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Chapter 3
North Patagonian Andean Deep Lakes: 
Impact of Glacial Recession and Volcanic 
Eruption

Esteban Balseiro , Beatriz Modenutti , Marcela Bastidas Navarro , 
Nicolas Martyniuk , Luca Schenone , and Cecilia Laspoumaderes 

1 � Introduction

The largest lake basin in Argentina is in the Andean-Patagonian region; these lakes 
are the heart and essence of the landscape of the region. Considering their volume, 
these deep and large lakes (area >5 km2, depth ≥100 m) are important water reserves 
that represent 77% of the water contained in lakes of Argentina (Quirós 1988).

The first data on these Patagonian lakes were obtained by geographers in the last 
decades of the nineteenth century, who referred to the similarity with lakes in the 
Alps (Biedma 1987). In the early twentieth century, salmonids were successfully 
introduced in most of the deep lakes (Quirós and Drago 1999). However, it was until 
the 1950s when biological samples were studied for the first time by the Swedish 

‘Qué tranquilo y bello el cuadro en las cercanías del Leman 
argentino ¡más grandioso que el Suizo!.’ (How calm and 
beautiful scene in the surroundings of the Argentinian Leman, 
more magnificent than the Swiss one!)

F.P. Moreno – January 22, 1876.

E. Balseiro (*) · B. Modenutti · M. Bastidas Navarro · N. Martyniuk  
L. Schenone · C. Laspoumaderes 
Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA),  
CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
e-mail: ebalseiro@comahue-conicet.gob.ar

Esteban Balseiro and Beatriz Modenutti contributed equally.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Mataloni, R. D. Quintana (eds.), Freshwaters and Wetlands of Patagonia, 
Natural and Social Sciences of Patagonia, 
https://doi.org/10.1007/978-3-031-10027-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10027-7_3&domain=pdf
https://orcid.org/0000-0002-5052-0587
https://orcid.org/0000-0002-8683-5679
https://orcid.org/0000-0002-6558-0451
https://orcid.org/0000-0002-2423-7040
https://orcid.org/0000-0003-3025-7133
https://orcid.org/0000-0001-7790-2975
mailto:ebalseiro@comahue-conicet.gob.ar
https://doi.org/10.1007/978-3-031-10027-7_3#DOI


32

expedition of Kuno Thomasson (Thomasson 1959; Thomasson 1963). Thus, there 
are no scientific samples from before this introduction occurred.

The area has been affected by glacial processes that modeled the landscape 
including the lakes. In addition, the region has been affected by the activity of sev-
eral volcanos producing volcanic ashes. These events (including glacial recession 
and catastrophic events such as moraine breaks and volcanic eruptions) cause 
changes in the input of inorganic suspended particles into lake ecosystems.

2 � The Deep Andean-Patagonian Lakes of Argentina

Deep Andean-Patagonian lakes of Argentina (maximum depth >100  m) corre-
spond to the Glacial lake district of the Southern Andes (Iriondo 1989) and the 
Wet Andes according to glacio-climatological regions (Lliboutry et  al. 1998). 
This lake district in Argentina extends from 37° S (Lake Aluminé) to 55° S (Lake 
Fagnano), covering almost 2000 km (Fig. 3.1). During the late Pleistocene, the 
area was glaciated extensively and repeatedly. Thus, the landscape is dominated 
by glacial processes (moraines and glacial-fluvial plains) and also by volcanic 
events (Pereyra and Bouza 2019). Climate is cold temperate, with the prevalence 
of west-winds (westerlies) coming from the Pacific Ocean (Paruelo et al. 1998; 
Masiokas et al. 2008). Elevation of most mountain peaks and massifs does not 
exceed 4,000 m a.s.l. and the intense influence of the westerly circulation from 
the Pacific results in high precipitations (Kitzberger and Veblen 2003). Thus, the 
region is characterized by strong precipitation gradients, with clear contrasts 
between the western (~3000 mm y−1) (Viale et al. 2019) and the eastern slopes 
(2000–1500 mm y−1) (Paruelo et al. 1998; Viale et al. 2018). However, diverse 
macro-climatic phenomena such as SAM (South Annular Module), El Niño 
Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) have 
affected interannual and month-to-month variations in the intensity of rains 
(Trauth et al. 2000; Rivera et al. 2018; Viale et al. 2019; Poveda et al. 2020). The 
region contains a wide variety of glaciers including permanent snowfields, moun-
tain glaciers, valley glaciers, outlet glaciers, piedmont glaciers, icecaps, and 
extensive icefields (Masiokas et  al. 2020; Chap. 4). The presence of a profuse 
hydrographic system including large deep lakes and rivers is characteristic of the 
Wet Andes, wherein 4800 km2 of the former extent of large glaciers are now occu-
pied by more than 4,000 lakes (Wilson et al. 2018). However, the high precipita-
tion amounts cause that most river flow is dependent on rainfall and snowmelt 
patterns (Masiokas et  al. 2019). The rivers fed from Andean waters cross the 
Andes, flowing toward the Pacific Ocean or run through the Patagonian plateau 
steppe and outflow to the Atlantic Ocean (Chap. 9).

The vegetation of the area is mainly composed of evergreen and deciduous trees 
dominated by species of the genus Nothofagus. In particular, the deciduous species 
of the southern beech, locally named “lenga,” N. pumilio (Poepp. et al.) Krasser, 
occurs from 35° S down to 55° S (Hildebrand-Vogel et al. 1990). Within the broad 
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Fig. 3.1  Maps of the Andean Patagonian lake area. (a) Location of the Andean lakes. (b) Andean 
lakes and the Liquiñe-Ofqui fault in the west side of the Andes. (c–e) Details of the most studied 
lakes. In (d), the sampling stations (numbered) are indicated along the Tronador arm of Lake 
Mascardi

distribution area of more than 2000 km in length, the altitudinal distribution varies, 
constituting high mountain forests up to the timberline (Krummholz: stunted wind-
blown trees) to pure stands at the sea level in the Southern Tierra del Fuego 
(Mathiasen and Premoli 2010). N. pumilio constitutes an important source of 
organic matter for both lakes and rivers (Albariño and Balseiro 2001; Bastidas 
Navarro et al. 2014; Bastidas Navarro et al. 2019).

3  North Patagonian Andean Deep Lakes: Impact of Glacial Recession and Volcanic…
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The lakes exhibit a warm, monomictic thermal regime, with stable thermal strati-
fication during late spring and summer (Baigún and Marinone 1995). Thermocline 
depth ranges between 15 and 40 m (or more), and this is related to lake morphom-
etry, fetch, and interannual wind variations (Baigún and Marinone 1995; Pérez et al. 
2007; Modenutti et al. 2008). Transparency is extremely high with very low vertical 
extinction coefficients of the different wavelengths (Kd PAR = 0.10–0.16  m−1) 
(Morris et al. 1995). However, some lakes are under the influence of clay discharged 
by glaciers such as Lake Argentino, Viedma, and Mascardi, and in these lakes, 
transparency decreases sharply (Modenutti et al. 2000; Richter et al. 2016). Earlier 
baseline studies indicated that nutrient concentrations are very low corresponding to 
the oligotrophic and undisturbed lake status (Calcagno et al. 1995; Markert et al. 
1997; Quirós and Drago 1999).

Extensive studies of the whole lake district are scarce and most of them were 
carried out in a single summer campaign (Quirós 1988; Drago and Quiros 1995; 
Quirós 1997; Quirós and Drago 1999). However, the North Patagonian Andean 
lakes (around 39° to 42°S and 71°W, 400–750 m a.s.l.) were more intensively stud-
ied (Modenutti and Balseiro 2018). In this chapter, we will focus on this lake district 
located at mid-latitudes (Fig. 3.1). We aimed to summarize the events that occurred 
in the water column of deep oligotrophic lakes as a consequence of glacial recession 
due to climate change and natural catastrophic events (volcanic eruptions and sud-
den moraine breaks). These events produced noticeable changes in the light distri-
bution of the water column because of the increase of suspended solids (volcanic 
ashes or glacial clay), affecting the plankton communities’ interactions, and thus 
pelagic ecosystem functioning.

3 � Climate Change

In North Patagonian Andes, contemporary changes in the atmosphere have caused 
precipitation and mean temperatures to change at values previously experienced in 
geologic time; however, the velocity of change appears to be faster than that of simi-
lar periods (Marcott et al. 2013; Neukom et al. 2019). In particular, the increase in 
temperature (up to 1 °C since 1950) has been higher than in the rest of Argentina 
(Villalba et al. 2003; Barros et al. 2014), while precipitation significantly decreased 
(around 5% per decade) (Castañeda and González 2008; Masiokas et  al. 2008). 
Thus, climate models predict around 10–30% less precipitation over northern 
Patagonia by the end of the century (Marengo et al. 2011; Barros et al. 2014; Pessacg 
et al. 2020), while in terms of temperature, simulations project an increase from 1.5 
to 3 °C for the far future scenario (2071–2100) (Pessacg et al. 2020).

Glaciers are sensitive to climate change (Roe et  al. 2017) and in the North 
Patagonian Andes (40.5°–44.5° S) glaciers decreased ~25% of their area between 
1985 and 2011 (Paul and Mölg 2014), and this negative balance was confirmed by 
remote sensing data (Dussaillant et al. 2019; Chap. 4). As a consequence, the num-
ber of proglacial lakes and lake volume increased in response to climate change and 
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glacier retreat (Paul and Mölg 2014; Shugar et al. 2020). In particular, the upper 
slopes of Monte Tronador host one of the largest contiguous ice covers (∼57 km2 in 
2012) in the northern Patagonian Andes (Ruiz et  al. 2015). Glaciers in Monte 
Tronador show a clear retreating and thinning pattern with a long-term frontal reces-
sion (Bown and Rivera 2007; Masiokas et al. 2010; Paul and Mölg 2014; Ruiz et al. 
2017). As glacial lakes drain, hydrologic and geomorphic changes can occur 
(Kershaw et  al. 2005; Harrison et  al. 2018; Shugar et  al. 2020) including cata-
strophic and hazardous events as glacial lake outburst floods (GLOFs) due to the 
sudden release of a glacier or moraine-dammed lakes (Masiokas et al. 2020; see 
Chap. 4). These GLOF events produce strong impacts in downstream valleys and 
the runoff of the outlet rivers (Dussaillant et al. 2012). In Monte Tronador in 2009, 
a GLOF event occurred due to heavy precipitation and ice blockage of the outlet, 
causing a break of the end moraine that impounded the proglacial Lake Ventisquero 
Negro (Worni et al. 2012). The event modified the downstream valley, and then the 
volume of the proglacial Lake Ventisquero Negro increased (Ruiz et  al. 2017; 
Modenutti et al. 2018a).

Bedrock abrasion by glaciers from Monte Tronador produce fine rock and min-
eral fragments which constitute the glacial flour (glacial clay) that is carried by 
meltwaters through streams (Chillrud et  al. 1994) to proglacial lakes (Ariztegui 
et al. 2007). Glacial clay from the Argentinian side of the Monte Tronador is carried 
into three main proglacial lakes: Ventisquero Negro, Frias, and Mascardi affecting 
the light vertical distribution (Bonetto et al. 1971; Morris et al. 1995; Modenutti 
et al. 2000). Variations in the transport of glacial clay to the basin can be directly 
linked to changes in climate (Ariztegui et  al. 2007). The marked retreating of 
Ventisquero Negro glacier (Ruiz et al. 2015) and the 2009 GLOF event (Worni et al. 
2012) caused a concomitant change in sediment carried downstream by Upper Río 
Manso that produced substantial variation in the light distribution in Lake Mascardi 
Tronador Arm (Bastidas Navarro et al. 2018).

4 � Volcanic Eruptions

In the southern Andes, from 40 to 46  °S, there is an extended fault zone called 
Liquiñe-Ofqui, which extends for about 1000 km NS with more than 40 active vol-
canos (Cembrano et al. 1996). This fault coincides with the Quaternary volcanic 
chain that contains recent active stratovolcanos as Chaiten and Puyehue-Cordón 
Caulle. In May 2008, the Chaiten erupted about 1 km3 of ashes (Carn et al. 2009), 
and in June 2011, the Puyehue-Cordón Caulle had a mega eruption with a spread of 
more than 100 million tons of pyroclastic material mostly carried by wind to the 
east side of the Andes, affecting a wide area of Argentina (Elissondo et al. 2016) 
including deep lakes (Elser et al. 2015). The eruption carried pumice of several sizes 
(4 mm to >10 cm in diameter) to the lake surface. Due to the low density of the 
sponge-like rocks, this pumice remained floating on the water surface from weeks 
to many months, creating new conditions for aquatic life (Elser et  al. 2015; 
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Modenutti et al. 2016). In addition to the pumice, ashes from the volcano affected 
lakes, as they drastically changed their optical climate, turning highly transparent 
waters to grey, cloudy ones (Modenutti et al. 2013b). At least six historical eruptions 
of the Puyehue-Cordón Caulle have been recorded (1759, 1893, 1921, 1960, 1990, 
2011) (Elissondo et al. 2016). Thus, lakes in the area receive this volcanic input 
periodically.

5 � Lake Water Column: Light, Temperature, and Nutrients

Light and nutrient supply dynamics interacting with thermal water column structure 
and internal food web interactions are decisive for pelagic ecosystem functioning 
(Sterner et al. 1997; Falkowski and Raven 2007). Geologically, the region of North 
Patagonian Andean deep lakes is dominated by a mixture of crystalline igneous, 
volcanic, and plutonic rocks, while sedimentary rocks are proportionally scarce 
(Flint and Fidalgo 1964). Thus, waters in lakes and rivers in the region are extremely 
dilute solutions in which major ion concentrations are below world averages 
(Pedrozo et al. 1993). Nutrient concentrations are also very low (total phosphorus 
<6 μg L−1 and total nitrogen <100 μg L−1) and no significant differences throughout 
the water column were noticed (Corno et al. 2009). Within the lake water column, 
light may have a complex pattern of spatial and temporal variability (Litchman 
2003; Stomp et al. 2007a, b), and fluctuations in irradiance may affect photosynthe-
sis and respiration (Quéguiner and Legendre 1986; Ferris and Christian 1991; 
Falkowski and Raven 2007), as well as primary producers’ growth rates (Litchman 
2000, 2003). Light is a distinctive feature in deep North Patagonian Andean lakes 
since early studies have reported their high transparency to different wavelengths 
including ultraviolet bands, due to the low dissolved organic carbon (DOC) (Morris 
et al. 1995). The concentration of DOC shows values below 0.6 mg L−1 (Corno et al. 
2009) and remains without changes along precipitation gradients (Zagarese et al. 
2017; Queimaliños et al. 2019). Considering light and nutrients, these deep lakes 
can be described as high-light:low-nutrient environments (Balseiro et al. 2007), and 
this condition drives most processes that occur in the water column.

Comparing the different wavelengths, in most of the deep transparent lakes, the 
photosynthetically active radiation (PAR, 400–700 nm) can reach up to 40–50 m 
depth (euphotic zone) while hazardous UV-B (305 nm) and UV-A (320 nm) affect 
up to 12–20  m depth, respectively (Fig.  3.2a). However, this condition changes 
when lakes receive the input of glacial clay producing a reduction of the euphotic 
zone (e.g., in Fig. 3.2b see lakes Frías and Mascardi 3).

Lake thermal structure is also related to the light availability in the different lay-
ers of the water column. North Patagonian Andean lakes are warm monomictic, and 
summer stratification is characterized by a wind-mixed surface layer that is isolated 
from colder deep waters by a marked thermal gradient at the metalimnetic level 
(Pérez et al. 2002). Interestingly, extended euphotic zones include the epilimnion, 
the metalimnion, and, in certain cases, the upper part of the hypolimnion (Fig. 3.3). 
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Fig. 3.2  (a) Light vertical profiles in a North Patagonian Andean lake (Lake Nahuel Huapi), show-
ing the transparency to several wavelengths, including ultraviolet radiation (UV-B, 305 nm and 
UV-A, 320, 340, and 380 nm) and photosynthetically active radiation (PAR, 400–700 nm). (b) 
Light vertical profiles of PAR of several lakes with different transparency. Less transparent lakes 
(Mascardi and Frías) are lakes with the input of inorganic particles (glacier clay). Mascardi 3 refers 
to Lake Mascardi sampling station number 3 (E3)

Vertical mixing can lead to a shortage of light if planktonic organisms are frequently 
dragged down to the deep dark layers, whereas stratification enhances light supply 
by decreasing mixing depth (Diehl 2002). This condition will imply that variation 
of the mixing depth affects the available mean light in the upper layer (Fig. 3.3). The 
available light in the mixing layer is defined as mean intensity in the mixolimnion 
(Im) (Helbling et al. 1994; Kirk 1994) and changes in Im affected the dominance of 
different planktonic species (Modenutti et al. 2008).

As mentioned, glacial lakes frequently receive inputs of finely grounded rock 
particles of glacial origin; thus, upper glacial lakes often have a grey or whitish 
appearance. In contrast, the lower lakes in a series of glacial lakes can be blue 
because all particles have settled out of the water column. Early studies in Lake 
Mascardi (Bonetto et al. 1971) have shown that light was affected by glacial clay 
input, and Modenutti et  al. (2000) showed a significant statistical relationship 
between the light extinction coefficient of PAR and total suspended solid concentra-
tions. In particular, light extinction coefficients decreased steadily from the clay 
source (Upper Manso River) and along the Tronador Arm indicating an increase in 
transparency (Fig. 3.4). The GLOF event in May 2009 in Ventisquero Negro caused 
a significant decrease in turbidity over the years following the event (Fig. 3.4, black 
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Fig. 3.3  Light (blue) and temperature (red) vertical profiles of three different Andean Patagonian 
lakes. (a) and (b) have similar transparency (~Kd), but very different temperature profiles, (b) and 
(c) have similar temperature profiles, but (c) is less transparent. The yellow-shaded area represents 
the section averaged for the estimation of the irradiance of the mixed layer (Im). Note how Im 
changes with the variation in the temperature profile

vs. red lines). Analysis of satellite images with SoPI (SRL 2018) revealed an accel-
eration in the increase of the lake area from 2.5 ha year−1 (before GLOF, 1998–2009) 
to 3.5 ha year−1 after the event (2010–2016). The increase in lake size increased the 
glacial clay sinking, and thus decreased the amount of suspended solids that were 
transported by the Upper Manso River downstream and into lake Mascardi Tronador 
Arm (Bastidas Navarro et al. 2018) (Fig. 3.5).

The eruption of the Puyehue-Cordón Caulle in 2011 discharged massive amounts 
of ash and pumice into the surrounding landscape in Argentina, producing an 
increase in total suspended solids (1.5 to 8-fold) in the surrounding lakes (Modenutti 
et  al. 2013b). However, no differential specific absorption of the different light 
wavelengths occurred due to ash input, thus effects of volcanic particle inputs on the 
water column were comparable to those of glacial clay, decreasing light by increas-
ing scattering, and thus light extinction coefficient. The result was a reduction of the 
euphotic zone during extended periods after the eruption occurred. Interestingly, 

E. Balseiro et al.



39

Fig. 3.4  Light vertical profiles of photosynthetically active radiation (PAR) along the gradient of 
the Tronador arm of Lake Mascardi. Black lines correspond to data before the Glacier Lake 
Outburst Flood (GLOF) occurred in 2009 and red lines to data after the event. Note that the lake 
becomes more transparent from E1 to E6, before and after the GLOF

glacial clay or volcanic ashes did not affect DOC concentration, however, volcanic 
ashes increased phosphorus in the water column.

6 � Deep Chlorophyll Maximum (DCM) 
as a Sensitive Variable

The high transparency (both to PAR and UVR, Fig. 3.2a) strongly reduces primary 
production and phytoplankton growth rates in the upper layers of the water column 
(Callieri et al. 2007). The net effect on the phytoplankton community is strong pho-
toinhibition with DNA damage (Villafañe et al. 2004). These upper layers are inhab-
ited by pigmented phytoplanktonic species that have high carotenoid content (Pérez 
et al. 2007). In addition, in many lakes, these upper layers are dominated by mixo-
trophic dark-pigmented ciliate species such as Stentor araucanus (Modenutti et al. 
2005). The success of this species in highly illuminated layers has been associated 
to the pigment stentorin and the high concentration of mycosporine-like aminoacids 
(MAAs) that contribute to the high performance of these ciliates under UVR 
(Modenutti et al. 1998; Tartarotti et al. 2004). In particular, this species profits from 
high irradiances and is particularly abundant when the epilimnion mixing layer is 
reduced by calm wind weather. In this case, differences in Im with an increase in 
mean light in the upper levels favored the prevalence of the dark ciliate (Modenutti 
et al. 2008).

3  North Patagonian Andean Deep Lakes: Impact of Glacial Recession and Volcanic…
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Fig. 3.5  Satellite photographs of Lake Mascardi. RGB composites of the surface reflectance (ρs, 
Level-2) in all available wavelengths based on the atmospheric correction procedure using 
ACOLITE Python (https://github.com/acolite/acolite). Sensors used: Landsat 5 (L5/TM), Landsat 
7 (L7/ETM), and Landsat 8 (L8/OLI). Date format on each map: year-month-day (hh:ss UTC). 
The sequence shows the change in reflectance (due to glacier clay) A-E: before (years 1986, 1998, 
2000, 2005, and 2008), and F to I: after (2014, 2015, 2018, and 2021) the GLOF event

Because of the avoidance of high irradiances in the epilimnetic mixing layer, the 
distribution of phototrophic organisms throughout the water column results in the 
development of a meta-hypolimnetic deep chlorophyll maximum (DCM) located 
approximately at 1% of surface PAR (Pérez et  al. 2002; Modenutti et  al. 2004; 
Modenutti et  al. 2013a). The colonization of these deep levels by phototrophic 
organisms represents a trade-off between higher survival (decrease of UVR effect) 
and lower cell-specific primary production (low irradiance) (Modenutti et al. 2004). 
Static primary production experiments, both in situ and in experimental system 
incubations, showed that bright light is a major factor reducing primary production 
(Callieri et al. 2007) and that is not compensated by the addition of nutrients (N and 
P) (Modenutti et  al. 2013b). Although in lake experiments with light intensities 
below 10% of surface PAR (<200 μmol photon m−2 s−1), production increases sig-
nificantly (Modenutti et al. 2004), this condition is achieved within the mixing layer 
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where cells are dragged to higher damaging irradiances (Diehl 2002). Thus, in deep 
stratified lakes, primary production at these mixed levels remains low and increases 
only below the thermal gradient of the metalimnion. In fact, the development of 
DCM in North Patagonian Andean lakes, as in oceans and other deep lakes, has 
been associated with the existence of stable dim-illuminated metalimnetic layers 
(Kirk 1994; Sharples et al. 2001), and the variables that explained the DCM depth 
were the light extinction coefficients of PAR and 320  nm (Kd 320 and Kd PAR) 
(Modenutti et al. 2013a).

The low DOC concentration observed in these lakes causes that the underwater 
wavelength-specific absorption depends mainly on the water itself, and thus the 
light at the DCM is dominated by green and blue wavelengths of the visible light 
spectrum (Pérez et  al. 2002). For phototrophic organisms, this condition corre-
sponds to the blue spectral niche where phycoerythrin and chlorophyll b are the 
accessory pigments better adapted (Stomp et  al. 2007a, b; Holtrop et  al. 2021). 
Indeed, at this level, the contribution of photosynthetic accessory pigments, such as 
fucoxanthin, phycoerythrin, and chlorophyll b increased (Pérez et  al. 2007), and 
correspond to the observed increase in dinoflagellates, picocyanobacteria, and the 
Chlorella-bearing mixotrophic ciliate Ophrydium naumanni (Modenutti and 
Balseiro 2002; Modenutti et al. 2004; Callieri et al. 2007; Bastidas Navarro et al. 
2018). Thus, at the DCM, different competition and predator-prey relationships co-
occur. At these levels, autotrophs (both prokaryotes and eukaryotes) compete for 
light and nutrients, but at the same time, mixotrophs (i.e., nanoflagellates and cili-
ates) prey actively upon picocyanobacteria, other Eubacteria and Archaea (Modenutti 
et al. 2008). Furthermore, light is a decisive factor for clearance rate in ciliates and 
nanoflagellates. Thus, the vertical distribution of both predator and prey (picocya-
nobacteria) show a high coincidence (Modenutti and Balseiro 2002; Schenone 
et al. 2020).

The depth of the DCM appeared to be very sensitive to changes in light distribu-
tion. As mentioned for Lake Mascardi, the input of glacial clay produces light 
extinction coefficients to steadily decrease from the clay source (Upper Manso 
River) and along the Tronador Arm (Fig. 3.4). This light gradient causes, in turn, 
that DCM becomes deeper along the Tronador Arm (Hylander et al. 2011). As a 
consequence of the GLOF event in 2009 (Worni et al. 2012), the volume of the Lake 
Ventisquero Negro increased and the amount of suspended solids that were trans-
ported downstream into Lake Mascardi decreased. This condition resulted in a 
decrease in the light extinction coefficient (Fig. 3.4), and this higher transparency 
provoked the deepening of the DCM in the years after GLOF (Fig. 3.7) without 
changes in autotrophic species composition (Bastidas Navarro et al. 2018).

On the other hand, geological events such as volcanic eruptions can also increase 
the amount of suspended solids and decrease water transparency. During the 
Puyehue-Cordón Caulle eruption, the turbidity caused by ash fall triggered an upper 
position of DCM in the affected lakes. In Lake Espejo, the DCM moved upward 
from 40 m to 15 m depth (Fig. 3.6). However, ashes mainly composed of silica car-
ried other elements as P, Fe, etc. (Caneiro et  al. 2011) that changed the 
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Fig. 3.6  (a) Lake Espejo before and (b) 5 months after the eruption of Puyehue-Cordón Caulle 
volcanic complex. Note the change in the color of the lake water and the floating pumice near the 
lakeshore in (b). Lower panel: vertical light and chlorophyll a profiles: (c) before eruption and (d) 
5 months after the eruption of Puyehue-Cordón Caulle volcanic complex

phytoplankton composition favoring diatoms such as Tabellaria flocculosa and 
Aulacoseira granulata.

Summarizing, both suspended particles, glacial clay, and volcanic ashes have 
shown a similar effect decreasing water transparency, and consequently, provoking 
an upper location of the DCM. Again, the analysis of environments with glacial clay 
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inputs (before and after GLOF event) and volcanic ash influence indicated that PAR 
and UV-A (320  nm) wavelengths have major importance in determining DCM 
depth (Modenutti et  al. 2013a). These two catastrophic events provided unique 
opportunities to directly test the effect of changes in inorganic particle input and to 
relate different variables with previous lake conditions. These two events can be 
seen as natural experiments in which DCM was the most sensitive biological vari-
able that quickly and accurately reacted to changes in light extinction.

7 � Mixotrophic Nanoflagellates: Light and Feeding

Mixotrophy is a widespread strategy among phytoplankton in highly transparent 
environments, wherein mixotrophic nanoflagellates (MNF) account for up to 
80–90% of total phytoplanktonic cells. MNF have a combination of different feed-
ing strategies: while phagotrophy primarily provides nutrients and carbon for bio-
synthesis, photosynthesis provides carbon for both biosynthesis and respiration 
(Jones 2000; Berge et al. 2017; Hansson et al. 2019). In transparent lakes with high 
light and low nutrient concentration, small picoplanktonic cells (i.e., heterotrophic 
bacteria and picocyanobacteria) are favored since they are better competitors for P 
than large osmotrophic phytoplankton because of their higher surface/volume ratio 
(Gurung et  al. 1999; Danger et  al. 2007a, b). In this scenario, MNF have an 

Fig. 3.7  Changes in the depth of the deep chlorophyll maximum (DCM) along the transparency 
gradient of Lake Mascardi: black dots and line: before the Glacier Lake Outburst Flood (GLOF) 
event; red dots and lines: after GLOF event. Note the deepening of the DCM after the GLOF with 
the increase in transparency (see Fig. 3.4)
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advantage over strict osmotrophic algae by feeding on these P-rich picoplanktonic 
cells (i.e., bacterivory). Thus, MNF can obtain P by preying on competitors. MNF 
bacterivory is now recognized as a key pathway of energy and matter transfer 
through the planktonic food web (Mitra et al. 2014). Recent research has pointed 
out that mixotrophy is particularly successful in oligotrophic environments with 
high light-low nutrient conditions, whereas more productive, less illuminated sys-
tems would favor strict heterotrophic and phototrophic organisms (Fischer et  al. 
2017; Waibel et al. 2019). Phagotrophy by heterotrophic nanoflagellates (HNF) is 
negatively affected by suspended solids (Sommaruga and Kandolf 2014) while that 
of MNF has a more complex response because of their dependence on light 
(Schenone et al. 2020).

North Patagonian Andean deep lakes are very transparent, displaying different 
levels of turbidity due to glacial influence and volcanic activity, and both events 
produce an increase in suspended solids by the input of fine minerogenic solid par-
ticles affecting bacterivory. On the one hand, suspended solids reduce light penetra-
tion for phototrophic organisms for photosynthesis (Kirk 1994). Light has a 
non-monotonic effect on phytoplankton’s phototrophy, where too low or too high 
light levels will reduce carbon uptake (Jassby and Platt 1976; Litchman 2003). On 
the other hand, bacterivory studies have suggested a simple and monotonic light 
dependence on phagotrophy of MNF (Jones 1997; Flynn and Mitra 2009), however, 
these studies evaluated a narrow range of light intensities. Interestingly, under a 
wider light range, Schenone et al. (2020) also found a non-monotonic response of 
phagotrophy to light in MNF. Based on this evidence and combining bacterivory 
experiments in a gradient of suspended clay with modelling, it was observed that 
MNF bacterivory is affected by turbidity and particle interference (Fig.  3.8) 
(Schenone et al. 2020).

In addition to the effect on light penetration, volcanic particles release P to the 
environment. This would imply less competition for P among osmotrophic cells and 
trigger the dominance of autotrophy over mixotrophy (Fischer et al. 2017). After the 
2011 Puyehue-Cordón Caulle volcanic eruption, community-driven changes were 
observed in the dominance of MNF species in lakes with high suspended solids due 
to volcanic particles, from highly bacterivorous species (Chrysochromulina parva) 
(Gerea et al. 2019) to more phototrophic ones (Plagioselmis lacustris) (Modenutti 
et al. 2013b).

8 � Changes in C:P and Crustacean Zooplankton Distribution

The crustacean zooplankton communities of the North Patagonian Andean lakes are 
dominated by calanoid copepods of the Family Centropagidae, in particular by 
Boeckella gracilipes and B. michaelseni, and among cladocerans, Bosmina chilensis 
and B. longirostris and daphnids, like Ceriodaphnia dubia and Daphnia commutata 
(Menu Marque and Marinone 1986; Modenutti et  al. 2003; Balseiro et  al. 2007; 
Balseiro et al. 2008). In several lakes at very deep layers, the presence of predaceous 
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Fig. 3.8  Results of the modeling of mixotrophic nanoflagellate bacterivory under a light and gla-
cial clay gradient. The different curves represent the decay in bacterivory as glacier clay increases. 
For details in the model equations, see Schenone et al. (2020)

copepods, such as the calanoid Parabroteas sarsi and the cyclopoid Mesocyclops 
araucanus, was observed (Reissig et al. 2004; Modenutti et al. 2018b).

Crustacean zooplankton performance is commonly known to be affected by 
numerous environmental factors, such as fish predation pressure (Brooks and 
Dodson 1965), food particle size (Sommer 1989), and food quantity (Lampert 1977; 
Smith and Cooper 1982). Light penetration has a critical role in many features of 
oligotrophic aquatic ecosystems including zooplankton vertical distribution. In this 
sense, zooplankton evaded the higher level of the water column due to UVR and 
PAR+UVR (Alonso et al. 2004; Modenutti et al. 2018b). In addition, light can shape 
the composition of zooplanktonic communities through food quality. As stated by 
the “light:nutrient hypothesis” (LNH), the elemental carbon:phosphorus ratio (C:P) 
of primary producers is a result of the relation between light penetration in the water 
column and inorganic P availability (Sterner et al. 1997). Under high light intensi-
ties (PAR) and low levels of inorganic P, the nutrient limitation for phytoplankton 
becomes more severe, resulting in a disproportionate accumulation of C relative to 
P in algal tissue. Food quality has a strong influence on the fitness of herbivorous 
zooplankton (Sterner and Elser 2002). Hence, the variable C:P ratio in the phyto-
plankton, as a result of varying light intensities in the water column, represents a 
nutritional challenge for zooplankton. In turn, the elemental composition of zoo-
plankton varies significantly among grazer species and taxonomic groups. For 
example, copepods have and require relatively low amounts of P, while cladocerans, 
in particular Daphnia, have higher P content and requirements (Andersen and 
Hessen 1991; Hall et  al. 2004). As a consequence, the impact of different light 
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penetration (Fig. 3.2b) in P limited systems varies for different zooplankton species 
according to their somatic P requirements, via the indirect effect of light as a modu-
lator of food quality.

In glacier-influenced lakes inputs of finely ground rock particles cause a turbidity-
induced attenuation of photosynthetically active radiation (PAR) and, as stated by 
the LNH, affect the nutrient composition of phytoplankton. Such shifts in the effects 
of glacial clay on the light environment can be observed among lakes (i.e., Lake 
Frías compared with other lakes, Fig. 3.2b), and within a single lake as glacial clay 
settles, moving away from the source input (i.e., Lake Mascardi). The northernmost 
end of the Lake Mascardi receives the Upper Manso River with a high load of gla-
cial clay, generating a longitudinal gradient in light (Fig. 3.9). As predicted by the 
LNH, as light penetration increases with increasing distance from the clay input, 
also sestonic C:P increases, with a consequent decrease in food quality for grazers 
(Laspoumaderes et al. 2013; Laspoumaderes et al. 2017). Thus, there is a switch 
from the dominance of P-rich Daphnia in the turbid, low C:P area of the lake to the 
dominance of P-poor copepods as the distance from the clay input increases, turbid-
ity decreases and sestonic C:P is higher (Fig. 3.9).

In addition to the better food quality in the turbid area of the lake, also ultraviolet 
radiation (UVR) is attenuated. Stoichiometric constraints (high food C:P ratio) 
affect Daphnia’s capacity to respond to the oxidative stress caused by UVR (Balseiro 
et al. 2008). This means that in the more transparent end of the gradient with higher 
P limitation, the fitness of Daphnia is reduced by its inability to cope with the effect 
of UVR. Although the copepods could suffer a similar effect of food quality on cel-
lular defense (Souza et al. 2010), due to their lower P requirements, they experience 
a less severe stoichiometric imbalance than Daphnia.

Fig. 3.9  Schematic representation of the light gradient of the Tronador Arm of Lake Mascardi and 
zooplankton distribution. Note the change in the C:P ratio of phytoplankton and the concomitant 
change in the relative abundances of cladocerans and copepods along the gradient. Relative size of 
the C and P represent changes in C:P ratio
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The ingestion of particles, such as suspended clay, in concentrations over 
50 mg L−1, is known to reduce fecundity and survival in daphnids (Kirk and Gilbert 
1990), but the highest total suspended solids reported in Lake Mascardi were 
5 mg L−1. In this lake, Daphnia coexists with clay particles that have a net positive 
effect on their fitness (UVR protection, lower C:P food) over the negative effect that 
can pose a feeding interference. In an experimental clay gradient from 0 to 5 mg L−1, 
Laspoumaderes et  al. (2017) found that glacial clay alone is indeed a source of 
stress for Daphnia as it affects its enzymatic activities, which represents a feeding 
interference, and affects respiration rates. However, in the lake, this negative effect 
is overcome as clay decreases underwater light intensity (both PAR and UVR), 
which results in a better food quality and a decrease in UVR damage and visual fish 
predation.

Turbidity affects the foraging of visual planktivorous fishes (Vinyard and O’Brien 
1976; Gregory and Northcote 1993; Utne 1997). In particular, members of the 
Galaxiidae family (Galaxias maculatus and Aplochiton zebra) are important zoo-
plankton feeders in North Patagonian Andean deep lakes (Barriga et  al. 2002; 
Lattuca et al. 2007). While G. maculatus is not affected by turbidity (Stuart-Smith 
et al. 2007), A. zebra is strongly affected (Jönsson et al. 2011). In addition, eye-size 
growth trajectories in A. zebra differ between turbid and clear water environments 
(McDowall and Pankhurst 2005; Lattuca et al. 2007). In Lake Mascardi, A. zebra 
foraging success decreases as an effect of impaired vision and increasing difficulty 
in finding prey when the water gets more turbid (Jönsson et al. 2011). Thus, changes 
in suspended solid may also affect other trophic links between zooplankton 
and fishes.

9 � Volcanic Eruption and Cladoceran Disappearance

The eruption of the Puyehue-Cordón Caulle volcanic complex in 2011 discharged 
massive amounts of ash and pumice into the surrounding landscape in Argentina, 
producing an increase in total suspended solids in the surrounding lakes. Particle 
inputs from either glacial clay or volcanic ashes produce comparable effects on the 
water column, by generating a decrease in the underwater light penetration and in 
the depth of the DCM, and a consequent decrease in the C:P ratio of primary pro-
ducers. Remarkably, the two natural phenomena that seem similar have had con-
trasting effects on the zooplankton communities.

The deposition of volcanic ash in the lakes affected by the eruption caused a 
decrease in light and a decrease in sestonic C:P, the same as observed with glacial 
clay in Lake Mascardi. Before the volcanic eruption, zooplankton communities in 
lakes Espejo, Correntoso, and Nahuel Huapi (affected by the eruption) were domi-
nated by the copepod Boeckella gracilipes and Ceriodaphnia dubia as the dominant 
cladoceran, followed by Bosmina chilensis (Balseiro et al. 2007). However, in the 
summer following the eruption, Wolinski et al. (2013) observed an opposite shift in 
the zooplankton ensemble to the one observed in Lake Mascardi. Although ash 
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inputs generated a decrease in light penetration and a consequent decrease in the 
phytoplankton C:P ratio (such as glacial clay in Lake Mascardi), cladocerans disap-
peared and copepod populations decreased, but the latter only in the lake with the 
highest ash concentration.

Volcanic particles are very similar in size to glacial clay (Modenutti et al. 2013a), 
but they have a crystalline structure, mainly composed of silica, which grants abra-
sive features (Caneiro et al. 2011). Therefore, filter feeders ingest ash as they do 
with clay, but the damaging effect of ash is much stronger and occurs at lower con-
centrations than that of clay. Ash was observed to be captured by D. commutata 
during the feeding process, resulting in a gut completely filled with ashes, a strong 
decrease in food uptake, and physical gut damage (Fig. 3.10) (Wolinski et al. 2013).

Regardless of the better food condition generated by the lower light penetration 
and the inorganic P provided by the ashes, cladocerans could not deal with the 
ingestion of volcanic ashes. However, copepods seemed to suffer less due to their 
ability to select motile cells (Balseiro et al. 2001). While 5 mg L−1 of glacial clay is 
still a beneficial concentration promoting population growth in Daphnia (as reported 
for Lake Mascardi), ash concentration between 2 and 8  mg  L−1 was sufficiently 
harmful to affect the survival and reproduction of natural and experimental popula-
tions of cladocerans. Indeed, the experiments with 8 mg L−1 of ashes caused the 
complete disappearance of Daphnia populations within 5  days (Wolinski et  al. 
2013). As the sedimentation process occurred, ash concentrations decreased, favor-
ing population recovery, as observed in the following summer (18 months after the 
eruption). When the lakes recovered their original transparency with low total sus-
pended solids values, the cladoceran populations also returned to their historical 
abundances.

Fig. 3.10  Microphotographs of Daphnia commutata exposed to volcanic ashes in concentration 
from 0 to 8 mg L−1. (a) Without volcanic ashes, note the green color of the gut due to algae. (b, c) 
D. commutata exposed to increasing concentration of volcanic ashes ((b) 2  mg  L−1 and (c) 
5 mg L−1). Note the change in color of the gut in (b) that is filled with ashes and the intensive dam-
age in (c) (dead Daphnia)
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10 � Concluding Remarks

Long-term studies monitoring North Patagonian Andean deep lakes allowed us to 
analyze how different events affect internal lake processes and eventually how resil-
ient these lakes are to the input of inorganic particles and the consequent light 
changes. The most sensitive biological variable to these external factors is the loca-
tion of the DCM in the water column. This is of particular interest as chlorophyll is 
a very easy-to-measure variable, both in the laboratory or directly in the field by a 
portable fluorometer. Thus, this variable represents an important tool for lake moni-
toring since the depth of the DCM reacted quickly and reliably to changes in light 
extinction. However, important changes can occur considering the composition of 
the DCM because species react differently to particle interference (as shown for 
nanoflagellates) (Schenone et al. 2020) and to the addition of Si and P (as shown by 
the diatom increase after the volcanic eruption) (Modenutti et al. 2013b). Future 
scenarios of climate change include differences in optical light climate both decreas-
ing and increasing the diffuse extinction coefficient of lake water. Also, possible 
changes in land use with the increment of new roads and touristic center develop-
ments will affect the input of particles into the lakes with a possible loss of transpar-
ency. This will change the location of the DCM, and thus this parameter can be an 
invaluable tool for understanding lake dynamics and future production trends. 
Therefore, we encourage agencies to consider this parameter as a quick response of 
planktonic communities to changes in light conditions.

The relationship between light and nutrients is also determinant of the relative 
dominance of zooplankton taxa requiring different amounts of P in grazer assem-
blages and allows to predict shifts in grazer composition with changes in light and 
nutrient supplies (Elser et al. 2000; Hall et al. 2004; Laspoumaderes et al. 2013). 
How grazer assemblages react to changes in the light:nutrient environment does not 
only depend on their P requirements but also on the relationship between the type of 
particles that generate the light attenuation and their feeding strategy. Hence, the 
decrease in the performance of planktivorous fishes will affect the transference of 
secondary production to higher trophic levels, thus impacting the trophic web 
structure.
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