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Abstract. This paper considers synchronous discrete-time dynamical
systems on graphs based on the threshold model. It is well known that
after a finite number of rounds these systems either reach a fixed point
or enter a 2-cycle. The problem of finding the fixed points for this type
of dynamical system is in general both NP-hard and #P-complete. In
this paper we give a surprisingly simple graph-theoretic characterization
of fixed points and 2-cycles for the class of finite trees. Thus, the class
of trees is the first nontrivial graph class for which a complete char-
acterization of fixed points exists. This characterization enables us to
provide bounds for the total number of fixed points and pure 2-cycles. It
also leads to an output-sensitive algorithm to efficiently generate these
states.

1 Introduction

Synchronous discrete-time dynamical systems for information spreading received
a lot of attention in recent years. Often the following model is used: Let G be
a graph with an initial configuration, where each node is either black or white.
In discrete-time rounds, all nodes simultaneously update their color based on a
predefined local rule. The rule is local in the sense that the color associated with
a node in round t is determined by the colors of the neighboring nodes in round
t− 1. The main focus of the research so far has been on the stabilization time of
this process [19] and the dominance problem, e.g., how many nodes must initially
be black so that eventually all nodes are black [14]. These questions have been
considered for various classes of graphs. These discrete-time dynamical systems
are often based on the threshold model. In a simple version of this model a
node becomes black if at least a fraction of α of its neighbors are black and
white otherwise, α ∈ (0, 1) is a parameter of the model. In more elaborate
versions edges have weights and the local rules are based on the weighted fraction
of neighbors. The main property of these dynamical systems is that assuming
symmetric weights, the system has period 1 or 2 [8,15]. This means that such
a system eventually reaches a stable configuration or it toggles between two
configurations. Fogelman et al. proved that the stabilization time is in O(n2) [5].
Frischknecht et al. showed that this bound is tight, up to some poly-logarithmic
factor [6].
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In this paper we analyze a different aspect of discrete-time dynamical sys-
tems: The number and structure of fixed points and 2-cycles. This research is
motivated by applications of so called Boolean networks (BN) [10], i.e., discrete-
time dynamical systems, where each node (e.g., gene) takes either 0 (passive)
or 1 (active) and the states of nodes change synchronously according to regu-
lation rules given as Boolean functions. An example for a regulation rule is the
majority rule, i.e., α = 0.5. Since the problem of finding the fixed points of a BN
is in general both NP-hard and #P-complete [3] (see Sect. 2), it is interesting
to find graph classes, for which the number of fixed points can be determined
efficiently. We regard our work as a step in this direction. Interest in the set of
fixed points of BNs was also sparked by a result of Milano and Roli [12]. They
use BNs to solve the satisfiability problem (SAT) by defining a mapping between
a SAT instance and a BN and prove that BN fixed points correspond to SAT
solutions.

This paper provides a characterization of the set of stable configurations
(a.k.a. fixed points) and the set of states of period 2 (a.k.a. 2-cycles) for a given
finite tree based on its edge set. We do this for two versions of the thresh-
old model: minority and majority process. While the stabilization times for the
majority and minority process can differ considerably for a given graph (see
Fig. 1), the sets of stable configurations of a tree turn out to be closely related
for both process types. Our main contributions are as follows:

1. We identify a subset Efix(T ) of the power set of the edge set of a tree T
and show that the elements of Efix(T ) correspond one-to-one with the fixed
points of T . Efix(T ) is defined by a set of simple linear inequalities over
the node degrees. The fixed point corresponding to an element of Efix(T )
can be defined in simple terms. Efix(T ) has the hereditary property, i.e., if
X ∈ Efix(T ) then all subset of X are also elements of Efix(T ). This property
allows to define a simple output-sensitive algorithm AM to explicitly generate
all fixed points. This allows to prove upper bounds for the number of fixed
points. We also show that elements of Efix(T ) correspond to solutions of a
system of linear diophantine inequalities.

2. We characterize the configurations of period 2, where each node changes its
color in every round (a.k.a. pure configurations). As above we identify a sub-
set Epure(T ) of the power set of the edge set of T such that the elements of
Epure(T ) correspond one-to-one with the pure configurations of T . As above
the definition of Epure(T ) is based on simple linear inequalities and it has the
hereditary property. The 2-cycle corresponding to an element of Epure(T ) is
also defined in simple terms. Again this allows to define a simple algorithm
enumerating all 2-cycles and to prove upper bounds for their number. Inter-
estingly, Epure(T ) is a subset of Efix(T ).

3. Finally we look at general configurations with period 2. We show that for
each configuration c of this type each tree decomposes into subtrees, such
that c induces either a fixed point or a pure configuration on each subtree.
The subtrees allow to define a hyper structure of a tree, called the block tree.
As in previous cases we identify a subset Eblock(T ) of the power set of the
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edge set of a tree T and show that the elements of Eblock(T ) correspond one-
to-one with the block trees of T . Eblock(T ) is a subset of Efix(T ). Since a
tree can have several pure colorings, a block tree does not uniquely define
a coloring. We define a subclass of 2-cycles called canonical colorings and
prove that there is a direct correspondence between Eblock(T ) and canonical
colorings. The characterization of Eblock(T ) is not as simple as in the above
cases, since Eblock(T ) does not have the hereditary property.

All results are obtained for the minority and the majority model. A long version
of the paper including all proofs is available [17].

2 State of the Art

Most research on discrete-time dynamical systems on graphs consecrates one-
self to bounds of the stabilization time. Good overviews for the majority resp.
the minority process can be found in [19] resp. [13]. Rouquier et al. study the
minority process in the asynchronous model, i.e., not all nodes update their color
concurrently [16]. They show that the stabilization time strongly depends on the
topology and observe that the case of trees is non-trivial.

The analysis of fixed points of the majority or minority process received only
some attention. Královič determined the number of fixed points of a complete
binary tree for the majority process [11]. Agur et al. did the same for ring
topologies [2]. In both cases the number of fixed points is an exponentially small
fraction of all configurations.

Boolean networks have been extensively used as models for the dynamics of
gene regulatory networks. A gene is modeled by binary values, 0 or 1, indicating
two transcriptional states, either active or inactive, respectively. Each network
node operates by the same nonlinear majority rule, i.e., majority processes are
a particular type of BN [18]. The set of fixed points is an important feature of
the dynamical behavior of such networks [4]. The number of fixed points is a
measure for the general memory storage capacity of a system. Many fixed points
imply that a system can store a large amount of information, or, in biological
terms, has a large phenotypic repertoire [1]. However, the problem of finding the
fixed points of a Boolean network is in general both NP-hard and #P-complete
[3]. There are only a few theoretical results to efficiently determine this set [9].
Aracena determined the maximum number of fixed points in a particular class
of BN called regulatory Boolean networks [4].

3 Synchronous Discrete-Time Dynamical Systems

Let G(V,E) be a finite, undirected graph. A coloring c assigns to each node
of G a value of {0, 1} with no further constraints on c. Denote by C(G) the
set of all colorings of G, i.e., |C(G)| = 2|V |. A transition process M describes
the transition of one coloring to another, i.e., it is a mapping M : C(G) −→
C(G). Given an initial coloring c, a transition process produces a sequence of
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colorings c,M(c),M(M(c)), . . .. We consider two transition processes: Minority
and Majority process and denote the corresponding mappings by MIN and
MAJ . They are local mappings in the sense that the new color of a node
is based on the current colors of its neighbors. To determine M(c) the local
mapping is executed concurrently by all nodes. The transition from c to M(c)
is called a round. In the minority (resp. majority) process each node adopts the
minority (resp. majority) color among all neighbors. In case of a tie the color
remains unchanged. Formally, the minority process is defined for a node v as
follows:

MIN (c)(v) =

{
c(v) if

∣∣N c(v)(v)
∣∣ ≤

∣∣N1−c(v)(v)
∣∣

1 − c(v) if
∣∣N c(v)(v)

∣∣ >
∣∣N1−c(v)(v)

∣∣
N i(v) denotes the set of v’s neighbors with color i (i = 0, 1). The definition of
MAJ is similar, only the binary operators ≤ and > are reversed. Sometimes
a result holds for both processes. To simplify matters in these cases we use the
symbol M as a placeholder for MIN and MAJ . Figure 1 depicts a sequence
of colorings for MIN .

Fig. 1. For the initial coloring on the left MIN reaches after five rounds the coloring
shown on the right. MAJ reaches for the same initial coloring after one round a
monochromatic coloring.

In this paper we are interested in colorings with specific properties. Let c ∈
C(G). If M(c) = c then c is called a fixed point. It is called a 2-cycle if M(c) �= c
and M(M(c)) = c. A 2-cycle is called pure if M(c)(v) �= c(v) for each node v of
G. c is called monochromatic if all nodes have the same color, i.e., c(v) = c(w) for
all v, w ∈ V . c is called independent if the color of each node is different from the
colors of all its neighbors. Clearly, a monochromatic (resp. independent) coloring
is a fixed point for the majority (resp. minority) process. An edge (v, w) is called
monochromatic for c if c(v) = c(w) otherwise it is called multichromatic.

For a mapping M denote by FM(G), C2
M(G), and PM(G), the set of all

c ∈ C(G) that constitute a fixed point, a 2-cycle, or a pure coloring for M. If c
belongs to one of these sets the complementary coloring and M(c) also belong
to this set. To cope with this fact we also define the sets FM(G)+, C2

M(G)+, and
PM(G)+ as the subsets of those colorings of the corresponding sets which assign
to a globally distinguished node v∗ color 0. Hence, if c ∈ FM(G) then either c
or the complement of c is in FM(G)+.



Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 269

3.1 Notation

Let T (V,E) be a finite, undirected tree with n = |V |. For F ⊆ E let CT (F ) be
the set of connected components of T\F . We define a tree TF with nodes CT (F )
and edges F . An edge of (u,w) ∈ F connects components T1, T2 ∈ CT (F ) if and
only if u ∈ T1 and w ∈ T2. For F ⊆ E and v ∈ V denote the number of edges in
F incident to v by Fv.

The nodes of a nontrivial tree T can be uniquely partitioned into two subsets,
such that the nodes of each subset form an independent set. In the following we
denote these independent subsets by I0(T ) and I1(T ). To enforce unambiguous-
ness when dealing with these subsets we demand that v∗ is contained in I0(T ).
A star graph is a tree with n−1 leaves. The maximal degree of a tree is denoted
by Δ. We denote the nth Fibonacci number by Fn, i.e., F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2. For a set S we denote by P(S) the power set of S, i.e., the
set of all subsets of S.

4 Fixed Points

In this section we provide a characterization of FM(T ) with respect to subsets
of E. In particular; we identify a set Efix(T ) ⊂ P(E) and define a bijection
Bfix between Efix(T ) and FM(T )+. Efix(T ) �= ∅ since ∅ ∈ Efix(T ). This shows
that every tree has at least one fixed point. The definition of Bfix is different for
MIN and MAJ . These results allow to characterize the fixed points of paths.
In the second subsection we prove an upper bound for |FM(T )| in terms of n
and Δ. For the case of paths we give the exact numbers. In the last part we
provide an output-sensitive algorithm to enumerate all fixed points.

4.1 The Bijection Bf ix

It is easy to see that for c ∈ FMIN (T ) nodes adjacent to edges monochromatic
for c have degree at least two, moreover at most one half of the adjacent edges
of each node are monochromatic for c. Surprisingly the inverse of this statement
is true in general and forms the basis for defining the bijection Bfix: If F is a
subset of the edges of T such that nodes adjacent to edges in F have degree at
least two and at most one half of the adjacent edges of each node are in F then
F uniquely defines a fixed point of T for M.

Lemma 1. Let T be a tree, c ∈ FM(T ), and F the set of monochromatic (resp.
multicolored) edges (u,w) ∈ E if M = MIN (resp. M = MAJ ). If (u,w) ∈ F
then degT (u) ≥ 2 and degT (w) ≥ 2. Furthermore, Fv ≤ degT (v)/2 for each node
v of T .

Proof. Assume M = MIN , the other case is proved similarly. Then∣∣∣N1−c(u)
T (u)

∣∣∣ ≥
∣∣∣N c(u)

T (u)
∣∣∣ ≥ 1 for (u,w) ∈ F . Thus, degT (u) =

∣∣∣N c(u)
T (u)

∣∣∣ +∣∣∣N1−c(u)
T (u)

∣∣∣ ≥ 2. Similarly degT (w) ≥ 2. Let v ∈ V . Then
∣∣∣N c(v)

T (v)
∣∣∣ ≤∣∣∣N1−c(v)

T (v)
∣∣∣ since c ∈ FM(T ), i.e., deg(v) ≥ 2

∣∣∣N c(v)
T (v)

∣∣∣ = 2Fv. 
�
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The last lemma motivates the following definition of Efix(T ). Note that
Efix(T ) satisfies the hereditary property

Definition 1. Let T be a tree. E2(T ) denotes the set of edges of T where each
end node has degree at least two. F ⊆ E2(T ) is called legal if Fv ≤ deg(v)/2 for
each node v. Efix(T ) denotes the set of all legal subsets of a tree T .

Theorem 1. For a tree T there exists a bijection Bfix between Efix(T ) and
FM(T )+.

Proof. Assume M = MIN . Let F ∈ Efix(T ). We define a coloring cF ∈
FMIN (T ). Let T ∗ ∈ CT (F ) with v∗ ∈ T ∗. Let cF (v∗) = 0 and extend cF to
an independent coloring of T ∗, e.g., by using breadth-first search. This uniquely
defines cF on T ∗. We extend cF successively to a coloring with cF ∈ FMIN (T )+.
While there exists an already colored node u that has an uncolored neighbor do
the following. Let T1 ∈ CT (F ) with u ∈ T1, N1 = NT1(u), and N2 = NT (u) \N1.
All nodes in N1 have color 1− cF (u) and Fu = |N2|. No node of N2 has yet been
assigned a color. By assumption we have |N2| ≤ degT (u)/2. Hence, |N2| ≤ |N1|.
Set cF (w) = cF (u) for all w ∈ N2. For each w ∈ N2 let Tw ∈ CT (F ) with w ∈ Tw.
Extend cF to an independent coloring on each Tw. Then

∣∣∣N cF (u)
T

∣∣∣ ≤
∣∣∣N1−cF (u)

T

∣∣∣.
Clearly this uniquely defines cF and cF ∈ FMIN (T )+. Now we can define
Bfix(F ) = cF for each F ∈ Efix(T ).

Let F1 �= F2 ∈ Efix(T ) and e = (u,w) ∈ F1 \ F2. Then cF1(w) = cF1(u) and
cF2(w) �= cF2(u). Hence, cF1 �= cF2 . Thus, Bfix(F ) is injective. Next, we prove
that Bfix is surjective, i.e., for every c ∈ FMIN (T )+ there exists Fc ∈ Efix(T )
such that Bfix(Fc) = c. For c ∈ FMIN (T )+ let Fc = {(u,w) ∈ E | c(u) =
c(w)}. Then Fc ∈ Efix(T ) by Lemma 1. By the first part of this proof we have
BT (Fc) ∈ FMIN (T )+. Let v ∈ T ∗ and u ∈ NT ∗(v). Then c(u) �= c(v), otherwise
u �∈ T ∗. Hence, BT (Fc) is for T ∗ independent. Since cFc

(v∗) = c(v∗) = 0 we
have BT (Fc)(v) = c(v) for all v ∈ T ∗. Next we repeat this argument for all
T̂ ∈ CT (Fc). Thus, c and BT (Fc) define the same coloring of T , i.e., BT (Fc) = c.


�

Theorem 1 implies the following two results.

Corollary 1. Let T be a tree. The minority process has an independent fixed
point. It has a non-independent fixed point if and only if T has at least two
inner nodes. The majority process has a monochromatic fixed point. It has a
non-monochromatic fixed point if and only if T has at least two inner nodes.

Corollary 2. A coloring of a path is a fixed point of the minority (resp. major-
ity) process if and only if each node has at least one neighbor with a different
(resp. same) color.

4.2 Counting Fixed Points

Theorem 1 allows to compute the number of fixed points in specific cases. If
Δ = n − 1 (resp. Δ = n − 2) then |FMIN (T )| = 2 (resp. |FMIN (T )| = 4).
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Furthermore, |FMIN (T )| ≤ 8 if Δ = n − 3. To get more general results we
describe an algorithm AM to generate all fix points of a given tree T . We start
with node v∗ and color it with 0. Algorithm AM is recursive and extends a
partial coloring by coloring all uncolored neighbors of an already colored node.
In this context a partial coloring is a coloring of a subset of the nodes of T with
the following property: Let v be an already colored node. Firstly, all nodes on
the path from v∗ to v in T are also colored. Secondly, if a neighbor of v other
than the one closer to v∗ is colored, then all neighbors of v are colored.

The details of a recursive call for the minority process, i.e., AMIN are as
follows. Given a partial coloring c, a single invocation generates several exten-
sions of c, all of them are again partial colorings covering more nodes. Let v
be an already colored node that has an uncolored neighbor. First, each uncol-
ored neighbor of v that is a leaf gets the complementary color of v. Then v has
r = deg(v) −

∣∣N0(v)
∣∣ −

∣∣N1(v)
∣∣ uncolored neighbors. Let U be the set of the

uncolored neighbors of v, note none of them is a leaf. We color N̂0 (resp. N̂1) of
these r neighbors with color 0 (resp. 1), i.e., r = N̂0 + N̂1. In order to produce
a fixed point the following inequality must be satisfied:∣∣∣N c(v)(v)

∣∣∣ + N̂c(v) ≤
∣∣∣N1−c(v)(v)

∣∣∣ + N̂1−c(v) =
∣∣∣N1−c(v)(v)

∣∣∣ + r − N̂c(v).

Hence,

N̂c(v) ≤
r +

∣∣N1−c(v)(v)
∣∣ −

∣∣Nc(v)(v)
∣∣

2
. (1)

Let
r0 = min

(
�(r +

∣∣N1−c(v)(v)
∣∣ −

∣∣Nc(v)(v)
∣∣)/2, r) . (2)

For i = 0, . . . , r0 we extend c by coloring a subset S of U of size i with color c(v)
and the remaining nodes U \ S with color c(v) − 1. This way we get

∑r0
i=0

(
r
i

)
extended partial colorings. AMIN is applied to each of these extensions and
terminates when all nodes are colored. Clearly, the resulting colorings are fixed
points and all fixed points are generated this way. Algorithm AMAJ differs only
in two places. Firstly, uncolored neighbors of v that are leaves gets the same color
as v. Secondly, in Eq. (1) operator ≥ must be replaced by ≤ and the assignment
of colors to nodes in U is reversed.

Next we prove an upper bound for |FM(T )|. According to Corollary 1 each
tree has at least two fixed points. A star graph is an extreme case, because it
only has two fixed points. The other extreme are paths as shown in this section.

Lemma 2. Let T be a tree with a path v0, v1, v2, v3 such that deg(v0) = 1 and
deg(v1) = deg(v2) = 2. Let T 0 = T \ v0 and T 1 = T 0 \ v1. Then |FM(T )| =∣∣FM(T 0)

∣∣ + ∣∣FM(T 1)
∣∣.

Theorem 2. Let T be a tree and P a path. Then |FM(T )| ≤ 2Fn−�Δ/2� and
|FM(P )| = 2Fn−1.

Figure 2 shows that the bound of Theorem 2 is not sharp. Let Bh be a
binary tree of depth h. The equation |FM(Bh)| = |FM(Bh−1)| (|FM(Bh−1)| +
2 |FM(Bh−2)|2) already contained in [11] directly follows from Theorem 1.
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Fig. 2. Three trees with five nodes having 4, 2, and 6 fixed points for MIN .

4.3 Generating Fixed Points

The fixed points of a tree T can be generated by iterating over all subsets
of E2(T ) and outputting the legal ones. The algorithm exploits the fact that
Efix(T ) has the hereditary property, i.e., if X ∈ E2(T ) is legal, all subset of
X are also legal. Algorithm 1 describes an output-sensitive algorithm running
in time O(n + |FM(T )| ×

∣∣E2(T )
∣∣). Since

∣∣E2(T )
∣∣ ≤ n the running time is in

O(n |FM(T )|). If E2(T ) = {e1, . . . , el} then the edges {e1, . . . , ei} for i = 0, . . . , l.
The inner foreach-loop always iterates over the list fixedPoints beginning at the
first entry.

Algorithm 1: Algorithm to generate a list of all fixed points of a tree
T (V,E)
E2 := {(u,w) ∈ E | deg(u) ≥ 2 and deg(w) ≥ 2};
fixedPoints := ∅; fixedPoints.append(∅);
foreach e ∈ E2 do

count := fixedPoints.size();
foreach X ∈ fixedPoints do

if {e} ∪ X is legal then
fixedPoints.append({e} ∪ X);

count := count − 1;
if count == 0 then

break;

return fixedPoints;

Theorem 3. Algorithm 1 computes all |FM(T )| fixed points of a tree T in time
O(n + |FM(T )| ×

∣∣E2(T )
∣∣) using O(

∣∣E2(T )
∣∣ × |FM(T )|) memory.

Proof. By Theorem 1 each legal subset of E2(T ) uniquely corresponds to a
fixed point of T . If a subset S of E2(T ) is not legal, then no superset of S is
legal and if S is legal then all subsets of S are legal. Therefore, the algorithm
generates all legal subsets of E2(T ). Let l =

∣∣E2(T )
∣∣. Denote by Si the set of

elements of the list fixedPoints at the beginning of the ith outer foreach-loop
and Sl+1 the elements of fixedPoints after the last execution. Then |S1| = 1
and |F(T )+| = |Sl+1|.
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Next we prove that (4/5) |Si+1| ≥ |Si| for i = 1, . . . , l. Let e = (u,w) ∈
E2(T ). For X ∈ Si denote the number of edges in X that are incident with a
node v by Xv. Let S̄ = Si and Ŝ = ∅. Let X ∈ S̄ with Xu + 1 > deg(u)/2 and
Xw + 1 > deg(w)/2. Let eu (resp. ew) be an edge of X that is incident with u
(resp. w). Then we remove X,X \ {eu, ew},X \ {eu}, and X \ {ew} from S̄ and
insert X,X \ {eu, ew},X \ {eu}, X \ {ew}, and X \ {eu, ew} ∪ {e} into Ŝ. We
repeat this process until there is no X in S̄ with the above property. Next, let
X ∈ S̄ with Xu + 1 > deg(u)/2 and Xw + 1 ≤ deg(w)/2. Let eu be an edge
of X that is incident with u. Then we remove X, and X \ {eu} from S̄ and
insert X,X \ {eu},X \ {eu} ∪ {e} into Ŝ. We repeat this process until there is
no X in S̄ with the above property. Finally, for the remaining X ∈ S̄ we insert
X,X ∪ {e} into Ŝ. Assume, that Si contains n1, n2 resp. n3 elements according
to the above classification, then |Si| = 4n1+2n2+n3 and

∣∣∣Ŝ∣∣∣ = 5n1+3n2+2n3.

Since Si+1 = Ŝ we have (4/5) |Si+1| ≥ |Si|. The overall number of executions of
the inner foreach-loop is

∑l
i=1 |Si|. Thus,

l∑
i=1

|Si| ≤ (4/5)
l+1∑
i=2

|Si| = (4/5)
l∑

i=1

|Si| + (4/5)(|Sl+1| − 1).

Hence,
∑l

i=1 |Si| ≤ 4(|Sl+1| − 1) < 4 |F(T )+|. In time O(n) we provide the
degrees of all nodes in an array. Also the test whether X ∪ e is legal and append
the entry to the list can be performed in time O(|X|). 
�

The bound (4/5) |Si+1| ≥ |Si| for all i can be used to prove the lower bound
of ((5/4)l with l =

∣∣E2(T )
∣∣ for |FM(T )|. We conjecture that a more detailed

analysis of the relation between |Si+1| and |Si| leads to a better bound.
Finally, we sketch an alternative approach for computing all fixed points. The

elements of Efix(T ) correspond to the solutions of a system of linear diophantine
inequalities Ax ≤ b. Here, A is a binary

∣∣E2(T )
∣∣×n matrix, where ai,j = 1 if node

i is incident with edge j of E2(T ) and bi = �degT (i)/2. Thus, by Theorem 1 the
set of fixed points corresponds to the solutions of Ax ≤ b. Unfortunately there
isn’t much work available for solving systems of linear diophantine inequalities
[7].

5 General 2-Cycles

In this section we analyze the structure of C2
M(T ). First we collect general results

about colorings from C2
MIN (T ). In the second subsection we consider the set

c ∈ PM(T ) of all pure colorings. We first prove properties of c and use these
to define the set Epure(T ) and define a bijection Bpure between Epure(T ) and
PM(T )+. Since Epure(T ) �= ∅ this shows that every tree has pure coloring. These
results immediately lead to a simple characterization pure coloring of paths. In
the third subsection we derive from Bpure an upper bound for |PM(T )| in terms of
n. Finally we consider the general case of 2-cycles. We prove that T decomposes
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into subtrees, such that c is either a fixed point or a pure coloring on each of
these subtrees. These subtrees provide the basis to define a hyper structure of a
tree, called the block tree. After analyzing properties of block trees we define a
set Eblock(T ) of subsets of the edge set of a tree T and show in Theorem 6 that
the elements of Eblock(T ) correspond one-to-one with the block trees of T . Since
Eblock(T ) does not have the hereditary property, we cannot use the approach of
Algorithm 1 to enumerate all block trees.

5.1 General Results

Let c ∈ C2
M(T ). We separate the nodes of T in two groups. A node u is called a

fixed node for c if M(c)(u) = c(u); it is called a toggle node for c if M(c)(u) �=
c(u). Note that in any case M(M(c))(u) = c(u). Denote by N i

f (u) (resp. N i
t (u))

the number of neighbors of u with color i that are fixed (resp. toggle) nodes for
c.

First, we provide a simple characterization of fixed and toggle nodes for
MIN , a corresponding result holds for MAJ .

Lemma 3. Let T be a tree and c ∈ C2
MIN (T ). A node u of T is a fixed node of

c if and only if
∣∣∣N1−c(u)

t (u) − N
c(u)
t (u)

∣∣∣ ≤ N
1−c(u)
f (u) − N

c(u)
f (u) and a toggle

node of c if and only if
∣∣∣N c(u)

f (u) − N
1−c(u)
f (u)

∣∣∣ < N
c(u)
t (u) − N

1−c(u)
t (u).

5.2 Pure 2-Cycles

If c ∈ PM(T ) then each node of T is a toggle node. In Theorem 4 we give
a characterization PM(T ), it allows to generate all pure 2-cycles and compute
|PM(T )|.

Lemma 4. Let T be a tree, c ∈ CM(T ). Then c ∈ PMIN (T ) (resp. c ∈
PMAJ (T )) if and only if N c(u)(u) > N1−c(u)(u) (resp. N c(u)(u) < N1−c(u)(u))
for each node u.

As in Sect. 4.1 we use properties of monochromatic edges to characterize
pure 2-cycles. Corollary 3 is similar to Lemma 1 and is used to define the set
Epure(T ).

Lemma 5. Let T be a tree, c ∈ PM(T ), and e = (u,w) ∈ E with c(u) �= c(w)
if M = MIN and c(u) = c(w) if M = MAJ . Let Tu (resp. Tw) be the subtree
of T \ e that contains u (resp. w). Then u and w have degree at least 3, Tu and
Tw contain at least 3 nodes, and c induces a pure 2-cycle on both subtrees.

Proof. We state the proof for M = MIN . Since c is pure we have N
c(u)
T (u) >

N
1−c(u)
T (u) and since c(u) �= c(w) we also have N

1−c(u)
T (u) ≥ 1. Hence, deg(u) =

N
c(u)
T (u) + N

1−c(u)
T (u) ≥ 3. Similarly deg(w) ≥ 3. Let v ∈ Tu. If v �= u then all

neighbors of v in T are in Tu and thus
∣∣∣N c(u)

Tu
(u)

∣∣∣ >
∣∣∣N1−c(u)

Tu
(u)

∣∣∣. Next consider
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the case v = u. Since c is pure, there exists in N(u) at least one more node with
color c(u) than with color c(w). Thus, u has at least two neighbors in Tu, hence
Tu contains at least three nodes. Since

∣∣∣N c(u)
Tu

(u)
∣∣∣ = ∣∣∣N c(u)

T (u)
∣∣∣ >

∣∣∣N1−c(u)
T (u)

∣∣∣ =∣∣∣N1−c(u)
Tu

(u)
∣∣∣ + 1 we have

∣∣∣N c(u)
Tu

∣∣∣ >
∣∣∣N1−c(u)

Tu
(u)

∣∣∣. Hence, Lemma 4 implies that
c induces a pure 2-cycle for MIN on Tu. The same is true for Tw. 
�

Corollary 3. Let T be a tree. If c ∈ PMIN (T ), Fc = {(u,w) ∈ E | c(u) �=
c(w)}, and T̂ ∈ CT (Fc) then

∣∣∣T̂ ∣∣∣ ≥ 3 and c induces a monochromatic coloring

on T̂ . If c ∈ PMAJ (T ), Fc = {(u,w) ∈ E | c(u) = c(w)}, and T̂ ∈ CT (Fc)
then

∣∣∣T̂ ∣∣∣ ≥ 3 and c induces an independent coloring on T̂ . Furthermore, (Fc)v <

degT (v)/2 for v ∈ V .

Corollary 3 motivates the following definition of Epure(T ). Note that
Epure(T ) satisfies the hereditary property and Epure(T ) = Efix(T ) if all degrees
of T are odd.

Definition 2. Let T be a tree. E3(T ) denotes the set of all edges of T where each
end node has degree at least three. F ⊆ E3(T ) is called legal if Fv < deg(v)/2
for each node v. Epure(T ) denotes the set of all legal subsets of E3(T ).

Theorem 4. For a tree T there exists a bijection Bpure between Epure(T ) and
PM(T )+.

Proof. Let F ∈ Epure(T ). We uniquely partition the nodes of TF into two inde-
pendent subsets I0 and I1 with v∗ ∈ I0. Assume M = MIN . Define a map-
ping CF : CT (F ) → {0, 1} by setting CF (T̂ ) = i if T̂ ∈ Ii. Based on CF

we define a coloring cF of T as follows cF (v) = CF (T̂ ) if v ∈ T̂ . Note that
cF (v∗) = 0. F uniquely defines cF , since for each node v there is a unique
T̂ ∈ CT (F ) that contains v. First, we prove that cF ∈ PMIN (T )+. For v ∈ V

let T̂ ∈ CT (F ) with v ∈ T̂ . Then N(v) ∩ T̂ = N
cF (v)
T (v). Since F ∈ Epure(T ) we

have
∣∣∣N cF (v)

T (v)
∣∣∣ > deg(v)/2. Thus, 2

∣∣∣N cF (v)
T (v)

∣∣∣ >
∣∣∣N cF (v)

T (v)
∣∣∣ + ∣∣∣N1−cF (v)

T (v)
∣∣∣

and hence,
∣∣∣N cF (v)

T (v)
∣∣∣ >

∣∣∣N1−cF (v)
T (v)

∣∣∣ for all v. Hence, cF ∈ PMIN (T )+

by Lemma 4. Now we can define Bpure(F ) = cF for each F ∈ Epure(T ). Let
F1 �= F2 ∈ Epure(T ) and e = (u,w) ∈ F1 \ F2. Then cF1(w) �= cF1(u) and
cF2(w) = cF2(u). Hence, cF1 �= cF2 , i.e., Bpure(F ) is injective. Next, we prove
that Bpure is surjective, i.e., for every c ∈ PMIN (T )+ there exists Fc ∈ Epure(T )
with Bpure(Fc) = c. For c ∈ PMIN (T )+ define Fc = {(u,w) ∈ E | c(u) �=
c(w)}. By Lemma 5 we have Fc ∈ E3(T ). Let v ∈ V . Since c is a pure 2-
cycle we have

∣∣∣N c(v)
T (v)

∣∣∣ >
∣∣∣N1−c(v)

T (v)
∣∣∣, i.e., deg(v) > 2

∣∣∣N1−c(v)
T (v)

∣∣∣. Since,

(Fc)v =
∣∣∣N1−c(v)

T (v)
∣∣∣ we have deg(v)/2 > (Fc)v. This yields Fc ∈ Epure(T ).

By the first part of this proof we have Bpure(Fc) ∈ PMIN (T )+. By Corol-
lary 3 Bpure(Fc) is for each tree T̂ ∈ CT (Fc) a monochromatic coloring with
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Bpure(Fc)(v) = c(v) for all v ∈ T̂ . Hence, c and Bpure(Fc) define the same color-
ing of T , i.e., Bpure(Fc) = c.

The proof for the case M = MAJ is similar. The main differences are that
we define cF such that it induces an independent coloring on each T̂ ∈ CT (F )
and in the second part we define Fc = {(u,w) ∈ E | c(u) = c(w)}. 
�
Corollary 4. Every tree T has a pure coloring for the minority and the majority
process. T has a non-monochromatic (resp. non-independent) pure coloring for
the minority (resp. majority) process if and only if there exist an edge (u,w) ∈ T
such that deg(u) ≥ 3 and deg(w) ≥ 3.

Proof. We provide the proof for M = MIN . The result follows from Theorem 4.
Since ∅ ∈ Epure(T ) we have c∅ ∈ FM(T )+. c∅ is a monochromatic coloring. T
has a non-monochromatic pure coloring if and only if Epure(T ) �= ∅. This is
equivalent to having an edge with the stated properties. 
�
Corollary 5. Let P be a path and c ∈ C(P ). Then c ∈ PMIN (P ) (resp. c ∈
PMAJ (P )) if and only if c(v) = c(w) (resp. c(v) �= c(w)) for each edge (v, w)
of P .

Since Epure(T ) ⊆ Efix(T ) we have PMAJ (T ) ⊆ FMIN (T ) and PMIN (T ) ⊆
FMAJ (T ). Figure 3 shows that there are trees T where PMAJ (T ) ⊂ FMIN (T )
and PMIN (T ) ⊂ FMAJ (T ).

Fig. 3. The left coloring is in FMAJ (T ) \ PMIN (T ), the right one is in FMIN (T ) \
PMAJ (T ).

5.3 Counting Pure 2-Cycles

Theorem 4 allows to determine the pure 2-cycles of a tree T , and thus, |PM(T )|.
Since Epure(T ) ⊆ Efix(T ) we have |PM(T )| ≤ |FM(T )| and |PM(T )| ≤
2Fn−�Δ/2� by Theorem 2. To generate all pure 2-cycles Algorithm 1 can be
adopted, note that Epure(T ) has the hereditary property. The difference is that
it uses E3(T ) and the corresponding notion of legal. The algorithm works in time
O(n + |PM(T )|

∣∣E3(T )
∣∣). Next we provide a better upper bound for |PM(T )|.

Let eT =
∣∣E3(T )

∣∣.
Lemma 6. Let T be a tree, then eT ≤ (n − 4)/2.

The last lemma implies |PM(T )| ≤ 21+(n−4)/2. This bound is purely based
on the bound for

∣∣E3(T )
∣∣. By utilizing the constraints imposed by Epure(T )

better bounds may be derived. The tree Hn with n ≡ 0(2) that consists of a
path of length (n + 2)/2 and a single node attached to each inner node of the
path (see Fig. 4) shows that the bound of Lemma 6 is sharp, but there is large
gap between

∣∣E3(Hn)
∣∣ and |Epure(Hn)|.
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Fig. 4. The graph H10, the three edges belonging to E3(H10) are depicted by solid
lines. In general we have

∣
∣E3(Hn)

∣
∣ = 2(n−4)/2 and |Epure(Hn)| = Fn/2.

5.4 Block Trees of 2-Cycles

In this section we consider general 2-cycles, i.e., those that have both fixed and
toggle nodes. We characterize the coarse grain structure of C2

M(T ), called the
block tree of T .

Definition 3. Let T be a tree and c ∈ C2
M(T ). Let Vf (resp. Vt) be the set of

fixed (resp. toggle) nodes of c and T f (resp. T t) the subgraph of T induced by Vf

(resp. Vt).

The next result shows that a 2-cycle c induces a structure on T that allows
to define a hypertree Bc(T ).

Lemma 7. Let T be a tree, c ∈ C2
M(T ), and T ′ a connected component of T f

(resp. T t). Then c induces a fixed point (resp. a pure 2-cycle) on T ′.

Proof. We assume M = MIN . Let T ′ be a connected component of T f

and u a node of T ′. With respect to T we have
∣∣∣N1−c(u)

t (u) − N
(u)
t (u)

∣∣∣ ≤
N

1−c(u)
f (u)−N

c(u)
f (u) by Lemma 3. Restricting c to T ′ gives N

c(u)
T ′ (u) = N

c(u)
f (u)

and N
1−c(u)
T ′ (u) = N

1−c(u)
f (u). Thus, N

1−c(u)
T ′ (u) ≥ N

c(u)
T ′ (u) and u is a fixed node

of T ′ for c. Hence, c is a fixed point for T ′. The result about components of T t

is proved similarly. 
�

Lemma 7 provides the base to define the block tree of a coloring c ∈ C2
M(T ).

Definition 4. Let T be a tree, c ∈ C2
M(T ), and T1, . . . , Ts the connected com-

ponents of T f and T t. The block tree Bc(T ) of T for c is a tree with nodes
{T1, . . . , Ts}, nodes Ti and Tj are connected if there exists (u,w) ∈ E with u ∈ Ti

and w ∈ Tj. A node Ti is called a fixed block (resp. toggle block) of Bc(T ) if Ti

is a connected component of T f (resp. T t).

Obviously Bc(T ) is a tree. Bc(T ) is uniquely defined, but different 2-cycles
can induce the same block tree (see Fig. 5). Each edge e of Bc(T ) connects a
fixed block with a toggle block, e uniquely corresponds to an edge of T . For
convenience we denote this edge also by e. If Ti is a toggle block then obviously
|Ti| ≥ 2, since all neighboring blocks are fixed blocks. Fixed blocks can consist
of a single node only (see Fig. 6).
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Fig. 5. Two colorings leading to the same block tree. For the minority process both
colorings define the same block tree. The left block node is a toggle node while the
right is a fixed point.

Fig. 6. A block tree consisting of two toggle blocks and one fixed block with a single
node.

The goal of this section is to present a characterization of the set of all block
trees for a given tree T similar to Theorem 4, i.e., the trees TB for which there
exists c ∈ C2

M(T ) such that TB = Bc(T ). The following theorem summarizes
properties of 2-cycles.

Theorem 5. Let T be a tree, c ∈ C2
M(T ), and e = (u,w) an edge of Bc(T ).

Then

1. If degT (u) = 2 then u is a fixed node.
2. min(degT (u), degT (w)) ≥ 2 and max(degT (u), degT (w)) ≥ 3.
3. If T0 is a node of Bc(T ), v ∈ T0, degT0(v) = 1 and degT (v) ≡ 0(2) then v is

a fixed node and T0 is a fixed block.
4. If T0 = {v} is a node of Bc(T ) then v is a fixed node, T0 is a fixed block, and

degT (v) is even.

Proof. Assume M = MIN , the proof for MAJ is similar. Assume that u is
toggle node. Then

∣∣N c(u)(u)
∣∣ >

∣∣N1−c(u)
∣∣. Thus, if

∣∣N1−c(u)
∣∣ > 0 then degT (u) ≥

3. Therefore,
∣∣N1−c(u)

∣∣ = 0 and
∣∣N c(u)(u)

∣∣ = 2. Since u is toggle node, both
neighbors must change their color, i.e., both are toggle nodes. This yields that
w is a toggle node. Contradiction, since e(u,w) is an edge of Bc(T ).

WLOG we assume that u is a fixed node while w toggles its color. Assume
that min(deg(u), deg(w)) = 1. If deg(u) = 1 then u cannot be a fixed
node because w toggles its color. Similarly, w cannot have degree 1. Hence,
min(deg(u), deg(w)) ≥ 2. Assume that deg(u) = deg(w) = 2. Then by the first
part, both nodes are fixed nodes. Contradiction. Assume that v is a toggle node.
Then N

c(v)
t = 1 and N

1−c(v)
t = 0. Hence, by Lemma 3 we have N

1−c(v)
f = N

c(v)
f

thus, degT (v) = 1 + 2N c(v)
f ≡ 1(2). Contradiction. Let T0 = {v}. If v is a

toggle node then all neighbors are fixed nodes. Hence, v is also a fixed node.
Contradiction. Lemma 3 yields that degT (v) is even. 
�
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The last theorem list properties of Bc(T ) for c ∈ C2
M(T ). As before we take

these properties to identify a set of edges Fc such that TFc
= Bc(T ). The following

two definitions provide a formal framework for this purpose.

Definition 5. Let T be a tree. E 2.5(T ) denotes the set of edges of T , where
one end node has degree at least two and the other has degree at least 3. For
F ⊆ E 2.5(T ) a component T̂ ∈ CT (F ) is called fixed if

∣∣∣T̂ ∣∣∣ = 1 or if there exists

v ∈ T̂ such that degT (v) ≡ 0(2) and degT̂ (v) = 1. Fix(T, F ) denotes the set of
all fixed components of CT (F ).

Definition 6. Let T be a tree. F ⊆ E 2.5(T ) is called legal if all components of
Fix(T, F ) are fully contained in I0(TF ) and if T0 ∈ CT (F ) with T0 = {v} then
degT (v) ≡ 0(2). Eblock(T ) denotes the set of all legal subsets of E 2.5(T ).

The next result reveals the significance of Eblock(T ) for block trees.

Lemma 8. Let T be a tree, c ∈ C2
M(T ), and Fc the edges of Bc(T ). Then Fc ∈

Eblock(T ).

Proof. Note that TFc
= Bc(T ). By Theorem 5.2 we have Fc ⊆ E 2.5(T ). By

construction of Bc(T ) and Theorem 5.4 and 5.3 we have Fix(T, Fc) ⊆ I0(TFc
).

Theorem 5.4 completes the proof. 
�

Definition 7. Let T be a tree. A coloring c ∈ C2
MIN (T ) is called canonical if c

induces a monochromatic (resp. independent) coloring on each connected com-
ponent of T t (resp. T f ). A coloring c ∈ C2

MAJ (T ) is called canonical if c induces
an independent (resp. monochromatic) coloring on each connected component of
T t (resp. T f ).

The next result lays the groundwork for our characterization of block trees.

Lemma 9. Let T be a tree and F ∈ Eblock(T ). There exits c ∈ C2
M(T ) with

Bc(T ) = TF such that c is canonical and I0 (resp. I1) is the set of fixed (resp.
toggle) nodes of c.

Proof. Assume M = MIN , M = MAJ is similar. The proof is by induction on
|F |. The case |F | = 0 is obvious, c is the monochromatic coloring. Let |F | > 0.
Let L ∈ TF be a leaf and e = (u,w) ∈ F such that w ∈ L. Then |L| ≥ 2 if
L ∈ I0(TF ) and |L| ≥ 3 if L ∈ I1(TF ). Remember that I0(TF ) contains the fixed
components of TF . By the definition of Eblock(T ) we have to consider four cases.

Case 1: L ∈ I0(TF ) and |L| > 2. We construct a tree T̃ as follows: Remove
from T all nodes of L except w and add a new neighbor v to w. Then

∣∣∣T̃ ∣∣∣ < |T |.
Then degT (u) > 2 otherwise L would not be in I0(TF ). Hence, F ⊆ E2.5(T̃ ).
Denote the leaf of CT̃ (F ) consisting of v and w by L̃. Thus, L̃ ∈ Fix(T̃ , F )
and Fix(T̃ , F ) = Fix(T, F ) ∪ L̃ \ L ⊆ I0(TF ). Let T0 = {v} ∈ CT̃ (F ). Then,
T0 ∈ CT (F ). Hence, degT (v) ≡ 0(2) by assumption. Since T0 ∈ I0(TF ) we also
have degT̃ (v) ≡ 0(2). This shows that T̃ and F satisfy the theorem’s assumption.
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Hence, by induction there exists a canonical coloring c̃ ∈ C2(T̃ ) with Bc̃(T̃ ) = TF

satisfying all properties. We can extend c̃ to a coloring c ∈ C2(T ) by setting
c(x) = c̃(x) for all nodes x ∈ T \ L, c(w) = c̃(w), and color the remaining nodes
of L in the canonical way for a fixed point.

Case 2: L ∈ I0(TF ) and |L| = 2. Let F̃ = F \ e. Let v ∈ L be a neighbor of
w and set T̃ = T \ v. Let Tu ∈ CT (F ) with u ∈ Tu. Then Tu ∈ I1(TF ) and thus,
|Tu| > 1, degTu

(u) ≥ 1 and degT (u) ≥ 3. Let T̃u ∈ CT̃ (F̃ ) with u ∈ T̃u. Then
w ∈ T̃u, T̃u ∈ I1(TF ) and Tu ⊂ T̃u. Clearly, F̃ ⊆ E2.5(T̃ ). Let T0 = {v0} ∈ CT̃ (F̃ )
with |T0| = 1. Then T0 ∈ CT (F ), thus degT (v0) ≡ 0(2). Hence, degT̃ (v0) ≡ 0(2).
Let T̂ ∈ CT̃ (F̃ ) and v0 ∈ T̂ with degT̂ (v0) = 1, degT̃ (v0) ≡ 0(2). Assume T̂ = T̃u.
Then v0 �= w since degT̃ (w) = 1 �≡ 0(2). Thus, T̂ = T̃u if v0 ∈ T̂ with degT̂ (v0) =
1 for some v0 �= w. Hence, T̂ ∈ Fix(T̃ , F̃ ) = Fix(T, F ) ⊆ I0(TF ) = I0(T̃F̃ ).

Therefore, T̃ and F̃ satisfy the theorem’s assumption. By induction there
exists a canonical coloring c̃ ∈ C2(T̃ ) with Bc̃(T̃ ) = TF̃ satisfying all properties.
Since T̃u ∈ I1(T ) all nodes of T̃u have the same color, thus N

1−c̃(u)
t (u) = 0 and

c̃(u) = c̃(w). By Lemma 3 we have
∣∣∣N c̃(u)

f (u) − N
1−c̃(u)
f (u)

∣∣∣ < N
c̃(u)
t (u).

We change c̃ to a coloring c of T as follows. First, we set c(x) = c̃(x) for all
x �∈ {w, v}. We apply Lemma 3 to prove that u is still a toggle node for c.

If N
c̃(u)
f (u) > N

1−c̃(u)
f (u) we set c(w) = 1 − c̃(w) and c(v) = c̃(w). If

N
c̃(u)
f (u) < N

1−c̃(u)
f (u) we set c(w) = c̃(w) and c(v) = 1 − c̃(w). At last

consider the case N
c̃(u)
f (u) = N

1−c̃(u)
f (u). If N

c̃(u)
t (u) = 2 then N

c(u)
t (u) = 1,

i.e., degTu
(u) = 1. Also degT̃ (u) = 2N c̃(u)

f (u) + 2, i.e., degT (u) ≡ 0(2). Hence,

Tu ∈ I0(TF ). Contradiction and thus N
c̃(u)
t (u) > 2. Set c(w) = 1 − c̃(w) and

c(v) = c̃(w). Then N
c(u)
t (u) > 1 and thus,

∣∣∣N c(u)
f − N

1−c(u)
f

∣∣∣ = 1 < N
c(u)
t (u).

Therefore, c has the desired properties. 
�

Theorem 6. For a tree T there exists a bijection Bblock between Eblock(T ) and
the set of block trees of T of the minority and the majority process.

Corollary 6. Let T be a tree where all nodes have odd degree. Then Eblock(T ) =
{F ⊆ E3(T ) | CT (F ) does not contain a component of size 1}. Let P be a path.
Then C2

M(P ) = PM(P ).

5.5 Counting Block Trees

The concept of Algorithm 1 can not be used to generate all elements of Eblock(T )
because Eblock(T ) does not have the hereditary property (see example in [17]).
Since Eblock(T ) ⊆ Efix(T ) each upper bound for |FM(T )| is also an upper bound
for

∣∣C2
M(T )

∣∣. A naive way to generate all block trees of a tree is to iterate over
the set Efix(T ) and test, whether an element is legal according to Definition 6.
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6 Conclusion and Open Problems

In this paper we provided characterizations of several categories of colorings of
trees for the minority and majority process in terms of subsets of the tree edges.
This means that the class of trees is the first nontrivial graph class for which
a complete characterization of fixed points for the minority/majority process
exists. This includes an algorithm to enumerate all fixed points and upper bounds
for the number of fixed points.

There are several open questions that are worth pursuing. Firstly, is it pos-
sible to characterize fixed points and pure colorings for other graph classes?
Clearly, the results for trees do not hold for general graphs, e.g. for cycles. But,
it might be possible to use the same approach, i.e., find suitable subsets of the
edge set similar to Efix.

Furthermore, the current work for trees can be improved. It would be inter-
esting to find better general upper bounds for |FM(T )| and |PM(T )| for trees.
Also, we believe that the run-time of Algorithm 1 can be improved. Moreover,
an algorithm to enumerate all block trees is an open problem. Finally, a full
characterization of all 2-cycles with the help of a subset of the power set of the
tree edges is still missing.

Another line of research is to consider random trees and compute the
expected number of fixed points and pure colorings. Using our results, it suf-
fices to compute the expected sizes of |Efix(T )| and |Epure(T )| for these trees.
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