model’s performance on the validation
set cannot be a fair metric for the model’s generalizability. Therefore, a test set is
held out to evaluate the model’s performance on completely unseen data.

In some cases, models are designed to fit specific data appearances. As a result,
they may fail on other samples, e.g., samples of another imaging device, harming the
model’s generalizability. Therefore, collecting the test data from sources other than
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the training and validation data can improve the model’s generalizability. At the final
step, the model is deployed and tested by an expert. The feedbacks are collected and
returned to the model to make it optimal.

2.2 Data Gathering and Soundness

As mentioned above, an ML algorithm learns the model from data. Therefore, it is
essential to have a diverse dataset to enforce the model learn different observations.
Otherwise, it is limited to what it has seen and may perform poorly for other datasets.
For example, it is crucial to consider patients with different stages of the disease for
diagnosis, including healthy people in the dataset. If the training dataset only consists
of the severe stage of the disease, it may fail to detect the early stages of the disease.

Another important point is to ensure the labels are correctly assigned to the dataset
samples because the model learns from those labeled samples. If an expert labels
the samples, the model will become biased towards the expert’s opinion. Having
confirmation from experts, using laboratory tests, and post-data-gathering samples’
observations ensure correctness and make the model more robust. Another problem
induced by the inexactness of the labels is the trainability of the model. When there
are many mistakes in labeling, the model fails to train well. Therefore, we designed
an experiment to investigate the effect of inappropriate data labeling on AI models.
We selected two groups of data, one from NIH’s chest-X-ray dataset [38] and the
other from RSNA’s chest-X-ray dataset [39]. The NIH’s dataset contains 112120
images that are labeled using natural language analysis on the radiological reports.
Therefore, they may be inexact. On the other hand, RSNA’s dataset is a subset of
NIH’s dataset that at least two experts annotate to make it more trusted. Therefore,
we gathered “No Finding” and “Pneumonia” samples of NIH’s dataset for the first
group, including 45449 negative and 696 positive samples. We collected “Healthy”
and “Pneumonia” samples of RSNA’s dataset for the second group, including 8851
negative and 9555 positive samples.

To eliminate the effect of unequal group sizes, some of the negative samples of
NIH and some of the positive samples ofRSNAwere randomly discarded.As a result,
8851 negative samples and 696 positive samples remained for both groups. Next,
80% of the datasets Were selected as the training set and the rest as the validation
set. Finally, two well-known models, Inception V3 [40] and ResNet18 [41], were
trainedwith theAdamoptimizer [42].We utilized transfer learning and initialized the
weights using the trained models available in the Torchvision package [43]. For both
models, we first tuned the last fully connected layer and then one block before that. To
avoid the effect of imbalanced classes, batches of size 32 containing 16 positives and
16 negative samples were used for training. Data augmentation techniques such as
random brightness, cropping and resizing, rotating, and shearing was used to expand
the dataset for generalization.

The epoch acquiring the best average sensitivity and specificity on the validation
data was selected for all the models. The fine-tuning was done in the second stage



360 R. G. Modegh et al.

Table 1 The effects of inappropriate data labeling. Sens, sensitivity; spec, specificity

Train set NIH (inappropriate labeling) RSNA (appropriate labeling)

Stage Validation Test Validation Test

Metric Sens Spec Avg Sens Spec Avg Sens Spec Avg Sens Spec Avg

Inception v3 56.67 86.45 71.56 59.12 77.79 68.46 88.33 95.23 91.78 78.55 80.41 79.48

ResNet 18 66.67 77.92 72.29 49.45 64.62 57.04 87.22 96.24 91.73 54.38 94.82 74.6

and continued until the model achieved more than 98% sensitivity and specificity
for the training data. The epoch with the best performance on validation data was
selected as the final model. We tested the models with the dataset of COVID-19
radiography database [44], Chest X-Ray Pneumonia [45], and Kaggle VinBigData
[46] to evaluate their generalizability. The results for validation and test datasets are
presented in Table 1.

As results show, both models trained on the NIH dataset fail to achieve high-
performance metrics as the models trained on RSNA with the validation set. This
proves that in datasets of equal size, certainty on labels helps exceedingly in training
themodel. Apart from the low sensitivity achieved on the test data due to the shortage
of positive samples in the selected groups, the models trained with RSNA samples
have achieved higher performance metrics for the test data.

2.3 Data Diversity, the Problem of Batch Effect
and Generalization

In the COVID-19 pandemic, many published papers have used small datasets and
reported high evaluation results. However, in most cases, the samples related to
different classes were collected from other sources. Therefore, these models are
susceptible to bias toward the appearance of samples for each dataset instead of
learning to solve a general problem. As a result, the models lack generalization and
may fail when applied to unseen data. This problem is not specific to small datasets,
and large datasets may also have the same issue. For example, suppose the test set
was gathered from the same training and validation datasets. In that case, the problem
would not be identified in the final evaluation stage, and a problematic model will
be deployed.

We designed an experiment to show the destructive effect of bias and batch effect
in an intense investigation. We selected two groups of data from Kaggle’s chest
Xray Pneumonia and Kaggle’s RSNA challenges. Both challenges were intended
for detecting pneumonia from chest X-ray images. We selected pneumonia samples
from the RSNA dataset and healthy samples from the chest-X-ray Pneumonia dataset
for the first group, including 9555 positive and 1583 negative samples. We selected
the same amount of positive and negative samples from both datasets for the second
group. We selected 80% of the datasets as the training set and 10% as the validation
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Table 2 The problem of batch effect and generalization caused by a biased dataset

Dataset Group 1—biased dataset Group 2—unbiased dataset

Stages Validation Test Validation Test

Metrics Sens Spec Avg Sens Spec Avg Sens Spec Avg Sens Spec Avg

Inception v3 99.19 100 99.59 24.62 5.08 14.85 93.14 94.81 93.98 97.95 89.28 93.61

ResNet 18 99.65 100 99.82 16.15 2.60 9.37 94.88 94.07 94.48 98.21 92.33 95.27

set. 10% of each primary dataset was put aside as the shared test dataset. We elim-
inated the positive samples related to the RSNA dataset and the negative samples
of the chest X-ray Pneumonia from the test set to bold the differences. The training
and model selection was performed similarly to the scheme mentioned in Sect. 2.2.
The evaluation results of the models are presented in Table 2. As the table shows,
the models trained on the first group have reached high sensitivities and specificities
on the validation set, which has the same bias as the training data. One may think
the models perform even better than the second group considering the performance
metrics of the validation sets. However, as the evaluation of test data with inverse
bias shows, the models of the first group have become entirely biased toward the
appearances of the samples for each dataset. In contrast, the evaluation metrics of
the second group on the test set are similar to the validation set results.

2.4 Interpreting the Black-Box Deep AI Models

Deep neural networks have shown excellent performances, achieving high accuracies
inmany domains, even better than human experts. However, most of thesemodels are
black-boxes, meaning the internal decision-making mechanism of the network at the
intermediate layers is not known. Therefore, their high accuracy is not sufficient to
build trust toward them. Consequently, they may have performed well due to wrong
reasons that are irrelevant to the domain-specific concerns [47]. In recent years,
researchers have focused on interpreting the black-box models. Interpreting means
explaining the reasons behind the decision of a model in a human-understandable
way [48]. These interpretations help identify the bias in the model’s decisions, make
sure the model has been fair, monitor the model performance based on the reasons
behind the decisions, and learn unknown domains from the model [47].

To show the trace of bias in the models, we interpreted the decisions of the above
ResNet18model using Guided Grad-CAM [49]. The interpretations will showwhich
parts of the images were considered by each model to make a decision. Figure 2
presents the interpretation results of themodels on seven random pneumonia samples
from the test dataset. As the figure shows, the model trained on the biased dataset
pays more attention to the outside regions of the lung, while the other model focuses
on lung infections. It shows that the model trained on the biased dataset has learned
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Fig. 2 Comparing interpretation results on ResNet18 using Guided Grad-CAM, trained on a the
biased, and b the unbiased datasets

the apparent differences between the two datasets as the distinguishing feature of the
patient and healthy images, instead of learning the patterns of pneumonia.

3 State-Of-The-Art AI Technologies for COVID-19
Diagnosis

Physicians in many countries have adopted imaging techniques and test kits to obtain
more accurate diagnosis results of COVID-19 and determine the severity of the
disease for each patient. CT-scan imaging is more accurate and sensitive among other
imaging techniques, andmany researchers haveworked on the automatic diagnosis of
COVID-19 using CT-scan images. Some have also focused on estimating the severity
metrics for the patients. In addition to detecting infected from healthy individuals,
somehave also aimed to solve themoredifficult problemof distinguishingCOVID-19
from other lung diseases such as community-acquired pneumonia. Unfortunately, a
fair comparison between published results is impossible due to the lack of benchmark
datasets. Therefore, most studies applied similar steps with a limited number of
choices on different datasets. Consequently, we discuss the existing challenges and
the general methods used by other studies to overcome these challenges in the case of
COVID-19 diagnosis. The details and performance measures for the selected studies
are given in Table 3.

Diagnosis with CT-scan images is not a straightforward problem. It includesmany
challenges, and researchers have used different methods to overcome these chal-
lenges. For example, CT-Scan samples may have a different number of images, from
30 to 800, depending on the thickness of the cuts. This poses a significant challenge
to the learning process. Some researchers have focused on high-resolution samples
to keep the sensitivity and accuracy high [50]. In contrast, the others have trained
their model on large cohorts with different thicknesses to have a more generalized
model [6, 51, 52].

The COVID-19 CT-scans datasets usually have labeled samples. This is because
carefully annotating images associated with infection and images with disease
features is time-consuming, while radiologists focus on their primary tasks during the
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Table 3 Details and performance metrics of the SOTA studies in diagnosing COVID-19

References Classification
groups

Training data Test data Evaluation
metrics on test
data

[50] COVID-19 vs
CAP vs
Non-pneumonia

1165 COVID-19
1560 CAP
1193
Non-pneumonia
[6 centers]

127 COVID-19
175 CAP
132
Non-pneumonia

Sensitivities for
each group:
COVID-19: 90%
CAP: 87%
Non-pneumonia:
94%
AUC for
COVID-19: 0.96

[6] COVID-19 vs.
nonviral CAP vs
Influenza A/B vs
Non-pneumonia

1294 COVID-19
666 nonviral CAP
70 Influenza A/B
1233
Non-pneumonia
[3 centers + 2
public datasets]

1235 COVID-19
668 nonviral CAP
62 Influenza A/B
1234
Non-pneumonia
[3 centers + 2
public datasets]
2113 COVID-19
1528 CAP
1333
Non-pneumonia
[2 public holdout
datasets]

Sensitivities for
each group:
COVID-19:
87.04%
CAP: 96.88%
Influenza A/B:
83.08%
Non-pneumonia:
93.44% 2 Other
public datasets:
COVID-19:
84.66%
CAP: 88.24%
Non-pneumonia:
81.91%

[53] COVID-19 vs
others

703 COVID-19
684
non-COVID-19
[more than 7
centers]

326 COVID-19
1011
non-COVID-19
[more than 7
centers]

Sensitivity: 84.0%
Specificity: 93.0%
AUC: 94.9%

[54] COVID-19 vs
Influenza A vs
Healthy

189 COVID-19
194 Influenza A
145 Healthy
(3 centers)

30 COVID-19
30 Influenza A
30 Healthy

Sensitivities of
each group:
COVID-19:
86.67%
Influenza: 83.33%
Healthy: 90.0%

[51, 57] COVID-19 vs
CAP vs
Normal

[Inexact numbers]
3000 COVID-19
750 CAP
500 Normal
[from 15 countries]

[Inexact numbers]
250 COVID-19
200 CAP
100 Normal
[from 15 countries]

Sensitivities for
each group:
[slice-based
evaluation]
COVID-19:
96.2%
CAP: 98.2%
Normal: 99.0%

(continued)
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Table 3 (continued)

References Classification
groups

Training data Test data Evaluation
metrics on test
data

[52] COVID-19 and
non-COVID
patients vs.
Healthy
COVID-19 vs
non-COVID
patients

1995 COVID-19
513
non-COVID-19
patients
517 Healthy
[from 6 centers]

222 COVID-19
57 non-COVID-19
patients
519 Healthy
[from 6 centers]
1435 COVID-19
[from 6 other
hospitals]

Sensitivities:
Diseased: 97.25%
Healthy: 87.50%
COVID vs Other
diseases:
COVID-19:
98.15%
Other: 81.03%
[for unseen
centers]
Diseased: 95.80%
COVID-19 vs
others: 95.73%

pandemic. Having many images per sample and being trained only on the samples’
labels is like looking for a needle in a haystack for a model that does not know about
the disease. When we train a model to distinguish between groups of samples, the
model tries to learn the groups’ differences. Searching in a large sample makes the
training process harder and slower. Moreover, a sample of almost 200 images can fill
the memory of a common GPUwith 12 GB of RAM. Therefore the training becomes
even more difficult.

Integrating human knowledge about the disease to the method, architecture of the
model, and training process can significantly reduce the training challenges. It can
also help the model learn relevant differences, which helps distinguish the groups
of samples. For example, since we know COVID-19 affects the lungs, it would be
logical to search for the marks of the disease in the lung areas of CT-scan images.
Many researchers have adopted this knowledge in a pre-processing step. Some have
used image processing techniques such as automatic thresholding to separate the
lung areas from images. Some have trained a network over their own annotated
private dataset to detect the lungs [6, 50–54]. Therefore, the rest of the images are
eliminated except for the lungs, and the model skips the irrelevant areas during the
training process.

Researchers have tried to ease the challenge of training with different methods.
Some have adopted a fully supervised approach by providing slice-based labels and
training their model to classify the slices rather than the whole image [51]. While
being very helpful in training the model, this solution suffers from being biased
to the error of the annotator. Even if the error were reduced by aggregating the
annotations from multiple radiologists, there would still be a problem with the lack
of human-detectable signs. This means the model will at most be able to distinguish
what radiologists can distinguish. In practice, we have many unlabeled samples and
only a limited number of labeled samples. Therefore, Some researchers have adopted
semi-fully supervised methods for the training process. This is possible by adopting
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a two termed loss function; one for the sample-level prediction and the other for the
slice-level prediction. The first term is calculated over all the samples of the training
batch, but the second term only focuses on samples with specific slice labels. Here
the sample-level loss considers the slices with a lack of human observable marks.
Thus, the slices with a negative label belonging to a positive sample should not be
included as healthy slices in the training process for the annotated samples. Finally,
many researchers have trained their models merely based on the sample-level labels
and achieved notable results [6, 50, 52, 53].

COVID-19 is detectedmainly by ground-glass opacity infections in the peripheral
of the lung. Some researchers [52, 55] have developed their method based on this
knowledge. First, they utilize the existing models and tools for pulmonary lesion
detection that specify the regions of the lesions [56]. In the next step, they use deep
learning models to classify the type of lesions and aggregate the results of the lesions
to decide for the whole sample. Unfortunately, these methods may also miss the
samples with the lack of human-detectable marks.

Diagnosing COVID-19 from CT-scan images is inherently a 3D problem. This is
because the images of the CT-scan are cuts through another dimension, named depth.
Some researchers have treated CT-scan images as 3D data, extended the 2D models
to work with 3D data, and used the sample-level labels to train the model [6, 53, 54].
Thesemodels utilize 3D convolutional kernels and demandmuchmoreGPUmemory
than the 2D models during the training, and have more extensive computations in
the evaluation phase. In addition, they are more sensitive to the thicknesses of the
slices as convolutional networks are not invariant to different scales. Others have
worked merely on 2D models and classified slices rather than the whole samples
[51]. Other researchers have just aggregated the features extracted from the slices
before making the final decision using a pooling layer [50] or an LSTM network
[6]. However, they miss the information that the peripheral slices can add to each
slice. Other researchers have adopted a hybrid 2D-3D model to have advantages of
both schemes. They have used 2D models to extract information from individual
slices and added the peripheral slices as extra channels to the input slices. Another
problemwith the 2D and the hybridmethods is their requirement for slice-level labels
in the training phase. Some have overcome this problem by aggregating the features
extracted from slices before the decision-making section of the network. To solve
the problem with GPU’s memory, they have subsampled uniformly from different
parts of the sequence of images for each CT-scan. It is more probable to capture the
disease-relatedmarks in at least one of the chosen slices in subsampling. Some others
have used a weakly supervised approach to dynamically guess the slices related to
the disease in each round of training [52]. Moreover, for the 2D and hybrid models,
an additional post-processing step must be considered to reduce the false positives.
Many have used Markov models to extract more reasonable probabilities for slices
based on the probabilities of the peripheral slices.

To train themodels for detecting infections and diagnosingCOVID-19, pixel-level
labels are required. This takes even more effort from radiologists for annotations.
Researchers have used fully supervised, semi-supervised, and weakly supervised
schemes for training the model based on slices of CT-scan images. There have also
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been other weakly supervised schemes that use the interpretations of the model
to perform sample-level or slice-level predictions for finding the input areas that
affect the output. They use these areas as ground truth and train the infection detec-
tion model by utilizing them [below]. In detecting infection, fully supervised and
semi-supervised methods can lead to more accurate results. In contrast, the weakly
supervised methods would only detect approximate zones due to many pixels and
the inexact labels used in training.

4 AI and Pandemic

This section addresses other areas where AI can help speed up processes inmanaging
the pandemic.

4.1 AI for Status Prediction

Two different approaches have been taken to study COVID-19 mortality; predicting
large-scale mortality and predicting the death of each individual according to its
condition. The first approach is commonly used to predict mortality in a city or
country. It uses the distribution of mortality rates in recent days and weeks to predict
the near future. To achieve higher accuracy, parameters such as hospital facili-
ties, human mobility, non-pharmaceutical interventions, demographics, historical
air quality, and econometrics in the area can also be considered [58].

The second approach predicts the probability of death for each individual. It uses
differentmodels likeNeural Networks, K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Random Forest, and Decision Tree to obtain the highest accuracy.
For example, in our study, the neural network model achieved 89.98% accuracy in
predicting the mortality of COVID-19 patients.

In addition, in [59] they trained an AI model on a large dataset of hospitals in
Ontario, with nearly 70 thousand patients. Data were collected from the Ontario
Health Services (PHO) and Canada Health Services (PHAC) datasets. The model
achieved an Area Under the Curve (AUC) of 90% for PHO and 93.5% for PHAC
datasets.

4.2 Utilization of AI in Vaccine Discovery

To combat the COVID-19 pandemic, vaccination is the most effective strategy. Most
SARS–CoV-2 vaccines in advanced clinical trials are based on modern vaccine
approaches that rely on introducing the specific parts of the virus or their genes
into the body to generate a targeted immune response. Thus, current methods
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have shifted away from live-attenuated and inactivated whole-pathogen vaccines
to purified antigens and epitopes.

Vaccine development is complex and often requires extensive, time-consuming,
and resource-intensive studies to determine efficacy and potential side effects. AI
can help speed up the lengthy and costly process of vaccine development.

The vaccine design process has been revolutionized by reverse vaccinology,which
focuses on finding potential vaccine candidates by analyzing pathogens’ protein-
coding genome (proteome). The SARS–CoV-2 consists of four structural proteins,
E (envelope), M (membrane), N (nucleocapsid), and S (spike), as well as several
non-structural proteins. The AI approaches can facilitate antigen selection, epitope
prediction, immune response modeling, and affinity with human leukocyte antigen
alleles in the vicinity ofCOVID-19 to select the best possible ones.Numerous epitope
prediction studies focused on this protein since the S protein is involved in viral
entry and provokes an immune response. BNT162b2, mRNA-1273, and AZD1222
are three recently approved vaccines against SARS–CoV-2, all of which use the S
protein. Thus, AI approaches can identify specific epitopes from a significant number
of potential SARSSARS–CoV-2 peptides capable of inducing a robust and protective
immune response.

Another critical problem that could be solved by anAI-basedmethod in predicting
the immunogenicity of the developed vaccine. In search for SARS–CoV-2 proteins
associated with optimal immune response, computational biology can identify gene
coding proteins associated with COVID-19 severity. In addition, a cellular immune
response network can be constructed using host-virus and virus-host interaction data.

One of the significant challenges in vaccine development lies in the mutations of
SARS–CoV-2 strains. Therefore, there is a need to test whether a selected epitope
is conserved across mutations and multiple populations for vaccine development.
Despite the development of several machine learning-based classifiers for aller-
genicity and toxicology, there is currently no method for predicting the toxicity
of all vaccine components in combination, which computational network analysis
could achieve [60]. Furthermore, breeding SARS–CoV-2 variants resistant to the
approved vaccines is not impossible. Therefore, more robust and precise AI-in-silico
approaches should be developed to a better vaccine against the new variants of the
virus.

4.3 AI in Controlling the Pandemic

COVID-19, as a global health crisis, forced the health care providers to seek new
technologies to monitor and control the spread of the pandemic. The extraordinary
amount of data derived from public health surveillance, real-time epidemic outbreak
monitoring, trend forecasting, regular situation briefings, and medical records must
be managed to control and anticipate new diseases.

AI-based methods can track the spread of the virus in real-time, plan public health
interventions and monitor their effectiveness. Indeed, the flexibility, rapid analysis
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Table 4 Possible applications of artificial intelligence and big data for the management of the
COVID-19 outbreak

Time scale Possible application Example

Short-term
(weeks)

Rapid identification of an ongoing
outbreak

AI can facilitate real-time
epidemiological data collection,
risk-assessment, decision-making
processes, and design/implementation
of public health interventions

Diagnosis and prognosis of
COVID-19 cases

Recognition of specific diagnostic and
prognostic features

Medium-term
(months)

Identification of a potential
therapeutic option

Identify already existing
drugs/discovering new molecules

Long-term
(decades)

Enhancing cities and
favoring the development of healthy,
intelligent, resilient cities

Design newly standardized protocols
for sharing data and information during
emergencies

and identification of patterns, ability to adapt based on a new understanding of the
disease process, self-improvement as new data become available, and lack of human
bias in the analysis make AI a promising new tool for pandemic management. Table
4 indicates some possible applications of AI in the control and management of the
COVID-19 pandemic.

Information obtained from patient tracking plays a vital role for general public
health governance in designing, planning, and organizing to cope with the pandemic
[15]. Researchers in [18] have listed 36 countries that have successfully implemented
mobile app patient tracking systems. There are several ways to achieve this goal as
follows.

4.3.1 Patient Tracking Using Mobile Apps

A successful example is the QR-code-based screening app used in Hubei, China, to
monitor people’s movement. A similar approach has been used in Taiwan to track
high-risk individuals based on their travel history to affected areas [61, 62]. Tracking
information from Internet-based searches can also help to predict future outbreaks
[61]. For example, using WeChat text data in the context of COVID-19 was another
successful approach to predicting disease outbreaks in China [63]. In addition, by
searching for “fever” and “cough” in Google Trends, the researchers discovered
that these words had a significant association with the COVID-19 outbreak and
subsequent hospitalizations or deaths [22].
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4.3.2 Patient Tracking Using Video Surveillance

Using video surveillance to detect proximity and social distance has advantages over
other approaches such as Bluetooth or GPS technologies. However, the methods
mentioned above lead to a high rate of false positives due to their low spatial reso-
lution. Other studies show deep-learning approaches for analyzing CCTV cameras
in the workplace to monitor workers’ activities and detect violations [64, 65]. In
another study, a facial touch detection system (that detects when someone uncon-
sciously touches their face) was also developed to ensure security and collect more
data that can be used in related applications [66].

4.3.3 Patient Tracking Using Natural Language Processing (NLP)

An important application of machine learning in patient tracking is determining
public opinion and society’s perception of social distancing [67]. For example, the
results of a text classification study showed that public opinion plays a vital role in
guiding relevant decisions (sentiment analysis to ensure that they have been well
taught) [14].

There are also challenges with current mobile apps [14]. For example, technical
limitations include a lack of highly skilled developers and companies developing and
deploying the tracking system. Different countries like the US, UK, and Australia
have come to other solutions to overcome this problem [18].

Unfortunately, there is not enough quantitative information about the contact
tracing apps used in the above countries to compare their performance and other
features comprehensively.

However, in [68], the authors mentioned a COVID-19 Tracing App Scale
(COVIDTAS) framework to compare these apps. COVIDTAS was adopted from
a framework in [69] and developed based on features such as usability, technology,
privacy, tracking effectiveness, and factors reflecting user experience and sentiment.

4.4 Wearable Sensors Application in COVID-19 Pandemic

Other trending approaches that are progressively developing areCOVID-19wearable
devices. Despite the classic and conventional techniques used in clinical settings
like PCR tests or imaging modalities, these approaches have continuous access to
health records of potential COVID-19 subjects all day long. At present, devices like
smartwatches or wristbands are recording health data used for screening purposes.
Moreover, wearable devices like smart lenses, smart on-teeth sensors, smart masks,
and smart biosensors are gaining more attention. However, possible precautions of
these technologies, such as data privacy, must be considered [70, 71].

More recently, observational studies on wearable biosensors for remote moni-
toring of COVID-19 subjects byAI algorithms have revealed promising performance
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in detecting COVID-19 patients. Un and his colleagues designed their observational
study to show the potentials of wearable biosensors and AI in clinical monitoring.
They illustrated that wearable biosensors with AI reached a high correlation with
manual procedures in predicting clinical worsening events, as well as prolonged
hospitalization [72].

Additionally, there are other related works in literature, including newly-
developed wearable devices and state-of-the-art AI algorithms that can predict the
potential outcomes of disease. As another example, a wireless skin-interfaced device
attaching to the suprasternal notch designed by FitBit can sensemultiple features like
body movement, heart rate, respiratory-related signals, and other signs and symp-
toms like body temperature and cough. Therefore, by an ongoing fusion of these
features by utilizing AI techniques, one can classify or predict diseases (e.g., being
COVID-19 or not) more accurately [73].

5 Future Directions

5.1 The COVID-19 Pandemic Experience

Since the COVID-19 outbreak in late 2019, the disease has become a potential
threat to global health. Facing a pandemic is cross-sectoral. These sectors, including
economy, social, cultural, environmental, and political, are collectively called social
determinants of health.

In a 2000 report, theWorld Health Organization (WHO) outlined the primary role
of health systems in achieving their goals through a set of six fundamental building
blocks, including service delivery, health workforce, health information systems,
medical products, vaccines and technology, health financing, and governance. Infor-
mation and AI technologies that serve these six principles can increase the resilience
of health systems.

The strategy of countries on health systems plays a crucial role in controlling
pandemics. COVID-19 pandemic showed a fundamental weakness in international
organizations and governments to face a pandemic. For example, WHO made basic
mistakes in managing the COVID-19 pandemic. Without sufficient information, it
declared the virus is non-communicable and considered the use of the mask unnec-
essary for a long time. A year and a half after the pandemic, COVAX vaccine distri-
bution policies cannot provide comprehensive vaccination plans. In the COVID-19
pandemic, medical advances in specialized fields did not help significantly. Unfor-
tunately, at the beginning of this crisis, due to incorrect policy-making, the influx
of hospitals and emergency rooms caused the spread of the virus and increased
mortality.

Since it is time-consuming to find effective vaccines and treatments at the begin-
ning of a pandemic, the most important global action is identifying and tracking
patients and implementing smart distancing between citizens. The experience and



COVID-19 Diagnosis with Artificial Intelligence 371

evidence of successful countries in the field of COVID-19 pandemic management in
the world have shown that most of the successful management activities are based
on the correct and timely application of AI solutions. The first step in managing the
information of any epidemic is to identify and record the information of the target
population. Accurate identification and registration of patients in different disease
states are possible through the following:

1. Identifying the exact number of cases and the actual geographical prevalence,
2. Preparation of contact tracking map of infected people and carriers and the

possibility of predicting the future pattern of outbreaks,
3. Ability to control the movement of the population for the best type of

social/physical distancing policy, and
4. Anticipating the needs and resources of care and treatment, focusing on efficient

distribution of resources.

The following steps are suggested for implementing a control and management
system:

1. Implementing a national pandemic web-based system,
2. Identifying the status of each individual; without symptoms, suspicious

symptoms, definitive infected, and convalescence categories,
3. Launching a status inquiry system
4. Requiring citizens to carry pandemic IDs,
5. Electronic screening process through registering geographical position and an

AI algorithm to compute the risk of being infected by being near the patients
and suspected people,

6. Tracking patients through their phones and GPS,
7. Establishing an AI-based face tracking system for patients to prevent them

from entering crowded areas,
8. Developing AI-based screening systems that recognized patients through their

temperature or other characteristics,
9. Developing AI-based chatbots, and
10. Preparing a telemedicine system to checkup patients in remote locations.

We should adopt new data collection and analysis strategies using emerging tech-
nologies. For example, the Internet of Things (IoT) refers to the interconnected
network of physical objects such as sensors, health measuring devices, intelligent
sensors, home appliances, automotive devices, etc. IoT enables objects to sense,
process, and communicate with each other and automatically interact with people
and provide intelligent service to users. The IoT platforms can also be used over cloud
computing platforms to provide systematic and intelligent prevention and control of
COVID-19, which includes five steps: symptom detection, quarantine monitoring,
disease contact detection, and social distancing, disease prognosis, and diseasemuta-
tion tracking. If IoT, cloud, and AI are appropriately utilized, they can provide rapid
and efficient healthcare services, especially in the perspective of COVID-19.
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5.2 Toward a Universal Crowd-Sourcing and Validating
Framework for AI Models

The AI methods have declared they can come in handy during the pandemics,
although they have not shown a significant impact on the case of COVID-19 [74]. It
was expected to have the AImethods emerge before the first COVID-19 peak in diag-
nosis and screening, which means scientists had few months to train sophisticated
models. As mentioned before, having a large dataset with a wide variety is crucial
to have generalizable models, while there was no public dataset in the said period
for the COVID-19 pandemic. This led scientists to search the literature, hoping to
find sufficient data, and another group searched among the care centers looking for
data. However, sufficient positive cases cannot be located in onemedical center in the
emergence of a pandemic.Besides, there is numerous paperwork to satisfy the privacy
of data, which takes even more time. In other words, much time would be spent on
gathering the required data while it can be spent on designing and training a suitable
model. These problems can be solved if there is a universal crowd-sourcing public
dataset. There might be a lack of samples in a small area. However, there is undoubt-
edly enough data all over the world. Many people wish to donate their samples and
contribute to making a universal public dataset to help scientists battling against the
pandemic. This framework should have strict confirmation policies to ensure data
validity and trustability. Other scientists like physicians and experts can also use this
worldwide public dataset to study the disease comprehensively.

Unfortunately, the hotness of a pandemic causes a paper storm. In this situation,
it is difficult and time-consuming to find state-of-the-art methods. The review papers
ease this process by summarizing many studies. Nevertheless, there is a trade-off
between the coverage of ideas and faster release. For example, in screening and diag-
nosing COVID-19 using medical images, there are more than 2000 papers, howbeit
no review paper has covered more than a few methods. Another problem is that not
many experts trust the papers in the arXiv, and it takes a long time to be published
in a peer-reviewed journal or conference. These problems can be solved by having a
universal public framework for sharing the data, papers, and results in a structured
way. For example, in the case of diagnosing COVID-19, it could be a tabled data
containing the date, the number of training samples, the number of test samples,
classification groups, evaluation metrics on the private test set and also on public
datasets, and some extra tags for the general methodologies like fully supervised,
semi-supervised, weakly supervised, or unsupervised. Having tabled data like this
could make searching the literature much easier and faster by utilizing AI-based
filters and sorting tools. There are websites like https://paperswithcode.com/ that
have aimed at a similar goal by introducing datasets and grouping the studies.

The experience of the COVID-19 pandemic showed that the potentials of AI
methods did not widely explore to combat the pandemics. One reason is that people
cannot easily trust the reported results. The results cannot be trusted unless one can
trust the data and run the proposed trained model on the same data. Some organiza-
tions like Kaggle and Dream Challenge aim to solve global problems by challenging

https://paperswithcode.com/
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and validating the trained models with private test datasets. During a pandemic,
the challenges can help to a great extend. Unfortunately, in the case of diagnosing
COVID-19 using CT-scan images, there were no such challenges.

In conclusion, in the case of the COVID-19 pandemic, the absence of the proposed
framework is evident. As a result, there was a delay in the emergence of sophisticated
and trustable AI models, duplicate ideas on different private datasets, and no fair
comparison. This happened while the studies could have been complementary and
helped in the evolution of working solutions. The recent experience proved that
the world had not been prepared for a pandemic. Efficient adoption of emerging
technologies such as IoT, cloud, and AI can significantly help control and manage
pandemics.

6 Conclusion

This chapter briefly introduced AI, its strong potentials, and its capability of making
manual procedures faster andmore accurate during pandemics. Considering its bene-
fits, AI has a high potential to help in a pandemic where hospitals are overloaded,
and health experts cannot respond on time. In recent years, AI models have shown
outstanding performance in many health applications, especially during pandemics.
Therefore, it is essential for the health staff who work with AI systems to know these
models and how they operate. So, they neither overestimate nor underestimate them.
We demonstrated how AI models are trained. We set up an experiment on actual data
to show that models cannot be trained perfectly on any data. Amore precisely labeled
dataset can lead to much better training. We also showed that not every model that
has reported high performance could be confidently trusted. Moreover, we set up
an extreme experiment to show how a model can become biased to dataset-specific
features, resulting in increased performance in the dataset and low performance in
other general datasets. In this regard, we introduced the concept of explainability of
AI models. We showed how explaining decisions could help understand and trust
the model’s findings, which can lead to understanding whether the model’s decision
on a single case is reliable and if the model is performing rationally in general or
has become biased. When a model is biased to unrelated features, it will not behave
as expected. In conclusion, the models need to be evaluated on a diverse set of test
data representing the actual population’s distribution so that the experts can trust the
reported performance metrics.

We described the general applications of AI in pandemics and the corresponding SOTA
studies. We focused more deeply on the role of AI models in diagnosis and screening as
two essential requirements of breaking out a pandemic. Several methods of diagnosis and
screeningwere used during theCOVID-19 pandemic.As stated before, evaluating themodels
on large test sets can indicate their similar performance on the general population and, there-
fore, their applicability on large-scale situations. Consequently, we selected SOTA methods
acquiring the desired quality. Due to the high overlap between the methods, we described
the general methodologies and mentioned differences rather than the extensive description
of those methods.
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Finally, we demonstrated experiences during the COVID-19 pandemic that
avoided exploiting the AI’s full potentials.We stated the lack of valuable data and the
tremendous required effort to gather datasets are the major delaying factors in deliv-
ering effective AI systems for the pandemic’s peak time.We also described the effect
of the so-called paper storm as another delaying factor. The literature review shows
that most studies have reported similar performance on different private datasets.
However, their performance on general datasets is unknown. Therefore, creating an
open dataset could facilitate the delivery of effective AI solutions in a pandemic. We
reported the lack of trust towards the reported performance metrics as a prohibitory
reason for using AI models by experts. To solve the problems mentioned above, we
proposed a unified framework for gathering data, effectively managing the paper
storm, and trustfully evaluating the models that can be more effective in the next
pandemic.
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