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Abstract This work describes preliminary steps in the ongoing implementation of
horizontal visibility graphs (HVG) and related Hamming-Ipsen-Mikhailov (HIM)
network similarity (distance) metric to provide automatic disease tag for normal
and COVID-positive chest radiographs. A detailed exploration in transformation of
a normal or COVID positive chest radiograph to a horizontal visibility graph and
its network/graph-theoretic analysis and visualization in R computational environ-
ment is presented. Further, HIM network similarity metric is illustrated and its usage
in generating automatic disease tag based on test radiograph’s HIM-distance from
healthy and COVID positive representative radiographs is presented. Finally, statisti-
cally success rate of 60% is observed despite of low quality andmismatched (Normal
and COVID positive radiographs are not from same patients) using HVG–HIM and
30% using EMD, which augurs well for the development of this system as a quick
disease tag device. Difference in drastic performance is owing to serious computa-
tional investment in HVG–HIM. A webservice based portal for automated diseases
tagging of chest radiograph is proposed, built and illustrated to take basic clinical
services to the poorest of the poor in the LMICs and in African countries. It can
be used by primary health care centers (PHCs) for a first aid scan and then patient
can be referred to specialists. On a macro scale where patients overwhelm medical
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facilities due to astronomical numbers involved, this kind of system can relieve the
suffering of humanity to some extent. We also reflect on our programmatic and static
computational approach as compared to nonlinear dynamical and often unstable,
energy-hogging deep learning.

Keywords COVID-29 · Earth Mover’s Distance (EMD) · Horizontal visibility
graphs (HVG) · Chest radio-graphs

1 Introduction

As the healthcare systems across the world grapple with the grim realities of changed
landscape of disease burden in the post-covid era, it is becoming imperative to develop
fruganomic healthcare technologies capable of gathering evidence from the commu-
nity to augment the hospital based registries in providing reasonably accurate esti-
mates of the disease burden which will definitely help the health policy administra-
tors to get a unequivocal narrative in a nuanced manner to develop niche specific
disease surveillance and forecasting systems. This will indeed help the Healthcare
administrators to develop and deploy novel, affordable and more importantly acces-
sible instruments such as policies and programmes aimed at evaluating the health
status of the community at large particularly in resource limited healthcare systems
prevalent in low-and lower-middle-income countries (LLMICs) such as the Indian
sub-continent. India endowed with unique geological relief structures and divergent
genetic base provides a unique landscape of disease burden necessitating the need
to develop tools capable of being ported into mobile platforms (iOS/HTC/Android),
sincemobiles have a good penetration in the ruralmilieus of the Indian sub-continent.
This is further compounded by the fact that Non-communicable Diseases (NCDs)
disproportionately affect people living LLMICs [1–3], accounting for three quar-
ters of the mortalities within LLMICs [4]. The relationship among NCDs, poverty,
social and economic development [5], is likely to pose a major challenge to devel-
opment as well as attainment of Sustainable Development Goals (SDGs) by 2030
[6, 7]. The marginalized sections of the society in LLMICs are vulnerable to NCDs
for many reasons, including socio-economic constraints, psychosocial stress, higher
levels of risk behavior, unhealthy living conditions, limited access to high-quality
health care along with reduced opportunity to prevent complications. The prevalence
of unhealthy risk behaviors such as consumption of tobacco and alcohol products
along with sedentary lifestyle will make these population vulnerable to the ravages
of “NCD Epidemic” which has been hitherto underacknowledged and unaddressed
until the advent of COVID pandemic. The fact that India is projected to experience
more deaths from NCDs than any other country over the next decade, primarily
due to the size of the population and worsening risk factor profile will significantly
impact economic growth. The deeply entrenched social and economic disparities,
with lack of affordable and accessible healthcare presents a pre-emptive scenario for
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the emergence of several epidemics/ pandemics such as COVID-19 with devastating
consequences.

In the last two decades, the translation of the fundamental concepts of precision
medicine at a community level to understand the patterns and processes associated
with the landscape of disease burden in the LLMICs having fractious and fraction-
ated health-care ecosystems such as the Indian sub-continent necessitates the need
to develop novel, cutting edge, and disruptive fruganomic community empowering
solutions aimed alleviating the healthcare disparities. In the last two decades India
haswitnessed an epidemiological transition from communicable diseases toNCDs in
the last two decades with cardiovascular diseases and Cancer accounting for a signif-
icant proportion of morbidities and mortalities, the un-finished agenda of communi-
cable diseases has led to emergence of recent pandemics such as COVID-19 [8–10].
Although the World Health Organization (WHO) has recognized the outbreak of
COVID-19 in January 2020 and declared it as a pandemic in March 2020, the statu-
tory impact on the economy of all the countries including India has clearly affected
the health outcomes of the populace belonging to the weaker socio-economic strata.

COVID-19 associated co-morbidity was observed in patients who had underlying
risk factors of hypertension, diabetes, and chronic respiratory problems. Chronic
respiratory problems account for 8% of the mortalities and India has 18% of the
global population with an ever-increasing burden of chronic respiratory diseases
including chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis,
interstitial lung diseases, and pulmonary sarcoidosis [11–13]. Environmental factors
such as air pollution, water pollution, and soil pollution to name a few are known
to significantly contribute to premature mortality and disease burden globally, with
the highest impact in low-income and middle-income countries such as the Indian
subcontinent endowed with resource limited healthcare systems [14, 15].

Recent evidences suggest that use of multi-modal multi sensor fusion technolo-
gies along with big data enabled platform, would significantly contribute towards
the strengthening resource-deprived healthcare systems prevalent in the Indian sub-
continent. The technology (artificial intelligence AI) enabled transition of precision
medicine to precision public health must be integrated into the existing framework of
healthcare systems with a view administer the provision of affordable and accessible
healthcare solutions intrinsic to the niche specific needs of LLMICs. The integration
of the disruptive and cutting-edge healthcare solutions within the framework of the
existing healthcare systems will significantly improve the health outcomes of the
community at large.

A major drawback of the existing interpretation algorithms based on Artificial
Neural Networks (ANN) is its black-box nature, which coupled with increased
computational complexity leads to increased carbon foot-printing and thereby global
warming [16, 17] but solutions are also emerging [18]. Apart from this, the process
of obtaining a result is also difficult to understand as to why and how it arrived
at the answer [19–21]. Further, the nonlinear dynamical behavior of deep neural
networks is prone to chaotic nature and fundamental underlying unpredictability
[22–24]. On the other hand, static and predictable algorithms like, Earth Movers



276 N. Chavan et al.

Distance (EMDs) and Visibility Graph perform image match by computing percep-
tual similarity and provide more meaningful and interpretable solutions to matching
problems. Taken together, ANNs have a long and very well researched history of
inherent instability and its auto-mated decisions can’t be entrusted to make decisions
critical to the survival of a patient afflicted with a severe case of a COVID-19 lung
ailment [25–28].

Chest radiographs are still most common modality for diagnosing lung disease
conditions and the development of tools and applications that can seamlessly eval-
uate lung health of LMICs such as India will significantly augment healthcare
outcomes. Additionally, the lack of well-structured databases for referencing and
analysis hinders the progression of research from aiding and optimizing processes
and clinical decision making with the help of Artificial Intelligence (AI) [29, 30].

India endowed with diverse genetic base and socio-cultural norms, presents a
unique landscape of disease burden necessitating the need for niche specific databases
for enhancing the accuracy ofAI-enabled tools. The socioeconomic impact and bene-
fits of AI based automation of Chest Radiograph analysis for LMICs like India will
significantly improve the clinical outcomes of patients afflicted with lung diseases
and outweigh the challenges leading to its integration to the existing framework of
the healthcare system [31, 23]. The potential application of AI-enabled platforms
would provide a valuable, precision public health tool for better management of lung
disease epidemic by improving the clinical outcomes thereby alleviating a significant
burden on the national health spend.

The fundamental impact of integrating smart clinical devices, IoT, and Industry 4.0
with clinical software and closed-loop resource allocation is the ability to rapidly de-
ploymedical infrastructure in challenging places during natural calamities like flood,
earthquake, drought, Tsunamis etc., while drastically reducing costs and reacting to
demands in patients’ preferences, pharma industry changes, the supply chain, and
technology upgrades.

Broadly, this work makes following contributions in moving towards clinical
dis-ease tagging as a webservice:

– This work describes a natural approach for automated Covid positive chest radio-
graph tagging using computational ideas like perceptual similarity, EarthMover’s
Distance (EMD) and converting the chest radiographs into a network/graph using
horizontal visibility graph procedure and then computing similarity scores byHIM
network distance metric. From all perspectives, it is a first work of its kind whose
time has arrived due to Covid clinical and hence socio-economic emergency.

– This disease tagging is being presented as an app on any mobile platform of
choice where all user/patient/doctor/medical professional must do is to upload
their Covid chest radiograph and systemwill generate disease tag. This is possible
due to advent of affordable smartphone technology and its accessibility across
socio-economic spectrums.

– Same algorithmic ideas with intense computational engine are interfaced as web
service, where disease tagging can be done in large batches since one of the major
issues in Covid waves, large numbers of people getting infected in a very short
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time span. These is a clear need for such a system which can cope up with this
kind of Covid-infection load in an agile fashion.

Rest of this chapter is organized as follows: Sect. 2 discusses related work in the
context of HVG. Section 3 describes clinical and public health motivations behind
deploying this technology. Section 4 presents basic mathematical definition of EMD.
Section 5 describes HVG, HIM and related results. Section 6 illustrates different
levels of processing in HVG for Covid positive chest radiographs. Section 7 reports
on computational results from HVG–HIM implementation on chest radiographs for
disease tagging. Section 8 demonstrates our basic implementations as a webser-
vice for remote accessibilities in LMICs. Finally, Sect. 9 collects our insights and
experiences in conclusion and suggests future directions for development.

2 Related Work

Motivation behind visibility graph generation was to develop simple and fast compu-
tational methods, which transform a time series into a network or a graph. This
resulting visibility graph in turn inherits multiple features of the original timeseries
in its spatial organization. For example, periodic timeseries transform into regular
graphs, and random timeseries manifest themselves random graphs [32, 33]. Along
these lines, horizontal visibility algorithm, a geometrically more intuitive and analyt-
ically tractable version of visibility graph algorithm, focusing on the transformation
of timeseries into graphs [34], has been proposed. It turns out that, exact results
on the topological properties of these horizontal visibility graphs, like, the degree
distribution, the clustering coefficient, and the mean path length, can be obtained.
The horizontal visibility algorithm can also be used as an intuitive method to discern
between any two different timeseries. It is precisely this capability we leverage here
to automatically categorize normal and Covid positive chest radiographs. HVG along
with features like mean node degree and degree distribution has been used to cate-
gorize the sleep stages based on graph domain properties from a single-channel
electroencephalogram (EEG) signal [17, 35].

Visibility graph methods have been found effective in describing the fractal prop-
erties ofGeophysical time series [36]. The understanding of various graph-theoretical
metrics pertaining to visibility graphs, their interdependent nature, and their sensi-
tivity with respect to missing values and randomness are explored. Visibility graph
algorithms have been applied to fMRI time series to simultaneously compute and
process relevant dimensions of both local and global dynamics in a natural fashion,
and to explore a transformation between time series and network theory in the context
of network neuroscience [37]. It has been illustrated that the network architecture of
the image visibility graphs represents important information on the organization of
the image from which they are derived and potentially they can make good image
filters [38]. Using HVG, a general class of predictors, which can be deployed to
augment existing properties used in heart rate variability (HRV) analysis, and which
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show high predictive power for multiple cardiovascular diseases, have been defined
and validated [39]. Normalized weight vertical visibility algorithm (NWVVA) has
been proposed to extract EMG-based features for myopathy and ALS detection [40].
In this algorithm, sampling points or nodes based on sampling theory are derived,
and features are computed based on interrelations among the vertical visibility nodes
with their amplitude differences as weights. The similarity graph algorithm are used
to analyze the time series of motor activity, extracted from actigraph registrations
over 12 days in depressed and schizophrenic patients. These were mapped into a
graph and then techniques from graph theory were applied to describe these time
series, searching for variations in complexity [41].

Visibility graph methods were deployed to analyze ECoG signals in rats [42].
Subsequently, typical metrics in network science (graph properties) were applied to
compute network properties of topological structure of these graphs derived from
ECoG signals. A family of Feigenbaumgraphs, which are horizontal visibility graphs
(HVGs) generated from the trajectories of one-parameter unimodal maps undergoing
a period-doubling route to chaos (Feigenbaum scenario), have been analyzed [43]. It
has been found that while the maximum eigenvalue of HVG can easily discern chaos
from a white noise process, it is not a good metric to quantify the chaoticity of the
process, and that the eigenvalue density is perhaps a better indicator for the same.

3 Motivation for Building This Tool and Methodology

This work is motivated by following two objectives.

1. Development andvalidationof an IntelligentDecisionSupport System for segre-
gating Chest Radiographs to detect COVID-19 associated lung diseases in both
tertiary care settings and extended community along with tracking of patients
through low end mobile health applications [44–46].

2. Integration and validation ofmulti-modal tool in clinical practice involving auto-
mated processing of anonymized chest radiographs along with conventional
molecular biomarkers [47, 48] of tissue hypoxia in both angiogenic and fibrotic
phases of the lung disease progression forming the rationale of effective triage
methods for prioritizing the most urgent conditions to wait listed ones.

The race and sex-specific variations in the levels of conventional biomarkers such
asAngiogenesis/Fibrosis indeed necessitate the validation and confirmation by a non-
invasive AI-enabled modality, which can seamlessly crunch a large amount of data
in an affordable and accessible manner. Our fruganomic data intensive AI-enabled
tool will not only facilitate the same by incorporating the clinical-epidemiological
features of the subjects evaluated at tertiary care centers and the extended community
but also upon integration with the digital signals from surrogate molecular markers
will result in the creation of amulti-modalmulti fusion sensor technology [27, 29, 30]
which will aim at not only resolving the dogma of missed and misdiagnosis of Lung
diseases such as Tuberculosis or Pneumonia at tertiary care centers and extended
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community but also individualize the risk assessment of patients with suspected
myocardial infarction or to categorize patients into low- or high-risk groups.

In Recent years, various computer-based tools have been developed which can
be reliably used for computational disease tagging purposes. Healthcare Profes-
sionals with the help of such tools can accurately and computationally tag different
disease conditions within a short time with a view to significantly improve the health
outcomes of the community at large [49–57].

In the past people have prospected the use of deep learning models with limited
efficiency to diagnose lung diseaseswhich useX-ray images as amodality to evaluate
lung health as well as predict the onset of diseases such as Covid-19 in the patients
[31]. In this paper, we have explored the possibility to predict the lung ailment by
applying Earth mover’s Distance algorithm [58, 59] as our ongoing work along with
VisibilityGraph to theX-Ray images of the patients. EMDmimics the human percep-
tion of texture similarity whilst Horizontal visibility graph (HVG) and Hamming-
Ipsen-Mikhailov (HIM) distance-based similarity approach forms a corner stone
for automatically distinguishing clinical multimedia in an automated fashion. This
stable and programmatic algorithmic capability can be leveraged to provide auto-
mated disease tagging where highly trained medical professional services are either
too scarce or unaffordable. These observations when coupled together form the ratio-
nale for scalable automated clinical disease tagging for community-oriented health
intervention.

3.1 Earthmover’s Distance (EMD)

Earthmover’s Distance (EMD) is a method to calculate the disparity between two
multi-dimensional distribution in some space where a distance magnitude between
single ones (ground distance) is given. Suppose the two distributions are there, one
can be considered as the area with the mass of earth, and the other as a collection
of holes in that same area. Then, the EMD is the measure of the least amount of
work required to fill the holes with earth. Here the unit of work is the force needed in
transporting unit earth by a unit of ground distance. So, it can also be defined as the
minimum cost that must be provided to convert one histogram into other. Measuring
of EMD is based on a solution of transportation problem [16]. For finding mathe-
matical representation, firstly we formalized it as the following linear programming
problem:

Let X be the first signature with n clusters, xi is the cluster representative, and wxi
is the weight of cluster.

Let Y be the second signature with m clusters, yi is the cluster representative, and
wyi is the weight of cluster.

Let D be the ground distance matrix, di j is the ground distance between clusters xi
and y j.
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Let F be the flow matrix and fi j is the between xi and y j.
Then,

X = {(x1, wx1), (x2, wx2), (x3, wx3), ...(xn, wxn)}

Y = {(y1, wy1
)
,
(
y2, wy2

)
,
(
y3, wy3

)
, ...

(
ym, wym

)}

D = [
di j

]

F = [
fi j

]

Now, the WORK (X, Y, F) = ∑n
i=1

∑m
i=1 fi j di j Subject to constraints: (i) fi j ≥ 0,

where 0 ≤ i ≤ n, 0 ≤ j ≤ m; (ii)
∑m

j=1 fi j ≤ wxi , where 0 ≤ i ≤ n; (iii)∑m
j=1 fi j ≤ wy j , where 0 ≤ j ≤ m; (iv)

∑n
i=1

∑m
i=1 fi j = min

∑n
i=1wxi .

∑m
j=1wyi

The constraint (i) enables mass moving fromX to Y. (ii) and (iii) restricts the amount
of mass that can be sent by the clusters in X to their weights and the clusters in Y
to receive no more mass than their weights. (iv) One forces to move the maximum
amount of mass possible. It is also known as the total flow. Once we solve the
transportation problem, we will get the optimal flow F. Now the Earth Mover’s
Distance is defined as the work normalised by the total flow:

EMD(X,Y ) =
n∑

i=1

m∑

j=1

fi j di j ÷
n∑

i=1

m∑

j=1

fi j

3.2 Horizontal Visibility Graph (HVG) and Its Application
for X-ray Chest Radiograph Processing in R

The notion of visibility says that if two data points in a time series are in the line of
sight without being obstructed by any other data points then they are visibible and
hence they are connected in a visibility graph. This tranformation by visibility gives
rise to the mapping of a timeseries into a network as per given specific geometric
condition which is outlined below. Any two given data points (t1, i1) and (t2, i2)
from timeseries obtained from covid or normal X-ray image matrix time series will
be said to be visible and hence connected in the ensuing graph if for any other data
point (t3, i3), for all t1 < t3 < t2 satisfies.

i3 < i1 + (i2 − i1)

tc − t1
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t2 − t1

What it essentially means that all values yi for all t1 < ti < t2 should stay below
the line drawn between i1 and i2. Limiting this notion of visibility to only horizontal
direction, one can intuitively understand the notion of horizontal visibility where two
data points are horizontally visible if one can draw a horizontal line between them or
establish a line of sightwhile all other values between these twodata points are staying
below this line: ii, il > ik for all k such that j < k < l [33]. Clearly, as in the visibility
case, horizontal visibility algorithm maps a sequence of data points/timeseries to a
horizontal visibility graph (HVG). Once, HVG representation is obtained, massive
analytic capabilities of network analysis and tools of network science and graph
theory can be deployed to analyze the original sequence of datapoints combinatori-
cally, resulting in hitherto unknown criteria for data sequence characterization.While
there are large number of visibility graph applications in multiple multidisciplinary
areas, this work leverages this method for classifying and distinguishing patients
with a certain pathology from healthy controls, by using the network attributes of
HVGs as feature-vectors for automatic disease-tagging. In particular, an analysis of
automation classification of healthy and corona-positive patients is presented with
digital lung-Xray modality [34].

3.2.1 Hamming-Ipsen-Mikhailov (HIM) and Network Similarity
Metric

Hamming distance is a simple metric which computes the number of slots where
two strings of equal length differ [60]. Alternatively, it counts the number of edits
or substitutions required to transform one representation into the other. Generally
speaking, its edit distance between two strings and can be deployed as a localmetric to
compute two networks’ similarity indices. Ipsen-Mikhailov distance was pioneered
by Ipsen [61] for graph reconstruction problems. Jurman et.al. [62] expanded its
usage to “graph-comparison” methods.

The Ipsen-Mikhailov (IM) distance is a spectralmeasurewhichmodels a topology
of N molecules connected by flexible springs. These network topologies are orga-
nized by the underlying adjacency matrix. The global (spectral) metric IM is the
Ipsen-Mikhailov distance pertaining to the square-root of the squared difference of
the Laplacian spectrum for each graph. The Ipsen-Mikhailov distance outlines the
difference between two graphs by comparing their respective spectral densities and
not by the raw eigenvalues themselves.

To take the advantage of local nature of Hamming and global nature of IM, the
Hamming-Ipsen-Mikhailov distance is proposed. It is is a weighted combination
of the Ipsen-Mikhailov (IM) and the normalized Hamming (H). The Hamming-
Ipsen Mikhailov (HIM) distance is an Euclidean metric on the space created by the
Cartesian product of the metric space associated with H and IM. The contributions
of global and local information is governed by a combination factor ξ used in the
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formula.When ξ is one, local and global information are in balance;when ξ is tending
to 0, it becomes (local) Hamming distance; and when it goes to ∞ it resembles the
(global) Ipsen Mikhailov distance.

dH IM = 1√
1 + ξ

√
ξ I M2 + H 2

Like mentioned earlier, this distance benefits from the strengths of both the
Hamming and the Ipsen-Mikhailov distances by leveraging local and global informa-
tion. Further, since it combines two distances with a non-negative weight, it defines
a proper network distance between graphs. The parameter ξ gives the control to the
metric by letting the user favor one type of information over the other. However,
empirically, it is well observed that this distance is computationally expensive, and
thus costly to apply to the analysis of massive graphs and large datasets. For our
purposes here, HIM distance is used to compare two horizontal visibility graphs
(HVG) which are generated either from normal or covid positive x-ray radiographs.
The ensuing network similarity helps us decide the appropriate disease tag as will
be demonstrated in the computational results.

4 Dataset

Primary source of normal and Covid-positive chest radiographs have been sourced
from Rajiv Gandhi Cancer Institute and Research Centre [63] where representative
normal and unhealthy ECGs, were compared Diseasetagging with Visibility Graph
and EMD based analysis of training data.

With the given 100 test ECGs. Similar process has been followed for Covid-
positive disease tagging using EMD with 30% success rate. Following similar
reasoning, if test chest radiograph is closer to normal radiograph i.e. its VG-HIM
distance is smaller to normal one, then it is tagged as a normal chest radiograph and
if it resembles Covid positive chest radiograph, i.e. its VG-HIM distance is small
with respect to representative Covid positive chest radiograph, then it is tagged as
a Covid positive chest radiograph as shown in Table 3 next. A success rate of 60%
for HVG–HIM based disease tagging has been reported. The full process has been
shown as a flowchart in Fig. 13.We compute that our success rate is 60 out of hundred
or 60% which calls for multimodality and that is where biomarkers [47, 48] walk in
as a natural basis of Covid positive classification to further enhance the automated
tagging of Covid positive chest radiographs with enhanced confidence.
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4.1 Transformation of a Chest Radiograph to a Horizontal
Visibility Graph: Different Stage of Processing

To illustrate the complete process from starting with a chest radiograph to gener-
ating its horizontal visibility graph to get it ready for HIM distance computation is
accomplished in multiple different computational processing stages. We are going
to illustrate it using COVID positive training image, COVID Train7.jpeg as shown
in Fig. 1. We can notice that compared with a normal chest radiograph it has more
white cloud like structures which possibly might be due to Covid positive nature
of the radiograph. To process it, chest radiograph is converted to a down sampled
numerical matrix in R computational environment. In our case we have downsized
it to 8 × 8 to present it in all clarity and show the relevance of different processing
algorithms and visualization. This transformed Covid positive chest radiograph as a
8 × 8 matrix is displayed in Fig. 2 and different color intensities show different grey
levels in original covid positive chest radiograph.

Fig. 1 Chest X-Ray

Fig. 2 Matrix Representation
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Fig. 3 Matrix to vector conversion of COVID positive training image, COVID_Train7 and
corresponding plot of values

In next stage of transformation this 8 × 8 matrix is stacked as a vector of size 64
and is plotted as a time series in Fig. 3. Now stage is set for the transformation of this
timeseries to a horizontal visibility graph. Once horizontal visibility graph algorithm
processes this timeseries, a network is generated whose adjacency plot is shown in
Fig. 4. Its largely sparse graph with few connectivity here and there as displayed
by yellow-colored cells. Real network shape and connectivity patterns of horizontal
visibility graph is demonstrated in Fig. 5. It can be visualized in multiple ways in
R environment and exposes larger number of features and properties of horizontal
visibility graphs resulting from chest radiographs.

Fig. 4 Adjacency matrix plot of horizontal visibility graph generated from COVID positive
training image, COVID_Train7.jpeg. Only yellow cells are one indicating connectivity and rest
are disconnected
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Fig. 5 Network plot of horizontal visibility graph generated from COVID positive training image,
COVID_Train7

Before we move to next Fig. 6, we need to recollect the definition of
heatmap. A heatmap is a two-dimensional grid kind of visual representation of
data/information/signal in a colorful fashion. Heatmaps can aide the viewer in trying
to make sense of a complex spatial distribution of information. What Fig. 6 shows
is connectivity activity on a two-dimensional grid to communicate in a user-friendly
fashion. Figure 7 provides another view of same horizontal visibility graph obtained
from Covid positive image and Fig. 8 shows the same diagram with node size being
proportional to 5th power of the degree of the node, i.e. highly connected nodes
or hubs are depicted with larger circles as compared to sparsely connected nodes.
Figures 9 and 10 show the degree distribution and cumulative degree.

A histogram type horizontal visibility graph is demonstrated in Fig. 11 obtained
from Covid positive chest radiograph data. Its curvy form is demonstrated in Fig. 12.
Both demonstrate interesting connectivity patterns. At this stage Covid positive chest
radiograph’s HVG is ready to be used by HIM-distance metric to compute similairty
among different HVGs generated from normal and Covid positive chest radiographs.
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Fig. 6 Heatmap of horizontal visibility graph generated from COVID positive training image,
COVID_Train7

4.2 Computational Infrastructure Deployed

Matlab has been used for performing geometrical part of the work. EMD aspect
of this work has been performed in R software (Rstudio Version 1.3.1093 ©2009–
2020RStudio, PBC”ApricotNasturtium” (aee44535, 2020-09-17) forUbuntuBionic
Mozilla/5.0 (X11; Linux x86i 64) AppleWebKit/537.36 (KHTML, like Gecko)
QtWebEngine/5.12.8Chrome/69.0.3497.128Safari/537.36) on aHPProbook laptop.

Laptop’s operating system and other basic information from comand uname -a is
given below:

Linux Krishna 5.4.0–48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020

× 86 64 × 86i 64 × 86 64 GNU/Linux

Output of hardware atributes of the laptop is as follows:

-memory

description: System memory

physical id: 0
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Fig. 7 Another network viewof horizontal visibility graph generated fromCOVIDpositive training
image, COVID_Train7

size: 8320MiB

-cpu

product: Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz

vendor: Intel Corp.

physical id: 1

bus info: cpu@0

size: 3304 MHz

capacity: 3400 MHz
Finally, Fig. 13 depicts the flow chart for Covid computational disease tagging

algorithm using Visibility graph and network distance HIM in a sequential fashion.
It summarizes all the computational steps used in different stages of processing at
high level.
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Fig. 8 Network view with node size 5th power of degree for horizontal visibility graph generated
from COVID positive training image, COVID_Train7.jpeg

Fig. 9 Histogram of degree for horizontal visibility graph generated from COVID positive training
chest radiograph, COVID Train7.jpeg. Moderately connected
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Fig. 10 Cumulative degree distribution for horizontal visibility graph generated from COVID
positive training chest radiograph, COVID Train7.jpeg. Moderately connected

Fig. 11 Covid image matrix data

5 Experimental Results

5.1 Computational Experiment

This part describes the result of automated disease tagging using horizontal visibility
graph and HIM based network similarity (distance) computation. Chest radiographs
used here are sourced from Rajiv Gandhi Cancer Institute and Research Centre
[64, 63].
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Fig. 12 Visibility graph generated from COVID positive training chest radiograph, COVID
Train7.jpeg

Data Preprocessing To keep the computation of images and their processing
commensurate to hardware platform capabilities, all the radiographs acquired are
converted into the JPG format. For fast processing and declaration of results in
almost-real-time, radiographs are down sampled to the 32× 32 pixel size irrespective
of their original size.

Radiograph data is grouped into two main groups, training and testing. Training
group has 10 normal and 10 covid positive radiographs. Normal radiographs are
compared amongst each other usingHVG–HIM algorithm and representative normal
radiograph is computed like our previouswork using EMDas shown in Table 1. Same
process is followed for the covid positive radiograph and a covid-positive represen-
tative radiograph is obtained. Out of multiple network distance available, Hamming-
Ipsen Mikhailov (HIM) network distance is used for comparing the visibility graphs
because of its balanced nature as a both global and local network distance or similarity
metric.

Training Using Normal Chest Radiographs As shown in the flowchart in Fig. 13,
we begin with evaluating the normal representative chest radiograph (Normal-Rep)
among normal ensemble of training chest radiographs. This Normal-Rep will be
used to compare the test chest radiograph with, to decide if test chest radiograph
can be tagged normal or Covid-positive. This process of computing Normal-Rep is
by converting all the normal training chest radiographs into visibility graphs and
measuring their computational similarity with HIMmetric. The Table 1 for deciding
Normal-Rep is given below where third normal training chest radiograph has been
designated Normal-Rep for this ensemble of ten normal training chest radiographs
due to its highest similarity (Hence lowest column sum score) with all other normal
training chest radiographs. Its score is indicated in third column and sum row in bold.
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Fig. 13 Flow chart for Covid computational disease tagging algorithm using Visibility graph and
Network Distance HIM
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Training Using Covid Positive Chest Radiographs Following the flowchart in Fig. 1.
We begin with evaluating the Covid Positive representative chest radiograph (Covid-
PositveRep) among Covid positive ensemble of training chest radiographs. This
Covid Positive-Rep will be used to compare the test chest radiograph with, to decide
if test chest radiograph can be tagged normal or Covid-positive. This process of
computing CovidPositiveRep is realized by converting all the Covid Positive training
chest radiographs into visibility graphs and measuring their computational similarity
with HIMmetric. The Table 2 for deciding Covid Positive-Rep is given below where
fourth Covid positive training chest radiograph has been designated Covid Positive-
Rep for this ensemble of ten Covid positive training chest radiographs due to its
highest similarity (Hence lowest column sum score) with all other Covid positive
training chest radiographs. Its score is indicated in fourth column and sum row in
bold.

Final Testing and Automated Disease Tagging for Test Chest Radiographs Using
HVG–HIM In, the follow-up testing phase, both healthy and covid positive repre-
sentative radiographs are compared using HIM distance with pretagged test dataset
of 20 radiographs. This test dataset has both healthy and covid positive radiographs.
The result of automated disease tagging is presented below. Let’s define U as HIM
Distance from Covid Positive representative and H as HIM Distance from Healthy
representative. A simple observation tells us that this algorithm is able to tag the chest
radiographs with overall accuracy of 60%. Healthy radiographs have been tagged
with 60% accuracy and also covid positive radiographs are tagged with 60% accu-
racy. A natural future direction arises where other network distance metrics can be
leveraged over larger datasets (Fig. 12, Table 3).

6 Final Testing and Automated Disease Tagging for Test
Chest Radiographs with EMD

To draw a fair comparison between EMD and HVZ-VG, we run the same computa-
tional with direct perceptual similarity between chest radiographs-based evaluation
and diseases tagging with EMD. To keep the computation of chest radiographs and
their processing commensurate to hardware platform capabilities, all the radiographs
acquired are converted into the JPG format. For fast processing and declaration of
results in almost-real-time, radiographs are down sampled to the 32 × 32-pixel size
irrespective of their original size. This is in consonance with the same computational
experiment carried out HVG–HIM. Results of EMD-based disease tagging is shown
in Table 4 where a meagre 30% accuracy is reported, and correct disease tag rows
are highlighted in bold. This is in sharp contrast with accuracy of 60% achieved with
HVZ–HIM, albeit at a higher computational investment.
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Table 3 HIM score based disease tagging table for test covid positive and normal chest radiographs
using HVG–HIM

No U H Real Tag VG-HIM Tag

1 0.001738350 0.002092146092198 Covid positive Covid positive

2 0.002082185 0.001840777512553 Covid positive Normal

3 0.001950630 0.00211087540523 Covid positive Covid positive

4 0.001840535 0.001930288747592 Covid positive Covid positive

5 0.002241159 0.001995573933206 Covid positive Normal

6 0.001916763 0.001973678120048 Covid positive Covid positive

7 0.001955399 0.002161508372919 Covid positive Covid positive

8 0.001919654 0.001948495673396 Covid positive Covid positive

9 0.002331740 0.002206820660675 Covid positive Normal

10 0.002041363 0.00186923269593 Covid positive Normal

11 0.001997673 0.001997358118727 Normal Normal

12 0.002224062 0.002132561182092 Normal Normal

13 0.001828268 0.001921438899592 Normal Covid positive

14 0.002111531 0 Normal Normal

15 0.002106018 0.002075943450341 Normal Normal

16 0.001789069 0.002062848422154 Normal Covid positive

17 0.002076307 0.002162210255525 Normal Covid positive

18 0.002154178 0.001964655126736 Normal Normal

19 0.001989834 0.002014787858529 Normal Covid positive

20 0.002301401 0.002209421305833 Normal Normal

7 Reflections on HVG–HIM and EMD Similarity Metrics

This experiment on working with HVG–HIM and EMD has given us certain insights
into the implementation of these algorithms. Earth Movers Distance (EMD) algo-
rithm computes the discrepancy pixel by pixel in the chest radiographs and gives us
the overall average difference between the chest radiographs as a similarity metric.
In the case of horizontal visibility graph (HVZ), each pixel compares itself with all
other pixels of the same chest radiograph and gives a graphical representation. This
graphical representation of one chest radiograph is compared with other chest radio-
graphs’s graphical representation using the network distance metric. For calculating
the difference in these graphs various network distance metrics can be used. Here,
we have used HammingIpsen-Mikhailov (HIM) distance.

From a computational aspect, EMD does far fewer calculations than HVG–HIM
metric does. EMD computes the results within the few seconds for given set of ten
chest radiographs with similar size whereas for the same task HVG–HIM network
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Table 4 EMDscore based disease tagging table for test covid positive and normal chest radiographs

No EMD from NormalRep EMD from
CovidPositive-Rep

Real-Tag EMD-Tag

1 0.50817084312439 0.102157711982727 Normal CovidPositive

2 3.02615809440613 0.244212314486504 Normal CovidPositive

3 0.554616451263428 0.10110604763031 Normal CovidPositive

4 2.75559902191162 1.02294194698334 Normal CovidPositive

5 1.33040499687195 0.4100721180439 Normal CovidPositive

6 0.52178567647934 0.358028054237366 Normal CovidPositive

7 1.14510023593903 4.19615602493286 Normal Normal

8 0.391091376543045 0.514602303504944 Normal Normal

9 1.55246329307556 0.12182080745697 Normal CovidPositive

10 0.939411997795105 0.931683301925659 Normal CovidPositive

11 1.28701484203339 0.468866437673569 CovidPositive CovidPositive

12 1.32051146030426 1.4063401222229 CovidPositive Normal

13 1.10182595252991 3.01665210723877 CovidPositive Normal

14 0.449742645025253 1.7027291059494 ‘ CovidPositive Normal

15 0.765507996082306 1.09815609455109 CovidPositive Normal

16 0.297308087348938 0.422655075788498 CovidPositive Normal

17 ‘0.361823529005051 0.790895044803619 CovidPositive Normal

18 0.480859369039536 0.396273583173752 CovidPositive CovidPositive

19 0.886679291725159 0.466326594352722 CovidPositive CovidPositive

20 1.08181118965149 0.41103208065033 CovidPositive CovidPositive

distance takes several minutes. Clearly, there is a learning that details matter. HVG–
HIM is giving twice the accuracy of 60% compared to EMD which gives the accu-
racy of 30% for the same task. Naturally, HVG–HIM is achieving this performance
because of large computational investment. This leads to an interesting deployment
choice as in, where chances of Covid-positive prevalence is extremely low and high
accuracy is not needed, one can deploy EMD based procedures but for regions
where prevalence is higher and accuracy is of paramount importance, HVZ-HIM
with serious computational infrastructure will be needed.

8 Towards a Web-Service Based Implementation

Covid has emerged as an unprecedented global pandemic with serious impact on
every individual. Provision of immediate and adequate health infrastructure for covid
patients visiting a health service facility or practicing tele consultancy based on
pathological examination of chest radiograph is the need of the hour. After centuries
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of advancements and developments in different health practices like Allopathy,
Ayurved, Homeopathy and other forms of treatment strategies, human efforts against
Covid has been dwarfed. The whole medical community is fighting with all available
resources to tackle the situation and treat the patients. Having said that it is hard to
deny in comparison to covid patients, the number of skilled and trained healthworkers
like doctors, nurses and other health service providers is not sufficient, owing to this
provisioning gap, high mortality and prolonged morbidity is recorded, especially in
LMICs (Low- and Middle-income Countries.)

Today, we are living in a digital world where enormous amount of technology
enabled health services are being practiced all across the world specially in the form
of digital health encompassing—tele consultancy, telemedicine, telehealth, big data
etc. They help in gathering meaningful information, processing it and producing the
report in almost real-time so that the policy makers can formulate evidence-based
health strategies leading to follow-up of patients more effectively.

Keeping this urgent need in mind, we have developed our own web-portal which
is capable of collaborating with all the hospitals and individual medical prac-
tioners/patients through a centralized server. This server is designed in such amanner
that any individual or hospital can access the server after proper validation and store
their relevant information related to patients. Data security and confidentiality has
been maintained by the server strictly. Edit access has been limited to information
owners only on the portal. The purpose of this webservice is to store the informa-
tion, process it and produce the result in form of scientific evidence which can be
significantly utilized by policy makers for better decision making. At the same time,
by accessing the portal, one can get all the relevant and accurate information related
to Covid in form of text, presentation and multimedia (audio/video/images). This
portal will also provide an individual specific service like tele consultancy to register
and forward the unanswered queries directly to the specialist doctors and back to
the query generator (possibly patient or someone curious about a medical condition)
(Figs. 14 and 15).

8.1 Webservice Methodology

The web-based healthcare management system for Covid patients is poised with the
latest front and web-page development language—PhP 7.3.28 and the core tech-
nology used is MVC (Model View Controller). There are different modules in the
website which incorporate API (Application Programming Interface) to interact with
dedicated servers for dedicated processing of HVG and HIM-distance in terms of
image analysis using R (RStudio 3.6.3) and other statistical packages and report
generation with an attractive and effective graphical representation for the avail-
able dataset. MySQL server is used as the backend RDBMS (Relational database
Management System) for data input, process, and output to APIs and individuals for
usage downstream. We have integrated these technologies because they are open-
source and compatible for design, development, and deployment. Further, they are
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Fig. 14 Transiton from research to service provision: A pilot webservice for automated COVID
disease tagging

Fig. 15 Resource for Automated disease tagging with chest radiographs in LMICs and resource
challenged African Countries

customizable as per the medical data-keeping requirements of this project. Security
and confidentiality are maintained at all levels of data flow starting from information
gathering to report generation. A brief architecture of webservice technology has
been shown in Fig. 16.
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Fig. 16 Web Service Architecture for Covid Positive Chest Radiograph based Disease Tagging

9 Conclusions and Future Directions

Poor lung health is known to play a statutory role causing increased susceptibility
related to COVID-19. Lifestyle choices including smoking and sedentary lifestyle
leading to obesity aren’t the only factors that influences lung health, environmental
factors such as air pollution also exert a considerable effect. Researchers believe
that while consumption of tobacco products (both smoking and smokeless), along
with occupational hazards such as exposure to indoor and outdoor pollution makes
people more susceptible to the infection that causes COVID-19 and its complications
because these environmental factors also significantly damage the body’s natural
defenses against some bacteria and viruses. A large number of countries coming
under the umbrella of LLMICs having populations endowed with poor lung function
and consequently poor lung health reflect their health outcomes as poor.

The use of extant deep learning technologies is not necessarily solving the problem
of integrating the evidences from the community level in resource limited healthcare
systems as they are intensive and energy-hogging with respect to computational
resources leading to increased carbon foot-printing and hence global warming.

To this end use of static algorithms such as Earth Movers Distance (EMD) and
Horizontal Visibility Graph (HVG) add value as they require significantly lesser
investment of computational resources and dispel the black box nature of the deep
learning algorithms with the glass box nature with more transparency with respect
to big data computation and analytics [65]. We propose to extend our studies on the
use of EMD and HVG based time series analysis, in which dynamic timeseries and
clinical multimedia segments are mapped to visibility graphs as being descriptions
of the corresponding states and the successively occurring states are linked. This
procedure capable of converting a dynamic time series to a temporal network and at
the same time a network of networks could be provide us rich information benefiting
short-term and long-term predictions about lung of an individual or community
at large, thereby providing the policy administrators at local, regional and global
level nuanced data for developing comprehensive niche specific solutions aimed at
alleviating the lung-health disparities.
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Use of multi-modal multi sensor fusion technologies combined with big data
enabled platforms will go a long way in strengthening resource-deprived health-
care systems. Our proposed disruptive AI-enabled point of care solution aims to
gather evidences from the community level so as to augment catering to the creation
of affordable and accessible healthcare technologies will focus on the application
of innovative concepts to improve health outcomes in an affordable and equi-
table manner to overcome healthcare disparities but also inculcate capacity building
through the provision of unique platform to individuals /organizations to validate
their proof of concepts to scale-ups and ultimately commercially viable sustainable
solutions.

10 Device Utility

1. Has potential application as an Adjunct Clinical Aid for the Pulmonolo-
gist/Medical Professionals.

2. Automatic Classification of X-ray chest radiographs facilitating large scale
screening of subjects in remote health camps.

3. Easy, fast and robust technology with capabilities to be implemented in web-
based, desktop-based and smartphone-based applications when coupled with
X-ray device on the internet.

4. It has potential of turning Covid disease management as a self-care exercise.
Control moves from the hands of expensive hospital to cheap and affordable
selfcare devices.
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