
Merav Parter (Ed.)
LN

CS
 1

32
98 Structural Information

and Communication
Complexity
29th International Colloquium, SIROCCO 2022
Paderborn, Germany, June 27–29, 2022
Proceedings

Lecture Notes in Computer Science 13298

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Merav Parter (Ed.)

Structural Information
and Communication
Complexity
29th International Colloquium, SIROCCO 2022
Paderborn, Germany, June 27–29, 2022
Proceedings

Editor
Merav Parter
Weizmann Institute
Rehovot, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-09992-2 ISBN 978-3-031-09993-9 (eBook)
https://doi.org/10.1007/978-3-031-09993-9

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-09993-9

Preface

This volume contains the papers presented at SIROCCO 2022: 29th International
Colloquium on Structural Information and Communication Complexity held during
June 27–29, 2022, in Paderborn, Germany.

SIROCCO is devoted to the study of the interplay between structural knowledge,
communication, and computing in decentralized systems of multiple communicating
entities. Special emphasis is given to innovative approaches leading to better
understanding of the relationship between computing and communication.

SIROCCO 2022 received 28 submissions. Each submission was reviewed by at least
three Program Committee (PC) members. The committee decided to accept 16 papers.
The programalso included four keynote talks and four invited talks.Of the regular papers,
“Proof Labeling Schemes for Reachability-Related Problems in Directed Graphs” by
Yoav Ben Shimon, Orr Fischer, and Rotem Oshman received the Best Paper Award and
the Best Student Paper Award.

I would like to thank the authors who submitted their work to SIROCCO this year
and the PCmembers and subreviewers for their valuable reviews and comments. I would
also like to thank the keynote speakers, George Giakkoupis, Maurice Herlihy, and Gillat
Kol, and the invited talk speakers, Michal Dory, Laurent Feuilloley, Sebastian Forster
and Goran Zuzic, for their insightful talks. I am grateful to Christian Scheideler for his
featured talk as the recipient of the 2022 SIROCCO Innovation inDistributedComputing
Prize. The SIROCCO Steering Committee, chaired by Magnús Halldórsson, and the
local arrangements chair, Christian Scheideler, provided help and guidance throughout
the process. The EasyChair system was used to handle the submission of papers and to
manage the review process.

I hope that you enjoy reading these papers and find inspiration to further your own
research.

May 2022 Merav Parter

Organization

Program Committee

Dan Alistarh IST Austria, Austria
Silvia Bonomi Sapienza University of Rome, Italy
Sebastian Brandt CISPA Helmholtz Center for Information

Security, Germany
Trevor Brown University of Waterloo, Canada
Gregory Chockler University of Surrey, UK
Giuseppe Antonio Di Luna Sapienza University of Rome, Italy
Michael Dinitz Johns Hopkins University, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Michal Dory ETH Zurich, Switzerland
Thomas Erlebach Durham University, UK
Sebastian Forster University of Salzburg, Austria
Pierre Fraigniaud Université Paris Cité and CNRS, France
Rati Gelashvili University of Toronto, Canada
Olga Goussevskaia Federal University of Minas Gerais, Brazil
Tomasz Jurdzinski University of Wroclaw, Poland
Othon Michail University of Liverpool, UK
Rotem Oshman Tel Aviv University, Israel
Merav Parter (Chair) Weizmann Institute of Science, Israel
Andrzej Pelc Universite du Quebec en Outaouais, Canada
Sriram Pemmaraju University of Iowa, USA
Seth Pettie University of Michigan, USA
Giuseppe Prencipe Università di Pisa, Italy
Ivan Rapaport Universidad de Chile, Chile
Stefan Schmid University of Vienna, Austria
Lewis Tseng Boston College, USA
Jennifer Welch Texas A&M University, USA

Additional Reviewers

Almethen, Abdullah
Castaneda, Armando
Connor, Matthew
Davies, Peter
Fischer, Orr

Gańczorz, Adam
Miyano, Eiji
Montealegre, Pedro
Pai, Shreyas
Skretas, George

Smith, Tyler
Vargas Godoy, Karla
Wang, Wanliang

Contents

Local Mending . 1
Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti,
Joel Rybicki, and Jukka Suomela

Proof Labeling Schemes for Reachability-Related Problems in Directed
Graphs . 21

Yoav Ben Shimon, Orr Fischer, and Rotem Oshman

On the Computational Power of Energy-Constrained Mobile Robots:
Algorithms and Cross-Model Analysis . 42

Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters,
Nicola Santoro, and Koichi Wada

Randomized Strategies for Non-additive 3-Slope Ski Rental 62
Toni Böhnlein, Sapir Erlich, Zvi Lotker, and Dror Rawitz

Accelerated Information Dissemination on Networks with Local
and Global Edges . 79

Sarel Cohen, Philipp Fischbeck, Tobias Friedrich, Martin S. Krejca,
and Thomas Sauerwald

Phase Transition of the 3-Majority Dynamics with Uniform
Communication Noise . 98

Francesco d’Amore and Isabella Ziccardi

A Meta-Theorem for Distributed Certification . 116
Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca

The Red-Blue Pebble Game on Trees and DAGs with Large Input 135
Niels Gleinig and Torsten Hoefler

Local Planar Domination Revisited . 154
Ozan Heydt, Sebastian Siebertz, and Alexandre Vigny

Election in Fully Anonymous Shared Memory Systems: Tight Space
Bounds and Algorithms . 174

Damien Imbs, Michel Raynal, and Gadi Taubenfeld

Dispersion of Mobile Robots on Directed Anonymous Graphs 191
Giuseppe F. Italiano, Debasish Pattanayak, and Gokarna Sharma

viii Contents

Distributed Interactive Proofs for the Recognition of Some Geometric
Intersection Graph Classes . 212

Benjamin Jauregui, Pedro Montealegre, and Ivan Rapaport

Exactly Optimal Deterministic Radio Broadcasting with Collision
Detection . 234

Koko Nanahji

Lower Bounds on Message Passing Implementations
of Multiplicity-Relaxed Queues and Stacks . 253

Edward Talmage

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes
on Trees . 265

Volker Turau

Foremost Non-stop Journey Arrival in Linear Time . 283
Juan Villacis-Llobet, Binh-Minh Bui-Xuan, and Maria Potop-Butucaru

Author Index . 303

Local Mending

Alkida Balliu1 , Juho Hirvonen2, Darya Melnyk2(B) , Dennis Olivetti1 ,
Joel Rybicki3 , and Jukka Suomela2

1 Gran Sasso Science Institute, L’Aquila, Italy
{alkida.balliu,dennis.olivetti}@gssi.it

2 Aalto University, Espoo, Finland
{juho.hirvonen,darya.melnyk,jukka.suomela}@aalto.fi

3 IST Austria, Klosterneuburg, Austria
joel.rybicki@ist.ac.at

Abstract. In this work we introduce the graph-theoretic notion of
mendability : for each locally checkable graph problem we can define its
mending radius, which captures the idea of how far one needs to modify
a partial solution in order to “patch a hole.” We explore how mend-
ability is connected to the existence of efficient algorithms, especially in
distributed, parallel, and fault-tolerant settings. It is easy to see that
O(1)-mendable problems are also solvable in O(log∗ n) rounds in the
LOCAL model of distributed computing. One of the surprises is that in
paths and cycles, a converse also holds in the following sense: if a prob-
lem Π can be solved in O(log∗ n), there is always a restriction Π ′ ⊆ Π
that is still efficiently solvable but that is also O(1)-mendable. We also
explore the structure of the landscape of mendability. For example, we
show that in trees, the mending radius of any locally checkable problem
is O(1), Θ(log n), or Θ(n), while in general graphs the structure is much
more diverse.

Keywords: Mendability · Fault tolerance · LCL problems ·
Distributed algorithms · Parallel algorithms · Dynamic algorithms

1 Introduction

Naor and Stockmeyer [41] initiated the study of the following question: given a
problem that is locally checkable, when is it also locally solvable? In this paper, we
explore the complementary question: given a problem that is locally checkable,
when is it also locally mendable?

Warm-Up: Greedily Completable Problems. There are many graph prob-
lems in which partial solutions can be completed greedily, in an arbitrary order.
Several classic problems from the field of distributed computing fall into this cat-
egory: the canonical example is vertex coloring with Δ+1 colors in a graph with
maximum degree Δ. Any partial coloring can be always completed; the neigh-
bors of a node can use at most Δ distinct colors, so a free color always exists for
any uncolored node. This simple observation has far-reaching consequences:
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 1–20, 2022.
https://doi.org/10.1007/978-3-031-09993-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_1&domain=pdf
http://orcid.org/0000-0001-5293-8365
http://orcid.org/0000-0001-5614-8563
http://orcid.org/0000-0002-6600-6443
http://orcid.org/0000-0002-6432-6646
http://orcid.org/0000-0001-6117-8089
https://doi.org/10.1007/978-3-031-09993-9_1

2 A. Balliu et al.

– Any such problem can be solved efficiently not only in the centralized sequen-
tial setting, but also in distributed and parallel settings. For example, for
maximum degree Δ = O(1) any such problem can be solved in O(log∗ n)
communication rounds in the usual LOCAL model [40,43] of distributed com-
puting (we will explain this in detail in Sect. 5).

– Any such problem admits simple fault-tolerant and dynamic algorithms. One
can, for example, simply clear the labels in the immediate neighborhood of
any point of change and then greedily complete the solution.

Classic symmetry-breaking problems such as maximal matching and maximal
independent set also fall in this class of problems. However, there are problems
that admit efficient distributed solutions even though they are not greedily com-
pletable.

In this work, we introduce the notion of local mendability that captures a
much broader family of problems, and that has the same attractive features
as greedily completable problems: it implies efficient centralized, distributed,
and parallel solutions, as well as fault-tolerant and dynamic algorithms. Local
mendability can be seen as a formalization and generalization of the intuitive
idea of greedily completable problems.

Informal Example: Mending Partial Colorings in Grids. Let G be a large
two-dimensional grid graph; this is a graph with maximum degree 4. As discussed
above, 5-colorings in such a graph can be found greedily; any partial solution
can be completed. However, 4-coloring is much more challenging. Consider, for
example, the partial 4-coloring in Fig. 1a: the unlabeled node in the middle does
not have any free color left; this is not greedily completable. Also, the four
neighbors of the node do not have any other choices.

Fig. 1. Mending of 4-colorings in a two-dimensional grid: (a) A partial solution given
as input, with one hole (blue). (b) The hole enlarged. (c) This leads to a list color-
ing instance with lists of size 2 in a 4-cycle. (d) As 4-cycles are 2-choosable, we can
always complete the coloring in the hole. The orange shading indicates the radius-2
neighborhood of the hole, and by following this procedure, it is sufficient to modify the
partial input in this region to patch the hole; therefore we say that 4-coloring in grids
is 2-mendable. (Color figure online)

However, one can make the empty region a bit larger and create a 2 × 2 hole
in the grid, as shown in Fig. 1b. This way, we will always create a partial coloring

Local Mending 3

that is completable—this is a simple corollary of more general results by Chechik
and Mukhtar [19]. To see this, notice that each node in the 2 × 2 part has got
at least two possible choices left; hence we arrive at the task of list coloring of
a 4-cycle with lists of size at least 2 (Fig. 1c). It is known that any even cycle is
2-choosable [25], i.e., list-colorable with lists of size 2. We can therefore find a
feasible solution, e.g., the one shown in Fig. 1d.

Note that to complete the partial coloring in this setting, we had to change
the label of a node at distance 2 from the hole, but we never needed to modify the
given partial labeling any further than that. Therefore we say that 4-coloring
in grids is 2-mendable; informally, we can mend any hole in the solution
with a “patch” of radius at most 2. We can contrast this with the 5-coloring
problem, which is 0-mendable (i.e., greedily completable without touching any
of the previously assigned labels), and the 3-coloring problem, which turns out
to be not T -mendable for any constant T (i.e., there are partial 3-colorings that
no constant-radius patch will mend).

Remark 1. The above example is informal. We will later formalize the notion
of mendability so that it is well-defined for any locally checkable problem, not
just for the particularly convenient problem of graph coloring. This definition
will also change the precise mending radius of graph coloring by an additive +1.
Both the above informal view and the formalism are suitable for understanding
our results; we are, after all, primarily concerned about the asymptotics. We
return to this aspect later in Sect. 4.

Consequences of Local Mendability. Problems that are locally mendable
have several attractive properties. In particular, as the notion of mendability
does not depend on any specific computational model, it naturally lends itself
to algorithm design paradigms in centralized, parallel, and distributed systems.
We now discuss a few motivating examples.

Consider any graph problem Π that is T -mendable for a constant T ; we
formally define this notion in Sect. 4, but for now, the informal idea that holes
can be mended with radius-T patches will suffice. To simplify the discussion, we
will work in bounded-degree graphs, i.e., Δ = O(1), and assume that we have a
discrete graph problem in which nodes are labeled with labels from some finite
set of labels; 4-coloring grids is a simple example of a problem that satisfies all
these properties, with T = 2.

We can now make use of mendability as an algorithm design paradigm. First,
we obtain a very simple centralized, sequential linear-time algorithm for solving
Π: process the nodes in an arbitrary order and whenever we encounter a node
that has not been labeled yet, mend the hole with a constant-size patch. Mend-
ability guarantees that such a patch always exists; as there are only constantly
many candidates, one can find a suitable patch e.g. by checking each candidate.

A key observation is that we can mend two holes simultaneously in paral-
lel as long as the distance between them is at least 2T + 1; this ensures that
the patches do not overlap. This immediately suggests efficient parallel and dis-
tributed algorithms: find a set of holes that are sufficiently far from each other,

4 A. Balliu et al.

and patch all of them simultaneously in parallel. Concretely, one can first find
a distance-(2T + 1) coloring of the graph, and then proceed by color classes,
mending all holes in one color class simultaneously in parallel. For example,
in the usual LOCAL model [40,43] of distributed computing, this leads to an
O(log∗ n)-time algorithm for solving Π: first use e.g. Linial’s [40] graph color-
ing algorithm to find the constant-distance coloring in O(log∗ n) communication
rounds, and then there are constantly many color classes, each of which can be
processed in constant time (see Sect. 5).

Local mendability also directly leads to very efficient dynamic graph algo-
rithms that can maintain a feasible solution in constant time per update: sim-
ply clear the solution around the point of change and patch the hole locally.
This approach holds not only in the classic setting of centralized dynamic graph
algorithms [22,30], but also in so-called distributed input-dynamic settings [26],
where the communication topology remains static but the local inputs may
dynamically change.

Furthermore, local mendability can be used to design algorithms that can
recover from failures. It can, for example, be used as a tool for designing self-
stabilizing algorithms [23,24]: in brief, nodes can repeatedly check if the solution
is locally correct, switch to an empty label if there are local errors, and then
patch any holes in a parallel manner as sketched above.

Case Study: Mending as an (automatic) Algorithm Design Tool. So far,
we have seen that mendability can be used as a tool to design efficient algorithms;
but is this a powerful tool that makes algorithm design easier? The problem of
4-coloring grids provides a rather convincing example. Directly designing an
efficient 4-coloring algorithm e.g. for the LOCAL model is challenging; none of
the prior algorithms [13,31,42] are easy to discover or explain, but the above
algorithm that makes use of the concept of mending is short and simple.

In the full version of this work [9], we give another example: {1, 3, 4}-
orientation. In this problem, the task is to orient the edges in a two-dimensional
grid such that each (internal) node has indegree 1, 3, or 4. This problem served
as an example of computational algorithm synthesis in prior work [13]. It is a
nontrivial problem for algorithm designers. In fact, it is the most constrained
orientation problem that is still O(log∗ n)-round solvable—for any X � {1, 3, 4}
the analogous X-orientation problem is not solvable in O(log∗ n) rounds [13].

The prior O(log∗ n)-round algorithm for {1, 3, 4}-orientation was discovered
with computers [13]; this algorithm is in essence a large lookup table, and as such
not particularly insightful from the perspective of human beings. It moreover
made additional assumptions on the input (specifically, oriented grids).

With the help of mending we can design a much simpler algorithm for the
same problem. We show that {1, 3, 4}-orientations are locally mendable, and we
can patch them as follows:

– Let G be a two-dimensional grid, and let H be the subgraph induced by 3×3
nodes in G.

Local Mending 5

– Regardless of how the edges of G outside H are oriented, we can always orient
the edges of H such that all nodes of H have indegree 1, 3, or 4.

Note that we can mend any partial orientation by simply patching the orienta-
tions in a 3 × 3 square around each hole. This way, we arrive at a very simple
O(log∗ n)-round algorithm for the orientation problem. To show that this works,
it is sufficient to show the existence of a good orientation of H. And since there
are only 12 edges in H, it is quick to find a suitable orientation for any given
scenario.

We give the proof of the mendability of the {1, 3, 4}-orientation problem in
the full version of this work [9]. While we give a human-readable proof, we also
point out that one can quickly verify that {1, 3, 4}-orientations are mendable
using a simple computer program that enumerates all possible scenarios (there
are only 1296 cases to check). This demonstrates the power of mending also as
an algorithm synthesis tool: for some problems we can determine automatically
with computers that they are locally mendable, and hence we immediately also
arrive at simple and efficient algorithms for solving them.

2 Contributions and Key Ideas

Concept. Our first main contribution is the new notions of mendability and the
mending radius. While ideas similar to mendability have been used in numerous
papers before this work (see Sect. 3), we are not aware of prior work that has
given a definition of mendability that is as broadly applicable as ours:

– Our definition is purely graph-theoretic, without any references to any model
of computation.

– Our definition is applicable to the study of any locally verifiable graph prob-
lem; this includes all LCL problems (locally checkable labelings), as defined
by Naor and Stockmeyer [41].

We emphasize that with our definition it makes sense to ask questions like, for
example, what is the mendability of the minimal total dominating set problem
[21] or the locally optimal cut problem [8]. Moreover, we aim at a simple defini-
tion that is as robust and universal as possible. As it does not refer to any model
of computation, it is independent of the numerous modeling details that one
commonly encounters in distributed computing (deterministic or randomized;
private or public randomness; whether the nodes know the size of the network;
if there are unique identifiers and what their range is; whether the message
sizes are limited; synchronous or asynchronous; fault-free or fault-tolerant). The
formal definition of mendability is presented in Sect. 4.

From Solvability to Mendability. As our second main contribution, we
explore whether efficient mendability is necessary for efficient solvability. As
we have already discussed in Sect. 1, it is well-known and easy to see that local
mendability implies efficient solvability, not only in the centralized setting but

6 A. Balliu et al.

also in parallel and distributed settings. One concrete example is the following
result (here LCLs are a broad family of locally verifiable graph problems and
LOCAL is the standard model of distributed computing; see Sect. 4.1 for the
details): Let us consider an LCL problem Π. Then, if Π is O(1)-mendable, it
is also solvable in O(log∗ n) communication rounds in the LOCAL model. The
proof of this result is presented in Sect. 5.

However, we are primarily interested in exploring the converse: given e.g. an
LCL problem Π that is solvable in O(log∗ n) rounds in the LOCAL model, what
can we say about the mendability of Π? Is local mendability not only sufficient
but also necessary for efficient solvability?

It turns out that the answer to this is not straightforward. We first consider
the simplest possible case of unlabeled paths and cycles. This is a setting in
which local solvability is very well understood [13,18,41]. We show the following
connections between solvability and mendability:

1. There are LCL problems that are O(log∗ n)-round solvable but Ω(n)-
mendable in paths and cycles.

2. However, for every LCL problem Π that is O(log∗ n)-round solvable in paths
and cycles, there exists a restriction Π ′ ⊆ Π such that Π ′ is O(log∗ n)-
round solvable and also O(1)-mendable. There is an efficient algorithm that
constructs Π ′.

The second point states that we can always turn any locally solvable LCL prob-
lem into a locally mendable one, without making it any harder to solve. In this
sense, in paths and cycles, local mendability is equivalent to efficient solvability.
These results are discussed in Sect. 6.

Let us next consider a more general case. The first natural step beyond paths
and cycles is rooted trees; for problems similar to graph coloring (more precisely,
for so-called edge-checkable problems) their local solvability in rooted trees is
asymptotically equal to their local solvability in directed paths [18], and hence
one might expect to also get a very similar picture for the relation between local
mendability and local solvability. However, the situation is much more diverse:

1. First, the above idea of restrictions does not hold in rooted trees. We show
that for 3-coloring there is no restriction that is simultaneously O(log∗ n)-
round solvable and O(1)-mendable.

2. However, one can always augment a problem Π with auxiliary labels to con-
struct a new problem Π∗ that is O(log∗ n)-round solvable if Π is; furthermore,
any solution of Π∗ can be projected to a feasible solution of Π, and Π∗ is
O(1)-mendable. This works not only in rooted trees but also in general graphs.

Mendability on rooted trees is discussed in more detail in the full version of this
work [9]. The key open question in this line of research is the following:

Open question 1. Can we develop efficient, general-purpose techniques that can
turn any locally solvable problem into a concise and natural locally mendable
problem?

Local Mending 7

Landscape of Mendability. Our third main contribution is that we initiate
the study of the landscape of mendability, in the same spirit as what has been
done recently for the local solvability of LCL problems [7,12,16,17]. We ask
what are possible functions T such that there exists an LCL problem that is
T (n)-mendable in graphs with n nodes. In this work, we show the following
results:

1. In cycles and paths, there are only two possible classes: O(1)-mendable prob-
lems and Θ(n)-mendable problems.

2. In trees, there are exactly three classes: O(1)-mendable, Θ(log n)-mendable,
and Θ(n)-mendable problems.

3. In general bounded-degree graphs, there are additional classes; we show that
e.g. Θ(

√
n)-mendable problems exist.

These results are presented in Sect. 7. The key open question in this line of
research is to complete the characterization of mendability in general graphs:

Open question 2. Are there LCL problems that are Θ(nα)-mendable for all ratio-
nal numbers 0 < α < 1? For all algebraic numbers 0 < α < 1?

Open question 3. Are there LCL problems that are T (n)-mendable for some
T (n) that is between logω(1) n and no(1)?

An Application. We highlight one example of nontrivial corollaries of our
work: in trees, any o(n)-mendable problem can be solved in O(log n) rounds in
the LOCAL model (see Corollary 6).

3 Related Work

The underlying idea of local mending is not new. Indeed, similar ideas have
appeared in the literature over at least three decades, often using terms such as
fixing, correcting, or, similar to our work, mending. However, none of the prior
work that we are aware of captures the ideas of mendability and mending radius
that we introduce and discuss in this work.

Despite some dissimilarities, our work is heavily inspired by the extensive
prior work. The graph coloring algorithm by Chechik and Mukhtar [19] serves
as a convincing demonstration of the power of the mendability as an algorithm
design technique. Discussion on the maximal independent set problem in Kut-
ten and Peleg [38] and König and Wattenhofer [32] highlights the challenges of
choosing appropriate definitions of “partial solutions” for locally checkable prob-
lems.

Mending as an Ad-Hoc Tool. The idea of mendability has often been used as
a tool for designing algorithms for various graph problems of interest. However,
so far the idea has not been introduced as a general concept that one can define

8 A. Balliu et al.

for any locally checkable problem, but rather as specific algorithmic tricks that
can be used to solve the specific problems at hand.

For example, the key observation of Panconesi and Srinivasan [42] can be
phrased such that Δ-coloring is O(log n)-mendable. In their work, they show
how this result leads to an efficient distributed algorithm for Δ-coloring. Aboulk-
eret al. [1] and Chierichetti and Vattani [20] study list coloring from a similar
perspective. Barenboim [10] uses the idea of local correction in the context of
designing fast distributed algorithms for the (Δ + 1)-coloring problem.

Harris et al. [29] show that an edge-orientation with maximum out-degree
a∗(1 + ε) can be solved using “local patching” or, in other words, mending; a∗

here denotes the pseudo-arboricity of the considered graph. The authors first
show that this problem is O(log n/ε)-mendable. They then use network decom-
position of the graph and the mending procedure to derive an O(log3 n/ε) round
algorithm for a∗(1 + ε)-out-degree orientation.

Chechik and Mukhtar [19] present the idea of “removable cycles”, and show
how it leads to an efficient algorithm for 4-coloring triangle-free planar graphs
(and 6-coloring planar graphs). When one applies their idea to 2-dimensional
grids, one arrives at the observation that 4-coloring in grids is 2-mendable, as
we saw in the warm-up example of Sect. 1.

Chang et al. [15] study similar ideas from the complementary perspective:
they show that edge colorings with few colors are not easily mendable, and
hence mending cannot be used (at least not directly) as a technique for designing
efficient algorithms for these problems.

Mending with Advice. The work by Kutten and Peleg [37,38] is very close
in spirit to our work. They study the fault-locality of mending: the idea is that
the cost of mending only depends on the number of failures, and is independent
of the number of nodes. However, one key difference is that they assume that
the solution of a graph problem is augmented with some auxiliary precomputed
data structure that can be used to assist in the process of mending. They also
show that this is highly beneficial: any problem can be mended with the help of
auxiliary precomputed data structures. We note that the addition of auxiliary
labels is similar in spirit to the brute-force construction discussed in the full
version of this work [9] that turns any locally solvable problem into an equivalent
locally mendable one.

Censor-Hillel et al. [14] also comes close to our work with their definition
of locally-fixable labelings (LFLs). In essence, LFLs are specific LCLs that can
be (by construction) mended fast. In our work we seek to understand which
LCLs (other than these specific constructions) can be mended fast, and also
look beyond the case of constant-radius mendability.

Mending with the help of advice is also closely connected to distributed
verification with the help of proofs. The idea is that a problem is not locally
verifiable as such, but it can be made locally verifiable if we augment the solution
with a small number of proof bits; see e.g. Korman and Kutten [33,34], Korman
et al. [35,36], and Göös and Suomela [28].

Local Mending 9

Mending Small Errors. Another key difference between our work and that
of e.g. Kutten and Peleg [37,38] is that we want to be able to mend holes in
any partial solution, including one in which there is a linear number of holes. In
particular, mending as defined in this work is something one can use to efficiently
compute a correct solution from scratch.

In the work by Kutten and Peleg [37,38], the cost of fixing can be very high
if the number of faults is e.g. linear. The work by König and Wattenhofer [32]
is similar in spirit: they assume that holes are small and well-separated in space
or time.

Making Algorithms Fault-Tolerant. There is an extensive line of research
of systematically turning existing efficient distributed algorithms into dynamic
or fault-tolerant algorithms; examples include Afek and Dolev [2], Awerbuch et
al. [4], Awerbuch and Sipser [5], Awerbuch and Varghese [6], Ghosh et al. [27],
and Lenzen et al. [39]. This line of research is distinct from our work, where the
starting point is a property of the problem (mendability); then both efficient
distributed algorithms and fault-tolerant algorithms follow.

4 Defining Mendability

Starting Point: Edge-Checkable Problems. In Sect. 1, we chose vertex col-
oring as an introductory example. Vertex coloring is an edge-checkable problem,
i.e., the problem can be defined in terms of a relation that specifies what label
combinations at the endpoints of each edge are allowed. For such a problem the
notion of partial solutions is easy to define.

More precisely, let G = (V,E) be a graph, and let Π be the problem of finding
a k-vertex coloring in G; a feasible solution is a labeling λ : V → {1, 2, . . . , k}
such that for each edge {u, v} ∈ E, we have λ(u) �= λ(v). We can then easily
relax Π to the problem Π∗ of finding a partial k-vertex coloring as follows: a
feasible solution is a function λ : V → {⊥, 1, 2, . . . , k} such that for each edge
{u, v} ∈ E, we have λ(u) = ⊥ or λ(v) = ⊥ or λ(u) �= λ(v). Here we used ⊥ to
denote a missing label. The same idea could be generalized to any problem Π
that we can define using some edge constraint C:

– Π: function λ : V → Γ such that each edge {u, v} ∈ E satisfies
(
λ(u), λ(v)

) ∈
C.

– Π∗: function λ : V → {⊥} ∪ Γ such that each edge {u, v} ∈ E with ⊥ /∈
{λ(u), λ(v)} satisfies

(
λ(u), λ(v)

) ∈ C.

Note that our original definition Π was edge-checkable, and we arrived at a
definition Π∗ of partial solutions for Π such that Π∗ is still edge-checkable.
This is important—the problem definition itself remained as local as the original
problem.

However, most of the problems that we encounter e.g. in the theory of dis-
tributed computing are not edge-checkable; we will next discuss how to deal with

10 A. Balliu et al.

any locally verifiable problem. While most of our results deal with LCL prob-
lems, which are a specific family of locally verifiable problems (see Sect. 4.1), we
believe mendability will find applications also outside this family, and therefore
we define mendability in full generality for any locally verifiable problem.

Locally Verifiable Problems. In general, a locally verifiable problem Π is
defined in terms of a set of input labels Σ, a set of output labels Γ , and a local
verifier ψ. In problem Π we are given an input graph G = (V,E, σ) with a
vertex set V , an edge set E, and some input labeling σ : V → Σ, and the task is
to find an output labeling or solution λ : V → Γ that makes the verifier ψ happy
at each node v ∈ V . In general a verifier ψ is a function that maps a (G,λ, v) to
“happy” or “unhappy”, and we say that ψ accepts (G,λ) if ψ(G,λ, v) = happy
for all v ∈ V .

Finally, verifier ψ is a local verifier with verification radius r ∈ N, if ψ(G,λ, v)
only depends on the input and output within radius-v neighborhood of v. That
is, ψ(G,λ, v) = ψ(G′, λ′, v′) if the radius-r neighborhood of v in G (together
with the input and output labels) is isomorphic to the radius-r neighborhood of
v′ in G′. Note that we can also generalize the definitions in a straightforward
manner from node labelings to edge labelings. The verification radius of a locally
verifiable problem Π is the smallest r ∈ N such that Π admits a verifier with
verification radius r.

Now edge-checkable problems are clearly locally verifiable problems, with ver-
ification radius r = 1. But there are also numerous problems that are locally ver-
ifiable yet not edge-checkable; examples include maximal independent sets (note
that independence is edge-checkable while maximality is not) and more generally
ruling sets, minimal dominating sets, weak coloring (at least one neighbor has
to have a different label), distance-k coloring (nodes of the same color must have
distance more than k), and many other constraint satisfaction problems.

Partial Solutions of Locally Verifiable Problems. To capture the mend-
ability of a locally verifiable problem, we first need to have an appropriate notion
of partial solutions. Ideally, we would like to be able to handle any locally verifi-
able problem Π and define a relaxation Π∗ of Π with all the desirable properties
as what we had in the graph coloring example:

(P1) Problem Π∗ captures the intuitive idea of partial solutions for Π, and it
serves the purpose of forming the foundation for the notion of mendability
and mending radius of Π.

(P2) An empty solution (all nodes labeled with ⊥) is a feasible solution for Π∗.
(P3) Problem Π∗ is a relaxation of Π: any feasible solution of Π is a feasible

solution for Π∗.
(P4) A feasible solution for Π∗ without any empty labels is also a feasible solu-

tion for Π.
(P5) The definition of Π∗ is exactly as local as the definition of Π: if Π is

defined in terms of labelings in the radius-r neighborhoods, so is Π∗.

Local Mending 11

It turns out that there is a definition with all of these properties, and it is
surprisingly simple to state. Let Π be a locally verifiable problem with the set
Γ of output labels and local verifier ψ with verification radius r. By definition,
ψ(G,λ, v) only depends on the radius-r neighborhood of v.

We can define a new verifier ψ∗ that extends the domain of ψ in a natural
manner so that ψ∗(G,λ, v) is well-defined also for partial labelings λ : V → Γ ∗,
where Γ ∗ = {⊥} ∪ Γ , as follows:

If there is a node u within distance r from v with λ(u) = ⊥, let ψ∗(G,λ, v) =
happy. Otherwise let λ′ : V → Γ be any function that agrees with λ in the
radius-r neighborhood of v, and let ψ∗(G,λ, v) = ψ(G,λ′, v).

Note that such a λ′ always exists, and ψ∗ is independent of the choice of λ′, so ψ∗

is well-defined. Furthermore, if λ : V → Γ is a complete labeling, then ψ∗ and ψ
agree everywhere, and an empty labeling makes ψ∗ happy everywhere. Finally,
ψ∗(G,λ, v) only depends on the radius-r neighborhood of v. If we now define
problem Π∗ using the local verifier ψ∗, it clearly satisfies properties (P2)–(P5).
Let us now see how to use it to formalize the notion of mendability, and this
way also establish (P1).

Mendability of Local Verifiers. We first define mendability with respect
to a specific verifier ψ; as before, ψ∗ is the relaxation that also accepts partial
labelings. Our definition is minimalistic: we only require that we can make one
unit of progress by turning any given empty label into a non-empty label—this
will be both sufficient and convenient. The key definition is this:

Let λ : V → Γ ∗ be a partial labeling of G such that ψ∗ accepts λ. We say
that μ : V → Γ ∗ is a t-mend of λ at node v if:

1. ψ∗ accepts μ,
2. μ(v) �= ⊥,
3. μ(u) = ⊥ implies λ(u) = ⊥,
4. μ(u) �= λ(u) implies that u is within distance t of v.

That is, in μ we have applied a radius-t patch around node v. If there are
some other empties around v, they can be left empty (note that this will never
make mending harder, as empty nodes only help to make ψ∗ happy, and this
will not make mending substantially easier, either, as we will need to be able to
eventually also patch all the other holes).

Fix a graph family G of interest. We define the mending radius of ψ for the
entire family:

Definition 1. Let T : N → N be a function. We say that a verifier ψ is T -
mendable if for all graphs G ∈ G and all partial labelings λ accepted by ψ∗, there
exists a T (|V |)-mend of λ at v for any v ∈ V .

12 A. Balliu et al.

In general, the mending radius may depend on the number of nodes in the
graph; it is meaningful to say that, for example, ψ is Θ(log n)-mendable, i.e.,
the mending radius of ψ is Θ(log n). We use n = |V | throughout this work to
denote the number of nodes in the input graph.

Mendability of Locally Verifiable Problems. So far we have defined the
mendability of a particular verifier ψ. In general, the same graph problem Π
may be defined in terms of many equivalent verifiers ψ (for example, vertex
coloring can be locally verified with a local verifier ψ that checks the coloring
in the radius-7 neighborhoods, even if this is not necessary). Indeed, there are
problems for which it is not easy to define a “canonical” verifier, and it is not
necessarily the case that the smallest possible verification radius coincides with
the smallest possible mending radius. Hence we generalize the idea of mendability
from local verifiers to locally verifiable problems in a straightforward manner:

Definition 2. A problem Π is T -mendable if for some r ∈ N there exists a T -
mendable radius-r verifier for the problem Π. The mending radius of a problem
Π is T if Π is T -mendable but not T ′-mendable for any T ′ �= T such that
T ′(n) ≤ T (n).

Now we have formally defined the mendability of any locally verifiable prob-
lem, in a way that makes it applicable to any locally checkable problem. The
definition is a natural generalization of the informal idea of mendability for ver-
tex coloring discussed in the introduction. We refer to the full version of this
work [9] for some further discussion and examples.

4.1 Additional Definitions

LCL Problems. We have defined mendability for any locally verifiable prob-
lems, but a particularly important special case of locally verifiable problems is
the family of locally checkable problems (LCL problems), as defined by Naor and
Stockmeyer [41]. We say that a locally verifiable problem Π on a graph family
G is an LCL problem if we have that

1. the set Σ of input labels and the set Γ of output labels are both finite,
2. G is a family of bounded-degree graphs, i.e., there is some constant Δ such

that for any node v in any graph G ∈ G the degree of v is at most Δ.

Note that an LCL problem always has a finite description: we can simply list all
possible non-isomorphic labeled radius-r neighborhoods and classify them based
on whether they make the local verifier ψ happy.

LOCAL Model. Mendability is independent of any model of computing. How-
ever, the key applications for the concept are in the context of distributed graph
algorithms. For concreteness, we use the LOCAL model [40,43] of distributed

Local Mending 13

computing throughout this work. In this model, the distributed system is rep-
resented as a graph G = (V,E), where each node v ∈ V denotes a processor
and every edge {u, v} ∈ E corresponds to a direct communication link between
nodes u and v. At the start of the computation, every node receives some local
input.

The computation proceeds synchronously in discrete communication rounds
and each round consists of three steps: (1) all nodes send messages to their
neighbors, (2) all nodes receive messages from their neighbors, and (3) all nodes
update their local state. In the last round, all nodes declare their local output.
An algorithm has running time T if all nodes can declare their local output
after T communication rounds. The bandwidth of the communication links is
unbounded, i.e., in each round nodes can exchange messages of any size. We say
that a problem is T -solvable if it can be solved in the LOCAL model in T (n)
communication rounds.

5 From Local Mendability to Local Solvability

In this section, we show that, in some cases, a bound on the mending radius
implies an upper bound on the time complexity of a problem in the LOCAL
model. Hence, the concept of mendability can be helpful in the process of design-
ing algorithms in the distributed setting.

We start by proving a generic result, that relates mendability with network
decomposition; we will make use of the following auxiliary lemma.

Lemma 1. Let Π be an LCL problem with mending radius f(n) and verification
radius r = O(1). Then we can create a mending procedure that only depends on
the nodes at distance f(n) + r from the node u that needs to be mended, and it
does not even need to know n.

Proof. We first show that it is sufficient to inspect the (f(n) + r)-radius neigh-
borhood of u. We start from u and we inspect its (f(n)+r)-radius neighborhood,
where r = O(1) is the verification radius of Π. Since we know that there exists a
f(n)-mend at u, and since the output of a node v may only affect the correctness
of the outputs of the nodes at distance at most r from v, then it is possible to
find a correct mend by brute force. We now remove the dependency on n as
follows. We start by gathering the neighborhood of u at increasing distances and
at each step we check if there is a feasible mend by brute force. This procedure
must stop after at most f(n)+r steps, since we know that such a solution exists.

We now show that network decompositions can be used to relate the mend-
ing radius of a problem with its distributed time complexity. A (c, d)-network
decomposition is a partition of the nodes into c color classes such that within
each color class, each connected component has diameter at most d [3]. Also,
recall that Gi, the i-th power of G = (V,E), is the graph (V,E′) satisfying that
{u, v} ∈ E′ if and only if u and v are at distance at most i in G.

14 A. Balliu et al.

Theorem 1. Let Π be an LCL problem with mending radius k and verification
radius r. Then Π can be solved in O(cd(k + r)) rounds in the LOCAL model if
we are given a (c, d)-network decomposition of G2k+r.

Proof. We prove the claim by providing an algorithm for solving Π. We start by
temporarily assigning ⊥ to all nodes. Then, we process the nodes in c phases.
In phase i, we mend all nodes that are in components of color i, denoted Ci, in
parallel as follows. By Lemma 1, for each node v, we do not need to see the whole
graph to find a valid k-mend at v, but only nodes that, in G, are at distance at
most k + r from v. This implies that we can find a valid mend for all nodes of
each component by gathering the whole component and the nodes at a distance
of at most k + r from it. This mend only needs to modify the solution of nodes
inside the component and nodes at distance at most k from it. Since we are
given a network decomposition of G2k+r, in G, nodes of different components
are at distance strictly larger than 2k + r from each other. This implies that the
mend applied on some component C1 does not modify the temporary solution
of nodes at distance of at most k + r from some other component C2 �= C1.

Hence, we obtain the same result that we would have obtained by mending
each component of color i sequentially. Since we process all color classes and per-
form a valid mending, at the end, no node is labeled ⊥, and hence the temporary
labeling is a valid solution for Π. Each connected component has diameter at
most O(d(k + r)) in G, so each phase requires O(d(k + r)) rounds. The total
running time is O(cd(k + r)).

As a corollary of this theorem, we show that in order to prove an O(log∗ n)
upper bound on the time complexity of a problem, it is enough to prove that a
solution can be mended by modifying the labels within a constant distance.

Corollary 1. Let Π be an LCL problem with constant mending radius. Then
Π can be solved in O(log∗ n) rounds in the LOCAL model.

Proof. We prove the claim by providing an algorithm running in O(log∗ n). Let
k = O(1) be the mending radius of Π and r be its verification radius.

We start by computing a distance-(2k + r) coloring using a palette of c =
Δ2k+r + 1 = O(1) colors. This can be done in O(log∗ n) rounds by applying a
c-coloring algorithm to the (2k + r)-th power of G; there is a wide variety of
fast (Δ + 1)-coloring algorithms that we can use here, see, e.g., Barenboim and
Elkin’s book [11] on distributed graph coloring for more information.

Note that such a coloring is a (c, 1) network decomposition of G2k+r, and we
can hence apply Theorem 1 to solve Π in constant time.

The bound O(log∗ n) in the above corollary is the best possible: for example,
vertex coloring with Δ + 1 colors is an LCL problem with a constant mend-
ing radius, and solving this problem requires Ω(log∗ n) rounds in the LOCAL
model [40]. Indeed, there is a broad class of LCL problems with complexity
exactly Θ(log∗ n) rounds, and next we start to study their connection with mend-
ability.

Local Mending 15

6 From Local Solvability to Local Mendability

In Sect. 5, we saw that local mendability implies local solvability. In this section,
we consider the converse: does local solvability imply local mendability? First,
we show that mending can be much harder than solving by considering an edge-
checkable problem on undirected paths.

Theorem 2. There are LCL problems that are Θ(log∗ n)-round solvable and
Θ(n)-mendable.

Proof. Consider the following LCL problem Π on undirected paths: nodes can
either 2-color the path using labels {A,B}, or 3-color the path using labels
{1, 2, 3}, but they cannot mix the labels in the solution.

Solving this problem requires Θ(log∗ n) time, as it is necessary and sufficient
to produce a 3-coloring [40]. We now prove that this LCL is Θ(n)-mendable.
Consider a path P = (p0, p1, . . .) of length n = 2k + 1 for an even k, and the
following partial solution on this path:

A,B,A,B, . . . , A,B
︸ ︷︷ ︸

k

,⊥, A,B,A,B, . . . , A,B
︸ ︷︷ ︸

k

.

Note that there are two regions that are labeled with a valid 2-coloring, these
regions are separated by a node labeled ⊥, and the two 2-colorings are not
compatible, meaning that it is not possible to assign a label to pk such that the
LCL constraints are satisfied on both its incident edges.

We argue that mending this solution requires linear distance. Observe first
that mending this solution using labels {1, 2, 3} would require us to undo the
labelings of all nodes. This is because the LCL constraints require that no node
of the graph should be labeled {A,B} in order to use labels {1, 2, 3}. Since there
are nodes labeled {A,B} at distance k = Θ(n) from pk, changing the labels
of these nodes would require linear time. The remaining option is to mend the
solution by only using labels {A,B}. In this case, at least half of the nodes of
the path need to be relabeled in order to produce a valid 2-coloring and satisfy
the constraints.

6.1 Cycles

In Theorem 2, we showed that local solvability does not imply local mendability.
The main idea of the counterexample was to use two different sets of labels
{A,B} and {1, 2, 3} that cannot be both part of the same solution. In order
to make this problem efficiently mendable, we could remove A and B from the
set of possible labels and only allow the labels {1, 2, 3}. The restricted problem
would still be O(log∗ n)-solvable and, in fact, the new problem would be O(1)-
mendable.

We will now generalize this idea and show how to find a locally mendable
restriction for any LCL problem in the case of unlabeled paths and cycles. To

16 A. Balliu et al.

find such a restriction, we will make use of so-called diagram representations of
the LCL problems [13,18].

Let us first consider the simplest case: directed cycles with no inputs. In this
case we can represent any LCL problem Π as a directed graph D, where each
node represents a feasible neighborhood (a radius-r neighborhood that makes
the verifier happy) and a directed edge (x, y) represents that the neighborhoods
x and y are compatible (in a directed cycle, it is possible to have an edge (u, v)
such that the radius-r neighborhood of u is x and the radius-r neighborhood of
v is y) [13]. Here D is the diagram of Π.

Example 1. Consider first the problem of 3-coloring directed cycles. The feasible
neighborhoods are 121, 123, 131, 132, 212, . . . , 323; for example, 123 represents
a node with color 2 whose predecessor has color 1 and successor has color 3.
Compatible neighborhoods include e.g. (123, 231) and (123, 232). The diagram
has 12 nodes and 24 edges.

Next consider the problem of 2-coloring directed cycles. The only feasible
neighborhoods are 121 and 212, and the only compatible neighborhoods are
(121, 212) and (212, 121). The diagram has 2 nodes and 2 edges.

A key property of diagram representations is that directed walks in the dia-
gram capture feasible solutions: If we consider a feasible solution of Π in a
directed cycle, and walk along the cycle in the positive direction, the sequence
of radius-r neighborhoods that we encounter corresponds to a walk in D. Con-
versely, each walk in D represents one possible way to label a fragment of a
cycle.

Another key idea that we need is the notion of a flexible node [13]: we say
that node x in D is flexible if there is a natural number K such that there exists
a self-returning walk x � x of any length k ≥ K. Here the K is the flexibility
parameter of x.

Example 2. In the diagram of 3-coloring, all states are flexible, while in the
diagram of 2-coloring, none of the states are flexible (there is no self-returning
walk of any odd length).

It turns out that Π is O(log∗ n)-solvable if and only if there is a flexible state
in the diagram [13]. Now we are ready to prove the following result:

Theorem 3. Suppose Π is an LCL problem on directed cycles with no input.
If Π is O(log∗ n)-solvable, we can define a new LCL problem Π ′ with the same
round complexity, such that a solution for Π ′ is also a solution for Π, and Π ′

is O(1)-mendable.

Proof. Let D be the diagram of Π. Since Π is O(log∗ n)-solvable, D contains
at least one flexible state f . Let D′ be the strongly connected component of D
that contains f . Let Π ′ be the LCL induced by D′.

Note that all self-returning walks from f to f in D are also contained in D′;
hence f is flexible also in D′, and Π ′ can be solved in O(log∗ n) rounds. We still
need to show that Π ′ is O(1)-mendable.

Local Mending 17

Let K be the flexibility parameter of f in D′, let L be the number of nodes
in D′, and define R = K + 2L. Consider any two nodes x and y of D′. We claim
that there always exists a walk of length exactly R from x to y in D′. To see this,
recall that D′ is strongly connected, and therefore we can find a path x � f of
some length �1, and a path f � y of some length �2; these paths cannot have
repeated nodes, so we have �1 < L and �2 < L. Node f is flexible, so we can find
a walk f � f with exactly R − �1 − �2 > K edges. Put together, we have a walk
x � f � f � y of length R.

Now we show how to mend the solution at some node u that is labeled with ⊥.
First consider the case that there are nodes s and t such that s is before u along
the cycle, t is after u along the cycle, both s and t are labeled with ⊥, and
the distance from s to t is at most 2R + 2r. Then we can relabel the fragment
between s and t arbitrarily (by following some walk in D′).

Otherwise we can find nodes s and t such that s is before u along the cycle, t
is after u along the cycle, the distance between s and t is exactly R, and radius-r
neighborhoods of s and t do not contain any empty labels. Then we can find a
walk W of length R from x to y in diagram D′, and re-label the path between
s and t according to W .

In each case we have a T -mend at u with T ≤ 2R + 2r = O(1).

We can prove similar results also for directed paths, undirected cycles, and
undirected paths; we refer to the full version of this work [9] for the details, as
well as for discussion on the case of rooted trees.

7 Landscape of Mendability

In this section, we analyze the structure of the landscape of mendability in three
settings: (1) cycles and paths, (2) trees, and (3) general bounded-degree graphs.
We state the main results here; we refer to the full version of this work [9] for
the proofs.

We start with a general result that we can use to prove a gap in all of these
three settings.

Theorem 4. Let GGΔ
, GTΔ

, and GC , be, respectively, the family general graphs
of maximum degree Δ, the family of trees of maximum degree Δ, and cycles (in
this case Δ = 2). Let d(n) = n if Δ ≤ 2, and d(n) = log n otherwise. Let G
be one of the above families. There is no LCL problem Π defined on G that has
mending radius between ω(1) and o(d(n)).

Now the case of cycles and paths is fully understood. Theorem4 implies the
following corollaries:

Corollary 2. There is no LCL problem with mending radius between ω(1) and
o(n) on cycles.

Corollary 3. There is no LCL problem with mending radius between ω(1) and
o(n) on paths.

18 A. Balliu et al.

That is, there are only two possible classes: O(1)-mendable problems and
Θ(n)-mendable problems.

In the case of trees, Theorem 4 implies a gap between ω(1) and o(log n):

Corollary 4. There is no LCL problem with mending radius between ω(1) and
o(log n) on trees.

One cannot make the gap wider: there are problems that are Θ(log n)-
mendable. We can however prove another gap above Θ(log n):

Theorem 5. There is no LCL problem with mending radius between ω(log n)
and o(n) on trees.

The mendability landscape on general graphs looks different from the one on
cycles and trees. Theorem 4 again implies a gap between ω(1) and o(log n):

Corollary 5. There are no LCL problems with mending radius between ω(1)
and o(log n) on general graphs.

However, there is no gap between ω(log n) and o(n):

Theorem 6. There exist Θ(
√

n)-mendable LCL problems on general bounded-
degree graphs.

Finally, by putting together Theorems 1 and 5, we can derive the following
result:

Corollary 6. Let Π be an LCL problem defined on trees with o(n) mending
radius. Then Π can be solved in O(log n) rounds in the LOCAL model.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 840605. This work was supported in part by the Academy of
Finland, Grants 314888 and 333837. The authors would also like to thank David Har-
ris, Neven Villani, and the anonymous reviewers for their very helpful comments and
feedback on previous versions of this work.

References

1. Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed coloring in sparse
graphs with fewer colors. Electr. J. Comb. 26(4) (2019). https://doi.org/10.37236/
8395

2. Afek, Y., Dolev, S.: Local stabilizer. In: PODC (1997). https://doi.org/10.1145/
259380.259505

3. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast distributed network decom-
positions and covers. J. Parallel Distrib. Comput. 39(2), 105–114 (1996). https://
doi.org/10.1006/jpdc.1996.0159

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: FOCS (1991). https://doi.org/10.1109/SFCS.1991.185378

5. Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In:
FOCS (1988). https://doi.org/10.1109/SFCS.1988.21938

https://doi.org/10.37236/8395
https://doi.org/10.37236/8395
https://doi.org/10.1145/259380.259505
https://doi.org/10.1145/259380.259505
https://doi.org/10.1006/jpdc.1996.0159
https://doi.org/10.1006/jpdc.1996.0159
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1988.21938

Local Mending 19

6. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: FOCS (1991). https://doi.org/10.1109/
SFCS.1991.185377

7. Balliu, A., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Olivetti, D., Suomela,
J.: New classes of distributed time complexity. In: STOC (2018). https://doi.org/
10.1145/3188745.3188860

8. Balliu, A., Hirvonen, J., Lenzen, C., Olivetti, D., Suomela, J.: Locality of not-so-
weak coloring. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS,
vol. 11639, pp. 37–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24922-9 3

9. Balliu, A., Hirvonen, J., Melnyk, D., Olivetti, D., Rybicki, J., Suomela, J.: Local
mending (2022). https://arxiv.org/abs/2102.08703

10. Barenboim, L.: Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static,
dynamic, and faulty networks. J. ACM 63(5) (2016). https://doi.org/10.1145/
2979675

11. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and
recent developments. Morgan Claypool (2013). https://doi.org/10.2200/
S00520ED1V01Y201307DCT011

12. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: STOC
(2016). https://doi.org/10.1145/2897518.2897570

13. Brandt, S., et al.: LCL problems on grids. In: PODC (2017). https://doi.org/10.
1145/3087801.3087833

14. Censor-Hillel, K., Dafni, N., Kolobov, V.I., Paz, A., Schwartzman, G.: Fast deter-
ministic algorithms for highly-dynamic networks. In: OPODIS (2021). https://doi.
org/10.4230/LIPIcs.OPODIS.2020.28

15. Chang, Y.J., He, Q., Li, W., Pettie, S., Uitto, J.: The complexity of distributed
edge coloring with small palettes. In: SODA (2018). https://doi.org/10.1137/1.
9781611975031.168

16. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. In: FOCS (2016).
https://doi.org/10.1109/FOCS.2016.72

17. Chang, Y.J., Pettie, S.: A time hierarchy theorem for the LOCAL model. SIAM
J. Comput. 48(1), 33–69 (2019). https://doi.org/10.1137/17M1157957

18. Chang, Y.-J., Studený, J., Suomela, J.: Distributed graph problems through
an automata-theoretic lens. In: Jurdziński, T., Schmid, S. (eds.) SIROCCO 2021.
LNCS, vol. 12810, pp. 31–49. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-79527-6 3

19. Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms for pla-
nar graphs in the LOCAL model. In: SODA (2019). https://doi.org/10.1137/1.
9781611975482.49

20. Chierichetti, F., Vattani, A.: The local nature of list colorings for graphs of
high girth. SIAM J. Comput. 39(6), 2232–2250 (2010). https://doi.org/10.1137/
080732109

21. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Net-
works 10(3), 211–219 (1980). https://doi.org/10.1002/net.3230100304

22. Demetrescu, C., Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms.
In: Algorithms and Theory of Computation Handbook: General Concepts and
Techniques, chap. 9 (2010)

23. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974). https://doi.org/10.1145/361179.361202

https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1007/978-3-030-24922-9_3
https://doi.org/10.1007/978-3-030-24922-9_3
https://arxiv.org/abs/2102.08703
https://doi.org/10.1145/2979675
https://doi.org/10.1145/2979675
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.4230/LIPIcs.OPODIS.2020.28
https://doi.org/10.4230/LIPIcs.OPODIS.2020.28
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1137/17M1157957
https://doi.org/10.1007/978-3-030-79527-6_3
https://doi.org/10.1007/978-3-030-79527-6_3
https://doi.org/10.1137/1.9781611975482.49
https://doi.org/10.1137/1.9781611975482.49
https://doi.org/10.1137/080732109
https://doi.org/10.1137/080732109
https://doi.org/10.1002/net.3230100304
https://doi.org/10.1145/361179.361202

20 A. Balliu et al.

24. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
25. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings West

Coast Conference on Combinatorics, Graph Theory and Computing (1980)
26. Foerster, K.T., Korhonen, J.H., Paz, A., Rybicki, J., Schmid, S.: Input-dynamic

distributed algorithms for communication networks. In: SIGMETRICS (2021).
https://doi.org/10.1145/3410220.3453923

27. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-
stabilizing distributed protocols. Distrib. Comput. 20(1), 53–73 (2007). https://
doi.org/10.1007/s00446-007-0032-2

28. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC (2011). https://doi.
org/10.1145/1993806.1993829

29. Harris, D.G., Su, H.H., Vu, H.T.: On the locality of Nash-Williams forest decompo-
sition and star-forest decomposition. In: PODC (2021). https://doi.org/10.1145/
3465084.3467908

30. Henzinger, M.: The state of the art in dynamic graph algorithms. In: Tjoa, A.M.,
Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018.
LNCS, vol. 10706, pp. 40–44. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-73117-9 3

31. Holroyd, A.E., Schramm, O., Wilson, D.B.: Finitary coloring. Ann. Probab. 45(5),
2867–2898 (2017). https://doi.org/10.1214/16-AOP1127

32. König, M., Wattenhofer, R.: On local fixing. In: Baldoni, R., Nisse, N., van Steen,
M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 191–205. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03850-6 14

33. Korman, A., Kutten, S.: On distributed verification. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 100–114.
Springer, Heidelberg (2006). https://doi.org/10.1007/11947950 12

34. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees.
Distrib. Comput. 20(4), 253–266 (2007). https://doi.org/10.1007/s00446-007-
0025-1

35. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010). https://doi.org/10.1007/s00446-010-0095-3

36. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through univer-
sal matrices. Algorithmica 57(4), 641–652 (2010). https://doi.org/10.1007/s00453-
008-9226-7

37. Kutten, S., Peleg, D.: Fault-local distributed mending. J. Algorithms 30(1), 144–
165 (1999). https://doi.org/10.1006/jagm.1998.0972

38. Kutten, S., Peleg, D.: Tight fault locality. SIAM J. Comput. 30(1), 247–268 (2000).
https://doi.org/10.1137/S0097539797319109

39. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: self-stabilization on
speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0 2

40. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992). https://doi.org/10.1137/0221015

41. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995). https://doi.org/10.1137/S0097539793254571

42. Panconesi, A., Srinivasan, A.: The local nature of Δ-coloring and its algorith-
mic applications. Combinatorica 15(2), 255–280 (1995). https://doi.org/10.1007/
BF01200759

43. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000).
https://doi.org/10.1137/1.9780898719772

https://doi.org/10.1145/3410220.3453923
https://doi.org/10.1007/s00446-007-0032-2
https://doi.org/10.1007/s00446-007-0032-2
https://doi.org/10.1145/1993806.1993829
https://doi.org/10.1145/1993806.1993829
https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1214/16-AOP1127
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1007/11947950_12
https://doi.org/10.1007/s00446-007-0025-1
https://doi.org/10.1007/s00446-007-0025-1
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1007/s00453-008-9226-7
https://doi.org/10.1007/s00453-008-9226-7
https://doi.org/10.1006/jagm.1998.0972
https://doi.org/10.1137/S0097539797319109
https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1007/BF01200759
https://doi.org/10.1007/BF01200759
https://doi.org/10.1137/1.9780898719772

Proof Labeling Schemes
for Reachability-Related Problems

in Directed Graphs

Yoav Ben Shimon(B), Orr Fischer, and Rotem Oshman

Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
{benshimon2,orrfischer,roshman}@mail.tau.ac.il

Abstract. We study proof labeling schemes in directed networks, and
ask what assumptions are necessary to be able to certify reachability-
related problems such as strong connectivity, or the existence of a node
from which all nodes are reachable. In contrast to undirected networks,
in directed networks, having unique identifiers alone does not suffice to
be able to certify all graph properties; thus, we study the effect of know-
ing the size of the graph, and of each node knowing its out-degree. We
formalize the notion of giving the nodes initial knowledge about the net-
work, and give tight characterizations of the types of knowledge that
are necessary and sufficient to certify several reachability-related prop-
erties, or to be able to certify any graph property. For example, we show
that in order to certify that the network contains a node that is reach-
able from all nodes, it is necessary and sufficient to have any two of the
assumptions we study (unique identifiers, knowing the size, or knowing
the out-degree); and to certify strong connectivity, it is necessary and
sufficient to have any single assumption.

1 Introduction

Proof labeling schemes (PLS) are a mechanism for certifying that a network
has some desired property, by storing an efficiently-verifiable certificate at every
node of the network. In the classical formalism introduced in [9], each node v
is assigned a label �(v) ∈ {0, 1}∗, and the property is verified by having each
node examine its label and its neighbors’ labels, and then decide whether to
accept or reject. We require that if the network satisfies the property, then there
must exist a labeling that causes all nodes to accept, whereas if the network
does not satisfy the property, then for any labeling, some node must reject. The
main complexity measure of proof labeling schemes is the length of the label
assigned to each node. Subsequent work has considered many variations on this
model, allowing nodes to send messages other than their label, use randomness,
communicate further across the graph, and more.

Research funded by the Israel Science Foundation, Grant No. 2801/20, and also sup-
ported by Len Blavatnik and the Blavatnik Family foundation.

c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 21–41, 2022.
https://doi.org/10.1007/978-3-031-09993-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_2

22 Y. Ben Shimon et al.

Most work on proof labeling schemes considers undirected network graphs,
where every edge of the graph represents bidirectional communication between
its two endpoints. However, distributed networks in real world settings can some-
times have asymmetric behavior. Thus, in the current paper, we consider weakly-
connected directed communication networks, and ask whether basic reachability-
related properties can be certified by a proof labeling scheme in such networks.

The notion of a proof labeling scheme readily generalizes to directed net-
works, except that now, since communication is asymmetric, each node receives
only the labels of its in-neighbors, not its out-neighbors. As a result, the ideas
underlying some well-known proof labeling schemes for undirected networks may
no longer work. For example, in an undirected network with unique identifiers,
every graph property can be certified by a PLS where the prover gives all nodes
the entire graph [8,9]; each node verifies that its neighbors received the same
graph it did, and that its edges are represented accurately. In directed graphs,
however, this scheme no longer works: even if we have unique identifiers and
each node verifies that its in-neighbors are described by the prover accurately,
we cannot verify that the prover did not add “fake” nodes to its description of
the network graph, along with “fake” outgoing edges to those nodes (this will not
necessarily be detected by any “real” node). Other well-known schemes such as
the spanning-tree verification scheme from [9] also fail. This motivates us to ask:
what is the minimal knowledge about the network that is required to restore our
ability to decide any graph property? And what knowledge is required to certify
specific important properties, such as strong connectivity, or the existence of a
node that can reach or be reached from all other nodes in the network?

To study these questions, we formalize a notion of initial knowledge—reliable
information that nodes initially have about the network: for example, nodes may
initially know the size of the network, or they may have identifiers that are guar-
anteed to be unique. This notion separates information that is present prior to
the verification process from information that can be gathered via communica-
tion.1 Our main results are the following. For the problem of certifying the
existence of a node that can be reached from all nodes, we show:

Theorem 1.1 (Informal). To decide whether the network contains a global
sink—a node that can be reached from all other nodes—it is necessary and suffi-
cient to have two of the following assumptions: (1) the nodes have unique iden-
tifiers; (2) the size of the network is known to all nodes; (3) each node knows its
out-degree.

As for the existence of a node that can reach all other nodes, we show:

Theorem 1.2 (Informal). To decide whether the network contains a global
source—a node from which all nodes are reachable—it suffices to have unique
identifiers, but without unique identifiers, even knowing the size of the network
and the out-degrees does not suffice.

1 The latter type of knowledge, which is not given in advance but rather computed by
the nodes during runtime, is addressed in [1].

Proof Labeling Schemes for Reachability-Related Problems 23

For strong connectivity, we show:

Theorem 1.3 (Informal). To decide whether the network is strongly con-
nected, it is necessary and sufficient to either have unique identifiers, know the
size of the network, or know the out-degrees.

These results demonstrates the striking usefulness of knowing the out-degree
of each node: surprisingly, even by itself, it already suffices to decide strong
connectivity.

Finally, we show that in fact, if we have unique identifiers and know either
the size of the graph or the out-degrees of the nodes, then any graph property
can be certified, and we also study the usefulness of having a marked global sink
in the graph, and show that while this can replace one of the assumptions above,
by itself it does not suffice to decide all graph properties.

Our Techniques. To prove that a certain problem is undecidable under specific
assumptions, we give simple examples of a pair of graphs that are indistinguish-
able to all nodes, but one graph has the property and the other does not. To
show that a problem is decidable we construct a PLS.

Our constructions are based on several building blocks, which we introduce
in Sect. 4. Several are known from prior work—e.g., using a DFS traversal—but
their use in the context of directed networks, and with only partial knowledge of
the network parameters, is not immediate. The most novel building block is an
“infinite-round” protocol for anonymous networks that identifies all the nodes
belonging to strongly-connected components that have no outgoing edges. In
essense, the protocol calculates the distribution of an infinite random walk from
a uniformly random vertex, and marks all the nodes whose visiting probability
does not converge to zero. Interestingly, we show that despite this protocol having
“infinite running time”, it implies the existence of an O(n2)-bit PLS (and in fact,
we show in Sect. 4 that the existence of any proof labeling scheme—even one that
uses infinitely-long labels—implies the existence of a O(n2)-bit PLS). This allows
us to show that knowledge of the out-degrees of the nodes is sufficient to certify
strong connectivity, and it is also useful when certifying the existence of a global
sink.

2 Related Work

Proof labeling schemes and related formalisms have seen a large amount of work
since their introduction in [9]; we refer to the surveys of Feuilloley and Fraig-
niaud [2] and of Suomela [11] for a comprehensive overview of the field. Most
prior work, however, is in undirected network graphs. Several papers study the
effect of initial knowledge on decidability in proof labeling schemes: e.g., in [9] it
is shown that in the absence of unique identifiers or any other knowledge about
the network graph, some problems are undecidable (e.g., whether the graph is
a tree). In [5], the size of the graph is considered, and in [8] it is shown that
having unique identifiers, knowing the graph size, or having a unique leader are

24 Y. Ben Shimon et al.

all equivalent up to an additive O(log n) term in the label size. We show that in
directed networks the picture is more complicated (see Sect. 6).

It is proven in [8,9] that any graph property can be certified using O(n2)-
bit labels, provided we have unique identifiers. In the current paper we extend
this result and show that for any combination of initial knowledge (which may
or may not include UIDs), any decidable graph property can be decided using
O(n2) bits per node. Our proof is similar in spirit to a proof from [4], where it
is shown that when the prover is required to be UID-oblivious (the labels may
not depend on the UIDs), any property that is decidable using UIDs can also be
decided without UIDs. We note, however, that in the current paper we impose
no restrictions on the prover, and incorporate arbitrary knowledge fields, so the
correctness of the scheme in our case is quite different from [4].

The only prior work on proof labeling schemes in directed networks of which
we are aware is [3,8]. In [8], an O(log Δ)-bit PLS is given for s-t-reachability in
directed networks, and this is shown to be tight in [3]. Upper and lower bounds
for cyclicity, acyclicity and certifying a spanning tree are also given in [3]; only
anonymous networks are considered in [3], and no initial knowledge about the
network graph is assumed. However, [3] observes that the PLS for certifying a
spanning tree from [9] continues to work in directed networks, assuming we have
a marked root node r, and the spanning tree is rooted at r and oriented away
from it. In Sect. 5.1 we rely on a very similar observation, except that we do not
require the existence of such a node r, but rather use a similar idea to certify
that the network contains a global source.

Several of our protocols rely on a scheme presented in Sect. 4, where we
essentially compute the distribution of a random walk initiated at a random node
of the graph. A somewhat related idea was used in [10] to solve the broadcast
problem in directed networks, or to assign unique identifiers in an anonymous
networks, given a unique marked source node; however, the usage in [10] is quite
different from ours.

3 Preliminaries

Notation and Graph Terminology. Given a set S ⊆ X and a mapping f : X → Y ,
let f(S) = {f(x) : x ∈ S} denote image of S under f , as a multiset (i.e., if
x1 �= x2 ∈ S have f(x1) = f(x2), we will have two copies of f(x1) in f(X)).

A directed graph is denoted by G = (V (G), E(G)), where V (G) ⊆ N is the
set of vertices and E(G) ⊆ N × N is the set of edges. A graph language is a
family of graphs (this notion is closed under isomorphism, as the vertex names
are immaterial). We typically use n = |V (G)| to denote the size of the graph G
that we are working with.

We let u � v denote the existence of a directed path from node u to node
v in the graph. The underlying graph of G is the undirected graph derived from
G by considering the edges in E(G) as undirected edges. We always assume G
is weakly connected, that is, its underlying graph is a connected graph. Given a
family G of directed graphs, let Gn be the restriction of G to graphs of size n.

Proof Labeling Schemes for Reachability-Related Problems 25

For a node v ∈ G, let NG
in(v) = {u ∈ V : (u, v) ∈ E} be the incoming neigh-

bors of v, and let NG
out(v) = {u ∈ V : (v, u) ∈ E} be the outgoing neighbors of

V . We denote degGin(v) = |NG
in(v)| and degGout(v) = |NG

out(v)|. When G is clear
from context, we omit it from all of our notation, and write, e.g., V instead of
V (G), Nin(v) instead of NG

in(v), and so on.

Initial Knowledge. Optionally, a node v may have some initial knowledge about
the network graph, such as the size of the graph or a unique identifier assigned
to v. One of our results (the universal prover that we present in Sect. 4) is quite
general; thus, we introduce the notion of initial knowledge fields to capture any
type of initial knowledge. Intuitively, a field F for some graph family G assigns
to each vertex v ∈ V (G) of a graph G ∈ G a value, which we think of as the
initial knowledge corresponding to that field. In general, knowledge fields are not
necessarily functions of the graph, e.g., unique identifiers, or a unique leader.
Thus, F is a relation specifying what values are permissible for a given graph.

Initial knowledge fields are formally defined as follows: a field is a relation
F ⊆ ⋃

n∈N

(Gn × (X {1,...,n})), specifying which values for this type of knowledge
are acceptable for each graph; here, X is the domain from which the values
are drawn, and X {1,...,n} is the set of functions mapping {1, . . . , n} to X . We
require that F be a total relation, that is, for each G ∈ G, there exists some
F : {1, . . . , n} → X such that (G,F) ∈ F . For simplicity we typically assume
that X = N, that is, the field value is represented by an integer.

In the current paper we are mainly interested in the following fields:

– The UID field assigns to each vertex a unique identifier: (G,U) ∈ UID iff
U(v1) �= U(v2) for every v1 �= v2 ∈ V (G).

– The size field assigns to each vertex the size of the network graph: (G,S) ∈ size
iff S(v) = |V (G)| for every v ∈ V (G).

– The out-deg field assigns to each vertex its out-degree in the network graph:
(G,D) ∈ out-deg iff D(v) = degout(v) for every v ∈ V .

Given fields F1, . . . ,Fk, an (F1, . . . ,Fk)-instance is a tuple Ĝ =
(G,F1, . . . , Fk), where F1, . . . , Fk assign to the nodes of G values correspond-
ing to the fields F1, . . . ,Fk (respectively), such that (G,Fi) ∈ Fi for each i. For
example, a (UID, out-deg)-instance is given by (G,U,D), where G is a directed
graph, U : V (G) → N assigns a unique identifier U(v) to each node v ∈ V (G),
and D : V (G) → N assigns D(v) = degout(v) to each node v ∈ V (G). For conve-
nience, we often use the same symbol for a field F (“the knowledge type”) and
the mapping F that specifies its values in a given graph (e.g., in the sequel we
use UID(v) to denote the UID assigned to a node v). In the case of the size field
we also omit the vertex v and write simply size to represent the value given to
all nodes.

Throughout the paper, we assume that the UID, size and out-deg fields are
encoded using O(log n) bits at each node.

Proof Labeling Schemes. We generalize the definitions of the classes D1,D2

from [3], which represent proof labeling schemes with unidirectional or bidirec-
tional communication (resp.), to incorporate initial knowledge. (We are mostly

26 Y. Ben Shimon et al.

interested in unidirectional communication, D1, but on one occasion we will
show that under some assumptions, unidirectional simulation can simulate bidi-
rectional communication.)

A labeling for a graph G is a mapping � : V → {0, 1}∗ that assigns to
each node v ∈ V a label �(v) ∈ {0, 1}∗. Given fields F1, . . . ,Fn and a value
i ∈ {1, 2}, a Di {F1, . . . ,Fn}-proof labeling scheme (PLS) w.r.t. a graph family
G is a prover-verifier pair (Prv,Ver), where

– Prv, the prover, takes an (F1, . . . ,Fk)-instance Ĝ = (G,F1, . . . , Fk) (where
G ∈ G) and produces a labeling � : V (G) → {0, 1}∗.

– Ver, the verifier, is a decision function at each node v, which outputs a
Boolean value when given (a) the initial knowledge F1(v), . . . , Fk(v) available
to v; (b) the label �(v) of v, (c) the labels �(Nin(v)) of v’s in-neighbors, and
(d) if i = 2 (bidirectional communication), also the labels �(Nout (v)) of v’s
out-neighbors. The pair (Ĝ, �) is accepted by Ver if all nodes of G output 1.

An (F1, . . . ,Fk)-PLS (Prv,Ver) is said to decide a graph language L ⊆ G if
it satisfies:

– Completeness: for every (F1, . . . ,Fk)-instance Ĝ = (G,F1, . . . , Fk) such that
G ∈ L, the verifier Ver accepts (Ĝ,Prv(Ĝ)).

– Soundness: for every (F1, . . . ,Fk)-instance Ĝ = (G,F1, . . . , Fk) such that
G ∈ G \ L, and for every labeling � : V (G) → {0, 1}∗, the verifier Ver rejects
(Ĝ, �).

If there exists a Di {F1, . . . ,Fk}-PLS w.r.t. graph family G deciding the graph
language L, we say that L is Di {F1, . . . ,Fk}-decidable w.r.t. graphs in G. The
proof size of a PLS (Prv,Ver) is the maximum length of the proof assigned by
Prv to any node, as a function of the size of the graph. Throughout most of the
paper we take G to be the family of all weakly-connected directed graphs, and
omit it unless stated otherwise.

In some of our constructions, it is convenient to first construct a labeling
scheme with infinite-length labels, and then convert it to a PLS with finite-
length labels. We refer to a labeling scheme with infinite-length labels as an
Di {F1, . . . ,Fk}-∞-PLS. It satisfies the definitions above, except that the label-
ing is of the form � : V → {0, 1}N (i.e., each node’s label is an infinite string
indexed by the natural numbers).

Problem Statements. We consider the following graph languages:

– Graphs with a global source: GlobalSource =
{
G ∈ G : ∃v ∈ V ∀u ∈ V.

v � u
}
.

– Graphs with a global sink: GlobalSink = {G ∈ G : ∃v ∈ V ∀u ∈ V.u � v}.
– Strongly-connected graphs: StrongCon = {G ∈ G : ∀u, v ∈ V.u � v}.

Inputs. In the current paper we mostly discuss problems where the nodes have
no inputs, but on occasion we will need to introduce an input assignment. The
definitions above are extended to handle inputs in the natural way.

Proof Labeling Schemes for Reachability-Related Problems 27

4 Building Blocks

We begin by presenting several schemes and results that will be used as building
blocks in our constructions. Some of these are present in some related form in
prior work, but their application to directed graphs, and the addition of initial
knowledge fields, make their correctness non-trivial.

4.1 DFS-Based Schemes

Some schemes we show later will require proving that some specific nodes, spec-
ified by other means, are each a global sink. For this purpose we define the pred-
icate MarkedIsSink, where each node is given as input a bit mark(v) ∈ {0, 1},
and our goal is to verify that every marked node (i.e., every node v that has
mark(v) = 1) is a global sink:

MarkedIsSink = {G ∈ G : (mark(v) = 1) → (∀u ∈ V.u � v)} .

If we had bidirectional communication, we could verify that all nodes have
a path to a given node v by specifying the distance of each node to v; however,
with unidirectional communication, nodes cannot check that they have an out-
neighbor whose distance is smaller than their own. Instead, the MarkedIsSink
predicate can be certified by asking the prover to provide, for each marked node
v, a DFS tree rooted at v: each node u is given the DFS interval Iv(u) ⊆ [1, 2n],
specifying the entering and leaving time of node u in a DFS initiated at v. This
idea serves to construct an ancestor labeling scheme in [7], and it is used in [8]
to argue that in undirected graphs, having a unique leader, knowing the size
of the graph, or having unique identifiers are all equivalent assumptions up to
an additive O(log n) term in the proof size. In our case, we can use it to verify
MarkedIsSink, requiring only knowledge of the graph size:

Claim 4.1. MarkedIsSink is D1 {size}-decidable with proof size O(k log n),
where k is the number of marked nodes in the graph.

In the scheme from Claim 4.1, if there is at least one marked global sink, then
we can use the (claimed) DFS intervals as unique identifiers (as in [8]):

Claim 4.2. If there is at least one marked global sink s in the graph, and all
nodes accept the proof given in Claim 4.1, then Is(v) �= Is(u) for each u �= v.

The details of the construction, and proofs of these claims, will appear in the
full version of the paper.2

2 A correctness proof was not given in [8], but more importantly, we must prove that
the DFS can be verified even using only unidirectional communication.

28 Y. Ben Shimon et al.

4.2 Canonical Proof Labeling Scheme

A well-known result for undirected graphs (see [8,9]) is that when we have unique
identifiers, every predicate can be decided by a PLS with proof size O(n2), by
having the prover give each node a complete description of the graph. When
unique identifiers are not available, not every predicate is decidable [9]; however,
it is shown in [4] that every language that is closed under lifts is decidable
without unique identifiers. We use a similar construction to show that even in
directed graphs and with arbitrary initial knowledge, every decidable language
can be decided in O(n2 + L) bits, where L is the representation length of all the
initial knowledge fields.

In the construction below, the prover will need to give each node a complete
description of the instance, including the initial knowledge. The representation
length RF : N → N of a field F is the number of bits required to specify the
values assigned by F in graphs of size n.

Theorem 4.3 (The canonical prover). Given fields F1, . . . ,Fk and i ∈
{1, 2}, there exists a Di {F1, . . . ,Fk}-prover Prvcanon such that

– For any graph language L that is recognized by some Di {F1, . . . ,Fk}-∞-PLS,
there is a verifier VerL such that (Prvcanon,VerL) is a Di {F1, . . . ,Fk}-PLS
for L.

– The length of the labels assigned by Prvcanon in graphs of size n is bounded
by O

(
n2 +

∑k
j=1 RFj

(n)
)
. However, if each field Fj is a function (i.e., for

each graph G there is only one value F such that (G,F) ∈ Fj), then labels of
length O

(
n2

)
suffice.

If in addition the predicates G ∈ L and (G,Fj) ∈ Fj for all j = 1, . . . , k are com-
putable in time O(t(n)) in graphs of size n, then Ver is a computable function,
with time complexity O

(
n3 + n · ∑k

j=1 RFj
(n) + t(n)

)
.

Proof (sketch). We ask the prover to give each node v a description of the net-
work graph G, along with the values F1, . . . , Fk of the initial knowledge fields;
however, if all the fields are functions of G, we can omit them and have the
nodes compute them by themselves. The prover also tells node v which node
it corresponds to in the prover’s claimed network graph. To decide a language
L that has a Di {F1, . . . ,Fk}-∞-PLS (Prv,Ver), each node v checks that it
received the same description as its in-neighbors, and that the prover’s claimed
instance is consistent with the local view of v; then, node v verifies that the
graph described by the prover is in L.

The soundness of the scheme is proven as follows: we cannot rely on the prover
to accurately describe the instance Ĝ = (G,F1, . . . , Fk) that we are working with,
but we can use the prover’s description to construct another instance Ĝ′ that
would be accepted by the PLS (Prv,Ver). We take the labeling �′ = Prv(Ĝ′)
produced by Prv on the “fake instance” Ĝ′, and construct from it a labeling �
for the “real instance” Ĝ, by assigning to each node the label of the node onto

Proof Labeling Schemes for Reachability-Related Problems 29

which it is mapped in Ĝ′. We prove that the resulting labeling is also accepted
by Ver, meaning that G ∈ L.3

4.3 The Charge-Distribution Protocol

We now describe a PLS that can be used to identify global sinks when the
out-degree of each node is known. The PLS is obtained by asking the prover
to specify the execution of a distributed protocol; we begin by describing the
protocol, and then show how it is used to obtain a PLS.

The Charge-Distribution Protocol. Recall that a subset C ⊆ V is called a
strongly-connected component (SCC) of a directed graph G if C is a maximal
subset of V such that u � v for all u, v ∈ C. We say that an SCC C is recurrent
if there are no edges (u, v) ∈ E such that u ∈ C and v �∈ C; otherwise C is
called transient. If C is the only recurrent SCC, then we say that C is a sink
SCC. Finally, we say that node v is recurrent if the SCC to which v belongs is
recurrent, and otherwise v is transient.

The charge-distribution protocol is a synchronous protocol aimed at deter-
mining whether the SCC to which a node belongs is recurrent or transient. Each
node v stores a charge C(v) ∈ R, initially set to 1. In each round, a node v
with degout(v) > 0 sends the value C(v)/degout(v) to each of its neighbors, and
subtracts the values sent from its own charge; if degout(v) = 0, node v keeps the
charge. Then, node v adds to its charge the values received from its neighbors.
All together, if we denote by Ct(v) the charge at node v after t ≥ 0 rounds, then

Ct(v) =

⎧
⎪⎨

⎪⎩

1, if t = 0,
∑

u∈Nin(v)
Ct−1(u)
degout (u)

, if t > 0 and degout(v) > 0,

Ct−1(v) +
∑

u∈Nin (v)
Ct−1(u)
degout (u)

, if t > 0 and degout(v) = 0.
(1)

The charge-distribution protocol simulates the behavior of a Markov chain
over the graph G, with the addition of self-loops on nodes with no out-neighbors.
Indeed, let G′ be G with those added self-loops, and define on it a Markov chain
MG with a uniform initial distribution, and the following transition probabilities:

p(u, v) =

{
1

degG′
out (u)

, if v ∈ NG′
out(u),

0, otherwise.

Note that our definitions of recurrent and transient nodes in the graph G coincide
with the standard definition of recurrent and transient states in the Markov chain
MG (e.g., Definition 4.2.5 in [6]).

Let pt(v) denote the probability that the Markov chain is at node v after t
steps. Then by induction on t we have pt(v) = Ct(v)/n. This observation allows
3 This is in some sense an extension of the argument in [4], where it is shown that if the
prover cannot use the unique identifiers when choosing its proof, then the languages
that can be recognized are exactly those that are closed under lifts.

30 Y. Ben Shimon et al.

us to apply some basic results about Markov chains to analyze the behavior of
the charge-distribution protocol:

Claim 4.4 ([6]). Let M be a Markov chain starting at some node u0 with
probability 1. Let st denote the state M visits in the t-th step. Let v be some
node such that u0 � v. Then we have:

– If v is transient, then limt→∞ Pr [st = v] = 0.
– If v is recurrent, then either limi→∞ Pr [st = v] > 0 or no limit exists.

Our Markov chain MG starts from a uniform distribution over the nodes,
rather than starting at one specific node, but it is easy to see that a similar
claim holds:

Claim 4.5. Let v be some node. Then for the charge distribution protocol
described above,

– If v is transient, then limt→∞ Ct(v) = 0
– If v is recurrent, then either limt→∞ Ct(v) > 0 or no limit exists.

Another consequence we get is that when there is a global sink with no
outgoing edges, the charge at that node tends to the size of the graph in the
limit, as all the charge in the graph flows to the sink:

Claim 4.6. If G is a graph with a global sink v such that degout(v) = 0, then
for the charge distribution protocol described above it holds that limt→∞ Ct(v) =
|V (G)|.

A Proof-Labeling Scheme for Recurrent States. Using the charge-distribution
protocol and the characterization from Claim 4.5, we construct a PLS that allows
us to prove which nodes are recurrent and which are transient. Since Claim 4.5
characterizes the behavior of the charge in the limit, we first give an ∞-PLS,
and then convert it into a finite PLS using Theorem 4.3.4

Consider the following graph language, with inputs drawn from {0, 1}:

RecurrentNodes = {(G,mark) : mark(v) = 1 iff v is a recurrent node} .

Theorem 4.7. There exists a D1 {out-deg}-∞-PLS for RecurrentNodes.

Proof. The prover specifies the execution of the charge-distribution protocol in
G: the label of a node v ∈ V is the infinite string

�(v) = degout(v), C0(v), C1(v), C2(v), . . .

4 An alternative approach might be to specify the execution of the charge-distribution
protocol up to some sufficiently large number of rounds, and deduce the asymptotic
behavior, but this is problematic for two reasons: first, a Markov chain might take
an exponential number of steps to approach its limiting behavior; and second, the
convergence time depends on the size of the chain, but we would like to use our PLS
in settings where the size of the graph is not necessarily known.

Proof Labeling Schemes for Reachability-Related Problems 31

where each value Ct(v) is represented in binary using some prefix-free encoding
of the non-negative rationals. To verify the proof, each node v examines its in-
neighbors’ labels and verifies that (1) is respected at v for all t ≥ 0. Then, node
v checks whether limt→∞ Ct(v) exists and is equal to 0: if so, node v accepts iff
mark(v) = 0, and if the limit does not exist, or exists but is not equal to 0, node
v accepts iff mark(v) = 1. The completeness and soundness of the scheme follow
immediately from Claim 4.5.
�
Corollary 4.1. RecurrentNodes is D1 {out-deg}-decidable with proof size
O(n2).

Proof. Given the ∞-PLS for RecurrentNodes, we can apply Theorem 4.3 to
get a PLS. The proof size is O(n2), since the out-deg field is a function of the
graph.
�

5 Decidability of Reachability-Related Problems

We are now ready to characterize the decidability of reachability-related prob-
lems, such as the existence of a global source or sink, under various com-
binations of initial knowledge. We consider only unidirectional communica-
tion (D1). To prove that a problem is decidable, we give a PLS; to prove
that a problem L is D1 {F1, . . . ,Fk}-undecidable, we exhibit two instances
Ĝyes = (Gyes, F yes

1 , . . . , F yes
k), Ĝno = (Gno, F no

1 , . . . , F no
k) and a mapping ρ :

V (Gno) → V (Gyes), such that

– Gyes ∈ L and Gno �∈ L,
– For every node v ∈ V (Gno) we have F no

1 (v) = F yes
1 (ρ(v)), . . ., F no

k (v) =
F yes
k (ρ(v)).

– For every node v ∈ V (Gno) we have ρ(NGno

in (v)) = NGyes

in (ρ(v)).

We call this type of mapping a view-preserving map.5

The existence of the mapping ρ proves that there does not exist a PLS for
the language L: if there were some labeling � of Ĝyes that makes all nodes accept,
then using ρ we can obtain a labeling �′ of Ĝno, by setting �′(v) = �(ρ(v)) for each
v ∈ V (Gno). Node v ∈ V (Gno) has the same “view” as node ρ(v) ∈ V (Gyes): the
two nodes have the same initial knowledge, F no

1 (v) = F yes
1 (ρ(v)), . . . , F no

k (v) =
F yes
k (ρ(v)), they have the same label, �′(v) = �(ρ(v)), and they also see the same

labels in their in-neighborhood, �′(NGno

in (v)) = �(ρ(NGno

in (v))) = �(NGyes

in (ρ(v))).
Therefore node v behaves in Ĝno the same way that ρ(v) behaves in Ĝyes, i.e., it
accepts. This is true for every v ∈ V (Gno), and therefore all nodes accept; but
since Gno �∈ L, this shows that the PLS is not sound.

5 This notion is closely related to covering maps and lifts [4], but those classical
notions are not appropriate for directed graphs, and they also do not handle initial
knowledge in the way we require here.

32 Y. Ben Shimon et al.

5.1 Global Source

We begin with the problem of verifying whether the graph has a global source, a
node from which every other node is reachable. We show that this is undecidable
given the graph size and the nodes’ out-degrees:

Theorem 5.1. GlobalSource is D1 {size, out-deg}-undecidable.

Proof. Consider the YES-instance shown in Fig. 1a, where node 1 is a global
source, and the NO-instance shown in Fig. 1b, where there is no global source.
The numbers in Fig. 1b indicate the YES-instance node onto which each NO-
instance node is mapped.

3

1

2

4

5 6 7 8 9 10

(a) A YES-instance for GLOBALSOURCE

3

1

2

2

1

4

4

3

4

4

(b) A NO-instance for GLOBALSOURCE

Fig. 1. YES-instance (left) and NO-instance (right) for GlobalSource

Observe that for every node v in Fig. 1b, the node onto which v is mapped
in Fig. 1a has the same view: both graphs have the same size (10), each node
of Fig. 1b has the same out-degree as the node onto which it is mapped in
Fig. 1a, and the in-neighborhood of each node v in Fig. 1b is mapped onto the
in-neighborhood of the node onto which v is mapped in Fig. 1b. Together, the two
instances show that size and out-deg do not suffice to decide GlobalSource.

�
On the other hand, unique identifiers do suffice to decide GlobalSource:

it is easy to verify that the classical spanning-tree PLS from [9] still works, even
in directed graphs—we ask the prover to specify the ID of the root of the tree,
and give each node v its distance d(v) from the root; then, each node v verifies
that it has an in-neighbor u ∈ Nin(v) with d(u) = d(v) − 1, unless v itself is the
root.

Claim 5.2. GlobalSource is D1 {UID}-decidable with proof size O(log n).

5.2 Global Sink

We now turn to the question of whether the graph contains a global sink, a node
that is reachable from all nodes. It turns out that the GlobalSink language is
undecidable given any single field size, out-deg or UID, but it is decidable given
any two of those fields.

Proof Labeling Schemes for Reachability-Related Problems 33

Theorem 5.3. GlobalSink is D1 {F}-undecidable for any F ∈ {
UID, out-deg,

size
}
.

Proof. For D1 {UID}, consider the following YES-instance and NO-instance,
with letters indicating UIDs (Fig. 2):

a

b c

d

a

b c

Fig. 2. YES-instance (left) and NO-instance (right) for GlobalSink

In the YES-instance node d is a global sink, while the NO-instance has no
global sink. However, each node of the NO-instance can be mapped onto the
node that has the same UID in the YES-instance, and it will then have the same
local view as that node.

For both D1 {out-deg} and D1 {size} we consider the YES-instance in Fig. 3a,
with the difference being the initial information given (not shown in the figure). It
is clearly a YES-instance, as node 3 is a global sink. Next, consider the following
NO-instances for D1 {out-deg} and D1 {size}:

1

2

3

(a) YES-instance

1 1

2

2

3

3

(b) NO-instance forD1 {out-deg}

1

2

2

(c) NO-instance forD1 {size}

Fig. 3. YES-instance and two NO-instances for GlobalSink

Figure 3b shows a NO-instance that agrees with Fig. 3a on the out-degrees
but not the size, and Fig. 3c shows a NO-instance that agrees with Fig. 3a on
the size but not the out-degrees. This shows that out-deg or size alone do not
suffice to decide GlobalSink.
�

We now turn to positive results, and show that any combination of two of
the fields UID, out-deg, size is sufficient to decide GlobalSink.

Theorem 5.4. GlobalSink is D1 {UID, size}-decidable with proof size
O(n log n).

34 Y. Ben Shimon et al.

Proof. We ask the prover to construct a spanning tree T , oriented upwards and
rooted at some global sink r. The prover uses the UIDs of the nodes as the
vertices of T , and gives (T,UID(v)) to each node v. 6

Let �(v) = (T (v), id(v)) be the label of each node v. The verifier at node v
accepts iff:

– T (v) is a rooted tree over size nodes, oriented upwards, and UID(v) appears
as a vertex in T (v).

– T (v) = T (u) for each u ∈ NG
in(v), and id(v) = UID(v).

– id(NG
in(v)) = NT

in(id(v)), that is, the IDs of v’s neighbors in T match v’s
in-neighbors in G.

Completeness is immediate. As for soundness, suppose that all nodes accept the
labeling �. Then all nodes receive the same tree, otherwise from weak connectivity
some node v has a node u ∈ NG

in(v) with T (u) �= T (v), causing node v to reject.
Let T be the tree given to all nodes; the nodes verify that T is a rooted tree,
oriented upwards, and containing size nodes.

To show that the prover cannot “invent” or omit any nodes, let S =
{id(v) : v ∈ T} be the set of UIDs that appear in T , and let R =
{UID(v) : v ∈ G} be the set of UIDs that appear in G. Since each node v verifies
that UID(v) appears in T , we have R ⊆ S. But T is a tree of the same size as G
(as verified by the nodes), and therefore R = S. Since each node v verifies that
its in-neighbors in T match the UIDs of its in-neighbors in G, it must be that
T is a subgraph of G. All together, T is a spanning tree of G, oriented upwards
and rooted at some node r ∈ V , which implies that r is a global sink.
�

We now consider the combination D1 {UID, out-deg}. We begin by showing
that under this combination it is possible to “simulate” bidirectional communi-
cation: the D1 {UID, out-deg} model can emulate any D2 {UID}-PLS. The idea
is to ask the prover to specify the UIDs and labels of the out-neighbors of each
node; perhaps surprisingly, out-degrees allow us to verify that the prover does
this faithfully.

Lemma 5.1. If a graph language L has an D2 {UID}-PLS of size f(n), then it
also has a D1 {UID, out-deg}-PLS with of size O(n(log(n) + f(n))).

Proof. Given a D2 {UID}-PLS (Ver,Prv) for L, we construct a D1

{
UID,

out-deg
}
-PLS (Ver′,Prv′) as follows: if � is the labeling provided by Prv, then

the prover Prv′ gives to each node v the label �′(v) = (UID(v), �(v), L(v)), where
L(v) = {(UID(u), �(u)) : u ∈ Nout(v)}.

Given labels {(id(v), �(v), L(v))}v∈V , the verifier at node v checks that the
following conditions hold:

– id(v) = UID(v) and |L(v)| = out-deg(v).
– For each u ∈ Nin(v) we have (UID(v), �(v)) ∈ L(u).

6 Node v of course knows its own UID, but in order for v’s out-neighbors to learn
UID(v), it must be part of v’s label.

Proof Labeling Schemes for Reachability-Related Problems 35

– Let A(v) = {a : ∃u.(u, a) ∈ L(v)} be the multiset of labels that appear in L(v)
(i.e., the labels the prover claims it has given to v’s out-neighbors). Then Ver
must accept at node v when given �(v), �(Nin(v)), A(v).

Completeness is straightforward. As for soundness, let {(id(v), �(v), L(v))}v∈V

be a labeling that is accepted by all nodes under Ver′. We show that the labeling
{�(v)}v∈V is accepted by Ver, which implies that G ∈ L. Since each node v
checks that Ver accepts �(v), �(Nin(v)), A(v), it suffices to show that for each
node v ∈ V we have A(v) = �(Nout(v)).

Fix v ∈ V , and let R(v) = {(UID(u), �(u)) : u ∈ Nout(v)} be the real list
of v’s out-neighbors together with their labels. First, observe that R(v) ⊆ L(v),
because if there were some out-neighbor w ∈ Nout(v) such that (UID(w), �(w)) �∈
L(v), node w would reject. Since |L(v)| = |R(v)| = out-deg(v), this implies that
L(v) = R(v), which completes the proof of soundness.

The size of the proof is dominated by the number of bits required to represent
L(v), which is O(n(log(n) + f(n))) in the worst case.
�

Next, we observe that the D1 {UID}-PLS for GlobalSource from Claim 5.2
can actually serve as a D2 {UID}-PLS for GlobalSink:

Lemma 5.2. GlobalSink is D2 {UID}-decidable with proof size O(log(n)).

Proof. We apply the PLS from Claim 5.2, replacing the in-neighborhood Nin(v)
with the out-neighborhood Nout(v) everywhere, which has the effect of reversing
all edge directions. The resulting PLS certifies that the graph G′ obtained by
reversing all the edges of G has a global source; of course, this is true iff G itself
has a global sink.
�

By combining Lemma 5.1 and Lemma 5.2, we obtain:

Corollary 5.1. GlobalSink is D1 {UID, out-deg}-decidable using O(n log n)-
bit labels.

Remark. In Theorem 5.4 and Corollary 5.1, unique identifiers were used to
“mark” a global sink r, by asking the prover to describe a spanning tree rooted at
r. This provided us with the guarantee that the graph contains at least one node
that knows that it should be a global sink, and can then verify that indeed it is.
In some sense, this is the only manner in which UIDs are useful: in Sect. 6 we
show that we can replace UIDs with the assumption that we have at least one
marked sink in the graph, and together with either size or out-deg, this suffices
to decide every graph language.

Finally, we turn to what is perhaps the most challenging combination: size
and out-deg. Without unique identifiers, we cannot ask the prover to “commit”
to a node v that it claims is a global sink, and then prove that node v is indeed
a sink (as we did in Theorem 5.4 and Corollary 5.1). Instead, we use the charge-
distribution PLS from Sect. 4.3 to identify all the recurrent nodes in the graph,
and then ask the prover to “convince” each recurrent node that it is a global

36 Y. Ben Shimon et al.

sink, using the DFS scheme from Sect. 4.1. The correctness of this idea relies on
two crucial observations: first, every graph contains at least one recurrent node,
so we are guaranteed that at least one node will verify that it is a global sink.
Second, if a graph contains a global sink, then all its recurrent nodes are global
sinks (see the proof below).

Theorem 5.5. GlobalSink is D1 {size, out-deg}-decidable with proof size
O(n2).

Proof. We compose the PLS for identifying recurrent nodes from Corollary 4.1
with the PLS for verifying that every marked node is a global sink, from
Claim 4.1. The label of node v is given by �(v) = (mark(v), �1(v), �2(v)), where
mark(v) ∈ {0, 1} indicates whether the prover claims that v is a global sink, �1
is the proof for RecurrentNodes from Corollary 4.1, and �2 is the proof for
MarkedIsSink from Claim 4.1. The nodes verify that

– The verifier from Corollary 4.1 accepts {(mark(v), �1(v))}v∈V (using the
out-deg field), and

– The verifier from Claim 4.1 accepts {(mark(v), �2(v))}v∈V (using the size
field).

To prove that the scheme is complete we must prove that if G contains a global
sink, then all recurrent nodes in G are global sinks. Let G be a graph with a
global sink s ∈ V (G), and let v be a recurrent node of G. The SCC C to which v
belongs is, by definition, recurrent: there are no outgoing edges (u,w) such that
u ∈ C and w �∈ C. However, we know that v � s, as s is a global sink. Therefore
v must be in the same SCC as s, which implies that v is also a global sink.

As for soundness, if both verifiers accept, we know that mark(v) = 1 iff v
is recurrent, and that if mark(v) = 1 then v is a global sink. To complete the
proof, we observe that the prover must mark at least one node, as every graph
G contains some recurrent node: if we take a topological sort of the SCC-graph
of G, then the last SCC in the topological sort is recurrent, and all its nodes are
recurrent nodes. Thus, if the prover fails to mark any node, the nodes of the last
SCC will reject.

The proof size of the PLS constructed above is dominated by the size of the
labeling for RecurrentNodes, which is O(n2).
�

5.3 Strong Connectivity

The final problem we consider is strong connectivity. Counter-intuitively, even
though it is a stronger property, strong connectivity is “easier” to verify than the
existence of a global source or sink: the difficulty in verifying GlobalSource
and GlobalSink is that we must check whether there exists a node satisfying
some condition, which allows nodes to “shirk their responsibility” and accept,
believing that some other node satisfies the condition. In contrast, strong connec-
tivity requires all nodes to satisfy the condition (e.g., all must be global sinks
and global sources). Strong connectivity is not decidable without any initial
knowledge, but it is decidable given any of the fields UID, size, out-deg.

Proof Labeling Schemes for Reachability-Related Problems 37

Theorem 5.6. StrongCon is D1 {}-undecidable.

Proof. Consider the following simple YES-instance and NO-instance (Fig. 4):

1 2
1 2

2

Fig. 4. YES-instance (left) and NO-instance (right) for StrongCon

In the absence of any initial knowledge, each node knows only its own label
and the label of its in-neighbors. Thus, in the YES-instance, node 1 receives the
label of node 2, and vice-versa; the same happens in the NO-instance.
�

The example above does not work if we provide any of the fields UID, size or
out-deg. Indeed, we prove that with any one of these fields the problem becomes
decidable. We rely on the fact that a graph G is strongly connected if and only
if one of the following conditions holds: (1) all nodes of G are global sources;
(2) all nodes of G are recurrent; or (3) G contains a node that is both a global
source and a global sink.

If we are given UIDs, we can use them to certify that each node in the graph
is a global source, by asking the prover to provide the distance from each node
to every node in the graph. The distances are verified by checking that for each
node u �= v, node v has some in-neighbor whose claimed distance from u is one
less than v’s.

Theorem 5.7. StrongCon is D1 {UID}-decidable with proof size O(n log n).

Now suppose that we are given the size of the graph instead of UIDs. We
give a PLS that is similar to the one that uses UIDs, except that each node is
represented by an index in the range {1, . . . , n}, where n is the size of the graph.
Of course, the prover may try to cheat by giving two nodes the same index, but
we prove that this will be detected.

Theorem 5.8. StrongCon is D1 {size}-decidable with proof size O(n log n).

Proof. The prover orders the nodes of the graph arbitrarily, and for each i =
1, . . . , n, it provides the i-th node with the label �(i) = (i, d(i)), where d(i) :
{1, . . . , n} → {1, . . . , n} is a mapping such that [d(i)] (j) is the distance from the
j-th node to the i-th node.

For convenience, let d(j, v) = [d(v)] (j) be the claimed distance from the node
with index j to node v. Given labels {(i(v), d(v))}v∈V and size = n, the verifier
at each node v checks that:

– i(v) ∈ {1, . . . , n}, and d(i(v), v) = 0.
– For each j ∈ {1, . . . , n}\{i} we have d(j, v) > 0, and there is some in-neighbor

u ∈ Nin(v) such that d(j, u) = d(j, v) − 1.

38 Y. Ben Shimon et al.

Completeness is straightforward to prove. As for soundness, suppose that the
labeling {(i(v), d(v))}v∈V is accepted at all nodes. If the prover assigned unique
indices, i(u) �= i(v) whenever u �= v, then the proof from Theorem 5.7 shows
that every node is a global source. Thus, let us prove that if the prover does not
assign unique indices to all nodes, the proof is rejected.

For each index i ∈ {1, . . . , n}, let V (i) = {v ∈ V : i(v) = i}. Note that, since
each node v appears in exactly one set V (i), we have

∑n
i=1 |V (i)| = n. Our goal

is to prove that |V (i)| = 1 for each i. Suppose not, and let i be an index with
|V (i)| ≥ 2. Then there must exist some j �= i such that |V (j)| = 0 (because∑n

i=1 |V (i)| = n), in other words, the prover did not assign index j to any node.
But this will be detected, because every node verifies that it has a path back
to some node indexed j: let v be a node such that d(j, v) = minu∈V d(j, u).
Since |V (j)| = 0, we know that v �∈ V (j), that is, i(v) �= j. Node v therefore
verifies that d(j, v) > 0, and it also verifies that some in-neighbor u ∈ Nin(v)
has d(j, u) = d(j, v) − 1. But this contradicts the minimality of d(j, v).
�

Finally, suppose we are given only the out-degrees of the nodes. We use the
charge-distribution PLS from Sect. 4.3 to certify that all nodes are recurrent, as
this is equivalent to strong connectivity:

Theorem 5.9. StrongCon is D1 {out-deg}-decidable with proof size O(n2).

To conclude this section, we observe that while any single one of the fields
UID, size,out-deg suffices to decide strong connectivity, if we are given both UID
and size, we can give a very short PLS:

Theorem 5.10. StrongCon is D1 {UID, size}-decidable with proof size
O(log n).

To do this, we ask the prover to choose some node v ∈ V , and prove that
v is both a global source and a global sink, composing the D1 {UID}-PLS for
GlobalSource from Claim 5.2 and the D1 {size}-PLS for MarkedIsSink from
Claim 4.1. Both require O(log n) bits.

6 Sufficient and Necessary Conditions for Universal
Decidability

In this section we ask what initial knowledge is needed to guarantee that every
graph language can be decided by a proof labeling scheme. It is well-known that
in undirected graphs with unique identifiers, every graph language is decidable [8,
9], but we have already seen that in directed graphs this is not the case. It turns
out that adding either the size or out-deg fields to UID restores our ability to
decide every graph language:

Theorem 6.1. For every graph language L, there exist a D1 {UID, size}-PLS
and a D1 {UID, out-deg}-PLS that recognize L.

Proof Labeling Schemes for Reachability-Related Problems 39

Proof (sketch). We show that the canonical prover-verifier pair (Prvcanon,VerL)
from Theorem 4.3 decides L, given either UID and size or UID and out-deg. Recall
that Prvcanon gives each node v a complete description Ĝ′ = (G′, F ′

1, . . . , F
′
k)

of what it claims is the input instance Ĝ = (G,F1, . . . , Fk) (the graph and the
initial knowledge), and also specifies a mapping ρ : V (G) → V (G′) that tells
each node v ∈ V (G) what node it is mapped onto in V (G′). We prove that if
we are given unique identifiers, together with either the size of the graph or the
out-degrees, then the prover cannot lie without being detected, and thus, if all
nodes accept, we must have G′ = G.

Let R = {UID(v) : v ∈ V (G)} be the real UIDs of the nodes of G, and let
S = {UID(v′) : v′ ∈ V (G′)} be the UIDs in the prover’s instance. To prove that
G′ = G, it suffices to show that R = S: each v ∈ V (G) verifies that the in-
neighbors of ρ(v) in G′ match those of v in G, and if this is true for all nodes
and S = R, then G′ = G (up to isomorphism). Thus, let us prove that S = R,
otherwise the proof is rejected.

Each v ∈ V (G) verifies that UID(ρ(v)) = UID(v), and thus we have R ⊆ S. If
we know the size of the graph, then under VerL, the nodes verify that G has the
same size as G′. This implies that S = R. If we have out-degrees instead of the
size of the graph, then we can use an argument similar to Lemma 5.1 to show
that the prover must accurately describe the out-neighbors of each node v: we
must have ρ(NG

out(v)) = NG′
out(v). This suffices to show that the prover cannot

“invent” any new nodes, i.e., S = R: in the cut between the “real nodes” ρ(V)
in G′ and any “fake nodes” V (G′)\ρ(V) invented by the prover, some real node
v ∈ V will notice a “fake edge” e′ incident to ρ(v) (either incoming or outgoing),
such that no real edge e incident to v is mapped onto e′. This will cause node v
to reject.

Note that many of the results from previous sections (e.g., Theorem 5.4 and
Corollary 5.1) can be viewed as special cases of the result above, but in those
cases we are able to give shorter proofs, while here the proof size is O(n2).

The Effect of Having a Marked Global Sink. In undirected graphs, having a
unique marked leader suffices to decide all graph languages, even in the absence
of unique identifiers [8]. Next we ask whether a similar scenario exists in directed
graphs. It is clear that merely having a unique leader is not useful, so we
strengthen the requirement, and ask for a marked global sink. For the remainder
of the section, we consider proof labeling schemes with respect to the family
G = GlobalSink of graphs that contain a global sink.

We show that even if the marked global sink is not unique (i.e., more than
one node can be marked), together with any of the fields UID, size, we can decide
any graph language. Formally, let marked-sink be an initial knowledge field where
each node v is given a bit mark(v) ∈ {0, 1}, such that (a) at least one node v ∈ V
has mark(v) = 1, and (b) any node v ∈ V with mark(v) = 1 is a global sink.
We show that the combination of marked-sink together with any one of the fields
suffices to guarantee that all graph languages are decidable:

40 Y. Ben Shimon et al.

Theorem 6.2. For any graph language L and field F ∈ {UID, size}, there is a
D1 {marked-sink,F}-PLS which recognizes L with regards to graphs in Glob-
alSink.

Proof (sketch). We show that if we have marked-sink and UID, then as in The-
orem 6.1, the prover cannot lie about the graph: suppose the prover’s claimed
graph G′ contains at least one “fake node” f ∈ V (G′) \ ρ(V (G)), where ρ is the
mapping the prover gave from the input graph to the graph G′. Since we have
unique identifiers, we conflate the nodes of G,G′ with their UIDs. Let s ∈ V (G)
be some marked sink. Node s verifies that ρ(s) ∈ V (G′) and that ρ(s) is marked
in G′, and all nodes verify that in G′, every marked node is a global sink. Thus,
there is some path from the “fake node” f to ρ(s) in G′. Since s ∈ ρ(V (G)), the
path must at some point cross an edge (u,w) ∈ E(G′) such that u �∈ ρ(V (G))
but w ∈ ρ(V (G)). Node w notices that it has no in-neighbor in G whose UID
matches u, causing it to reject.

As for the other two knowledge fields, if we have size and marked-sink, we can
use the size to assign UIDs as in Claim 4.2, and then use the scheme above.

It can also be shown that even a unique marked global sink by itself does not
suffice to decide all graph languages, and neither does a unique marked global
source, or even, in strongly connected graphs, a unique marked node which is
both a sink and a source.

7 Conclusion

We conclude by discussing several open problems related to the complexity of
proof-labeling schemes in directed networks.

Many of the proofs we constructed in this paper are based on asking the
prover to specify a tree, or a collection of trees; for example, the distance-based
PLS from Theorem 5.7, where the prover gives each node its distance from every
other node, essentially amounts to specifying a collection of BFS trees, one rooted
at each node. This type of PLS typically has proof length at most O(n log n),
but we see at least three different reasons for this cost:

– In Theorem 5.7 (strong connectivity) the prover essentially specifies n dif-
ferent trees, and since each tree requires O(log n) bits per node, the total is
O(n log n) bits per node.

– In Theorem 5.4 (global sink using UID, size), the prover only specifies one
tree, but it gives the entire tree to all the nodes, to allow them to verify it.
This again amounts to O(n log n) bits per node.

– In Corollary 5.1 (global sink using UID, out-deg), the prover also specifies one
tree, but this time the tree is encoded using O(log n) bits per node. However,
the prover needs to give each node the labels of all of its out-neighbors, to
allow the verification to go through. This once again leads to the cost of
O(n log n) bits per node.

Proof Labeling Schemes for Reachability-Related Problems 41

It is interesting to ask which of these is inherent, and which can perhaps be
eliminated to obtain a shorter proof, given that the information-theoretic cost
of encoding a tree is only O(n log n) bits in total across all the nodes together
(rather than O(n log n) per node).

More curious still is the usefulness of out-degrees: in Theorems 5.5 and 5.9
we used them to apply the charge-distribution PLS, yielding to an ∞-PLS that
we compressed down to O(n2) bits per node—essentially, we asked the prover to
describe the entire graph. However, the problems we studied in this paper are
not sensitive to all edges in a dense graph: there is always a subset of O(n) edges
such that even if we remove all the other edges, the reachability property will be
preserved. Thus, it would be interesting (and surprising) if the true complexity
of strong connectivity using only out-degrees is Ω(n2). One potential direction to
reduce the length of the proof is to apply the charge-distribution protocol over a
spanning, strongly-connected subgraph containing only O(n) edges, rather than
the entire graph. However, it is not clear how we can verify that the prover
described the execution correctly, or even how to specify a sparse subgraph that
can be verified to be spanning and preserve the reachability property we are
interested in, without using UIDs. Resolving these questions—or alternatively,
developing lower bound techniques that can exploit our uncertainty about all
but the out-degrees of the nodes—remain fascinating open problems.

References

1. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: SODA, pp. 2426–2458. SIAM (2022)

2. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016). http://bulletin.eatcs.org/index.php/beatcs/issue/view/21

3. Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached:(a) cyclicity, reachability, loop free updates in SDNs. Theoret. Comput.
Sci. 709, 48–63 (2018)

4. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: PODC, pp. 224–238 (2012)

5. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: FOCS, pp.
708–717 (2011)

6. Gallager, R.G.: Stochastic Processes: Theory for Applications. Cambridge Univer-
sity Press, Cambridge (2013)

7. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distrib.
Comput. 16(2), 111–120 (2003)

8. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

9. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

10. Langberg, M., Schwartz, M., Bruck, J.: Distributed broadcasting and mapping
protocols in directed anonymous networks. In: PODC, pp. 382–383 (2007)

11. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40
(2013)

http://bulletin.eatcs.org/index.php/beatcs/issue/view/21

On the Computational Power
of Energy-Constrained Mobile Robots:
Algorithms and Cross-Model Analysis

Kevin Buchin1 , Paola Flocchini2 , Irina Kostitsyna3 , Tom Peters3,
Nicola Santoro4 , and Koichi Wada5(B)

1 TU Dortmund, Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 University of Ottawa, Ottawa, Canada
pflocchi@uottawa.ca

3 TU Eindhoven, Eindhoven, The Netherlands
{i.kostitsyna,t.peters1}@tue.nl

4 Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

5 Hosei University, Tokyo, Japan
wada@hosei.ac.jp

Abstract. We consider distributed systems of identical autonomous
computational entities, called robots, moving and operating in the plane
in synchronous Look -Compute-Move (LCM) cycles. The algorithmic
capabilities of these systems have been extensively investigated in the lit-
erature under four distinct models (OBLOT , FSTA, FCOM, LUMI),
each identifying different levels of memory persistence and communica-
tion capabilities of the robots. Despite their differences, they all always
assume that robots have unlimited amounts of energy.

In this paper, we remove this assumption and start the study of
the computational capabilities of robots whose energy is limited, albeit
renewable. We first study the impact that memory persistence and com-
munication capabilities have on the computational power of such energy-
constrained systems of robots; we do so by analyzing the computational
relationship between the four models under this energy constraint. We
provide a complete characterization of this relationship.

We then study the difference in computational power caused by the
energy restriction and provide a complete characterization of the rela-
tionship between energy-constrained and unrestricted robots in each
model. We prove that within LUMI there is no difference; an inte-
gral part of the proof is the design and analysis of an algorithm that in
LUMI allows energy-constrained robots to execute correctly any pro-
tocol for robots with unlimited energy. We then show the (apparently

This work was supported in part by JSPS KAKENHI No. 20K11685 and 21K11748,
Israel & Japan Science and Technology Agency (JST) SICORP (Grant#JPMJSC1806),
and by the Natural Sciences and Engineering Research Council of Canada (NSERC)
under Discovery Grants A2415 and 203254.
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 42–61, 2022.
https://doi.org/10.1007/978-3-031-09993-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_3&domain=pdf
http://orcid.org/0000-0002-3022-7877
http://orcid.org/0000-0003-3584-5727
http://orcid.org/0000-0003-0544-2257
http://orcid.org/0000-0002-7954-3918
http://orcid.org/0000-0002-5351-1459
https://doi.org/10.1007/978-3-031-09993-9_3

On the Computational Power of Energy-Constrained Mobile Robots 43

counterintuitive) result that in all other models, the energy constraint
actually provides the robots with a computational advantage.

Keywords: Oblivious robots · Luminous robots · Energy-constrained
robots · Comparison of models

1 Introduction

In this paper, we consider distributed systems composed of identical autonomous
computational entities, viewed as points and called robots, moving and operating
in the Euclidean plane in synchronous Look -Compute-Move (LCM) cycles. In
each synchronous round, a non-empty set of (possibly all) robots is activated,
each performs its LCM cycle simultaneously and terminates by the end of the
round. Each cycle is composed of three phases: in the Look phase, an entity
obtains a snapshot of the robots’ configuration showing the positions of all the
other robots; in the Compute phase, the robot executes its algorithm (the same
for all robots) and computes a destination point using the snapshot as input; in
the Move phase, the robot moves towards the computed destination. Repeating
these cycles, the robots can collectively perform some tasks and solve some
pattern formation problems.

The activation of robots is controlled by an adversarial scheduler, who selects
which robots are activated in each round. This general setting is usually called
semi-synchronous (Ssynch); the special restricted setting where every robot is
activated in every round is called fully-synchronous (Fsynch).

These distributed robot systems have been extensively investigated within
distributed computing. The research aim has been to understand the nature and
the extent of the impact that factors, such as memory persistence and commu-
nication capability, have on the solvability of problems and thus on the compu-
tational power of the system. To this end, four models have been identified and
investigated: OBLOT , FSTA, FCOM, and LUMI.

In the most common (and weakest) model, OBLOT , in addition to the stan-
dard assumptions of anonymity and uniformity (robots have no IDs and run iden-
tical algorithms), the robots are oblivious (they have no persistent memory to
record information of previous cycles) and they are silent (without explicit means
of communication). The restrictions imposed by the absence of persistent mem-
ory and the incapacity of explicit communication severely limit what the robots
can do. Computability in this model has been the object of intensive research
since its introduction in [25] (e.g., see [1,3–6,12,13,16,17,19,25,25,28,29], as
well as the recent book [10]).

In the stronger LUMI model, formally introduced and defined in [7], robots
are provided with some (albeit limited) persistent memory and means for com-
munication. In this model each robot is equipped with a constant-sized memory
(called light), whose value (color) can be set during the Compute phase. The light
is visible to all the robots and is persistent between the robot activations. Hence,
these luminous robots are capable of both remembering and communicating a

44 K. Buchin et al.

constant number of bits. Design of algorithms and feasibility of solving problems
for luminous robots have been extensively studied [7,8,14,18,20–23,26,27]; for
a recent survey, see [9]. The availability of both persistent memory and commu-
nication, however limited, clearly renders luminous robots more powerful than
oblivious robots (see e.g., [7]).

To better understand the computational power of persistent memory and
communication individually, models FSTA and FCOM (which fall in between
OBLOT and LUMI) were introduced in [14] (and studied in [20,26]). In the
first model, FSTA, the light of a robot is “internal”, i.e., visible only to that
robot, while in the second model, FCOM, the light of a robot is visible only to
the other robots but not to the robot itself. Thus in FSTA, the color merely
encodes an internal state, and the robots are finite-state and silent. On the
contrary, in FCOM, a robot can communicate to the other robots by means of
the light but forgets the content of its transmission by the next cycle; that is,
robots are oblivious and finite-communication.

To understand the computational power of these distributed systems, one
needs to explore and determine the computational power of the robots within
each of these models, as well as (and more importantly) with respect to each
other. This type of cross-model investigation has been taking place but is rather
limited in scope (e.g., [14]). Recently, a substantial step has been taken in [15]
where, by integrating existing bounds and establishing new results, a comprehen-
sive map of the computational relationship between the four models, OBLOT ,
FSTA, FCOM, and LUMI, has been drawn (and hence the computational
impact of the presence/absence of persistent memory and/or communication
capabilities has been established) for the two fundamental synchronous settings:
fully-synchronous and semi-synchronous.

The Energy Problem. In the vast existing literature, surprisingly, no consider-
ation has been made so far on the energy required for the robots to be able
to operate. Existing works share the same implicit assumption that the robots
have an unlimited amount of energy enabling them to perform their activities
in every activation round. In this paper, we remove this assumption and initiate
the study of the robots whose energy is limited, albeit renewable. More precisely,
we consider systems where an activated entity uses all its energy to execute an
LCM cycle, and once this happens, the robot is not operational and cannot
be activated in the next round; the energy, however, can be restored through a
period of inactivity. This would be the case if, for example, the robot’s power
is provided by a battery rechargeable by energy harvesting (as it is done in
conceptually related systems such as wireless mobile sensors [24]).

The immediate natural questions are: what is the computational power of
these energy-constrained robots? and, in particular, what is the impact of the
crucial factors (memory and communication) in this case? In this paper, we
start investigating these questions.

Contributions. We consider systems where the energy of a robot is sufficient to
execute exactly one LCM cycle, and the depleted energy is restored after one

On the Computational Power of Energy-Constrained Mobile Robots 45

round of inactivity. We investigate the computational power of the distributed
robot systems described by the four models when the robots are subject to such
energy constraint.

We establish an equivalence between a system of energy-constrained robots
under the semi-synchronous (Ssynch) scheduler and a system of classic robots
with unlimited energy under a new scheduler, which we call Rsynch. By our
definition of Rsynch, the sets of robots activated in any two consecutive rounds
are required to be disjoint. This direct correspondence enables us to reduce the
cross-model investigation of the energy-constrained robots to the cross-model
investigation of energy-unbounded robots under the Rsynch scheduler. Fur-
thermore, it allows us to determine the change (if any) in computational power
due to the energy restriction, by determining the relationship between Rsynch
and the general unrestricted Ssynch scheduler.

Let MS and MRS denote the systems of unlimited-energy robots defined by
model M ∈ {LUMI,FCOM,FSTA,OBLOT } under Ssynch and Rsynch,
respectively (the latter being equivalent to the systems of energy-constrained
robots under Ssynch). We first study the impact that memory persistence
and communication capabilities have on the computational power of energy-
constrained systems of robots; we do so by analyzing the computational relation-
ship between the four models under Rsynch scheduler. We provide a complete
characterization:

LUMIRS ≡ FCOMRS > FSTARS > OBLOT RS ,

where (as formally defined in Sect. 2) X > Y denotes that model X is strictly
more powerful than Y, and X ≡ Y denotes that X and Y are computationally
equivalent. An integral part of the proof that FCOMRS is more powerful than
FSTARS (that is, it is better to communicate than to remember), is the design
and analysis of an algorithm that allows robots in FCOMRS to correctly execute
any protocol for the more powerful LUMIRS .

We then study what impact on computational power is created by restricting
the energy of the robots, by comparing the computational difference between
energy-constrained and unrestricted robots in each of the four models (i.e.,
between MRS and MS for each M ∈ {LUMI, FCOM,FSTA,OBLOT }).
We provide a complete characterization. In particular, we prove that for LUMI
robots, the strongest model, there is no difference between energy-constrained
and unlimited-energy robots; i.e., LUMIRS ≡ LUMIS . An integral part of the
proof is the design and analysis of an algorithm that allows energy-constrained
robots in LUMIRS to correctly execute any protocol for robots with unlimited
energy in LUMIS . In all other models, we prove that restricting energy actu-
ally provides the robots with a definite computational advantage; this apparently
counterintuitive result is due to the fact that the energy restriction reduces the
adversarial power of the activation scheduler. Let us stress that the established
characterization covers all the cross-model and cross-scheduler relationships.

Finally, we complete the study of systems of energy-constrained robots by
analyzing the relationship between their computational power and that of robots

46 K. Buchin et al.

with unlimited energy under the most benign synchronous activation scheduler
Fsynch (i.e., fully synchronous). In this case, perhaps not surprising, we prove
that, in each robot model, energy-constrained robots are strictly less powerful
than fully-synchronous ones with unbounded energy. We again cover all the
cross-model and cross-scheduler relationships.

The details of omitted parts and proofs are shown in a full paper [2].

2 Models and Preliminaries

The Basics. The system consists of a set R = {r0, . . . , rn−1} of computational
entities, called robots, modeled as geometric points, that live in R

2, where they
can move freely and continuously. The robots are autonomous without a central
control. They are indistinguishable by their appearance, do not have internal
identifiers, and execute the same algorithm. Each robot has its own local coor-
dinate system, which may be inconsistent with the coordinate systems of the
other robots. A robot perceives itself at the origin of its coordinate system, and
is capable of observing the positions of the other robots in it.

The robots operate in Look -Compute-Move (LCM) cycles. When activated,
a robot executes a cycle by performing the following three operations:

Look. The robot obtains a snapshot of the positions occupied by robots expressed
with respect to its own coordinate system, and their colors. This operation is
assumed to be instantaneous.

Compute. The robot executes the algorithm using the snapshot as input; the
result of the computation is a destination point.

Move. The robot moves towards the computed destination. If the destination is
the current location, the robot stays still.

The system is synchronous. That is, time is divided into discrete intervals, called
rounds. In each round a robot is either active or inactive. The robots active in
a round perform their LCM cycle in perfect synchronization; if not active, the
robot is idle in that round. All robots are initially idle. In the following, we use
round and time interchangeably.

Each robot has a bounded amount of energy, which is totally consumed
whenever it performs a cycle; its energy however is restored after being idle for
a round. A robot with depleted energy cannot be active.

Movements are said to be rigid if the robots always reach their destination.
They are said to be non-rigid if they may be unpredictably stopped by an adver-
sary whose only limitation is the existence of δ > 0, unknown to the robots, such
that if the destination is at distance at most δ the robot will reach it, else it will
move at least δ towards the destination.

There might not be consistency between the local coordinate systems and
their unit of distance. The absence of any a priori assumption on consistency
of the local coordinate systems is called disorientation. The type of disorienta-
tion can range from fixed, where each local coordinate system remains the same
through all the rounds, to variable where the direction, the orientation, and the

On the Computational Power of Energy-Constrained Mobile Robots 47

unit distance of a robot may vary between successive rounds. In this paper we
consider only fixed disorientation.

Let xi(t) denote the location of robot ri at time t in a global coordinate
system (unknown to the robots), and let X(t) = {xi(t) : 0 ≤ i ≤ n − 1} =
{x0(t), x1(t), . . . , xm−1(t)}; note that |X(t)| = m ≤ n since several robots might
be at the same location at time t. A configuration C(t) at time t is the multi-set
of the n pairs of the (xi(t), ci(t)), where ci(t) is the color (formally defined below)
of robot ri at time t.

The robots are said to have chirality if they share the same circular orientation
of the plane (i.e., they agree on “clockwise” direction). Notice that, in presence
of chirality, at any time t, there would exist a unique circular ordering of the
locations X(t) occupied by the robots at that time; let suc and pred be the
functions denoting the ordering and, without loss of generality, let suc(xi(t)) =
xi+1 mod m(t) and pred(xi(t)) = xi−1 mod m(t) for i ∈ {0, 1, . . . ,m − 1}.

The Computational Models. In OBLOT model the robots are silent: they have
no explicit means of communication; furthermore they are oblivious: at the start
of a cycle, a robot has no memory of observations and computations performed
in previous cycles.

In LUMI model each robot r is equipped with a persistent visible state
variable Light [r], called light, whose values are taken from a finite set C of
states called colors (including the color that represents the initial state when
the light is off). The color of the light is set by r at the end of its Compute
operation. The lights are persistent from one computational cycle to the next:
the color is not automatically reset at the end of a cycle; the robot is otherwise
oblivious, forgetting all other information from previous cycles. In LUMI the
Look operation produces a colored snapshot; i.e., it returns the set of pairs
(position, color) of the other robots. Note that if |C| = 1, then the light is not
used, and the model is equivalent to OBLOT .

As mentioned above, the lights provide simultaneously persistent memory
and direct means of communication, although both limited to a constant number
of bits per cycle. The two sub-models FSTA and FCOM of LUMI each offers
only one of these two capabilities. In FSTA model a robot can only see the
color of its own light; that is, the light is internal and its color merely encodes
an internal state. Hence the robots are silent as in OBLOT ; but are finite-state
as in LUMI. Observe that a snapshot in FSTA is the same as in OBLOT .

In FCOM the lights are external and visible only to the other robots: a
robot can communicate to the others by setting its color, but forgets it by the
next cycle; that is, robots are finite-communication but oblivious. A snapshot
that robot r perceives in FCOM, as in LUMI, contains the information about
robots’ colors, except that the color Light[r] is omitted from the set of colors
associated with the position of r.

Activation Schedulers and Energy Restriction. In each synchronous round, some
robots become active and they execute their LCM cycle in complete synchrony.
The choice of which non-empty subset of the robots is activated in a specific

48 K. Buchin et al.

round is under the control of an adversarial activation scheduler constrained to be
fair; that is, every robot will become active infinitely often. Given a synchronous
scheduler S and a set of robots R, an activation sequence of R under S is an
infinite sequence E = 〈e1, e2, . . . , ei, . . .〉, where ei ⊆ R denotes the set of robots
activated in round i, satisfying the fairness constraint:

∀r ∈ R, i ≥ 1∃j > i : r ∈ ej .

Let E(S, R) denote the set of all activation sequences of R by S. In the
standard synchronous scheduler (Ssynch), first studied in [25] and often called
semi-synchronous, each sequence E = 〈e1, e2, . . . , ei, . . .〉 ∈ E(Ssynch, R) satis-
fies the basic condition

∀i ≥ 1, ∅ �= ei ⊆ R .

The special fully-synchronous (Fsynch) setting, where every robot is activated
in every round, corresponds to further restricting the activation sequences by
imposing ∀i ≥ 1, ei = R. Notice that, in this setting, the activation scheduler
has no adversarial power. Another special setting is defined by the well-known
round robin scheduler (e.g., see [26]), whose generalized definition corresponds
to adding the restriction:

[∃p > 1 : (
⋃

1≤i≤p

ei = R) and (∀1 ≤ i �= j ≤ p, [ei∩ej = ∅]) and (∀i ≥ 1, [ei = ei+p])] .

We study systems of energy-constrained robots under the standard synchronous
activation scheduler. More precisely, we study systems where a robot (i) has just
enough energy to execute a cycle, (ii) it cannot be activated in a round unless it
has full energy, and (iii) its depleted energy is regenerated after one round. These
three conditions clearly have an impact on the possible activation sequences of
the robots. In particular, since a robot with depleted energy cannot be activated,
the basic condition on ei becomes

∀i ≥ 1, ei ⊆ R∗[i] and R∗[i] �= ∅ ⇒ ei �= ∅ , (1)

where R∗[i] ⊆ R denotes the set of robots with full energy in round i. Further-
more, since it takes a round to regenerate depleted energy, ei must also satisfy

∀i ≥ 1, (ei ∩ ei+1 = ∅) .

Notice that, since ei ⊆ R∗[i], it is possible that ei = R when R∗[i] = R. Should
this be the case, since a robot has just enough energy to execute a cycle, then
R∗[i + 1] = ∅ and thus ei+1 = ∅. Furthermore, due Equation (1),

∃i, (∅ �= ei �= R) ⇒ ∀j ≥ i, (∅ �= ej �= R) .

That is, if fewer than |R| but a positive number of robots are activated in any
round i, then the set of robots with full energy R∗[j] �= R, and thus ∅ �= ej �= R,
for all j ≥ i. Thus, the activation sequences of the energy-constrained robots are
infinite sequences where the prefix is a (possibly empty) alternating sequence

On the Computational Power of Energy-Constrained Mobile Robots 49

of R and ∅, and, if the prefix is finite, the rest are non-empty sets satisfying
the constraint (ei ∩ ei+1 = ∅). Notice that this set of sequences, denoted by
E(Ssynchres , R), is not a proper subset of E(Ssynch, R) since some sequences
might have empty sets in their prefix.

Consider now the synchronous scheduler, we shall call Rsynch, obtained
from Ssynch by adding the following restricted-repetition condition to its acti-
vation sequences:

[
∀i ≥ 1, ei = R

]
or

[
∃p ≥ 0 :

([
∀i ≤ p, (ei = R)

]
and

[
∀i > p, (∅ �= ei �= R and ei ∩ ei+1 = ∅)

])]
,

that is, E(Rsynch, R) is composed of sequences where the prefix is a (possibly
empty) sequence of R and, if the prefix is finite, the rest are non-empty sets
satisfying the constraint (ei ∩ ei+1 = ∅).

There is an obvious bijection φ between E(Ssynchres, R) and E(Rsynch, R),
where φ(E) corresponds to removing all empty sets from E ∈ E(Ssynchres, R).
Thus computation performed by R under E is equivalent to one performed under
φ(E). Informally, under Ssynchres, if all robots are activated in the same round
i, they will be all idle in round i + 1, and they will all be with full energy
in round i + 2. Since no activity takes place in round i + 1, we can ignore all
such empty rounds and assume that round i + 2 occurs right after round i.
Thus, the computation by a set of energy-constrained robots R under the stan-
dard synchronous scheduler Ssynch is equivalent to the one if the robots in R
were energy-unbounded but the activation was controlled by scheduler Rsynch.
This restricted-repetition setting has never been studied before; observe that it
includes both fully synchronous Fsynch and round robin as special cases.

Computational Relationships. Let M = {LUMI,FCOM,FSTA,OBLOT } be
the set of models under investigation, and S = {Fsynch,Rsynch,Ssynch} be
the set of activation schedulers under consideration. We denote by R the set
of all teams of robots satisfying the core assumptions (i.e., they are identical,
autonomous, and operate in LCM cycles), and R ∈ R a team of robots having
identical capabilities (e.g., common coordinate system, persistent storage, inter-
nal identity, rigid movements etc.). By Rn ⊂ R we denote the set of all teams
of size n.

Given a model M ∈ M, a scheduler S ∈ S, and a team of robots R ∈ R, let
Task(M,S;R) denote the set of problems solvable by R in M under adversarial
scheduler S. Let M1,M2 ∈ M and S1, S2 ∈ S.

– We say that model M1 under scheduler S1 is computationally not less pow-
erful than model M2 under S2, denoted by MS1

1 ≥ MS2
2 if ∀R ∈ R we have

Task(M1, S1;R) ⊇ Task(M2, S2;R).
– We say that M1 under S1 is computationally more powerful than M2 under

S2, denoted by MS1
1 > MS2

2 , if MS1
1 ≥ MS2

2 and ∃R ∈ R such that
Task(M1, S1;R) \ Task(M2, S2;R) �= ∅.

50 K. Buchin et al.

– We say that M1 under S1 and M2 under S2 are computationally equivalent,
denoted by MS1

1 ≡ MS2
2 , if MS1

1 ≥ MS2
2 and MS2

2 ≥ MS1
1 .

– Finally, we say that M1 under S1 and M2 under S2 are computation-
ally orthogonal (or incomparable), denoted by MS1

1 ⊥MS2
2 , if ∃R1, R2 ∈ R

such that Task(M1, S1;R1) \ Task(M2, S2;R1) �= ∅ and Task(M2, S2;R2) \
Task(M1, S1;R2) �= ∅.

For brevity, for a model M ∈ M, let MF , MRS , and MS , denote MFsynch,
MRsynch, and MSsynch, respectively. Furthermore, with a slight abuse of
notation, let MF (R), MRS(R), and MS(R), denote Task(M,Fsynch;R),
Task(M,Rsynch;R), and Task(M,Ssynch;R), respectively. Trivially, for all
M ∈ M,

MF ≥ MRS ≥ MS ,

and, for all P ∈ S,

LUMIP ≥ FSTAP ≥ OBLOT P and LUMIP ≥ FCOMP ≥ OBLOT P .

3 Computational Relationship Between RSYNCH

and SSYNCH

We begin by studying the impact that constraining the energy has on the com-
putational capability of the robots. We do so by analyzing the computational
relationship between Rsynch and Ssynch in each of the four models.

3.1 Power of RSYNCH in FCOM,FSTA and OBLOT

First, we show that Rendezvous problem (RDV) [11], where two robots a and
b must gather in the same location not known in advance, cannot be solved in
Rsynch. Recall that R2 ⊂ R is the set of all teams of robots of size 2.

Lemma 1. ∃R ∈ R2, RDV �∈ OBLOT RS(R). This result holds even in pres-
ence of chirality and rigidity of movement.

The problem Shrinking Rotation (SRO) was introduced to show that
OBLOT F > OBLOT S , and that models OBLOT F and FCOMS (or FSTAS)
are incomparable [15].

Lemma 2 ([15]). ∃R ∈ R2, SRO �∈ FCOMS(R) ∪ FSTAS(R). This result
holds even in presence of chirality and rigidity of movement.

This problem can also play a role in showing OBLOT RS > OBLOT S and
orthogonality of OBLOT RS and FCOMS (or FSTAS).

Lemma 3. ∀R ∈ R2, SRO ∈ OBLOT RS(R), assuming common chirality and
rigid movement.

Lemma 1 and the fact that RDV can be solved by FCOM and FSTA in
Ssynch [14], and Lemmas 2 and 3 imply:

On the Computational Power of Energy-Constrained Mobile Robots 51

Theorem 1. The following relations hold:OBLOT RS⊥ FCOMS,OBLOT RS⊥
FSTAS, FCOMRS > FCOMS, FSTARS > FSTAS, and OBLOT RS >
OBLOT S.

We now show the dominance of LUMIS over FSTARS and the orthogonality
of FSTARS with FCOMS . In order to show these results, we use the following
problem.

Definition 1 (Cyclic Circles (CYC)). Let n ≥ 3, k = 2n−1, and d : N → R

is a non-invertible function. The problem is to form a cyclic sequence of patterns
C,C0, C, C1, C, C2, . . . , C, Ck−1, where C is a pattern of n − 1 robots occupying
vertices of a regular n-gon with the nth robot in its center (see Fig. 1 (a)), and
Ci (for 0 ≤ i ≤ k − 1) is a configuration with the n − 1 n-gon robots in the same
position, but the center robot occupying a point at distance d(i) from the center
in the direction of the empty vertex (see Fig. 1 (b)). In other words, the central
robot moves to the designated position at distance d(i) and comes back to the
center. The process repeats after all 2n−1 configurations Ci have been formed.

Lemma 4. Let n ≥ 3. ∃R ∈ Rn,CYC �∈ FSTAF (R). This result holds even in
presence of chirality and rigid movements.

Next, we show that FCOM robots can solve CYC under Ssynch. Intuitively,
the n − 1 robots on the circle act as a distributed counter using their lights to
display the binary representation of the index i of the next configuration to be
formed (see Fig. 1 (c)). The increment of the counter is performed by changing
the bits accordingly and maintaining the carry, as in a full adder. Whenever
activated, the central robot “reads” the information and understands when it is
time to move and to which destination.

Lemma 5. Let n ≥ 3. ∀R ∈ Rn, CYC ∈ FCOMS(R), assuming chirality.

The orthogonality of FSTARS and FCOMS follows from Lemmas 3–5, and the
dominance of LUMIS over FSTARS follows from Lemmas 4 and 5.

Theorem 2. FSTARS < LUMIS and FSTARS⊥ FCOMS.

3.2 Power of RSYNCH in LUMI
We now show that, in spite being more powerful in FCOM and FSTA, Rsynch
robots with full lights (LUMI) are not more powerful than Ssynch robots with
full lights. That is, LUMIS is computationally equivalent to LUMIRS . To do
so we prove the following theorem.

Theorem 3. ∀R ∈ R, LUMIRS(R) ≤ LUMIS(R).

The approach is to show that LUMI robots under Ssynch can simu-
late any algorithm designed for LUMI robots under Rsynch (see algo-
rithm sim-RS-by-S(A) in [2]). Let algorithm A for LUMI robots in Rsynch
use light with � colors: C = {c0, c1, . . . , c�−1}. Ssynch robots run algorithm
sim-RS-by-S(A) simulating the execution of A as follows. Each robot r has the
following sets of colors:

52 K. Buchin et al.

r.color ∈ C indicating its own light used in algorithm A, initially set to r.color =
c0;

r.step ∈ {1, 2, 3, 4, 5,m} indicating the step of the simulation currently under
execution. Initially r.step is set to 1 for all robots, and thus initially the
simulation is in Step 1;

r.executed ∈ {True,False} indicating whether r has executed algorithm A in
the current mega-cycle (see below). Initially r.executed is set to False for all
robots;

r.charged ∈ {C,E,M}, where C, E, and M stand for “charged”, “empty”, and
“just moved” respectively. The flag is used to ensure the validity of the simu-
lated Rsynch activation sequence, it indicates whether r is charged and can
execute the algorithm A. Initially r.charged is set to C for all robots.

Fig. 1. The configurations of CYC. Fig. 2. Transition diagram sim-RS-by-S(A).

The simulation proceeds in two phases. The first phase of the simulation
corresponds to the first p ≥ 0 (where p can be ∞) activations in a simulated
Rsynch activation schedule where all robots in R are activated at each round.
The second phase corresponds to the remaining activation cycles where a strict
subset of R is activated at each round.

The state of the robot system is defined by the set of colors step currently set
by the robots (see Fig. 2). By construction, there can be at most two different
step colors in the system at each moment. If all robots have the same step color
i (for i ∈ {1, 2, 3, 4, 5,m}), we say the robots execute Step i of the simulation. If
not all robots have the same step, this corresponds to the system transitioning
from one step to another.

The two phases of the simulation consist of executing so called mega-cycles.
The mega-cycle of the first phase corresponds to one cycle {1} → {2} → {3} →
{1}. The mega-cycle of the second phase consists of several cycles {2} → {4} →
{5} → {2} (until all robots have executed it) with one cycle {2} → {m} → {2}
to reset the flags and start the new mega-cycle. The robots execute A in Step 1
in the first phase, and in Step 2 in the second phase. The remaining steps serve
for bookkeeping of flags executed and charged .

Specifically, the states of the simulation are (refer to Fig. 2):

On the Computational Power of Energy-Constrained Mobile Robots 53

– State {i, j} are the transition states between Step i and Step j. Activated
robots do not execute A nor change the values of the charged and executed
flags, but only set their r.step to either i or to j (depending on the specific
case).

– Step 1: activated robot executes one cycle of the simulated algorithm A. Note
that when Step 1 begins execution, it holds that ∀ρ ∈ R (ρ.executed = False
and ρ.charged = C).

– Step 2: activated robot checks if all robots have their charged flag set to E,
that is, if all robots were activated in Step 1. If so, we are in the first phase,
and the simulation proceeds to Step 3 resetting all the charged and executed
flags to prepare for the next move in Step 1. Otherwise, we are in the second
phase, and there are two cases:
(1) If all robots have their executed flag set to True, the mega-cycle has
finished. The robot proceeds to Step m.
(2) If some robots have their executed flag set to False, the mega-cycle has
not finished yet. The simulation proceeds executing A. As soon as among
the activated robots there is a non-empty subset R′ with charged = C and
executed = False, they execute algorithm A, set charged to M and executed
to True, and proceed to Step 4. Afterwards, the remaining robots proceed to
Step 4 without executing A or changing their charged and executed flags.

– Step 3: robot resets the charged and executed flags to prepare the next move
in Step 1. Note that as long as Step 3 is executed, full activation continues.

– Step 4: robot updates the charged flag if it did not execute A in preceding
Step 2 from E to C (the robots that did not execute are recharged).

– Step 5: robot updates the charged flag if it executed A in preceding Step 2
from M to E (the robots that executed are discharged).

– Step m executes when one mega-cycle of phase two is completed. Robots reset
their executed flags and transition back to Step 2. Note that Step m does not
affect the charged flag, thus the robots which executed A in the last activation
cycle of the preceding mega-cycle are discharged in the first activation cycle
of the new mega-cycle and cannot be activated.

The initial configuration of sim-RS-by-S(A) satisfies r.step = 1, r.charged = C
and r.executed = False for any robot r. For a configuration K, if the set of values
of r.step appearing in K is V , we say that the step configuration of K is V .

Observe that at any moment in time of sim-RS-by-S(A) the step con-
figuration V ∈

{
{1}, {2}, {3}, {4}, {5}, {m}, {1, 2}, {2, 3}, {3, 1}, {2, 4}, {4, 5},

{2, 5}, {2,m}
}
. Indeed, the case when |V | = 1 corresponds to a (sub)set of acti-

vated robots performing the same action (executing A, or modifying the flags
charged and executed). These robots may update their step value leading to a new
step configuration V ′ of a size at most two. In the case when |V | = 2 no actions are
performed by the robots except of updating their step to some value i ∈ V (remain-
ing robots transition to Step i), eventually leading to the next step configuration
V ′ = {i}.

The correctness of sim-RS-by-S(A) is shown by proving properties of the
step configurations. The details and their proofs are shown in [2]. Note that, if

54 K. Buchin et al.

algorithm A uses � colors, the simulating algorithm sim-RS-by-S(A) uses O(�)
colors.

Lemma 6. Algorithm sim-RS-by-S(A) correctly simulates execution of algo-
rithm A run on LUMIR robots by LUMIS robots.

Theorem 4. LUMIS ≡ LUMIRS.

4 Computational Relationship Between FSYNCH

and RSYNCH

We have seen that Rsynch is more powerful than Ssynch in FCOM, FSTA,
OBLOT , and it has the same computational power in LUMI. To better under-
stand the power of Rsynch among the classical synchronous schedulers, we now
turn our attention to the relationship between Rsynch and Fsynch.

4.1 Dominance of FSYNCH over RSYNCH

The problem Center of Gravity Expansion (CGE) was used to show dom-
inance of Fsynch over Ssynch, that is, CGE is solvable in FCOMF and
FSTAF but is not solvable in LUMIS [15]. This problem can also be used
to show dominance of Fsynch over Rsynch. In fact, we can obtain a stronger
result showing that CGE is not solvable in LUMIF ′

, where F ′ is any scheduler
such that the first activation does not contain all robots.

Lemma 7. Let n ≥ 2. ∃R ∈ Rn: CGE �∈ LUMIF ′
(R), where F ′ is any sched-

uler such that the first activation does not contain all robots.

Since Rsynch contains patterns in F ′, we have the following.

Corollary 1. Let n ≥ 2. ∃R ∈ Rn: CGE �∈ LUMIRS(R).

As a consequence, we obtain dominance of Fsynch over Rsynch.

Theorem 5. ∀X ∈ {OBLOT ,FCOM,FSTA,LUMI} [X F > X RS] .

4.2 Orthogonality of FSYNCH with RSYNCH

We now proceed to show incomparability of FSTAF with X RS for
X ∈ {LUMI,FCOM}, and of OBLOT F with X RS for X ∈

{
LUMI,

FCOM,FSTA
}
. The former can be obtained by observing that (1) CYC is

not in FSTAF (Lemma 4) and is in FCOMS (Lemma 5), and thus CYC is
in FCOMRS and LUMIRS , and (2) CGE is in FSTAF ([15]) and is not in
LUMIRS (Corollary 1), and thus CGE is not in FCOMRS .

Theorem 6. FSTAF ⊥ LUMIRS and FSTAF ⊥ FCOMRS.

On the Computational Power of Energy-Constrained Mobile Robots 55

The problems OSP and CGE*1 were used to show OBLOT F ⊥ LUMIS [15].
That is, problem OSP can be solved in LUMIS , but not in OBLOT F , and
problem CGE* can be trivially solved in OBLOT F , but not in LUMIS .
These problems can also be used to show OBLOT F ⊥ X RS (for X ∈
{LUMI,FCOM,FSTA}) by using the below Lemmas 8–9, Corollary 1, and
the fact that CGE* can be solved in FSTAF [15].

Lemma 8. ([7]). ∃R ∈ R2, OSP �∈ OBLOT F (R).

Lemma 9. ∀R ∈ R2, OSP ∈ FSTARS(R) ∩ FCOMRS(R).

Theorem 7. OBLOT F ⊥ LUMIRS, OBLOT F ⊥ FCOMRS, and OBLOT F ⊥
FSTARS.

5 Analysis Within RSYNCH

In this section, we study the impact that memory persistence and communication
capabilities have on the computational power of energy-constrained systems of
robots.

We start by establishing the following theorem. Note that due to Theorem 4,
this would imply that LUMIRS ≡ FCOMRS .
Theorem 8. ∀R ∈ R, LUMIS(R) ⊆ FCOMRS(R).
We do so, once again, by developing an algorithm sim-LUMI-by-FCOM(A) for
FCOM robots that simulates a given algorithm A for LUMI robots (see [2]
for details). Let A be an algorithm for LUMI robots with disorientation and
non-rigid movement under Ssynch, and let A use light with � colors: C =
{c0, c1, . . . c�−1}. We now extend the simulation algorithm of LUMI robots by
FCOM robots in Fsynch described in [15], designing a more complex simulation
algorithm sim-LUMI-by-FCOM(A) by FCOM robots in Rsynch.

The main ideas of the simulation remain the same. Robots first copy the
lights of their neighbors. This in turn allows them to look at their neighbors to
gain information about the color of their own light. Next, some robots activate
and have enough information to execute a step in A. Lastly, the robots reset
their states such that they can start copying the lights of their neighbors again.
This cycle repeats itself and every time some robots execute algorithm A.

Contrary to the simulation algorithm in Fsynch, we need to take extra care
here to ensure that the resulting schedule is fair and every robot executes a
step in A infinitely often. After all, the same subset of robots might execute
algorithm A each time the robots perform this cycle. As with sim-RS-by-S(A),
we consider the concept of mega-cycles, in which every robot executes a step in
A exactly once. To facilitate this, each robot gets a flag indicating if the robot
has already executed A in this mega-cycle. To give a robot information about
its own execute status, we let the robots copy this flag in the same way as they
copy the other lights of their neighbors. As soon as all robots have executed A
in one mega-cycle, these flags are reset and the next mega-cycle begins.
1 OSP is Oscillating Points and CGE* is Perpetual Center of Gravity
Expansion.

56 K. Buchin et al.

Fig. 3. Transition diagram of
sim-LUMI-by-FCOM(A).

Recall that suc and pred are the suc-
cessor and predecessor functions defined on
a unique circular order on robots’ positions
X(t). Figure 3 shows the transition diagram
as the robots run the simulation. Each robot
r has the following colors of FCOM:

r.color ∈ C indicating its own light used in
algorithm A, initially set to r.color = c0;

r.suc.color indicating a set of colors from 2C

at suc(x), initially set to r.suc.color = ∅;
r.step ∈ {1, 2, 3,m} indicating the step of the

algorithm. See below for more details on
each step. Initially r.step is set to 1;

r.executed ∈ {True,False} indicating whether r has executed the algorithm A
in the current mega-cycle, initially set to r.executed = False;

r.suc.executed indicating a set from 2{True,False} at suc(x) and having the same
role of r.suc.color , initially set to r.suc.executed = ∅;

r.me.checked , r.suc.checked ∈ {True,False} indicating whether all color and
executed flags are correctly set, initially set to r.me.checked , r.suc.checked =
False.

The algorithm is a sequence of mega-cycles, each of which lasts until all robots
execute the simulated algorithm exactly once, and the end of a mega-cycle is
checked at the beginning of Step 2. During each mega-cycle, this algorithm is
composed of the following three steps:

– In Step 1, every robot obtains the neighbor’s information so that robots can
recognize their own lights.

– In Step 2, activated robots execute algorithm A using the color of their light
obtained.

– In Step 3, every robot resets check flags to prepare the next cycle of execution
of algorithm A.

Repeating the three steps, the end of the current mega-cycle is checked at the
beginning of Step 2 and if the mega-cycle is finished, each robot r proceeds to
Step m to reset.

– In Step m, every robot resets flag r.executed indicating whether r has executed
in this mega-cycle or not to False and the control returns to Step 2.

The details of these steps are as follows:

Step 1: Copy colors and activation (∀ρ �= r (ρ.step = 1)). In the Look phase,
r checks if it is in Step 1 by detecting ρ.step = 1 for all other robots ρ �= r.
Every robot r stores (and displays) in variable r.suc.color and r.suc.executed ,
respectively, its successors’ sets of colors and also their executed flags indicating
whether the successor robots have been activated in this mega-cycle. None of

On the Computational Power of Energy-Constrained Mobile Robots 57

the robots move in this step. Note that every robot can recognize its own color
of light and its flags in the configuration after Step 1 is completed. This step
ends when all robots store their neighbors’ sets of color and executed flags. To
be able to detect this, every robot sets r.checked to True, indicating that it has
executed Step 1. Moreover, whenever all successors of r have set their checked
flags to True, r also sets r.suc.checked to True. Now every robot can determine
the end of Step 1 when the two checked flags (ρ.me.checked , ρ.suc.checked) of
every robot ρ become True. When this condition is satisfied, r changes r.step
to 2.

Step 2: Perform simulation (∀ρ �= r (ρ.step = 2)). In the Look phase, r rec-
ognizes to be in Step 2 by observing ρ.step = 2 of all other robots ρ. Robot
r can derive r.color and r.executed by using its predecessor’s suc.color and
suc.executed . The rest of Step 2 consists of two phases: checking the end of a
mega-cycle, and executing the simulated algorithm.

Checking end of a mega-cycle: After calculating r.color and r.executed ,
r checks if the current mega-cycle has ended. If all robots have executed
algorithm A in this mega-cycle (all robots have ρ.executed set to True), then
r moves to Step m (resetting all the executed flags) without changing colors
of lights.

Execution of simulation : If the mega-cycle has not ended yet, the robots acti-
vated in this round will perform a step in A. The activated robots (indicated
by set S2) at this time, actually perform their cycle according to algorithm A
if they have not performed algorithm A in this mega-cycle yet (r.executed is
False). The robots that executed algorithm A update r.executed and further-
more update r.color and move according to algorithm A. After the actual exe-
cution of algorithm A, each robot r performing the simulation sets r.step = 3
to reset all checking flags (Step 3) to prepare for the next Step 1. If all robots in
S2 have performed algorithm A so far in this mega-cycle, no light is changed,
and Step 2 is performed again at the next round. This continues until some
robots not having executed algorithm A are activated. This is guaranteed by
the fairness of the scheduler.

Step 3: Reset check flags (∀ρ �= r(ρ.step = 3)). In the Look phase, r checks if it
is in Step 3 by observing ρ.step = 3 for all other robots ρ. In Step 3, all robots
reset r.checked , r.suc.checked to False, and r.suc.executed to {False}, enabling
the robots to perform another round in this cycle. Each robot resetting its flags
changes r.step to 1.

Step m: Reset mega-cycle (∀ρ �= r(ρ.step = m)). In the Look phase, r checks
if it is in Step m by observing ρ.step = m for all other robots ρ. In Step m,
each robot r sets r.executed = False and r.suc.executed = {False} and the step
returns to 2 to begin a new mega-cycle after all robots reset their activated flags.

We can show that this simulation algorithm works correctly for FCOM
robots in Rsynch. Considering the specifics of FCOM, the following two

58 K. Buchin et al.

Algorithm 1. Scheme-for-modification-flags for robot r at location x.
Assumptions

Let configurations be same(step = α) or except1(step = α; γ)

State Compute
1: if ∀ρ �= r (ρ.step = α) then // step α
2: if not ∀ρ �= r (ρ.flag = True) then
3: r.step ← α, r.flag ← True
4: else if ∀ρ �= r (ρ.flag = True) then
5: r.flag ← True, r.step ← β
6: else if ∀ρ �= r (ρ.step = β) then r.step ← β // step β
7: else if ∀ρ �= r ((ρ.step = α) or (ρ.step = β)) then r.step ← β

schemes are essential for the algorithm to work correctly: (1) transition scheme
between step configurations, and (2) recognition of own light color.

(1) Transition Scheme Between Step Configurations: Since we consider FCOM
robots, when a robot r checks a predicate, for example ∀ρ (ρ.step = α), r cannot
see its own value r.step. Therefore, r only checks ∀ρ �= r (ρ.step = α) and
observes that the predicate may be satisfied although r.step is not α. Thus,
predicates appearing in the simulation must be of the form ∀ρ �= r (· · ·), and
we must consider configurations in which only one robot r observes that some
predicate holds while any of the other robots would observe that the predicate
does not hold.

To provide some intuition, consider a simple example where every robot
ρ has two lights ρ.step ∈ {α, β, γ} and ρ.flag ∈ {True,False} (Algorithm 1).
Let us consider a configuration, denoted same(step = α), where ρ.step = α
for any robot ρ, and a configuration, denoted except1(step = α; γ), where
there exists just one robot re with re.step = γ while ρ.step = α for any
other robot ρ. Lemma 10 below shows the following: if a step configuration
is same(step = α) or except1(step = α; γ) with ρ.flag = False for every robot ρ,
Algorithm 1 transforms the step configuration into one of type same(step = β)
or except1(step = β;α) with ρ.flag changed to True for every robot ρ. The idea is
that, as long as a robot still observes at least one other robot with flag = False,
it sets its flag to True, while maintaining step = α. As soon all robots have
their flag = True, the simulation needs to progress to step = β. However, the
activated robot r may see that all other robots have their flag = True, but r
itself may not have been active before and therefore still needs to set its flag to
True. Now any robot active that sees another robot with step = β knows that
all values flag are True, including its own. The formal proof is shown in [2].

Lemma 10. Let C(ta) be a step configuration either of type same(step = α)
or except1(step = α, γ �= β) at time ta, and let ∀ρ (ρ.flag =False) hold at ta.
If Algorithm 1 is executed on C(ta), then there is a time tb > ta when C(tb)
satisfies the following conditions:

On the Computational Power of Energy-Constrained Mobile Robots 59

(a) The step configuration C(tb) is either same(step = β) or except1(step =
β;α).

(b) ∀ρ (ρ.flag = True) holds at tb.

This scheme of transitions between step configurations is used in our simulation
algorithm. Refer to [2] for the correctness of transitions between the steps and
of the scheme as a whole.

(2) Recognition of Own Light Color: The color r.color used in the execution
of algorithm A is determined as follows: Assuming all robots have correctly set
their suc.color , ρ.suc.color for any ρ ∈ pred(x) contains all colors at location
x. Let r.color .here be the set of colors seen at x. Note that, by definition, this
does not include r.color , since r is on location x and it cannot see its own light.
Now r can calculate r.color in the following way:

r.color = pred(x).suc.color − x.color .here .

Since the executed flag of robot r contains two colors, r.executed can be deter-
mined similarly to the case of determining r.color by using pred(x).suc.executed
instead of pred(x).suc.color .

Note, that we can remove the assumption of chirality by using the method
of [15]. The robots copy colors of both predecessors and successors, and deduce
their colors by looking at the colors mirrored by the robots in the two-hop
neighborhood.

It is fairly straightforward that this algorithm works well in the first phase of
Rsynch (equivalent to Fsynch). Once a non-full activation occurs, full activa-
tion will never happen and thereafter activations of disjoint sets of robots happen
alternatingly (see [2]).

Algorithm sim-LUMI-by-FCOM(A) executes Steps 1–3 and Step m in infinite
rounds in Rsynch and the execution of A obeys Ssynch. Let E be the sequence
of the set of activated robots that execute steps of algorithm A in simulation
sim-LUMI-by-FCOM(A). Since, we can show that any mega-cycle is completed
and every robot executes exactly once in every mega-cycle, E is fair. Then we
have obtained Theorem 8. Note that, if algorithm A uses � colors, the simulating
algorithm sim-LUMI-by-FCOM(A) uses O(�2�) colors.

Therefore it holds that FCOMRS ≥ LUMIS . Since LUMIS ≡ LUMIRS

by Theorem 4, we have that: FCOMRS ≥ LUMIRS . Moreover, since the reverse
relation is trivial and FSTARS < LUMIS (Theorem 2), the next theorem
follows. The proof is shown in [2].

Theorem 9. FCOMRS ≡ LUMIRS ≡ LUMIS, and FCOMRS >
FSTARS > OBLOT RS.

6 Concluding Remarks

In this paper, we have started the investigation of the algorithmic and computa-
tional issues arising in distributed systems of autonomous mobile entities in the
Euclidean plane where their energy is limited, albeit renewable.

60 K. Buchin et al.

We have studied the difference in computational power caused by the energy
restriction and provided a complete characterization of the computational dif-
ference between energy-constrained and unrestricted robots in all four models
considered in the literature: OBLOT ,FSTA,FCOM, LUMI. We have also
examined the difference with robots with unlimited energy, operating under a
fully-synchronous scheduler. Furthermore, we have studied the impact of memory
persistence and communication capabilities on the computational power of such
energy-constrained systems of robots. Some of these results have been obtained
through the design and analysis of novel simulators: algorithms that allow a
set of robots with a given set of capabilities to execute correctly any protocol
designed for robots with more powerful capabilities.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Buchin, K., Flocchini, P., Kostitsyna, I., Peters, T., Santoro, N., Wada, K.: On the
computational power of energy-constrained mobile robots: Algorithms and cross-
model analysis. arXiv.org cs(ArXiv:2203.06546) (2022)

3. Canepa, D., Potop-Butucaru, M.: Stabilizing flocking via leader election in robot
networks. In: Proceedings of the 10th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), pp. 52–66 (2007)

4. Cicerone, S., Stefano, D., Navarra, A.: Gathering of robots on meeting-points.
Distrib. Comput. 31(1), 1–50 (2018)

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

6. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithms in
asynchronous robot systems. SIAM J. Comput. 34(15), 1516–1528 (2005)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

8. Di Luna, G., Flocchini, P., Chaudhuri, S., Poloni, F., Santoro, N., Viglietta, G.:
Mutual visibility by luminous robots without collisions. Inf. Comput. 254(3), 392–
418 (2017)

9. Di Luna, G., Viglietta, G.: Robots with lights. Chapter 11 of [10], pp. 252–277
(2019)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities.
Springer (2019)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool (2012)

12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–169 (2005)

13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008)

14. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant
memory. Theor. Comput. Sci. 621, 57–72 (2016)

15. Flocchini, P., Santoro, N., Wada, K.: On memory, communication, and synchronous
schedulers when moving and computing. In: Proceedings of the 23rd International
Conference on Principles of Distributed Systems (OPODIS), pp. 25:1–25:17 (2019)

16. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

http://arxiv.org/abs/2203.06546

On the Computational Power of Energy-Constrained Mobile Robots 61

17. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the
flocking problem. Disc. Appl. Math. 144(3), 324–344 (2004)

18. Hériban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: Proceed-
ings of 19th Int. Conference on Distributed Computing and Networking (ICDCN),
pp. 1–10 (2018)

19. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

20. Okumura, T., Wada, K., Défago, X.: Optimal rendezvous L-algorithms for asyn-
chronous mobile robots with external-lights. In: Proceedings of the 22nd Interna-
tional Conference on Principles of Distributed Systems (OPODIS), pp. 24:1–24:16
(2018)

21. Okumura, T., Wada, K., Katayama, Y.: Brief announcement: Optimal asyn-
chronous rendezvous for mobile robots with lights. In: Proceedings of the 19th
International Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS), pp. 484–488 (2017)

22. Sharma, G., Alsaedi, R., Bush, C., Mukhopadyay, S.: The complete visibility prob-
lem for fat robots with lights. In: Proceedings of the 19th International Conference
on Distributed Computing and Networking (ICDCN), pp. 21:1–21:4 (2018)

23. Sharma, G., Vaidyanathan, R., Bush, C., Rai, S., Borzoo, B.: Complete visibility
for robots with lights in O(1) time. In: Proceedings of the 18th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp.
327–345 (2016)

24. Sharma, H., Ahteshamul, H., Jaffery, Z.A.: Solar energy harvesting wireless sensor
network nodes: a survey. J. Renew. Sustain. Energy 10(2), 023704 (2018)

25. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

26. Terai, S., Wada, K., Katayama, Y.: Gathering problems for autonomous mobile
robots with lights. arXiv.org cs(ArXiv:1811.12068) (2018)

27. Viglietta, G.: Rendezvous of two robots with visible bits. In: 10th International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks
and Distributed Robotics (ALGOSENSORS), pp. 291–306 (2013)

28. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

29. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by
synchronous mobile robots in the three-dimensional Euclidean space. J. ACM
64:3(16), 16:1-16:43 (2017)

http://arxiv.org/abs/1811.12068

Randomized Strategies for Non-additive
3-Slope Ski Rental

Toni Böhnlein1(B), Sapir Erlich2, Zvi Lotker2, and Dror Rawitz2

1 Weizmann Institute of Science, Rehovot, Israel
toni.bohnlein@weizmann.ac.il

2 Bar Ilan University, Ramat-Gan, Israel
{zvi.lotker,dror.rawitz}@biu.ac.il

Abstract. The Ski Rental problem captures the dilemma of choosing
between renting and buying, and it is one of the fundamental prob-
lems in online computation. In many realistic scenarios there may be
several intermediate lease options which are modelled by the Multi-
Slope Ski Rental problem. An instance consists of k states where each
state i ∈ {0, . . . , k − 1} is characterized by a buying cost bi and a rental
rate ri. Previous work on instance-dependent strategies for Multi-Slope
Ski Rental dealt with deterministic strategies or strategies for additive
instances (instance where going from state i to state j costs bj − bi).
However, obtaining instance-dependent randomized strategies for non-
additive instances remains open.

In this paper, we advance towards answering this open question
by characterizing optimal randomized strategies in the non-additive
case, and providing an algorithm that computes near-optimal instance-
dependent randomized strategies for Multi-Slope Ski Rental with
three slopes (k = 2). The algorithm uses parametric search and a decision
algorithm which is based on the characterization of optimal randomized
strategies.

Keywords: Online algorithms · Competitive analysis · Randomized
algorithm · Ski-rental

1 Introduction

The Ski Rental problem (also called the Leasing problem [7]) is one of the
fundamental problems in the area of online computation. In its original formu-
lation [14], one needs to use a resource (skis) for an unknown amount of time
(ski vacation of unknown duration), and there are two ways to do it: either pay
a price and use the resource from that point onward for any amount of time
(the buy option), or pay proportionally to the usage time (the rent option). An
optimal deterministic 2-competitive strategy was given in [14] (see also [6]). An
optimal randomized e

e−1 -competitive strategy was given in [13].
In many realistic scenarios there may be several intermediate lease options

between the two extreme alternatives of pure buy and pure rent. The problem
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 62–78, 2022.
https://doi.org/10.1007/978-3-031-09993-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_4

Randomized Strategies for Non-additive 3-Slope Ski Rental 63

where there are more than two options is called Multi-Slope Ski Rental
(Multi-Slope SR), and it is defined as follows. An instance consists of k states
(or slopes), where each state i ∈ {0, . . . , k − 1} is characterized by a buying
cost bi and a rental rate ri. Using the resource under state i for t time units
implies costs of bi + ri · t (see Fig. 1). Multi-Slope SR introduces entirely
new difficulties when compared to Ski Rental. Intuitively, whereas the only
question in the classical version is when to buy, in the multislope version we also
need to answer the question of what to buy. Another way to see the difficulty is
that the number of potential transitions from one slope to another in a strategy
is one less than the number of slopes, i.e., k − 1, and finding a single point
of transition is qualitatively easier than finding more than one such point. In
addition, the possibility of multiple transitions forces us to define the relation
between multiple “buys”. More formally, we need to consider transition costs
between any two states i and j, where i < j. Hence a Multi-Slope SR instance
contains a transition cost bi,j from i to j, for every i < j, where b0,j = bj , for
every j > 0. Following [2], we distinguish between two types of transition costs.
In the additive case, buying costs are cumulative, namely to move from state
i to state j we only need to pay the difference in buying prices bi,j = bj − bi.
This means that the total buying cost at state j is always bj . In the non-additive
case, the transition cost satisfies bi,j > bj − bi, for each pair of states i < j. The
extreme non-additive case is when bi,j = bj , for any i, i.e., it costs bj to enter
state j no matter where we are coming from. We refer to such transition costs
as entry fees.

The optimal offline strategy remains the same regardless of whether the
instance is additive, since it only depends on {b1, . . . , bk−1} (see Fig. 2). Hence,
without loss of generality, we assume that bi < bi+1 and ri > ri+1, for all i.
(If bi ≤ bj and ri ≤ rj , then slope i dominates slope j, and the optimal offline
strategy therefore ignores slope j.) Observe that a c-competitive strategy with
respect to entry fees is also c-competitive with respect to any non-additive tran-
sition costs, since transition costs do not affect the optimum.

An extension of non-additive Multi-Slope SR, where slopes become avail-
able over time, was considered in [3]. They obtained an online strategy whose
competitive ratio is 4 + 2

√
2 ≈ 6.83 for the convex case in which a more expen-

sive machine comes with a lower production cost. They gave an almost match-
ing upper and lower bounds for the non-convex case. Motivated by re-routing
in ATM networks, Bejerano, Cidon, and Naor [5] studied non-additive Multi-
Slope SR. In this case, the buying costs of a slope is the setup cost of a virtual
channel, while the rental cost is the cost of holding the links along the channel.
They gave a deterministic 4-competitive strategy and showed that the factor of
4 holds even when the slopes are concave, i.e., when the rent of a slope may
decrease with time. Damaschke [8] also considered non-additive Multi-Slope
SR. For deterministic strategies, he gave an upper bound of 4 and a lower bound
of 5+

√
5

2 ≈ 3.618. He also presented a randomized strategy whose competitive
ratio is 2

ln 2 ≈ 2.88. We note that [3,5,8] assume that transition costs are entry
fees.

64 T. Böhnlein et al.

Fig. 1. Visual representation of different ski-rental instances. The lines represent the
different options. The classic problem has only pure rent and pure buy, while the
Multi-Slope SR problem might not have a pure buy option.

Irani, Swamy, and Gupta [12] studied additive Multi-Slope SR with pure
rent and pure buy and motivated their work by an energy saving application:
each slope corresponds to some partial hibernation mode of the system. They
showed that the lower envelope strategy, which buys a state when the optimal
strategy moves to it, is 2-competitive. The competitive ratio of 2 is tight, for
every k, since there are instances with pure rent, pure buy, and k − 2 leas-
ing slopes that are infinitesimally close to either option. Augustine, Irani, and
Swami [2] considered non-additive Multi-Slope SR. They devised an algo-
rithm that, given an instance, computes a near optimal deterministic strategy.
More specifically, the algorithm produces a strategy whose competitive ratio is
within an additive ε of the optimal instance-dependent deterministic competi-
tive ratio, for every ε > 0. The algorithm is based on a parametric search using
a decision algorithm based on dynamic programming, and its running time is
O(k2 log k · log 1

ε). Note that the best instance-dependent competitive ratio may
be lower than the upper bound of 4 [5] that applies to all instances. The case
where the length of the game is a random variable with known distribution was
also considered in both [2,12].

Randomized strategies for Multi-Slope SR were studied by Lotker, Patt-
Shamir, and Rawitz [16]. For the additive problem, they defined the notion of
profile which describes a strategy by specifying, for every time t ≥ 0, a proba-
bility distribution over the set of states. They gave a characterization of optimal
profiles and used it to design an algorithm which computes a strategy whose
competitive ratio is within an additive ε of the optimal randomized instance-
dependent competitive ratio, for every ε > 0. The running time of the algorithm
is O(k log 1

ε). This algorithm is also based on a parametric search, but in this
case the decision algorithm is based on solving O(k) differential equations. They
also presented a randomized strategy whose competitive ratio is e−rk/r0

e for
any additive instance. For the non-additive case, they gave an e-competitive

Randomized Strategies for Non-additive 3-Slope Ski Rental 65

randomized strategy which improved the upper bound from [8]. Azar, Cohen,
and Roytman [4] used LP-duality to provide a matching lower bound of e for
non-additive Multi-Slope SR. Their approach is based on formulating an infi-
nite sequence of linear programs, each describing a finite prefix of the discrete
version of the problem and where the objective function is the competitive ratio.
They obtained a lower bound on the competitive ratio using LP-duality and
ad-hoc arguments. It is claimed without details in [4] that their techniques can
be used to obtain instance-dependent lower bounds.

Our Contribution. Previous work on instance-dependent strategies for
Multi-Slope SR dealt with deterministic strategies or strategies for additive
instances. However, obtaining instance-dependent randomized strategies for non-
additive instances remains an open problem. In this paper, we make an advance-
ment towards closing this open question by providing an algorithm that com-
putes near-optimal instance-dependent randomized strategies for Multi-Slope
SR with three slopes (k = 2).

The notion of profile was defined in [16] in order to describe randomized
strategies for additive instances, by specifying, for every time t ≥ 0, the prob-
ability distribution over the set of slopes. Profiles can capture strategies for
additive instances, since the total spending in buying depends only on the cur-
rent state. However, this does not suffice to describe strategies for non-additive
instances since previous states have an impact on the total buying costs. We
cope with this issue in Sect. 2 by introducing the notion of transition function
that can describe a randomized strategy for non-additive instances.

In Sect. 3, we explore the structure of randomized transition function. We
show that an optimal transition function buys the slopes in a very specific order.
More specifically, time is partitioned into three intervals: (i) probability is shifted
from slope 0 to slope 1 during [0, τ1); (ii) probability is shifted from slope 0 to
slope 2 during [τ1, τ2); and (iii) probability is shifted from slope 1 to slope 2
during [τ2,∞). where 0 ≤ τ1 ≤ τ2. We call such transition functions progressive.
We note that this characterization is quite different than the one that was shown
for additive instances in [16]. In the additive setting, an optimal strategy always
goes through all states, and at any given time, at most two consecutive states
may have positive probabilities. On the other hand, we show that in the non-
additive case, it is viable to jump from state 0 to state 2 without visiting state
1. Moreover, there are times in which all states are associated with non-zero
probabilities. Next, as was done in [2,16], we show that it may be assumed that
an optimal strategy is tight, namely that it spends all available funds in buying.
Given this characterization we show that a tight strategy is fully determined by
its competitive ratio c and the time in which the strategy moves from buying
state 1 to buying state 2 (i.e., τ1).

In Sect. 4, we provide an algorithm that produces a near-optimal instance-
dependent randomized strategy for 3-Slope SR. The algorithm uses parametric
search and a decision algorithm which is based on the above characterization.
Given c ∈ [1, e], the algorithm computes a feasible interval for τ1 for any possible

66 T. Böhnlein et al.

ordering of events (τ1, τ2, and intersections between slopes). If all intervals are
empty, then c is not attainable, and otherwise it is. The computation of the end-
points of the intervals relies on the solution of several differential equations that
correspond to a specific ordering of events. Finally, it is shown how to transform
the computed transition function into a randomized strategy.

Additional Related Work. Fujiwara, Kitano, and Fujito [9] focused on
the best and the worst instance-dependent deterministic competitive ratios for
Multi-Slope SR. They proved that the best ratio is achieved for a specific
additive instance where all slopes intersect at a single point. For three and four
slopes (k = 2, 3) they showed that in the worst instances the transitions costs are
entry costs and the intermediate rents are close to zero. Fujiwara, Konno, and
Fujito [10] continued this line of work by presenting lower bounds on the optimal
deterministic competitive ratios for k ∈ {4, . . . , 9}. Levi and Patt-Shamir [15]
studied Ski Rental with two lease options with an additional twist – at time
0 the strategy must decide whether it buys slope 0 or slope 1. We model this
variant as a special case of non-additive Multi-Slope SR with k = 2, where
r0 = ∞ and b0 = 0. Since r0 = ∞, the strategy must leave state 0 when the
game starts either to state 1 or to state 2. Levi and Patt-Shamir [15] provided
upper bounds and matching lower bounds for the deterministic and randomized
competitive ratios. Fujiwara, Satou, and Fujito [11] also studied Multi-Slope
SR with k = 2. They analysed the optimal deterministic competitive ratio as a
function of the discount rate d � b02

b01+b12
.

Patt-Shamir and Yadai [18] studied a non-linear extension of Ski Rental,
where the two options of rent and buy are described using functions that are con-
tinuous and satisfy certain monotonicity conditions and computational require-
ments. They gave an algorithm that computes the best deterministic strategy
and an algorithm that computes a near-optimal randomized strategy.

Another multi-slope extension of Ski Rental, called Multi-Shop SR was
defined in [1]. Suppose there are n shops, each having its own rent and buying
cost. A shop must be selected upon arrival, and then skis can be rented or bought
at the selected shop. The optimal offline strategy is to rent at cost rn, if the game
ends before b1

rn
, and otherwise to buy at cost b1. Using similar techniques to those

used in [16], a characterization of an instance-dependent optimal randomized
strategy and an algorithm to compute such a strategy are given in [1]. They also
considered several variants. In the first, the shops have entry fees. They showed
that the optimal strategy can be partitioned into segments following the same
ordering as in the standard case. In the second variant, there are shop-switching
costs. In Multi-Slope SR terms, these are instances composed of n pure rent
slopes and a single pure buy slope. However, as opposed to [2], the transition
costs do not satisfy bi,j ≤ bj = 0, for i < j, where j is one of the pure rent
states. For this case they showed that an optimal strategy switches only before
it buys, and this led to a reduction to standard Multi-Shop SR. In a third
variant, there are entry fees and switching is allowed, where the switching costs

Randomized Strategies for Non-additive 3-Slope Ski Rental 67

are the entry fees. They provided partial characterization of an optimal strategy
by showing that this variant can be reduced to Multi-Shop SR with entry fees
with O(n2) shops.

2 Preliminaries: Profiles and Transition Functions

The Multi-Slope SR problem is defined as follows: An instance consists of k
states (or slopes), where each state i ∈ {0, . . . , k − 1} is characterized by two
numbers: a buying cost bi and a rental rate ri. Each state can be represented
by a line: the ith state corresponds to the line y = bi + rix. Such a line stands
for the cost of buying the state at t = 0, and never leaving it. Figure 2 gives
a geometrical interpretation of a multislope ski rental instance with five states.
In this work we consider the case where costs are non-additive and assume an
“entry fee” cost model, i.e., the cost of entering state i from any state j < i is
bi. Recall that we may assume that for all i, bi < bi+1 and ri > ri+1.

Fig. 2. A Multi-Slope SR instance with 5 slopes (k = 4). The dashed lines are the
slopes and the thick line is the optimal cost as a function of time.

Given a Multi-Slope SR instance, if the game ends at time t, the optimal
solution is to select the slope with the least cost at time t (the thick line in Fig. 2
denotes the optimal cost for any given t). More formally, the optimal offline
cost at time t is opt(t) = mini {bi + ri · t}. Define s0 � 0. For i > 0, let si

denote the time where slopes i − 1 and i intersect, i.e., si is the time t satisfying
bi−1 + ri−1t = bi + rit, or

si � bi − bi−1

ri−1 − ri
. (1)

Henceforth, we assume that si < si+1, since otherwise slope i is dominated by
slopes i − 1 and i + 1. See the full version of the paper for a proof for the three
slope case. Observe that the optimal slope for a game ending at time t is the
slope i for which t ∈ [si, si+1] (if t = si for some i then both slopes i − 1 and i
are optimal).

68 T. Böhnlein et al.

Given a Multi-Slope SR instance, the requirement is to choose a state
for all times t. We assume that state transitions can be only forward. Hence,
a deterministic strategy for a Multi-Slope SR instance is a non-decreasing
sequence of transition times (t1, . . . , tk−1), where ti ∈ [0,∞) ∪ {∅} corresponds
to the transition time into state i, and ti = ∅ means that state i was skipped.
A transition i → j at time t is described by t� = ∅, for i < � < j, and tj = t.
Notice that in this case, we must have ti = t′ ≤ t. A randomized strategy can
be described using a probability distribution over the deterministic strategies.
However, following [16] we consider, for all times t, a probability distribution
over the set of k slopes. The intuition is that this distribution determines the
rent paid by a strategy at time t. Formally, a randomized profile (or simply a
profile) is specified by a vector p(t) = (p0(t), . . . , pk−1(t)) of k functions, where
pi(t) is the probability to be in state i at time t. The correctness requirement of
a profile is to always be at some slope, i.e., it must be that

∑k−1
i=0 pi(t) = 1, for

every time t ≥ 0. Also, p(0) = (1, 0, . . . , 0). Figure 3 presents a 3-slope profile.
Clearly, any strategy induces a profile.

Fig. 3. A profile for a 3-slope instance.

Notice that we may consider only strategies that are monotone over time
with respect to majorization [17], i.e., strategies such that for every state j and
any two times t ≤ t′ we have

j∑

i=0

pi(t) ≥
j∑

i=0

pi(t′). (2)

Randomized Strategies for Non-additive 3-Slope Ski Rental 69

Intuitively, there is no point in “rolling back” from an advanced slope to a
previous one: if at a given time we have a certain composition of the slopes, then
at any later time the composition of slopes may only improve.

Given a profile p, the rental rate of p at time t and the total rental cost up
to time t are defined as:

ρp(t) �
k∑

i=0

pi(t) · ri Rp(t) �
∫ t

0

ρp(z)dz.

As opposed to the additive model, the total buying cost at time t cannot
be determined by p(t) alone, since it depends on the values of p before t. For
instance, the cost of reaching state i through j is not the same as reaching state
i directly. It follows that we need to look at the derivative of p. Given a profile p

we define P (t) = {j : dpj(t)
dt > 0} and N(t) = {j : dpi(t)

dt < 0}. Observe that in the
3-slope case (i.e., k = 2), N(t) ⊆ {0, 1} and P (t) ⊆ {1, 2}. Since

∑
j

dpj(t)
dt = 0,

we have that
∑

j∈P (t)
dpj(t)

dt = −∑
j∈N(t)

dpj(t)
dt . Moreover, Eq. (2) implies that,

for every state i, we have that
∑

j∈P (t),j≤i
dpi(t)

dt ≤ −∑
j∈N(t),j≤i

dpi(t)
dt . Given

a profile p, let π : {0, . . . , k − 1} × {1, . . . , k} → R be a function such that

dpj(t)
dt

=

{∑
i πj→i(t) j ∈ N(t),

∑
i πi→j(t) j ∈ P (t).

Such a function is called a transition function. It can be found from dp(t)
dt using

a Maximum Flow algorithm on the bipartite graph G(t) = (N(t), P (t), E(t)),
where E(t) = {(i, j) : i ∈ N(t), j ∈ P (t), i < j}. Intuitively, πi→j is the amount
of probability mass that passes from state i to state j at time t.

We describe the transition function π for k = 2. If dp1(t)
dt ≥ 0, we have that

N(t) = {0} and P (t) ⊆ {1, 2}, and in this case π0→1(t) = dp1(t)
dt , π0→2(t) =

dp2(t)
dt , and π1→2(t) = 0. Otherwise, N(t) ⊆ {0, 1}, P (t) = {2}, and π0→1(t) = 0,

π0→2(t) = −dp0(t)
dt , and π1→2(t) = −dp1(t)

dt .
Now we are ready to define the buying cost of a transition function π up

to time t. The buying rate at time t and the total buying cost up to time t are
defined as

βπ(t) �
∑

i

bi

∑

j:j<i

πj→i(t) Bπ(t) �
∫ t

0

βπ(z)dz.

We also define the total cost paid by moving from i to j until time t which is
given by

Bi→j
π (t) = bj ·

∫ t

0

πi→j(z)dz.

Observe that Bπ(t) =
∑

i,j:i<j Bi→j
π (t).

Note that (2) implies that ρp is monotone non-increasing and Bπ is mono-
tone non-decreasing, i.e., over time, a strategy invests non-negative amounts in
buying, resulting in non-increasing rental rates.

70 T. Böhnlein et al.

Finally the total cost for p and π at time t is defined as

Xp(t) � Bπ(t) + Rp(t).

The goal of an online strategy is to minimize total cost up to time t for any
given t ≥ 0, with respect to the best possible strategy. Intuitively, we think of a
game that may end at any time. For any possible ending time, we compare the
total cost of the algorithm with the best possible (offline) cost.

3 Optimal Profile for Three Slopes

In this section, we focus on the three slope case, namely on the case where k = 2.
We show that there exists an optimal profile and transition function that take a
very specific form.

3.1 Progressive and Tight Pairs of Profile and Transition Function

We show that there exists an optimal profile in which only one entry of π and
two states are active at any given moment. Furthermore, the active entries of π
follow a specific order.

Definition 1 (Progressive). Let p be a profile and let π be a transition func-
tion that corresponds to p. The pair (p, π) is called progressive if there are times
0 ≤ τ1 ≤ τ2 such that π0→1(t) = 0, for every t ≥ τ1, π0→2(t) = 0, for every
t �∈ (τ1, τ2], and π1→2(t) = 0, for every t ≤ τ2,

The following lemma shows that it can be assumed that the transition to
state 1 is done before the transition to state 2. The proof is given in the full
version of the paper.

Lemma 1. Let (b, r) be a 3-Slope SR instance, such that s1 < s2, and let
(p, π) be a c-competitive pair, for some c > 1. Then there exists a c-competitive
pair (p̃, π̃) such that there exists τ , where (i) π̃0→1(t) = 0, for t ≥ τ , and (ii)
π̃0→2(t) = 0 and π̃1→2(t) = 0, for t ≤ τ .

Next, we show that it can be assumed that transition from state 0 to 2 is
done before the transition from 1 to 2.

Lemma 2. Let (b, r) be a 3-Slope SR instance, and let (p, π) be a c-competitive
pair, for some c > 1. Then there exists a c-competitive pair (p̃, π̃) such that there
exists τ , where (i) π̃0→2(t) = 0, for t ≥ τ , and (ii) π̃1→2(t) = 0, for t ≤ τ .

Proof. We define p̃ and π̃ as follows. Let τ be the time in which B0→2
π (τ) +

B1→2
π (τ) = B0→2

π (∞). Also, let

π̃i→j(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π0→2(t) + π1→2(t) (i, j) = (0, 2), t < τ,

0 (i, j) = (0, 2), t ≥ τ,

π0→2(t) + π1→2(t) (i, j) = (1, 2), t ≥ τ,

0 (i, j) = (1, 2), t < τ,

πi→j(t) (i, j) = (0, 1).

Randomized Strategies for Non-additive 3-Slope Ski Rental 71

Observe that Bπ̃(t) = Bπ(t), for all t, by definition.
We now prove that ρp̃(t) ≤ ρp(t) for every t. For t < τ , we have that

p0(t) − p̃0(t) =
∫ t

0

π1→2(z)dz, p1(t) − p̃1(t) =
∫ t

0

−π1→2(z)dz, and

p2(t) − p̃2(t) = 0.

Hence, for t ≤ τ ,

ρp(t) − ρp̃(t) = (r0 − r1)
∫ t

0

π1→2(z)dz ≥ 0.

Similarly, for t ≥ τ , we have that

p0(t) − p̃0(t) =
∫ ∞

t

π0→2(z)dz, p1(t) − p̃1(t) =
∫ t

0

−π0→2(z)dz, and

p2(t) − p̃2(t) = 0.

Hence, for t ≤ τ , we have that

ρp(t) − ρp̃(t) = (r0 − r1)
∫ t

0

π0→2(z)dz ≥ 0.

The lemma follows.

Both lemmas imply that one may assume that the profile is progressive.

Theorem 1. Let (b, r) be a 3-Slope SR instance where s1 < s2. If there exists
a c-competitive pair (p, π), for c > 1, then there exists a progressive c-competitive
pair (p̃, π̃).

Proof. By Lemma 1 there exists a c-competitive pair (p′, π′) such that there
exists τ1, where π′

0→1(t) = 0, for t ≥ τ1, and π′
0→2(t) = 0 and π′

1→2(t) = 0,
for t ≤ τ1. Given (p′, π′), by Lemma 2 we have that there exists a pair (p′′, π′′)
such that there exists τ2, where π′′

0→2(t) = 0, for t ≥ τ2, and π′′
1→2(t) = 0, for

t ≤ τ2. Moreover, the pair (p′′, π′′) is constructed such that π′′
0→2(t) = 0 and

π′′
1→2(t) = 0, for t ≤ τ1.

Next, We define a progressive profile which invests all free funds in buying.

Definition 2 (Tight). Let (p, π) be a progressive c-competitive pair of profile
and transition function that corresponds to p. The pair is called tight if Xp(t) =
c · opt(t), for every t where p2(t) < 1.

The next two observations provide some insight to the behavior of a tight
pair.

Observation 3. Let (p, π) be a tight c-competitive pair. Then, ρp(t) + βπ(t) =
c · dopt(t)

dt , for every t such that p2(t) < 1.

72 T. Böhnlein et al.

Observation 4. Let (p, π) be a tight c-competitive pair. Then, ρp(s2) ≤ c · r2.

Proof. If p2(s2) = 1 then, ρp(s2) = r2 < c · r2. Otherwise, p2(s2) < 1. Since p is
tight, due to Observation 3, we have that ρp(s2) + βπ(s2) = c · dopt(s2)

dt = c · r2.

We show that if there exists a c-competitive pair, then there is a tight c-
competitive pair. Before doing so we define an ordering on profiles.

Definition 3. Let p and p′ be profiles. If
∑i

j=0 pj(t) ≤ ∑i
j=0 p′

j(t), for every i,
we write p(t) � p′(t).

Lemma 5. Let p and p′ be profiles such that p(t) � p′(t). Then, ρp(t) ≤ ρp′(t).

Proof. ρp(t) =
∑

i pi(t)ri =
∑

i(ri − ri+1)
∑i

j=0 pi(t) ≤ ∑
i(ri − ri+1)

∑i
j=0 p′

i(t) =
∑

i p′
i(t)ri = ρp′(t).

Theorem 2. Assuming that s1 < s2, if there exists a progressive c-competitive
pair (p, π), then there exists a tight c-competitive pair (p̃, π̃).

Proof. Let τ1 be a time such that B0→1
π (τ1) = B0→1

π (∞). Construct a new pair
(p′, π′) as follows. The pair (p′, π′) behaves in a tight manner until it invests
B0→1

π (∞) in the transition from state 0 to state 1. This process terminates at
τ ′
1 ≤ τ1. The pair (p′, π′) only pays rent in the interval [τ ′

1, τ1], and afterwards
it behaves like (p, π). Hence p1(t) � p(t), for every t ≤ τ1, and Lemma 5 implies
that ρp′(t) ≤ ρp(t) for every t ≤ τ1. It follows that Xp′(t) ≤ c · opt(t), for every
t ≤ τ1, and Xp′(t) ≤ Xp(t), for every t > τ1.

Next, let τ2 be a time at which p0 becomes 0, i.e., τ2 = min {t : p0(t) = 0}.
Construct a new pair (p′′, π′′) as follows. The pair (p′′, π′′) behaves in a tight
manner until p′′

0 becomes 0. (Notice that funds that became available due to
moving from (p, π) to (p′, π′) may be used.) This process terminates at τ ′

2 ≤ τ2.
The pair (p′′, π′′) only pays rent in the interval [τ ′

2, τ2], and afterwards it mimics
(p, π). Using similar arguments as above, we have that Xp′(t) ≤ c · opt(t), for
t ≤ τ2, and Xp′(t) ≤ Xp(t), for t > τ2.

Finally, let (p̃, π̃) be a tight pair. We have that Xp̃(t) ≤ c · opt(t), for every
t. Furthermore, let τ3 be the time where B0→2

π (τ3) + B1→2
π (τ3) = B0→2

π (∞) +
B1→2

π (∞). By Lemma 5 we have that ρp̃(τ3) ≤ ρp(τ3) and it follows that ρp̃(t) ≤
ρp(t), for t > τ3.

3.2 Reconstruction: Profile and Transition Function

In this section, we show that a tight c-competitive pair (p, π) can be recon-
structed using a ratio c > 1 and a time τ1 ≥ 0. First, we define a pair which
stops buying state 1 at τ1.

Definition 4. Given a 3-Slope SR instance, a ratio c > 1, and a time τ1 ≥ 0,
we define (p, π) as the profile pair, where d

dtXp(t) = c · d
dtopt(t), for every t such

that p2(t) < 1, and with the following three phases:

Randomized Strategies for Non-additive 3-Slope Ski Rental 73

– 0 → 1 phase: from t = 0 to t = τ1, buy 1 from 0 with all available funds, e.g.,
βπ(t) = π0→1(t) · b1.

– 0 → 2 phase: from t = τ1 and as long as p0(t) > 0, buy 2 from 0 with all
available funds, e.g. βπ(t) = π0→2(t) · b2.

– 1 → 2 phase: from the end of the previous phase and as long as p2(t) < 1,
buy 2 from 1 with all available funds, e.g. βπ(t) = π1→2(t) · b2.

The pair (p, π) is denoted by (p[c, τ1], π[c, τ1]).

It is important to note that, given a 3-Slope SR instance, not every ratio c
and time τ1 induce a tight c-competitive pair for the following reasons:

(i) τ1 is too late, in the sense that option 1 is fully bought at a time t′ < τ1.
In this case the pair (p[c, τ1], π[c, τ1]) does not describe a tight profile
because, for t′ < t < τ1, βπ[c,τ1](t) = 0 while ρp[c,τ1](t) is smaller than
c · d

dtopt(t).
(ii) the total costs of the profile simply exceed the available funds. In this case,

Xp(t) > c · opt(t) for some t, and the profile is not c-competitive.

To handle Reason (i) we define the following notion.

Definition 5. A ratio c > 1 and a time τ1 ≥ 0 are called valid, if p[c, τ1](t) < 1,
for every t < τ1.

Regarding Reason (ii), we check the rental of a profile, that is c and τ1 are
feasible if the rental rate of the profile does not exceed the available funds at
any time.

Definition 6. A ratio c > 1 and a time τ1 ≥ 0 are called feasible if ρp[c,τ1](t) ≤
c · dopt(t)

dt , for every t.

Notice that if c and τ1 are not feasible, then p[c, τ1] does not describe a c-
competitive profile, as there exists a time t where ρp[c,τ1](t) > c · dopt(t)

dt , but it
means that at that time βπ[c,τ1](t) < 0 which is impossible.

Observation 6. Given a 3-Slope SR instance, if c > 1 and τ1 ≥ 0 are valid
and feasible, then the pair (p[c, τ1], π[c, τ1]) is tight and c-competitive.

The next lemma helps us to deal with Reason (ii). If c > 1 and τ1 ≥ 0 are
valid, then to check whether the pair (p[c, τ1], π[c, τ1]) is c-competitive, we only
need to evaluate the rent at times s1 and s2. The proof is given in the full version
of the paper.

Lemma 7. The pair (p[c, τ1], π[c, τ1]) is c-competitive if and only if
(i) ρp[c,τ1](s1) < c · r1, and (ii) ρp[c,τ1](s2) ≤ c · r2.

Given a 3-Slope SR instance, a ratio c, and a time τ1, due to Lemma 7 we
can determine if the pair (p[c, τ1], π[c, τ1]) is tight and c-competitive. To do so,
we try to construct the pair in a piece-wise fashion until we either fail or succeed.

74 T. Böhnlein et al.

First, we analyse how the profile p[c, τ1] spends funds. The spending rate of
a tight profile at time t is:

βπ(t) + ρp(t) = c · d

dt
opt(t) = c · rj (3)

where rj = r0, if t ∈ [0, s1), rj = r1, if t ∈ [s1, s2), and rj = r2, if t ≥ ss. Hence,
the spending rate changes at times s1 and s2.

Moreover, the pair (p[c, τ1], π[c, τ1]) is progressive and has phases as described
in Definition 4. Recall that time τ2 is defined as the earliest time when p0(t) = 0
(if such a time exists). The rental rates and buying rates for the three phases
are as follows:

ρp(t) =

⎧
⎪⎨

⎪⎩

p0(t)r0 + p1(t)r1 t ∈ (0, τ1]
p0(t)r0 + p1(t)r1 + p2(t)r2 t ∈ (τ1, τ2]
p1(t)r1 + p2(t)r2 t > τ2

βπ(t) =

⎧
⎪⎨

⎪⎩

π0→1(t)b1 = dp1(t)
dt · b1 t ∈ (0, τ1]

π0→2(t)b2 = dp2(t)
dt · b2 t ∈ (τ1, τ2]

π1→2(t)b2 = dp2(t)
dt · b2 t > τ2

Recall that p1(t) is a constant function for t ∈ [τ1, τ2].
It follows that the pair (p[c, τ1], π[c, τ1]) can have up to five pieces separated

by s1, s2, τ1, and τ2. With Eq. (3) we set up a differential equation for the pieces
separated by τ1 and τ2.

0 → 1 Phase: When t ∈ (0, τ1], we have that p2(t) = 0 and p1(t) = 1 − p0(t).
Hence,

d

dt
p1(t) · b1 + (1 − p1(t))r0 + p1(t) · r1 = c · rj ,

and equivalently d
dtp1(t) + p1(t) · r1−r0

b1
= c·rj−r0

b1
.

The solution to this differential equation is p1(t) = c·rj−r0
r1−r0

+Γ ·exp(− r1−r0
b1

t),
where Γ depends on a boundary condition.1

0 → 2 Phase: When t ∈ (τ1, τ2], we have that p1(t) = p1(τ1) and p2(t) =
1 − p1(τ1) − p0(t). Hence,

d

dt
p2(t) · b2 + (1 − p1(τ1) − p2(t))r0 + p1(τ1) · r1 + p2(t) · r2 = c · rj ,

and equivalently d
dtp2(t) + p2(t) r2−r0

b2
= c·rj−r0+(r0−r1)p1(τ1)

b2
.

1 → 2 Phase:
When t > τ2 we have that p0(t) = 0 and p2(t) = 1 − p1(t) and we get

d

dt
p2(t) · b2 + (1 − p2(t))r1 + p2(t) · r2 = c · rj ,

and equivalently d
dtp2(t) + p2(t) r2−r1

b2
= c·rj−r1

b2
.

1 A solution to a differential equation of the form y′(t)+αy(t) = β where α and β are
constants is y = β

α
+ Γ · e−αt, where Γ depends on some boundary condition.

Randomized Strategies for Non-additive 3-Slope Ski Rental 75

At time t = 0, we have the boundary condition p(0) = (1, 0, 0). For each of
the following pieces, there is a boundary condition determined by the previous
piece ensuring that each function of the profile is continuous (cf. Fig. 3).

Theorem 3. Given a 3-Slope SR instance and ratio c and time τ1, it can
be determined whether c and τ1 describe a c-competitive profile. If so, the tight
c-competitive pair (p[c, τ1], π[c, τ1]) can be constructed.

Proof. We prove the theorem by presenting an algorithm that constructs the
profile p[c, τ1] or determines that c and τ1 are either not valid or not feasible.
The construction is done in a piece-wise manner. The algorithm starts by using
the boundary condition p1(0) = 0 to solve the first differential equation (Phase
0 → 1, rj = r0). A new piece starts every time a phase ends or when the
optimal spending rate changes. Each piece corresponds to a new differential
equation. While going through the pieces we need to verify that (i) p1(τ1) ≤ 1,(ii)
ρp[c,τ1](s1) < c · r1, and (iii) ρp[c,τ1](s2) ≤ c · r2. The theorem follows.

4 Computing a Near-Optimal Strategy

In this section, we present an algorithm to compute an instance-dependent near-
optimal strategy for 3-Slope SR with entry fees. The algorithms is based on
tools that were developed in the previous section.

Given an instance of 3-Slope SR, we want to find a pair (p[c, τ1], π[c, τ1])
where c is a near-optimal competitive ratio. We are motivated by the app-
roach that is taken in [16], where the optimal competitive ratio for an additive
multi-slope instance is approximated to arbitrary precision by performing binary
search. This is possible since, in the additive case, a profile can be fully described
by a ratio c > 1, and checked whether it is indeed c-competitive. However, in
the non-additive case we need two parameters to describe a profile, namely ratio
c and time τ1. Our approach to this two parametric search is to fix the ratio c
and compute all times τ1 that yield a tight c-competitive pair (p[c, τ1], π[c, τ1])
or decide that no such time exists. Consequently, we may use binary search to
approximate the optimal competitive ratio to arbitrary precision.

4.1 Monotonicity of the Competitive Ratio and Interval

Applying binary search on the competitive ratio would work only if the compet-
itive ratio is monotone. That is, it must be that if there exists a c-competitive
pair, then there exists a c′-competitive pair for every c′ > c. We prove this
property for non-additive 3-Slope SR with entry fees.

Lemma 8. Given a 3-Slope SR instance with entry fees, let c and τ1 be valid
and feasible, i.e., assume that there is a tight c-competitive pair (p[c, τ1], π[c, τ1]).
Then for every c′ > c, one of the following holds:

– c′ and τ1 are valid and feasible.

76 T. Böhnlein et al.

– There exist a time τ ′
1 < τ1, such that c′ and τ ′

1 are valid and feasible. More-
over, p1[c′, τ ′

1](τ
′
1) = 1.

For the proof of this and of the following lemma we refer to the full version
of the paper. From Lemma 8 we now know that, if we find a c-competitive pair
(p[c, τ1], π[c, τ1]), for some τ1, then the optimal competitive ratio is at most c,
and if we cannot find a c-competitive pair (p[c, τ1], π[c, τ1]), for any τ1, then the
optimal competitive factor must be larger than c.

The following lemma shows that, for a given c, all of the possible times τ1
where c and τ1 are valid and feasible form an interval.

Lemma 9. Given a 3-Slope SR instance with entry fees, let (p1, π1) and
(p2, π2) be c-competitive pairs that are induced by c and τ1

1 and c and τ2
1 , recep-

tively, where τ1
1 < τ2

1 . Then, c and τ̃1, for every τ̃ ∈ [τ1
1 , τ2

1], are valid and
feasible.

4.2 Outline of Our Algorithm

In the proof of Theorem3, we show how to construct a piece-wise, progressive
profile that buys in a tight manner based on a ratio c > 1 and time τ1 ≥ 0.
Following this approach, we fix a ratio c, construct a tight profile but keep τ1 as
a variable. Our goal is to derive expressions for the rent at times s1 and s2 as
(simple) functions of τ1. Then, Lemma 7 allows us to determine which values τ1
form a competitive pair together with c.

As τ1 is a variable, we need to distinguish between three main cases in the
analysis. The cases result from the relations of s1, τ1 and τ2 which separate the
pieces of the profile: (i) τ1 < s1 < τ2, (ii) s1 ≤ τ1, and (iii) τ2 < s1 .
For the first two cases there are two sub-cases: either s2 ≤ τ2 or τ2 < s2. We
construct a profile for each case.

We start by solving the differential equation for Phase 0 → 1 with rj =
r0 and use the boundary condition p1(0) = 0. The result are three functions
(p10(t), p

1
1(t), p

1
2(t)) that describe the first piece of each profile in the three cases.

Note that this piece does not depend on τ1.
To outline the approach further, we concentrate on Case (i): We assume that

τ1 < s1. Hence, the first piece is valid in the interval [0, τ1]. Next, we derive the
second piece of the profile using the differential equation for Phase 0 → 2 with
rj = r0. As boundary condition at time τ1 we use p2(τ1) = 0. We derive three
functions (p20(t), p

2
1(t), p

2
2(t)) that describe our profile in the interval [τ1, s1].

With the first two pieces, we are able to derive an expression for the rent
ρp(s1) as a function of τ1 in Case (i) as follows: ρp(s1) = r0 ·p20(τ1)+r1 ·p21(τ1)+r2 ·
p22(τ1). In the full version, we present the detailed analysis where the expression
is simplified to

ρs1(t) � c · r0 − (c − 1)r0 · exp
(

r0 − r2
b2

· s1 +
(

r0 − r1
b1

− r0 − r2
b2

)

· t

)

.

We show that the expression defines a continuous and decreasing function. It
follows that all values t such that ρs1(t) < c · r1, i.e., values that satisfy the

Randomized Strategies for Non-additive 3-Slope Ski Rental 77

first condition of Lemma 7, form an interval. Continuing in this manner, we
derive an expression for ρp(s2) that depends on τ1 for Case (i). We show that
this expression defines a continuous and convex function, and can determine
another interval of values for τ1 that satisfy the second condition of Lemma 7. The
intersection of these two intervals, contains values for τ1 that form a competitive
pair together with c. We present the approach in detail in the full version where
we show how these intervals are derived for each of the three cases.

Our algorithm performs binary search for the optimal competitive ratio c
in the range [1, e]. Recall that an upper bound of e was given in [16]. For each
candidate ratio c, Algorithm Feasible (presented in the full version) computes
the respective intervals of τ1 for the three cases and checks whether one of them
contains a feasible value for τ1. Each such interval is obtained by using the
conditions for validity and feasibly that were given in the previous section. If all
intervals are empty, then a ratio of c cannot be obtained, otherwise a time τ1
is obtained such that c and τ1 are both valid and feasible. It follows that there
exists a tight c-competitive pair (p[c, τ1], π[c, τ1]).

We summarize the main result of the section by the following theorem.

Theorem 4. Given a 3-Slope SR instance with entry fees, such that s1 < s2,
and c > 1, Algorithm Feasible computes time τ1 such that (p[c, τ1], π[c, τ1]) is
a tight and c-competitive pair or decides that no c-competitive profile exists.

In the full version of the paper we show how to compute a c-competitive
strategy, given a tight c-competitive pair (p, π).

5 Future Directions

We analyse non-additive 3-Slope Ski Rental and provide a characterization of
an optimal randomized transition function. Based on the analysis, we provide an
algorithm that produces a near-optimal instance-dependent randomized strategy
for 3-Slope SR.

There are two natural future directions. The first is to extend the result to
Multi-Slope Ski Rental with k slopes, where k > 3. This work already pro-
vides several ideas. For example, it is not hard to extend the transition ordering
that was given in Sect. 3. That is, one can prove that the transition i → j must
precede the transition i′ → j′, if i = i′ and j < j′ or if i′ > i and j = j′.
This leads to a partial order, where (i, j) must precede (i′, j′) if (i, j) ≤ (i′, j′).
Another direction is to consider a non-additive transition cost function where
bij may be smaller than bj , but still larger than bj − bi. As mentioned in the
introduction, any c-competitive strategy that works for the entry fees case would
be c-competitive for any non-additive instance with the same cost vector b. How-
ever, the best strategy for the former does not need to be the best strategy for
the latter.

78 T. Böhnlein et al.

References

1. Ai, L., Wu, X., Huang, L., Huang, L., Tang, P., Li, J.: The multi-shop ski rental
problem. In: ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pp. 463–475 (2014)

2. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. SIAM J. Com-
put. 37(5), 1499–1516 (2008)

3. Azar, Y., Bartal, Y., Feuerstein, E., Fiat, A., Leonardi, S., Rosén, A.: On capital
investment. Algorithmica 25(1), 22–36 (1999)

4. Azar, Y., Cohen, I.R., Roytman, A.: Online lower bounds via duality. In: 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1050 (2017)

5. Bejerano, Y., Cidon, I., Naor, J.S.: Dynamic session management for static and
mobile users: a competitive on-line algorithmic approach. In: 4th International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Com-
munications, pp. 65–74. ACM (2000)

6. Black, D.L., Sleator, D.D.: Competitive algorithms for replication and migration
problems. Technical Report, CMU-CS-89-201, CMU, November 1989

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

8. Damaschke, P.: Nearly optimal strategies for special cases of on-line capital invest-
ment. Theoret. Comput. Sci. 302(1–3), 35–44 (2003)

9. Fujiwara, H., Kitano, T., Fujito, T.: On the best possible competitive ratio for the
multislope ski-rental problem. J. Comb. Optim. 31(2), 463–490 (2014). https://
doi.org/10.1007/s10878-014-9762-9

10. Fujiwara, H., Konno, Y., Fujito, T.: Analysis of lower bounds for the multislope ski-
rental problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97-A(6),
1200–1205 (2014)

11. Fujiwara, H., Satou, S., Fujito, T.: Competitive analysis for the 3-slope ski-rental
problem with the discount rate. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 99-A(6), 1075–1083 (2016)

12. Irani, S., Shukla, S.K., Gupta, R.K.: Online strategies for dynamic power man-
agement in systems with multiple power-saving states. ACM Trans. Embedded
Comput. Syst. 2(3), 325–346 (2003)

13. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive random-
ized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

14. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3(1), 77–119 (1988)

15. Levi, A., Patt-Shamir, B.: Non-additive two-option ski rental. Theoret. Comput.
Sci. 584, 42–52 (2015)

16. Lotker, Z., Patt-Shamir, B., Rawitz, D.: rent, lease, or buy: randomized algorithms
for multislope ski rental. SIAM J. Discret. Math. 26(2), 718–736 (2012)

17. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applica-
tions. Academic Press, Cambridge (1979)

18. Patt-Shamir, B., Yadai, E.: Non-linear ski rental. In: 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 431–440 (2020)

https://doi.org/10.1007/s10878-014-9762-9
https://doi.org/10.1007/s10878-014-9762-9

Accelerated Information Dissemination
on Networks with Local and Global Edges

Sarel Cohen1 , Philipp Fischbeck2(B), Tobias Friedrich2 ,
Martin S. Krejca3 , and Thomas Sauerwald4

1 School of Computer Science, The Academic College of Tel Aviv-Yaffo,
Tel Aviv-Yaffo, Israel
sarelco@mta.ac.il

2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{philipp.fischbeck,tobias.friedrich}@hpi.de
3 Sorbonne University, CNRS, LIP6, Paris, France

martin.krejca@lip6.fr
4 Department of Computer Science and Technology, University of Cambridge,

Cambridge, UK
thomas.sauerwald@cl.cam.ac.uk

Abstract. Bootstrap percolation is a classical model for the spread of
information in a network. In the round-based version, nodes of an undi-
rected graph become active once at least r neighbors were active in the
previous round. We propose the perturbed percolation process: a super-
position of two percolation processes on the same node set. One pro-
cess acts on a local graph with activation threshold 1, the other acts on
a global graph with threshold r – representing local and global edges,
respectively. We consider grid-like local graphs and expanders as global
graphs on n nodes.

For the extreme case r = 1, all nodes are active after O(log n) rounds,
while the process spreads only polynomially fast for the other extreme
case r ≥ n. For a range of suitable values of r, we prove that the process
exhibits both phases of the above extremes: It starts with a polynomial
growth and eventually transitions from at most cn to n active nodes, for
some constant c ∈ (0, 1), in O(log n) rounds. We observe this behavior
also empirically, considering additional global-graph models.

Keywords: Bootstrap percolation · Random graphs · Expanders ·
Rumor spreading

1 Introduction

Information spreads very fast in networks (see, e.g., [23]). Several practical and
theoretical studies concern n agents (nodes) interacting within a network and
exchanging information via incident edges. These works have demonstrated that
if each agent, once informed, informs all its agents in the neighborhood, the
entire network is typically informed in a time that is at most logarithmic in the
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 79–97, 2022.
https://doi.org/10.1007/978-3-031-09993-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_5&domain=pdf
http://orcid.org/0000-0003-4578-1245
http://orcid.org/0000-0003-0076-6308
http://orcid.org/0000-0002-1765-1219
https://doi.org/10.1007/978-3-031-09993-9_5

80 S. Cohen et al.

number of agents. This behavior even holds if each agent chooses only one ran-
dom neighbor at each iteration (and a slightly faster dissemination is possible if
an agent does not choose the same agent twice in a row [22]). A similar behav-
ior occurs in the bootstrap percolation model [17], in which agents are informed
once the number of informed neighbors reaches a certain threshold. This model
has been extensively analyzed on a range of graph models, including hyper-
cubes [9], grids [10], Erdős–Rényi graphs [31], preferential attachment graphs [4],
random regular graphs [11], random geometric graphs [14], hyperbolic random
graphs [15], inhomogeneous random graphs [1,5], geometric inhomogeneous ran-
dom graphs [32], Kleinberg’s small world model [24,27], as well as superpositions
of Erdős–Rényi graphs and other graphs [37].

In the bootstrap percolation model, the process usually either reaches almost
all agents quickly or terminates without having reached most of the agents [9,
31]. This speed is often attributed to the logarithmic diameter of the network,
as well as to the existence of high-degree nodes, which are both prevalent in
many real-world graphs as well as in their mathematical models. However, these
models assume that information spreads the same way among all edges. If this
is not the case, e.g., because agents need to be convinced of some information
by more than one agent, the resulting behavior can be fundamentally different
[12,16,26,28,35].

Typically, the edges of a graph describe the closeness of agents, i.e., two
agents connected via an edge are close, while non-edges represent separation.
This is particularly true for graph models that utilize an underlying geometry
for determining the edge set. However, another perspective, found in epidemics,
is that every pair of agents has an activation probability defined, e.g., by split-
ting the agents into groups [30]. In bootstrap percolation, one can set different
activation thresholds based on the groups [13]. Further, one can model the close-
ness via different graphs on the same agents, namely via local and global edges,
which are assigned different activation probabilities [7,8]. The underlying graphs
represent different interactions, e.g., contacts within and across households [6].

We aim at understanding the effect of edge types on the speed of information
dissemination. To this end, we analyze graphs that have two types of edges: one
representing short edges, and another one representing long edges. The graph
induced by the short edges (the local graph) models the local neighborhood
of agents. These model whether two agents are close, e.g., people an agent is
exposed to more often, such as colleagues, relatives or neighbours. The graph
induced by the long edges (global graph) models non-local (global) contacts. This
represents people who the agent has not that much contact with, e.g., people
who live further away or celebrities from social media who the agent may never
meet personally but is influenced by.

We employ the classic bootstrap percolation model as a foundation for the
spread of information in networks as described above. In this model, each agent
either has a certain piece of information (it is active) or it has not (inactive).
Given a parameter r ∈ N

+ (the activation threshold) and a set of initially active
nodes, iteratively, at each round t ∈ N

+, a node becomes (and remains) active
if it has at least r neighbors that were active in round t − 1.

Accelerated Information Dissemination 81

Model. We propose the perturbed percolation model, which is the superposition
of two bootstrap percolation processes on the same node set but with two differ-
ent edge sets. One process acts on the local graph with an activation threshold
of 1. The other process acts on the global graph with an activation threshold
of r. This is similar to the above-mentioned models where nodes have local and
global contacts with varying activation probabilities [8]. Note that a perturbed
percolation process always percolates completely if the local graph is connected.
However, the overall speed is majorly influenced by the global graph via r.

Theoretically and empirically, we analyze how quickly nodes become active in
this model. We are interested in the two following activation rates: a polynomial
rate, i.e., the number of active nodes in round t is a polynomial in t, and a rapid
rate, i.e., the number of inactive nodes reduces from at least (1 − c)n, for some
constant c ∈ (0, 1), to none in O(log n) rounds.

Results. For our theoretical results, we analyze the activation rate of the
perturbed percolation model on local graphs that we refer to as polynomial-
neighborhood graphs (PNGs) with n nodes, characterized by having a polyno-
mially expanding neighborhood w.r.t. the hop distance, including grid graphs,
cycles, and, asymptotically almost surely (a.a.s.), random geometric graphs with
expected polylogarithmic node degree. We prove the following landscape of per-
turbed percolation w.r.t. the activation threshold r, using PNGs as local and
expanders as global graph:

– For the extreme case r ≥ n, the process has a polynomial rate (Theorem 1).
– For the other extreme case r = 1, the process has a rapid rate (Corollary 1),

i.e., adding global edges changes the rate immediately from polynomial to
rapid.

– Our main result is that the process with suitable values of r between the
extreme cases above, including r = 2, has a polynomial-to-rapid rate
(Corollary 2), i.e., the process has a polynomial rate for a polynomial number
of rounds (w.r.t. n) and then ends with a rapid rate. This result highlights
that while the edges from the global graph speed up the overall process, it
takes some (long) time for the process to actually switch to a rapid rate.

We complement our theoretical results by empirical analyses (Figs. 1 and 2).
Next to Erdős–Rényi graphs as global graphs, we also include Barabási–Albert
and hyperbolic random graphs, which are not covered by our theoretical analysis.
For all cases, we observe a clear distinction between the polynomial and the rapid
rate.

Framework (Informal Description). Our main result follows from our more
general result (Theorem 3) based on proving the following three independent
properties, assuming a graph with n nodes:

1. Any bootstrap percolation process on the local graph, for any initial active set
of size 1, has polynomial rate.

82 S. Cohen et al.

2. For the perturbed percolation process, a.a.s. for an initial number of rounds
polynomial in n, no inactive node has at least r global edges to active nodes.

3. Asymptotically a.s., any bootstrap percolation process on the global graph,
for any initial active set of linear size, percolates completely in a number of
rounds logarithmic in n.

Combining all three properties shows a polynomial-to-rapid rate. We note that
Property 3 considers the classic bootstrap percolation setting but requires to first
fix the random graph and then the initial set (even adversarially). Typically, this
order is reversed. Thus, we believe our results proving this property (Theorem 6
and 8) to be of independent interest. In addition, in Theorem8 we provide an
improved bound of r · n/ ln n for the size of the initial set in Property 3 for the
special case of Erdős–Rényi graphs.

Outline. In Sect. 2, we introduce our notation as well as our model and the
graph classes we consider. Sections 3 and 4 contain our theoretical results. The
former considers the extreme cases of the activation threshold r, the latter suit-
able intermediate values. Our main result of these sections is Corollary 2. In
Sect. 5, we discuss our empirical results, and we provide an outlook in Sect. 6.

2 Preliminaries

Let N denote the set of natural numbers, including 0. For m,n ∈ N, let [m..n] :=
[m,n] ∩ N, and let [m] := [1..m]. We consider undirected, finite graphs. Given
such a graph G, let V (G) denote its set of nodes and E(G) its set of edges. We
denote the minimum and maximum node degree of G by dmin(G) and dmax(G),
respectively, dropping G if it is clear from context.

We use big-O notation only in combination with a graph G. The asymp-
totics of the notation are then with respect to |V (G)| (which we usually call n).
Additionally, the notation ˜O allows for factors polylogarithmic in |V (G)|. In the
same context, a constant is a value Θ(1), that is, a value bounded independently
of |V (G)|.

An event A occurs asymptotically almost surely (a.a.s.) if and only if Pr[A] =
1 − o(1).

2.1 Percolation Processes

We introduce the perturbed percolation process, which is a superposition of two
classical bootstrap percolation processes, using different edges and thresholds.

Bootstrap Percolation. Let G be a graph with n nodes, r ∈ N>0, and I ⊆
V (G). The bootstrap percolation process P on G with threshold r and initial
active set I is a deterministic discrete-time process on V (G) in which each node
is either active or inactive. In each round, each node adjacent to at least r active

Accelerated Information Dissemination 83

nodes becomes active. Let (At)t∈N denote the sequence of sets of active nodes
over time. Note that A0 = I and that, for all t ∈ N with t ≥ n − 1, At+1 = At.
We say that P percolates completely if and only if |An−1| = n.

Let t1, t2 ∈ N, and let T = min{t ∈ N | At = An−1}. We say that P has
a polynomial activation rate for [t1..t2] if and only if there is a constant c > 0
such that for all t ∈ [t1..t2] it holds that |At| = ˜O(tc +1). Further, P has a rapid
activation rate for [t1..t2] if and only if t2 = t1 + O(log n), there is a constant
c ∈ (0, 1) such that |At1 | ≤ cn, and |At2 | = n. We say P has a polynomial (resp.
rapid) activation rate if and only if it has a polynomial (resp. rapid) activation
rate for [0..T]. Last, we say that P has a polynomial-to-rapid activation rate if
it has both a polynomial activation rate and rapid activation rate. Note that
this is equivalent to the existence of t1, t2 ∈ N and a constant c > 0 such that
t1 ∈ Ω(nc) and that P has a polynomial activation rate for [0..t1] and a rapid
activation rate for [t2..T].

Perturbed Percolation. Let G = (V,E) be a graph decomposable into a local
graph G� = (V,E�) and a global graph Gg = (V,Eg) (each possibly random),
i.e., E = E� ∪ Eg. Further, let r ∈ N>0 and I ⊆ V . The perturbed percolation
process P on G with threshold r and initial active set I is the union of the
bootstrap percolation process on G� with threshold 1 and the one on Gg with
threshold r, both with initial active set I. That is, in each round, each node with
an active neighbor in G� or at least r active neighbors in Gg becomes active. The
notion of polynomial/rapid activation rate from bootstrap percolation naturally
extends to P .

We introduce randomization into the connections via a random permutation
of the nodes. To this end, we assume w.l.o.g. that there exists a bijective label-
ing � : V (G) → [1..n]. Let σ be a permutation over [1..n], chosen uniformly at
random, independently of any other potential random choices, and let G′

g be
identical to Gg. Then Eg =

{{σ(�(u)), σ(�(v))} ∈ V (G)2 | {u, v} ∈ E(G′
g)

}

.
Technically, Gg is random (due to σ), and G′

g represents a (possibly determin-
istic) isomorphic representation of Gg. However, throughout the paper, we refer
to both graphs as the global graph. When talking about the graph itself, we
refer to G′

g, which can be deterministic. In contrast, if we refer to its edges, we
refer to the set E(Gg), which is random. Without randomization, there always
exist perturbed percolation processes with (solely) rapid activation rates, due to
possible dependencies between G� and Gg. In particular, there are graphs G� and
Gg in the graph classes below such that the perturbed percolation process ends
within O(log n) rounds. Randomization eliminates such cases. In case that G�

and Gg are independent, randomization does not change anything. In particular,
it is not required for our results concerning random graphs.

Throughout the paper, we assume the following order of events: 1. Fix G�

and Gg in some order. 2. Randomize Gg as described above. 3. Fix an initial
active set of nodes. Note that this implies that the initial active set can be
chosen adversarially w.r.t. the realizations of the resulting graph of the perturbed
percolation process.

84 S. Cohen et al.

2.2 Graph Classes

As local graphs, we consider graphs with polynomially expanding neighborhoods.
As global graphs, we consider expanders, especially random regular graphs and
Erdős–Rényi graphs.

Polynomial-Neighborhood Graphs. For a connected graph G = (V,E), let
dG : V 2 → N denote the distance between all pairs of nodes in G. That is, for all
u, v ∈ V , the value dG(u, v) is the length of a shortest path from u to v. Further,
for all u ∈ V and all h ∈ [0..|V | − 1], let Bh(u) = {v ∈ V | dG(u, v) ≤ h} denote
the ball of distance at most h around u.

Let c > 0 be a constant. We say that G is a polynomial-neighborhood graph
(PNG) of growth c if and only if for all u ∈ V and all h ∈ [0..|V | − 1] it holds
that |Bh(u)| = ˜O(hc + 1).

Examples of PNGs include grid graphs (with and without looping bound-
aries), cycles, and, a.a.s., random geometric graphs with expected node degree
polylogarithmic in n.

Expanders. We call a graph an expander if and only if its spectral expansion λ
is bounded away from 1 from above and below (see Sect. 4.2 for more details).
We note that expanders can be deterministic or random. It is well-known that
both Erdős–Rényi Graphs [19] and random d-regular graphs are expanders [25]
(see Theorems 4 and 5).

Random Regular Graphs. Let n ∈ N>0, let d ∈ [3..n−1], and let Gn,d denote
the class of all (deterministic) d-regular graphs with n nodes. Each uniform
sample G from Gn,d is a random d-regular graph with n nodes, denoted as Gn,d.

Erdős–Rényi Graphs. Let n ∈ N>0 and p ∈ [0, 1]. A graph G is an Erdős–
Rényi graph with n nodes and edge probability p, denoted as Gn,p, if and only if
|V (G)| = n and each e ∈ V 2

� {(v, v) | v ∈ V } is in E(G) with probability p,
independent of all other choices.

3 Extreme Thresholds

We consider perturbed percolation on PNGs with n nodes as local graphs for
the extreme cases of r ≥ n and r = 1, where r is the threshold of the global
graph.

Case r ≥ n. This case is equivalent to bootstrap percolation on PNGs with a
threshold of 1. We show that regardless of the (bootstrap) threshold, the rate
of the process on PNGs is polynomial if the initially active set is constant. We
note that the perturbed percolation process percolates completely if and only if
the local graph is connected.

Accelerated Information Dissemination 85

Theorem 1. Let c > 0 be a constant, and let G be a PNG of growth c. Further,
let I ⊆ V (G) such that |I| = Θ(1), and let r′ ∈ [n − 1]. Then the bootstrap
percolation process on G with threshold r′ and initial active set I has a polynomial
activation rate.

Proof. Let t ∈ N, and recall that At is the set of active nodes at the end of
round t. From each u ∈ I, the bootstrap percolation process reaches at most
Bt(u), that is, it holds that |At| ≤ ∑

u∈I |Bt(u)|. Since G is a PNG of growth c

and since |I| = Θ(1), it follows that |At| = ˜O
(|I| · (tc + 1)

)

= ˜O(tc + 1), which
concludes the proof.

Case r = 1. It follows from the literature that the rate is rapid from the start
(Corollary 1) if the global graph is an Erdős–Rényi graph, as the diameter of the
graph is logarithmic.

Theorem 2 [34, Theorem 4]. Let n ∈ N>0, ε > 0 be a constant, and let G be
a graph with n nodes that is decomposable into a connected local graph and into
a Gn,ε/n as a global graph. Then a.a.s., G has a diameter of O(log n).

For d-regular expanders, it is well-known that the diameter is O(log n) [29, page
455].

The following statement immediately follows (as it only requires that the
diameter is O(log n)), noting that the diameter of a Gn,p does not increase
when p increases.

Corollary 1. Let G = (V,E) be a graph with n ∈ N>0 nodes that is decom-
posable into a connected local graph and into a global graph Gg. Further, let
c ∈ (0, 1) be a constant, and let I ⊆ V (G) such that I 	= ∅ and |I| ≤ cn.

1. Let Gg be Gn,p with p ∈ [Ω(1/n), 1]. Then a.a.s., the perturbed percolation
process on G with threshold 1 and initial active set I has a rapid activation
rate.

2. For d ∈ [3..n − 1], let Gg be a d-regular expander with n nodes. Then a.a.s.,
the perturbed percolation process on G with threshold 1 and initial active set I
has a rapid activation rate.

4 Polynomial-to-Rapid Activation Rate

We prove the emergence of a polynomial-to-rapid activation rate for suitable
values of r between the extreme cases considered above. Our main result is the
following.

Corollary 2. Let G be a graph with n ∈ N≥3 nodes that is decomposable into a
PNG as local graph and into a graph with spectral expansion λ ∈ R>0 and dmax =
O(dmin) as global graph. Let d = 2|E(G)|/n, and let r ∈ [2..(1 − λ)d2min/(4d)].
Then a.a.s., there exists a V ′ ⊆ V (G) with |V ′| = n − n3/4 such that for all
v ∈ V ′, the perturbed percolation process on G with threshold r and initial active
set {v} has a polynomial-to-rapid rate.

86 S. Cohen et al.

We prove this result by applying a general framework for proving that a
perturbed percolation process P has a transition from polynomial to rapid rate
on a graph G = (V,E) with |V | = n. To this end, let G� denote the local graph
that P acts on, and let Gg denote the global graph. Further, let P� and Pg

denote the bootstrap percolation processes on G� and Gg, respectively. Last, let
(At)t∈[0..n−1] denote the set of active nodes of P� after each round, and for all
v ∈ V and U ⊆ V , let Γg(v, U) = {u ∈ U | {u, v} ∈ E(Gg)}.

Framework. The framework comprises the following three independent prop-
erties:

1. For all v ∈ V (G), the process P� with initial active set {v} has a polynomial
activation rate and percolates completely.

2. There are constants c1, c2 ∈ (0, 1) and a set |V ′| ≥ n − n1−c1 such that for
all v ∈ V ′, having initial active set {v} implies that for all u ∈ V ,
|Γg(u,Anc2)| < r.

3. There exists a constant c3 > 1 such that for all I ⊆ V with |I| ≥ n/c3, the
process Pg with initial active set I has a rapid activation rate.

Properties 1 and 3 consider exclusively P� and Pg, respectively, whereas Property
2 connects P� with the global graph. Our framework yields the following general
theorem.

Theorem 3 (Polynomial-to-rapid rate). Let n ∈ N≥3, let r ∈ [2..n−1], and
let G be a graph with n nodes, decomposable into a local graph and into a global
graph. Assume that P is a perturbed percolation process on G with threshold r
and some initial active set such that Properties 1 to 3 are all satisfied. Then P
has a polynomial-to-rapid rate.

Proof. By Property 2, there exists a c2 > 0 such that during the initial nc2

rounds of P , all activations are exclusively due to the local graph. By Property
1, it follows that P has a polynomial activation rate for [0..nc2].

Now consider the first round t∗ such that the number of active nodes is
at least n/c3, where c3 is from Property 3. Note that such a t∗ exists, as the
number of active nodes strictly increases each round until complete percolation,
since the process on the local graph percolates completely. Further note that,
due to Property 3, the number of active nodes in round t∗ − 1 is less than n/c3.
By Property 3, for any set of active nodes in round t∗, the process P percolates
completely in O(log n) rounds. Thus, the process P has a rapid activation rate,
starting from round t∗ − 1, which concludes the proof.

In the following, we prove the properties of our framework separately. As
Theorem 1 already proves Property 1, we are left to consider Properties 2 and 3.

4.1 Polynomial Rate

We show that Property 2 is satisfied for PNGs as local graph and for global
graphs with a bounded maximum degree, which includes expanders and, a.a.s.,
Erdős–Rényi graphs.

Accelerated Information Dissemination 87

Lemma 1. Let n ∈ N≥3, r ∈ [2..n − 1], and c1, c2 ∈ R>0 with c2 < 1/3 be
constants. Further, let G be a graph with n nodes, decomposable into a PNG with
growth c1 as local graph and into a global graph Gg with dmax(Gg) ≤ nc2 . Then
with probability at least 1−n−1/12, there exists a V ′ ⊆ V (G) with |V ′| = n−n3/4

such that for all v ∈ V ′, the perturbed percolation process on G with threshold r
and initial active set {v} has a polynomial activation rate for [0..n(1/3−c2)/c1].

Proof. By monotonicity, it suffices to consider the case r = 2. Pick any node
v ∈ V as the initially active node. Let Bv be all nodes that get activated in
the local graph G� after O(n(1/3−c2)/c1) rounds. Hence, |Bv| = O(n1/3−c2). Note
that within the graph Gg, due to the random labeling of the nodes, we can regard
the subset Bv in Gg as a random set of size |Bv|. In particular, the events of any
two nodes x, y being in Bv are negatively correlated. Now let Zv ⊆ V be the set
of nodes in V (Gg) that have at least 2 neighbors in Bv. Then,

E[|Zv|] ≤ n ·
(

dmax(Gg)
2

)

·
(|Bv|

n

)2

≤ n2c2 · n2/3−2c2

n
= n−1/3.

Hence by Markov’s inequality, the probability of any activation occurring via
global edges is Pr[|Zv| ≥ 1] ≤ n−1/3.

Now define Y := {v ∈ V | |Zv| ≥ 1}. Then E[|Y |] ≤ n2/3, and by another
application of Markov’s inequality, Pr[|Y | ≥ n3/4] ≤ n−1/12.

4.2 Rapid Rate on the Global Graph

We show that expander graphs satisfy Property 3 (Theorem 6). For the special
case of Erdős-Rényi graphs, we prove an even stronger bound, showing complete
percolation in O

(

log(n)/ log log n
)

rounds (Theorem 8). We note that due to
our assumption that the random graphs are revealed before the initial active
set is chosen, our theorems show that a.a.s. the global graphs have immediately
a rapid activation rate for arbitrary sufficiently large initial active sets. This
includes cases where the initial set is chosen adversarially w.r.t. the global graph.
In contrast, classic results typically fix the global graph after or independent of
the initial set [11,31], thus not allowing for adversarially chosen initial sets.

Expanders. For any graph G, for all v ∈ V (G), let deg(v) be the degree
of v, let d = 2|E(G)|/n denote the average degree, and, for all S ⊆ V (G), let
vol(S) :=

∑

u∈S deg(u). We define the normalized Laplacian matrix of G by

Lu,v =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if u = v,

− 1√
deg(u)·deg(v) if {v, w} ∈ E(G),

0 otherwise.

We denote by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 the n eigenvalues of L. Further,
λ := maxi≥2 |1−λi| denotes the spectral expansion. A graph is called an expander

88 S. Cohen et al.

if λ ≤ 1−c for some constant c > 0 (in other words, all eigenvalues are sufficiently
far away from 0 and 2).

The following result shows that Erdős-Rényi graphs are expanders.

Theorem 4 [19, Theorem 1.2]. Let G = Gn,p be an Erdős-Rényi graph with
expected degree p(n−1) ≥ c1 · ln(n) for a sufficiently large constant c1 > 0. Then
a.a.s., the spectral expansion of L satisfies λ(G) = O((p(n − 1))−1/2).

A similar result was shown by Friedman [25] for random regular graphs (for
simplicity, we only state a slightly weaker version of his main result, which suffices
for our purposes).

Theorem 5 [25, Theorem A]. Let G be a G(n, 2d) random 2d-regular graph.
Then for all d = O(1), a.a.s., the spectral expansion of L satisfies λ(G) =
O(d−1/2).

Our main result of this section is the rapid activation rate of expanders.

Theorem 6. Let n ∈ N≥3, and let G = (V,E) with |V | = n, with spectral
expansion λ > 0, and with dmax = O(dmin). Further, let d = 2|E(G)|/n, let
r ∈ [2..(1 − λ)d2min/(4d)], and let I ⊆ V with |I| ≥ 4 r−1

(1−λ)·d2
min/d

· n. Then
the bootstrap percolation process on G with threshold r and initial active set I
percolates completely after O(log n

1−λ) rounds.

In case of Erdős-Rényi graphs with p = Ω(log n/n) or random 2d-regular graphs,
1 − λ is bounded below by a positive constant, and thus the process percolates
rapidly. We remark that the result and proof of Theorem6 share some ideas
with the work by [20], who investigate the size of smallest contagious sets in
various classes of expander graphs. However, one key difference is that Theorem 6
provides a guarantee so that all sets of a certain size percolate, and it additionally
establishes a bound on the number of steps until complete percolation.

We use the following version of the expander mixing-lemma to show
Theorem 6.

Lemma 2 (Non-regular-expander mixing-lemma). For all S ⊆ V of a
graph with spectral expansion λ, denoting with e(S, V \ S) the number of edges
between S and V \ S, we have

∣

∣

∣

∣

e(S, V \ S) − vol(S) · vol(V \ S)
vol(G)

∣

∣

∣

∣

≤ λ · vol(S) · vol(V \ S)
vol(G)

.

Proof (Proof of Theorem 6). We establish the result in two stages, depending
on whether |S| is greater or smaller than n/2. In the first stage, we show that
whenever the set of active nodes S with |S| = ε · n satisfies 4 r−1

(1−λ)·d2
min/d

≤
ε ≤ 1/2, then the number of active nodes increases by a factor of 1 + Ω(1 − λ).
Applying Lemma 2 with S yields

e(S, V \ S) ≥ (1 − λ) · vol(S) · vol(V \ S)
vol(G)

≥ (1 − λ) · d2minεn(1 − ε)
d

.

Accelerated Information Dissemination 89

Now define N := {v ∈ V \ S | degS(v) ≥ r} ⊆ V \ S, which are the nodes that
get activated by S in the next round. By decomposing e(S, V \ S) = e(S,N) +
e(S, (V \ S) \ N),

e(S, V \ S) ≤ |N | · dmax + (|V \ S| − |N |) · (r − 1),

and rearranging gives

|N | ≥ e(S, V \ S) − (n − |S|) · (r − 1)
dmax

≥ (1 − λ) · d2
min
d ε(1 − ε)n − n · (r − 1)

dmax
.

(1)

Hence, if 1/2 ≥ ε ≥ 4 r−1
(1−λ)·d2

min/d
, we conclude that

|N | ≥
(

1−λ
2

d2
min
d ε − 1−λ

4
d2
min
d ε

)

· n

dmax
≥

1−λ
4

d2
min
d ε

dmax
· n =

1 − λ

4
· d2min

dmax · d
· |S|.

Recall that we assumed dmax = O(dmin). Thus in the next step, we can replace
S by S ∪ I and obtain an at least exponential growth (with factor Θ(1 − λ)) in
the number of active nodes until |S| > n/2.

Consider now the second stage, where we assume |S| > n/2 (thus ε > 1/2).
As before, we infer in the same way e(S, V \ S) ≥ (1 − λ) · d2minεn(1 − ε)/d.
Recalling that N = {v ∈ V \ S | degS(v) ≥ r}, we obtain the following refined
version of (1), using that ε ≥ 1/2,

|N | ≥ (1 − λ)d2
min
d ε(1 − ε)n − (|V \ S| − |N |) · (r − 1)

dmax

≥
1−λ
2

d2
min
d (1 − ε)n − (1 − ε) · n · (r − 1)

dmax
.

Hence, if r − 1 ≤ (1−λ)d2
min

4d , we conclude that

|N | ≥
1−λ
4

d2
min
d (1 − ε)n
dmax

=
1 − λ

4
· d2min

dmax · d
· |V \ S|.

Thus, if |S| > n/2, the set of inactive nodes decreases exponentially in each
round.

Erdős-Rényi Graphs. We first prove an upper bound for the time until com-
plete percolation for bootstrap processes on Erdős-Rényi graphs, showing Prop-
erty 3, which is better than the one following from Theorem6. Then, we show
that there exists an initial active set such that the time needed for complete per-
colation matches this bound. We make use of the well-known Chernoff bounds.

90 S. Cohen et al.

Theorem 7 (Chernoff bounds [3, Theorems A.1.12 and A.1.13]). Let
n ∈ N>0, p ∈ [0, 1], and X ∼ Bin(n, p). Then

1. for all β > 1, it holds that Pr[X ≥ βnp] ≤ (eβ−1β−β)np, and
2. for all a ∈ (0, np], it holds that Pr[X < np − a] < exp

(− a2/(2np)
)

.

The following bound shows a rapid activation rate for sufficiently large initial
active sets.

Theorem 8. Let n ∈ N≥3, p ≥ 20 ln(n)/n, r ∈ [2.. ln n]. Further, let I ⊆
V (Gn,p) with |I| = r · n/ ln n. Then a.a.s., the bootstrap percolation process
on Gn,p with threshold r and initial active set I percolates completely in at most
(1 + o(1)) ln(n)/ ln lnn rounds.

Proof. We prove several claims about G = Gn,p, which ultimately show Theo-
rem 8.

Claim (8.1). The minimum degree of a node of G is a.a.s. at least 13 ln n.

Proof. The degree of each node v is a binomial random variable with parameters
n−1 and p. By assumption (n−1)p ≥ (1−o(1))20 ln n and, by Theorem 7, Item
2, the probability that it is smaller than 13 lnn is at most

e−(1+o(1))(49/40) lnn =
1

n49/40−o(1)
.

The assertion of the claim thus follows from the union bound.

Claim (8.2). Asymptotically almost surely, for every two disjoint sets C and B
in G, with |C| = n/2 and |B| = rn/ ln n, there is a node c in C that has at least
r neighbors in B.

Proof. Fix two disjoint sets B and C as above. Clearly it suffices to prove the
claim for p = 20 ln(n)/n. For every node v ∈ C, the expected number of neigh-
bors of v in B is p|B| = 20r. By Theorem 7, Item 2, the probability it has less
than r neighbors in B is at most (with room to spare) e−192r2/(40r) < 1

100 . These
events for distinct nodes v ∈ C are pairwise independent, hence the probability
that there is no node v ∈ C as above is at most (1/100)n/2. As there are less
than 4n pairs of sets B,C as above, the result follows by the union bound, since
4n/100n/2 = o(1).

Claim (8.3). Asymptotically almost surely, for any two disjoint sets of nodes
B and C, where |B| ≥ n/2, n − |B| ≥ 12 ln n and |C| = (n − |B|)/2, there is a
node in C that has at least r neighbors in B.

Proof. As before, fix two disjoint sets B,C as above, and note that we may
assume that p = 20 ln(n)/n. For every fixed v ∈ C the expected number of
neighbors of v in B is p|B| ≥ 10 ln n. As r ≤ ln n, the probability that v has
less than r neighbors in B is at most e−81 ln(n)/20 < n−4, by Theorem 7, Item 2.
Therefore the probability that this is the case for every v ∈ C is smaller than
(1/n4)|C|. The number of possible pairs of sets B and C as above is smaller than
n3|C| (as the number of choices for the complement of B is

(

n
2|C|

) ≤ n2|C|), and
the claim follows by the union bound.

Accelerated Information Dissemination 91

Claim (8.4). Asymptotically almost surely, for every y ≤ n
100 lnn , no set of y

nodes of G spans more than y ln n edges.

Proof. Fix a set Y of y nodes. The expected number of edges in it is
(

y
2

)

p ≤
y210 lnn

n . By Theorem 7, Item 1, with

β =
y ln n

(y210 ln n)/n
=

n

10y
(> 10 ln n)

the probability that Y spans at least y ln n edges is at most

(eβ−1/ββ)(y
210 lnn)/n ≤ β−0.9β(y210 lnn)/n = (10y/n)0.9y lnn < e−2y lnn.

The number of sets of size y is
(

n
y

) ≤ ey lnn. We conclude by noting that the
probability that there is a set Y spanning y ln n edges for any y ≤ n

100 lnn is at
most

n/(100 lnn)
∑

y=1

ey lnn · e−2y lnn = o(1).

Claim (8.5). Asymptotically almost surely, for every set B of nodes of size n−x,
where 12 ln n ≤ x ≤ n/1000, the number of nodes outside B that do not have at
least ln n (≥ r) neighbors in B is smaller than 10x/ ln n.

Proof. Fix a set B as above and a subset C of 10x/ ln n nodes in its complement.
We bound the probability that no node of C has at least ln n neighbors in B
as follows. By Sect. 4.2, a.a.s. each node in the graph has degree at least 13 ln n.
Assume this is the case. Then every node of C has at least 12 ln n neighbors in
the complement B′ of B (as it has at most ln n neighbors in B). By Sect. 4.2,
a.a.s., the number of edges spanned by the set C is at most |C| ln n. Thus the
number of edges between C and B′

� C has to be at least 10|C| ln n = 100x.
The expected number of edges is

|C|(|B′| − |C|)p ≤ 10x

ln n
x

20 ln n

n
=

200x2

n
.

Applying Theorem7, Item 1, with

β =
100x

200x2/n
=

n

2x
≥ 500 (> e5)

we conclude that the probability of having that many edges is at most

(eβ−1β−β)200x2/n ≤ β−0.8β200x2/n = (2x/n)80x.

The number of choices for the sets B′ and C is smaller than
(

n
x

)2 ≤ (en/x)2x.
Thus, by the union bound the probability that there are sets B,C violating the
claim is at most

∑

x≥12 lnn

(en/x)2x(2x/n)80x.

Since x ≤ n/1000, 2x/n ≤ 1/500 and hence (2x/n)80x ≤ (

x/(250n)
)40x

<
(

x/(250n)
)2x showing that the sum above is at most

∑

x≥12 lnn(e/250)2x = o(1).

92 S. Cohen et al.

We now prove that the number of rounds until complete percolation is a.a.s.
(1 + o(1)) ln(n)/ ln lnn. Assuming that all claims hold, starting with any set A
of rn/ ln n nodes, by Claim 8.2, in one round at least n/2 nodes become active.
By Claim 8.3, in 9 additional rounds the number of inactive nodes drops to at
most n/210 < n/1000. By Claim 8.5, in each round from now on, the number
of inactive nodes drops by a factor of at least lnn/10, as long as this number is
above 12 ln n. Once below 12 ln n, one final step activates all remaining nodes, as
the minimum degree is at least 13 ln n, by Claim 8.1. This completes the proof.

Note that the bound in Theorem8 is optimal for p = Θ(log(n)/n) in the
sense that there is an initial active set A such that the process takes, for some
ε ∈ (0, 1], at least (1 − ε) ln(n)/ ln lnn rounds. This is the case since a.a.s.
dmax(G) = O(log n) (similar to Sect. 4.2). Assuming this is the case, for every
node v the number of nodes within distance at most t is at most

(

O(log n)
)t. For

t = (1− ε) ln(n)/ ln lnn, this number is smaller than n/2. Hence there is a set A
of n/2 > rn/ ln n nodes so that the distance between A and v exceeds t. Thus,
when starting with A of active nodes, t rounds do not suffice to activate v.

The following remark implies this is the same number of rounds the perturbed
percolation with r = 1 for p = Θ(log(n)/n) takes when starting from an active
set of constant size.

Remark 1 [18, Theorem 4]. Let n ∈ N>0 and p = Θ(log(n)/n). Then a.a.s.,
Gn,p has a diameter of Θ(log(n)/ log log n).

5 Experimental Results

In this section, we provide empirical results on the polynomial-to-rapid acti-
vation rate both on the graphs analyzed above, and on further global-graph
models. Our findings are consistent with our theoretical results as well as the
expected behavior of the perturbed percolation process on such graph models.
The Python implementation uses the libraries NetworKit [36] and igraph [21],
collections of tools for generating and analyzing graphs. In particular, they pro-
vide implementations for several random graph models. All experiments were run
on a machine with 4 Intel i7-7500U cores and 8 GB RAM. However, note that
we are not concerned with wall clock times, and all experiments were finished
within minutes.

5.1 Erdős–Rényi Graphs

Corollary 2 shows that a.a.s. there is a polynomial-to-rapid activation rate for
a PNG local graph combined with a Gn,p, for some parameter range. In Fig. 1,
we consider such configurations satisfying these conditions, in particular, with
a two-dimensional torus on n = 106 nodes as local graph. All runs are on the
same random Gn,p with p = 20 ln(n)/n, as it is generated once for consistent
comparison. One can see the linear increase of the number of activations per
round on the local graph. After 500 rounds, the number of new active nodes per
round starts decreasing, as the set of active nodes wraps around the torus.

Accelerated Information Dissemination 93

Fig. 1. The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”),
we only consider the 2-dimensional torus on n nodes, while all other runs are on both
the torus and a Gn,p with p = 20 ln(n)/n and a threshold r on the Gn,p. Note that
both axes are logarithmic.

With the introduction of the Gn,p with r = 1, the process completely per-
colates within three rounds, reflecting the rapid percolation. However, as r is
increased, the effect of the global graph is withheld until some number of nodes
are activated in the polynomial phase. Only then does the change to a rapid rate
arise, and the process quickly percolates within few rounds, driven by the global
edges. Even at r = 100, this effect is still observed.

5.2 Other Global-Graph Models

While our results only apply to the Gn,p and expander graphs as global graph,
we have strong reason to believe the same behavior can be observed for other
global-graph models. We focus on two such models: (1) The Barabási-Albert
(BA) model [2] uses a preferential-attachment approach, where nodes are iter-
atively added and connect to a fixed number of previous nodes proportional
to their degree. (2) The hyperbolic random graph (HRG) model [33] randomly
places nodes in a hyperbolic disk according to some probability distribution, and
connects them if and only if they are close to each other. Both models exhibit
small diameter and a power-law degree distribution, which should be beneficial
for fast percolation. However, due to the underlying geometry, the HRG model
has a large clustering coefficient, i.e., the neighbors of a node are likely to be
neighbors of each other. We expect this feature to further accelerate the process,
as this makes global edges more likely to hit the same nodes.

94 S. Cohen et al.

Fig. 2. The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”),
we only consider the 2-dimensional torus on n nodes, while all other runs are on both
the torus and a Barabási–Albert random graph (left), or hyperbolic random graph
(right). Note that both axes are logarithmic.

The experiment setup is analogous to that described in Sect. 5.1, with the
two-dimensional torus on n nodes as local graph. For the BA model, the number
of attachments is chosen such that the expected average degree is 20 ln n. For the
HRG model, we configure an expected power-law exponent of 3, and an expected
average degree of 20 ln n. We consider the threshold model, i.e., a temperature
of T = 0.

Our results of one run are depicted in Fig. 2. Again, the process for r = 1
reflects the rapid percolation, and for increasing r, the effect of the global edges
is delayed until a threshold is reached. However, this threshold is reached earlier
than in the Gn,p version. For example, for r = 100, the Gn,p has no activation
by global edges until round 328, while with the BA model, this first happens in
round 57. This can be explained by high-degree nodes in the BA model being
more probable to reach the threshold r quickly.

For the HRG model, this effect is even stronger, with the first activation
through global edges occurring in round 10 for r = 100. Even though both the
BA and the HRG graph share the average degree and power-law exponent, the
HRG graph has more high-degree nodes, in particular, those close to the center
of the disk. Such nodes turn active very early, and then (through their high
degree and high clustering) quickly activate the remaining nodes.

Accelerated Information Dissemination 95

6 Outlook

With Lemma 1 and Theorems 6 and 8, we have shown bounds on the length
of the initial (polynomial) and final (rapid) phase. It would be interesting to
further analyze and tighten this gap. Our experiments (see Fig. 1) suggest that
the transition is rather sharp once the first global activation occurs. Additionally,
our experiments suggest that this behavior is very similar for other global-graph
models, although we believe that the polynomial phase might be much shorter in
the presence of a heavy-tailed degree distribution. Rigorously proving activation
rates on such graph models would increase our understanding even further.

Acknowledgments. We thank David Peleg for suggesting this research direction and
for multiple discussions, and Noga Alon for suggesting the proof of Theorem 8. This
project has received funding from the European Union’s Horizon 2020 research and
innovation program under the Marie Sk�lodowska-Curie grant agreement No. 945298-
ParisRegionFP.

References

1. Ajazi, F., Napolitano, G.M., Turova, T.: Phase transition in random distance
graphs on the torus. J. Appl. Probabil. 1278–1294 (2017)

2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

3. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)
4. Abdullah, M.A., Fountoulakis, N.: A phase transition in the evolution of boot-

strap percolation processes on preferential attachment graphs. Random Struct.
Algorithms 52(3), 379–418 (2018)

5. Amini, H., Fountoulakis, N.: Bootstrap percolation in power-law random graphs.
J. Stat. Phys. 155(1), 72–92 (2014)

6. Ball, F.: Stochastic and deterministic models for SIS epidemics among a population
partitioned into households. Math. Biosci. 156(1–2), 41–67 (1999)

7. Ball, F., Neal, P.: A general model for stochastic SIR epidemics with two levels of
mixing. Math. Biosci. 180(1–2), 73–102 (2002)

8. Ball, F., Neal, P.: Network epidemic models with two levels of mixing. Math. Biosci.
212(1), 69–87 (2008)

9. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Probab. Theory
Relat. Fields 134, 624–648 (2012)

10. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for
bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701
(2012)

11. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Ran-
dom Struct. Algorithms 30(1–2), 257–286 (2007)

12. Bartal, A., Pliskin, N., Tsur, O.: Local/global contagion of viral/non-viral infor-
mation: analysis of contagion spread in online social networks. PLoS ONE 15(4),
e0230811 (2020)

13. Bhansali, R., Schaposnik, L.P.: A trust model for spreading gossip in social net-
works: a multi-type bootstrap percolation model. Proc. Roy. Soc. A 476(2235),
20190826 (2020)

96 S. Cohen et al.

14. Bradonjić, M., Saniee, I.: Bootstrap percolation on random geometric graphs.
Probab. Eng. Inf. Sci. 28(2), 169–181 (2014)

15. Candellero, E., Fountoulakis, N.: Bootstrap percolation and the geometry of com-
plex networks. Stochast. Process. Appl. 126(1), 234–264 (2016)

16. Centola, D.: The spread of behavior in an online social network experiment. Science
329(5996), 1194–1197 (2010)

17. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J.
Phys. C Solid State Phys. 12(1), L31–L35 (1979)

18. Chung, F., Lu, L.: The diameter of sparse random graphs. Adv. Appl. Math. 26(4),
257–279 (2001)

19. Coja-Oghlan, A.: On the Laplacian eigenvalues of Gn,p. Comb. Probab. Comput.
16(6), 923–946 (2007)

20. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in
expanders. In: 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pp. 1953–1987. SIAM (2015)

21. Csardi, G., Nepusz, T.: The iGraph software package for complex network research.
Int. J. Compl. Syst. 1695 (2006)

22. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic
time. In: Proceedings of STOC, pp. 21–30 (2011)

23. Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks.
Commun. ACM 55(6), 70–75 (2012)

24. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: Complex contagions in
Kleinberg’s small world model. In: 6th Conference on Innovations in Theoretical
Computer Science (ITCS 2015), pp. 63–72 (2015)

25. Friedman, J.: On the second eigenvalue and random walks in random d-regular
graphs. Combinatorica 11, 331–362 (1991)

26. Gaffney, D.: #iranElection: Quantifying online activism. In: Proceedings of WebSci
(2010)

27. Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion and the weakness
of long ties in social networks: revisited. In: 14th ACM Conference on Electronic
Commerce (EC 2013), pp. 507–524 (2013)

28. González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics
of protest recruitment through an online network. Sci. Rep. 1(197), 1–7 (2011)

29. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. (N.S.) 43(4), 439–561 (2006)

30. Jacquez, J.A., Simon, C.P., Koopman, J.: Structured mixing: heterogeneous mixing
by the definition of activity groups. In: Castillo-Chavez, C. (ed.) Mathematical and
Statistical Approaches to AIDS Epidemiology. LNB, vol. 83, pp. 301–315. Springer,
Heidelberg (1989). https://doi.org/10.1007/978-3-642-93454-4 15

31. Janson, S., �luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random
graph Gn,p. Ann. Appl. Probabil. 22(5), 1989–2047 (2012)

32. Koch, C., Lengler, J.: Bootstrap percolation on geometric inhomogeneous ran-
dom graphs. In: 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), pp. 147:1–147:15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2016)

33. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic
geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

34. Krivelevich, M., Reichman, D., Samotij, W.: Smoothed analysis on connected
graphs. SIAM J. Discret. Math. 29(3), 1654–1669 (2015)

35. Min, B., Miguel, M.S.: Competing contagion processes: complex contagion trig-
gered by simple contagion. Sci. Rep. 8(1), 1–8 (2018)

https://doi.org/10.1007/978-3-642-93454-4_15

Accelerated Information Dissemination 97

36. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale
complex network analysis (2015)

37. Turova, T.S., Vallier, T.: Bootstrap percolation on a graph with random and local
connections. J. Stat. Phys. 160(5), 1249–1276 (2015)

Phase Transition of the 3-Majority
Dynamics with Uniform Communication

Noise

Francesco d’Amore1(B) and Isabella Ziccardi2

1 Université Côte d’Azur, Inria, I3S, CNRS, Sophia Antipolis Cedex, France
francesco.d-amore@inria.fr

2 Università degli Studi dell’Aquila, L’Aquila, Italy

isabella.ziccardi@graduate.univaq.it

Abstract. Communication noise is a common feature in several real-
world scenarios where systems of agents need to communicate in order
to pursue some collective task. In particular, many biologically inspired
systems that try to achieve agreements on some opinion must imple-
ment resilient dynamics that are not strongly affected by noisy commu-
nications. In this work, we study the popular 3-Majority dynamics,
an opinion dynamics which has been proved to be an efficient proto-
col for the majority consensus problem, in which we introduce a sim-
ple feature of uniform communication noise, following (d’Amore et al.
2020). We prove that in the fully connected communication network of
n agents and in the binary opinion case, the process induced by the 3-
Majority dynamics exhibits a phase transition. For a noise probability
p < 1/3, the dynamics reaches in logarithmic time an almost-consensus
metastable phase which lasts for a polynomial number of rounds with
high probability. Furthermore, departing from previous analyses, we fur-
ther characterize this phase by showing that there exists an attractive
equilibrium value seq ∈ [n] for the bias of the system, i.e. the difference
between the majority community size and the minority one. Moreover,
the agreement opinion turns out to be the initial majority one if the bias
towards it is of magnitude Ω

(√
n log n

)
in the initial configuration. If,

instead, p > 1/3, no form of consensus is possible, and any information
regarding the initial majority opinion is lost in logarithmic time with
high probability. Despite more communications per-round are allowed,
the 3-Majority dynamics surprisingly turns out to be less resilient to
noise than the Undecided-State dynamics (d’Amore et al. 2020), whose
noise threshold value is p = 1/2.

Keywords: Opinion dynamics · Consensus Problem · Communication
Noise · Randomized Algorithms

c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 98–115, 2022.
https://doi.org/10.1007/978-3-031-09993-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_6&domain=pdf
http://orcid.org/0000-0001-7498-0660
http://orcid.org/0000-0002-1550-3677
https://doi.org/10.1007/978-3-031-09993-9_6

Phase Transition of the 3-Majority Dynamics with Noise 99

1 Introduction

The consensus problem is a fundamental problem in distributed computing [6] in
which we have a system of agents supporting some opinions that interact between
each other by exchanging messages, with the goal of reaching an agreement on
some valid opinion (i.e. an opinion initially present in the system). In particular,
many research papers focus on the majority consensus problem where the goal
is to converge towards the initial majority opinion. The numerous theoretical
studies in this area are justified by many different application scenarios, ranging
from social networks [2,35], swarm robotics [5], cloud computing, communication
networks [37], and distributed databases [19], to biological systems [23,24]. As
for the latter, the goal of the majority consensus problem is to model some
real-world scenarios where biological entities need to communicate and agree in
order to pursue some collective task. Many biological entities in different real
situations perform this type of process, e.g. molecules [12], bacteria [4], flock of
birds [9], school of fish [38], or social insects [25], such as honeybees [36].

In such applicative scenarios, communication among agents is often affected
by some form of noise. For this reason, one of the main goal in network informa-
tion theory is to guarantee reliable communications in noisy networks [26]. In this
context, error-correcting codes are very effective methods to reduce communica-
tion errors in computer systems [29,34], and this is why many theoretical studies
of the (majority) consensus problem assume that communication between enti-
ties occurs without error, and instead consider some adversarial behavior (e.g.,
byzantine fault [8]). Despite their effectiveness in computer applications, error-
correcting codes are quite useless if we want to model consensus in biological
systems. Indeed, they involve sending complicated codes through communication
links, and it is reasonable to assume that biological type entities communicate
between each other in a simpler way. For this reason, in recent years many works
have been focusing on the study of the (majority) consensus problem where the
communication between entities is unreliable and subjected to uniform noise
[16,17,23,24].

The first consensus dynamics that have been studied in the presence of noise
communication are linear opinion dynamics, such as the Voter dynamics and
the Averaging dynamics. In particular, they were studied in the presence of
uniform noise communication [31] or in the presence of some communities of
stubborn agents (i.e. agents that never change opinion) [32,33,42]. In these set-
tings, only metastable forms of consensus can be achieved, where a large subset
of the agents agree on some opinion while other opinions remain supported by
smaller subsets of agents, and this setting lasts for a relatively-long time. How-
ever, the Voter model has a slow convergence time even in fully connected
networks and a large initial bias towards some majority opinion [28], and the
Averaging dynamics requires agents to perform non-trivial computation and,
more importantly, to have large local memory. For these reasons, linear opinion
dynamics struggle explaining the observed metastable consensus in multi-agent
systems [11,15,22], and many research papers have begun to investigate new,
more plausible, non-linear opinion dynamics.

100 F. d’Amore and I. Ziccardi

To the best of our knowledge, the Undecided-State dynamics is the first
non-linear opinion dynamics analyzed in the presence of uniform communication
noise [17]. It exhibits a phase-transition which depends on the noise parameter,
and a metastable phase of almost-consensus is quickly reached and kept for
long time when the noise isn’t too high. It turns out to be a fast, very resilient
dynamics, and this may explain why this type of process is adopted in some
biological systems [36]. A description of the dynamics is given in Sect. 1.1.

In this work, we consider the popular 3-Majority dynamics, which is based
on majority update-rules, the latter being widely employed also in the biological
research field [13,21]. In particular, we introduce in the system a uniform com-
munication noise feature, following the definition of [17]. It has been proven that
such dynamics, without communication noise, has a very similar behaviour to
that of the Undecided-State dynamics [6]. As we describe in the next section,
the two dynamics behaves similarly (even if with crucial differences) even in
presence of uniform noise, as both exhibit a phase transition. However, although
3-Majority dynamics makes use of more per-round communications, it turns
out to be less resilient to noise than Undecided-State dynamics.

1.1 Our Results and Their Consequences

In this work, we study the 3-Majority dynamics over a network of n agents,
which induces a process that works as follows: at the beginning, each agent
holds an opinion from a set Σ; at each subsequent discrete round, each agent
pulls the opinions of three neighbor agents chosen independently uniformly at
random and updates its opinion to the majority one, if there is any; otherwise,
the agent adopts a random opinion among the sampled ones. This dynamics is
a fast, robust protocol for the majority consensus problem in different network
topologies (raging from complete graphs to sparser graphs) [6]. For a discussion
about the origin and previous results of the 3-Majority dynamics we defer the
reader to Sect. 1.2.

We consider the dynamics in the binary opinion case over the fully connected
network. We introduce in the process an uniform communication noise feature,
following the definition in [17] and for which we give an equivalent formulation:
for each communication with a sampled neighbor, there is probability p ∈ (0, 1)
that it is noisy, i.e. the received opinion is sampled u.a.r. between the possi-
ble opinions. Instead, with probability 1 − p the communication is unaffected
by noise. As shown in [17], this noise model (over the complete network) is
equivalent to a model without any communication noise and where two com-
munities of stubborn agents (that is, they never change opinion) of equal size

pn
2(1−p) are present in the network, where each of the two community holds a
different opinion. Even though the complete graph is a strong assumption for
such communication networks, we remark that, at every round, an agent pulls
an opinion from three neighbors: therefore, the round-per-round communication
pattern results is a dynamic graph with O (n) edges. Furthermore, such a model
can be used to capture the behavior of bio-inspired multi-agent systems in which

Phase Transition of the 3-Majority Dynamics with Noise 101

mobile agents meet randomly at a relatively high rate. For more details about
models for bio-inspired swarms of agents, we refer to [39].

In the aforementioned setting, we prove that the process induced by the 3-
Majority dynamics exhibits a phase-transition. Our results are summarized in
the following theorem.

Theorem 1. Let {st}t≥0 be the bias of the process1 induced by the 3-Majority
dynamics with uniform noise probability p. We prove the followings.

– If p < 1/3, let s0 = Ω(
√

n log n) be the bias at the beginning of the process,

seq = n
1−p

√
1−3p
1−p , and let ε > 0 be any sufficiently small constant. Then,

there exists a time τ1 = O(log n) such that, w.h.p.,2 the process at time τ1
reaches a metastable almost-consensus phase characterized by the equilibrium
point seq, i.e.

sτ1 ∈ [(1 − ε)seq, (1 + ε)seq].

Moreover, the bias is confined in such interval for nΘ(1) rounds w.h.p.
– If p < 1/3, let s0 = O(

√
n log n) be the bias at the beginning of the process.

Then, there exists a time τ2 = O(log n) such that, w.h.p., the system becomes
unbalanced towards an opinion, i.e.

|sτ2 | = Ω(
√

n log n).

– If p > 1/3, let s0 = Ω(
√

n log n) be the bias at the beginning of the pro-
cess. Then, there exists a time τ3 = O(log n) such that, w.h.p. , at time τ3
the majority opinion is lost, i.e. sτ3 = O(

√
n). In addition, with constant

probability, at time τ3 + 1 the majority opinion changes. Moreover, for nΘ(1)

additional rounds the absolute value of the bias is O(
√

n log n) w.h.p.

Our result shows that 3-Majority dynamics is less resilient to noise than
the Undecided-State dynamics, despite in the 3-Majority dynamics more
communication per-round are allowed. Indeed, the phase transition for the
Undecided-State dynamics turns out to be at the threshold p = 1/2 [17],3

in the same setting as ours: since the threshold is higher than 1/3, the dynamics
is able to solve the consensus problem even in the presence of more noise than
the 3-Majority dynamics.

We briefly recall the Undecided-State dynamics: at each round, each agent
pulls a single neighbor opinion x u.a.r. If the agent former opinion y is different
from x, the agent becomes undecided. If the agent is undecided, then it simply
adopts any opinion it sees. This two-phases update-rule turns out to be more
resilient to noise and, hence, a swarm of agents would benefit from it. In [17],

1 The bias st is the difference between the majority opinion community size and the
minority opinion one at time t.

2 An event holds with high probability (w.h.p. in short) with respect to n if the prob-
ability it occurs is at least 1 − n−Θ(1).

3 In the cited work, an equivalent definition of noise model is given, and their formu-
lation yields the threshold p = 1/6.

102 F. d’Amore and I. Ziccardi

the authors prove that the dynamics exhibits a similar phase transition for the
noise probability p = 1/2. Below the threshold, the dynamics w.h.p. rapidly
breaks the symmetry and converges in logarithmic time to a metastable phase
of almost-consensus that lasts for polynomial time, in which the majority opinion
exceeds the minority one by a bias of order of Θ (n). Above the threshold, no
form of consensus is possible, since the bias keeps bounded by O (√

n log n
)

for
a polynomial number of rounds, w.h.p.

Nevertheless, we remark that our work shows technical novelties compared to
[17]. A first difference lies in the fact that we find a precise equilibrium value seq
that is attractive for the bias. Secondly, we characterize in detail what happens
in the metastable almost-consensus phase: for every arbitrary small value ε > 0,
we prove that the bias is confined in the interval [(1 − ε)seq, (1 + ε)seq] for
polynomial time w.h.p. Instead, in [17] no precise equilibrium value is found,
and in the metastable-almost consensus phase the bias lies in an interval of
width Θ(n), without arbitrarily approaching an equilibrium state; nevertheless,
we remark that we think the Undecided-State process should behave in such
a way.

On the other hand, when the noise probability is above the threshold 1/3, we
prove that no form of consensus is possible w.h.p. as in [17], but we also show
that the majority opinion switches every O (log n) rounds with constant proba-
bility. In order to prove this, some drift analysis results with super-martingale
arguments are used [30].

As future directions, sparser topologies are worth to be investigated. We
believe that, as long as the communication graph shows strong connection prop-
erties, similar phase transitions will be exhibited. Furthermore, it would be inter-
esting to see whether the 3-Majority dynamics with an arbitrary number of
possible opinions, with the same noise model, has the exact same phase tran-
sition at the noise threshold value p = 1/3: in general, this corresponds to the
fact that, for each node and at each round, exactly one communication among
the three ones is noisy in expectation.

1.2 Related Works

Origin of the 3-Majority Dynamics. The study of the 3-Majority dynamics
arises on the ground of the results obtained for the Median dynamics in [20].
The Median dynamics considers a totally ordered opinion set, in which each
agent pulls two neighbor opinions i, j u.a.r. and then updates its opinion k to
the median between i, j, and k. The dynamics turns out to be a fault-taulerant,
efficient dynamics for the majority consensus problem. However, as pointed out
in [6], the Median dynamics may not guarantee with high probability conver-
gence to a valid opinion in case of the presence of an adversary, which is needed
for the consensus problem. Moreover, the opinion set must have an ordering,
property that might not be met by applicative scenarios such as biological sys-
tems [6]. These facts naturally lead researchers to look for efficient dynamics
that satisfy the above requirements.

Phase Transition of the 3-Majority Dynamics with Noise 103

To the best of our knowledge, [1] is the first work analyzing the h-Majority
dynamics. In detail, in the h-Majority dynamics we have n nodes and, at
every round, every node pulls the opinion from h random neighbors and sets his
new opinion to the majority one (ties are broken arbitrarily). More extensive
characterizations of the 3-Majority dynamics over the complete graph are
given in [7,8,10,27]. We defer the reader to the full version for further related
works [18].

Other Popular Non-linear Opinion Dynamics. Other important and efficient
opinion dynamics for the majority consensus problem are the 2-Choices and
the Undecided-State dynamics. For an overview on the state of the art about
opinion dynamics we defer the reader to [6]. We just want to quickly give the
definitions of the 2-Choices dynamics (the Undecided-State was already
defined in the previous subsection). In the 2-Choices, each agent samples two
neighbors u.a.r. and updates its opinion to the majority opinion among its former
opinion and the two sampled neighbor opinions if there is any. Otherwise, it keeps
its opinion. We just want to remark that the expected per-round behaviors of the
2-Choices dynamics and that of the 3-Majority are the same, while the actual
behaviors differ substantially in high probability [10]. This is why mean-field
arguments are sometimes not sufficient to analyze such processes. For example,
we have ran simple experiments that suggest that our uniform noise model on
the 2-Choices dynamics yields a threshold noise value p = 1/2, just like the
Undecided-State dynamics.

As the 2-Choices and the 3-Majority dynamics, the Undecided-State
dynamics turns out to be an efficient majority consensus protocol, with the differ-
ence that it requires only one communication per round for each agent. Further
description is given in the previous section. It is worth mentioning the more
recent work [3], which analyzes a variant of the Undecided-State dynamics in
the many-color case starting from any initial configuration.

Consensus Dynamics in the Presence of Noise or Stubborn Agents. The authors
of [41] initiate the study of the consensus problem in the presence of commu-
nication noise. They consider the Vicsek model [40], in which they introduce a
noise feature and a notion of robust consensus. Subsequently, dynamics for the
consensus problem with noisy communications have received considerable atten-
tion. In particular, as mentioned in the introduction, this direction is motivated,
among many reasons, by the desire to find models for the consensus problem in
natural phenomena [23].

The communication noise studied in this type of problem can be divided in
two types: uniform (or unbiased) and non-uniform (or biased). The uniform case
wants to capture errors in communications between agents in real-world scenar-
ios. The non-uniform communication noise instead describes the case in which
agents have a preferred opinion. The authors of [23] are the first to explicitly
focus on the uniform noise model. In detail, they study the broadcast and the
majority consensus problem when the opinion set is binary. In their model of
noise, every bit in every exchanged message is flipped independently with some

104 F. d’Amore and I. Ziccardi

probability smaller than 1/2. As a result, the authors give natural protocols
that solve the aforementioned problems efficiently. The work [24] generalizes the
above study to opinion sets of any cardinality.

As for the non-uniform communication noise case, in [16] it is considered the
h-Majority dynamics with a binary opinion set {alpha,beta}, with a prob-
ability p that any received message is flipped towards a fixed preferred opinion,
say beta, while with probability 1 − p the former message keeps intact. They
suppose there is an initial majority agreeing on alpha, and they analyze the
time of disruption, that is the time the initial majority is subverted. They prove
there exists a threshold value p� (which depends on h), such that 1) if p < p�,
the time of disruption is at least polynomial, w.h.p., and 2) if p > p�, the time of
disruption is constant, w.h.p. Their result holds for any sufficiently dense graph.
We remark that our work differs from [16] in that there is no preferred opinion,
and the noise affecting communications may result in any possible opinion.

The noise feature affecting opinion dynamics has been shown to be equivalent
to a model without noise, in which communities of stubborn agents (i.e., they
never change opinion) are added to the network [17]. For a discussion on related
works considering such a model, we defer the reader to the full version of this
work [18].

1.3 Structure of the Paper

The next section contains the preliminaries for the analysis and the result state-
ments. Section 3 is devoted to the statements of the main theorems. In Sect. 4 we
prove the theorems. Finally, for missing proofs and for the probabilistic results
we use, we defer the reader to the full version of this work [18].

2 Preliminaries

The 3-Majority Dynamics. Let G = (V,E) be a finite graph of n nodes (the
agents), where each node is labelled uniquely with labels in [n] := {1, . . . , n}.
Furthermore, each node supports an opinion from a set of opinions Σ. The 3-
Majority dynamics defines a stochastic process {Mt}t∈N which is described
by the opinion of the nodes at each time step, i.e. Mt = (i1(t), . . . , in(t)) ∈ Σn

for every t ≥ 0, where ij(t) is the opinion of node j at time t. The transition
probabilities are characterized iteratively by the majority update rule as follows:
given any time t ≥ 0, let Mt ∈ Σn be the state of the process at time t. Then,
at time t + 1, each node u ∈ V samples three neighbors in G independently
uniformly at random (with repetition) and updates its opinion to the majority
one among the sampled neighbor opinions, if there is any. Otherwise, it adopts
a random opinion among the sampled ones. For the sake of clarity, we remark
that when u samples a neighbor node twice, the corresponding opinion counts
twice.

Since Mt depends only on Mt−1, it follows that the process is a Markov chain.
In the following, we will call the state of the process also by configuration of the
graph.

Phase Transition of the 3-Majority Dynamics with Noise 105

The Communication Noise. We introduce an uniform communication noise fea-
ture in the dynamics, which is equivalent to that in [17]. Let 0 < p < 1 be
a constant. When a node pulls a neighbor opinion, there is probability p that
the received opinion is sampled u.a.r. in Σ; instead, with probability 1 − p, the
former opinion keeps intact and is received.

3-Majority Dynamics in the Binary Opinion Case. The communication net-
work we focus on is the complete graph G = Kn with self loops in the binary
opinion case, i.e. Σ = {alpha,beta}. For the symmetry of the network, the
state of the process is fully characterized by the number of nodes supporting a
given opinion, which implies that the nodes do not require unique IDs. Hence, we
can write Mt = (at, bt), where at is the number of the nodes supporting opinion
alpha at time t, and bt is the analogous for opinion beta. Moreover, since at
each time t, at + bt = n, it suffices to know {bt}t≥0 to fully describe the process.

We define the bias of the process at time t by

st = bt − at = 2bt − n, (1)

which takes value in {−n, . . . , n}, and we notice that the process can also be
characterized by the values of the bias alone, i.e. {st}t≥0. We will use the latter
sequence to refer to the process. We remark that st > 0 if the majority opinion at
time t is beta and st < 0 if it is alpha. We say that configurations having bias
st ∈ {n,−n} are monochromatic, meaning that every node supports the same
opinion, while a configuration with st = 0 is symmetric. In the introduction, we
took the bias to be |st| but, for the sake of the analysis, we consider its signed
version here. We finally remark that the random variable bt (and, analogously,
at) is the sum of i.i.d. Bernoulli r.v.s, which allows us to make use of the popular
Chernoff bounds. In detail, if X

(t)
i is the r.v. yielding 1 if node i adopts opinion

beta at round t + 1, and 0 otherwise, then bt =
∑

i∈[n] X
(t)
i . Therefore, for (1),

st = 2
∑
i∈[n]

X
(t)
i − n =

∑
i∈[n]

(2X
(t)
i − 1), (2)

where (X(t)
i −1) are i.i.d. taking values in {−1, 1}. For this reason, we can apply

the Hoeffding bound to the bias.

Some Notation. For any function f(n), we make use of the standard Landau
notation O (f(n)), Ω (f(n)),Θ (f(n)). Furthermore, for a constant c > 0, we
write Oc (f(n)),Ωc (f(n)), and Θc (f(n)) if the hidden constant in the notation
depends on c.

3 Results

We here show our three main theorems. The first one shows how the dynamics
solves the majority consensus problem when p < 1/3, even if in a “weak” form
(since only an almost-consensus is reached). Section 4.1 is devoted to the proof
of this theorem.

106 F. d’Amore and I. Ziccardi

Theorem 2 (Victory of the majority). Let {st}t≥0 be the process induced
by the 3-Majority dynamics with uniform noise probability p < 1/3. Let ε > 0
be any arbitrarily small constant (such that ε < 1/3 and ε2 ≤ (1 − 3p)/2)

and let γ > 0 be any constant. Let seq = n
(1−p)

√
1−3p
1−p . Then, for any starting

configuration s0 such that s0 ≥ γ
√

n log n and for any sufficiently large n, the
following holds w.h.p. :

(i) there exists a time τ1 = Oγ,ε,p(log n) such that (1− ε)seq ≤ sτ1 ≤ (1+ ε)seq;
(ii) there exists a value c = Θγ,ε,p(1) such that, for all k ≤ nc, (1 − ε)seq ≤

sτ1+k ≤ (1 + ε)seq.

Our second theorem shows how the dynamics is capable of quickly breaking
the initial symmetry. By applying also Theorem2, it shows that the consensus
problem is solved. The proof of the theorem is shown in Sect. 4.2.

Theorem 3 (Symmetry breaking). Let {st}t≥0 be the process induced by
the 3-Majority dynamics with uniform noise probability p < 1/3, and let γ >
0 be any positive constant. Then, for any starting configuration s0 such that
|s0| ≤ γ

√
n log n and for any sufficiently large n, w.h.p. there exists a time

τ2 = Oγ,p(log n) such that |sτ2 | ≥ γ
√

n log n.

Our last theorem shows that no form of consensus is possible when p > 1/3,
and it is proved in Sect. 4.3.

Theorem 4 (Victory of noise). Let {st}t≥0 be the process induced by the
3-Majority dynamics with uniform noise probability p > 1/3. Let ε > 0 be any
arbitrarily small constant (such that ε < min{1/4, (1 − p), (3p − 1)/2}) and let
γ > 0 be any positive constant. Then, for any starting configuration s0 such that
|s0| ≥ γ

√
n log n and for any sufficiently large n, the following holds w.h.p.:

(i) there exists a time τ3 = Oε,p(log n) such that sτ3 = Oε(
√

n) and, moreover,
the majority opinion switches at the next round with probability Θε(1);

(ii) there exists a value c = Θγ,ε(1) such that, for all k ≤ nc, it holds that
|sτ3+k| ≤ γ

√
n log n.

4 Analysis

In this section we analyze the process. We first give some preliminary results.
Afterwards, in Sect. 4.1 we prove Theorem 2, in Sect. 4.2 we prove Theorem 3,
while Sect. 4.3 is devoted to the proof Theorem 4.

We now give the expectation of the bias at time t, conditional on its value
at time t − 1.

Lemma 1. Let {st}t≥0 be the process induced by the 3-Majority dynamics
with uniform noise probability p ∈ (0, 1). The conditional expectation of the bias
is

E [st | st−1 = s] =
s(1 − p)

2

(
3 − s2

n2
(1 − p)2

)
. (3)

Phase Transition of the 3-Majority Dynamics with Noise 107

The proof is omitted and can be found in the full version [18]. By the lemma
above, we deduce that there are up to three equilibrium configurations in expec-
tation. The first one corresponds to s = 0, and the other (possible) equilibrium
correspond to the condition

1 − p

2

(
3 − s2

n2
(1 − p)2

)
= 1

The latter condition results in

s = ± n

(1 − p)
·
√

3(1 − p) − 2
(1 − p)

= ± n

(1 − p)
·
√

1 − 3p

1 − p
,

which is well defined if only if p ≤ 1/3. We will denote the absolute value of the
latter two values by seq.

4.1 Victory of the Majority

The aim of this subsection is to prove Theorem 2: so, in each statement we
assume that {st}t≥0 is the process induced by the 3-Majority dynamics with
uniform noise probability p < 1/3.

We first show a lemma which states that, for any small constant ε > 0,
whenever st−1 �∈ [(1 − ε)seq, (1 + ε)seq], then st gets closer to the interval.

Lemma 2. For any constant ε > 0 such that ε2 < (1−3p)/2 and for any γ > 0,
if s ≥ γ

√
n log n, the followings hold

1. if s ≤ (1 − ε)seq, then P
[
st ≥ (1 + 3ε2/4)s | st−1 = s

] ≥ 1 − 1
nγ2ε4/32 ;

2. if, s ≥ (1 + ε)seq, then P
[
st ≤ (1 − 3ε2/4)s | st−1 = s

] ≥ 1 − 1
nγ2ε4/32 .

Proof. We first notice that

(1 − ε)seq ≤ n

1 − p

√
1 − 3p − 2ε2

1 − p
, (4)

which holds since ε2 ≤ (1 − 3p)/2 and can be proved with simple calculations.
For Lemma 1, if each s ≤ (1 − ε)seq, then

E [st | st−1 = s] =
s(1 − p)

2

(
3 − s2

n2
(1 − p)2

)

≥ s

(
3 − 3p

2
− 1 − 3p − 2ε2

2

)
= s(1 + ε2).

where the inequality follows from (4). Since (2), for the Hoeffding bound, it holds
that

P
[
st ≤ s(1 + ε2) − sε2/4 | st−1 = s

] ≤ e−s2ε4/(32n)

≤ e−γ2ε4 log n/32 ≤ 1
nγ2ε4/32

.

108 F. d’Amore and I. Ziccardi

The second inequality in the lemma follows by a symmetric argument, observing
that

(1 + ε)seq ≥ n

1 − p

√
1 − 3p + 2ε2

1 − p
,

for ε such that ε2 < (1 − 3p)/2.

The following lemma serves to bound how far the bias can get from the interval
[(1 + ε)seq, (1 − ε)seq].

Lemma 3. For any constants ε > 0 and γ > 0, if s ≥ γ
√

n log n, the followings
hold

1. if s ≤ (1 + ε)seq, then P
[
st ≥ (1 − ε − ε2)s | st−1 = s

] ≥ 1 − 1
nγ2ε2/16 ;

2. if s ≥ (1 − ε)seq with ε < 1, then P [st ≤ (1 + ε)s | st−1 = s] ≥ 1 − 1
nγ2ε2p2 .

The proof is similar to that of the previous lemma and can be found in the full
version. We now provide another lemma to control the behavior of the bias. The
proof consists again in the application of simple concentration bounds.

Lemma 4. For any constant k > 0, the followings hold:

1. if s ≥ seq, then P [st ≥ 2seq/3 | st−1 = s] ≥ 1 − 1/nk.
2. if 0 ≤ s ≤ 2seq/3, then P [st ≤ seq | st−1 = s] ≥ 1 − 1/nk.

We can piece together the above lemmas, which imply the following corollary,
whose proof consists in many calculations and can be found in the full version.

Corollary 1. For any constant ε > 0 such that ε < 1/3 and ε2 < (1 − 3p)/2,
the followings hold:

1. if |seq − s| ≤ (ε/4)seq, then

P [|seq − st| ≤ εseq | st−1 = s] ≥ 1 − 1
nγ2ε2p2/25

;

2. if (ε/4)seq ≤ |seq − s| ≤ seq/3, then

P

[
|seq − st| ≤ |seq − s| ·

(
1 − 3ε2

25

) ∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/(21832)
.

We are finally ready to prove the theorem.

Proof (Proof of Theorem 2). We divide the proof in different cases. First, sup-
pose that (ε/4)seq ≤ |seq − s| ≤ εseq. Let T1 = nγ2ε4p2/(21932). Then, from
Corollary 1.(i) and (ii), for the chain rule, we have that

P

[
T⋂

k=1

{|seq − st+k| ≤ εseq}
∣∣∣∣∣ st = s

]
≥ 1 − 1

nγ2ε4p2/(22032)
.

Phase Transition of the 3-Majority Dynamics with Noise 109

Second, suppose that εseq ≤ |seq − s| ≤ seq/3. Then, from Corollary 1.(ii), for
the chain rule, a time T2 exists, with

T2 = O
(

− log n

log
(
1 − 3ε2

25

)
)

= O (
log n/ε2

)

such that

P [|seq − st+T2 | ≤ εseq | st = s] ≥ 1 − 1
nγ2ε4p2/(22032)

.

Third, suppose that s ≤ 2seq/3. From Lemma 2.(i) and Lemma 4.(ii), for the
chain rule and the union bound, there is a time

T3 = O
(

log n

log
(
1 + 3ε2

4

)
)

= O (
log n/ε2

)

such that

P [2seq/3 ≤ st+T3 ≤ seq | st = s] ≥ 1 − 1
nγ2ε4/26

.

Then, we are in one of the first two cases, and we conclude for the chain rule.
Fourth, suppose that s ≥ (1 + 1

3)seq. From Lemma 2.(ii) and Lemma 4.(i), for
the chain rule, a time T4 exists, with T4 = O (log n), such that

P [|seq − sT4 | ≤ seq/3 | st = s] ≥ 1 − 1
nγ234/26

.

The theorem follows with τ1 = O (T2 + T3 + T4).

4.2 Symmetry Breaking

The aim of this section is to prove Theorem 3: so, in each statement we assume
that {st}t≥0 is the process induced by the 3-Majority dynamics with uniform
noise probability p < 1/3. The symmetry breaking analysis essentially relies on
the following lemma which has been proved in [14].

Lemma 5. Let {Xt}t∈N be a Markov Chain with finite-state space Ω and let
f : Ω �→ [0, n] be a function that maps states to integer values. Let c3 be any
positive constant and let m = c3

√
n log n be a target value. Assume the following

properties hold:

1. for any positive constant h, a positive constant c1 < 1 (which depends only
on h) exists, such that for any x ∈ Ω : f(x) < m,

P
[
f(Xt) < h

√
n

∣∣ Xt−1 = x
]

< c1;

110 F. d’Amore and I. Ziccardi

2. there exist two positive constants δ and c2 such that for any x ∈ Ω : h
√

n ≤
f(x) < m,

P [f(Xt) < (1 + δ)f(Xt−1) | Xt−1 = x] < e−c2f(x)2/n.

Then the process reaches a state x with f(x) ≥ m within Oc2,δ,c3(log n) rounds
with probability at least 1 − 2/n.

Our goal is yo apply the above lemma to the 3-Majority process, which defines
a Markov chain. In particular, we claim the hypothesis of Lemma5 are satisfied
when the bias of the system is o

(√
n log n

)
, with f(x) = s (x), m = γ

√
n log n for

any constant γ > 0. Then, Lemma 5 implies the process reaches a configuration
with bias greater than Ω

(√
n log n

)
within time O (log n), w.h.p. We need to

prove that the two hypotheses hold.

Lemma 6. For any constant c3 > 0, let s be a value such that |s| < c3
√

n log n.
Then,

1. for any positive constant h > 0, there exists a positive constant c1 < 1 (which
depends only on h), such that

P
[
st < h

√
n

∣∣ st−1 = s
]

< c1;

2. two positive constants δ, c2 exist (depending only on p), such that if |s| ≥ h
√

n,
then

P [st < (1 + δ)s | st−1 = s] < e− c2s2

n .

The proof of this latter result is very interesting and makes use of the Berry-
Essen inequality. We defer the reader [18]. The symmetry breaking is then a
simple consequence of the above Lemma.

Proof. (Proof of Theorem 3). Apply Lemmas 6 and 5 with h = c3 = γ.

4.3 Victory of Noise

In this subsection, we prove Theorem 4: so, in each statement, we assume that
{st}t≥0 is the process induced by the 3-Majority dynamics with uniform noise
probability p > 1/3.

We make use of tools from drift analysis to the absolute value of the bias of
the process, showing that it reaches magnitude O (

√
n) quickly. Then, since the

standard deviation of the bias is Θ (
√

n), we have constant probability that the
majority opinion switches Lemma 9. Finally, with Lemma 10, we show that the
bias keeps bounded in absolute value by O (√

n log n
)
.

Lemma 7. For any constant ε > 0 such that ε < (1 − p), if s ≥ 2
√

n/
(
ε2

)
, the

following holds

E [|st| | st−1 = s] ≤ E [st | st−1 = s] ·
(
1 +

ε

2

)
.

Phase Transition of the 3-Majority Dynamics with Noise 111

The proof of this lemma can be found in [18] and makes use of estimation of
the standard deviation of the bias to bound its expected absolute value.

With next lemma, we show that the absolute value of the process quickly
becomes of magnitude O (

√
n).

Lemma 8. For any constant ε > 0 such that ε < min{(1 − p), (3p − 1)/2} we
define smin =

√
n/ε2. Then, for any starting configuration s0 such that s0 ≥

smin, with probability at least 1−1/n there exists a time τ = Oε(log n) such that
|sτ | ≤ smin.

Proof. Let h(x) = ε·x
2 be a function. Let Xt = |st| if st ≥ smin, otherwise

Xt = 0. We now estimate E [Xt − Xt−1 | Xt−1 ≥ smin,Ft−1], where Ft is the
natural filtration of the process Xt. We have that

E [Xt − Xt−1 | Xt−1 ≥ smin,Ft−1]
= E [Xt | Xt−1 ≥ smin,Ft−1] − Xt−1

(a)

≤ E [|st| | st−1 ≥ smin,Ft−1] − st−1

(b)

≤ E [st | st−1 ≥ smin,Ft−1] ·
(
1 +

ε

2

)
− st−1

(c)

≤ st−1(1 − ε)
(
1 +

ε

2

)
− st−1 ≤ −ε · st−1

2
,

where (a) holds because Xt ≤ |st|, (b) holds for Lemma 7, and (c) holds for
Lemma 1. Thus,

E [Xt−1 − Xt | Xt−1 ≥ smin,Ft−1] ≥ h (Xt−1) .

Since h′(x) = ε/2 > 0, we can apply Corollary 3.(iii) in [30]. Let τ be the first
time Xt = 0 or, equivalently, |st| < smin. Then

P [τ > t | s0] < exp
[
−ε

2
·
(

t − 2
ε

−
∫ s0

smin

2
ε · y

dy

)]

≤ exp
[
−ε

2
·
(

t − 2
ε

−
∫ n

smin

2
ε · y

dy

)]

= exp
[
−ε

2
·
(

t − 2
ε

− 2
ε
(log n − log smin)

)]

= exp
[
−ε

2
·
(

t − 2
ε

− 2
ε

((log n)/2 + 2 log ε)
)]

≤ exp
[
−ε · t

2
+ 1 +

log n

2

]
.

If t = 4(log n)/ε, then we get that P [τ > t | s0] < e−3(log n)/2+1 < 1/n.

Next lemma states that, whenever the absolute value of the bias is of order
of O (

√
n), then the majority opinion switches at the next round with con-

stant probability. It is proved by applying the reverse Chernoff bound (an anti-
concentration inequality).

112 F. d’Amore and I. Ziccardi

Lemma 9. For any constant ε > 0 such that ε < 1/4, and let st−1 be a config-
uration such that |st−1| = s ≤ √

n/ε. Then, the majority opinion switches at the
next round with constant probability.

Next lemma shows that the signed bias decreases each round.

Lemma 10. For any constant ε > 0 such that ε ≤ (3p − 1)/2, the followings
hold

1. if s ≥ γ
2

√
n log n, then P [st ≤ (1 − 3ε/4)s | st−1 = s] ≥ 1 − 1

nγ2ε2/27 ;
2. if s ≥ 0, then P

[−γ
2

√
n log n ≤ st ≤ s + γ

2

√
n log n | st−1 = s

] ≥ 1 − 2
nγ2/8 .

The proof is a simple application of Hoeffding bounds. We are ready to prove
Theorem 4.

Proof (Proof of Theorem 4). Claim (i) follows directly from Lemmas 8 and 9.
As for claim (ii), whenever the bias at some round t = τ + k becomes |st| ≥
(γ/2)

√
n log n, from Lemma 10.(ii) (and its symmetric statement), we have that

|st| ≤ γ
√

n log n with probability 1− 2/n
γ2

8 . Then, from Lemma 10.(i) it follows
that the bias starts decreasing each round with probability 1 − 1/nγ2ε2/27 until
reaching (γ/2)

√
log n. This phase in which the absolute value of the bias keeps

bounded by
∣∣γ√

n log n
∣∣ lasts for at least nγ2ε2/28 with probability at least 1 −

1/(2nγ2ε2/28) for the chain rule.

Acknowledgement. We thank professor Andrea Clementi for the insightful discus-
sions and advice.

References

1. Abdullah, M.A., Draief, M.: Global majority consensus by local majority polling on
graphs of a given degree sequence. Discret. Appl. Math. 180, 1–10 (2015). https://
doi.org/10.1016/j.dam.2014.07.026

2. Acemoglu, D., Como, G., Fagnani, F., Ozdaglar, A.E.: Opinion fluctuations and
disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013). https://doi.
org/10.1287/moor.1120.0570

3. Bankhamer, G., et al.: Fast consensus via the unconstrained undecided state
dynamics. In: Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM (2022). https://
doi.org/10.1137/1.9781611977073.135

4. Bassler, B.L.: Small talk: cell-to-cell communication in bacteria. Cell 109(4) (2002).
https://doi.org/10.1016/S0092-8674(02)00749-3

5. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016). https://doi.org/10.1016/j.neucom.2015.05.116

6. Becchetti, L., Clementi, A.E.F., Natale, E.: Consensus dynamics: an overview.
SIGACT News 51(1) (2020). https://doi.org/10.1145/3388392.3388403

7. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.:
Simple dynamics for plurality consensus. Distrib. Comput. 30(4), 293–306 (2016).
https://doi.org/10.1007/s00446-016-0289-4

https://doi.org/10.1016/j.dam.2014.07.026
https://doi.org/10.1016/j.dam.2014.07.026
https://doi.org/10.1287/moor.1120.0570
https://doi.org/10.1287/moor.1120.0570
https://doi.org/10.1137/1.9781611977073.135
https://doi.org/10.1137/1.9781611977073.135
https://doi.org/10.1016/S0092-8674(02)00749-3
https://doi.org/10.1016/j.neucom.2015.05.116
https://doi.org/10.1145/3388392.3388403
https://doi.org/10.1007/s00446-016-0289-4

Phase Transition of the 3-Majority Dynamics with Noise 113

8. Becchetti, L., Clementi, A.E.F., Natale, E., Pasquale, F., Trevisan, L.: Stabiliz-
ing consensus with many opinions. In: Krauthgamer, R. (ed.) Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, 10–12 January 2016, pp. 620–635. SIAM (2016).
https://doi.org/10.1137/1.9781611974331.ch46

9. Ben-Shahar, O., Dolev, S., Dolgin, A., Segal, M.: Direction election in flocking
swarms. Ad Hoc Netw. 12, 250–258 (2014). https://doi.org/10.1016/j.adhoc.2012.
05.001

10. Berenbrink, P., Clementi, A.E.F., Elsässer, R., Kling, P., Mallmann-Trenn, F.,
Natale, E.: Ignore or comply?: on breaking symmetry in consensus. In: Schiller,
E.M., Schwarzmann, A.A. (eds.) Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC. ACM (2017). https://doi.org/10.1145/3087801.
3087817

11. Boczkowski, L., Korman, A., Natale, E.: Minimizing message size in stochastic
communication patterns: fast self-stabilizing protocols with 3 bits. Distrib. Com-
put. 32(3), 173–191 (2018). https://doi.org/10.1007/s00446-018-0330-x

12. Carroll, M.C.: The complement system in regulation of adaptive immunity. Nat.
Immunol. 5, 981–986 (2004). https://doi.org/10.1038/ni1113

13. Chaouiya, C., Ourrad, O., Lima, R.: Majority rules with random tie-breaking in
Boolean gene regulatory networks. PLOS ONE 8(7), 1–14 (2013). https://doi.org/
10.1371/journal.pone.0069626

14. Clementi, A.E.F., Ghaffari, M., Gualà, L., Natale, E., Pasquale, F., Scornavacca,
G.: A tight analysis of the parallel undecided-state dynamics with two colors.
In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Symposium
on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK.
LIPIcs, vol. 117, pp. 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.28

15. Condon, A., Hajiaghayi, M., Kirkpatrick, D., Maňuch, J.: Approximate majority
analyses using tri-molecular chemical reaction networks. Nat. Comput. 19(1), 249–
270 (2019). https://doi.org/10.1007/s11047-019-09756-4

16. Cruciani, E., Mimun, H.A., Quattropani, M., Rizzo, S.: Phase transitions of the
k-majority dynamics in a biased communication model. In: ICDCN 2021: Inter-
national Conference on Distributed Computing and Networking. ACM (2021).
https://doi.org/10.1145/3427796.3427811

17. d’Amore, F., Clementi, A., Natale, E.: Phase transition of a non-linear opinion
dynamics with noisy interactions. In: Richa, A.W., Scheideler, C. (eds.) SIROCCO
2020. LNCS, vol. 12156, pp. 255–272. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-54921-3 15

18. D’Amore, F., Ziccardi, I.: Phase transition of the 3-majority dynamics with uniform
communication noise. CoRR (2021). https://arxiv.org/abs/2112.03543

19. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink,
M.: Tight thresholds for cuckoo hashing via XORSAT. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 213–225. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14165-2 19

20. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
consensus with the power of two choices. In: Rajaraman, R., auf der Heide, F.M.
(eds.) SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism
in Algorithms and Architectures. ACM (2011). https://doi.org/10.1145/1989493.
1989516

https://doi.org/10.1137/1.9781611974331.ch46
https://doi.org/10.1016/j.adhoc.2012.05.001
https://doi.org/10.1016/j.adhoc.2012.05.001
https://doi.org/10.1145/3087801.3087817
https://doi.org/10.1145/3087801.3087817
https://doi.org/10.1007/s00446-018-0330-x
https://doi.org/10.1038/ni1113
https://doi.org/10.1371/journal.pone.0069626
https://doi.org/10.1371/journal.pone.0069626
https://doi.org/10.4230/LIPIcs.MFCS.2018.28
https://doi.org/10.1007/s11047-019-09756-4
https://doi.org/10.1145/3427796.3427811
https://doi.org/10.1007/978-3-030-54921-3_15
https://doi.org/10.1007/978-3-030-54921-3_15
https://arxiv.org/abs/2112.03543
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1145/1989493.1989516
https://doi.org/10.1145/1989493.1989516

114 F. d’Amore and I. Ziccardi

21. Dong, J., Fernández-Baca, D., McMorris, F., Powers, R.C.: Majority-rule (+) con-
sensus trees. Math. Biosci. 228(1), 10–15 (2010). https://doi.org/10.1016/j.mbs.
2010.08.002

22. Emanuele Natale: On the Computational Power of Simple Dynamics. Ph.D. Thesis,
Sapienza University of Rome (2017)

23. Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient
information dissemination despite noisy, limited and anonymous communica-
tion. Distrib. Comput. 30(5), 339–355 (2015). https://doi.org/10.1007/s00446-
015-0249-4

24. Fraigniaud, P., Natale, E.: Noisy rumor spreading and plurality consensus. Distrib.
Comput. 32(4), 257–276 (2018). https://doi.org/10.1007/s00446-018-0335-5

25. Franks, N., Pratt, S., Mallon, E., Britton, N., Sumpter, D.: Information flow, opin-
ion polling and collective intelligence in house-hunting social insects. Philos. Trans.
Roy. Soc. Lond. Ser. B Biol. Sci. 357, 1567–83 (2002). https://doi.org/10.1098/
rstb.2002.1066

26. Gamal, A.E., Kim, Y.: Cambridge University Press. Network Information Theory
(2011). https://doi.org/10.1017/CBO9781139030687

27. Ghaffari, M., Lengler, J.: Nearly-tight analysis for 2-choice and 3-majority con-
sensus dynamics. In: Newport, C., Keidar, I. (eds.) Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018. ACM (2018).
https://dl.acm.org/citation.cfm?id=3212738

28. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Inf. Comput. 171(2), 248–268 (2001)

29. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network
coding. IEEE Trans. Inf. Theory (2008). https://doi.org/10.1109/TIT.2008.926449

30. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuris-
tics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 686–697. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 54

31. Lin, W., Zhixin, L., Lei, G.: Robust consensus of multi-agent systems with noise. In:
2007 Chinese Control Conference (2007). https://doi.org/10.1109/CHICC.2006.
4347503

32. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model.
J. Stat. Mech. Theory Exp. 2007(08), P08029 (2007)

33. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev.
Lett. 91(2), 028701 (2003)

34. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms.
Wiley, New York (2005)

35. Mossel, E., Neeman, J., Tamuz, O.: Majority dynamics and aggregation of infor-
mation in social networks. Auton. Agents Multi-agent Syst. 28(3), 408–429 (2013).
https://doi.org/10.1007/s10458-013-9230-4

36. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-n nest-site
selection process in honeybees. Phys. Rev. E 95 (2017). https://doi.org/10.1103/
PhysRevE.95.052411

37. Ruan, Y., Mostofi, Y.: Binary consensus with soft information processing in coop-
erative networks. In: Proceedings of the 47th IEEE Conference on Decision and
Control, CDC 2008. IEEE (2008). https://doi.org/10.1109/CDC.2008.4738899

38. Sumpter, D.J., Krause, J., James, R., Couzin, I.D., Ward, A.J.: Consensus decision
making by fish. Curr. Biol. 18(22), 1773–1777 (2008). https://doi.org/10.1016/j.
cub.2008.09.064

https://doi.org/10.1016/j.mbs.2010.08.002
https://doi.org/10.1016/j.mbs.2010.08.002
https://doi.org/10.1007/s00446-015-0249-4
https://doi.org/10.1007/s00446-015-0249-4
https://doi.org/10.1007/s00446-018-0335-5
https://doi.org/10.1098/rstb.2002.1066
https://doi.org/10.1098/rstb.2002.1066
https://doi.org/10.1017/CBO9781139030687
https://dl.acm.org/citation.cfm?id=3212738
https://doi.org/10.1109/TIT.2008.926449
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1109/CHICC.2006.4347503
https://doi.org/10.1109/CHICC.2006.4347503
https://doi.org/10.1007/s10458-013-9230-4
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1109/CDC.2008.4738899
https://doi.org/10.1016/j.cub.2008.09.064
https://doi.org/10.1016/j.cub.2008.09.064

Phase Transition of the 3-Majority Dynamics with Noise 115

39. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

40. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229
(1995). https://doi.org/10.1103/PhysRevLett.75.1226

41. Wang, L., Liu, Z.: Robust consensus of multi-agent systems with noise. Sci. China
Ser. F Inf. Sci. (2009). https://doi.org/10.1007/s11432-009-0082-0

42. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary Opinion
Dynamics with Stubborn Agents. ACM Trans. Econ. Comput. 1(4) (2013)

https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1007/s11432-009-0082-0

A Meta-Theorem for Distributed
Certification

Pierre Fraigniaud1, Pedro Montealegre2(B), Ivan Rapaport3, and Ioan Todinca4

1 IRIF, Université de Paris and CNRS, Paris, France
pierre.fraigniaud@irif.fr

2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile
p.montealegre@uai.cl

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
rapaport@dim.uchile.cl

4 LIFO, Université d’Orléans and INSA Centre-Val de Loire, Orléans, France

ioan.todinca@univ-orleans.fr

Abstract. Distributed certification, whether it be proof-labeling
schemes, locally checkable proofs, etc., deals with the issue of certify-
ing the legality of a distributed system with respect to a given boolean
predicate. A certificate is assigned to each process in the system by a
non-trustable oracle, and the processes are in charge of verifying these
certificates, so that two properties are satisfied: completeness, i.e., for
every legal instance, there is a certificate assignment leading all pro-
cesses to accept, and soundness, i.e., for every illegal instance, and for
every certificate assignment, at least one process rejects. The verification
of the certificates must be fast, and the certificates themselves must be
small. A large quantity of results have been produced in this framework,
each aiming at designing a distributed certification mechanism for spe-
cific boolean predicates. This paper presents a “meta-theorem”, apply-
ing to many boolean predicates at once. Specifically, we prove that, for
every boolean predicate on graphs definable in the monadic second-order
(MSO) logic of graphs, there exists a distributed certification mecha-
nism using certificates on O(log2 n) bits in n-node graphs of bounded
treewidth, with a verification protocol involving a single round of com-
munication between neighbors.

Keywords: Proof-labeling scheme · Locally checkable proof ·
Fault-tolerance · Distributed decision

This work was partially done during the visit of the second and third authors to IRIF
at Université de Paris, and LIFO at Université d’Orléans, partially supported by ANR
project DUCAT and FONDECYT 1220142.
P. Fraigniaud—Additional support for ANR projects QuData and DUCAT.
P. Montealegre—This work was supported by Centro de Modelamiento Matemático
(CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-
Chile, FONDECYT 11190482, and PAI 77170068.

c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 116–134, 2022.
https://doi.org/10.1007/978-3-031-09993-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_7

A Meta-Theorem for Distributed Certification 117

1 Introduction

Context. Distributed certification is a concept that serves many purposes in
distributed computing. One is fault tolerance. Indeed, the ability to certify the
legality of a system-state with respect to some boolean predicate in a distributed
manner guarantees that at least one process can launch a recovery procedure in
case the system enters into an illegal state. Another application of distributed
certification is safety. Indeed, distributed certification is a mechanism that guar-
antees that distributed algorithms dedicated to systems satisfying some spe-
cific property (e.g., algorithms dedicated to planar networks) can safely be used
because, in case the system does not satisfy this property, at least one process
can raise an alarm, and stop the computation.

Different certification mechanisms have been studied (cf. the related work
section), all sharing the same principle. Distributed certification protocols involve
a centralized prover, and a distributed verifier. The prover has complete knowl-
edge of the system. It is computationally unbounded but not trustable. Given
a boolean predicate P on system states, the prover assigns certificate to the
processes, whose aim is to convince the processes that the system satisfies P.
The verifier is a distributed algorithm that runs at every process in the system,
and is bounded to return a verdict (accept or reject) at each process after a
limited communication among the processes. For instance, in a network, every
processing node is bounded to communicate only once with its neighbors in the
network before emitting its verdict.

To be correct, a distributed certification protocol for a boolean predicate P
on system states must satisfy two properties. (1) Completeness: If the system
satisfies P, then there must exist a certificate assignment by the prover to the
processes such that the verifier accepts at all processes. (2) Soundness: If the
system does not satisfy P, then, for every certificate assignment by the prover
to the processes, it must be the case that the verifier rejects in at least one pro-
cess. Network bipartiteness yields a simple example of distributed certification,
using 1-bit certificates. For every bipartite network, every processing node in the
network can be given a certificate 0 or 1, so that every processing node has a
certificate different from the certificates assigned to its neighbors. The process-
ing nodes can check these certificates in a single round of communication, where
every processing node merely checks that the certificate of each of its neighbors
is different from its own certificate. Completeness is satisfied by construction.
Soundness is also satisfied. Indeed, if the network is not bipartite, then it is not
2-colorable. As a consequence, for every certificate assignment with certificates
in {0, 1}, there are at least two neighboring processing nodes that receive the
same certificate. These two processes will reject.

The main criterion measuring the quality of distributed certification is the
size of the certificates. Indeed, the verification of P is typically performed fre-
quently, for regularly checking that the system does satisfy P, with the aim of
reacting quickly if the system stops satisfying P. As a consequence, there are
frequent exchanges of certificates between the processes. Using small certificates
limits the communication overhead caused by these exchanges.

118 P. Fraigniaud et al.

Objective. A large collection of results related to distributed certification have
been derived over the last twenty years (see Related Work), each result concern-
ing a specific predicate. This paper is inspired by what has been achieved in the
context of sequential computing where, instead of focusing on the design of an
efficient algorithm for one specific problem, and then for another one, and so
on and so forth, efforts have been made for deriving “meta-theorems”, that is,
results applying directly to large classes of problems. One prominent example
is Courcelle’s theorem [12] stating that every graph property definable in the
monadic second-order (MSO) logic of graphs can be decided in linear time on
graphs of bounded treewidth1. That is, even NP-hard problems such as vertex-
coloring, minimum dominating set, minimum vertex cover, etc., have linear-time
algorithms in the vast class of graphs with bounded treewidth. Each algorithm
depends on the problem, but Courcelle’s theorem essentially says that every
problem expressible in the MSO logic has a linear-time algorithm in the class of
graphs with bounded treewidth.

The objective of this paper is to address the existence of similar meta-
theorems in the context of distributed certification applied to distributed com-
puting in networks. Concretely, the question we address here is the following: is
there a (large) class of boolean predicates on graphs for which one can guarantee
the existence of a distributed certification mechanism with small certificates, say
poly-logarithmic in the number of vertices of the graphs, for graphs taken from
a (large) class of graphs?

Our Results. We present an analog of the aforementioned Courcelle’s theorem
in the context of distributed certification. Specifically, for every integer k ≥ 1
and every MSO property ϕ on graphs, we consider the following set:

Pk,ϕ = {graph G : (tw(G) ≤ k) ∧ (G |= ϕ)},

where tw(G) is the treewidth of G. We provide a distributed certification mech-
anism for Pk,ϕ using certificates of poly-logarithmic size, as a function of the
number n of vertices in the graphs. Specifically, given any network modeled as
a connected simple graph G = (V,E), with a process running at each vertex
v ∈ V , our certification mechanism satisfies that G ∈ Pk,ϕ if and only if there is
a certificate assignment to the vertices such that all vertices accept. The main
result of the paper is the following.

Theorem 1 (Informal). For every k ≥ 1 and every MSO property ϕ on
graphs, there exists a distributed certification protocol for Pk,ϕ using certificates
on O(log2 n) bits.

In fact, our theorem can be extended to properties including certifying solu-
tions to maximization or minimization problems whose admissible solutions are
1 Treewidth can be viewed as a measure capturing “how close” a graph is from a

tree; roughly, a graph of treewidth k can be decomposed by a sequence of cuts, each
involving a separator of size O(k).

A Meta-Theorem for Distributed Certification 119

defined by MSO properties. In the statement of Theorem 1, the big-O notation
hides constants that depend only on k and ϕ. The theorem has many corollaries,
as the universe of MSO properties is large. This includes predicates such as non
3-colorability, which is known to require certificates of quadratic size in arbitrary
graphs [18], and diameter at most D, for a fixed constant D, which is known to
require certificates of linear size in arbitrary graphs [11].

Corollary 1. For every c ≥ 1, there exists a distributed certification protocol
for certifying non c-colorability in the family of graphs with bounded treewidth,
using certificates on O(log2 n) bits.

For every D ≥ 1, there exists a distributed certification protocol for certify-
ing diameter at most D in the family of graphs with bounded treewidth, using
certificates on O(log2 n) bits.

Also, many natural graph families have bounded treewidth, as illustrated by
the family of graphs excluding a planar graph as a minor, and thus we get the
following corollary of Theorem 1.

Corollary 2. For every planar graph H, and every MSO property ϕ on graphs,
there exists a distributed certification protocol certifying ϕ in the family of H-
minor-free graphs, using certificates on O(log2 n) bits.

Again, the big-O notation in the above statement hides constants that depend
only on H and ϕ. Note that, as every 4-node graph is planar, Corollary 2 extends
the recent results in [9], which applies to the families of graphs excluding a given
4-node graph H as a minor.

Interestingly, tw(G) ≤ k, and H-minor-freeness are themselves MSO proper-
ties for fixed k and H. It follows that Theorem 1 provides us with a distributed
certification mechanism for treewidth and fixed-minor-freeness.

Corollary 3. Let k ≥ 0, and let H be a planar graph. There exist distributed cer-
tification protocols for certifying the class of graphs with treewidth at most k, and
certifying the class of H-minor-free graphs, both using certificates on O(log2 n)
bits.

Our Techniques. For establishing Theorem 1 we proceed in two steps. First, we
provide a protocol for certifying 3-approximation of treewidth. Such a protocol
satisfies the following: for any given k ≥ 1, the protocol for k is such that, for
every graph G,

{
tw(G) ≤ k ⇒ there exists a certificate assignment s.t. all vertices accept;
tw(G) > 3k + 2 ⇒ for every certificate assignment, at least one vertex rejects.

Lemma 1 (Informal). For every k ≥ 1 there exists a distributed protocol
certifying a 3-approximation of the treewidth using certificates on O(k2 log2 n)
bits.

120 P. Fraigniaud et al.

The proof of this lemma relies on a particular choice of a tree decomposition,
that we prove locally certifiable by “transferring” certificates between nodes that
are far away from each other, which is typically the case of vertices in a same
bag of the decomposition, without creating congestion.

Next, for any MSO property ϕ and integer k, we design a protocol which
certifies Pk,ϕ on input graph G. The protocol exploits the tree decomposition in
the proof of Lemma 1, for certifying a correct execution of a sequential dynamic
programming algorithm for ϕ over this decomposition. Concretely, we design a
distributed certification for a correct execution of a sequential dynamic program-
ming algorithm a la Courcelle, using in fact the sequential MSO certification due
to Borie, Parker and Tovey [8].

Lemma 2 (Informal). For every k ≥ 1 and every MSO property ϕ on graphs,
assuming given the certification protocol for 3-approximation k of treewidth from
Lemma 1, there exists a distributed certification protocol for Pk,ϕ using additional
certificates on O(log2 n) bits.

Related Work. The ability to detect illegal configurations of a distributed
system was originally motivated by the design of fault-tolerant algorithms, espe-
cially self-stabilizing algorithms [1,2,20]. The notion of distributed certification
as used in this paper originated from the seminal paper [22] defining proof-
labeling schemes (PLS). We actually use a slight variant of PLS called locally
checkable proofs (LCP) [18], which enables exchanging not only the certifi-
cates between the processing nodes, but also local states, including their IDs.
Another related notion is non-deterministic local decision (NLD) [16] in which
the certificates must not depend on the IDs given to the processing nodes. Dis-
tributed certification has been extended to various directions, including ran-
domized PLS [17], approximate PLS [11,14], local hierarchies [3,15], interactive
proofs [21,24], and even, recently, zero-knowledge distributed certification [4].
All the aforementioned papers contain a vast collection of certification results
for various graph problems. In these papers, each certification protocol is spe-
cific of the problem at hand. To our knowledge, the only “meta-theorem” in the
context of distributed certification is the recent paper [10], which shows that
every MSO formula can be locally certified on graphs with bounded treedepth
using certificates on O(log n) bits. We show that the same result holds for the
larger class of graphs with bounded treewidth, to the cost of slightly larger cer-
tificates, on O(log2 n) bits. We are therefore partially answering the questions
raised in [10], asking whether it is “possible to certify any MSO formula on
bounded treewidth graphs”, and “to certify that the graph itself has treewidth
at most k”, using small certificates.

In framework of sequential algorithms, there is a large literature on “meta-
theorems” proving that large families of combinatorial properties (typically
expressed using some form of logic formulae) can be efficiently decided on par-
ticular graph classes. In addition to Courcelle’s (meta) theorem [12] on MSO
properties on graphs with bounded treewidth, it is worth mentioning the recent
results establishing that properties expressible in first-order logic can be verified

A Meta-Theorem for Distributed Certification 121

in polynomial time on graphs of bounded twinwidth [7], as well as on nowhere-
dense graphs [19]. Both graph classes include planar graphs, and thus include
graphs with arbitrarily large treewidth. Our work is participating to the general
objective of extending these results to the framework of distributed computing.

2 Preliminaries

Distributed Certification. We consider networks modeled as connected sim-
ple graphs. Every vertex is a processing element, and the vertices exchange mes-
sages along the edges of the graph. We systematically denote by n the number
of vertices in the considered graph. The vertices of a network/graph G = (V,E)
are given distinct identifiers (IDs), and we denote by ID(v) the identifier of ver-
tex v ∈ V . These identifiers are not necessarily between 1 and n, but we adopt
the standard assumption stating that IDs can be stored on O(log n) bits.

We consider boolean predicates on labeled graphs, i.e., graphs for which every
vertex v is given a label �(v) ∈ {0, 1}∗. These labels may represent a way to mark
vertices (e.g., those in a dominating set), a color (e.g., in graph coloring), or any
value depending on the graph property at hand. Given a boolean predicate P
on labeled graphs, a locally checkable proof [18] for P is a prover-verifier pair.
The prover is a non-trustable oracle with unbounded computing power. Given
any labeled graph (G, �), the prover assigns a certificate c(v) ∈ {0, 1}∗ to every
vertex v ∈ V . The verifier is a 1-round distributed algorithm running at all
vertices of the graph. Given a labeled graph (G, �) with a certificate assigned
at every vertex, the vertices exchange their identifiers, labels, and certificates,
between neighbors, and compute an output, accept or reject. To be correct, the
pair prover-verifier must satisfy two conditions:

Completeness: If (G, �) |= P, then, for every ID-assignment to the vertices,
there must exist a certificate assignment by the prover to the vertices such
that the verifier accepts at all vertices.

Soundness: If (G, �) �|= P, then, for every ID-assignment to the vertices, and
for every certificate assignment by the prover to the vertices, it must be the
case that the verifier rejects in at least one vertex.

Tree Decompositions and Terminal Recursive Graphs. Let us recall the
classical definition of treewidth and tree decompositions, due to Robertson and
Seymour [25].

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T,B)
where T = (I, F) is a tree, and B = {Bi, i ∈ I} is a collection of subsets of
vertices of G, called bags, such that the following conditions hold:

– For every v ∈ V , there exists i ∈ I such that v ∈ Bi;
– For every e = {u, v} ∈ E there is i ∈ I such that {u, v} ⊆ Bi;
– For every v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected subgraph of T .

122 P. Fraigniaud et al.

The width of a tree decomposition is the maximum size of a bag, minus one.
The tree-width of a graph G, denoted by tw(G), is the smallest width of a tree
decomposition of G.

To facilitate the distinction between the original graph G = (V,E) and the
decomposition tree T = (I, F), we will speak of the nodes i ∈ I of T and of the
vertices v ∈ V of G.

We consider tree decompositions as rooted, i.e., we fix some node r ∈ I as
the root of T = (I, F). For a node i ∈ I \ {r}, we denote by p(i) its parent in T ,
and set p(r) = ⊥. For i ∈ I, we denote by Ti the subtree of T rooted in i, and
by Vi the subset of vertices of G in the bags of Ti, i.e., Vi = ∪j∈V (Ti)Bj . Also,
for i ∈ I \ {r}, we define Fi = Bi \ Bp(i). For the root r, we set Bp(r) =⊥ and
Fr = Br. Given a rooted tree T = (I, F), and two nodes of i, j ∈ I, we denote
by j � i the property that j is a descendant of i in T .

Graphs of bounded treewidth can also be defined recursively, based on a
graph grammar. Let w be a positive integer. A w-terminal graph is a graph
(V,E) together with a totally ordered set W ⊆ V of at most w distinguished
vertices. Vertices of W are called the terminals of the graph, and we denote by
τ(G) the number of its terminals. Since W is totally ordered, we can speak of
the rth terminal, for 1 ≤ r ≤ w. Since in our case vertices are given distinct
identifiers, one can view W as ordered w.r.t. these identifiers.

The class of w-terminal recursive graphs is defined starting from w-terminal
base graphs through a sequence of composition operations. A w-terminal base
graph is a w-terminal graph of the form (V,W,E) with W = V . A composition
operation f acts on one or two w-terminal graphs producing a new w-terminal
graph as follows.

When f is of arity 2, graph G = f(G1, G2) is obtained by firstly making dis-
joint copies of the two graphs G1 and G2, then “glueing” together some terminals
of G1 and G2. The glueing performed by f is represented by a matrix m(f) hav-
ing τ(G) ≤ w rows and two columns, with integer values between 0 and τ(G).
At row r of the matrix, mrc(f) indicates which terminal of each Gc, c ∈ {1, 2}
is identified to terminal number r of graph G. If mrc(f) = 0, then no terminal
of Gc is identified to terminal r of G (in particular, if mr1(f) = mr2(f) = 0 it
means that terminal r of G is a new vertex, but this situation will not occur
in our constructions). Moreover, a terminal of Gc is identified to at most one
terminal of G, i.e., each non-zero value in 1, . . . , τ(Gc) appears at most once in
column c of m(f).

When f is of arity 1, the corresponding matrix m(f) has a unique column.
Graph G = f(G1) is obtained as before, by identifying terminal mi1 of G1 to
terminal r of G. Note that in this case G and G1 have exactly the same vertex
and edge sets, and the terminals of G form a subset of the terminals of G1.

We point out that the number of possible different matrices and hence of
different operations is bounded by a function on w.

Proposition 1. (Theorem 40 in [6]). Graph H = (V,W,E) is (w + 1)-
terminal recursive if and only if there exists a tree decomposition of G = (V,E),

A Meta-Theorem for Distributed Certification 123

of width at most w, having W as root bag. Hence the grammar of (w+1)-terminal
recursive graphs constructs exactly the graphs of treewidth at most w.

Let us sketch briefly here how a tree decomposition of G = (V,E) of width
w can be transformed into a (w +1)-expression of the same graph. To each node
i of the tree decompositions, we associate three (w + 1)-terminal graphs:

– Gb
i = (Bi, Bi, E(G[Bi])), the (w + 1)-terminal base graph corresponding to

graph G[Bi] induced by bag Bi;
– Gi = (Vi, Bi, E(G[Vi])), corresponding to G[Vi], with bag Bi as set of termi-

nals;
– If i differs from the root, G+

i = (Vi∪Bp(i), Bp(i), E(G[Vi ∪Bp(i)])) correspond-
ing to the graph induced by Vi ∪ Bp(i), with Bp(i) as set of terminals.

Let us describe how to compute the (w + 1)-expression of these graphs, by
parsing bottom-up the tree decomposition.

When i is a leaf, Gi = Gb
i is a (w+1)-terminal base graph. Assume now that

i is not a leaf and let Children(i) be the children of node i in the decomposition
tree. For each j ∈ Children(i), we already possess an expression of the (w + 1)-
terminal graph Gj = (Vj , Bj , E(G[Vj])). Observe that G+

j is obtained from a
glueing of Gj and the base graph Gb

i , where the terminals of Gj contained in
Bj ∩ Bi are glued on the corresponding terminals of G+

j , and the others become
non-terminals. Eventually, if i has more than one child, then Gi is obtained by the
consecutive glueing of all G+

j , j ∈ Children(i), where the glueing is performed
on Bi by the same matrix m(f) having mr1(f) = mr2(f) = r, for 1 ≤ r ≤ |Bi|.

Regular Properties and MSO. We consider graph properties P(G) assigning
to each graph G a boolean value. We have in mind properties expressible in
Monadic Second Order Logic, like “G is not 3-colourable”, “G does not contain
a given minor”, etc. Nevertheless, technically, we do not need the definition of
MSO formulae, and the interested reader may refer to [13]; we only need the
fact that MSO properties are regular, in the sense defined below. By Courcelle’s
theorem, such properties can be decided in linear (sequential) time on graphs of
bounded treewidth, if the tree decomposition (or the corresponding expression
as a terminal recursive graph) is part of the input.

Definition 2 (regular property). A graph property P is called regular if,
for any value w, we can associate a finite set C of homomorphism classes and
a homomorphism function h, assigning to each w-terminal recursive graph G a
class h(G) ∈ C such that:

1. If h(G1) = h(G2) then P(G1) = P(G2).
2. For each composition operation f of arity 2 there exists a function f :

C × C → C such that, for any two w-terminal recursive graphs G1 and G2,

h(f(G1, G2)) = f (h(G1), h(G2))

124 P. Fraigniaud et al.

and for each composition operation f of arity 1 there is a function f : C → C
such that, for any w-terminal recursive graph G,

h(f(G)) = f (h(G)).

We illustrate this definition on the property “G is not 3-colourable”. We
can choose, as homomorphism h(G = (V,W,E)), the set of all three-partitions
(W1,W2,W3) of the set W of terminals, such that graph G has, as three colour-
ing, the one where each colour i ∈ {1, 2, 3} intersects W exactly in the set Wi.
Observe that graph G satisfies the property of not being 3-colourable if and only
if its homomorphism class is the empty set. It is a matter of exercise to figure
out how to compute the homomorphism class of a base w-terminal graph (by
enumerating all its three-partitions into independent sets), and how to compute
functions f updating the class of the graph after a composition operation f .

The first condition of Definition 2 separates the classes into accepting ones
(i.e., classes c ∈ C such that h(G) = c implies that P(G) is true) and rejecting
ones (i.e., classes c ∈ C such that h(G) = c implies that P(G) is false). In full
words, the second condition states that, if we perform a composition operation
on two graphs (resp. one graph), the homomorphism class of the result can be
obtained from the homomorphism classes of the graphs on which these operations
are applied. Therefore, if a w-terminal recursive graph is given together with
its expression in this grammar, and if moreover we know how to compute the
homomorphism classes of the base graphs and the composition functions f

over all possible composition operations f , then the homomorphism class of the
whole graph for a regular property P can be obtained by dynamic programming.
We simply need to parse the expression from bottom to top and, at each node,
we compute the class of the corresponding sub-expression thanks to the second
condition of regularity. At the root, the property is true if and only if we are in
an accepting class.

Proposition 2. ([8,12]). Any property P expressible by a MSO formula is reg-
ular. Moreover, given the MSO formula ϕ and parameter w, one can explicitely
compute the set of classes, the homomorphism function for all w-terminal base
graphs as well as the composition functions f of all possible composition oper-
ations f .

Altogether, this provides an effective algorithm for checking property P(G)
in O(n) time, by a sequential algorithm, given the w-expression (or, equivalently,
the tree decomposition of width w−1) of the input graph, by computing bottom-
up the homomorphism classes.

The notions of MSO and regular properties extend to properties on graphs
and vertex subsets, i.e., we can consider properties P(G,X) assigning to each
graph G and vertex subset X of G a boolean value. This allows to capture
properties as “X is an independent set of G”, or “X is an dominating set of G”.
Moreover, the whole framework can capture the problem of computing a (or, in
our case, certifying that) set X is of maximum weight among those satisfying
P(G,X), for graphs with polynomial weights on their vertices.

A Meta-Theorem for Distributed Certification 125

Coherent Tree Decompositions. By a classic result of Bodlaender [5], an
optimal tree decomposition of graph G can be transformed into a decomposition
whose tree is of logarithmic depth, while the size of the bags is at most multiplied
by 3. We strongly rely on such decomposition, plus a connectivity property that
we call coherence. We say that a rooted tree decomposition of a graph G = (V,E)
is coherent if for every i ∈ I, the set Fi is non empty and the graph G[Vi \Bp(i)]
is connected.

We show that such a decomposition exists and provide some of its properties
used in our certification protocol. Due to space restrictions, the proofs of the
results of this sub-section can be found in the full version.

Lemma 3. Let k ≥ 1, and let G be a connected n-vertex graph of treewidth at
most k. Then, G admits a coherent tree decomposition of width at most 3k + 2
and depth O(log n).

In our protocol we must be able to communicate, for any node i of the
decomposition, some information about Vi to a vertex in the bag corresponding
to the parent node p(i), more precisely, to some vertex of Fp(i). The following
lemma shows the existence a vertex �i ∈ Vi \ Bp(i) adjacent in G to some vertex
w ∈ Fp(i).

Lemma 4. Let T = (I, F) be a coherent tree decomposition of G = (V,E).
Then, for every i ∈ I different from the root there exists a pair of vertices
�i ∈ Vi \ Bp(i) and w ∈ Fp(i) such that {w, �i} ∈ E.

Vertex �i is called the exit vertex of i, and w is called the vertex of Fp(i) in
charge of node i.

In our certification protocols, for each node i of the decomposition tree, the
vertices of Fi as well as the exit vertex �i will receive from the prover some
information concerning graph Gi = G[Vi]. We will need to ensure that �i and
all vertices of Fi received the same information. For this purpose we use trees
contained in G[Vi \ Bp(i)], spanning �i and Fi.

Lemma 5. Consider a coherent tree decomposition T = (I, F) of graph G =
(V,E), of depth O(log n). For each node i of the decomposition tree, there is a
subtree S(i) of G[Vi \ Bp(i)] spanning Fi and the exit vertex �i.

Moreover each vertex of G appears O(log n) times in the family of trees
T (G) = {S(i) | i ∈ I}.

3 A Protocol Certifying a 3-Approximation
of the Treewidth

In this section we describe a protocol certifying a 3-approximation of treewidth.
More precisely, we prove the following Lemma.

126 P. Fraigniaud et al.

Lemma 6. For each k ≥ 1 there is a distributed certification protocol that uses
messages of size O(k2 log2 n) and ensures, for any input graph G, that:

{
tw(G) ≤ k ⇒ there exists a certificate assignment s.t. all nodes accept;
tw(G) > 3k + 2 ⇒ for every certificate assignment, at least one node rejects.

Let us describe the messages that the prover sends to each vertex of G, if
tw(G) ≤ k. These messages describe a coherent tree decomposition of width at
most 3k + 2 and of logarithmic depth, which exists by Lemma 3.

We identify node i of the decomposition tree with the number corresponding
to a binary representation of the set of vertices Bi contained in its bag, so
1 ≤ i ≤ nO(k). In full words, a node is simply identified by the content of its
bag, which is possible since coherent tree decompositions have pairwise disjoint
bags.

Our protocol distinguishes two types of certificates, namely main messages
and auxiliary messages. Each vertex receives one main message and O(log n)
auxiliary messages. Let us describe each one of them.

Main Messages. These messages are used to encode a tree decomposition, fol-
lowing Definition 1. Each vertex v receives as a certificate the following messages,
that we denote m(v):

1. A number d = d(v), representing the depth of the node i such that v ∈ Fi

2. A list of sets B(v) = Bd(v), Bd−1(v), . . . , B1(v), representing the path of bags
from node i = Bd(v) to the root node.

3. The list of sets F(v) = Fd(v), Fd−1(v), . . . , F1(v), representing the sets
Fj(v) = Bj(v) \ Bj−1(v), for each j ∈ {1, . . . , d}.

4. A list of sets E(v) = Ed(v), . . . , E1(v), where, for each j ∈ {1, . . . , d}, Ej(v) ⊆(
Bj(v)

2

)
represents the edge set of G[Bj(v)].

Observe that the size of a main message is O(k2 log2 n).

Auxiliary Messages. These messages allow to check the consistency of the main
messages between vertices of a same set Fi, for each node i of the decomposition.

From Lemma 5, we have that for each node i there is a subtree S(i) connecting
all pair of vertices of Fi and the exit vertex �i. The vertices w of S(i) are called
auxiliary vertices for i. For a vertex w, let us call Aux(w) the set of nodes i
such that w is an auxiliary vertex for i. From Lemma 5, we know that for each
w ∈ V , |Aux(w)| = O(log n).

Each node w receives the set Aux(w) and for each i ∈ Aux(w) the message
maux(w, i) containing the following information where

– daux(w, i) is the depth of node i.
– �i(w) is a vertex identifier of the exit vertex of Fi (cf. Lemma 4).
– αi(w) is a vertex identifier of the vertex in Fp(i) in charge of Bi (cf. Lemma 4).
– Fi(w) is a set of vertices, representing Fi.

A Meta-Theorem for Distributed Certification 127

– TreeCert(w) is the certificate that receives w in the protocol used to ver-
ify that S(i) is a tree rooted at �i and spanning Fi(w). More precisely
cert(Fi, w) = (parent(w), dist(w), sub(w)), where:

• parent(w) represent the parent of w in S(i) (parent(w) =⊥ if w = �i(w)),
• dist(w) represents the distance from w to �i in S(i), and
• sub(w) represents is the subset of Fi(v) that are descendants of w in S(i).

Observe that for any given vertex w and node i, the messages maux(w, i) is
of size O(k log n). Thanks to Lemma 5, a vertex w appears O(log n) times as
auxiliary vertex of some node i. Therefore, a vertex w receives in total O(k log2 n)
bits for auxiliary messages.

Verification Round. Given two vertices u and v such that d(u) ≤ d(v), we say
that the main message of u is a d-suffix of the main message of v if Bj(u) = Bj(v)
and Ej(u) = Ej(v) for each j ∈ {1, . . . , d}.

Let d = d(v). In the verification round, vertex v verifies the following condi-
tions.

Consistency of the Tree Decomposition.

1. The size of each B ∈ B(v) is at most 3k + 3.
2. The set Fd(v) contains v.
3. For each j ∈ {2, . . . , d}, the set Fj(v) equals Bj(v) \ Bj−1(v).
4. For each w ∈ V (G) and j1, j2 ∈ {1, . . . , d} with j1 < j2, if w ∈ Bj1 ∩ Bj2 ,

then w ∈ Bij for every j ∈ {j1 + 1, . . . , j2 − 1}.
5. For each j1, j2 ∈ {1, . . . , d}, each pair of vertices u1, u2 ∈ Bj1(v) ∩ Bj2(v)

satisfies that {u1, u2} ∈ Ej1(v) ⇐⇒ {u1, u2} ∈ Ej2(v).
6. For each u ∈ Bd(v), v checks that {u, v} ∈ E ⇐⇒ {u, v} ∈ Ed(v).
7. For each u ∈ N(v) such that d(u) ≥ d(v), v checks that m(v) is a d(v)-suffix

of m(u).
8. For each u ∈ N(v) such that d(u) ≤ d(v), v checks that u ∈ Bd(v).
9. v checks that it is an auxiliary vertex for Bd(v) and that it has a neighbor

that is also an auxiliary vertex for Bd(v).
10. For each vertex w ∈ N(v) ∪ {v} such that w is an auxiliary tree vertex for

Bd(v), v checks that daux(w,Bd(w)) = d and Fi(w) = Fd(v).

Consistency of the Auxiliary Trees and the Exit Vertex. The following conditions
are used to verify that the nodes marked as auxiliary vertices for node i form an
auxiliary subtree S(i) rooted at �i and spanning Fi. At the same time, we check
that all de nodes in S(i) have the same auxiliary information, corresponding to
the depth di of bag i, the contents of Fi, the identity of exit vertex �i, and the
identity of the node of Fp(i) responsable of i, and the same di-suffix of the main
messages.

For each i ∈ Aux(v), vertex v checks te following conditions

128 P. Fraigniaud et al.

11. For each vertex w ∈ N(v) such that w is an auxiliary tree vertex for i, v
checks that

(daux(w, i), �i(w), αi(w), Fi(w)) = (daux(v, i), �i(v), αi(v), Fi(v))

12. daux(v, i) ≤ d(v).
13. Uses TreeCert(Fi(v), v) to verify that there is an auxiliary tree S(i) rooted

in �i(v) and spanning Fi(v). More precisely, v checks the following condi-
tions:

(a) If v �= �i(v) then v has a neighbor with the label parent(w) which is also
an auxiliary vertex for i;

(b) If v �= �i(v), then dist(parent(v)) = dist(v) − 1;
(c) If v = �i then dist(v) = 0, sub(v) = Fi(v), v is adjacent to αi(v) and

d(αi(v)) = daux(v, i) − 1.
(d) Set sub(v) is the union of all sets sub(w) over the children w of v in S(i)

(i.e., for all w such that parent(w) = v), plus vertex v itself if v ∈ Fi.

Soundness and Completeness. We now analyze the correctness of the protocol.
The completeness follows directly by Lemmas 3, 4 and 5. In the following, we
prove the soundness.

Soundness: Let us assume that all vertices accept a given certificate in the
verification round. We now show that necessarily tw(G) ≤ 3k +2. For each node
v ∈ V , let us call B(v) and F (v) the set Fd(v)(v) and Bd(v)(v), respectively. We
say that a vertex v is in depth d if d(v) = d. The proof of the soundness is a
consequence of the following claims.

Claim 1: For each i ∈ Aux(v) , there is a tree S(i) rooted in �i(v) span-
ning Fi(v). Moreover, all the vertices in S(i) are in a depth greater or equal
than daux(v, i) , and their main messages have the same daux(v, i) -suffix.
First, observe that by the verification of condition 13 (a)-(c), we have that S(i)
is defined by the set of all auxiliary vertices for i and the edges {w, parent(w)}.
Since S(i) is connected, by conditions 10 and 11, all auxiliary vertices for node
i agree in the same Fi = Fi(v) and in the depth of i given by daux = daux(v, i).
By condition 13 (c)-(d), all vertices in Fi exist and are auxiliary vertices for
node i. Finally, by condition 12 all nodes are in a depth greater or equal than
daux and by condition 7, the main messages of all vertices in S(i) have the same
daux-suffix.

Claim 2: For every vertex v , all nodes in F (v) receive the same main mes-
sages as v. Let u be a vertex in F (v). If u and v are adjacent the claim is true
by condition 7. Suppose then that u /∈ N(v). Since v verifies condition 9, there is
a set of auxiliary vertices for node i = B(v). By Claim 1, m(v) is a d(v)-suffix
of m(w), for every auxiliary vertex w for node i. Since all vertices in F (v) are
auxiliary vertices for i, we deduce that u has the same main messages than v.

A Meta-Theorem for Distributed Certification 129

Claim 3: For every pair of vertices u, v ∈ V either F (v) = F (u) or
F (v) ∩ F (u) = ∅. This is a direct corollary of Claim 2. Indeed, let us sup-
pose that there exist a pair u, v ∈ V such that F (v) �= F (u) but F (v)∩F (u) �= ∅.
Then, without loss of generality, there is a node w ∈ F (v) ∩ F (u) such that
F (w) �= F (v), which contradicts Claim 2.

Claim 4: For every vertex v such that d(v) > 1 , there exist a node u such
that m(u) is a (d(v) − 1) -suffix of m(v). Let d = d(v). Claim 1 implies that
the exit vertex �i for i = Bd(v) exists and is the root of S(i), which is in a depth
greater or equal than daux = d. Condition 13 (c) implies that �i is adjacent to
a node αi of depth d − 1. Then, by condition 7, m(αi) is a d − 1-suffix of m(�i).
Since m(v) is a d-suffix of m(�i), we deduce that m(αi) is a d−1-suffix of m(v).

Claim 5: For every u, v ∈ V , the sets F (u) �= F (v) if and only if
B(u) �= B(v). First, observe that if F (u) = F (v), then by condition 2 and
Claim 2, B(v) = B(u). For the reciprocal, let us suppose by contradiction that
there exist u, v ∈ V such that F (u) �= F (v) and B(u) = B(v). Let us call d1 =
d(u) and d2 = d(v). Since F (u) �= F (v), necessarily Bd1−1(u) �= Bd2−1(v). Let
us assume, without loss of generality, that there exists a vertex w ∈ F (v) \F (u).
Since w belongs to F (v), we have that F (w) = F (v) by Claim 2, and w does
not belong to Bd1−1(v). Since w /∈ F (u) we have that w belongs to Bd2−1(u).

Let us call d3 the maximum in {1, . . . , d1 − 1} such that Bd3(u) belongs to
B(v). Observe that d3 exists, because applying condition 7 on all the vertices in
G we deduce that B1(u) = B1(v). If Bd3(u) contains w, then v fails to verify
condition 4. If Bd3(u) does not contain vertex w, there exists a d4 ∈ {d1, . . . , d3−
1} such that w ∈ Fd4(u) = Bd4(u) \ Bd4−1(u). Then, Claim 4 applied to the
vertices in the sequence Fd1(u), Fd1−1(u), ..., Fd4(u) implies that there is a node
w′ such that F (w′) = Fd4(u). Then, by Claim 2, F (w) = Fd4(u). We deduce
that B(v) = Bd4(u), which is a contradiction with the choice of d3.

Let us define I as the set of indexes i ∈ [nO(k)] for which there is a v ∈ V (G)
such that i is the binary representation of B(v). By Claim 2, 3 and 5, we have
a partition {Fi}i∈I of V (G), such that, for each i ∈ I, all nodes in Fi receive
the same main messages. In particular, for every vertex v in Fi, we have that
i is the binary representation of B(v). For each v ∈ Fi, we define p(i) as the
binary representation of Bd(v)−1(v) (p(i) = ⊥ if v ∈ B1(v)). From Claim 4 we
know that the binary representation of Bd(v)−1(v) is also in I. In other words,
the nodes in Fd(v)−1(v) have certificates that are consistent with the certificate
of v. In particular, all vertices of G agree on the contents of the root node, that
we call B1. We then define the pair (T, {Bi}i∈I), where T is defined by the tree
with vertex set I and edge set {i, p(i)}, for each i ∈ I different than the root.

Claim 6: The pair (T, {Bi}i∈I) forms a tree decomposition of G of width 3k+
2. According to Definition 1 we have to check that the following three properties
are satisfied:

130 P. Fraigniaud et al.

– For every v ∈ V , there exists i ∈ I such that v ∈ Bi;
– For every e = {u, v} ∈ E there is i ∈ I such that {u, v} ⊆ Bi;
– For every v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected subgraph of T .

The first two properties are directly verified as every vertex is given one bag that
contains it in the main message. The second property is verified by condition 8.
Finally, for the third condition, let us suppose that there exists a vertex v ∈ V
such that Iv = {i ∈ I : v ∈ Bi} is not connected. Let C1 and C2 be two
different components of Iv, and let i1 and i2 be, respectively, the nodes in C1

and C2 of minimum depth. Observe that Fi1 �= Fi2 and by condition 3, v must
be contained in Fi1 ∩ Fi2 , which contradicts Claim 2. We deduce that for every
v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected subgraph of T . We conclude
that (T, {Bi}i∈I) forms a tree decomposition of G. Finally, the width of the
decomposition is verified by condition 1.

We finish this section showing one more property of our verification algo-
rithm, that is not required for the certification of the 3-approximation of the
treewidth, but will be useful in the next section.

Claim 7: For every v ∈ V and every j ∈ {1, . . . , d(v)} , the set Ej(v)
corresponds to the edges of graph induced by Bj(v). We prove this claim by
induction on d(v). Suppose first that d(v) = 1. Since F1 = B1, we have that
F (u) = F (v) for every other vertex u in B1. By Claim 2 we obtain that v
and u agree on the same set E1. Then, by condition 5 on all the vertices in
B1, we deduce that E1 = E[G1]. Now suppose that the claim is true for every
vertex of depth smaller than d > 1 and suppose that d(v) = d. By the induction
hypothesis, for every j ∈ {1, . . . , d − 1} the set Ej(v) corresponds to the set of
edges of G[Bj(v)]. Then, it remains to prove that Ed(v) corresponds to the set
of edges of G[Bd(v)]. Let w1, w2 be an arbitrary pair of vertices in B(v), and
call d1 and d2 the depth of w1 and w2, respectively. Without loss of generality
assume that d1 ≤ d2. By Claim 4 applied to all vertices in the path of nodes
between Bd(v) and Bd2(w2), we have that Ed2(w2) = Ed2(v). By condition 6, we
have that w1, w2 are adjacent if and only if {w1, w2} belongs to Ed2(w2). Suppose
that d2 = d. By Claim 2, we know that all nodes in F (v) have the same main
messages, in particular, they agree in the set Ed(v). Then Ed2(v) = Ed(v). If
d2 < d, we have by condition 5, that w1, w2 ∈ Ed2(v) if and only if {w1, w2}
belongs to Ed(v). In both cases we deduce that {w1, w2} ∈ E if and only if
{w1, w2} ∈ Ed(v).

4 Certifying Regular Properties

In this section, we prove our main result, Theorem 1.

Theorem 2. For every k ≥ 1 and any regular graph property P(G), there exists
a distributed certification protocol certifying that tw(G) ≤ k and P(G) is true,
using certificates on O(log2 n) bits in n-node networks.

A Meta-Theorem for Distributed Certification 131

For simplicity, we integrate the condition tw(G) ≤ k to property P, by setting
P(G) = (tw(G) ≤ k) ∧ P(G). The new property is regular because property
tw(G) ≤ k is regular (see, e.g., [23] for a discussion), and a conjunction of
regular properties is regular by [8]. Basically, we enrich the protocol of Sect. 3
as follows. Either the protocol rejects because tw(G) > k, or it constructs and
certifies a tree decomposition at most 3k + 2. In the latter case, we also certify
property P using the tree decomposition of width 3k+2 and the homomorphism
classes C of the property on (3k + 3)-terminal graphs.

Fix the tree decomposition of width 3k + 2. As in the sketch of proof of
Proposition 1, for each node i of the decomposition tree, Gi denotes the (3k+3)-
terminal graph corresponding to G[Vi], with set of terminals Bi. Also, for each
w ∈ Fi, let Children(w) denote the set of children j of i such that w is in charge
of node j (see Lemma 4 applied to j). In particular, the sets Children(w) for w ∈
Fi form a partition of the children nodes of i in the decomposition tree. Denote
by Gi[w] the (3k+3)-terminal graph obtained from G[Bi ∪

⋃
j∈Children(w) Vj] by

choosing Bi as set of terminals. Note that if Children(w) is empty, then Gi[w]
is simply the 3k + 3-terminal base graph Gb

i corresponding to G[Bi].
The prover appends two new pieces of information to the previous main

messages of each vertex v ∈ Fi: the homomorphism class of Gi as well as the
homomorphism class of Gi[v]. Moreover the homomorphism class of Gi is also
added to the auxiliary message maux(w, i) for every vertex w of the auxiliary tree
S(i). Note that this only ads a constant size to the previous main messages, since
property P has a constant number of homomorphism classes. Auxiliary messages
are increased by O(log n) bits, since each vertex w is in O(log n) auxiliary trees
S(i) by Lemma 5. Nevertheless, the constants here depend on k and on property
P.

We now update the verification round to exploit these new messages and
check the property. As before, we use the auxiliary tree S(i) to ensure that �i,
and all vertices v ∈ Fi, have received from the prover the same isomorphism
class for Gi.

It remains to check the consistency of the homomorphism classes for property
P in the respective subgraphs.

Consistency of the Homomorphism Class of Gi[v]. Firstly, each vertex v ∈ Fi

in charge of some nodes must certify the homomorphism class of Gi[v], in the
sense that it compares the message received from the prover with the homo-
morphism class that he constructs from the nodes j ∈ Children(v). Vertex v
receives, for each j ∈ Children[v], a message from �j with the homomorphism
class of P restricted to the (3k + 3)-terminal graph Gj . Using Definition 2, it
constructs the homomorphism class on G+

j . Recall that G+
j = f(Gj , G

b
i), i.e.,

G+
j is obtained by glueing Gj and the base graphs Gb

i induced by Bi, the glueing
being performed by identifying the terminals of Bj \Bi in Gj to the correspond-
ing vertices of Bi. Vertex v knows both sets Bi (which is in its initial message)
and Bj (received from �j), so it has full knowledge of matrix m(f) of the com-
position operation f . (There is a hidden technicality here. Node �j sends its
main message to v in the unique communication round, and this message con-

132 P. Fraigniaud et al.

tains all bags B(�j), in particular bag Bj . Node v can retrieve this bag, since
its order in the list B(�j), starting from the end of the list, is exactly the depth
i(v) of node i, plus one.) Then the homomorphism class of h(G+

j) is obtained as
f (h(Gj), h(Gb

i)). Again v knows graph G[Bi] hence it can compute its homo-
morphism class h(Gb

i). It also knows h(G+
j) from �j , altogether v is able to

compute the homomorphism class h(G+
j). Eventually, since G[v] is obtained by

glueing on Bi all graphs G+
j , j ∈ Children(v), v computes the homomorphism

class of Gi[v]. If this class is not the same as the one received from the prover,
vertex v rejects.

Consistency of the Homomorphism Class of Gi. Every vertex v ∈ Fi checks
the consistency between the message received from the prover as class of P on
Gi, and the one it constructs from the glueing of all classes of Gi[w] (that vertex
w has received from the prover), for all w ∈ Fi, on Bi. Indeed, Gi is equal to the
glueing, on Bi, of all graphs Gi[w] with w ∈ Fi. Again, in case of inconsistency,
vertex v it rejects.

Yes-instance. Every vertex belonging to Fr (the root node of the decomposi-
tion tree) accepts if the class of property P on Gr is an accepting one, otherwise
it rejects.

Due to space restrictions, the soundness and completeness of the protocol are
detailed in the full version. In a nutshell, the completeness is quite straightfor-
ward by construction of the messages. For the soundness, assume that all vertices
accept. We proceed by induction on nodes i on the decomposition tree, from the
leaves to the root, and show that the messages received by each v ∈ Fi from the
prover as homomorphism classes for Gi[v] and Gi are correct. Eventually, since
vertices of the root node accept, we conclude the homomorphism class of P on
the whole graph is an accepting one, so P(G) is true.

5 Conclusion

To sum up, we proved that for every k ≥ 1 and every MSO property on graphs,
there exists a distributed protocol certifying that the input graph is of treewidth
at most k and satisfies the required property, using certificates on O(log2 n)
bits. The result extends to optimisation problems, where we certify that a given
vertex subset is of optimal weight (e.g., of maximum or of minimum size) for
some MSO property, and the treewidth of the input graph is at most k.

The first natural question is whether we can reduce the size of certificate
to O(log n) instead of O(log2 n). We believe that such an improvement requires
considerably different techniques, even for certifying that the treewidth of the
input graph is at most k.

Another further research direction concerns certification versions for other
algorithmic “meta-theorems”. For example, given a graph property expressible
by a first-order boolean formula, is there a distributed protocol certifying that the
input graph is planar and satisfies the property, using certificates of logarithmic
size?

A Meta-Theorem for Distributed Certification 133

Acknowledgment. The authors are thankful to Eric Remila for fruitful discussions
on certification schemes related to the one considered in this paper.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

2. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS),
pp. 268–277 (1991)

3. Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: What can be verified locally?
J. Comput. Syst. Sci. 97, 106–120 (2018)

4. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2022)

5. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: 14th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science (WG), vol.
344 of LNCS, pp. 1–10. Springer, 1988. https://doi.org/10.1007/3-540-50728-0 32

6. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci. 209(1–2), 1–45 (1998)

7. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. In: 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, 16–19 November 2020, Durham, NC, USA, pp. 601–612. IEEE
(2020)

8. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7(5&6), 555–581 (1992)

9. Bousquet, N., Feuilloley, L., Pierron, T.: Brief announcement: local certification of
graph decompositions and applications to minor-free classes. In: 35th International
Symposium on Distributed Computing (DISC), vol. 209 of LIPIcs, pp. 49:1–49:4.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

10. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of MSO properties for
bounded treedepth graphs. arXiv:2110.01936 (2021)

11. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. Theor.
Comput. Sci. 811, 112–124 (2020)

12. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

13. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic.
Cambridge University Press, Cambridge (2012)

14. Emek, Y., Gil, Y.: Twenty-two new approximate proof labeling schemes. In: 34th
International Symposium on Distributed Computing (DISC), vol. 179 of LIPIcs,
pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

15. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. Theor.
Comput. Sci. 856, 51–67 (2021)

16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35:1–35:26 (2013)

17. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2019)

18. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

https://doi.org/10.1007/3-540-50728-0_32
http://arxiv.org/abs/2110.01936

134 P. Fraigniaud et al.

19. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. J. ACM 64(3), 17:1–17:32 (2017)

20. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In:
35th Annual Symposium on Foundations of Computer Science (FOCS), pp. 226–
239 (1994)

21. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 255–264 (2018)

22. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

23. Liedloff, M., Montealegre, P., Todinca, I.: Beyond classes of graphs with “few”
minimal separators: FPT results through potential maximal cliques. Algorithmica
81(3), 986–1005 (2019)

24. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1096–
1115 (2020)

25. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

The Red-Blue Pebble Game on Trees
and DAGs with Large Input

Niels Gleinig(B) and Torsten Hoefler

ETH Zurich, 8092 Zurich, Switzerland
{niels.gleinig,torsten.hoefler}@inf.ethz.ch

Abstract. Data movements between different levels of a memory hier-
archy (I/Os) are a principal performance bottleneck. This is particularly
noticeable in computations that have low complexity but large amounts
of input data, often occurring in “big data”. Using the red-blue peb-
ble game, we investigate the I/O-complexity of directed acyclic graphs
(DAGs) with a large proportion of input vertices. For trees, we show
that the number of leaves is a 2-approximation for the optimal number
of I/Os. Similar techniques as we use in the proof of the results for trees
allow us to find lower and upper bounds of the optimal number of I/Os for
general DAGs. The larger the proportion of input vertices, the stronger
those bounds become. For families of DAGs with bounded degree and a
large proportion of input vertices (meaning that there exists some con-
stant c > 0 such that for every DAG G of this family, the proportion p
of input vertices satisfies p > c) our bounds give constant factor approx-
imations, improving the previous logarithmic approximation factors. For
those DAGs, by avoiding certain I/O-inefficiencies, which we will define
precisely, a pebbling strategy is guaranteed to satisfy those bounds and
asymptotics. We extend the I/O-bounds for trees to a multiprocessor
setting with fast individual memories and a slow shared memory.

1 Introduction

Data movement between slow and fast memories (called I/O-transitions, or sim-
ply I/Os) are widely considered a principal performance bottleneck in comput-
ing [25]. Due to the ever increasing gap between the speed at which data can be
processed and the speed at which it can be communicated, this phenomenon is
particularly noticeable in computations that perform simple operations on large
amounts of input data. This computation profile of low arithmetic intensity
+ large amounts of input data is very common and often referred to as
computations with memory bound performance. For example, when performing
inference on trained neural networks of fully connected layers (or other machine
learning models), we need to read millions of values (mostly connection weights),
but will use most of these values only once. Other problems that belong to this
category can be found in Linear Algebra (addition of tensors or matrix-vector
multiplication, either sparse or dense), Graph Theory (BFS, DFS, topological
sorting), Statistics (computing moving averages, quantiles, covariances, linear
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 135–153, 2022.
https://doi.org/10.1007/978-3-031-09993-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_8

136 N. Gleinig and T. Hoefler

regression, ANOVA, ANCOVA, etc.), and Image Processing (applying filters or
affine transformations). Also, in general, most “big data” computations tend to
belong to this category, because given the large amount of input data, it would
not feasible to perform computational work of high complexity. Further, parallel
summary statistics are a popular technique in the big data paradigm, naturally
leading (on some level of granularity) to data dependencies that form trees.

In this paper, we will show how to perform I/Os efficiently in these computa-
tions with large input. As our main contribution, we present a set of rules on how
to perform I/Os, together with several theorems that establish I/O-bounds and
show: following these rules we are guaranteed to not use more than a constant
number of times more I/Os than optimal. Interestingly, these rules are “local”:
they only require information about the neighbors. Hence they evade expensive
precomputing of an I/O-optimal schedule and can be implemented at runtime.

1.1 Related Work

Communication-Efficient Algorithms. Communication-efficient algorithms
have been developed for many concrete computational problems and models,
including for example matrix multiplication [17,18], FFT [1,17], sorting [1],
directed shortest paths [23], topological sorting [2], matrix transposition [1], the N -
Body problem [14], QR- and LU-factorization [13], prime tables [5], and Cholesky
decomposition [4]. In the blocked-I/O-model [1], using time-forward processing
one can compute functions that have a given computation DAG G = (V,E)
with O(Sort(|E|)) I/Os [10]. In the particular case that the DAG is a tree, one
can compute an Euler-tour of that tree with O(Sort(|E|)) I/Os and once the
tree is laid out according to that Euler-tour, the function can be computed with
O(Scan(|E|)) I/Os [21]. There are methods for I/O-efficient scheduling of tasks
with tree-dependencies [22]. I/O-efficient algorithms are often closely tailored to
the given problem. The red-blue pebble game allows to analyze and optimize the
I/Os of general computations. For example, it has been used to optimize the I/Os
of classical matrix multiplication [17,18], which can be considered very opposite
to the computations of this paper as it allows extensive data reuse.

Pebble Games. There is a natural way to associate DAGs (directed acyclic
graphs) to computations: vertices represent data and the direct predecessors of
a vertex v are the data that are needed to compute v. Vertices with no incoming
edges represent the input-data of the computation and those with no outgoing
edges represent the output-data. Such a DAG is called a CDAG (computation
DAG).

Pebble games are a family of combinatorial games that are played on DAGs
[8,17]. By letting the DAG be the CDAG of a given computation, one can use
them to analyze resource requirements of that computation: the black peb-
ble game is for example used to model space complexity of general computa-
tions, whereas the reversible pebble game is used to model space complexity
of reversible computations and the red-blue pebble game is used to model the
requirement of I/Os.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 137

Most pebble games are hard to solve (finding a pebbling strategy that is
optimal with respect to some metric) or even approximate on general DAGs. It
has been shown [16] that even the black pebble game, arguably the most simple
pebble game, is PSPACE-complete to solve. Further, it is known that for many
pebble games it is even PSPACE-hard to find approximate solutions [3,8,9,11].
It has been shown that the red-blue pebble game is PSPACE-complete and the
red-blue pebble game without deletion is NP-complete [20].

There exists a polynomial time algorithm that approximates the solution of
the red-blue pebble game (finding the minimal number of I/Os) by a multiplica-
tive factor of log3/2(n), using a number of red pebbles which is increased by
a multiplicative factor of log3/2(n) [7]. Yet, there is no known algorithm that
approximates the solution of the red-blue pebble game by a constant multiplica-
tive factor in polynomial time.

These hardness results suggest to search algorithms for pebble games on
restricted classes of DAGs. This is furthermore motivated by the fact that the
CDAGs of actual computations are a very restricted subset of all DAGs. They
usually have a special structure (for example layered or planar), symmetries
(large automorphism groups, i.e., they have many vertices that “look equal”),
and other properties (for example regular or bounded in-degree) that can make it
easier to find solutions. Hence, [12] raised the question whether for the red-blue
pebble game there exist FPT algorithms for restricted classes of DAGs (such as
bounded width graphs).

The main contribution of this paper are various theorems that give answers
(some approximate, some exact) to the 3 problems that we present in the fol-
lowing section. We present lower and upper bounds that differ from each other
by multiplicative constants that depend only on the degrees of a DAG and the
proportion of input vertices, but not on the size of the DAG. In particular, for
families of DAGs with bounded degrees and a large proportion of input vertices
(meaning that there exists some constant c > 0 such that for every DAG G
of this family, the proportion p of input vertices satisfies p > c), these bounds
provide constant approximations.

1.2 The Red-Blue Pebble Game

The red-blue pebble game was introduced by Hong and Kung [17] to model the
I/Os of a computation that has a given computation DAG G = (V,E) and a
fast memory of limited size S ∈ N

+. Blue pebbles represent data that is stored
in slow memory and red pebbles represent data that is stored in fast memory.
There are no restrictions on the number of blue pebbles that can reside on G at
any given time, but we can never have more than S red pebbles on G, where S
represents the size of the fast memory. In the beginning, there is a blue pebble
on each of the input vertices Vin ⊆ V (those are the vertices with no incoming
edges) and the game is completed when we have a blue pebble on each of the
output vertices Vout ⊆ V (those are the vertices with no outgoing edges). In
order to obtain that goal, we are allowed to apply a sequence of the following
actions

138 N. Gleinig and T. Hoefler

– R1 (Input): Replace a blue pebble by a red pebble.
– R2 (Output): Replace a red pebble by a blue pebble.
– R3 (Compute): Place a red pebble on a vertex for which all parents are

carrying a red pebble (when the vertex has already a blue pebble, we replace
it).

– R4 (Delete): Delete a red pebble.

We can think of action R3 as saying “we can compute a certain value, when
all values that we need for that computation are in fast memory”. Since the size
of our fast memory is limited we will have to apply actions R2 and R4 sometimes.

Figure 1 shows a complete red-blue pebble game on a simple DAG. Keeping
in mind that the I/Os in this model represent data movements that consume
much time and energy, it becomes clear that we want to minimize their number.

Definition 11. A pebbling strategy (or computation strategy) is a
sequence of the actions R1, R2, R3, and R4 on the vertices of a DAG, which
completes the red-blue pebble game (like for example [R1(v1),R1(v2),R3(v3),
R4(v1) . . . ,R2(vn)]). Each application of R1 or R2 counts as one I/O and we
let rb(G,S) denote the minimal number of I/Os of any pebbling strategy of the
DAG G with S red pebbles, setting rb(G,S) = ∞ if there is no pebbling strategy
of G with S red pebbles. A pebbling strategy which uses this minimal number
rb(G,S) of I/Os is called I/O-optimal. We say that it is possible to pebble
(or compute) G with k I/Os if rb(G,S) ≤ k.

Fig. 1. Red-blue pebble game with S = 3 red pebbles. Ri(j) denotes an application of
action i on vertex j. This pebbling strategy is I/O-optimal and has a total of rb(G, 3) =
6 I/Os.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 139

Problem 1. (Red-blue pebble game): given a DAG G and S ∈ N
+, find the

number rb(G,S).

Solving problem 1 for general DAGs is PSPACE-complete [20], but this num-
ber can be bounded from above and below using different forms of optimal parti-
tions and coverings of the DAG [6,15,17]. However, to the best of our knowledge,
there is no known way to find those optimal partitions for general DAGs effi-
ciently.

Problem 2: given a sequence of DAGs Gn, how fast does rb(Gn, S) grow as
n → ∞?

If these DAGs Gn in problem 2 are the CDAGs of some algorithm for input
size n, this asymptotic growth is generally known as the I/O-complexity of the
algorithm. The minimum of the I/O-complexities of all algorithms that solve a
given problem is known as the I/O-complexity of the problem. Here we are
typically satisfied with answers that disregard constant multiplicative factors,
i.e., pebbling strategies are called optimal if they use Θ(rb(Gn, S)) I/Os. I/O-
complexities have been studied for many algorithms and problems of practical
importance [1,2,4,5,13,17,23,24], often in a more general model that considers
additional parameters such as memory block size.

Now if the vertices of the CDAG of a computation represent values produced
by constant-time operations and the motivation for studying Problems 1 or 2 (or
analogous problems for other pebble games) is to improve the performance of
that computation, it is important to note the following: the sequential runtime is
given, up to constants, by the number of vertices |V | and therefore any algorithm
that solves Problems 1 or 2 in time above Ω(|V |) is of little practical value (unless
one runs the same CDAG many times, letting the performance gains add up and
justify a more expensive algorithm to solve problems 1 or 2). So for example
algorithms that are based on spectral methods are likely to be inappropriate,
since the time for computing eigenvalues or eigenvectors is at least of the order of
|V |2. Likewise, for the practical value of such an algorithm, it is also important
that it does not use too many other resources. This imposes great restrictions
on us and motivates us to ask if it is possible to know how to run an algorithm
in a close to I/O-optimal way without having to do any pre-computations at all
on the CDAG G = (V,E). Could it be possible to find a set of simple rules, such
that any computation strategy that follows these rules is close to I/O-optimal?
More precisely, we are interested in the following question:

Problem 3: given a DAG G, S ∈ N
+ and a constant 1 ≤ λ ∈ R, is it possible

to find a set of simple rules, such that any computation strategy for G which
follows these rules does not use more than λ · rb(G,S) I/Os?

Note: our rules do not allow a vertex to have a blue and a red pebble at
the same time. We chose this version because it makes the proofs more elegant.
However, all of our results (both the bounds and the algorithms) still hold if
we allow a vertex to hold both a blue and a red pebble (by using the word

140 N. Gleinig and T. Hoefler

“place” instead of “replace” in rules R1 and R2 and removing the comment in
the parentheses in R3). The upper bounds remain true, because by having this
additional degree of freedom the pebble strategies can only improve. The lower
bounds remain true, because even if we are allowed to have two pebbles on one
vertex, we will still have to spend one I/O on each of the input vertices. Trees
can be pebbled optimally without ever having to put two pebbles on one vertex.

The paper is organized as follows. In Sect. 2 we present and prove several
lower and upper bounds for the number of I/Os for trees. In Sect. 3 we extend
the bounds to more general classes of DAGs. In Sect. 4 we extend our bounds to
a parallel setting. In Sect. 5 we present our experimental results.

1.3 Notations and Definitions

Let G = (V,E) be a DAG. Throughout this paper we say that a vertex w is a
child of the vertex v if there is an edge from v to w. A vertex v is a parent of
w if and only if w is a child of v. We let dout(v) denote the number of children
of v (we only consider simple DAGs), din(v) the number of parents of v and
d(v) = din(v) + dout(v) the degree of v. We let

d̂out = max
v∈V

dout(v),

d̂in = max
v∈V

din(v)

d̂ = max
v∈V

d(v)

(1)

denote the maximal out-degree, maximal in-degree, and maximal degree respec-
tively.

An in-tree is a directed tree in which all edges are directed in such a way
that there is a unique vertex v (called the root or output vertex) which can be
reached from any other vertex by a directed path (like in Fig. 2). Throughout
this paper, all trees are in-trees. A vertex that has no in-coming edges is called
a leaf and the set of all leaves is denoted L(G).

2 Bounds for Trees

Notice that the condition of S > d̂in which we require in our results is equivalent
to letting S be large enough such that G can be computed.

Theorem 1. Let G = (V,E) be a tree with more than one vertex and S > d̂in.
Then, the set of leaves L(G) satisfies

|L(G)| < rb(G,S) ≤ 2|L(G)|. (2)

Furthermore, when |L(G)| > 1 the second inequality is also strict.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 141

Proof (Proof of Theorem 1). Since the computation depends on all of the leaves,
we will have to put at least once a red pebble on each of the leaves. We fur-
thermore will have to spend one I/O to store the output. This gives us the first
inequality.

The second inequality we will prove by induction on the number of leaves
|L(G)|. One can easily check that the inequalities are true for |L(G)| = 1 and
|L(G)| = 2 (with strictness for |L(G)| = 2). Now let us assume that it also holds
for trees with n > 2 leaves and let G be a tree with n + 1 leaves.

Without loss of generality the tree has no vertices of in-degree 1, because on
trees such vertices can be removed (merging the incoming edge with the outgoing
edge) without changing the number of I/Os. We can also assume that the root
v has degree at least 2, because otherwise we could remove the root and the
incoming edge without changing the number of I/Os. So let w be a parent of v
and Gw be the sub-DAG below w (that is, all ancestors of w and w itself) and
Gw be the DAG that we obtain by deleting from G all vertices and edges that
are in Gw and the edge that goes from w to v (see Fig. 2). Then |L(Gw)| ≤ n
and |L(Gw)| ≤ n. So by induction hypothesis these trees can be pebbled with at
most 2 · |L(Gw)| − 1 and 2 · |L(Gw)| − 1 respectively. Now consider the following
pebbling strategy:

1. Pebble Gw I/O-optimally (getting a blue pebble on w)
2. Pebble Gw I/O-optimally and when you have red pebbles on all of the parents

of v (and are about to put a red pebble on v), put a red pebble on w first
and then put a red pebble on v and finish the game.

This is clearly a complete pebbling strategy and since |L(Gw)|+|L(Gw)| = |L(G)|
the number of I/Os is at most

(2 · |L(Gw)| − 1) +
(
2 · |L(Gw)| − 1

)
+ 1 = 2 · |L(G)| − 1. (3)

Fig. 2. This shows the subtrees Gw and Gw from the proof of Theorem 1.

142 N. Gleinig and T. Hoefler

Note: the multiplicative constants 1 and 2 from the inequalities in the pre-
vious theorem are tight:

– To see that the constant 1 is tight, notice that whenever S > |L(G)|, we have
rb(G,S) = |L(G)| + 1. Also, for trees that consist of a line of depth n, with
each of the first n − 1 vertices on that line having one additional predecessor
that is a leaf (like in Fig. 3), we have rb(G,S) = |L(G)| + 1 independently of
S.

– If T 2
k , denotes a full binary tree of k levels, then

lim
k→∞

rb(T 2
k , 3)

| L(T 2
k) | = 2. (4)

Fig. 3. Unbalanced trees require few I/Os. “Ladder trees” like this one, minimize the
number of I/Os among all trees with a fixed number of leaves.

To present our next result we need the following definition.

Definition 21. We say that a computation has empty I/Os if it does at least
one of the following things:

1. Put a red pebble on a vertex v which has a blue pebble on it and eventually
remove the red pebble (either by deleting it or replacing it with a blue one) or
finish the game, without having computed a child of v which had not yet been
computed before.

2. Put a blue pebble on a non-output vertex v, when v will not be needed again.

Even though intuitively it may seem like avoiding empty I/Os always reduces
the total number of I/Os, there are in fact DAGs for which every I/O-optimal
pebbling strategy has empty I/Os. The reason for this is that one can sometimes
save I/Os by recomputing vertices (and thereby possibly producing empty I/Os)
rather than loading them. Figure 4 shows such a DAG.

Nevertheless, as the next two theorems show, avoiding empty I/Os does guar-
antee provably good performance. So the simple rule of avoiding empty I/Os is
an answer to problem 3.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 143

Theorem 2. Let G = (V,E) be a tree with more than one vertex and without
vertices of in-degree 1 and S > d̂in. Then, any computation strategy of G which
has no empty I/Os has a number of I/Os that is between |L(G)| and 3 · |L(G)|
and hence optimal up to a multiplicative factor of 3.

Proof (Proof of Theorem 2). That the number of I/Os is larger than |L(G)|
follows again from the fact that we will have to put at least once a red pebble
on each of the leaves.

For the other inequality we recall that any tree which has no vertices of
in-degree 1 satisfies

| I(G) |≤| L(G) |, (5)

where I(G) = V \ L(G) denotes the set of inner vertices.
When we put a blue pebble on a vertex which has a red pebble on it, we

will eventually put again a red pebble on it, because otherwise we would have a
empty I/O of the second type. When we put a red pebble on a vertex v which
has a blue pebble on it, we will compute child(v) before doing any other I/Os on
v, because otherwise we would have a empty I/O of the first type. Once child(v)
has been computed, we will not do any other I/Os on v, because v is no longer
needed. It follows that we spend at most one I/O on any leaf and at most two
I/Os on any inner vertex. Combining this with Eq. (5) we conclude that the
total number of I/Os is less than

| L(G) | + 2 | I(G) |≤ 3 | L(G) | . (6)

Fig. 4. When S = 5 this DAG can be pebbled with rb(G, 5) = 5 I/Os, but any pebbling
strategy without empty I/Os has at least 7 I/Os (and when we allow a vertex to have
two pebbles at the same time, the numbers become 4 and 6). The reason is that any
pebbling strategy will need to have red pebbles on the three vertices of the second layer
at two different moments. For that, the optimal strategy would reload the input and
then recompute those three vertices, whereas a strategy without empty I/Os would
have to reload the three vertices in order to avoid empty I/Os.

144 N. Gleinig and T. Hoefler

Note: when a pebbling strategy for trees without vertices of in-degree 1,
besides from having no empty I/Os, also

1. “computes subtrees strictly one after another” (that is, whenever it started to
perform computations on some subtree t of T it does not do any computations
that are not needed for t, until it has finished with the computation of t),

2. whenever a vertex is computed, the pebbles from the parents are immediately
deleted,

3. does not perform store operations unless there are S red pebbles on the DAG,

then it is a pebbling strategy like the one from the proof of Theorem 1 and hence
it is optimal up to a multiplicative factor of 2.

This order (“computing the subtrees strictly one after another”) is also known
as postorder, and related to previous work [19,22]. Using postorders, one can
also find exact solutions to the red-blue pebble game on trees. To do this, one
needs to determine in which order the subtrees can be traversed most efficiently:
depending on the order in which we traverse subtrees, it can be possible to hold
the output of one subtree in fast memory while computing the next subtree,
sparing 2 I/Os. Finding such an optimal order of the subtrees can be done with
dynamic programming approaches. However, we will not discuss the details of
that in this paper since our goal is to find general bounds for general DAGs.

3 Bounds for General DAGs

The key property of trees that we made use of in the proof of the previous
results is that the set of input vertices makes up a large proportion of the set of
all vertices (or at least it can be assumed that it is a tree with that property) and
the out-degree is small (bounded by 1). The following result gives good estimates
of rb(G,S) for more general DAGs G with those properties.

Theorem 3. Let G = (V,E) be a DAG without isolated vertices and S > d̂in.
Let p = |Input(G)|

|V | be the proportion of input vertices of G. Then,

|Input(G)| ≤ rb(G,S) ≤ |Input(G)|
(

2d̂out
p

− 1

)

(7)

and the number of I/Os of any pebbling strategy without empty I/Os is between
these bounds.

Proof (Proof of Theorem 3). Since any input vertex has to be loaded at least
once we get |Input(G)| ≤ rb(G,S). For the other inequality notice that in any
pebbling strategy without empty I/Os, with every [store, load] pair of I/Os on
one vertex we compute at least one new child, because otherwise we would get a
empty I/O. So we spend at most 2 · d̂out I/Os on any non-input vertex. Likewise,

The Red-Blue Pebble Game on Trees and DAGs with Large Input 145

one can see that we spend at most 2·d̂out−1 I/Os on any input vertex. Therefore
the total number of I/Os is at most

|Input(G)|
(
2d̂out − 1

)
+ |V \Input(G)|2d̂out

= 2d̂out|V | − |Input(G)|

= |Input(G)|
(

2d̂out
p

− 1

)

.

(8)

Theorem 4. Let Gn = (Vn, En) be a sequence of regular DAGs without isolated
vertices and with constant in-degree din < S (that is, any vertex of Gn which is
not an input vertex has in-degree din) and constant out-degree dout (that is, any
vertex of Gn that is not an output vertex has out-degree dout). If dout < din then
rb(Gn, S) grows asymptotically like |Vn|. More precisely,

|Vn|
(

1 − dout
din

)
≤ rb(Gn, S) ≤ |Vn|

(
2 · dout

1 − dout

din

− 1

)

(9)

and the number of I/Os of any pebbling strategy without empty I/Os is also
between these bounds.

Proof (Proof of Theorem 4). Since the sum of the in-degrees over all vertices
equals the sum of the out-degrees, we have

(|Vn| − |Input(Gn)|) · din = (|Vn| − |Output(Gn)|) · dout. (10)

From this we obtain

|Input(Gn)| = |Vn| − (|Vn| − |Output(Gn)|) · dout
din

≥ |Vn| ·
(

1 − dout
din

)
,

(11)

which means that the proportion of input vertices is p ≥
(
1 − dout

din

)
. The result

follows now by substituting p by
(
1 − dout

din

)
in the RHS of the inequalities of

Theorem (3) and replacing the LHS of those inequalities by the RHS of (11).

A remarkable aspect of the previous results is that the bounds only require
S > d̂in, but besides that they do not depend on S. So they identify families
of DAGs for which the I/O-complexity does not depend on the size of the fast
memory.

Theorem 5. Let Gn = (Vn, En) be a sequence of DAGs without isolated vertices
and S > d̂nin. Let Gn have average in-degree d̄nin (where the average is taken
over all vertices that are not input vertices), average out-degree d̄nout (where the

146 N. Gleinig and T. Hoefler

average is taken over all vertices that are not output vertices) and maximal out-
degree d̂nout. Then,

|Vn|
(

1 − d̄nout
d̄nin

)
≤ rb(Gn, S) ≤ |Vn|

⎛

⎝ 2 · d̂nout

1 − d̄n
out

d̄n
in

− 1

⎞

⎠ (12)

and hence, if
lim sup
n→∞

d̄nout/d̄nin < 1 (13)

and d̂nout ≤ c,∀n for some constant c ∈ N, then rb(Gn, S) grows asymptotically
like |Vn|. Furthermore any pebbling strategy without empty I/Os satisfies these
bounds.

Proof (Proof of Theorem 5). Like in the previous proof the Eq. (10) still holds
if we replace din by d̄nin and dout by d̄nout. The rest of the proof is analogous.

For algorithms whose CDAGs have vertices that represent values produced by
constant-time operations, this previous theorem can be interpreted as saying: “if
the out-degrees are smaller than the in-degrees (differing on average by a multi-
plicative constant which is bounded away from 1) and the maximal out-degree is
uniformly bounded, then the I/O-complexity equals the time complexity (which
is linear in the input size).”

4 I/O-Bounds in a Parallel Setting

In order to establish I/O-bounds in multiprocessor settings, we introduce a vari-
ation of the red-blue pebble game. We model a setting with P processors, each
one having a fast memory of size S/P and access to a shared memory of infinite
size. Throughout this section we assume S/P is an integer. There are P different
types of red pebbles, corresponding to the fast memories of the P processors.
We denote the colors of these pebbles r1, r2, . . . , rP . At any time step and for
any processor p ∈ {1, 2, . . . , P} there cannot be more than S/P pebbles of color
rp on the DAG, and we can perform one of the following actions

– R1 (Input): replace a blue pebble by a pebble of color rp.
– R2 (Output): replace a pebble of color rp by a blue pebble.
– R3 (Compute): place a pebble of color rp on a vertex for which all parents

are carrying a pebble of color rp (when the vertex has already a blue pebble,
we replace it).

– R4 (Delete): delete a pebble of color rp.

In this parallel setting we say that a pebbling strategy has empty I/Os if it
does at least one the following:

1. Put a pebble of some color rp ∈ {r1, r2, . . . , rP } on a vertex v which has a
blue pebble on it and eventually remove the red pebble (either by deleting it
or replacing it with a blue one) or finish the game, without having computed
a child of v which had not yet been computed before by any of the processors.

2. Put a blue pebble on a non-output vertex v, when v will not be needed again.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 147

As in the sequential case, initially, there is a blue pebble on each of the input
vertices, and the goal is to get blue pebbles on all output vertices. In contrast
to the standard red-blue pebble game, we are now able to perform up to P
actions at each time step, one for each processor. Again, we want to minimize
the total number of applications of R1 and R2, but in this setting we also want
to minimize another quantity: the total amount of time steps. Since it is possible
to save I/Os by taking more time steps (for example, by doing all the work with
one single of the P processors), we will enforce the pebbling strategy to use a
minimal number of time steps. That is, we want to know: what is the minimal
number of I/Os used by pebbling strategies that pebble G in a minimal number
of time steps.

For a given DAG G, we now let TP (G) denote the minimal number of time
steps used by any strategy that pebbles G with P processors. We define rbP (G,S)
as the minimal number of I/Os used by any pebbling strategy that pebbles G
in TP (G) time steps. The next theorem shows that enforcing a parallel schedule
that uses a minimal number TP (G) of time steps (which is a restriction on the
orders in which we can pebble the vertices), does not affect the validity of the
I/O-bounds established by Theorem 2, and hence, does not increase the number
of I/Os by more than a factor 3.

Theorem 6. Let G be a tree with d̂in < S/P . Then,

|L(G)| ≤ rbP (G,S) ≤ 3 · |L(G)|, (14)

and the number of I/Os of any pebbling strategy without empty I/Os is between
these bounds.

To prove this Theorem we need a Lemma that shows how we can remove empty
I/Os from time optimal pebbling strategies without losing time-optimality.

Lemma 1. Let G be a tree with d̂in < S/P and consider a pebbling strategy
that pebbles G in optimal time TP (G) (possibly having empty I/Os). Then, we
can transform this pebbling strategy into another pebbling strategy that uses the
same number of time steps (and is hence also time optimal), but does not have
any empty I/Os.

Proof. Given a pebbling strategy that pebbles G in TP (G) steps we can remove
all empty I/Os of the second type and obtain another valid strategy that pebbles
G in at most the same number of steps (and hence is still time optimal).

It remains to show that we can also remove empty I/Os of the first type.
Notice that empty I/Os of the first type occur in two cases: 1) We load a value,
but we do not compute the child afterwards, 2) We load a value and we do
compute the child, but the child has already been computed earlier.

In the first case, we can again remove the I/O without losing the completeness
or time-optimality of the pebbling strategy.

Now consider a situation of the second case, where we place a red pebble on
some vertex v and we do compute its child child(v), but child(v) has already been

148 N. Gleinig and T. Hoefler

computed earlier. In this case the steps of loading v and recomputing child(v)
(which together take 2 time steps), could be replaced by two other steps: storing
the value of child(v) and eventually reading child(v) again (this replacement
increases the number of I/Os by one, but this is irrelevant to this proof as it
does not increase the number of time steps).

With these changes we can transform any time optimal pebbling strategy
with empty I/Os into a pebbling strategy without empty I/Os.

Proof (Proof of Theorem 6). The lower bound is established with the same rea-
soning as in the sequential model: all leaves have to be read at least once.

Now consider any P processor pebbling strategy that pebbles G in TP (G)
time steps and use Lemma 1 to transform it into another pebbling strategy that
runs in TP (G) time steps and does not have empty I/Os. We can associate to
this P processor pebbling strategy a sequential strategy without empty I/Os
(which we will call the “sequentialized” pebbling strategy):

– In the first time step, perform the action that processor 1 performed in the
first time step,

– In the second time step perform the action that processor 2 performed in the
first time step,

. . .

– In the P -th time step, perform the action that processor P performed in the
first time step,

– In the (P + 1)-th time step, perform the action that processor 1 performed
in the second time step,

. . .
Since for any p ∈ {1, 2, . . . , P} there are not more than S/P pebbles of color

rp on the tree at any moment, the sequentialized pebbling strategy uses not
more than P · (S/P) = S red pebbles. Since it also does not perform empty I/Os
(now we mean “empty I/Os” in the sense of the sequential model), it follows
from Theorem 2 that it uses at most 3 · |L(G)| I/Os. Since the parallel pebbling
strategy uses the same number of I/Os as the sequentialized strategy, we obtain
rbP (G,S) ≤ 3 · |L(G)|.

5 Experiments

To illustrate the theoretical contributions of our paper, we ran several experi-
ments. The purpose of the experiments is to show the effect that the pebbling
techniques used in this paper (avoiding empty I/Os, computing subtrees one
after another) have on concrete I/O-counts and to see how close to the bounds
we get on different trees and random DAGs.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 149

5.1 Regular Tree, Varying Memory Size

We considered a binary tree of depth 8 and pebbled it in two different orders
of the vertices: A) Level after level, and B) subtrees one after another. In both
cases we performed I/Os according to the following rules: 1.) We only put a
red pebble on a vertex when we need it for the computation of the next vertex
(in the given order), 2.) we only remove a red pebble when there is no more
space but we need to place another red pebble for the next computation step,
3.) when we need to remove a red pebble we choose it uniformly at random
among the red pebbles that we will not need in the next computation step, and
4.) after each computation step we delete all red pebbles that will not be needed
again in any future computations. By following these rules we are guaranteed
to not perform empty I/Os (rules 1, 2, and 3 imply that we do not perform an
empty I/O of the first kind; rule 4 implies that we do not perform an empty
I/O of the second type). Hence, according to Theorem 1, using order A we
should have between |L(G)| = 256 and 2 · |L(G)| = 512 I/Os, and according to
Theorem 3, with order B we should have between |L(G)| = 256 and 3 · |L(G)| =
768 I/Os. In Fig. 5a we show how the number of I/Os decreases as we increase
the memory size S. For each memory size we pebbled the tree 10 times and
show bars that represent the smallest and largest observed number of I/Os (the
variation stemming from the random choice when removing red pebbles). We can
see that for both computation orders, the respective bounds are satisfied for all
memory sizes (as predicted by our theorems). Furthermore, when the memory
size is close to zero, the number of I/Os is close to the respective upper bound.
When we increase the memory size, the number of I/Os decreases and eventually
meets the lower bound. With computation order A we already meet the lower
bound with memory size S = 9, whereas with order B this minimum is only
attained when S = 129.

5.2 Random DAGs with Large Inputs

To generate more general DAGs with large input, we used the random sampling
method described in Algorithm 1 (the constants 4 and 8 in this sampling method
are arbitrary constants; we just had to fix free parameters). Notice that for l = 0,
Algorithm 1 generates a tree, but as we increase l, we obtain DAGs that differ
increasingly from a tree. However, the total number of vertices and input vertices
remains equal (because we only add edges (i, j) for which j is not an input).
Figure 5b shows how the number of I/Os increases as we add more edges to the
DAG. The shown numbers are the average over 10 sampled DAGs and the bars
correspond to the smallest and largest observed values. The shown bounds are
obtained from Theorem 3. We can see that the lower bound remains constant
(which follows from the fact that the input size of these DAGs is constant), while
the upper bound increases linearly with the number of edges that we add (as
this impacts the degrees of the vertices). Using a memory size S = 100 in the
shown range, we use a number of I/Os that matches the lower bound exactly. In
the whole range, the lower and upper bound differ by a factor of less than 2.

150 N. Gleinig and T. Hoefler

Fig. 5. (a) Number of I/Os for varying memory sizes when pebbling a binary tree of
depth 9. (b) Starting with a regular tree of depth 4 and degree 8, we randomly add
directed edges to it.

Algorithm 1. Input: a number l ∈ N /Output: a DAG with 85 − 1 vertices and
85 − 2 + l edges.

Let G be a full 8-ary tree of depth 4 and identify V with the numbers {1, 2, . . . 85−1},
1 being the root, 2, . . . , 9 being the vertices of the first level, and so on;
for i from 1 to l do

Choose uniformly at random vertices i, j ∈ G, such that j is not an input, (i, j) /∈
G, and j < i;
Add (i, j) to G;

end for

5.3 General Random DAGs with Varying Numbers of Vertices

Finally, we considered a second method for sampling random DAGs, defined
in Algorithm 2 (also here the constants are arbitrary). We used this method
with different values of l, to generate DAGs with varying numbers of vertices. In
Fig. 6 we show how the number of I/Os grows as the number of vertices increases.
We can clearly see that the I/O-complexity grows linearly with the number of
vertices, as predicted by Theorem 5.

The Red-Blue Pebble Game on Trees and DAGs with Large Input 151

Algorithm 2. Input: a number l ∈ N /Output: a DAG with 3 · l + 1 vertices.
Let G be a graph with a single vertex
for i from 1 to l do

Choose uniformly at random a vertex v ∈ G with d(v) < 9;
Add 3 new vertices to G;
Add 3 edges, pointing from the 3 new vertices to v;

end for
Add 30 additional random edges (as in the previous subsection);

Fig. 6. Number of I/Os for varying sizes of randomly generated DAGs using memory
size 32.

6 Conclusions

We introduce a set of I/O-rules that can be used as a fundamental tool in the
design of I/O-efficient big data computations, both in a sequential and parallel
setting. We prove several bounds for the optimal number of I/Os. These bounds
are particularly strong when the DAGs have a large proportion of input vertices
(meaning that there exists some constant c > 0 such that for every DAG G of
this family, the proportion p of input vertices satisfies p > c). For these DAGs
our bounds provide constant factor approximations, which improves the previ-
ous logarithmic approximation factors. Any pebbling strategies with exclusively
useful (non-empty) I/Os have a number of I/Os within these bounds.

The rule of avoiding empty I/Os is a “local” rule: to decide whether or not
it is possible to do any further non-empty I/Os on a given vertex v it suffices
to have information about the children of v (have they all been computed or
not). Yet we showed that any computation strategy that follows this I/O-rule is
guaranteed to be I/O-optimal up to a multiplicative factor that is particularly
small when the proportion of input vertices is large and the maximal out-degree

152 N. Gleinig and T. Hoefler

is small. For trees, this multiplicative factor is 3 and it can be made 2 by adding
some other I/O-rules (computing subtrees strictly one after another).

This raises some questions: could our results be improved if we add more
sophisticated and “global” rules (rules that take global properties into account,
such as depth, width, or average degree)? Could we get tighter bounds or bounds
that are tight on larger classes of DAGs, if we set rules that regulate how we
choose at each step the next vertex that we compute? The following rules would
be natural candidates:

– “Always continue to compute a vertex that has a maximal number of parents
with red pebbles (among all vertices that have not been computed and whose
parents have all been computed).”

– “Always continue to compute a vertex for whose computation the smallest
number of load-operations needs to be done.”

For computations of CDAGs on which any computation strategy without
empty I/Os performs well, the problem of scheduling the computation I/O-
efficiently may in practice not yet be trivial. This is because avoiding empty
I/Os is in fact non-trivial, given that fast and slow memory usually do not
communicate single values but whole blocks of them. Here, the problem becomes
a problem of external memory data structures: how should we lay out the data
in external memory, such that for every block that we fetch, all data in this block
is used at least once?

Acknowledgement. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme grant agreement No 101002047 and from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No.101034126.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Arge, L., Toma, L., Zeh, N.: I/o-efficient topological sorting of planar DAGs. In:
Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA 2003, pp. 85–93, New York, NY, USA. ACM (2003)

3. Austrin, P., Pitassi, T., Wu, Y.: Inapproximability of treewidth, one-shot pebbling,
and related layout problems. CoRR, abs/1109.4910 (2011)

4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Communication-optimal parallel
and sequential cholesky decomposition. CoRR, abs/0902.2537 (2009)

5. Bender, M.A., et al.: The i/o complexity of computing prime tables, pp. 192–206
(2016)

6. Bilardi, G., Pietracaprina, A., D’Alberto, P.: On the space and access complexity of
computation DAGs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928,
pp. 47–58. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40064-8 6

7. Carpenter, T., Rastello, F., Sadayappan, P., Sidiropoulos, A.: Brief announcement:
approximating the i/o complexity of one-shot red-blue pebbling. In: Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2016, pp. 161–163, New York, NY, USA. ACM (2016)

https://doi.org/10.1007/3-540-40064-8_6

The Red-Blue Pebble Game on Trees and DAGs with Large Input 153

8. Chan, S.M.: Pebble Games and Complexity. PhD thesis, EECS Department, Uni-
versity of California, Berkeley, August 2013

9. Chan, S.M., Lauria, M., Nordström, J., Vinyals, M.: Hardness of approximation in
PSPACE and separation results for pebble games, pp. 466–485 (2015)

10. Chiang, Y.-J., Goodrich, M., Grove, E., Tamassia, R., Vengroff, D., Vitter, J.:
External-memory graph algorithms, May 1995

11. Demaine, E.D., Liu, Q.C.: Inapproximability of the standard pebble game and
hard to pebble graphs, pp. 313–324 (2017)

12. Demaine, E.D., Liu, Q.C.: Red-blue pebble game: complexity of computing the
trade-off between cache size and memory transfers. In: Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, pp.
195–204, New York, NY, USA. ACM (2018)

13. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal paral-
lel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), 206–239
(2012)

14. Driscoll, M., Georganas, E., Koanantakool, P., Solomonik, E., Yelick, K.: A
communication-optimal n-body algorithm for direct interactions. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing, pp. 1075–
1084 (2013)

15. Elango, V., Rastello, F., Pouchet, L.-N., Ramanujam, J., Sadayappan, P.: On char-
acterizing the data movement complexity of computational DAGs for parallel exe-
cution. CoRR, abs/1404.4767 (2014)

16. Gilbert, J.R., Lengauer, T., Tarjan, R.E.: The pebbling problem is complete in
polynomial space, pp. 237–248 (1979)

17. Jia-Wei, H., Kung, H.T.: I/o complexity: the red-blue pebble game, pp. 326–333
(1981)

18. Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà, R., Hoefler, T.:
Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2019, New York, NY, USA (2019). Associ-
ation for Computing Machinery

19. Liu, J.W.H.: On the storage requirement in the out-of-core multifrontal method
for sparse factorization. ACM Trans. Math. Softw. 12(3), 249–264 (1986)

20. Liu, Q.: Red-blue and standard pebble games : complexity and applications in the
sequential and parallel models. Master’s thesis, Department of Electrical Engineer-
ing and Computer Science, MIT, Massachusetts (2018)

21. Maheshwari, A., Zeh, N.: A survey of techniques for designing i/o-efficient algo-
rithms, pp. 36–61, January 2002

22. Marchal, L., McCauley, S., Simon, B., Vivien, F.: Minimizing I/Os in out-of-core
task tree scheduling. In: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 884–893 (2017)

23. Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39658-1 40

24. Ranjan, D., Savage, J., Zubair, M.: Upper and lower I/O bounds for pebbling
r -Pyramids. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol.
6460, pp. 107–120. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19222-7 12

25. Unat, D., et al.: Trends in Data Locality Abstractions for HPC Systems. IEEE
Trans. Parallel Distrib. Syst. (TPDS) 28(10), 3007–3020 (2017)

https://doi.org/10.1007/978-3-540-39658-1_40
https://doi.org/10.1007/978-3-642-19222-7_12
https://doi.org/10.1007/978-3-642-19222-7_12

Local Planar Domination Revisited

Ozan Heydt, Sebastian Siebertz(B), and Alexandre Vigny

University of Bremen, Bremen, Germany
{heydt,siebertz,vigny}@uni-bremen.de

Abstract. We show how to compute an (11 + ε) - approximation of
a minimum dominating set in a planar graph in a constant number of
rounds in the LOCAL model of distributed computing. This improves
on the previously best known approximation factor of 52, which was
achieved by an elegant and simple algorithm of Lenzen et al. Our algo-
rithm combines ideas from the algorithm of Lenzen et al. with recent
work of Czygrinow et al. and Kublenz et al. to reduce to the case of
bounded degree graphs. We can then apply an LP-based approximation
in a constant number of rounds. We also study a distributed version of
the classical greedy algorithm, which however falls short of achieving the
best approximation ratio.

Keywords: Dominating set · LOCAL algorithms · Planar graphs

1 Introduction

A dominating set in an undirected and simple graph G is a set D ⊆ V (G)
such that every vertex v ∈ V (G) either belongs to D or has a neighbor in D.
The dominating set problem is a classical NP-complete problem [13] with many
applications in theory and practice, see e.g. [8,19]. In this paper we study the
distributed time complexity of finding dominating sets in planar graphs in the
classical LOCAL model of distributed computing. In this model, a distributed
system is modeled by an undirected (planar) graph G. Every vertex represents a
computational entity and the vertices communicate through the edges of G. The
vertices are equipped with unique identifiers and initially, every vertex is only
aware of its own identity. A computation then proceeds in synchronous rounds.
In every round, every vertex sends messages to its neighbors, receives messages
from its neighbors and performs an arbitrary computation. The complexity of a
LOCAL algorithm is the number of rounds until all vertices return their answer,
in our case, whether they belong to a dominating set or not.

The problem of approximating dominating sets in the LOCAL model has
received considerable attention in the literature. Since in general graphs it is not

This paper is part of a project that has received funding from the German Research
Foundation (DFG) with grant agreement No. 444419611. We thank the anonymous
referee for pointing out that the third phase of our algorithm can be improved by the
use of LP-based techniques when the maximum degree is bounded.

c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 154–173, 2022.
https://doi.org/10.1007/978-3-031-09993-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_9

Local Planar Domination Revisited 155

possible to compute a constant factor approximation in a constant number of
rounds [16], much effort has been invested to improve the ratio between approx-
imation factor and number of rounds on special graph classes. A very successful
line of structural analysis of graph properties that can lead to improved algo-
rithms was started by the influential paper of Lenzen et al. [17], who in particular
proved that on planar graphs a 130-approximation of a minimum dominating set
can be computed in a constant number of rounds. A careful analysis of Wawrzy-
niak [22] later showed that the algorithm computes in fact a 52-approximation.
In terms of lower bounds, Hilke et al. [12] showed that there is no deterministic
local algorithm (constant-time distributed graph algorithm) that finds a (7 − ε)-
approximation of a minimum dominating set on planar graphs, for any positive
constant ε. Better approximation ratios are known for some special cases, e.g.
32 if the planar graph is triangle-free [1, Theorem 2.1], 18 if the planar graph
has girth five [2] and 5 if the graph is outerplanar (and this bound is tight) [5,
Theorem 1].

In this work we tighten the gap between the best-known lower bound of 7
and the best-known upper bound of 52 on planar graphs by providing a new
approximation algorithm computing an (11+ε)-approximation (for every ε > 0).

Our algorithm proceeds in three phases. The first phase is a preprocessing
phase that was similarly employed in the algorithm of Lenzen et al. [17]. In a key
lemma, Lenzen et al. proved that there are only few vertices whose open neigh-
borhood cannot be dominated by at most six vertices. We improve this lemma
and show that there are only slightly more vertices whose open neighborhood
cannot be dominated by three other vertices. All these vertices are selected into
an initial partial dominating set and as a consequence the open neighborhoods
of all remaining vertices can be dominated by at most three vertices.

By defining the notion of pseudo-covers, Czygrinow et al. [6] provided a tool
to carry out a fine grained analysis of the vertices that can potentially dominate
the remaining neighborhoods. Using ideas of [14] and [20] we provide an even finer
analysis for planar graphs on which we base the second phase of our distributed
algorithm and compute a second partial dominating set.

For the third phase, call the number of non-dominated neighbors of a ver-
tex v the residual degree of v. We prove that after the second phase we are left
with a graph where every vertex has residual degree at most 30. In particular,
every vertex from a minimum dominating set D can dominate at most 30 non-
dominated vertices and we conclude that the set R of non-dominated vertices has
size bounded by 31|D| (each vertex dominates its neighbors and itself). Hence,
we could at this point pick all non-dominated vertices to add at most 31|D|
vertices and conclude. Instead, we study two different ways to proceed.

Our first option is to apply an LP-approximation based on aresults of Bansal
and Umboh [4], who showed that a very simple selection procedure leads to a
constant factor approximation when the solution to the dominating set linear
program (LP) is given. As shown by Kuhn et al. [15] we can approximate such
a solution in a constant number of rounds when the maximum degree Δ of the
graph is bounded. To apply these results we have to overcome two obstacles.

156 O. Heydt et al.

First, note that even though we have established that the maximum residual
degree is bounded by 30, we may still have unbounded maximum degree Δ. We
overcome this problem by keeping only a few representative potential dominators
around the set R. By a simply density argument there can be only very few high
degree vertices left that we simply select into the dominating set. The second
obstacle, which is easily overcome, is that we do not need to dominate the whole
remaining graph but only the set R. This requires a small adaptation of the LP-
formulation of the problem and a proof that the algorithm of Bansal and Umboh
still works for this slightly different problem. In total, in this third phase of the
algorithm we add at most (7 + ε)|D| vertices to the dominating set, leading to
an (11 + ε) - approximation in total (Theorem1).

Our second option is to study a parallel distributed version of the classical
greedy algorithm. We proceed in a greedy manner in 30 rounds as follows. In the
first round, if a non-dominated vertex has a neighbor of residual degree 30, it
elects one such neighbor into the dominating set (or if it has residual degree 30
itself, it may choose itself). The neighbors of the chosen elements are marked as
dominated and the residual degrees are updated. Note that all non-dominated
neighbors of a vertex of residual degree 30 in this round choose a dominator,
hence, the residual degrees of all vertices of residual degree 30 are decreased
to 0, hence, after this round there are no vertices of residual degree 30 left. In
the second round, if a non-dominated vertex has a neighbor of residual degree 29,
it elects one such vertex into the dominating set, and so on, until after 30 rounds
in the final round every vertex chooses a dominator. Unlike in the general case,
where nodes cannot learn the current maximum residual degree in a constant
number of rounds, by establishing an upper bound on the maximum residual
degree and proceeding in exactly this number of rounds, we ensure that we
iteratively exactly choose the vertices of maximum residual degree. It remains
to analyze the performance of this algorithm.

A simple density argument shows that there cannot be too many vertices of
degree i ≥ 6 in a planar graph. At a first glance it seems that the algorithm
would perform worst when in every of the 30 rounds it would pick as many
vertices as possible, as the constructed dominating set would grow as much as
possible. However, this is not the case, as picking many high degree vertices at
the same time makes the largest progress towards dominating the whole graph.
It turns out that there is a delicate balance between the vertices that we pick in
round i and the remaining non-dominated vertices that leads to the worst case.
In total, this leads to a 20 - approximation (Theorem2). While this approach
falls short of achieving the best approximation ratio the algorithm is simple and
interesting to study in its own right.

We then analyze our algorithm on more restricted graph classes, and prove
that it computes the following approximations of factors: (8 + ε) for triangle-
free planar graphs, (7 + ε) for bipartite planar graphs, (8 + ε) for outerplanar
graphs, and 7 for planar graphs of girth 5 (Theorems 3, 4, 6 and 7 respectively).
This improves the currently best known approximation ratios of 32 and 18 for
triangle-free planar graphs and planar graphs of girth 5, respectively.

Local Planar Domination Revisited 157

2 Preliminaries

In this paper we study the distributed time complexity of finding dominating
sets in planar graphs in the classical LOCAL model of distributed computing.
We assume familiarity with this model and refer to the survey [21] for extensive
background on distributed computing and the LOCAL model.

We use standard notation from graph theory and refer to the textbook [7] for
extensive background. All graphs in this paper are undirected and simple. We
write V (G) for the vertex set of a graph G and E(G) for its edge set. The girth
of a graph G is the length of a shortest cycle in G. A graph is called triangle-free
if it does not contain a triangle, that is, a cycle of length three as a subgraph.
Equivalently, a triangle-free graph is a graph of girth at least four.

A graph is bipartite if its vertex set can be partitioned into two parts such that
all its edges are incident with two vertices from different parts. More generally,
the chromatic number χ(G) of a graph G is the minimum number k such that
the vertices of G can be partitioned into k parts such that all edges are incident
with two vertices from different parts. Hence, the bipartite graphs are exactly
the graphs with chromatic number two. A set A is independent if all two distinct
vertices u, v ∈ A are non-adjacent. Every graph G contains an independent set
of size at least �|V (G)|/χ(G)�. Every bipartite graph is triangle-free.

A graph is planar if it can be embedded in the plane, that is, it can be drawn
on the plane in such a way that its edges intersect only at their endpoints. By the
famous theorem of Wagner, planar graphs can be characterized as those graphs
that exclude the complete graph K5 on five vertices and the complete bipartite
K3,3 with parts of size three as a minor. A graph H is a minor of a graph G,
written H � G, if there is a set {Gv : v ∈ V (H)} of pairwise vertex disjoint
and connected subgraphs Gv ⊆ G such that if {u, v} ∈ E(H), then there is
an edge between a vertex of Gu and a vertex of Gv. We call V (Gv) the branch
set of v and say that it is contracted to the vertex v. We call H a 1-shallow
minor, written H �1 G, if H � G and there is a minor model {Gv : v ∈ V (H)}
witnessing this, such that all branch sets Gv have radius at most 1, that is,
in each Gv there exists w adjacent to all other vertices of Gv. In other words,
H �1 G if H is obtained from G by deleting some vertices and edges and then
contracting a set of pairwise disjoint stars. We refer to [18] for an in-depth study
of the theory of sparsity based on shallow minors.

A graph is outerplanar if it has an embedding in the plane such that all
vertices belong to the unbounded face of the embedding. Equivalently, a graph
is outerplanar if it does not contain the complete graph K4 on four vertices and
the complete bipartite graph K2,3 with parts of size 2 and 3, respectively, as a
minor. If J � H and H � G, then J � G, hence a minor of a planar graph is
again planar and a minor of an outerplanar graph is again outerplanar.

By Euler’s formula, planar graphs are sparse: every planar n-vertex graph
(n ≥ 3) has at most 3n − 6 edges (and a graph with at most two vertices has
at most one edge). The ratio |E(G)|/|V (G)| is called the edge density of G. In
particular, every planar graph G has edge density strictly smaller than three.

158 O. Heydt et al.

Lemma 1. Let G be a planar graph. Then the edge density of G is strictly
smaller than 3 and χ(G) ≤ 4. Furthermore,

1. if G is bipartite, then the edge density of G is strictly smaller than 2 and
χ(G) ≤ 2,

2. if G is triangle-free or outerplanar, then the edge density of G is strictly
smaller than 2 and χ(G) ≤ 3.

An orientation of a graph G is a directed graph
−→
G that for every edge {u, v} ∈

E(G) has one of the arcs (u, v) or (v, u). The out-degree d+(v) of a vertex v in
an orientation

−→
G of G is the number |{w : (v, w) ∈ E(

−→
G}|. The following lemma

is implicit in the work of Hakimi [11], see also [18, Proposition 3.3].

Lemma 2. Let d = �maxH⊆G{|E(H)|/|V (H)|}�. Then G has an orientation
with maximum out-degree d.

As every subgraph of a (triangle-free or outerplanar) planar graph is again a
(triangle-free or outerplanar) planar graph we have the following corollary.

Corollary 3. Let G be a planar graph. Then

1. G has an orientation with maximum out-degree 3.
2. Furthermore, if G is triangle-free or outerplanar, then G has an orientation

with maximum out-degree 2.

For a graph G and v ∈ V (G) we write N(v) = {u : {u, v} ∈ E(G)} for the
open neighborhood of v and N [v] = N(v) ∪ {v} for the closed neighborhood of v.
For a set A ⊆ V (G) let N [A] =

⋃
v∈A N [v]. A dominating set in a graph G is a

set D ⊆ V (G) such that N [D] = V (G). We write γ(G) for the size of a minimum
dominating set of G. For W ⊆ V (G) we say that a set Z ⊆ V (G) dominates W
if W ⊆ N [Z].

In the following we mark important definitions and assumptions about our
input graph in gray boxes and steps of the algorithm in red boxes.

We fix a planar graph G and a minimum dominating set D of G with
γ := |D| = γ(G).

3 Phase 1: Preprocessing

As outlined in the introduction, our algorithm works in three phases. In phase i
for 1 ≤ i ≤ 3 we select a partial dominating set Di and estimate its size in
comparison to D. In the end we will return D1 ∪ D2 ∪ D3. We will call vertices
that have been selected into a set Di green, vertices that are dominated by a
green vertex but are not green themselves are called yellow and all vertices that
still need to be dominated are called red. In the beginning, all vertices are marked
red.

Local Planar Domination Revisited 159

The first phase of our algorithm is similar to the first phase of the algorithm
of Lenzen et al. [17]. It is a preprocessing step that leaves us with only ver-
tices whose neighborhoods can be dominated by a few other vertices. Lenzen
et al. proved that there exist less than 3γ many vertices v such that the open
neighborhood N(v) of v cannot be dominated by 6 vertices of V (G) \ {v} [17,
Lemma 6.3]. The lemma can be generalized to more general graphs, see [3]). We
prove the following lemma, which is stronger in the sense that the number of
vertices required to dominate the open neighborhoods is smaller than 6, at the
cost of having slightly more vertices with that property.

We define D1 as the set of all vertices whose neighborhood cannot be domi-
nated by 3 other vertices.

D1 :={v ∈ V (G) : for all sets A ⊆ V (G) \ {v} with N(v) ⊆ N [A]
we have |A| > 3}.

We prove a very general lemma that can be applied also for more general
graph classes, even though we will apply it only for planar graphs. Hence, in the
following lemma, G can be an arbitrary graph, while in the following lemmas G
will again be the planar graph that we fixed in the beginning.

Lemma 4. Let G be a graph, let D be a minimum dominating set of G of size γ
and let ∇ be an integer strictly larger than the edge density of a densest bipartite
1-shallow minor of G. Let D̂ be the set of vertices v ∈ V (G) whose neighborhood
cannot be dominated by (2∇ − 1) vertices of D other than v, that is,

D̂ :={v ∈ V (G) : for all sets A ⊆ D \ {v} with N(v) ⊆ N [A]
we have |A| > (2∇ − 1)}.

Then |D̂ \ D| < χ(G) · γ.

Recall that minors of planar graphs are again planar, hence, the maximum
edge density of a bipartite 1-shallow minor of a planar graph is smaller than 2
and hence we can choose ∇ = 2 for the case of planar graphs and we note the
following corollary.

Corollary 5. Let D̂ be the set of vertices v whose neighborhood cannot be dom-
inated by 3 vertices of D other than v, that is,

D̂ := {v ∈ V (G) : for all sets A ⊆ D \ {v} with N(v) ⊆ N [A] we have |A| > 3}.

Then |D̂ \ D| < 4γ.

Proof (of Lemma 4). Assume D = {b1, . . . , bγ}. Assume that there are χ(G) · γ
vertices a1, . . . , aχ(G)γ �∈ D satisfying the above condition. As the chromatic
number is monotone over subgraphs, the subgraph induced by the ais is also
χ(G)-chromatic, so we find an independent subset of the ais of size γ. We can

160 O. Heydt et al.

hence assume that a1, . . . , aγ are not connected by an edge. We proceed towards
a contradiction.

We construct a bipartite 1-shallow minor H of G with the following 2γ branch
sets. For every i ≤ γ we have a branch set Ai = {ai} and a branch set Bi =
N [bi] \ ({a1, . . . , aγ} ∪ ⋃

j<i N [bj] ∪ {bi+1, . . . , bγ}). Note that the Bi are vertex
disjoint and hence we define proper branch sets. Intuitively, for each vertex
v ∈ N(ai) we mark the smallest bj that dominates v as its dominator. We then
contract the vertices that mark bj as a dominator together with bj into a single
vertex. Note that because the ai are independent, the vertices ai themselves
are not associated to a dominator as no aj lies in N(ai) for i �= j. Denote by
a′
1, . . . , a

′
γ , b′

1, . . . , b
′
γ the associated vertices of H. Denote by A the set of the

a′
is and by B the set of the b′

js. We delete all edges between vertices of B. The
vertices of A are independent by construction. Hence, H is a bipartite 1-shallow
minor of G. By the assumption that N(ai) cannot be dominated by 2∇ − 1
elements of D, we associate at least 2∇ different dominators with the vertices of
N(ai). Note that this would not necessarily be true if A was not an independent
set, as all aj ∈ N(ai) would not be associated a dominator.

Since {b1, . . . , bγ} is a dominating set of G and by assumption on N(ai),
we have that in H, every a′

i has at least 2∇ neighbors in B. Hence, |E(H)| ≥
2∇|V (A)| = 2∇γ. As |V (H)| = 2γ we conclude |E(H)| ≥ ∇|V (H)|. This how-
ever is a contradiction, as ∇ is strictly larger than the edge density of a densest
bipartite 1-shallow minor of G.

Let us fix the set D̂ for our graph G.

D̂ :={v ∈ V (G) : for all sets A ⊆ D \ {v} with N(v) ⊆ N [A]
we have |A| > 3}.

Note that D̂ cannot be computed by a local algorithm as we do not know
the set D. It will only serve as an auxiliary set in our analysis.

The first phase of the algorithm is to compute the set D1, which can be done
in 2 rounds of communication. Obviously, if the open neighborhood of a vertex v
cannot be dominated by 3 vertices from V (G) \ {v}, then in particular it cannot
be dominated by 3 vertices from D \ {v}. Hence D1 ⊆ D̂ and we can bound the
size of D1 by that of D̂.

Lemma 6. We have D1 ⊆ D̂, |D̂ \ D| < 4γ, and |D̂| < 5γ.

Proof. Lemma 6 follows the observation above together with Corollary 5.

From Lemma 6 we can conclude that |D1| < 5γ. However, it is intuitively
clear that every vertex that we pick from the minimum dominating set D is
optimal progress towards dominating the whole graph. We will later show that
this intuition is indeed true for our algorithm, that is, our algorithm performs
worst when D1 ∩ D = ∅, which will later in fact allow us to estimate |D1| < 4γ.

Local Planar Domination Revisited 161

We mark the vertices of D1 that we add to the dominating set in the first
phase of the algorithm as green, the neighbors of D1 as yellow and leave all other
vertices red. Denote the set of red vertices by R, that is, R = V (G) \N [D1]. For
v ∈ V (G) let NR(v) := N(v) ∩ R and δR(v) := |NR(v)| be the residual degree
of v, that is, the number of neighbors of v that still need to be dominated.

By definition of D1, the neighborhood of every non-green vertex can be dom-
inated by at most 3 other vertices. This holds true as well for the subset NR(v)
of neighbors that still need to be dominated. Let us fix such a small dominating
set for the red neighborhood of every non-green vertex.

For every v ∈ V (G) \ D1, we fix Av ⊆ V (G) \ {v} such that:

NR(v) ⊆ N [Av] and |Av| ≤ 3.

There are potentially many such sets Av – we fix one such set arbitrarily. Let
us stress that even though we could compute the sets Av in a local algorithm
(making decisions based on vertex ids), we only use these sets for our further
argumentation and do not need to compute them.

4 Phase 2: Analyzing the Local Dominators

The second phase of our algorithm is inspired by results of Czygrinow et al. [6]
and the greedy domination algorithm for biclique-free graphs of [20]. Czygrinow
et al. [6] defined the notion of pseudo-covers, which provide a tool to carry out a
fine grained analysis of vertices that can potentially belong to the sets Av used
to dominate the red neighborhood NR(v) of a vertex v. This tool can in fact be
applied to much more general graphs than planar graphs, namely, to all graphs
that exclude some complete bipartite graph Kt,t. A refined analysis for classes of
bounded expansion was provided by Kublenz et al. [14]. We provide an even finer
analysis for planar graphs on which we base a second phase of our distributed
algorithm.

We first describe what our algorithm computes, and then provide bounds on
the number of selected vertices. Intuitively, we select every pair of vertices with
sufficiently many neighbors in common.

– For v ∈ V (G) let Bv := {z ∈ V (G) \ {v} : |NR(v) ∩ NR(z)| ≥ 10}.
– Let W be the set of vertices v ∈ V (G) such that Bv �= ∅.
– Let D2 :=

⋃

v∈W

({v} ∪ Bv).

Once D1 has been computed in the previous phase, 2 more rounds of com-
munication are enough to compute the sets Bv and D2. Before we update the
residual degrees, let us analyze the sets Bv and D2. First note that the definition
is symmetric: since NR(v)∩NR(z) = NR(z)∩NR(v) we have for all v, z ∈ V (G) if

162 O. Heydt et al.

z ∈ Bv, then v ∈ Bz. In particular, if v ∈ D1 or z ∈ D1, then NR(v)∩NR(z) = ∅,
which immediately implies the following lemma.

Lemma 7. We have W ∩D1 = ∅ and for every v ∈ V (G) we have Bv ∩D1 = ∅.

Now we prove that for every v ∈ W , the set Bv cannot be too big, and has
nice properties.

Lemma 8. For all vertices v ∈ W we have

– Bv ⊆ Av (hence |Bv| ≤ 3), and
– if v �∈ D̂, then Bv ⊆ D.

Proof. Assume Av = {v1, v2, v3} (a set of possibly not distinct vertices) and
assume there exists z ∈ V (G) \ {v, v1, v2, v3} with |NR(v) ∩ NR(z)| ≥ 10. As
v1, v2, v3 dominate NR(v), and hence also NR(v)∩NR(z), there must be some vi,
1 ≤ i ≤ 3, with |NR(v) ∩ NR(z) ∩ N [vi]| ≥ �10/3� ≥ 4. Therefore, |NR(v) ∩
NR(z) ∩ N(vi)| ≥ 3, which shows that K3,3 is a subgraph of G, contradicting
the assumption that G is planar.

If furthermore v �∈ D̂, by definition of D̂, we can find w1, w2, w3 from D
that dominate N(v), and in particular NR(v). If z ∈ V (G) \ {v, w1, w2, w3} with
|NR(v) ∩ NR(z)| ≥ 10 we can argue as above to obtain a contradiction.

Let us now analyze the size of D2. For this we refine the set D2 and define

1. D1
2 :=

⋃
v∈W∩D({v} ∪ Bv),

2. D2
2 :=

⋃
v∈W∩(D̂\D)({v} ∪ Bv), and

3. D3
2 :=

⋃
v∈W\(D∪D̂)({v} ∪ Bv).

Obviously D2 = D1
2 ∪ D2

2 ∪ D3
2. We now bound the size of the refined sets

D1
2,D

2
2 and D3

2.

Lemma 9. |D1
2 \ D| ≤ 3γ.

Proof. We have

|D1
2 \ D| = |

⋃

v∈W∩D

({v} ∪ Bv) \ D| ≤ |
⋃

v∈W∩D

Bv| ≤
∑

v∈W∩D

|Bv|.

By Lemma 8 we have |Bv| ≤ 3 for all v ∈ W and as we sum over v ∈ W ∩ D we
conclude that the last term has order at most 3γ.

Lemma 10. D2
2 ⊆ D̂ and therefore |D2

2 \ D| < 4γ.

Proof. Let v ∈ D̂ \ D and let z ∈ Bv. By symmetry, v ∈ Bz and according to
Lemma 8, if z �∈ D̂, then v ∈ D. Since this is not the case, we conclude that
z ∈ D̂. Hence Bv ⊆ D̂ and, more generally, D2

2 ⊆ D̂. Finally, according to
Lemma 6 we have |D̂ \ D| < 4γ.

Local Planar Domination Revisited 163

Finally, the set D3
2, which appears largest at first glance, was actually already

counted, as shown in the next lemma.

Lemma 11. D3
2 ⊆ D1

2.

Proof. If v �∈ D̂, then Bv ⊆ D by Lemma 8. Hence v ∈ Bz for some z ∈ D, and
v ∈ D1

2.

Again, it is intuitively clear that the situation when the sets Di
2 are large

does not lead to the worst case for the overall algorithm. For example, when D1
2

is large we have added many vertices of the optimum dominating set D. For a
formal analysis, we analyze the number of vertices of D that have been selected
so far.

Let ρ ∈ [0, 1] be such that |(D1 ∪ D2) ∩ D| = ργ.

Lemma 12. We have |D1 ∪ D2| < 4γ + 4ργ.

Proof. By Lemma 11 we have D3
2 ⊆ D1

2, hence, D1 ∪ D2 = D1 ∪ D1
2 ∪ D2

2.
By Lemma 6 we have D1 ⊆ D̂ and by Lemma 10 we also have D2

2 ⊆ D̂, hence
D1∪D2

2 ⊆ D̂. Again by Lemma 6, |D̂\D| < 4γ and therefore |(D1∪D2
2)\D| < 4γ.

We have W ∩ D ⊆ D1
2 ∩ D, hence with Lemma 8 we conclude that

∣
∣D1

2 \ D
∣
∣ ≤

∣
∣
∣

⋃

v∈D∩D1
2

Bv

∣
∣
∣ ≤

∑

v∈D∩D1
2

|Bv| ≤ 3ργ,

hence (D1∪D2)\D < 4γ+3ργ. Finally, D1∪D2 = (D1∪D2)\D∪((D1∪D2)∩D)
and with the definition of ρ we conclude |D1 ∪ D2| < 4γ + 4ργ.

The analysis of the next and final step of the algorithm will actually show
that the worst case is obtained when ρ = 0.

We now update the residual degrees, that is, we update R as V (G) \ N [D1 ∪
D2] and for every vertex the number δR(v) = N(v) ∩ R accordingly. We finally
show that after the first two phases of the algorithm we are in the very nice
situation where all residual degrees are small.

Lemma 13. For all v ∈ V (G) we have δR(v) ≤ 30.

Proof. First, every vertex of D1 ∪D2 has residual degree 0. Assume that there is
a vertex v of residual degree at least 31. As v is not in D1, its 31 non-dominated
neighbors are dominated by a set Av of at most 3 vertices. Hence there is a
vertex z (not in D1 nor D2) with |NR(v)∩NR[z]| ≥ �31/3� = 11, hence, |NR(v)∩
NR(z)| ≥ 10. This contradicts that v is not in D2.

164 O. Heydt et al.

5 Phase 3: LP-Based Approximation

5.1 LP-Based Approximation

In the light of Lemma 13, we could now simply choose D3 as the set of elements
not in N [D1 ∪ D2]. We would get a constant factor approximation, but not a
very good one. Instead, we now proceed with an LP-based approximation. The
dominating set problem can be formulated as an integer linear program (ILP).
Note that it remains to dominate the set R, which leads to the following ILP.

Minimize
∑

v∈V xv

Subject to
∑

u∈N [v] xu ≥ 1 ∀v ∈ R

xv ∈ {0, 1} ∀v ∈ V

By relaxing the condition that xv ∈ {0, 1} to xv ∈ [0, 1] ⊆ R, we obtain the
corresponding linear program (LP). By a result of Bansal and Umboh [4] one
can obtain a constant factor approximation of a dominating set from a solution
to the LP. The proof can easily be adapted to the problem of approximating a
dominating set of the set R.

Lemma 14. Let G be a graph that has an orientation with maximum out-degree
d and let R ⊆ V (G). Let DR ⊆ V (G) be a minimum dominating set of R. Let(
xv

)
v∈V (G)

be a solution to the R-dominating set LP. Let H := {v ∈ V (G) :
xv ≥ 1/(2d + 1)} and let U := {v ∈ R : v �∈ N [H]}. Then H ∪ U dominates R
and has size at most (2d + 1) · |DR|.

Observe that when given the solution
(
xv

)
v∈V (G)

to the R-dominating set LP
the lemma gives rise to a simple LOCAL algorithm. First select all vertices v
with xv ≥ 1/(2d + 1) into a dominating set and mark all their neighbors as
dominated. Then select all non-dominated vertices of R into the dominating set.
Clearly, H ∪U is a dominating set of R. The rest of this section is devoted to the
proof of the claimed approximation factor. The proof follows the presentation
of Bansal and Umboh [4] with the improved bounds of Dvořák [9]. As every
solution to the ILP is also a solution to the LP we have

∑
v∈V (G) xv ≤ |DR|.

Consider an orientation of G such that the neighborhood of each vertex v is
decomposed into N in(v) and Nout(v), where |Nout(v)| ≤ d.

Claim. For every vertex v ∈ U , we have
(∑

u∈Nin(v) xu

) ≥ d/(2d + 1).

Proof. As v is not in H, xv < 1/(2d + 1). As v is not in N(H), for every vertex
u ∈ Nout(v) we have xu < 1/(2d + 1). As |Nout(v)| ≤ d, and by the first LP
condition

(∑
u∈Nin(v) xu

) ≥ 1 − 1
2d+1 − d

2d+1 ≥ d
2d+1 .

We can now bound the size of U and H

Claim. |H ∪ U | ≤ (2d + 1)
∑

v∈V xv.

Local Planar Domination Revisited 165

Proof. First, observe that |H| ≤ (2d + 1)
∑

v∈H
1

2d+1 ≤ (2d +
1)

∑
v∈H(xv). Then observe that |U | ≤ 2d+1

d · ∑
v∈U

d
2d+1 ≤ 2d+1

d

∑
v∈U∑

u∈Nin(v) xu ≤ 2d+1
d

∑
u∈Nin(U)(d · xu) ≤ (2d + 1)

∑
u∈Nin(U) xu.

By definition of U , we have that N(U) and H are disjoint, this also holds
for H and N in(U) hence |H ∪ U | ≤ (2d + 1)

∑
v∈V xv ≤ (2d + 1)|DR|.

5.2 Solving LPs Locally

As shown by Kuhn et al. [15] we can locally approximate general covering
LPs, in particular the above R-dominating set LP, when the maximum degree
of the graph is bounded. More precisely, they show how to compute a Δ1/k-
approximation in O(k2) rounds. Assuming for a moment that Δ is bounded
by an absolute constant we can choose k such that Δ1/k = 1 + ε, hence
k = (log Δ)/(log(1 + ε)), which is a constant depending only on Δ and ε in
order to compute a (1 + ε)-approximation. Hence, it remains to establish the
situation that not only the residual degrees are bounded but that Δ is bounded
by an absolute constant and to choose ε appropriately.

Recall that we chose ρ such that |(D1 ∪ D2) ∩ D| = ργ. When ργ vertices
of D were already chosen into the partial dominating set D1 ∪ D2 we have
|DR| ≤ (1 − ρ)γ. With Corollary 3 we conclude the following corollary.

Corollary 15. Let G be a graph that has an orientation with maximum out-
degree d, let R ⊆ V (G), let DR be a minimum dominating set of R, and let
ε > 0. Then we can compute a set D′ of size at most (2d + 1)(1 + ε)|DR| that
dominates R in O(log Δ/(log(1 + ε)) rounds in the LOCAL model.

In particular, for our algorithm when

1. G is planar, then |D′| ≤ 7(1 + ε)|DR| ≤ 7(1 + ε)(1 − ρ)γ and when
2. G is planar and triangle-free or outerplanar, then |D′| ≤ 5(1 + ε)|DR| ≤

5(1 + ε)(1 − ρ)γ.

5.3 From Bounded Residual Degree to Bounded Degree

It remains to establish the situation that the maximum degree Δ of our graph is
bounded. As argued, we have |R| ≤ 31(1−ρ)γ. As only the vertices of R need to
be dominated it suffices to keep only the vertices that have a neighbor in R; other
vertices are not useful as dominators. Also, when two vertices u, v ∈ V (G) \ R
have exactly the same neighbors in R, that is, NR(u) = NR(v), it suffices to
keep one of u and v. Note that we can locally decide whether NR(u) = NR(v).
For every set N ⊆ R such that there is a vertex v with NR(v) = N we choose
the one with the lowest identifier as a representative. We construct the graph
G′ consisting of R and all edges between vertices in R as well as the set of
all representatives and a minimal set of edges such that NR(v) is equal in G
and G′ for all representatives v. Hence in G′ we have NR(u) �= NR(v) for all
u �= v ∈ V (G′) \ R. As argued above, every R-dominating set in G can be

166 O. Heydt et al.

transformed into an R-dominating set of the same size in G′ (by choosing the
appropriate representative) and every R-dominating set in G′ is an R-dominating
set in G. We can hence continue to work with the graph G′. In order to avoid
complicated notation we simply assume that G = G′.

Note that in general we could have |V (G)| ∈ Ω(2|R|), in a planar graph
however, |V (G)| is linear in |R|, which is crucial for our further argumentation.

Lemma 16. |V (G)| ≤ 12|R|.
We follow the presentation of [10, Lemma 4.3]. The presented construction is
not build by our algorithm, it simply shows that our graph G satisfies the above
property.

Proof. Consider a sequence of graphs G0, G1, . . . , G� such that Gi is a 1-shallow
minor of G for all 0 ≤ i ≤ � as follows. Set G0 = G, and for 0 ≤ i ≤ � − 1 define
Gi+1 from Gi by choosing a vertex v ∈ V (Gi) \ R such that NR(v) contains
two non-adjacent vertices u,w in Gi and contract {u, v} into the vertex u to
obtain Gi+1. Note that contracting {u, v} into u is equivalent to deleting vertex
v and adding edges between each vertex in N(v) \ u and u. Note that this
contraction will only add edges to R and remove vertices from V (G) \ R. Hence,
for 0 ≤ i ≤ �, we maintain R ⊆ V (Gi).

This process clearly terminates, and Gi+1 has at least one more edge between
vertices of R than Gi does. Note that Gi is a 1-shallow minor of G for 0 ≤
i ≤ �, as the edges e1, . . . , ei−1 that were contracted to vertices in R in order
to construct dGi had one endpoint each in R and V (G) \ R, the endpoint in
V (G) \ R being deleted after each contraction. Thus, e1, . . . , ei−1 induce a set
of stars in V (G), and Gi is obtained from G by contracting these stars. We
therefore conclude that Gi is a 1-shallow minor of G. In particular, this implies
that G is planar and has at most 3|R| − 6 edges between vertices of R.

Since there are at most 3|R| − 6 edges between vertices of R, we have that
� ≤ 3|R| − 6. Since the iterative process stopped, we have that for every vertex
v ∈ V (G�) \ R, NR(v) is a clique in G�.

We conclude with a result of Wood [23, Corollary 2] showing that in an n-
vertex planar graph there can be at most 8(n−2) many cliques. At most 3|R|−6
vertices u with a possibly unique neighborhood NR(u) were contracted and at
most 8(|R|−2) vertices v with different NR(v) that induce a clique in G� remain.
We add the vertices of |R| to conclude that |V (G)| ≤ 12|R|.

By Lemma 13 we have |R| ≤ 31(1 − ρ)γ, which immediately implies the
following corollary.

Corollary 17. |V (G)| ≤ 372(1 − ρ)γ.

5.4 Conclusion of the Algorithm

We now pick an arbitrary ε > 0 and select all vertices with high degree Γ into
our dominating set, where Γ is chosen such that there exist at most (ε/8)(1−ρ)γ
vertices of degree at least Γ .

Local Planar Domination Revisited 167

Let ε > 0, ε′ := ε/8, Γ := 6372
ε′ , and D1

3 := {v ∈ V (G) : d(v) > Γ}.

Lemma 18. |D1
3| ≤ ε′(1 − ρ)γ.

Proof. We assume the opposite and count the number of edges and vertices
of G. When we sum the degree of the vertices, we get twice the number of edges.
Hence 2 · |E(G)| ≥ 6 372

ε′ · ε′(1 − ρ)γ. Therefore, with Corollary 17, |E(G)| ≥
3 · 372(1 − ρ)γ ≥ 3|V (G)|. This contradict the fact the graph is planar.

After picking D1
3 into the dominating set, marking the neighbors of D1

3 as
dominated and updating the set R, we can delete the vertices of D1

3. We are left
with a graph of maximum degree Γ .

Let D2
3 be the set computed by the LOCAL algorithm of Corollary 15

with parameter ε′.

Let D3 = D1
3 ∪ D2

3. We already noted that the definition of D3 implies that
D1 ∪D2 ∪D3 is a dominating set of G. We now conclude the analysis of the size
of this computed set.

Lemma 19. We have that |D3| ≤ (7 + ε)(1 − ρ)γ

Proof. By Corollary 15 and Lemma 18 we have |D2
3| ≤ 7(1 + ε′)(1 − ρ)γ, and

|D1
3| ≤ ε′(1 − ρ)γ. This with, ε′ = ε/8 conclude the proof.

We can now conclude the proof of our main result.

Theorem 1. There exists a distributed LOCAL algorithm that, for every ε > 0,
and every planar graph G, computes in a constant number of rounds a dominat-
ing set of size at most (11 + ε)γ(G).

Proof. First, D1,D2, and D3 are computed locally, in a bounded number of
rounds, and D1∪D2∪D3 dominates G. Second, by Lemma 12 we have |D1∪D2| <
4γ + 4ργ. And, by Lemma 19 we have |D3| ≤ (7 + ε)(1 − ρ)γ.

Therefore |D1 ∪ D2 ∪ D3| ≤ γ(4 + 4ρ + 7 − 7ρ + ε − ερ) ≤ γ(11 + ε − 3ρ − ερ).
As ρ ∈ [0, 1], this is maximized when ρ = 0. Hence |D1 ∪ D2 ∪ D3| ≤ γ(11 + ε).

6 Alternative Phase 3: Greedy Domination in Planar
Graphs of Maximum Residual Degree

We now study a second approach to compute a set D3 to dominate the remaining
set R. It does not lead to a better approximation factor (only in the case of
girth 5 planar graphs), but is interesting to study in its own right. The approach
is based on a simulation of the classical greedy algorithm, where in each round
we select a vertex of maximum residual degree. Here, we let all non-dominated

168 O. Heydt et al.

vertices that have a neighbor of maximum residual degree choose such a neighbor
as its dominator (or if they have maximum residual degree themselves, they
may choose themselves). In general this is not possible for a LOCAL algorithm,
however, as we established a bound on the maximum degree we can proceed as
follows. We let i = 30. Every red vertex that has at least one neighbor of residual
degree 30 arbitrarily picks one of them and elects it to the dominating set. Then
every vertex recomputes its residual degree and i is set to 29. We continue until
i reaches 0 when all vertices are dominated. More formally, we define several sets
as follows.

For 30 ≥ i ≥ 0, for every v ∈ R in parallel:

if there is some u with δR(u) = i and ({u, v} ∈ E(G) or u = v), then
domi(v) := {u} (pick one such u arbitrarily),
domi(v) := ∅ otherwise.

– Ri := R What currently remains to be dominated

– Δi :=
⋃

v∈R

domi(v) What we pick in this step

– R := R \ N [Δi] Update red vertices

Finally, D3 :=
⋃

0≤i≤30

Δi.

Let us first prove that the algorithm in fact computes a dominating set.

Lemma 20. When the algorithm has finished the iteration with parameter i ≥ 1,
then all vertices have residual degree at most i − 1.

In particular, after finishing the iteration with parameter 1, there is no vertex
with residual degree 1 left and in the final round all non-dominated vertices
choose themselves into the dominating set. Hence, the algorithm computes a
dominating set of G.

Proof. By induction, before the iteration with parameter i, all vertices have resid-
ual at most i. Assume v has residual degree i before the iteration with parameter
i. In that iteration, all non-dominated neighbors of v choose a dominator (possi-
bly v, then the statement is trivial), hence, are removed from R. It follows that
the residual degree of v after the iteration is 0. Hence, after this iteration and
before the iteration with parameter i − 1, we are left with vertices of residual
degree at most i − 1.

We now analyze the sizes of the sets Δi and Ri. The first lemma follows from
the fact that every vertex chooses at most one dominator.

Lemma 21. For every i ≤ 30,
∑

j≤i

|Δj | ≤ |Ri|.

Proof. The vertices of Ri are those that remain to be dominated in the last i
rounds of the algorithm. As every vertex that remains to be dominated chooses
at most one dominator in one of the rounds j ≤ i, the statement follows.

Local Planar Domination Revisited 169

As the vertices of D that still dominate non-dominated vertices also have
bounded residual degree, we can conclude that not too many vertices remain to
be dominated.

Lemma 22. For every i ≤ 30, |Ri| ≤ (i + 1)(1 − ρ)γ.

Proof. First note that for every i, D \ (D1 ∪ D2 ∪ ⋃
j>i Δj) is a dominating set

for Ri; additionally each vertex in this set has residual degree at most i. And
finally, this set is a subset of D \ (D1 ∪ D2). Hence by the definition of ρ, we
get that |D \ (D1 ∪ D2 ∪ ⋃

j>i Δj)| ≤ (1 − ρ)γ. As every vertex dominates its
residual neighbors and itself, we conclude |Ri| ≤ (i + 1)(1 − ρ)γ.

The next lemma shows that we cannot pick too many vertices of high residual
degree. This follows from the fact that planar graphs have bounded edge density.

Lemma 23. For every 7 ≤ i ≤ 30, |Δi| ≤ 3|Ri|
i−6 .

Proof. Let 7 ≤ i ≤ 30 be an integer. We bound the size of Δi by a counting
argument, using that G (as well as each of its subgraphs) is planar, and can
therefore not have too many edges.

Let J := G[Δi] be the subgraph of G induced by the vertices of Δi, which
all have residual degree i. Let K := G[Δi ∪ (N [Δi] ∩ Ri)] be the subgraph of G
induced by the vertices of Δi together with the red neighbors that these vertices
dominate.

As J is planar, |E(J)| < 3|V (J)| = 3|Δi|. As every vertex of J has residual
degree exactly i, we get |E(K)| ≥ iΔi −|E(J)| > (i−3)|Δi| (we have to subtract
|E(J)| to not count twice the edges of K that are between two vertices of J). We
also have that |V (K)| ≤ |V (J)|+ |Ri|. We finally apply Euler’s formula again to
K and get that |E(K)| < 3|V (K)| hence (i − 3)|Δi| < 3|Δi| + 3|Ri|. Therefore
|Δi| < 3|Ri|

i−6 .

Finally, we can give a lower bound on how many elements are newly domi-
nated by the chosen elements of high residual degree.

Lemma 24. For every 1 ≤ i ≤ 29, |Ri| ≤ |Ri+1| − (i−5)|Δi+1|
3 .

Proof. Similarly to the proof of Lemma23 (by replacing i by i + 1), we define
J := G[Δi+1] and K := G[Δi+1 ∪ (N [Δi+1] ∩ Ri+1)].

We then replace the bound |V (K)| ≤ |V (J)| + |Ri+1| by |V (K)| ≤ |V (J)| +
|N [Δi+1] ∩ Ri+1|.

We then get:
|E(K)| ≤ 3|V (K)|,

(i + 1)|Δi+1| − 3|Δi+1| ≤ 3(|Δi+1| + |N [Δi+1] ∩ Ri+1|), and

|N [Δi+1] ∩ Ri+1| ≥ (i + 1 − 6)|Δi+1|
3

.

Now, as Ri = Ri+1 \ N [Δi+1], we have |Ri| ≤ |Ri+1| − |N [Δi+1] ∩ Ri+1| ≤
|Ri+1| − (i+1−6)|Δi+1|

3 .

170 O. Heydt et al.

We now formulate (and present in the full version of the paper) a linear
program to maximize |D3| under these constraints. As a result we conclude the
following lemma.

Lemma 25. |D3| ≤ 15.9(1 − ε)γ.

We already noted that the definition of D3 implies that D1 ∪ D2 ∪ D3 is a
dominating set of G. We now conclude the analysis of the size of this computed
set. First, by Lemma 12 we have |D1 ∪ D2| < 4γ + 4εγ. Then, by Lemma 25 we
have |D3| ≤ 15.9(1−ε)γ. Therefore |D1∪D2∪D3| < 19.9γ−11.9εγ. As ε ∈ [0, 1],
this is maximized when ε = 0. Hence |D1 ∪ D2 ∪ D3| < 19.9γ.

Theorem 2. The LOCAL algorithm with greedy phase 3 computes for every
planar graph G in a constant number of rounds a dominating set of size at most
20γ(G).

7 Restricted Classes of Planar Graphs

In this section we further restrict the input graphs, requiring e.g. planarity
together with a lower bound on the girth. Our algorithm works exactly as before,
however, using different parameters. From the different edge densities and chro-
matic numbers of the restricted graphs we will then derive different constants
and as a result a better approximation factor. Throughout this section we use the
same notation as in the first part of the paper and state in the adapted lemmas
with the same numbers as in the first part the adapted sizes of the respective
sets. All proofs can be found in the full version of the paper.

As in the general case in the first phase we begin by computing the set D1

and analyzing it in terms of the auxiliary set D̂.

Adapted Corollary 5.

1. If G is bipartite, then |D̂ \ D| < 2γ.
2. If G is triangle-free, outerplanar, or has girth 5, then |D̂ \ D| < 3γ.

In case of triangle-free planar graphs (in particular in the case of bipartite
planar graphs) we proceed with the second phase exactly as in the second phase
of the general algorithm (Sect. 4), however, the parameter 10 is replaced by the
parameter 7. In case of planar graphs of girth at least five or outerplanar graphs,
we simply set D2 = ∅.

If G is triangle-free:

– For v ∈ V (G) let Bv := {z ∈ V (G) \ {v} : |NR(v) ∩ NR(z)| ≥ 7}.
– Let W be the set of vertices v ∈ V (G) such that Bv �= ∅.
– Let D2 :=

⋃

v∈W

({v} ∪ Bv).

If G has girth at least 5 or G is outerplanar, let D2 = ∅.

Local Planar Domination Revisited 171

Adapted Lemma 12.

1. If G is bipartite, then |D1 ∪ D2| < 2γ + 4ργ.
2. If G is triangle-free, then |D1 ∪ D2| < 3γ + 4ργ.
3. If G has girth at least 5 or is outerplanar, then |D1 ∪ D2| < 3γ + ργ.

Again, we update the residual degrees and proceed with the third phase.

Adapted Lemma 13.

1. If G is triangle-free, then for all v ∈ V (G) we have δR(v) ≤ 18.
2. If G has girth at least 5, then for all v ∈ V (G) we have δR(v) ≤ 3.
3. If G is outerplanar, then for all v ∈ V (G) we have δR(v) ≤ 9.

7.1 LP-Based Approximation

When proceeding with the LP-based approximation as in Sect. 5 we conclude
with Corollary 15 and Lemma 18 to obtain the following statement:

Adapted Lemma 19. When G is triangle free or bipartite, then |D3| ≤ (5 +
ε)(1 − ρ)γ.

We can then conclude each individual case.

Theorem 3. There exists a distributed LOCAL algorithm that, for every ε > 0
and every triangle free planar graph G, computes in a constant number of rounds
a dominating set of size at most (8 + ε)γ(G).

Theorem 4. There exists a distributed LOCAL algorithm that, for every ε > 0
and every bipartite planar graph G, computes in a constant number of rounds a
dominating set of size at most (7 + ε)γ(G).

As we will see, the greedy approach can improve the following theorem.

Theorem 5. There exists a distributed LOCAL algorithm that, for every ε > 0
and every planar graph G of girth at least 5, computes in a constant number of
rounds a dominating set of size at most (8 + ε)γ(G).

Also the following theorem is not optimal by the results of Bonamy et al. [5].

Theorem 6. There exists a distributed LOCAL algorithm that, for every ε > 0
and every outerplanar graph G, computes in a constant number of rounds a
dominating set of size at most (8 + ε)γ(G).

7.2 Greedy Approximation

When proceeding by computing a dominating set D3 with the greedy algorithm
presented in Sect. 6 in the respective number of rounds we get the following
improvement of Theorem 5.

Theorem 7. There exists a distributed LOCAL algorithm that, for every pla-
nar graph G of girth at least 5, computes in a constant number of rounds a
dominating set of size at most 7γ(G).

172 O. Heydt et al.

References

1. Alipour, S., Futuhi, E., Karimi, S.: On distributed algorithms for minimum dom-
inating set problem, from theory to application. arXiv preprint arXiv:2012.04883
(2020)

2. Alipour, S., Jafari, A.: A local constant approximation factor algorithm for mini-
mum dominating set of certain planar graphs. In: Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 501–502 (2020)

3. Amiri, S.A., Schmid, S., Siebertz, S.: Distributed dominating set approximations
beyond planar graphs. ACM Trans. Algorithms (TALG) 15(3), 1–18 (2019)

4. Bansal, N., Umboh, S.W.: Tight approximation bounds for dominating set on
graphs of bounded arboricity. Inf. Process. Lett. 122, 21–24 (2017)

5. Bonamy, M., Cook, L., Groenland, C., Wesolek, A.: A tight local algorithm for the
minimum dominating set problem in outerplanar graphs. In: DISC. LIPIcs, vol.
209, pp. 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

6. Czygrinow, A., Hanckowiak, M., Wawrzyniak, W., Witkowski, M.: Distributed
approximation algorithms for the minimum dominating set in k h-minor-free
graphs. In: 29th International Symposium on Algorithms and Computation
(ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 4th edn, vol. 173.
Springer, Heidelberg (2012)

8. Du, D.Z., Wan, P.J.: Connected Dominating Set: Theory and Applications, vol. 77.
Springer, New York (2012). https://doi.org/10.1007/978-1-4614-5242-3

9. Dvořák, Z.: On distance-dominating and-independent sets in sparse graphs. J.
Graph Theory 91(2), 162–173 (2019)

10. Gajarskỳ, J., et al.: Kernelization using structural parameters on sparse graph
classes. J. Comput. Syst. Sci. 84, 219–242 (2017)

11. Hakimi, S.: On the degree of the vertices of a directed graph. J. Franklin Inst.
279(4), 290–308 (1965)

12. Hilke, M., Lenzen, C., Suomela, J.: Brief announcement: local approximability of
minimum dominating set on planar graphs. In: Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, pp. 344–346 (2014)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

14. Kublenz, S., Siebertz, S., Vigny, A.: Constant round distributed domination on
graph classes with bounded expansion. arXiv preprint arXiv:2012.02701 (2020)

15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
SODA. vol. 6, pp. 1109557–1109666. Citeseer (2006)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper
bounds. J. ACM 63(2), 17:1–17:44 (2016)

17. Lenzen, C., Pignolet, Y.A., Wattenhofer, R.: Distributed minimum dominating set
approximations in restricted families of graphs. Distrib. Comput. 26(2), 119–137
(2013)

18. Nešetřil, Jaroslav, Ossona de Mendez, Patrice: Sparsity. AC, vol. 28. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

19. Sasireka, A., Kishore, A.N.: Applications of dominating set of a graph in computer
networks. Int. J. Eng. Sci. Res. Technol. 3(1), 170–173 (2014)

http://arxiv.org/abs/2012.04883
https://doi.org/10.1007/978-1-4614-5242-3
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/2012.02701
https://doi.org/10.1007/978-3-642-27875-4

Local Planar Domination Revisited 173

20. Siebertz, S.: Greedy domination on biclique-free graphs. Inf. Process. Lett. 145,
64–67 (2019)

21. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. (CSUR) 45(2), 1–40
(2013)

22. Wawrzyniak, W.: A strengthened analysis of a local algorithm for the minimum
dominating set problem in planar graphs. Inf. Process. Lett. 114(3), 94–98 (2014)

23. Wood, D.R.: On the maximum number of cliques in a graph. Graphs Comb. 23(3),
337–352 (2007)

Election in Fully Anonymous Shared Memory
Systems: Tight Space Bounds and Algorithms

Damien Imbs1, Michel Raynal2(B), and Gadi Taubenfeld3

1 LIS, Aix-Marseille University & CNRS & Univ. Toulon, Marseille, France
2 Univ Rennes IRISA, Inria, CNRS, Paris, France

raynal@irisa.fr
3 Reichman University, Herzliya, Israel

Abstract. This article addresses election in fully anonymous systems made up of
n asynchronous processes that communicate through atomic read-write registers
or atomic read-modify-write registers. Given an integer d ∈ {1, . . . , n − 1},
two elections problems are considered: d-election (at least one and at most d
processes are elected) and exact d-election (exactly d processes are elected). Full
anonymity means that both the processes and the shared registers are anonymous.
Memory anonymity means that the processes may disagree on the names of the
shared registers. That is, the same register name A can denote different registers
for different processes, and the register name A used by a process and the register
name B used by another process can address the same shared register. Let n be
the number of processes, m the number of atomic read-modify-write registers,
and let M(n, d) = {k : ∀ � : 1 < � ≤ n : gcd(�, k) ≤ d}. The following
results are presented for solving election in such an adversarial full anonymity
context.
– It is possible to solve d-election when participation is not required if and

only if m ∈ M(n, d).
– It is possible to solve exact d-election when participation is required if and

only if gcd(m, n) divides d.
– It is possible to solve d-election when participation is required if and only if

gcd(m, n) ≤ d.
– Neither d-election nor exact d-election (be participation required or not)

can be solved when the processes communicate through read-write registers
only.

Keywords: Anonymous processes · Anonymous memory · Distributed
computability · Leader election · Process participation · Read-write register ·
Read-modify-write register · Symmetry-breaking · Tight bounds

1 Introduction

1.1 Leader Election

Leader election is a classic basic problem encountered when processes cooperate and
coordinate to solve higher-level distributed computing problems. It consists in design-
ing an algorithm selecting one and only one process from the set of cooperating pro-
cesses. In classical systems where the processes have distinct identities, leader election
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 174–190, 2022.
https://doi.org/10.1007/978-3-031-09993-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_10

Election in Fully Anonymous Shared Memory Systems 175

algorithms usually amount to electing the process with the smallest (or highest) identity.
Many textbooks describe such algorithms (e.g., [5,14,20,25]).

This article considers two natural generalizations of the election problem in the
presence of both process and memory anonymity, where communication is through
shared registers. The first one is d-election in which at least one and at most d processes
are elected. The second one is exact d-election in which exactly d (different) processes
are elected.

1.2 System Models

Process Anonymity. Process anonymity means that the processes have no identity, have
the same code, and have the same initialization of their local variables. Hence, in a pro-
cess anonymous system, it is impossible to distinguish a process from another process.

Pioneering work on process anonymity in message-passing systems was presented
in [3]. Process anonymity has been studied for a long time in asynchronous shared
memory systems (e.g., [4]). It has been more recently addressed in the context of crash-
prone asynchronous shared memory systems (e.g., [6,10]).

Assuming a system made up of n anonymous asynchronous processes, we use the
notation p1, ..., pn to distinguish the processes. The subscript i ∈ {1, · · · , n} will also
be used to identify the local variables of pi (identified with names written with lower
case letters).

Shared Registers. The processes communicate through a shared memory made up of
m atomic registers [15] (identified with names written with upper case letters). Hence,
the shared memory appears to the processes as an array of registers denoted R[1..m].
Atomic means that the operations on a register appear as if they have been executed
sequentially, each appearing between its start event and its end event [12]. Moreover,
for any x, a read of R[x] returns the last value previously written in R[x], where last
refers to the previous total order on the operations on R[x]. (In case R[x] has not been
written, the read returns its initial value.) Two communication models are considered in
the article.

– Read-write (RW) model. This is the basic model in which a register R[x] can be
accessed only by a read or a write operation (as the cells of a Turing machine).

– Read-modify-write (RMW) model. This model is the RW model enriched with a
conditional write operation. This conditional write operation atomically reads the
register and (according to the value read) possibly modifies it. This conditional write,
denoted compare&swap(R[x], old, new), has three parameters, a shared register,
and two values. It returns a Boolean value. If R[x] = old, it assigns the value new
to R[x] and returns true. If R[x] �= old, R[x] is not modified and the operation
returns false. An invocation of compare&swap(R[x], old, new) that returns true
is successful.

Memory Anonymity. The notion of an anonymous memory has been introduced in [26].
In a non-anonymous memory, the address R[x] denotes the same register whatever the
process that invokes R[x]: there is an a priori agreement on the name of each register. In

176 D. Imbs et al.

an anonymous memory, there is no such agreement on the names of the shared registers.
While the name R[x] used by a given process pi always denotes the very same register,
the same name R[x] used by different processes pi pj , pk .., may refer to different
registers. More precisely, an anonymous memory system is such that:

– For each process pi, an adversary defined a permutation fi() over the set {1, 2, ..., n}
such that, when pi uses the name R[x], it actually accesses R[fi(x)],

– No process knows the permutations,
– All the registers are initialized to the same default value.

In an anonymous memory system, ALL the registers are anonymous. Moreover, the
size of the anonymous memory is not under the control of the programmer, and it is
imposed on her/him. As shown in [2,9] (for non-anonymous processes and anonymous
memory), and in this article (for fully anonymous systems) the size of the anonymous
memory is a crucial parameter when one has to characterize the pairs 〈n,m〉 for which
election can be solved in fully anonymous n-process systems.

Process Participation. As in previous works on election in anonymous or non-
anonymous memory systems [9,24], this article considers two types of assumptions
on the behavior of the processes: (1) algorithms that require the participation of all the
processes to compete to be leaders, and (2) algorithms that do not (i.e., an arbitrary
subset of processes may participate but not necessarily all the processes).

Symmetric Algorithm. Considering a system in which the processes have distinct identi-
fiers, a symmetric algorithm is an algorithm where the processes can only compare their
identities with equality [24]. So there is no notion of smaller/greater on process identi-
ties, and those cannot be used to index entries of arrays, etc. This notion of symmetry
associated with process identities is the “last step” before their anonymity. In this arti-
cle, we will consider algorithms in which the processes (and memories) are anonymous
but will also mention symmetric algorithms.

1.3 Related Works on Anonymous Memories

Since its introduction, several problems have been addressed in the context of mem-
ory anonymity: mutual exclusion, election, consensus, set-agreement and renaming.
We discuss below work on the first two problems that are more related to our work.

Mutual Exclusion. First, we observe that no shared memory-based mutual exclusion
algorithm requires the participation of the processes. Let M(n) = {k : ∀ � : 1 < � ≤
n : gcd(�, k) = 1} (all the integers 2, ..., n are relatively prime with k). The following
results have been recently established.

– There is a deadlock-free symmetric mutual exclusion algorithm in the RMW (resp.
RW) model made up of m anonymous registers if and only if m ∈ M(n) (resp.
m ∈ M(n) \ {1}) [2].

Election in Fully Anonymous Shared Memory Systems 177

– There is a deadlock-free mutual exclusion algorithm in the process anonymous and
memory anonymous RMWmodel made up of m registers if and only if m ∈ M(n).
Moreover, there is no such algorithm in the fully anonymous RW communication
model [22].

The conditions relating m an n can be seen as the seed needed to break symmetry
despite anonymous memory, and symmetric or anonymous processes, thereby allowing
mutual exclusion and election to be solved. A single leader election can be considered
one-shot mutual exclusion, where the first process to enter its critical section is elected.

Election in the Symmetric Model. Considering the symmetric process model in which
all the processes (unlike in the mutual exclusion problem) are required to participate.
The following results are presented in [9] for such a model.

– There is a d-election symmetric algorithm in the memory anonymous RW and RMW
communication models made up of m registers if and only if gcd(m,n) ≤ d.

– There is an exact d-election symmetric algorithm in the memory anonymous RW
and RMW communication models made up of m registers if and only if gcd(m,n)
divides d.

We emphasize that the above results for d-election assume that the processes are sym-
metric and not that they are anonymous, as done in this article. Finally, fully anonymous
agreement problems are investigated in [23].

Remark. While addressing a different problem in a different context, it is worth men-
tioning the work presented in [8] that addresses the exploration of an m-size anony-
mous not-oriented ring by a team of n identical, oblivious, asynchronous mobile robots
that can view the environment but cannot communicate. Among other results, the
authors have shown that there are initial placements of the robots for which gather-
ing is impossible when n and m are not co-prime, i.e., when gcd(n,m) �= 1. They also
show that the problem is always solvable for gcd(n,m) = 1 when n ≥ 17.

1.4 Motivation and Content

Motivation. The main motivation of this work is theoretical. It investigates a funda-
mental symmetry-breaking problem (election) in the worst adversarial context, namely
asynchronous and fully anonymous systems. Knowing what is possible/impossible,
stating computability and complexity lower/upper bounds are at the core of algorith-
mics [3,11], and trying to find solutions “as simple as possible” is a key if one wants
to be able to master the complexity of future applications [1,7]. This article aims to
increase our knowledge of what can/cannot be done in the full anonymity context, pro-
viding associated necessary and sufficient conditions which enrich our knowledge on
the system assumptions under which fundamental problems such as election can be
solved.1

1 On an application-oriented side, it has been shown in [16,17,19] that the process of genome-
wide epigenetic modifications (which allows cells to utilize the DNA) can be modeled as a
fully anonymous shared memory system where, in addition to the shared memory, also the
processes (that is proteins modifiers) are anonymous. Hence fully anonymous systems can be
useful in the context of biologically-inspired distributed systems [17,19].

178 D. Imbs et al.

When one has to solve a symmetry-breaking problem, the main issue consists in
finding the “as weak as possible” initial seed from which the initial system symmetry
can be broken. So, considering FULL anonymity, this article complements previously
known results on anonymous systems (which were on non-anonymous processes and
anonymous memory [2,9]). In all cases, the seed that allows breaking the very strong
(adversary) symmetry context defined by FULL anonymity is captured by necessary
and sufficient conditions relating the number of anonymous processes and the size of
the anonymous memory.

Content of the Article. Let m,n and d be the number of registers, the number of pro-
cesses and the number of leaders, respectively, and (as previously defined) M(n, d) =
{k : ∀ � : 1 < � ≤ n : gcd(�, k) ≤ d}. Table 1 summarizes the four main results.

Table 1. Election in the fully anonymous shared memory systems.

Problem Register
type

Participation Necessary & sufficient
condition on 〈m,n, d〉

Necessary sufficient Section

d-election RMW not required m ∈ M(n, d) Theorem 1 Theorem 2 Algo
1

2

Exact d-election RMW required gcd(m,n) divides d Follows from
[9]

Theorem 5 Algo
2

3

d-election RMW required gcd(m,n) ≤ d Follows from
[9]

Theorem 7 4

d-election and
Exact d-election

RW required or not required Impossible Corollary 2 5

1. A d-election algorithm in the RMW communication model, which does not require
participation of all the processes. It is also shown that the condition m ∈ M(n, d) is
necessary and sufficient for such an algorithm. Notice that M(n, 1) is the set M(n)
that appears in the results for fully anonymous mutual exclusion discussed earlier.

2. An exact d-election algorithm for the RMW communication model in which all the
processes are required to participate. It is also shown that the necessary and sufficient
condition for such an algorithm is gcd(m,n) divides d.

3. A d-election algorithm (which is based on the previous result) for the RMW commu-
nication model in which all the processes are required to participate. It is also shown
that gcd(m,n) ≤ d is a necessary and sufficient condition for such an algorithm.
(The short algorithm appears in the proof of Theorem 7.)2

4. An impossibility result that regardless whether participation is required or not, there
is neither d-election nor exact d-election algorithm in the anonymous RW commu-
nication model.

Let us notice that, due to the very nature of the anonymous process model, no process
can know the “identity” of elected processes. So, at the end of an election algorithm in
the anonymous process model, a process only knows if it is or not a leader.

2 Both the algorithms described in the paper are simple. Their early versions were far from being
simple, and simplicity is a first class property. As said by Y. Perlis (the recipient of first Turing
Award) “Simplicity does not precede complexity, but follows it” [18].

Election in Fully Anonymous Shared Memory Systems 179

We point out that the leader election problem has several variants, and the most
general one, where a process only knows if it is or not a leader is a very common
variant [5,21,25].

2 d-Election in the RMW Model Where Participation is Not
Required

Throughout this section, it is assumed that communication is through RMW anonymous
registers and that the processes are not required to participate [13].

2.1 A Necessary Condition for d-election

In this subsection, it is further assumed that processes have identities that can only
be compared (symmetry constraint). As they are weaker models, it follows that the
necessary condition proved below still holds in RMW model where both the processes
and the memory are anonymous, and in the model where communication is through
anonymous RW registers.

Theorem 1. There is no symmetric d-election algorithm in the RMW communication
model for n ≥ 2 processes using m anonymous registers if m /∈ M(n, d).

Proof. Let k be an arbitrary positive number such that 1 ≤ k ≤ n. Below we examine
what must be the relation between k, m and d, when assuming the existence of a sym-
metric d-election algorithm for n processes using m ≥ 1 anonymous RMW registers.
To simplify the modulo notation, the processes are denoted p0, ..., pn−1.

Let gcd(m, k) = δ, for some positive number δ. We will construct a run in which
exactly k processes participate. Let us partition these k processes into δ ≥ 1 disjoint
sets, denoted P0, ..., Pδ−1, such that there are exactly k/δ processes in each set. This
partitioning is achieved by assigning process pi (where i ∈ {0, ..., k − 1}) to the set
Pi mod δ. For example, when k = 6 and δ = 3, P0 = {p0, p3}, P1 = {p1, p4}, and P2 =
{p2, p5} (top of Fig. 1). Such a division is possible since, by definition, gcd(m, k) = δ.

p0 p3 p1 p4 p2 p5

P1P0 P2

Q0 Q1

Fig. 1. Illustration of the runs for k = 6 and δ = 3

180 D. Imbs et al.

Let us arrange the m registers on a ring with m nodes where each register is placed
on a different node. To each one of the δ sets of processes Pi (where i ∈ {0, ..., δ −
1}), let us assign an initial register (namely, the first register that each process in that
set accesses) such that for every two sets Pi and its ring successor P(i+1) mod δ the
distance between their assigned initial registers is exactly δ when walking on the ring
in a clockwise direction. This is possible since gcd(m, k) = δ.

The lack of global names for the RMW anonymous registers allows us to assign,
for each one of the k processes, an initial register and an ordering which determines
how the process scans the registers. An execution in which the k processes are running
in lock-steps, is an execution where we let each process take one step (in the order
p0, ..., pk−1), and then let each process take another step, and so on. For a given d-
election algorithm A, let us call this execution, in which the processes run in lock-steps,
ρA. For simplicity, we will omit the subscript A and simply write ρ.

For process pi and integer j, let order(pi, j) denotes the jth new (i.e., not yet
assigned) register that pi accesses during the execution ρ, and assume that we arrange
that order(pi, j) is the register whose distance from pi’s initial register is exactly (j−1),
when walking on the ring in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new reg-
ister that pi accesses and so on. That is, pi does not access order(pi, j + 1) before
accessing order(pi, j) at least once, but for every j′ ≤ j, pi may access order(pi, j′)
several times before accessing order(pi, j + 1) for the first time. Since the memory is
anonymous, when a process accesses a register for the first time, say register REG [x],
we may map x to any (physical) register that it hasn’t accessed yet. However, when it
accesses REG [x] again, it must access the same register it has accessed before when
referring to x.

Let us now consider another division of the k processes into sets. We divide the k
processes into k/δ disjoint sets, denoted Q0, ..., Qk/δ−1, such that there are exactly δ
processes in each set. This partitioning is achieved by assigning process pi (where i ∈
{0, ..., k−1}) to the setQ�i/δ�. For example, when k = 6 and δ = 3,Q0 = {p0, p1, p2},
and Q1 = {p3, p4, p5}. Again, such a partitioning is possible since gcd(m, k) = δ
(bottom of Fig. 1).

We notice that Q0 includes the first process to take a step in the execution ρ, in each
one of the δ sets, P0, ..., Pδ−1. Similarly, Q1 includes the second process to take a step
in the execution ρ, in each one of the δ sets, P0, ..., Pδ−1, and so on.

Since only comparisons for equality are allowed, and all registers are initialized
to the same value –which (to preserve anonymity) is not a process identity– in the
execution ρ, for each i ∈ {0, ..., n/δ − 1}, all the processes in the set Qi that take
the same number of steps must be at the same state. (This is because all the processes
in Qi are located at the same distance around the ring. At each lockstep, they invoke
the Read/Modify/Write operation into different locations, so because of the symmetry
assumption, it is not possible to break the symmetry-between them, (either all or none
are elected.) Thus, in the run ρ, it is not possible to break symmetry within a set Qi

(i ∈ {0, ..., k/δ − 1}), which implies that either all the δ processes in the set Qi will be
elected, or no process in Qi will be elected.

Election in Fully Anonymous Shared Memory Systems 181

Thus, the number of elected leaders in ρ equals δ times the number of Qi sets
(i ∈ {0, ..., k/δ − 1}) that all their members were elected, and (by definition of d-
election) it must be a positive number. That is, the number of elected leaders in ρ equals
aδ for some integer a ∈ {1, ..., k/δ}.

Since in a d-election algorithm at most d leaders are elected in run ρ, it follows
from the fact that for some positive integer a, it must be the case that aδ ≤ d. Thus,
it must be the case that gcd(m, k) = δ ≤ d. Since k was chosen arbitrarily from
{1, ..., n}, it follows that a necessary requirement for a symmetric d-election algorithm
for n ≥ 2 processes using m anonymous RMW registers is that, for every 1 ≤ k ≤ n,
gcd(m, k) ≤ d.
�Theorem1

2.2 A d-election algorithm in RMW fully anonymous systems

Anonymous Memory. The anonymous memory is made up of m RMW registers
R[1..m], each initialized to the default value 0. It is assumed that m ∈ M(n, d) (recall
that M(n, d) = {k : ∀ � : 1 < � ≤ n : gcd(�, k) ≤ d}).
Local Variables at Each Process pi. Each process pi manages the following set of local
variables.

– counter i: used to store the number of RMW registers owned by pi. A process owns
a register when it is the last process that wrote a positive value into this register.

– myview i[1..n]: array of Boolean values, each initialized to false. When
myview i[j] is equal to true, pi owns the register Ri[j].

– round i (initialized to 0): round number (rung number in the ladder metaphor, see
below) currently attained by pi in its competition to be a leader. When round i =
n − d + 1, pi becomes a leader.

– competitorsi: maximal number of processes that compete with pi when it executes
a round.

Participation and Output. Any number of processes can invoke the election algorithm.
A process exits the algorithm when it invokes return(res) where res is leader or
not leader.

Description of the of the Algorithm. The code of each anonymous process pi appears
in Fig. 2. When the process pi invokes elect(), it enters a repeat loop that it will exit at
line 11 if it is not elected, and at line 13 if it is elected.

Once in a new round, pi first writes its new round number in all the registers it
owns, those are the registers Ri[j] such that myview i[j] = true (line 4). Then, it
strives to own as many registers as possible (without compromising liveness). To this
end, it considers all the registers Ri[j] such that Ri[j] < roundi (line 6). If such
a register is equal to 0 (i.e., is not currently owned by another process), pi invoke
compare&swap(Ri[j], 0, roundi) to own it (line 7). If it is the case, it accordingly
increases counteri (line 8).

Then pi computes the maximal number of processes that, at round round i, can
compete with them (variable competitorsi at line 9). There are then two cases. If it owns
fewer registers than the average number m/competitors (division on real numbers), pi

182 D. Imbs et al.

resets the registers it owns to their initial value (line 11), and withdraws from the leader
competition (line 12). Otherwise, if roundi < n − d + 1, pi re-enters the repeat loop
to progress to the next round. If roundi = n − d + 1, pi is one the at most d leaders
(line 14).

Let us note that a (successful) assignment of a round number to Ri[j] by a process
pi at line 7 has Ri[j] = 0 as pre-condition and Ri[j] > 0 as post-condition. Moreover,
both the assignment of Ri[j] at lines 4 and 11 have Ri[j] > 0 as pre-condition. It
follows that, between the lines 3 and 9 counteri counts the number of registers owned
by pi.

Fig. 2. d-election for n anonymous processes and m ∈ M(n, d) anonymous RMW registers

2.3 Proof of Algorithm 1

Let us say that “process pi executes round r” when its local variable roundi = r.
Reminder: m ∈ M(n, d) where M(n, d) = {k : ∀ � : 1 < � ≤ n : gcd(�, k) ≤ d}.
Lemma 1. For every r ∈ {1, ..., n − d + 1}, at most n − r + 1 processes may execute
round r. In particular, at most d processes may execute round n − d + 1.

Proof. The proof is by induction on the number of rounds. The induction base is simple
since at most n processes may execute round r = 1. Let us assume (induction hypothe-
sis) that the lemma holds for round r < n − d + 1 and prove that the lemma also holds
(induction step) for round r + 1. That is, we need to show that at most n − r processes
execute round r + 1.

Election in Fully Anonymous Shared Memory Systems 183

Let Pr be the set of processes that execute round r. If |Pr| < n − r +1 then we are
done, so let us assume that |Pr| = n−r+1. Notice that, since r < n−d+1, |Pr| > d.

We have to show that at least one process in Pr will not proceed to round r + 1,
i.e., to show that at least one process in Pr will withdraw at line 12. This amounts to
show that for at least one process pi ∈ Pr the predicate counter i < m/competitorsi

is evaluated to true when pi executes line 10 during round r.
Assume by contradiction that the predicate counter i < m/competitorsi in line 13

is evaluated to false for each process pi ∈ Pr. For each 1 ≤ i ≤ |Pr|, let counter(i)
denotes the value of counter i at that time (when the predicate is evaluated to false).
Thus, for all 1 ≤ i ≤ |Pr|, counter(i) ≥ m/(n − r + 1). Hence, it follows from the
following facts,

1. counter(1) + · · · + counter(|Pr|) = m,
2. ∀ 1 ≤ i ≤ |Pr| : counter(i) ≥ m/(n − r + 1), and
3. |Pr| = n − r + 1,

that ∀ 1 ≤ i ≤ |Pr| : counter(i) = m/(n − r + 1). Moreover, as

1. counter(i) is a positive integer, we have gcd(n − r + 1,m) = n − r + 1,
2. r < n − d + 1 it follows that n − r + 1 > d,

from which follows that gcd(n − r +1,m) > d, which contradicts the assumption that
m ∈ M(n, d).

Lemma 2. At most d processes are elected.

Proof. The proof is an immediate consequence of Lemma 1, which states that at most
d processes may execute round n−d+1. If they do not withdraw from the competition,
each of these processes exits the algorithm at line 14, and considers it is a leader.

�Lemma 2

Lemma 3. For every r ∈ {1, ..., n − d+1}, at least one process executes round r+1.
In particular, at least one process executes round n−d+1 at the end of which it claims
it is a leader.

Proof. Considering the (worst) case where the n processes execute round r = 1, we
show that at least one process attains round 2. To this end, let us assume by contradiction
that no process attains round 2. This means that all the processes executed line 10 and
found the predicate equal to true (they all withdrew) hence each process pi is such
that counteri < m/(n − r + 1) = m/n. Using the notations and the observations of
Lemma 1, we have

1. |Pr| = n,
2. counter(1) + · · · + counter(n) = m,
3. ∀ 1 ≤ i ≤ n : counter(i) < m/(n − r + 1) = m/n.

If then follows from the last item that counter(1)+ · · ·+counter(n) < n×m/n = m
which contradicts the second item. It follows from this contradiction that there is at
least one process for which the predicate of line 10 is false at the end of round 1, and
consequently this process progresses to round r = 2.

184 D. Imbs et al.

Assuming now by induction that at most (n − r+1) processes execute round r, we
show that at least one process progresses to round r+1. The proof follows from the three
previous items where |Pr| = n−r+1 (item 1), counter(1)+ · · ·+counter(|Pr|) = m
(item 2), and ∀ 1 ≤ i ≤ |Pr| : counter(i) < m/(n − r + 1) (item 3), from which we
conclude counter(1) + · · ·+ counter(|Pr|) < n × (m − r + 1)(m/(m − r + 1)), i.e.
m < m, a contradiction. It follows that at least one process executes the round r + 1
during which it finds the predicate of line 10 false and consequently progresses to the
next round if r < n−d+1. If r = n−d+1, the process executes line 14 and becomes
a leader.
�Theorem 3

Theorem 2. Let m, n and d be such that m ∈ M(n, d), and assume at least one
process invokes elect(). Algorithm 1 (Fig. 2) solves d-election in a fully anonymous
system where communication is through RMW registers.

Proof. The proof follows directly from the lemmas 2 and 3.
�Theorem 2

3 Exact d-election in the RMW Model Where Participation is
Required

This section considers the fully anonymous RMWmodel in which all the processes are
required to participate. In such a context, it presents an exact d-election algorithm that
assumes that d is a multiple of gcd(m,n). It also shows that this condition is necessary
for exact d-election in such a system model.

3.1 A Necessary Condition for Exact d-election

The following theorem, which considers anonymous memory and non-anonymous pro-
cesses with the symmetry constraint, has been stated and proved in [9].

Theorem 3. (See [9]). There is no symmetric exact d-election algorithm in the RMW
communication model for n ≥ 2 processes using m anonymous registers if gcd(m,n)
does not divide d.

As in Sect. 2.1 this impossibility still holds in the RMWmodel where both the processes
and the memory are anonymous, and in the model where communication is through
anonymous RW registers.

3.2 An Exact d-election algorithm

Anonymous Memory. All the registers of the anonymous memory R[1..m] are RMW
registers initialized to 0. Moreover, the size m of the memory is such that gcd(m,n)
divides d.

An anonymous register R[x] will successively contain the values 1, 2, ...
where the increases by 1 are produced by successful executions of compare&swap
(R[x], val, val + 1) issued by the processes (lines 6 and 8 in Fig. 3). The fact that a
process can increase the value of a register to val + 1 only if its current value is val is
the key of the algorithm.

Election in Fully Anonymous Shared Memory Systems 185

Underlying Principle. The key idea that governs the algorithm is Bezout’s identity, a
Diophantine equation that relates any pair of positive integers according to their Great-
est Common Divisor3.

Theorem 4. (Bezout, 1730-1783). Let m and n be two positive integers and let d =
gcd(m,n). There are two positive integers u and v such that u × m = v × n + d.4

Consider a rectangle made up of u × m squares. On one side, this means
that u squares are associated with each of the m anonymous registers. On another
side, each of the n processes progresses until it has “captured” v squares (from
an operational point of view, the capture of a square is a successful invocation of
compare&swap(R[x], val, val + 1).

Then, when v × n squares have been captured by the processes, each process com-
petes to capture one more square. As it remains only d = u × m − v × n squares, the
processes that succeed in capturing one more square are the d leaders.

Local variables at each process pi

– woni (initialized to 0): number of squares captured by pi.
– sumi (initialized to 0): local view of the numbers of squares captured by all the
processes.

– myview i[1..m]: local copy (non-atomically obtained) of the anonymous memory
R[1..m].

Description of the Algorithm. Assuming d is a multiple of gcd(m,n) and all the pro-
cesses participate, Algorithm 2 (described in Fig. 3) solves exact d-election for n anony-
mous processes and m RMW anonymous registers.

When it invokes elect(), a process pi enters a repeat loop lines 1–10. Each time
it enters the loop, pi asynchronously reads the anonymous memory non-atomically
(line 2) and then counts in sumi the number of squares that have been captured by
all processes as indicated by the previous asynchronously reads (line 3).

If pi sees a register R[x] that has been captured less than u times (line 4), there are
two cases.

– If woni < v, pi tries to capture one of the u squares of R[x]. To this end pi uses
the RMW operation: it invokes compare&swap(R[x],myview i[x],myview i[x]+1).
If it is successful, it increases woni, the number of squares it has captured so far
(line 6).

– If sumi ≥ v × n (we have then woni = v), pi strives to capture one more square
(line 8). If it is successful, it is elected as of the d leaders.
In the other case, if sumi = u × m, all the squares have been captured, so pi is not
a leader (line 11). Otherwise, pi re-enters the repeat loop.

3 This principle has already been used in [9] to solve exact d-election with a symmetric algo-
rithm in a system where the (non-anonymous) processes cooperate through an anonymous RW
registers.

4 The pair 〈u, v〉 is not unique. Euclid’s gcd(m, n) algorithm can be used to compute such pairs.

186 D. Imbs et al.

Fig. 3. Exact d-election for n anonymous processes and m RMW anonymous registers

Remark. Let α and β be two integers such that m = α × gcd(m,n) and n = β ×
gcd(m,n). The equations u × m = v × n + d and d = � × gcd(m,n) give rise to the
equation u × α = v × β + �, which can be used to obtain a more efficient version of
the algorithm.

3.3 Proof of Algorithm 2

Theorem 5. Let m, n and d be such that gcd(m,n) divides d, and assume all the pro-
cesses invoke elect(). Algorithm 2 (Fig. 3) solves exact d-election in a fully anonymous
system where communication is through RMW registers.

Proof. Let us first observe that, due to the atomicity of compare&swap(), if several
processes invoke compare&swap(X, v, v+1) on the very same register X whose value
is v, exactly one of them succeeds in writing v + 1. It follows that each of the u × m
squares is captured by only one process. Moreover, due to the predicate of line 5, each
process eventually captures v squares. Once this occurs, it remains d squares, which
are captured by d distinct processes at line 8 (these processes are distinct because, once
a process captured such a square, it returns the value leader and stops executing).
Moreover, a process can capture one of the d remaining squares only after each process
has captured v squares at line 6. It follows that exactly d processes exit the algorithm
at line 7 with a successful compare&swap(), and the (n − d) other processes exit the
algorithm at line 11.
�Theorem 5

Election in Fully Anonymous Shared Memory Systems 187

4 d-Election in the RMW Model Where Participation is Required

This section considers the fully anonymous RMW model in which all the processes
are required to participate. In such a context, it presents a d-election algorithm where
gcd(m,n) ≤ d. It also shows that this condition is necessary for d-election in such a
system model.

4.1 A Necessary Condition for d-election

The following theorem, which considers anonymous memory and non-anonymous pro-
cesses with the symmetry constraint, has been stated and proved in [9].

Theorem 6. (See [9]). There is no symmetric d-election algorithm in the RMW com-
munication model for n ≥ 2 processes using m anonymous registers if gcd(m,n) > d.

Clearly, this impossibility still holds in the RMW model where both the processes and
the memory are anonymous, and in the model where communication is through anony-
mous RW registers.

4.2 A Necessary and Sufficient Condition for d-election

The following corollary is an immediate consequence of Theorem 5.

Corollary 1. For any pair 〈n,m〉, it is always possible to solve exact gcd(n,m)-
election in a fully anonymous system where communication is through RMW registers.

Let us also observe that any exact d-election algorithm trivially solves d-election (but
then the bound is then not tight). We also have the following theorem.

Theorem 7. For any pair 〈n,m〉, it is possible to solve d-election in a fully anonymous
system where communication is through RMW registers if and only if gcd(n,m) ≤ d.

Proof. If direction. For any pair 〈n,m〉 such that gcd(n,m) ≤ d, it is possible to
solve d-election by running an exact gcd(n,m)-election algorithm, which exists due to
Corollary 1.

As the fully anonymous model is a weaker model than the symmetric model, the
“Only if” direction follows from Theorem 6.
�Theorem 7

5 Impossibility in the RW Communication Model

Theorem 8. There is neither d-election nor exact d-election algorithms in the process
anonymous RW non-anonymous communication model.

188 D. Imbs et al.

Proof. Assuming such an algorithm exists, let us order the participating processes in
some fixed order, e.g., p1, ..., px (x = n in the case where full participation is required).
Let us consider in such a setting a lock-step execution in which p1 executes its first
(read or write operation on a shared register) operation, then p2 executes its first oper-
ation, etc., until px that executes its first (read or write) operation on the shared non-
anonymous memory. As all processes have the same code, they all execute the same
operation on the same register and are consequently in the same local state after having
executed their first operation. The same occurs after they have their (same) second oper-
ation, etc. It follows that, whatever the number of steps executed in a lock-step manner
by the processes, they all are in the same local state. So, it is impossible to break their
anonymity (that would allow us to elect some of them).
�Theorem 8

Let us consider an anonymous memory in which the memory adversary asso-
ciates the same address mapping to all the processes (i.e., ∀i, j ∈ {1, · · · , n} and
x ∈ {1, · · · ,m} we have fi(x) = fj(x), see Sect. 1.2). In this case, the model boils
down to the process anonymous and non-anonymous memory. The next corollary is
then an immediate consequence of the previous theorem.

Corollary 2. There is neither d-election nor exact d-election algorithms in the fully
anonymous RW communication model.

6 Conclusion

This article has investigated the d-election problem in fully anonymous shared memory
systems. Namely, systems where not only the processes are anonymous but the shared
memory also is anonymous in the sense that there is no global agreement on the names
of the shared registers (any register can have different names for distinct processes).
Assuming RMW atomic registers, it has shown that both the d-election problem (at
least one and at most processes are elected) and the exact d-election problem (exactly d
processes are elected) can be solved in such an adversarial context if and only if the three
model parameters n (number of processes), m (size of the anonymous memory), and d
(number of leaders) satisfy some properties. These necessary and sufficient conditions
are:

– m ∈ M(n, d) for solving d-election when participation is not required,
– gcd(m,n) divides d for solving exact d-election when participation is required, and
– gcd(m,n) ≤ d for solving d-election when participation is required.

It has also been shown that,

– neither d-election nor exact d-election can be solved in a fully anonymous system
where communication is through atomic RW registers.

This work complements previously known research on the symmetry-breaking problem
(election) in the context of fully anonymous RW/RMW systems. A very challenging
problem remains to be solved: are there other non-trivial functions that can be solved in
the fully anonymous RW/RMW setting.

Acknowledgments. The authors want to thank the referees for their constructive comments.

Election in Fully Anonymous Shared Memory Systems 189

A The Case Wherem = 1

When the anonymous memory is made up of a single register R, we have gcd(1, n) =
1 ≤ 1. In this case there is a very simple d-election algorithm described below, where
the single anonymous register is initialized to 0 (Fig. 4).

Fig. 4. d-election for n anonym. processes when the anonym. memory is a single RMW register

References

1. Aigner M. and Ziegler G., Proofs from THE BOOK (4th edition). Springer, 274 pages, ISBN
978-3-642-00856-6 (2010)

2. Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., and Woelfel Ph., Optimal memory-
anonymous symmetric deadlock-free mutual exclusion. Proc. 38th ACM Symposium on
Principles of Distributed Computing (PODC’19), ACM Press, 10 pages (2019)

3. Angluin D., Local and global properties in networks of processes. Proc. 12th Symposium on
Theory of Computing (STOC’80), ACM Press, pp. 82–93, (1980)

4. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous shared-
memory systems. Information and Computation 173(2), 162–183 (2002)

5. Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and advanced
topics, (2nd Edition), Wiley-Interscience, 414 pages, 2ISBN 0-471-45324-2 (2004)

6. Bouzid, Z., Raynal, M., Sutra, P.: Anonymous obstruction-free (n, k)-set agreement with
(n − k + 1) atomic read/write registers. Distributed Computing 31(2), 99–117 (2018)

7. Dijkstra, E.W.: Some beautiful arguments using mathematical induction. Algorithmica 13(1),
1–8 (1980)

8. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring
exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)

9. Godard E., Imbs D., Raynal M., and Taubenfeld G., From Bezout identity to space-optimal
leader election in anonymous memory systems. Proc. 39th ACM Symposium on Principles
of Distributed Computing (PODC’20), ACM press, pp. 41–50 (2020)

10. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computations.
Distributed Computing 20, 165–177 (2007)

11. Harel D. and Feldman Y., Algorithmics, the spirit of computing. Springer, 572 pages (2012)
12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

190 D. Imbs et al.

13. Imbs, D., Raynal, M., Taubefeld, G.: Election in fully anonymous shared memory systems:
tight space bounds and algorithms. ArXiv:2203.02988v1, 17 pages (2022)

14. Kshemkalyani, A.D., Singhal, M.: Distributed computing: principles, algorithms and sys-
tems. Cambridge University Press, 736 pages (2008)

15. Lamport, L.: On interprocess communication, Part I: basic formalism. Distrib. Comput. 1(2),
77–85 (1986)

16. Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems biology and
computational thinking. Molecular Syst. Biol. 7(546), 1–11 (2011)

17. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and computa-
tional systems. Commun. ACM 58(1), 94–102 (2015)

18. Perlis, A.: Epigrams on programming. ACM SIGPLAN Notices 17(9), 7–13 (1982)
19. Rashid, S., Taubenfeld, G., Bar-Joseph, Z.: The epigenetic consensus problem. In: Jurdziński,

T., Schmid, S. (eds.) SIROCCO 2021. LNCS, vol. 12810, pp. 146–163. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79527-6 9

20. Raynal, M.: Concurrent programming: algorithms, principles and foundations. Springer, 515
p., ISBN 978-3-642-32026-2 (2013)

21. Raynal, M.: Distributed Algorithms for Message-Passing Systems, 534 p. Springer (2013).
ISBN 978-3-642-38122-5 (2013)

22. Raynal, M., Taubenfeld, G.: Mutual exclusion in fully anonymous shared memory systems.
Inf. Process. Lett. 158 (2020)

23. Raynal, Michel, Taubenfeld, Gadi: Fully anonymous consensus and set agreement algo-
rithms. In: Georgiou, Chryssis, Majumdar, Rupak (eds.) NETYS 2020. LNCS, vol. 12129,
pp. 314–328. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67087-0 20

24. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual exclusion
problems. In: Proceedings of 8th ACM Symposium on Principles of Distributed Comput-
ing (PODC’89), pp. 177–191. ACM Press (1989)

25. Taubenfeld, G.: Synchronization algorithms and concurrent programming, 423 p., Pearson
Education/Prentice Hall, ISBN 0-131-97259-6 (2006)

26. Taubenfeld, G.: Coordination without prior agreement. In: Proceedings of the 36th ACM
Symposium on Principles of Distributed Computing (PODC 2017), pp. 325–334. ACM Press
(2017)

http://arxiv.org/abs/2203.02988v1
https://doi.org/10.1007/978-3-030-79527-6_9
https://doi.org/10.1007/978-3-030-67087-0_20

Dispersion of Mobile Robots on Directed
Anonymous Graphs

Giuseppe F. Italiano1 , Debasish Pattanayak1 , and Gokarna Sharma2(B)

1 LUISS University, Rome, Italy
{gitaliano,dpattanayak}@luiss.it

2 Kent State University, Kent, OH, USA
gsharma2@kent.edu

Abstract. Given any arbitrary initial configuration of k ≤ n robots positioned
on the nodes of an n-node anonymous graph, the problem of dispersion is to
autonomously reposition the robots such that each node will contain at most
one robot. This problem gained significant interest due to its resemblance with
several fundamental problems such as exploration, scattering, load balancing,
relocation of electric cars to charging stations, etc. The objective is to solve dis-
persion simultaneously minimizing (or providing a trade-off between) time and
memory requirement at each robot. The literature mainly dealt with dispersion
on undirected anonymous graphs. In this paper, we initiate the study of disper-
sion on directed anonymous graphs. We first show that it may not always be
possible to solve dispersion when the directed graph is not strongly connected.
We then establish some lower bounds on both time and memory requirements at
each robot for solving dispersion on a strongly connected directed graph. Finally,
we provide two deterministic algorithms solving dispersion on any strongly con-
nected directed graph. Let D be the graph diameter and Δout be its maximum
out-degree. The first algorithm solves dispersion in O(k2 · Δout) time with
O(log(k + Δout)) bits at each robot. The second algorithm solves dispersion
in O(k · D) time with O(k · log(k + Δout)) bits at each robot, provided that
robots in the 1-hop neighborhood can communicate. Both algorithms extend to
handle crash faults.

Keywords: Multi-agent systems · Mobile robots · Local and 1-hop
communication · Directed graphs · Dispersion · Time and memory complexity

1 Introduction

The dispersion of autonomous mobile robots in a region is a problem of significant
interest in distributed robotics [16,17]. Recently, this problem has been formulated by
Augustine and Moses Jr. [2] in the context of graphs as follows: Given any arbitrary
initial configuration of k ≤ n robots positioned on the nodes of an n-node anonymous
graph, the robots reposition autonomously to reach a configuration where each robot
is positioned on a distinct node of the graph, which we call the DISPERSION problem.
This problem has many practical applications, e.g., relocating self-driving electric cars
(robots) to recharging stations (nodes), assuming that the cars have smart devices to
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 191–211, 2022.
https://doi.org/10.1007/978-3-031-09993-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_11&domain=pdf
http://orcid.org/0000-0002-9492-9894
http://orcid.org/0000-0003-2862-2795
http://orcid.org/0000-0002-4930-4609
https://doi.org/10.1007/978-3-031-09993-9_11

192 G. F. Italiano et al.

communicate with each other to find a free/empty charging station. This problem is
also important due to its relationship to many other multi-robot coordination problems,
including exploration, scattering, load balancing, and self-deployment [2,19–21].

The objective in DISPERSION is to simultaneously minimize (or provide trade-off
between) two fundamental performance metrics, (i) time and (ii) memory at each robot,
to successfully solve the problem. The literature studied DISPERSION mainly on undi-
rected graphs [2,19–22,24,26]. The following question naturally arises: Is it possible
to solve DISPERSION on directed anonymous graphs? The primary motivation behind
posing this problem is that the approaches for undirected graphs may not extend to solve
dispersion on directed graphs. The existing approaches for undirected graphs rely sub-
stantially on visiting a graph edge in both directions. The main challenge for directed
graphs is the direction on edges that restricts movement in only one direction. So any
technique for directed graphs should take critical care on this aspect. In this paper, we
study DISPERSION for the first time on directed graphs.

Contributions. We consider an anonymous port-labeled directed graph G = (V,E),
|V | = n, |E| = m, where nodes have no IDs and hence are indistinguishable from
each other, but the outgoing ports (leading to outgoing edges and neighbors) at each
node are distinguishable. The (outgoing) ports of any node v ∈ G with out-degree δv

out

have unique labels in [1, δv
out]. We consider k ≤ n robots on graph nodes, initially posi-

tioned arbitrarily (at least one node with multiple robots positioned on it; otherwise, the
problem is trivially solved). Each robot has a unique ID in [1, kO(1)]. The robots have
memory, but the graph nodes do not. The setting is synchronous – all robots become
active and perform their operations simultaneously in synchronized rounds – and time
is measured in rounds. Following the literature [2,19,20,22,24,26], we consider local
and 1-hop communication models. In the local model, only robots co-located at a graph
node can communicate. In the 1-hop model, a robot can communicate with robots posi-
tioned on its 1-hop neighbors (in addition to the co-located robots). The robots move
along the direction of the edges. The robots are susceptible to crashes at any time, and
once crashed a robot stops communicating with other robots.

First, we establish one impossibility and some lower bound results (Sect. 3). We
show that it may not always be possible to solve DISPERSION on a directed graph that
is not strongly connected; a directed graph is strongly connected if there is a path in
each direction between each pair of vertices. For strongly connected directed graphs, (i)
we observe a time lower bound of Ω(k) for any k ≤ n, (ii) we prove a time lower bound
of Ω(D2) for k = n, (iii) we prove a time lower bound of Ω(k2) for any DFS traversal
based algorithm, and (iv) we prove a memory lower bound of Ω(log k) bits per robot.
All these lower bounds are deterministic. Second, as our main contribution, we provide
two deterministic algorithms solving DISPERSION on any strongly connected directed
graph. Specifically, we prove the following theorem.

Theorem 1. Consider k ≤ n robots positioned initially arbitrarily on an n-node
strongly connected directed anonymous graph with diameter D and out-degree Δout,
DISPERSION can be solved in

a. O(k2 · Δout) time with Θ(log(k + Δout)) bits at each robot under the local model
with a DFS based algorithm. For f ≤ k robot crashes, the time bound becomes
O(f · k2 · Δout). (Sects. 4 and 6)

Dispersion of Mobile Robots on Directed Anonymous Graphs 193

b. O(k · D) time with O(k log(k + Δout)) bits at each robot under the 1-hop model.
The time bound also applies for the case of f ≤ k robots that may experience crash
fault. (Sects. 5 and 6)

To the best of our knowledge, these are the first results for DISPERSION on directed
graphs. Theorem 1(a) matches the Ω(k2) time lower bound within a O(Δout) factor,
which is asymptotically optimal for Δout = O(1), i.e., for constant out-degree directed
graphs. Theorem 1(b) shows that, under 1-hop communication, DISPERSION can be
solved with O(D/(k · Δout)) factor improvement on time.

Techniques. The impossibility result is established considering an initial configura-
tion on a not-strongly-connected directed graph so that there is always a node with
two robots positioned on it, irrespective of any technique used. The time lower bound
Ω(k) is obtained considering a (strongly connected) directed cycle. The time lower
bound Ω(D2) is established by constructing a (strongly connected) directed graph G
with k = n nodes and diameter (height) D = ω(1) such that any deterministic algo-
rithm needs Ω(D2) rounds to achieve DISPERSION. The time lower bound Ω(k2) for
a DFS traversal based algorithm is proved considering a strongly connected directed
graph where dispersing k/2 robots on k/2 different nodes needs exactly k/2 rounds
each, requiring in total at least Ω(k2) rounds to disperse all k robots successfully. The
memory lower bound Ω(log k) bits per robot is established considering the minimum
number of bits needed to distinguish IDs of two different robots as per the robot model
used.

As our main contribution, the time upper bound O(k2 · Δout) is achieved through
simulating a depth first search (DFS) traversal to visit the nodes of the directed graph,
settling a robot on each new node visited. The main difficulty is to backtrack over a
directed edge u → v, i.e., to find a directed path from v to u. The challenge is, if not
done carefully, the traversal gets stuck failing to reach u from v (which we call the local
maximum problem). We avoid the local maximum problem by ranking the nodes (with
settled robots) based on the order of the first DFS arrival. During the traversal, if it is
found that there is a backtracking path to a lower-ranked node, then the backtracking
path is updated to point to that lower-ranked node. We also devise a technique that
bounds the length of each backtrack path to ≤ k − 1 edges, even when DFSs start in
parallel from multiple nodes. Furthermore, when a DFS meets another, we subsume
one DFS by another based on the unique DFS IDs derived from the robot IDs. Putting
these ideas together, visiting k · Δout directed edges takes the DFS traversal to at least
k different nodes, allowing to settle k robots, in k · Δout · k = O(k2 · Δout) rounds.

As our another main contribution, the time upper bound O(k · D) is established
exploiting the information that can be broadcasted and gathered from the 1-hop com-
munication so that in every D rounds, at least a robot can be settled on a previously
empty node. Having 1-hop information is of no use in the DFS based algorithm as it
cannot exploit the information collected through 1-hop communication. To bookkeep
the information to successfully run broadcast and gather through 1-hop communication,
the memory is increased to O(k · log(k + Δout)) bits per robot.

For crash faults, we analyze the working principles of the fault-free cases of the
above algorithms to see how much extra work (time and memory) is required for each
crash. We show that the extra time is proportional to O(f ·k2 ·Δout) for the DFS based

194 G. F. Italiano et al.

algorithm and zero for the second algorithm; the memory bound stays the same as in
the fault-free cases in both the algorithms.

Related Work. The literature studied DISPERSION mostly in undirected graphs. Two
communication models were considered, local and global.

A significant amount of work in the literature is in the local model which we dis-
cuss first. Augustine and Moses Jr. [2] were the first to study DISPERSION assuming
k = n. They proved a memory lower bound of Ω(log n) bits at each robot and a time
lower bound of Ω(D) (Ω(n) in arbitrary graphs) for any deterministic algorithm. They
then provided deterministic algorithms using O(log n) bits at each robot to solve DIS-
PERSION on lines, rings, and trees in O(n) time. For arbitrary graphs, they provided
two algorithms, one using O(log n) bits at each robot with O(mn) time and another
using O(n log n) bits at each robot with O(m) time, where m is the number of edges
in the graph. Kshemkalyani and Ali [19] provided an Ω(k) time lower bound for arbi-
trary graphs for k ≤ n. They then provided three deterministic algorithms on arbitrary
graphs: (i) The first algorithm using O(k logΔ) bits at each robot with O(m) time, (ii)
The second algorithm using O(D logΔ) bits at each robot with O(ΔD) time, and (iii)
The third algorithm using O(log(k+Δ)) bits at each robot with O(mk) time, where Δ
and D, respectively, are the maximum degree and diameter of the graph. Kshemkalyani
et al. [20] provided an algorithm that runs inO(min(m, kΔ)·log k) time usingO(log n)
bits of memory at each robot on arbitrary graphs, given that parameter m,n, k are
known to robots. Shintaku et al. [32] established the same time bound without robots
knowing m,n, k. Recently, Kshemkalyani and Sharma [24] improved the time bound
to O(min(m, kΔ)) keeping memory O(log(k+Δ)) bits at each robot. For grid graphs,
Kshemkalyani et al. [22] provided an algorithm that runs in O(min(k,

√
n)) time using

O(log k) bits at each robot. Randomized algorithms are presented in [26] to solve DIS-
PERSION from rooted initial configurations where the random bits are mainly used to
reduce the memory requirement at each robot.

Recently, there is some work in the global model which we discuss now. In the
global model, the robots on the graph can communicate with each other despite their
locations on the graph . Kshemkalyani et al. [21] provided two deterministic algorithms
on arbitrary graphs: (i) The first algorithm using O(log(k +Δ)) bits at each robot with
O(min(m, kΔ)) time and (ii) The second algorithm using O(logD + Δ log k) bits at
each robot with O((D+ k)Δ(D+Δ)) time. For grid graphs, Kshemkalyani et al. [22]
provided a O(

√
k) time algorithm with O(log k) bits at each robot.

DISPERSION in dynamic (undirected) graphs was considered in [23]. Dispersion
under crash faults was considered in [29] and under byzantine faults was considered in
[27,28]. In this paper, we initiate study of DISPERSION on directed graphs and present
results using the local and 1-hop communication models.

One problem that is closely related to DISPERSION is the graph exploration by
mobile robots. The exploration problem has been quite heavily studied in the litera-
ture for specific as well as arbitrary graphs, e.g., [3,7,9,15,18,25]. The vast major-
ity of works considered undirected graphs. It was shown that a robot can explore an
anonymous graph using Θ(D logΔ)-bits of memory and the runtime of the algorithm
is O(ΔD+1) [15]. In the model where graph nodes also have memory, Cohen et al.
[7] gave two algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at

Dispersion of Mobile Robots on Directed Anonymous Graphs 195

each node, and the second algorithm uses O(logΔ) bits at the robot and 1 bit at each
node. The runtime of both algorithms is O(m)with preprocessing time of O(mD). The
trade-off between exploration time and number of robots is studied in [25]. The collec-
tive exploration by a team of robots is studied in [14] for trees. In directed graphs, two
cooperating robots were considered to explore and learn about the anonymous strongly
connected directed graph in [6]. The exploration and mapping of directed graphs was
also done by using a pebble in [5]. Exploration in directed graphs is also studied for
a searcher that tries to minimize the tour required to visit all the nodes in a graph [1]
using both randomized and online algorithms [13].

Another problem related to DISPERSION is the scattering of robots in graphs. Scat-
tering has been studied for rings [10,31] and grids [4,30]. Furthermore, DISPERSION

is related to the load balancing problem, where a given load at the nodes has to be
(re-)distributed among several processors (nodes). This problem has been studied quite
heavily in (undirected) graphs, e.g., see [8].

We refer readers to [11,12] for recent developments in the above research topics.

2 Model and Preliminaries

Graph. Let G = (V,E) be an n-node arbitrary, connected, unweighted, directed, port-
labeled, anonymous graph with m edges, i.e., |V | = n and |E| = m, such that nodes do
not have identifiers but, at any node vi ∈ V , its incident (outgoing) edges are uniquely
identified by a label (aka port number) in [1, δvi

out], where δvi
out is the out-degree of vi.

The out-degree of graph G is Δout = max1≤i≤n δvi
out, i.e., the maximum δvi

out among
the nodes in G. There is no bandwidth limitation on the edges, i.e., any number of
robots are allowed to traverse an edge at any time following the direction of the arrow.
The graph nodes do not have memory.

For any two nodes u, v ∈ G, we denote by path p(u, v) the sequence of consecutive
directed edges starting from u and ending at v. The diameter D is the longest shortest
directed path p(u, v) between any two nodes u, v ∈ G. A directed graph G is said to
be strongly connected if for each pair of nodes u, v, there is a directed path p(u, v)
reaching to v from u as well as a directed path p(v, u) reaching to u from v.

Robots. Let R = {r1, r2, . . . , rk} be a set of k ≤ n robots residing on the nodes of
G. No robot can reside on the edges of G, but one or more robots can occupy the same
node. Each robot has a unique O(log k)-bit ID taken from [1, kO(1)]. The ID of a robot
ri is denoted by ri.ID with ri.ID = i. Furthermore, it is assumed that each robot is
equipped with memory to store information.

Communication Model. There are two communication models: local and global [21–
23]. In the local model, a robot can only communicate with other robots co-located on
the same node. In the global model, a robot can communicate with any other robot,
irrespective of their positions on graph. We define an intermediate model of 1-hop com-
munication in which a robot can communicate to another robot, if they are located in
neighboring nodes. This paper considers the local and 1-hop communication models.

Time Cycle. At any time, a robot ri ∈ R could be active or inactive. When a robot
ri becomes active, it performs the “Communicate-Compute-Move” (CCM) cycle as

196 G. F. Italiano et al.

follows: (i) Communicate: For each robot rj ∈ R that is at some node vi, another robot
ri at vi (and vi’s neighbors in the 1-hop model) can observe the memory of rj . Robot ri

can also observe its own memory; (ii) Compute: Robot ri may perform an arbitrary
computation using the information observed during the “communicate” portion of the
cycle. This includes determining a (possibly) port to use to exit vi and the information
that is communicated to the robot rj that is at vi, (iii) Move: At the end of the cycle, ri

communicates the information to rj at vi (so that rj will store/update in its memory),
and exits vi using the computed port to reach a neighbor of vi.

Rooted and General Initial Configurations. An initial configuration is rooted if all
k ≤ n robots are positioned on a single node of G. In a general initial configuration,
there are robots on 1 < k′ < k different nodes with at least one node among k′ has
multiple robots. DISPERSION is trivially solved when k′ = k.

Crash Faults. A robot is susceptible to crash anytime and once it crashes at time t ≥ 0,
it stops communicating with other robots, i.e., at any time t′ > t, it appears like it has
vanished from the system.

Dispersion. DISPERSION in directed graphs is formally defined as follows. We denote
by f ≤ k the number of faults. The case of f = 0 is a fault-free DISPERSION and the
case of f > 0 is a faulty DISPERSION.

Definition 1 (DISPERSION). Given k ≤ n robots positioned initially arbitrarily on the
nodes of an n-node anonymous directed graph G = (V,E) with 0 ≤ f ≤ k robots may
crash at any time, the robots reposition autonomously such that each non-faulty robot
is on a distinct node of G and stays stationary thereafter.

Activation, Time, and Memory. Following previous works [2,19,20,22–24,26], we
consider the synchronous setting where every robot is active in every CCM cycle, per-
forming the cycle in synchrony. Time is measured in rounds. Another parameter is
memory which we measure as the number of bits.

3 Impossibility and Lower Bounds

We discuss here one impossibility result, three time lower bounds, and one memory
lower bound for DISPERSION on directed anonymous graphs. These results collectively
show the difficulty in obtaining a solution as well as obtaining fast runtime and low
memory when a solution exists.

We first discuss the impossibility result based on the graph type. Consider the case
of a directed graph G that is not strongly connected and all the robots are located on a
single node u ∈ G. We present the following impossibility result.

Theorem 2. It may not always be possible to solve DISPERSION on a not strongly
connected directed graph.

Proof. By definition, a graph G = (V,E) is strongly connected if and only if, for each
pair of vertices u, v ∈ V , there is a directed path p(u, v) from u to v and directed path

Dispersion of Mobile Robots on Directed Anonymous Graphs 197

p(v, u) from v to u. If G is not strongly connected then there exists at least a pair of
vertices u, v ∈ V such that at least p(u, v) or p(v, u) is not available. Assume that, in
graph G, v is not reachable from u, i.e., directed path p(u, v) is not available, but the
path p(v, u) is available. Let U ⊂ V be the set of vertices that are reachable from u. As
v is not reachable from u, v must also not be reachable from every vertex of the set U ,
otherwise there would be a directed path p(u, v) from u to v violating our assumption.
Since v is not reachable from u, it cannot be in the set U and it must be the case that
|U | ≤ n − 1. Consider now the rooted initial configuration of n robots located at node
u. Since v is not reachable from u (and all the nodes in the set U), at any time there
must be at least two robots located at some node in U . �	

Remark: Theorem 2 considers a rooted initial configuration of n robots on a node u
and a node v that is not reachable from v. If v is reachable from u, the problem has
a solution. However, since G is not known a priori, an algorithm may not be designed
that is able to achieve such a solution configuration.

We now present three time lower bounds for solving DISPERSION.

Theorem 3. Any deterministic algorithm for DISPERSION on strongly connected
directed graphs requires Ω(k) rounds.

Proof. Consider a directed cycle G. Note that G is strongly connected since for any
two nodes u, v ∈ G, there is a directed path p(u, v) and p(v, u). Consider a rooted
initial configuration of k ≤ n robots on a single node vroot of G. In order for the robots
to solve DISPERSION, they need to settle at k distinct nodes of G. To reach a node to
settle, some robot must travel k − 1 directed edges of G, taking k − 1 rounds. �	

For k = n, we present the following time lower bound for solving DISPERSION.

Theorem 4. For k = n, there exists a strongly connected directed graph G with n
nodes and diameter D such that any deterministic algorithm for DISPERSION requires
Ω(D2) rounds.

Fig. 1. Lower bound construction for a
DFS based DISPERSION algorithm.

We prove the following time lower bound
for DISPERSION on directed graphs using a DFS
traversal based algorithm, which improves on
Ω(D2) when k > O(D).

Theorem 5. Any DFS traversal based algorithm
for DISPERSION on strongly connected directed
graphs requires Ω(k2) rounds.

Proof. The proof construction is given in Fig. 1.
The graph G in Fig. 1 is strongly connected and
k ≤ n robots start from node u. The proof uses
the fact that after k/2 robots settle at the top arc
in k/2 rounds, for the rest k/2 robots, it needs
k/2 rounds each for a robot to settle. This gives in overall Ω(k2) rounds lower bound.
In the first k/2 − 1 rounds, k/2 robots settle at k/2 nodes on the top arc and a robot

198 G. F. Italiano et al.

settles on a column node in the round k/2. After that, each new node in the column is
visited in every next k/2 + 1 rounds, after visiting completely the nodes on the top arc.
The theorem follows. �	

We finally prove Ω(log k) bits per robot bound for any deterministic algorithm.

Theorem 6. Any deterministic algorithm for DISPERSION on n-node directed anony-
mous graphs requires Ω(log k) bits at each robot, where k ≤ n is the number of robots.

Proof. Each robot must have its identifier in the range [1, kO(1)] and we count this
memory space which must survive across rounds as the space complexity. �	

Table 1. Summary of variables used by each robot.

Symbol Description

settled Indicates a settled robot at a node

nodeRank Indicates the DFS order in which the robot is settled

backtrackTargetNode Indicates the ID of the last settled robot at a node with
unvisited ports

cycleClosingNode Indicates whether the node close the current traversal cycle

cycleClosingNodeRank Indicates value in the nodeRank variable of the cycle
closing node

DFSID ID of the DFS traversal starting from a node

recentPort Points to the last port via which the unsettled robots exited

phase Indicates explore, retrace1, or retrace2 phase

status Indicates the visited or fully-visited status of a node

rootPort = (port, rank) Indicates the port and associated rank at a node to reach
DFS root

Fig. 2. A state transition diagram depicting each phase of the DFS algorithm and what prompts a
transition from one phase to another. Initially, the algorithm starts from the explore phase.

Dispersion of Mobile Robots on Directed Anonymous Graphs 199

4 DFS Dispersion Algorithm

We present here a deterministic DFS traversal based (or simply DFS) algorithm.We first
discuss the variables used, then an overview of the approach, then a detailed discussion,
and finally the analysis.

Variables. Each robot maintains the following ten variables (description is
given in Table 1). A robot ri has the variables ri.settled (initally set to 0),
ri.recentPort (initially set to null), ri.cycleClosingNode (initially set to
null), ri.backtrackTargetNode (initially set to null), ri.phase (initially set to
explore), ri.status (initially set to null), ri.nodeRank (initially set to null),
ri.cycleClosingNodeRank (initially set to null), ri.rootPort = (port, rank) (ini-
tially set to (null, null)), and ri.DFSID (initially set to null). Variable ri.DFSID is
used only in the general case. The ri.settled variable indicates the robot ri that is set-
tled at a node vi and ri remains at vi forever. For a settled robot ri, ri.status ∈ {visited,
fully-visited}; ri.status becomes visited when vi is visited by DFS for the first time
and becomes fully-visited after all the outgoing ports at vi were already visited.

Algorithm 1: DFS algorithm

1 Input: k ≤ n robots on 1 ≤ k′ ≤ k nodes of G;
2 if ri is alone at node v ∈ G then
3 ri settles at v writing ri.settled ← 1 and setting DFS ID i;

4 else
5 each robot on v sets their DFSID i the largest ID among the robots on v and

perform DFS i (Algorithm 2);
6 if DFS i meets DFS j then
7 if i < j then
8 all unsettled robots of DFS i traverse DFS j to reach its head node, head(j),

to continue the traversal of DFS j;

9 else
10 DFS i continues its traversal, erasing the values set in all the variables by

DFS j and writing all the variables based on DFS i;

Overview of the Algorithm. The algorithm simulates a DFS traversal in three phases:
explore, retrace1, and retrace2. Figure 2 depicts how the DFS transitions from one
phase to another along with what happens during each phase and what prompts a phase
transition. Initially, the DFS is in explore phase. At any time, when the DFS visits an
unvisited node, then it settles a robot on it and marks visited. When the DFS reaches
to a node with a settled robot, say vx, then backtracking is required. The traversal exe-
cutes retrace1 phase (to find a backtrack target node, if any) and retrace2 phase (set-
ting backtrack path), one after another, and then it continues explore phase from the
backtrack target node. If vx has visited status, then retrace1 and retrace2 phases start
and end at vx (i.e., vx becomes the cycle closing node). Otherwise, these phases start
and end at some other node vy
= vx that has visited status (i.e., vy becomes the cycle

200 G. F. Italiano et al.

closing node). The phases retrace1 and retrace2 compute a backtrack path setting
variable rootPort so that backtracking can be done traversing the rootPort set. After
finishing retrace1 and retrace2 and returning to the cycle closing node, the traversal
either (i) moves to the backtrack target node (if not null) to execute the explore phase
or (ii) takes rootPort set (if backtrack target node is null) to reach a visited node to
continue again retrace1 and retrace2 phases. This process stops as soon as the robots
are settled solving DISPERSION.

Algorithm 2: Algorithm DFS l

1 initially, node rank is set to null for all robots;
2 let ri be a robot that belongs to DFS l at node v;
3 let rX be the settled robot at node v (if one exists; otherwise DFS l settles rX);
4 if ri.phase == explore then
5 if v is an unvisited node then
6 settle robot rX , write rX .recentPort ← rX .recentPort + 1,

rX .status ← visited, rX .nodeRank ← ri.nodeRank + 1, and exit v via
rX .recentPort;

7 if v is a visited node then
8 set v (a.k.a., rX) the cycle closing node and set ri.phase ← retrace1;

9 if v is a fully-visited node then
10 traverse rootPort pointers starting from v until finding a visited node, set that

node as the cycle closing node, and set ri.phase ← retrace1;

11 if ri.phase == retrace1 then
12 if ri is the smallest ID robot on v then
13 ri revisits the cycle following recentPort pointers and while doing so computes

the backtrack target node b that is farthest from v;
14 set ri.phase ← retrace2 after returning to v;
15 after returning to v, set ri.phase ← retrace2;

16 if ri.phase == retrace2 then
17 if ri is the smallest ID robot on v then
18 if b == null then
19 mark all nodes in the cycle as fully-visited;
20 follow rootPort at v until finding a visited node, set v as the cycle closing

node, and set ri.phase ← retrace1;

21 else
22 ri revisits the cycle following recentPort pointers and while doing so set

the ry.rootPort ← (ry.recentPort, r1.cycleClosingNodeRank) as
well as mark all the nodes after the backtrack target node b and before the
cycle closing node fully-visited;

23 after returning to v, follow again recentPort pointers to reach b then set
ri.phase ← explore, rb.recentPort ← rb.recentPort + 1, and exit via
b.recentPort (rb is the robot settled at b);

Dispersion of Mobile Robots on Directed Anonymous Graphs 201

We first discuss the rooted case (the pseudocode is in Algorithm 2). After that, we
will discuss the general case (the pseudocode is in Algorithms 1 and 2).

Rooted Algorithm. Let N(v) be the set of k ≤ n robots {r1, r2, . . . , rk} positioned
initially on node v ∈ G with ri.ID = i, forming a rooted configuration. At round 1,
the highest ID robot rk ∈ N(v) settles on v setting rk.settled ← 1, rk.status ←
visited, rk.recentPort ← 1, and rk.nodeRank ← 1. Robots N(v)\{rk} exit v via
rk.recentPort. The exiting robots carry rk.nodeRank, the rank of robot settled at v.

At round 2, suppose the robots N(v)\{rk} arrive at node w. The robot rk−1 settles
at w setting rk−1.settled ← 1, rk−1.status ← visited, rk−1.recentPort ← 1, and
rk−1.nodeRank ← rk.nodeRank + 1 (note that rk.nodeRank was carried from v).
The robots in N(v)\{rk, rk−1} exit w via rk−1.recentPort. The traversal continues
this way. If k different nodes are visited before reaching to a node with an already
settled robot, DISPERSION is achieved. However, if the DFS reaches to a node with a
settled robot, backtracking is required. In backtracking, the DFS needs to (in sequence)

– find a cycle closing node;
– starting from the cycle closing node, find a backtrack target node b from which the

DFS can again continue its explore phase settling the robots at new empty nodes;
– create/update backtrack path setting rootPort information appropriately; and
– go to backtrack target b from the cycle closing node to continue explore phase.

Finding cycle closing and backtrack target nodes happens in retrace1 whereas setting
backtrack path and going to the cycle closing node happens in retrace2 (Fig. 3).

Fig. 3. An illustration of the DFS traversal, starting from node a, after it reaches node c traversing
the sequence of edges a → b → c → d → . . . → i → c (shown in bold). Node c is a visited
node where ActivePath(a) ends and hence c can serve as a cycle closing node. The node f that
is farthest from c in the cycle c → . . . → f → . . . → c with unvisited out-going ports becomes
the backtrack target node during retrace1. During retrace2, (i) nodes g, h, i have no unvisited
out-going ports and marked fully-visited and (ii) the current port from d to i are stored in
rootPort (the corresponding edges are shown in red). (Color figure online)

General Algorithm. Suppose initially robots are positioned on 1 < k′ < k nodes of
G. At round 1, a single robot on a node, if any, settles at that node and the nodes with
multiple robots initiate parallel DFSs as in the rooted case (Lines 2–5 of Algorithm 1).
The node from which a DFS i starts is called the root of the DFS i and denoted as
root(i). If a parallel DFS does not meet another until all robots disperse, we are done.
The challenge is how to deal with a traversal meeting another.

202 G. F. Italiano et al.

A DFS i meets DFS j if the robots with DFS ID i arrive at a node x where a robot
from DFS ID j is settled. (If robots from DFS ID i and DFS ID j arrive at a node
where there is no settled robot, the robot from the DFS with the higher ID settles in
that round and the lower ID DFS is said to meet higher ID DFS.) If i > j, then we
call DFS i subsuming otherwise subsumed. The head of DFS i, denoted as head(i), is
the node where the unsettled robots (if any) of that DFS are currently located at (except
the robot that is responsible of executing the retrace1 and retrace2 phases), or else it
is the node where the last robot of that DFS settled. That is, while under the explore
phase, head(i) has all unsettled robots, however while under retrace1 and retrace2
phases, the cycle closing node c acts as head(i) and all unsettled robots except the robot
performing retrace1 and retrace2 phases are on c. A DFS is assigned ID i as follows.
Suppose a DFS starts initially from a node vi with a set of N(vi) robots. The highest ID
robot rh ∈ N(vi) serves as ID i. DFS i meeting DFS j at a junction node x is handled
as follows (Lines 6–10 of Algorithm 1):

DFS i is Subsuming, i.e., (i > j): DFS i continues its traversal. For each settled robot
w belonging to DFS j it visits, it erases the values set in all the variables, except in
w.settled. It then sets all the variables based on DFS i and continues the traversal.

DFS i is Subsumed, i.e., (i < j): All unsettled robots of DFS i traverse DFS j to reach
node head(j). DFS j then continues the traversal from head(j).

4.1 Analysis of the Algorithm

We begin with analyzing the rooted case. We will then analyze the general case building
upon the ideas developed for the rooted case. We need Definitions 2 and 3.

Definition 2 (rooted spanning tree). Consider a node v on a strongly connected
directed graph G = (V,E). A spanning tree T = (V ′, E′) rooted at v is a directed
subgraph of G such that |V | = |V ′|, each node has exactly one outgoing edge except
v which has no outgoing edge (i.e., E′ ⊆ E with |E′| = |V | − 1), and all edges are
directed toward v.

Definition 3 (root path). Consider the spanning tree T in Definition 2. A root path
RootPath(v′, v) is a directed path from node v′
= v to the root v. For each node
w
= v, T contains such a path.

Time Complexity, Rooted Case, Known T . Let DFS starts from node v which
becomes the root. Suppose DFS arrives at node v′ for the first time at some round
t > 1. At that time, v′ is marked visited. Let v′ be the k′-th in the order of the nodes
visited by DFS for the very first time. Node v′ is assigned rank(v′) := k′. Initially,
v′ was marked null (meaning unvisited) and once marked visited, v′ will be marked
fully-visited when DFS visits all the outgoing ports of v′. Therefore, after marked vis-
ited, v′ will never be marked null (unvisited), and after marked fully-visited, it will
never be marked visited or null (unvisited).

Definition 4 (active edge). The edge associated with port 1 ≤ portv
′

out ≤ δv′
out of node

v′ is called active if v′ is marked visited and DFS has exited v′ recently through portv
′

out.

Dispersion of Mobile Robots on Directed Anonymous Graphs 203

Definition 5 (active path). An active path ActivePath(v) is a directed path that con-
nects nodes marked visited through active edges starting from the root v of DFS.

Lemma 1. The RootPath(v′, v) in T from any node v′
= v to the root v always
intersects ActivePath(v).

Lemma 2. If ActivePath(v) ends at a visited node, then the last edge in it closes a
cycle of active edges.

Lemma 3. Let e → f be the last edge in Lemma 2. We have that rank(f) < rank(e).

Definition 6 (backtrack target node). Backtrack target is always on ActivePath(v).
Furthermore, let V (ActivePath(v)) be the set of nodes in ActivePath(v) such that,
for each node v′ ∈ V (ActivePath(v)), the port number leading to its active edge is
smaller than its degree δv′

out. Node v′ ∈ V (ActivePath(v)) is called backtrack target
node if it is the highest ranked node in V (ActivePath(v)).

Lemma 4. Backtracking is required when ActivePath(v) points to a visited or fully-
visited node.

Definition 7 (backtracking path). Consider an active edge e → f . If f is a fully-
visited node, a backtracking path BacktrackPath(f) from node f is the follow-
ing: RootPath(f, v) upto an intersection node c with ActivePath(v) and then
ActivePath(v) upto the backtrack target node b (Definition 6). If f is a visited node,
BacktrackPath(f) is the segment of ActivePath(v) from f to b.

Lemma 5 (cycle closing node). If ActivePath(v) ends at a visited node v′, v′

becomes a cycle closing node. If ActivePath(v) ends at a fully-visited node v′′, let
c be the intersection node of ActivePath(v) and RootPath(v′′, v). Node c becomes a
cycle closing node.

Lemma 6. Algorithm 2 solves DISPERSION for any rooted initial configuration of k ≤
n robots in O(k2 · Δout) rounds, given directed rooted spanning tree T .

Proof. We first prove that Algorithm 2 solves DISPERSION correctly. Notice that, at any
time, the cycle closing node as well as the backtrack target node are on ActivePath(v).
Moreover, the backtrack target node b is the farthest node from root v inActivePath(v)
with at least one unvisited port left. This property resembles DFS backtrack in undi-
rected graph case. Additionally, the backtrack target node can always be found and
reached. Let c be a cycle closing node and f ′ be a backtrack target node. It is the case
that, if f ′ is in the cycle and f ′
= c, rank(f ′) > rank(c), otherwise c is both the
cycle closing node as well as a backtrack target node. If f ′ is not in the cycle, then
rootPort set is taken from c which will take the traversal to a cycle closing node c′
= c
with rank(c′) < rank(c) and the process of finding a backtrack target node f ′ starts
from there. Furthermore, for any edge e → f on ActivePath(v), e cannot become
fully-visited before f . These properties are sufficient to show that the DFS executes
correctly, solving DISPERSION.

We now prove the time bound. Since there are k ≤ n robots, any Backtrack(.)
path is of length at most k as it visits only the nodes with a robot already settled on

204 G. F. Italiano et al.

each of them. DFS needs to traverse at most k · Δout edges before all k robots settle at
k different nodes. For each outgoing edge, backtracking is needed at most once. Since
backtracking is executed in two phases retrace1 and retrace2, the total number of
rounds to finish these phases is ≤ 2 · k. In retrace1, if DFS visits a fully-visited
node, traversing the RootPath(., .) is required to find a visited node to make it a cycle
closing node. This length is < k. In retrace2, traversing to the backtrack target node
takes additional < k rounds. Therefore, each backtracking finishes in < 4 · k rounds.
Therefore, Algorithm 2 needs < (4 · k) · (k · Δout) = O(k2 · Δout) rounds. �	

Time Complexity, Rooted Case, Unknown T . We now remove the assumption of
known T from Lemma 6 and construct it on-the-fly.We start with the following lemmas.

Lemma 7. For any two visited nodes v′, v′′ that are eligible to become a backtrack
target node, if rank(v′′) < rank(v′), then v′ becomes fully-visited before v′′.

Lemma 8. When node v′ becomes fully-visited, RootPath(v′, v) ends at the small-
est ranked node in ActivePath(v) reachable from v′.

During the execution of DFS, T may be a forest of many disjoint directed rooted
trees. Let F be the directed rooted forest defined as a collection of the disjoint directed
rooted trees T1, . . . , Ti.

Lemma 9. The collection of RootPath(v′, v) of the fully-visited nodes v′ form a
directed rooted forest F .

Lemma 10. For any fully-visited node v′, RootPath(v′, v) of length ≤ k − 1 can
be constructed that leads either to a visited node v′′ or to root v with rank(v) <
rank(v′′) < rank(v′).

Lemma 11. Algorithm 2 solves DISPERSION for any rooted initial configuration of
k ≤ n robots in O(k2 · Δout) rounds, constructing T on-the-fly.

Proof. We have from Lemma 10 that the length of RootPath(v′, v) from any node
v′
= v to root v is < k. Moreover, RootPath(v′, v) ends at a visited node. Therefore,
a backtrack finishes in O(k) rounds. Furthermore, an edge needs at most one backtrack
and there are k · Δout edges. The theorem follows. �	

Time Complexity, General Case, Unknown T . Since robots are on 1 ≤ k′ < k nodes
in any general initial configuration, there will be k′ parallel DFSs initiated at round
t = 1. DFS i does not meet any other DFS j at t = 1. If no two DFSs meet until all
robots settle, the analysis for the rooted case applies. We analyze here DFS i meeting
DFS j and show that O(k2 · Δout) time bound can be established. Consider DFS i at
some round t > 1. Consider the nodes of G that are occupied with robots belonging to
DFS i.

Lemma 12. Let x
= head(i) be a node of G belonging to DFS i. head(i) is always
reachable from x.

Lemma 13. If ki robots belong to DFS i, then head(i) is at distance ≤ ki − 1 from
any node x in DFS i.

Dispersion of Mobile Robots on Directed Anonymous Graphs 205

Since robots have unique IDs, i
= j for any two DFSs i and j. Suppose DFS i
meets DFS j. DFS i is either subsuming (i > j) or subsumed (i < j). Due to the k′

DFSs initiated in parallel, a DFS j may be met by different other DFSs, and DFS j may
in turn meet another DFS concurrently. Further, transitive chains of such meetings can
occur concurrently. This leads us to formalize a notion of a meeting graph.

Definition 8 (meeting graph). The meeting graph GM = (VM , EM), where VM is the
DFS IDs and there is a directed edge in EM from i and j if DFS i meets DFS j.

Nodes in VM have an arbitrary in-degree but out-degree 1. Moreover, GM may
be composed of multiple connected components. Furthermore, there may be cycles in
connected components. We focus on a single connected component CM in GM ; other
components of GM can be dealt analogously. At round 1, GM has k′ nodes and EM =
∅, which are components by themselves. There are multiplicity nodes in at least one
component. At round 2 or after, the number of components monotonically decrease and
when DISPERSION is achieved, EM = ∅ and no multiplicity node in each component.

Observation 1. A connected component CM in graph GM never splits into multiple
sub-components.

Suppose there are M nodes (i.e., DFSs) in CM . One node (DFS) has the highest
ID among the M nodes and that node (DFS) subsumes all the M − 1 DFSs in that
component. During this process, the number of settled robots monotonically increases.
Therefore, CM never disconnects to form multiple sub-components. Furthermore, CM

may meet another component and they become a single component. This leads us to
formalize a notion of a meeting tree for the meeting graph GM .

Definition 9. (meeting tree). The k′ initial DFSs i form the k′ leaf nodes (i, 0) of
the meeting tree TM at level 0. When α nodes (ai, hi), i ∈ [1, α], meet in a com-
ponent, a node (M,h) is created in TM as the parent of the child nodes (ai, hi),
for i ∈ [1, α], where M is the highest DFS among the α DFSs that met in GM and
h = 1 +maxi∈[1,α] hi.

When two or more DFSs (and components) meet, one of the DFSs in the formed
component subsumes all other DFSs. Therefore, there is a DFS which appears in each
level of the meeting tree TM starting from level 0 upto the highest level in that compo-
nent. Furthermore, the height h of TM is 0 ≤ h ≤ k′ − 1. The maximum height k′ − 1
represents the sequential meeting of DFS IDs. The height h < k′ − 1 represents meet-
ings and subsumptions that happen in parallel across different components. Therefore,
it will sufficient to bound termination time for sequential cases since it immediately
subsumes the time bounds for all other (parallel) cases. The cases we consider are:
(I) DFS l meets DFS l − 1, 2 ≤ l ≤ k′ (meeting in decreasing order of the DFS IDs),
(II) DFS l meets DFS l + 1, 1 ≤ l ≤ k′ − 1 (meeting in increasing order of the DFS
IDs), and
(III) any combination of cases (I) and (II) (meeting sometime in increasing order and
sometime in decreasing order of the DFS IDs).

We now discuss the time bound to achieve DISPERSION. Consider node head(i) of
DFS i. Consider the situation of head(i) not having any unsettled robot, i.e., all robots

206 G. F. Italiano et al.

belonging to DFS i have been settled. Let the smallest round on which head(i) not
having any unsettled robot be ti. Let DFS j meets DFS i and get subsumed by DFS i
(j < i). The unsettled robots of DFS j need to move to head(i) for DFS i to continue its
traversal. Let tj be the round at which the unsettled robots of DFS j reach head(i). The
difference tj − ti is the wait time for head(i). The total wait time totalWait(head(i))
for a DFS i in a component CM is the sum of the wait times of the head(i) before either
it is subsumed or DISPERSION is solved.

Lemma 14. Consider the highest ID DFS M in component CM . totalWait
(head(M)) ≤ (kM − 1) · (M − 1) for either DFS M to be subsumed or DISPER-
SION is solved, where kM is the number of robots in CM .

Lemma 15. Consider the highest ID DFS M in component CM . Either DFS M is
subsumed or robots of CM disperse to kM nodes in O((kM)2 ·Δout +kM ·M) rounds,
where kM is the number of robots in CM .

Lemma 16. Algorithm 1 solves DISPERSION deterministically for any general initial
configuration of k ≤ n robots in O(k2 · Δout) rounds.

Proof. We first argue that for any DFS j in a component CM , totalWait(head(j)) ≤
totalWait(head(M)). Since DFS M is the highest ID DFS in CM of the meeting
graph GM , it never gets subsumed by any other DFS j in CM . Therefore, consider
Case (I) of DFS M always meeting DFS l, l < M . In this case, DFS M has to
subsume each DFS met. Since DFS M continues its traversal even after meeting j,
totalWait(head(M)) ≥ totalWait(head(j)). Consider now the Case (II) of DFS
l meeting DFS l + 1, 1 ≤ l ≤ M − 1. In this case, DFS M has to continue its
traversal even after DFS M − 1 reaches head(M), i.e., totalWait(head(M)) >
totalWait(head(j)). Finally, for Case (III), since DFS M never gets subsumed,
totalWait(head(M)) ≥ totalWait(head(j)) for any other DFS j
= M .

We now prove time bound. Consider the meeting tree TM of the meeting graph GM .
Each node in TM is a component (at level 0, a DFS itself is a component) and at the end
either there is a single root node in each component tree formed. Therefore, the height
of the meeting tree TM can be at most ≤ k′ − 1 since there are only k′ DFS traversals.
The total wait time totalWait(head(Mmax)) of the largest ID DFS Mmax is bounded
by k · k′ < k2. Except the wait time, for k robots, DFS finishes in O(k2 ·Δout) rounds.
Therefore, the total time is O(k2 ·Δout)+ totalWait(head(Mmax)) = O(k2 ·Δout +
k2) = O(k2 · Δout) rounds. �	

5 BFS Dispersion Algorithm

We present here a deterministic BFS-type algorithm solving DISPERSION in time
O(k · D) rounds with O(k log(k + Δout)) bits at each robot satisfying Theorem 1(b),
given any general initial configuration. We establish this result under the 1-hop com-
munication model; removing this requirement remains as a future work.

Theorem 7. To solve DISPERSION of k ≤ n robots on a n-node strongly-connected
directed graph, any deterministic DFS algorithm needs Ω(k2) time under the 1-hop
communication model.

Dispersion of Mobile Robots on Directed Anonymous Graphs 207

Proof. Consider the graph G as in the lower bound of Theorem 6(b) and the rooted
initial configuration of all k robots initially at node u (Fig. 1). Starting from u, traversing
the upper arc up to v cannot exploit information given by the 1-hop model. From v, even
when 1-hop communication tells how many nodes are unvisited, a DFS traversal can
only visit one node on the column at a time. After visiting one node, it takes additional
Ω(k) rounds to visit another. Therefore, a DFS algorithm needs Ω(k2) rounds. �	

We now design a deterministic BFS traversal based algorithm (Algorithm 3) that
exploits 1-hop communication and achieves O(k · D) time bound. We note that any
deterministic DFS algorithm needs Ω(k2) time for DISPERSION even in the 1-hop
model (Theorem 7), i.e., 1-hop model is of no benefit for DFS traversal based algo-
rithms.

Suppose initially k robots are on 1 ≤ k′ < k nodes. Denote the node set by Vk′ . Let
k′′ ≤ k′ be the multiplicity nodes, i.e., two or more robots positioned on them. Denote
the node set by Vk′′ ⊆ Vk′ . Each node v ∈ Vk′′ is called a source node. Let w ∈ Vk′

be a node such that it has at least one empty out-going neighbor. Node w is called a
request node. Let VR be the set of request nodes. A source node may also be a request
node if it has empty out-going neighbbor(s).

Algorithm 3: BFS algorithm for robot ri at node vi ∈ G at some round t ≥ 1
1 if ri is alone at node vi then
2 ri settles at vi writing ri.settled ← 1;

3 if ri is not alone at vi and vi is a source node (no empty outgoing neighbors) then
4 if vi has no settled robot and ri has the highest ID then
5 ri settles at vi writing ri.settled ← 1;

6 send broadcast(t, ri.ID) message to all its outgoing neighbors;

7 if ri is not alone at vi and vi is a request node (empty outgoing neighbor(s)) then
8 if vi has no settled robot and ri has the highest ID then
9 ri settles at vi writing ri.settled ← 1;

10 divide almost equally and send all unsettled robots at vi to its empty neighbors;

11 if ri is alone at vi and receives a Broadast(.,) message then
12 if ri not a request node then
13 ri forwards it to all its outgoing neighbors if its not duplicate;

14 else
15 ri sends Request(t, ri.ID) to neighbor from which it received Broadcast(.);

16 if ri receives a Request(.,) message then
17 if ri not a source node then
18 ri sends to neighbor from which it received Broadcast(.) message;

19 else
20 ri sends all the unsettled robots to the request node;

208 G. F. Italiano et al.

The goal in the algorithm is to find a matching between a source node and a request
node so that the empty (out-going) neighbors of the request node can be occupied by
robots. We exploit 1-hop communication to find such matching in O(D) rounds. Since
there are k ≤ n robots in total, the algorithm can finish settling all the robots at k
different nodes in O(k · D) rounds. Consider a source node v ∈ Vk′′ . The highest ID
robot among the robots R(v) on v settles at v. We have two cases.

Case 1 – v is a Source as Well as a Request Node: Let d(v) ≤ δv
out be the number of

empty out-going neighbors of v. Node v sends �(|R(v)| − 1)/d(v)� robots to d(v)− 1
empty out-going neighbors and (|R(v)|− 1)/d(v)+ (|R(v)|− 1) mod d(v) robots to
one empty out-going neighbor.

Case 2 – v is a Source Node But Not a Request Node: The matching is done in three
stages, Stages 1–3. Case 2 starts in a round, when v becomes a source node but not a
request node. In Stage 1, v sends a broadcast message to all its (non-empty) out-going
neighbors and the (non-empty) out-going neighbors forward the message to their (non-
empty) out-going neighbors, and so on. This message broadcast forms a directed BFS
tree BT (v) with v becomes the root and the request nodes become the leaves. As soon
as a request node w receives a broadcast message Stage 2 starts in which node w sends a
request message following the path in BT (v) to reach the source node v. Each internal
node u in BT (v) stores a neighbor node from which it received a broadcast message as
the parent of u in Stage 1 and this information helps in forwarding the request message
to the root. In Stage 3, the source node v sends |R(v)| − 1 robots in the set R(v) to the
request node from which it receives the first request message. At the end of Stage 3, a
request node becomes a source as well as a request node and Case 1 applies.

The algorithm terminates with no new source node (i.e., no multiplicity node).

Lemma 17. A request node can be matched with a source node in O(D) rounds.

Theorem 8. Algorithm 3 solves DISPERSION deterministically for any initial configu-
ration of k ≤ n robots in O(k · D) rounds under the 1-hop communication model.

6 Extensions to Crash Faults

In this section, we consider that f ≤ k robots may experience crash faults. We describe
how the DFS and BFS algorithms of Sects. 4 and 5 extend to handle crash faults.

DFSAlgorithm.We extend Algorithm 1 to handle crash faults. Crashing of an unsettled
robot at any time during Algorithm 1 is not a problem. Therefore, crashing of robots
does not affect the explore phase. However, crashing of settled robots is a problem
because a robot performing retrace1 and retrace2 phases should never encounter an
empty node. We have two situations: (i) The robot doing the retrace1 and retrace2
phases crash or (ii) the robots in the path of the robot doing those phases crash.

We deal with the first situation of the possible crash of the robot doing retrace1 and
retrace2 phases by asking all the unsettled robots to perform those phases (not just one
robot). In other words, no robot waits at the cycle closing node. All of them perform
the retrace1 and retrace2 phases and the robot settled at the cycle closing node keeps

Dispersion of Mobile Robots on Directed Anonymous Graphs 209

information that it is a cycle closing node. We deal with the second situation of the
robot(s) performing retrace1 and retrace2 encounter an empty node (must be the case
that robots at that node was crashed) by starting a new DFS from that crashed node
using DFSID variable as a tuple (roundNo,RID), where roundNo is the round
at which the DFS is started and RID is the highest ID robot i among the robots on
that node. This approach is also used when robots move from the cycle closing node
to the backtrack target node to continue the explore phase. At round 1, all k′ DFSs
initiated in parallel have roundNo = 1 and RID is the highest ID robot on each of
k′ nodes. In the crash-free case, Algorithm 1 works as is even with the tupled ID as
subsumption happens based on RID (lexicographical comparison of the DFSIDs)
due to the fact that roundNo remains the same for all DFSs during the traversal. The
variable roundNo > 1 for a DFS if it is started due to the encounter of a crashed
node (robot). A DFS meeting another is handled asking larger DFSID DFS in the
lexicographical order to subsume the other.

Lemma 18. In the same setting of Lemma 16 having f ≤ k robot crashes, the DFS
algorithm solves DISPERSION deterministically in O(f · k2 · Δout) rounds.

Proof of Theorem 1(a): The time bound follows from the proofs of Lemmas 16 and 18.
For the memory bound, in the fault-free case, there are total ten different variables main-
tained at each robot and each variable is of size either O(1) or O(log k) or O(logΔout).
Therefore, the total memory bound is O(log(k + Δout)) bits per robot. In the crash
fault case, the tupled DFSID only adds O(log(k + Δout)) factor due to the variable
roundNo, since roundNo ≤ O(f · k2 · Δout) = O(k3 · Δout) given that f ≤ k, and
thus can be represented by O(log(k + Δout)) bits. �	
BFS Algorithm. We extend Algorithm 3 to handle crashes. We again have two cases.
Case 1 stays the same. In Case 2, the matching may be interrupted due to the faulty
robot(s). Therefore, in Stage 1, a source node v sends broadcast message repetitively
in every round until a request message is received by v. If a node receives broadcast
message from v multiple times, then it stores the latest copy among them and forwards
it to its out-going neighbors. In Stage 2, if a request message can not reach to v, then
some intermediate node (robot) in the path to v must have crashed. A non-crashed
neighboring robot of the crashed robot on the path to v becomes a request node and
sends a request message to v when it receives a broadcast message from v. In Stage
3, if a request node w finds that a node in its path P (v, w) is crashed, the neighboring
node becomes a new request node.

Theorem 9. In the same setting of Theorem 8 having f ≤ k robot crashes, the BFS
algorithm solves DISPERSION deterministically in O(k · D) rounds under the 1-hop
communication model.

Proof of Theorem 1(b): The time bound follows from the proofs of Theorems 8 and 9.
For the memory bound, there can be at most k/2 source nodes. Therefore, a node may
need to keep track of the parent information on the k/2 BFS trees that are built by those
source nodes, which requires in total O(k log(k+Δout)) bits at each robot, combining
the O(log k) bits required to remember the ID of each robot. The broadcast, request,

210 G. F. Italiano et al.

and other messages are of O(log k) size. Therefore, in total the memory at each robot
is O(k log(k + Δout)) bits. Even in the faulty case, the memory does not change since
for the broadcast messages received from a source node multiple times, the previous
records were discarded and only the latest message was stored in memory. �	

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. In: STOC, pp. 416–425.
ACM (1997)

2. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-
offs. In: ICDCN, pp. 1:1–1:10 (2018)

3. Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour
lock-in problem in the rotor-router model: I choose pointers and you choose port numbers.
In: DISC, pp. 423–435 (2009)

4. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of
autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)

5. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble:
exploring and mapping directed graphs. In: STOC, pp. 269–278 (1998)

6. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled
directed graphs. In: FOCS, pp. 75–85 (1994)

7. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph explo-
ration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)

8. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput. 7(2), 279–301 (1989)

9. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph
exploration. Inf. Comput. 243(C), 37–49 (2015)

10. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci.
412(8–10), 783–795 (2011)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool Publishers, Synthesis Lectures on Distributed Computing Theory (2012)

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities, Theoret-
ical Computer Science and General Issues, vol. 1. Springer (2019). https://doi.org/10.1007/
978-3-030-11072-7

13. Foerster, K., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph
exploration. Theor. Comput. Sci. 655, 15–29 (2016)

14. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks
48(3), 166–177 (2006)

15. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite
automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

16. Hsiang, T.R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online dispersion
algorithms for swarms of robots. In: SoCG, pp. 382–383 (2003)

17. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly
dispersing robot swarms in unknown environments. In: WAFR, pp. 77–94 (2002)

18. Kshemkalyani, A.D., Ali, F.: Fast graph exploration by a mobile robot. In: AIKE, pp. 115–
118 (2018)

19. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN,
pp. 218–227 (2019)

20. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary
graphs. In: ALGOSENSORS, pp. 23–40 (2019)

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7

Dispersion of Mobile Robots on Directed Anonymous Graphs 211

21. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global
communication model. In: ICDCN, pp. 12:1–12:10 (2020)

22. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In:
WALCOM, pp. 183–197 (2020)

23. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Efficient dispersion of mobile robots on
dynamic graphs. In: ICDCS, pp. 732–742 (2020)

24. Kshemkalyani, A.D., Sharma, G.: Near-optimal dispersion on arbitrary anonymous graphs.
CoRR (2021)

25. Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph explo-
ration. Inf. Process. Lett. 127, 17–20 (2017)

26. Molla, A.R., Jr., W.K.M.: Dispersion of mobile robots: The power of randomness. In: TAMC,
pp. 481–500 (2019)

27. Molla, A.R., Mondal, K., Jr., W.K.M.: Efficient dispersion on an anonymous ring in the
presence of weak byzantine robots. In: ALGOSENSORS, pp. 154–169 (2020)

28. Molla, A.R., Mondal, K., Jr., W.K.M.: Byzantine dispersion on graphs. In: IPDPS, pp. 942–
951. IEEE (2021)

29. Pattanayak, D., Sharma, G., Mandal, P.S.: Dispersion of mobile robots tolerating faults. In:
ICDCN, pp. 133–138 (2021)

30. Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237
(2019)

31. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of
mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)

32. Shintaku, T., Sudo, Y., Kakugawa, H., Masuzawa, T.: Efficient dispersion of mobile agents
without global knowledge. In: SSS, pp. 280–294 (2020)

Distributed Interactive Proofs
for the Recognition of Some Geometric

Intersection Graph Classes

Benjamin Jauregui1, Pedro Montealegre2(B), and Ivan Rapaport3

1 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile
bjauregui@dim.uchile.cl

2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile
p.montealegre@uai.cl

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

rapaport@dim.uchile.cl

Abstract. A graph G = (V, E) is a geometric intersection graph if every
node v ∈ V is identified with a geometric object of some particular type,
and two nodes are adjacent if the corresponding objects intersect. Geo-
metric intersection graph classes have been studied from both the theo-
retical and practical point of view. On the one hand, many hard prob-
lems can be efficiently solved or approximated when the input graph is
restricted to a geometric intersection class of graphs. On the other hand,
these graphs appear naturally in many applications such as sensor net-
works, scheduling problems, and others. Recently, in the context of dis-
tributed certification and distributed interactive proofs, the recognition
of graph classes has started to be intensively studied. Different results
related to the recognition of trees, bipartite graphs, bounded diameter
graphs, triangle-free graphs, planar graphs, bounded genus graphs, H-
minor free graphs, etc., have been obtained.

The goal of the present work is to design efficient distributed proto-
cols for the recognition of relevant geometric intersection graph classes,
namely permutation graphs, trapezoid graphs, circle graphs and polygon-
circle graphs. More precisely, for the two first classes we give proof label-
ing schemes recognizing them with logarithmic-sized certificates. For the
other two classes, we give three-round distributed interactive protocols
that use messages and certificates of size O(log n). Finally, we provide
logarithmic lower-bounds on the size of the certificates on the proof label-
ing schemes for the recognition of any of the aforementioned geometric
intersection graph classes.

Keywords: Distributed decision · Proof-labeling scheme · Distributed
interactive proofs · Intersection Graph Classes

This work was supported by Centro de Modelamiento Matemático (CMM), ACE210010
and FB210005, BASAL funds for centers of excellence from ANID-Chile, FONDECYT
11190482, FONDECYT 1220142 and PAI 77170068.

c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 212–233, 2022.
https://doi.org/10.1007/978-3-031-09993-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_12

Distributed Interactive Proofs 213

1 Introduction

This paper deals with the problem of designing compact distributed certificates
and compact distributed interactive proofs for deciding graph properties. In these
protocols, the nodes of a connected graph G have to decide, collectively, whether
G itself belongs to a particular graph class. As in the centralized case, also in
the distributed setting there exists a number of algorithms specially designed to
decide whether G belongs to a particular graph class. The specific goal of this
work is to decide, through proof-labeling schemes and the more general model of
distributed interactive proofs, whether G belongs to relevant intersection graph
classes. These classes have applications in topics like biology, ecology, computing,
matrix analysis, circuit design, statistics, archaeology, etc. For a nice survey we
refer to [35].

1.1 Proof-Labeling Schemes and Distributed Interactive Proofs

In locally decidable algorithms every node is just allowed to send messages to
its neighbors, in one round (a less restrictive, but similar scenario, is where the
number of rounds is constant, independent of the size of G, see [38]). Some very
basic properties can be decided locally (with a local algorithm). For instance,
deciding whether the graph G has bounded degree. More generally, if we do
not impose bandwidth restrictions, then detecting the existence of any local
structure (such as a triangle) can be solved through local algorithms.

In the aforementioned examples, acceptance and rejection are (implicitly)
defined as follows. If G satisfies the property, then all nodes must accept; oth-
erwise, at least one node must reject. These very fast local algorithms could
be used in distributed fault-tolerant computing, where the nodes, with some
regularity, must check whether the current network configuration is in a legal
state [29]. Then, if the configuration becomes at some point illegal, the rejecting
node(s) raise the alarm or launch a recovery procedure. When there are dis-
tributed algorithms designed for particular graph classes, the use of an initial
recognizing protocol could avoid the risk of running a distributed protocol for
graphs that do not belong to the class for which the protocol was designed.

Of course, many simple properties cannot be decided with one round (or with
a constant number of rounds) through local algorithms. In order to overcome
this issue, the notion of proof-labeling scheme (PLS) was introduced [29]. PLSs
can be seen as a distributed counterpart of the nondeterministic class NP. In
fact, in a PLS, a powerful prover gives to every node v a certificate c(v). This
provides G with a global distributed proof. Then, every node v performs a local
verification using its local information together with c(v).

Incorporating a powerful prover to the model is not just motivated by a
purely theoretical interest. In fact, with the rise of the Internet, prover-assisted
computing models are ubiquitous. Asymmetric applications –social networks,
cloud computing, etc.– where a very powerful central entity stores and process
large amounts of data, are already part of our everyday lives. A key issue, which
is a central part of the PLS model, is that the devices of the network cannot

214 B. Jauregui et al.

trust the central entity and are forced to verify the correctness of the distributed
proof.

The generalization of the class NP to interactive proof systems, a model
where the prover and the verifier are allowed to interact was a breakthrough
in computational complexity [3,18,19,32,40]. In the distributed framework, the
notion of distributed interactive protocols was introduced in [27] and further
studied in [9,14,36,37]. In such protocols, a centralized, untrustable prover with
unlimited computation power, named Merlin, exchanges messages with a ran-
domized distributed algorithm, named Arthur.

Let us illustrate the general idea of this model, and also some notation. If we
consider, for instance, four interactions, then there are two possible protocols:
a dAMAM protocol and dMAMA protocol. In a dAMAM protocol, also denoted
dAM[4], the last interaction is performed by Merlin. In a dMAMA protocol,
also denoted dMA[4], the last interaction is performed by Arthur. Note that
dAM[1]=dM, and we recover exactly the PLS model.

Now, we are going to explain with more detail what happens in a particular
case. Let us consider a three interaction, dMAM=dAM[3] protocol. In this case
Merlin starts, and he provides a certificate to Arthur (that is, certificates c(v)
for every node v ∈ V). Then, a random string (fresh randomness) is generated
and made public to both Arthur (the nodes) and Merlin. This is the interaction
performed by Arthur, and it should be interpreted as if Arthur was challenging
Merlin. Note also that we are considering here the shared randomness setting.

Finally, Merlin replies to the query by sending another distributed certifi-
cate. After all these interactions, comes the deterministic distributed verification
phase, performed between every node and its neighbors, after which every node
decides whether to accept or reject.

We say that an algorithm uses O(f(n)) bits if the messages exchanged
between the nodes (in the verification round), and also the certificates sent by
the prover Merlin to the nodes, are upper bounded by O(f(n)). We include this
bandwidth bound in the notation, which becomes dMA[k, f(n)] and dAM[k, f(n)]
for the corresponding protocols.

Interaction may decrease drastically the size of the messages needed to solve
some problems. Consider, for instance, the problem symmetry, where the nodes
are asked to decide whether the graph G has a non-trivial automorphism (i.e., a
non-trivial one-to-one mapping from the set of nodes to itself preserving edges).
Any PLS solving the symmetry problem requires certificates of size Ω(n2) [21].
Nevertheless, this problem admits distributed interactive protocols with small
certificates, and very few interactions. In fact, it can be solved with both a
dMAM[log n] protocol and a dAM[n log n] protocol [27].

1.2 Geometric Intersection Graph Classes

A graph G = (V,E) is a geometric intersection graph if every node v ∈ V
is identified with a geometric object of some particular type, and two vertices
are adjacent if the corresponding objects intersect. The two simplest non-trivial,
and arguably two of the most studied geometric intersection graphs are interval

Distributed Interactive Proofs 215

graphs and permutation graphs. In fact, most of the best-known geometric
intersection graph classes are either generalizations of interval graphs or general-
izations of permutation graphs. It comes as no surprise that many papers address
different algorithmic and structural aspects, simultaneously, in both interval and
permutation graph [2,23,30,43].

In both interval and permutation graphs, the intersecting objects are (line)
segments, with different restrictions imposed on their positions. In interval
graphs, the segments must all lie on the real line. In permutation graphs, the
endpoints of the segments must lie on two separate, parallel real lines. In Fig. 1
we show an example of a permutation graph.

Fig. 1. An example of a permutation graph with its corresponding intersection model.

Although the class of interval graphs is quite restrictive, there are a number
of practical applications and specialized algorithms for interval graphs [20,22,
28]. Moreover, for several applications, the subclass of unit interval graphs (the
situation where all the intervals have the same length) turns out to be extremely
useful as well [4,25].

A natural generalization of interval graphs are circular arc graphs, where
the segments, instead of lying on a line, lie on a circle. More precisely, a circular
arc graph is the intersection graph of arcs of a circle. Although circular arc
graphs look similar to interval graphs, several combinatorial problems behave
very differently on these two classes of graphs. For example, the coloring problem
is NP-complete for circular arc graphs while it can be solved in linear time on
interval graphs [16]. Recognizing circular-arc graphs can be done in linear-time
[24,34].

The class of permutation graphs behaves as the class of interval graphs in
the sense that, on one hand, permutation graphs can be recognized in linear
time [30] and, on the other hand, many NP-complete problems can be solved
efficiently when the input is restricted to permutation graphs [8,31]. A graph G
is a circle graph if G is the intersection model of a collection of chords in a
circle (see Fig. 2).

216 B. Jauregui et al.

Fig. 2. An example of a circle graph with its corresponding intersection model.

Clearly, circle graphs are a generalization of permutation graphs. In fact,
permutation graphs can be characterized as circle graphs that admit an equator,
i.e., an additional chord that intersects every other chord. Circle graphs can
be recognized in time O(n2) [41]. Many NP-complete problems can be solve in
polynomial time when restricted to circle graphs [26,42].

The well-known class of trapezoid graphs is a generalization of both inter-
val graphs and permutation graphs. A trapezoid graph is defined as the inter-
section graph of trapezoids between two horizontal lines (see Fig. 3). Ma and
Spinrad [33] showed that trapezoid graphs can be recognized in O(n2) time.
Trapezoid graphs were applied in various contexts such as VLSI design [10] and
bioinformatics [1]. Note that trapezoid and circle graphs are incomparable: the
trapezoid graph of Fig. 3 is not a circle graph, while the circle graph of Fig. 2 is
not a trapezoid graph.

Fig. 3. An example of a permutation graph with its corresponding intersection model.

Recall that the way permutation graphs were generalized to circular graphs
is by placing the ends of the segments in a circle (as chords) instead of placing
the ends of the segments in two parallel lines. The same approach is used to
generalize trapezoidal graphs and thus introducing polygon circle graphs.

More precisely, a polygon circle graph is the intersection graph of convex
polygons of k sides, all of whose vertices lie on a circle. In this case we refer to
a k-polygon circle graphs. In Fig. 4 we show an example of a 3-polygon circle
graph. Both trapezoid graphs and circle graphs are proper subclasses of polygon
circle graphs. Note that the polygon circle graph of Fig. 4 is neither a trapezoid
graph nor a circle graph.

Distributed Interactive Proofs 217

Fig. 4. An example of a 3-polygon circle graph with its corresponding intersection
model.

The problem of recognizing whether a graph is a k-polygon circle graphs, for
any k ≥ 3, is NP-complete [39]. Nevertheless, many NP-complete problems have
polynomial time algorithms when restricted to polygon circle graphs [16,17]. In
an unpublished result, M. Fellows proved that the class of polygon circle graphs
is closed under taking induced minors.

1.3 Our Results

In Sect. 3 we recall, explain and develop some tools, building blocks for the rest of
the paper. In Sect. 4 we prove that trapezoid graphs can be recognized by PLSs
with certificates of size O(log n), and then we obtain the result for permutation
graphs as a corollary. Then, in Sect. 5 we prove that k-polygon circle graphs
can be recognized with a three round, dMAM protocol woth proof-size O(log n),
and we obtain the result for circle graphs as a particular case when k = 2.
Finally, in Sect. 6, we prove that any PLS for recognizing permutation graphs,
trapezoid graphs, circle graphs or polygon circle graphs requires certificates of
size Ω(log n).

1.4 Related Work

We already know the existence of PLSs (with logarithmic size certificates) for the
recognition of many graph classes such as acyclic graphs [29], planar graphs [13],
graphs with bounded genus [12], graph classes defined by a finite set of forbidden
minors [5], etc.

The distributed interactive proof model is clearly more powerful than the
PLS model. Some problems, for which any PLS requires huge certificates, can
be solved with a distributed interactive protocol with small certificates and, in
fact, with very few interactions. This is the case of problem symmetry, where the
system must decide whether a graphs has a non-trivial automorphism. Problem
symmetry is in dMAM[log n] and also in dAM[n log n], while the size of any
certificate in a PLS must be of size at least Ω(n2) [27].

It is always important to keep in mind the compiler defined in [37] which
turns, automatically, any problem solved in NP in time τ(n) into a dMAM pro-
tocol that uses bandwidth τ(n) log n/n. Therefore, any class of sparse graphs

218 B. Jauregui et al.

that can be recognized in linear time, can also be recognized by a dMAM proto-
col with logarithmic-sized certificates.

Any geometric intersection graph class is hereditary (a graph class is heredi-
tary if the class is closed under taking induced subgraphs). Examples of heredi-
tary graph classes include planar graphs, forests, bipartite graphs, perfect graphs,
etc. Interestingly, the only graph properties that are known to require PLSs
with large certificates (e.g. small diameter [7], non-3-colorability [21], having
a non-trivial automorphism [21]), are non-hereditary. This raises the question
of whether we can improve the result of this paper and design a PLS for the
recognition of any geometric intersection graph.

2 Preliminaries

Let G be a simple connected n-node graph, let I : V (G) → {0, 1}� be an input
function assigning labels to the nodes of G, where the size of all inputs is poly-
nomially bounded on n. Let id : V (G) → {1, . . . ,poly(n)} be a one-to-one func-
tion assigning identifiers to the nodes. A distributed language L is a (Turing-
decidable) collection of triples (G, id, I), called network configurations.

A distributed interactive protocol consists of a constant series of interactions
between a prover called Merlin, and a verifier called Arthur. The prover Merlin
is centralized, has unlimited computing power and knows the complete configu-
ration (G, id, I). However, he cannot be trusted. On the other hand, the verifier
Arthur is distributed, represented by the nodes in G, and has limited knowledge.
In fact, at each node v, Arthur is initially aware only of his identity id(v), and his
label I(v). He does not know the exact value of n, but he knows that there exists
a constant c such that id(v) ≤ nc. Therefore, for instance, if one node v wants
to communicate id(v) to its neighbors, then the message is of size O(log n).

Given any network configuration (G, id, I), the nodes of G must collectively
decide whether (G, id, I) belongs to some distributed language L. If this is indeed
the case, then all nodes must accept; otherwise, at least one node must reject
(with certain probabilities, depending on the precise specifications we are con-
sidering).

Interactive protocols have two phases: an interactive phase and a verification
phase. If Arthur is the party that starts the interactive phase, he picks a ran-
dom string r1 (known to all nodes of G because we are considering the shared
randomness setting) and send it to Merlin. Merlin receives r1 and provides every
node v with a certificate c1(v) that is a function of v, r1 and (G, id, I). Then
again Arthur picks a random string r2 and sends r2 to Merlin, who, in his turn,
provides every node v with a certificate c2(v) that is a function of v, r1, r2 and
(G, id, I). This process continues for a fixed number of rounds. If Merlin is the
party that starts the interactive phase, then he provides at the beginning every
node v with a certificate c0(v) that is a function of v and (G, id, I), and the
interactive process continues as explained before. In the last interaction round,
the verification phase begins. This phase is a one-round deterministic algorithm
executed at each node. More precisely, every node v broadcasts a message Mv to

Distributed Interactive Proofs 219

its neighbors. This message may depend on id(v), I(v), all random strings gen-
erated by Arthur, and all certificates received by v from Merlin. Finally, based
on all the knowledge accumulated by v (i.e., its identity, its input label, the
generated random strings, the certificates received from Merlin, and all the mes-
sages received from its neighbors), the protocol either accepts or rejects at node
v. Note that Merlin knows the messages each node broadcasts to its neighbors
because there is no randomness in this last verification round.

Definition 1. Let V be a verifier and M a prover of a distributed inter-
active proof protocol for languages over graphs of n nodes. If (V,M) corre-
sponds to an Arthur-Merlin k-round, O(f(n)) bandwidth protocol, we write
(V,M) ∈ dAMprot[k, f(n)].

Definition 2. Let ε ≤ 1/3. The class dAMε[k, f(n)] is the class of languages L
over graphs of n nodes for which there exists a verifier V such that, for every
configuration (G, id, I) of size n, the two following conditions are satisfied.

Completeness. If (G, id, I) ∈ L then, there exists a prover M such that
(V,M) ∈ dAMprot[k, f(n)] and

Pr
[
V accepts (G, id, I) in every node given M

]
≥ 1 − ε.

Soundness. If (G, id, I) /∈ L then, for every prover M such that (V,M) ∈
dAMprot[k, f(n)],

Pr
[
V rejects (G, id, I) in at least one nodes given M

]
≥ 1 − ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)], and omit the subindex ε
when its value is obvious from the context.

For small values of k, instead of writing dAM[k, f(n)], we alternate M’s and
A’s. For instance: dMAM[f(n)] = dAM[3, f(n)]. In particular dAM[f(n)] =
dAM[2, f(n)]. Moreover, we denote dM[f(n)] the model where only Merlin pro-
vides a certificate, and no randomness is allowed (in other words, the model dM
is the PLS model).

In this paper, we are interested mainly in the languages of graphs that are
permutation, trapezoid, circle, polygon-circle and unit square. Formally,

Permutation-Recognition = {〈G, id〉 s.t. G is a permutation graph}.

Trapezoid-Recognition = {〈G, id〉 s.t. G is a trapezoid graph}.

Circle-Recognition = {〈G, id〉 s.t. G is a circle graph}.

k-Polygon-Circle-Recognition = {〈G, id〉 s.t. G is a k-polygon-circle graph}.

We denote by [n] the set {0, . . . , n − 1} and Sn the set of permutations of
[n]. In the following, all graphs G = (V,E) are simple and undirected. When
the nodes of an n-node graph are enumerated with unique values in [n], we

220 B. Jauregui et al.

denote G = ([n], E). In a distributed problem, we always assume that the input
graph is connected. We use the standard definitions and notations for (induced)
subgraph, neighborhood, path, cycle, tree, clique, etc. For more details we refer
to the textbook of Diestel [11].

3 Toolbox

In our results, we use some previously defined protocols as subroutines. In some
cases, we consider protocols that solve problems which are more general than
just decision problems (as, for instance, the construction of a spanning tree).

3.1 Spanning Tree and Related Problems

The construction of a spanning tree is an important building block for several
protocols in the PLS model. Given a network configuration 〈G, id〉, the Span-
ning-Tree problem asks to construct a spanning tree T of G, where each node
has to end up knowing which of its incident edges belong to T .

Proposition 1. There is a 1-round protocol for Spanning-Tree with certifi-
cates of size O(log n).

From the protocol of Proposition 1 it is easy to construct another one for
problem Size, where the nodes, given the input graph G = (V,E), have to verify
the precise value of |V | (recall that we are assuming that the nodes are only
aware of a polynomial upper bound on n = |V |).
Proposition 2 [29]. There is a 1-round protocol for Size with certificates of
size O(log n).

Finally, for two fixed nodes s, t ∈ V , problem s, t − Path is defined in the
usual way: given a network configuration 〈G, id〉, the output is a path P that
goes from s to t. In other words, each node must end up knowing whether it
belongs to P , and, in the positive cases, which of its neighbors are its predecessor
and successor in P .

Proposition 3 [29]. There is a 1-round protocol for s, t−Path with certificates
of size O(log n).

3.2 Problems Equality and Permutation

A second important building block, this time for interactive protocols, is a pro-
tocol for solving problem Equality, which is defined as follows. Given G a
connected n-node graph, each node v receives two natural numbers a(v) and
b(v), both of them encoded with O(log(n)) bits. The problem Equality con-
sists of verifying whether the multi-sets A = {a(v)}v∈V and B = {b(v)}v∈V are
equal.

Distributed Interactive Proofs 221

Proposition 4 [37]. Problem Equality belongs to dAM1/3[log n].

A closely related problem is Permutation, where some function π is given as
input, and the nodes must verify whether π is indeed a permutation (a bijective
function from V to [n]). Note that the input is given in a distributed way, by
given π(v) to each node v ∈ V . Using the protocol for Equality as subroutine,
it is possible to solve Permutation with certificates of size O(log n).

Proposition 5 [37]. Problem Permutation belongs to dMAM1/3[log n].

We now introduce a new problem called Corresponding Order, which
is defined for inputs of the form 〈G = (V,E), id, (x, π)〉, where the nodes must
verify that: (i) π is a bijection from V to [n]; (ii) x is an injective function from V
to [N], where N ≥ n; and (iii) for every u, v ∈ V , π(u) ≥ π(v) ⇐⇒ x(u) ≥ x(v).

Proposition 6. Problem Corresponding Order belongs to the class
dMAM[log N].

Proof. The following is a protocol for Corresponding Order. In the first
round, each node v receives from the prover:

– The certification for the size of V and that π is an injective function.
– a(v) = (x(v), π(v)) and b(v) = (y(v), π(v) + 1 mod n), with y(v) ∈ [N].

Suppose that π is an injective function and that n is known by all the nodes.
Observe that, if {a(v)}v∈V and {b(v)}v∈V are equal, then y(v) = x(u), where
u is the successor of v, i.e. π(u) = π(v) + 1. Then, 〈G = (V,E), id, (x, π)〉 is a
yes-instance of Corresponding Order if and only if π is an injective function,
{a(v)}v∈V = {b(v)}v∈V , and x(v) ≤ y(v) for each node v such that π(v) < n−1.

Then, in the two remaining rounds, the nodes interact with the prover in
order to prove that π is an injective function and that {a(v)}v∈V , {b(v)}v∈V are
equal multi-sets, using the protocols for Permutation and Equality, respec-
tively. The nodes also check that x(v) ≤ y(v) (except for the node v such that
π(v) = n−1). The communication bounds, as well as the correctness and sound-
ness of the protocol follows from the ones of protocols for Spanning-Tree, Size,
Equality and Permutation.
�

Note that our protocol for Corresponding Order can be easily extended
to the case when the range of function x is a set S of size N that admits a total
order.

4 Permutation and Trapezoid Graphs

To recognize trapezoid graphs, first we present a useful characterization of
them that are used to build a compact one-round PLS for problem
Trapezoid-Recognition, from which we derive a protocol for problem
Permutation.

222 B. Jauregui et al.

Remember that in a model of a trapezoid graph, there are two parallel lines
Lt and Lb. We denote this lines the top and bottom lines, respectively. Each
trapezoid has sides contained in each line, and then defined by four vertices, two
in the top line, and two in the bottom line. Formally, each trapezoid T is defined
by the set T = {t1, t2, b1, b2}, where t1 < t2 and b1 < b2, with t1, t2 ∈ Lt and
b1, b2 ∈ Lb (see Fig. 5).

Fig. 5. Each trapezoid T is defined by the set T = {b1, b2, t1, t2}.

The definition of a trapezoid graph can be restated as follows (see [6]): A
trapezoid graph G = (V,E) is the intersection graph of a set of trapezoids
{Tv}v∈V satisfying the following conditions. The vertices of each trapezoid have
values in [2n], two corresponding to the upper line and the other to the bottom
line. The vertices defining the set {Tv}v∈V , are all different, i.e., no pair of
trapezoids share vertices. Therefore, in both the top and the bottom lines, each
element in [2n] correspond to a vertex of some trapezoid. The trapezoid model
in the example of reffig:Extrapezoid satisfies these conditions.

For v ∈ V , we call {t1(v), t2(v), b1(v), b2(v)} the vertices of Tv. Moreover, we
say that {t1(v), t2(v), b1(v), b2(v)} are the vertices of node v. In the following, a
trapezoid model satisfying the abode conditions is called a proper trapezoid model
for G. Given a graph G = (V,E) (that is not necessarily a trapezoid graph),
a semi-proper trapezoid model for G is a set of trapezoids {Tv}v∈V satisfying
previous conditions, such that, for every {u, v} ∈ E, the trapezoids Tv and Tu

have nonempty intersection. The difference between a proper and a semi-proper
model is that in the first we also ask every pair of non-adjacent edges have
non-intersecting trapezoids.

Given a trapezoid graph G = (V,E) and a proper trapezoid model {Tv}v∈V ,
we define the following sets for each v ∈ V :

Ft(v) = {i ∈ [2n] | i < t1(v) and i ∈ {t1(w), t2(w)} for some w /∈ N(v)}
Fb(v) = {i ∈ [2n] | i < b1(v) and i ∈ {b1(w), b2(w)} for some w /∈ N(v)}

We also call ft(v) = |Ft(v)| and fb(v) = |Fb(v)|. The following lemmas char-
acterize trapezoid graphs.

Distributed Interactive Proofs 223

Lemma 1. Let G = (V,E) an connected trapezoid a graph with n nodes. Then
each proper trapezoid model {Tv}v∈V of G satisfies for every v ∈ V :

b1(v) − fb(v) = t1(v) − ft(v)

Proof. Let {Tv}v∈V be a proper trapezoid model of G. Then, given a node v ∈ V ,
all the coordinates in Ft(v) are vertices of some w �= N(v). Such trapezoids Tw

have their two upper vertices in the set [t1(v)] and their two lower vertices in
[b1(v)], as otherwise Tw and Tv would intersect. Then, the cardinality of the
set [t1(v)] \ Ft(v) is even, and the same holds for [b1(v)] \ Fb(v). Moreover, the
cardinality of the set [t1(v)] \ Ft(v) equals the cardinality of [b1(v)] \ Fb(v), as
every position in [2n] corresponds to a vertex of some trapezoid’s node. We
deduce that

t1(v) − ft(v) = |{1, . . . , t1(v)} \ Ft(v)| = |{1, . . . , b1(v)} \ Fb(v)| = b1(v) − fb(v).

Lemma 2. Let G = (V,E) be a n-node graph that is not a trapezoid graph.
Then, for every semi-proper trapezoid model {Tv}v∈V of G, at least one of the
following conditions is true:

1. ∃v ∈ V such that some value in {b1(v), . . . , b2(v)} or {t1(v), . . . , t2(v)} is a
vertex of ω /∈ N(v).

2. ∃v ∈ V such that b1(v) − fb(v) �= t1(v) − ft(v).

Proof. Let G be a graph that is not a trapezoid graph and {Tv}v∈V a semi-proper
trapezoid model. As G is not a permutation graph, by definition necessarily there
exist a pair {v, ω} �∈ E such that Tv ∩ Tω �= ∅. We distinguish two possible cases
(see Fig. 6):

1. [b1(v), b2(v)]N ∩ [b1(ω), b2(ω)]N �= ∅ or [t1(v), t2(v)]N ∩ [t1(ω), t2(ω)]N �= ∅.
2. [b1(v), b2(v)]N ∩ [b1(ω), b2(ω)]N = ∅ and [t1(v), t2(v)]N ∩ [t1(ω), t2(ω)]N = ∅.

Fig. 6. A representation of the two possible cases. In the first case, depicted in left,
at least one vertex of a trapezoid is contained in the other. In the second case, in the
right hand, the trapezoids intersect, but not in the vertices.

Clearly if the first case holds, then condition 1 is satisfied. Suppose then that
there is no pair {v, ω} �∈ E such that Tv ∩ Tω �= ∅ satisfying the first case. Then
necessarily the second case holds. Let u be a node for which exists ω ∈ V \N(u)
such that Tu ∩Tw �= ∅. For all possible choices of u, let us pick the one such that
b1(u) is minimum. Then u satisfies the following conditions:

224 B. Jauregui et al.

(a) Exists a node ω ∈ V such that ω /∈ N(v) and Tu ∩ Tω �= ∅
(b) All nodes ω ∈ V such that ω /∈ N(v) and Tu∩Tω �= ∅ satisfy that t2(ω) < t1(u)

and b2(u) < b1(ω)
(c) None of the positions in {1, . . . , b1(u)} is occupied by a vertex of a node ω

such that {u, ω} /∈ E and Tu ∩ Tω �= ∅.

Observe that conditions (a) and (b) imply that t1(u) − ft(u) > 0, while
condition (c) implies that b1(u) − fb(u) = 0. We deduce that condition 2 holds
by u.
�

We are now ready to define our protocol and main result regarding Trape-
zoid-Recognition.

Theorem 1. There is a 1-round proof labelling scheme for
Trapezoid-Recognition with certificates of size O(log n).

Proof. The following is a one-round PLS for Trapezoid-Recognition

Given an instance 〈G = (V,E), id〉, the certificate provided by the prover to
node v ∈ V is interpreted as follows.

1. The certification of the total number of nodes n, according to some protocol
for Size.

2. Values b1(v), b2(v), t1(v), t2(v) ∈ [2n], such that b1(v) < b2(v) and t1(v) <
t2(v), representing the vertices of a trapezoid Tv.

3. Value pv corresponding to the minimum position in the upper line greater
that t1(v) that is not a vertex of a neighbor of v.

4. Value qv corresponding minimum position in the lower line grater than b1(v)
that is not a vertex of a neighbor of v.

5. The certification of a path Pt between the node with vertex 0 and the node
with vertex 2n − 1 in the upper line (respecting assignment in 2.) and a path
Pb between the node node with vertex 0 and the node with vertex 2n − 1 in
the lower line. Both paths according to a protocol for s, t − Path.

Then, in the verification round, each node shares with its neighbors their
certificates. Using that information each node v can compute ft(v) and fb(v),
and check the following conditions:

a. The correctness of the value of n, according to some protocol for Size.
b. The correctness of the paths Pb and Pt, according to a protocol for s, t−Path.
c. The vertices of the trapezoid of v are in [2n].
d. Tv ∩ Tω �= ∅ for all ω ∈ N(v).
e. All values in {t1(v) + 1, . . . , t2(v) − 1} and {b1(v) + 1, . . . , b2(v) − 1} are a

vertex of some neighbor of v.
f. t2(v) < pv and b2(v) < qv.
g. If ω ∈ N(v) and pω < t2(v), then v verifies that pω is a vertex of some other

neighbor.

Distributed Interactive Proofs 225

h. If ω ∈ N(v) and qω < b2(v), then v verifies that qω is a vertex of some other
neighbor.

i. b1(v) − fb(v) = t1(v) − ft(v).

We now analyze the soundness and completeness of our protocol.

Completeness: Suppose that G is a trapezoid graph. An honest prover just has
to send the real number of nodes n, a trapezoid model {Tv}v∈V of G and valid
paths Pb and Pt according the trapezoid model. Then, the nodes will verify a, b
by the completeness of the protocols for Size and s, t − Path. Conditions c, d,
e ,f, g and h are verified by the correctness of the model {Tv}v∈V . Condition i
is also verified, by Lemma 1.

Soundness: Suppose G is not a trapezoid graph. If a dishonest prover provides
a wrong value of n, or wrong paths Pt or Pb, then at least one node will reject
verifying a or b. Then, we assume that the prover cannot cheat on these values.

Suppose that the prover gives values {Tv}v∈V such that is fulfilled⋃
v∈V {t1(v), t2(v)} �= [2n]. If some vertex of a node is not in the set [2n], then

that node fails to verify condition c and rejects. Without loss of generality, we
can assume that there exists a j ∈ [2n] such that t1(v), t2(v) �= j, for every v ∈ V .
If a node ω satisfies that t1(ω) < j < t2(ω), then node ω fails to verify condition
e and rejects. Then j is not contained in any trapezoid. As Pt is correct, j must
be different than 1 and 2n. Also by the correctness of Pt, there exist a pair of
adjacent nodes u, v ∈ V such that t2(u) < j < t1(v). From all possible choices
for u and v, we pick the one such that t2(u) is maximum. We claim that v fails
to check condition g. Since j is not a vertex of any node, then pu ≤ j. If v verifies
condition g, then necessarily pu < j. Then, there must exist a node ω ∈ N(v)
such that pu = t1(ω). But since we are assuming that j is not contained in any
trapezoid, we have that t2(ω) < j, contradicting the choice of u.

Therefore, if conditions a - h are verified, we can assume that the nodes are
given a semi-proper trapezoid model of G. Since we are assuming that G is not
a trapezoid graph, by Lemma 2 we deduce that condition i cannot be satisfied
and some node rejects.

We now analyze the communication complexity of the protocol: the certifi-
cation for Size and s, t − Path is O(log n), given by refprop:sizeofG and ref-
prop:stpath. On the other hand, for each v ∈ V , the values b1(v), b2(v), t1(v),
t2(v), pv, qv are computable in O(log n) space as they are numbers in [2n].
Overall the total communication is O(log n).
�

Observe that permutation graphs are exactly the trapezoid graphs that admit
a proper model where t2(v) = t1(v) + 1 and b2(v) = b1(v) + 1, for every v ∈ V .
Then, previous protocol can be adapted to solve Permutation-Recognition,
simply asking the nodes to accept only the models that satisfy previous condition.
We conclude that the problem Permutation-Recognition admits a PLS with
certificates of size O(log n).

226 B. Jauregui et al.

5 Circle and Polygon Circle Graphs

In this section, we give a three-round protocol for the recognition of polygon-
circle graph. This extension is based in a non-trivial extension of the properties
of circle graphs.

Remember that a n-node graph G = (V,E) is a k-polygon-circle graph if and
only if G is the intersection model of a set of n polygons of k vertices inscribed
in a circle, namely {Pv}v∈V . Further, every k-polygon-circle graph admits a
model satisfying the following conditions [6]: (1) for each v ∈ V , the polygon
Pv is represented as a set of k vertices {p0(v), . . . , pk−1(v)} such that, for each
i ∈ [k − 1], 1 ≤ pi(v) < pi+1(v) ≤ n · k, and (2)

⋃
v∈V

⋃
i∈[k]{pi(v)} = [n · k]. In

other words, each value in [k ·n] corresponds to a unique vertice of some polygon.
A set of polygons satisfying conditions (1) and (2) are called a proper polygon
model for G. Similar to previous cases, when we just ask that adjacent nodes
have intersecting polygons (but not necessarily the reciprocal) we say that the
model is a semi-proper polygon model for G.

Let G be a graph and {Pv} be a semi-proper model for G. For each v ∈ V .
Let us call α(v) the set of points in {1, . . . , p1(v)} ∪ {pk(v), . . . , kn} that do not
correspond to a neighbor of v. For each i ∈ [k], we also call βi(v) the set of nodes
w /∈ N(v) such that pi(w) ∈ α(v). Formally,

α(v) = {i ∈ [0, p1(v)]N ∪ [pk(v), kn − 1]N : ∀u ∈ N(v), i /∈ Pu}
βi(v) = {w ∈ V : pi(w) ∈ α(v)}

Lemma 3. Let G = (V,E) be a graph, and let {Pv}v∈V a semi-proper model
for G. Then {Pv}v∈V is a proper model for G if and only if |α(v)| = k|β1(v)|
for every v ∈ V .

Proof. Let us suppose first that {Pv}v∈V is a proper model for G and v be
an arbitrary node. If α(v) = ∅ the result is direct. Then, let us suppose that
α(v) �= ∅, and let us pick q ∈ α(v). Then necessarily there exists i ∈ [k] such
that q belongs to βi(v). Observe that for each node w in βi(v), all the vertices
of the polygon Pw are contained αv. Otherwise, the polygons Pw and Pv would
have non-empty intersection, which contradicts the fact that {Pv}v∈V is a proper
model. This implies that |α(v)| = k|βi(v)|, for every i ∈ [k]. In particular |α(v)| =
k|β1(v)|.

Let us suppose now that {Pv}v∈V is not a proper model for G. Let us define
the set C of vertices having non-neighbor with intersecting polygons, formally

C = {v ∈ V : ∃w ∈ V, {v, w} �∈ E and Pv ∩ Pw �= ∅}.

Now pick v ∈ C such that p1(v) is maximum, and call Cv the set of non-
neighbors of v whose polygons intersect with Pv. Let w be an arbitrary node
in Cv. By the maximality of p1(v), we know that p1(w) ∈ β1(v). But since
Pw ∩ Pv �= ∅, there must exist i ∈ [k] such that pi(w) /∈ βi(v). This implies that
|β1(v)| ≥ |βi(v)| for every i ∈ [k], and at least one of these inequalities is strict.
Since |α(v)| =

∑
i∈[k] |βi(v)|, we deduce that k|β1(v)| > |α(v)|.
�

Distributed Interactive Proofs 227

Let G = (V,E) be a graph, and {Pv}v∈V be a semi-proper polygon model
for G. For each i ∈ [k] and v ∈ V , we denote by πi(v) the cardinality of the
set {u ∈ V : pi(u) < pi(v)}, and denote by σi(v) the cardinality of the set
{q < pi(v) : ∃u ∈ V : p1(u) = q ∨ pk(u) = q}. For a node v, we denote
N1,k(v) the number vertices of polygons corresponding to neighbors of v, that
are contained [0, p(v1)]N ∪ [p(vk), kn]N. Formally,

N1,k(v) = |{q ∈ [0, p(v1)]N ∪ [p(vk), kn]N : ∃w ∈ N(v), q ∈ Pw}|
Lemma 4. Let G = (V,E) be a graph, and {Pv}v∈V be a semi-proper polygon
model for G. Then, |α(v)| = kn − pk(v) + p1(v) − 1 − N1,k(v), and |β1(v)| =
n − σk(v) + πk(v) + π1(v).

Proof. Let {Pv}v∈V be a semi-proper polygon model for G and v be an arbitrary
node. First, observe that there are p1(v) integer positions for vertices in [p1(v)]
and (kn− 1)− pk positions for vertices in [pk, kn− 1]. Then, there are kn− pk +
p1(v) − 1 available integer positions in [p1(v)] ∪ [pk(v), kn − 1]N. Since N1,k(v)
of these positions are occupied by a polygon corresponding some neighbor of v,
we deduce that α(v) = kn − pk + p1(v) − 1 − N1,k(v).

Second, observe that the set {p1(u), pk(u)}u∈V uses 2n of the kn pos-
sible positions. Then, there are 2n − σk(v) positions used the elements of⋃

u∈V {p1(u), pk(u)} ∩ [pk(v) + 1, kn − 1]N. On the other hand, there are n − πk

positions used by vertices in
⋃

u∈V {pk(u)}∩ [pk(v)+1, kn−1]N. Therefore, there
are n−σk(v)+πk(v) positions used by

⋃
u∈V {p1(u)}∩[pk(v)+1, kn−1]N. Finally,

noticing that there are π1(v) positions used by
⋃

u∈V {p1(u)} ∩ [0, p1(v) − 1]N,
we deduce that |β1(v)| = n − σk(v) + πk(v) + π1(v).
�

We are now ready to give the main result of this section.

Theorem 2. k-Polygon-Circle-Recognition belongs to dMAM[log n].

Proof. Consider the protocols for Size, Permutation and Correspond-
ing Orderof Propositions 2, 5 and 6. Given an instance 〈G, id〉, consider the
following three round protocol. In the first round, the prover provides each node
v with the following information:

1. The certification of the total number of nodes n, according to the protocol
for Size.

2. The vertices of the polygon Pv, denoted V (Pv) = {p1(v), . . . , pk(v)}.
3. The values of π1(v), πk(v) and σ(v).
4. The certification of

⋃
v V (Pv) = [k · n] according to the protocol for

Permutation.
5. The certification of the correctness of {(p1(v), π1(v))}v∈V according to the

protocol for Corresponding Order.
6. The certification of the correctness of {(pk(v), πk(v))}v∈V according to the

protocol for Corresponding Order.
7. The certification of the correctness of {(p1(v), σ1(v)}v∈V and the collection

{pk(v), σk(v)}v∈V according to the protocol for Corresponding Order.

228 B. Jauregui et al.

Then, in the second and third round the nodes perform the remaining inter-
actions of the protocols for Permutation and Corresponding Order. In the
verification round, the nodes first check the correctness of 1-7 according to the
verification rounds for Size, Permutation and Corresponding Order.

Remark: in order to check 7, each node has to play the role of two differ-
ent nodes v′, v′′, one to verify {(p1(v), σ(v′)}v∈V , and the other one to verifies
{(pk(v), σ(v′′)}v∈V , where σ(v′) = σ1(v) and σ(v′′) = σk(v). To do so, Merlin
gives v the certificates of v′ and v′′, and v answers with the random bits as if they
would be generated by v′ and v′′. Obviously, this increases the communication
cost by a factor of 2.

Then, each node v computes |β(v)| and |α(v)| according to the expressions
of Lemma 4, and checks the following conditions:

a. ∀u ∈ N(v), Pu ∩ Pv �= ∅.
b. |α(v)| = k|β1(v)|.

We now analyze completeness and soundness.

Completeness: Suppose that input graph G is a k-polygon-circle graph. Then
Merlin gives a proper polygon model {Pv}v∈V for G. Merlin also provides
the correct number of nodes n, correct orders {π1(v)}v∈V and {πk(v)}v∈V ,
{σ1(v)}v∈V and {σk(v)}v∈V , and the certificates required in the correspond-
ing sub-routines. Then, the nodes verify correctness of 1-7 with probability
greater than 2/3, by the correctness of the protocols for Size, Permutation
and Corresponding Order. Finally, condition a is verified by definition of a
proper model, and condition b is verified by Lemma 3. We deduce that every
node accepts with probability greater than 2/3.

Soundness: Suppose now that G is not a k-polygon-circle graph. By the sound-
ness of the protocols for Size, Permutation and corresponding order, we
now that at least one node rejects the certificates not satisfying 1-7, with prob-
ability greater than 2/3. Suppose then that conditions 1-7 are verified. Observe
that every set of polygons satisfying condition a form a semi-proper polygon
model for G. Since G is not a k-polygon-circle graph, by Lemma 3 we deduce
that at least one node fails to verify a or b. All together, we deduce that at least
one node rejects with probability greater than 2/3.

We now analyze the communication complexity of the protocol: the certifi-
cation for Size, Permutation and Corresponding Order is O(log n), given
by Proposition 2, 5 and 6. On the other hand, for each v ∈ V , the values
π1(v), πk(v), σ1(v), σ2(v), V (Pv) can be encoded in O(log n) as they are numbers
in [n], [2n] or [kn]. Overall the total communication is O(log n).

Since circle graphs are 2-polygon-circle graphs, we deduce that problem
Circle-Recognition is in dMAM[log n].

Distributed Interactive Proofs 229

6 Lower Bounds

In this section we give logarithmic lower-bounds in the certificate sizes of any
PLS that recognizes the class of permutation, trapezoid, circle or polygon-circle
graphs. In order to so, we use a technique given by Fraigniaud et al. [15], called
crossing edge, and which we detail as follows. Let G = (V,E) be a graph and let
H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G. We say that H1 and
H2 are independent if and only if V1 ∩ V2 = ∅ and E ∩ (V1 × V2) = ∅.

Definition 3 ([15]). Let G = (V,E) be a graph and let H1 = (V1, E1) and
H2 = (V2, E2) be two independent isomorphic subgraphs of G with isomorphism
σ : V1 → V2. The crossing of G induced by σ, denoted by σ��(G), is the graph
obtained from G by replacing every pair of edges {u, v} ∈ E1 and {σ(u), σ(v)} ∈
E2, by the pair {u, σ(v)} and {σ(u), v}.

Then, the tool that we use to build our lower-bounds is the following.

Theorem 3 ([15]). Let F be a family of network configurations, and let P be a
boolean predicate over F . Suppose that there is a configuration Gs ∈ F satisfy-
ing that (1) G contains as subgraphs r pairwise independent isomorphic copies
H1, ...,Hr with s edges each, and (2) there exists r port-preserving isomorphisms
σi : V (H1) → V (Hi) such that for every i �= j, the isomorphism σij = σi ◦ σ−1

j

satisfies P(Gs) �= P(σij
��(G)s). Then, the verification complexity of any PLS for

P and F is Ω

(
log(r)

s

)
.

Let us consider first permutation and trapezoid graphs. Let F the family
of instances of Permutation-Recognition, induced by the family of graphs
{Qn}n>0. Each graph Qn consists of 5n nodes forming a path {v1, . . . , v5n} where
we add the edge {v5i−3, v5i−1}, for each i ∈ [n]. It is easy to see that for each
n > 0, Qn is a permutation graph (and then also a trapezoid graph). In Fig. 7
is depicted the graph Q3 and its corresponding model.

Fig. 7. Graph Q3 and a permutation model for Q3.

Given Qn defined above, consider the subgraphs Hi = {v5i−2, v5i−1}, for each
i ∈ [n], and the isomorphism σi : V (H1) → V (Hi) such that σi(v3) = v5i−2 and
σi(v4) = v5i−1.

230 B. Jauregui et al.

Lemma 5. For each i �= j, the graph σij
��(Qn) it is not a trapezoid graph.

Proof. Given i < j, observe that in σij : V (Hj) → V (Hi), the nodes v5j−3,
v5j−2, v5i−1, v5i−3, v5i−2, v5j−1 form an induced cycle of length 6 (see Fig. 8 for
an example).

Fig. 8. Graph σ12
�� (Q3), where in red are represented the crossing edges. Observe that

this graph is not a trapezoid graph, as it contains an induced cycle of length 6.

As a trapezoid graph have induced cycles of length at most 6, we deduce that
σij

��(Qn) is not a trapezoid graph.

By Theorem 3 and the abode result, the lower bound result is direct.

Theorem 4. Any PLS for Permutation-Recognition
or Trapezoid-Recognition has proof-size of Ω (log n) bits.

We now tackle the lower-bound for circle and polygon-circle graphs. Let
G the family of instances of Circle-Recognition, defined by the family of
graphs {Mn}n>2. Each graph Mn consists of 6n nodes, where 4n nodes form
a path {v1, . . . , v4n} where we add, for each i ∈ [n], the edges {v4i−3, v4n+i},
{v4i−2, v5n+i} and {v4n+i, v5n+i}. It is easy to see that for each n > 0, Mn is
a circle graph (and then also a polygon-circle graph). In Fig. 9 is depicted the
graph M4 and its corresponding model.

Fig. 9. Left: Graph M4. Middle: a permutation model for M4. Right: Graph σi,i+1
�� (M4),

where in red are represented the crossing edges.

Given Mn defined above, consider the subgraphs Hi = {v4n+i, v5n+i}, for
each i ∈ [n], and the isomorphism σi : V (H1) → V (Hi) such that σi(4n + 1) =
v5n+i and σi(5n + 1) = v4n+i.

Lemma 6. For every k > 0 and each i �= j, the graph σij
��(Mn) it is not a

k-polygon-circle graph.

Distributed Interactive Proofs 231

Proof. First, observe that in σij
��(Mn) we have two induced cycles defined by

C1 = v1, . . . , v4n, and C2 = v4j−3, v4n+j , v5n+i, v4i−2, v4i−3, v4n+i, v5n+j . More-
over |V (C1) ∩ V (C2)| = 4, |V (C1) − V (C2)| = 4n − 4 and |V (C2) − V (C1)| = 4.
See Fig. 9 for a representation of σi,i+1

�� (M4).

Claim. Every graph G consisting in two graphs C1 and C2 such that |V (C1) ∩
V (C2)| ≥ 4, |V (C1) − V (C2)| ≥ 2 and |V (C2) − V (C1)| ≥ 2 is not a k-polygon-
circle graph, for every k > 0.

Let us denote by vi and vf two special nodes with degree 3, connecting the
two cycles. Suppose there exists a k-polygon-circle model for G. Observe that,
if we delete all polygons corresponding to nodes of V (C2) − V (C1), we obtain
a polygon model for C1. However, the cycle C1 has at least 4 nodes, because
|V (C1) − V (C2)| ≥ 2 and |V (C1) ∩ V (C2)| ≥ 4. Then, there is no way to add
the removed polygons corresponding to V (C2) − V (C1), without intersecting a
polygon of V (C1) − V (C2).

Then, by Sect. 6, we deduce that the graph induced by C1 ∪ C2 is not a k-
polygon-cycle graph. Since the class of polygon-circle graphs is hereditary, we
deduce that σij

��(Mn) it is not a k-polygon-circle graph.
�
Direct by Theorem 3 and Lemma 6 we deduce the following result.

Theorem 5. Any PLS for Circle-Recognition or
k-Polygon-Circle-Recognition has proof-size of Ω(log n) bits.

References

1. Abouelhoda, M.I., Ohlebusch, E.: Chaining algorithms for multiple genome com-
parison. J. Discrete Algorithms 3(2–4), 321–341 (2005)

2. Asdre, K., Ioannidou, K., Nikolopoulos, S.D.: The harmonious coloring problem is
np-complete for interval and permutation graphs. Discrete Appl. Math. 155(17),
2377–2382 (2007)

3. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

4. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM (JACM) 30(3), 479–513 (1983)

5. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of graph decompositions
and applications to minor-free classes. arXiv preprint arXiv:2108.00059 (2021)

6. Brandstädt, A., Van Le, B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, January 1999

7. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. Theo-
ret. Comput. Sci. 811, 112–124 (2020)

8. Chao, H.S., Hsu, F.-R., Lee, R.C.T.: An optimal algorithm for finding the minimum
cardinality dominating set on permutation graphs. Discrete Appl. Math. 102(3),
159–173 (2000)

9. Crescenzi, P., Fraigniaud, P., Paz, A.: Trade-offs in distributed interactive proofs.
In: 33rd International Symposium on Distributed Computing (DISC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

http://arxiv.org/abs/2108.00059

232 B. Jauregui et al.

10. Dagan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring.
Discrete Appl. Math. 21(1), 35–46, 1988

11. Diestel, R.: Graph theory, 3rd ed. Graduate texts in mathematics, 173 (2005)
12. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.:

Local certification of graphs with bounded genus. arXiv preprint arXiv:2007.08084
(2020)

13. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.:
Compact distributed certification of planar graphs. Algorithmica, pp. 1–30 (2021)

14. Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I.: On dis-
tributed Merlin-Arthur decision protocols. In: Censor-Hillel, K., Flammini, M.
(eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 230–245. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24922-9 16

15. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2019)

16. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity
of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods 1(2),
216–227 (1980)

17. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Inf. Process. Lett. 73(5–6), 181–188 (2000)

18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM (JACM) 38(3),
690–728 (1991)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

20. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Elsevier (2004)
21. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory

Comput. 12(1), 1–33 (2016)
22. Halldórsson, M.M., Konrad, C.: Improved distributed algorithms for coloring inter-

val graphs with application to multicoloring trees. Theoretical Comput. Sci. 811,
29–41 (2020)

23. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: On the enumeration
and counting of minimal dominating sets in interval and permutation graphs. In:
Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 339–
349. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3 32

24. Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs.
In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 41–52. Springer,
Heidelberg (2006). https://doi.org/10.1007/11785293 7

25. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper
interval graphs with small cliques. SIAM J. Comput. 25(3), 540–561 (1996)

26. Ton Kloks. Treewidth of circle graphs. In International Symposium on Algorithms
and Computation, pages 108–117. Springer, 1993

27. Gillat Kol, Rotem Oshman, and Raghuvansh R Saxena. Interactive distributed
proofs. In ACM Symposium on Principles of Distributed Computing, pages 255–
264. ACM, 2018

28. Konrad, C., Zamaraev, V.: Distributed minimum vertex coloring and maximum
independent set in chordal graphs. In 44th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2019)

29. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

http://arxiv.org/abs/2007.08084
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/978-3-642-45030-3_32
https://doi.org/10.1007/11785293_7

Distributed Interactive Proofs 233

30. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms
for recognizing interval graphs and permutation graphs. SIAM J. Comput. 36(2),
326–353 (2006)

31. Lappas, E., Nikolopoulos, S.D., Palios, L.: An o (n)-time algorithm for the paired
domination problem on permutation graphs. Eur. J. Combinatorics 34(3), 593–608
(2013)

32. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM (JACM) 39(4), 859–868 (1992)

33. Ma, T.-H., Spinrad, J.P.: On the 2-chain subgraph cover and related problems. J.
Algorithms 17(2), 251–268 (1994)

34. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica
37(2), 93–147 (2003)

35. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Society for
Industrial and Applied Mathematics, January 1999. https://doi.org/10.1137/1.
9780898719802

36. Montealegre, P., Ramı́rez-Romero, D., Rapaport, I.: Shared vs private randomness
in distributed interactive proofs. LIPIcs, vol. 181, pp. 51:1–51:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

37. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–115. SIAM
(2020)

38. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

39. Pergel, M.: Recognition of Polygon-Circle Graphs and Graphs of Interval Filaments
Is NP-Complete. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007.
LNCS, vol. 4769, pp. 238–247. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74839-7 23

40. Shamir, A.: Ip= pspace. J. ACM (JACM) 39(4), 869–877 (1992)
41. Spinrad, J.: Recognition of circle graphs. J. Algorithms 16(2), 264–282 (1994)
42. Tiskin, A.: Fast distance multiplication of unit-monge matrices. Algorithmica

71(4), 859–888 (2015)
43. Yamazaki, K., Saitoh, T., Kiyomi, M., Uehara, R.: Enumeration of nonisomorphic

interval graphs and nonisomorphic permutation graphs. Theoret. Comput. Sci.
806, 310–322 (2020)

https://doi.org/10.1137/1.9780898719802
https://doi.org/10.1137/1.9780898719802
https://doi.org/10.1007/978-3-540-74839-7_23
https://doi.org/10.1007/978-3-540-74839-7_23

Exactly Optimal Deterministic Radio
Broadcasting with Collision Detection

Koko Nanahji(B)

University of Toronto, Toronto, ON M5S1A4, Canada
koko.nanahji@gmail.com

Abstract. We consider the broadcast problem in synchronous radio
broadcast models with collision detection. One node of the network is
given a message that must be learned by all nodes in the network. We pro-
vide a deterministic algorithm that works on the beeping model, which is
a restricted version of the radio broadcast model with collision detection.
This algorithm improves on the round complexity of previous algorithms.
We prove an exactly matching lower bound in the radio broadcast model
with collision detection. This shows that the extra power provided by the
radio broadcast model with collision detection does not help improve the
round complexity.

Keywords: Broadcast · Distributed · Radio network · Collision
Detection · Beep Model · Encoding

1 Introduction

Broadcast is a fundamental problem in distributed computing that is frequently
used as a building block in other problems. We study the broadcast problem
in synchronous radio networks, modeled as undirected connected graphs, where
nodes do not have identifiers and, initially, have no knowledge about the network.
In this problem, one node of the network is given a message that must be learned
by all nodes in the network.

In the radio broadcast model with collision detection, a listening node receives
the entire message of its neighbour if that neighbour is its only neighbour which
transmits that round. If more than one of its neighbours transmit, then it receives
a collision signal. The beeping model is a restricted version in which nodes can
only transmit the collision signal.

Chlebus, Gąsieniec, Gibbons, Pelc, and Rytter [6], provide a determinis-
tic broadcasting algorithm that works on the beeping model. This algorithm
takes Θ(D · log2 μ) rounds to broadcast any message μ ∈ Z

+, where D is the
source eccentricity of the network. Czumaj and Davies [12] and, independently,
Hounkanli and Pelc [18], provide an asymptotically optimal deterministic broad-
casting algorithm in the beeping model that takes D+6 · �log2 μ�+11 rounds to
broadcast any message μ ∈ Z

+. They also prove a lower bound of Ω(D+log2 μ)
rounds.
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 234–252, 2022.
https://doi.org/10.1007/978-3-031-09993-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_13

Exactly Optimal Deterministic Radio Broadcasting 235

In this paper, we provide a deterministic algorithm to broadcast any value
from a predefined set of values that has exactly optimal round complexity. In
particular, in Sect. 4, we provide a deterministic algorithm to broadcast any
value from set {1, . . . , m} that works on the beeping model and takes D + r(m)
rounds, where r(m) ≤ 2 · �log2 m� + 2. In Sect. 5, we prove that D + r(m) is a
lower bound in the radio broadcast model with collision detection. This shows
that allowing nodes to send arbitrarily long messages instead of just a collision
signal does not help improve the round complexity.

2 Model

There are a number of variants of the synchronous radio broadcast model that
are considered. The three most relevant to this paper are the following:

– Radio broadcast model without collision detection. In this model, the
nodes communicate in synchronous rounds. At each round, a node can idle,
listen, or transmit the same value to all its neighbours. If a node transmits or
idles, it gets no feedback from the environment at that round. If a node listens
and none of its neighbors transmit or at least two of its neighbors transmit, it
receives nothing. If a node listens and exactly one of its neighbors transmits,
then it receives the value transmitted by that neighbour.

– Radio broadcast model with collision detection. This model is same
as the previous model except that, if at least two neighbors of a node trans-
mit, it receives a collision signal. Thus, a node that listens can distinguish
between none of its neighbours transmitting and at least two of its neighbours
transmitting.

– Beeping model. This is a special case of the radio broadcast model with
collision detection, in which the only message a node can transmit is the
collision signal (also called a beep). Thus, in the beeping model, when a node
listens, it receives a beep if at least one of its neighbours transmits at that
round.

We assume that, initially, the nodes are indistinguishable and have no knowl-
edge about the network. Each node starts by listening (without recording any
information) up to and including the first round in which at least one of its
neighbours transmits. We say that a node wakes up at some round t, if at least
one of its neighbours transmits for the first time at round t. A node that wakes
up at round t starts executing the given algorithm at round t + 1.

In the broadcast problem, an external source wakes up one of the nodes in
the network by giving it a value from a finite set of possible values. This node
is called the source node. We define round 1 of an execution to be the round
immediately following the round in which the source node is woken up. The
nodes at distance � from the source node are said to be at level �. The maximum
level of any node in the network is called the source eccentricity.

236 K. Nanahji

3 Related Work

Early approaches to solve the broadcast problem used randomization. Bar-
Yehuda, Goldreich, and Itai [2] were first to provide a randomized algorithm for
the broadcasting problem in the radio broadcast model without collision detec-
tion. They assumed that nodes are anonymous (i.e., they do not have any iden-
tifiers) and they are given the size of the network and the maximum number of
neighbours of any node in the network. Their algorithm takes O(D·log n+log2 n)
rounds with high probability, where n is the size of the network and D is the
source eccentricity of the network. Later, Czumaj and Rytter [13] and, indepen-
dently, Kowalski and Pelc [19] provided a randomized broadcasting algorithm
where nodes have distinct identifiers and they are given the size of the net-
work. Their algorithm takes expected O(D log n

D + log2 n) rounds. Kushilevitz
and Mansour [21] proved an expected Ω(D log n

D) round lower bound, when
nodes only know the size and the diameter of the network. Alon, Bar-Noy,
Linial, and Peleg [1] proved an Ω(log2 n) round lower bound, even if nodes
have distinct identifiers and every node knows the entire network. Thus, the
expected round complexity of the broadcast problem without collision detection
is in Θ(D log n

D + log2 n) when nodes have distinct identifiers and are given the
size of the network.

Ghaffari, Haeupler, Khabbazian [17] studied randomization in the radio
broadcast model with collision detection. They provided a broadcasting algo-
rithm that takes O(D+log6 n) rounds, with high probability, in which the nodes
are given the size of the network and the source eccentricity of the network. They
also presented a broadcasting algorithm that takes O(D + log2 n) rounds, with
high probability, in which the nodes know the entire network topology.

Deterministic approaches have also been studied. Most of the papers about
the deterministic broadcast problem are for the radio broadcast model with-
out collision detection. Initially, researchers considered the case in which each
node has a distinct identifier. Some papers assume that nodes are not given any
information about the network, except possibly the size of the network n, the
maximum number of neighbours of any node in the network Δ, and the source
eccentricity of the network D. There are many broadcasting algorithms for this
setting [6–9]. The fastest such algorithm was provided by Czumaj and Davies
[11], which takes O(n logD log log DΔ

n) rounds.
Other papers consider algorithms designed with knowledge of the entire net-

work topology. They also assume that nodes have distinct identifiers. Chlam-
tac [5] provided a deterministic algorithm for the broadcast problem that takes
O(D · log2 n) rounds. Kowalski and Pelc [20] provided an optimal deterministic
algorithm, which takes O(D + log2 n) rounds.

Another approach was to carefully assign short labels to the nodes of the
network, instead of assuming they have distinct identifiers. Ellen, Gorain, Miller,
and Pelc [15] showed that broadcast can be done in any radio broadcast network
after assigning 2-bit labels to each node. Their algorithm takes Θ(n) rounds.
They also showed that 1-bit labels were sufficient for a class of networks. Gewu,
Potop-Butucaru, Rabie [3] proved that 1-bit labels are sufficient to solve the

Exactly Optimal Deterministic Radio Broadcasting 237

broadcast problem for a larger class of networks. Ellen and Gilbert [14] provide an
algorithm that uses 3-bit labels and takes O(D log2 n) rounds and an algorithm
that uses 4-bit labels and takes O(

√
Dn) rounds. Ellen, Gorain, Miller, and

Pelc [15] observed that, without identifiers and without collision detection, it
is impossible to solve the broadcast problem deterministically in some radio
networks because it is impossible to break symmetry.

The known broadcasting algorithms for the beeping model [6,12,18] do not
assume that nodes have identifiers. Some of the techniques used in these algo-
rithms are closely related to techniques used in our paper, so we describe them
in more detail.

In the algorithm by Chlebus, Gąsieniec, Gibbons, Pelc, and Rytter [6], all
bits of the message are transmitted to nodes at the same level before any bits of
this message are transmitted to nodes that are at higher levels. The algorithm
to broadcast message μ is executed in phases of O(log2 μ) rounds. At each phase
1 ≤ i ≤ D, the nodes at level i−1 transmit the message (bit by bit) to the nodes
at level i. Thus, this algorithm takes (D · log2 μ) rounds.

The algorithms presented by Czumaj and Davies [12] and Hounkanli and
Pelc [18] are very similar. Both rely on the Beep Waves method, introduced
by Ghaffari and Haeupler [16], to relay a message using beeps. The idea is to
broadcast the bits of the message level by level in a pipelined fashion. At every
third round, starting with round 1, the source node announces a bit of the
message. The source node beeps at that round if and only if the bit is 1. When
any other node learns a bit of the message, it conveys the value of that bit to
its neighbours at the next level during the following round. Then it idles for
one round, ignoring the information those neighbours send. In particular, nodes
at level � ≥ 1 learn the ith bit of the message at round � + 3(i − 1). During
the execution of Beep Waves, a beep of the source node propagates like a wave
throughout the network, spreading to the next level at each round.

In all three algorithms, a non-source node learns the message bit by bit over
several rounds and, hence, it needs a mechanism to detect the end of the message.
If the set of messages is {1, . . . , m}, it suffices for the source node to send the
�log2 m� bits of a binary encoding of the message. However, if the message can
be any positive integer, the encoding of the message must be self-delimiting. For
example, Czumaj and Davies [12] start the encoding with 10, then duplicate
each bit in the binary representation of the message, and end the encoding with
10. Hence, binary representation of 5 becomes 1011001110 in their encoding.

4 Algorithm

First, we describe an algorithm in the beeping model in which the source node
can broadcast any value from a prefix-free set of binary strings. The algorithm
uses a variant of the Beep Waves method. However, the pipelining operates
slightly differently, where transmitting a 0 takes fewer rounds. Later, we design
a new encoding scheme which takes this into account. The combination of the
algorithm and the encoding scheme is shown to be optimal in the next section.

238 K. Nanahji

Given a binary string x, let |x| denote the length of x, let xi denote the ith

character of x for 1 ≤ i ≤ |x|, and let prej(x) be the prefix of length j of x,
where 0 ≤ j ≤ |x|.

Let S be a prefix-free set of binary strings (i.e. no element of S is a prefix of
another element of S). First, we provide a detailed description of the algorithm
to broadcast any string s ∈ S.

Algorithm 1: Algorithm for source node to broadcast s after waking up
1 Beep
2 Listen
3 if received nothing then Terminate
4 Idle
5 for i from 1 to |s| − 1 do
6 if si = 1
7 then Beep
8 Idle
9 Idle

10 else Idle
11 if s|s| = 1 then Beep
12 Terminate

Algorithm 2: Algorithm for a non-source node v after being woken up
1 accv ←− ε
2 Beep
3 Listen
4 if received nothing then terminalv ←− True else terminalv ←− False
5 while accv /∈ S do
6 Listen
7 if received signal
8 then accv ←− accv · 1
9 if accv /∈ S

10 then Beep
11 Idle
12 else if terminalv = False then Beep
13 else accv ←− accv · 0
14 Terminate

The pseudocode for the source node is presented in Algorithm 1. In the first
round after it is woken up, the source node beeps. In the second round, the
source node listens. If it receives nothing, then it terminates. Otherwise, it idles
for one round and then, for 1 ≤ i ≤ |s|−1, it does one of the following. If si = 0,

Exactly Optimal Deterministic Radio Broadcasting 239

then the source node idles. If si = 1, then the source node beeps and idles for
two rounds. Finally, if the last character of s is 1, then the source node beeps.

The pseudocode for an arbitrary non-source node, v, is presented in Algo-
rithm2. Its local variable accv is used to accumulate the characters of s and is
initially set to the empty string. Once v is woken up, it beeps in the next round
and listens in the following round. It receives a beep in this round if and only
if it is connected to a node at a higher level. This information is recorded in its
local variable terminalv.

While node v has not yet received the entire message, it repeatedly executes
phases. Each phase starts by a listen round, in which it learns the next bit of
the message. Specifically, receiving nothing means this bit is 0 and receiving a
beep means this bit is 1. In the latter case, it beeps at the next round to relay
this information to the nodes at the next level and then idles for one round. In
the last phase, immediately after it has learned that the last bit of the message
is 1, a node that is not connected to a node at a higher level can immediately
terminate. If it is connected to a node at a higher level, then it can terminate
after beeping.

Now, we prove the correctness and bound the round complexity of this algo-
rithm when broadcasting message s. Since each node beeps after waking up, the
nodes at level � wake up at round �. Moreover, if there are nodes at level 1, then
the source node receives a signal at round 2 and, hence, continues with the rest
of its algorithm. Likewise, a non-source node v sets terminalv to True if and only
if it is connected to a node at a higher level.

Let C(x) be the number of 0’s in the binary string x plus three times the
number of 1’s in x. In particular, C(x) = 0, if x is the empty string.

Observe that, the source node executes 3 rounds before executing the first
iteration of the loop. If si = 0, then the ith iteration of the loop takes C(si) = 1
round. If si = 1, then the ith iteration of the loop takes C(si) = 3 rounds.
Therefore, 3+C(prei−1(s))+1 is the first round of the ith iteration, for 1 ≤ i ≤
|s| − 1.

Observation 1. Suppose the source node does not terminate at the end of round
2. Then, for all 1 ≤ i ≤ |s|, the source node beeps at round 3+C(prei−1(s)) + 1
if and only if si = 1. Furthermore, the source node terminates at round 3 +
C(pre|s|−1(s)) + s|s|.

We will show that when D > 0, all nodes terminate by the end of round
D + C(pre|s|−1(s)) + 3.

In the next two results, we identify the rounds in which each node learns
each bit of the message. First, we identify the round in which each node learns
the first bit of s. Then, we generalize it to all bits of s.

Lemma 1. For all 1 ≤ � ≤ D, each node v at level � appends a character to
accv for the first time at round � + 3 and the appended character is s1.

Proof. The source node beeps at round 4 if and only if s1 = 1. Each node u
at level 1 wakes up at round 1 and appends a character to accu for the first

240 K. Nanahji

time at round 4. The nodes at level 2 wake up at round 2 and listen at round 4.
Therefore, nodes at level 1 receive a signal at round 4 if and only if s1 = 1. Since
u appends 1 to accu if it receives a signal and appends 0 if it receives nothing,
u appends s1 to accu at round 4.

Let 2 ≤ � ≤ D and assume the claim is true for � − 1. In particular, each
node w at level � − 1 appends s1 to accw at round � + 2. From the pseudocode,
if terminalw = False, then w beeps at round � + 3 if and only if s1 = 1. Since
nodes at level � wake up at round �, each node v at level � listens and appends
0 or 1 to accv for the first time at round �+3. If � < D, the nodes at level �+1
wake up at round � + 1 and listen at round � + 3. Therefore, v receives a signal
at round � + 3 if and only if s1 = 1. Since v appends 1 to accv if it receives a
signal and appends 0 if it receives nothing, v appends s1 to accv at round �+3.

Lemma 2. For all 1 ≤ j ≤ |s|, each node v at level 1 ≤ � ≤ D appends a
character to accv for the jth time at round �+C(prej−1(s))+3 and the appended
character is sj.

Proof. We will prove the claim by induction on 1 ≤ j ≤ |s| and 1 ≤ � ≤ D. Note
that, if j = 1, then C(prej−1(s)) = 0. Thus, by Lemma 1, the claim holds for all
1 ≤ � ≤ D when j = 1.

Let 2 ≤ j′ ≤ |s| and 1 ≤ �′ ≤ D. Assume the claim holds for 1 ≤ � ≤ D when
j = j′ − 1 and for 1 ≤ � ≤ �′ − 1 when j = j′.

Let v be a node at level �′. It follows from the induction hypothesis that
v appends sj′−1 to accv at round �′ + C(prej′−2(s)) + 3 and the value of accv

becomes prej′−1(s). Since S is prefix-free, prej′−1(s) /∈ S at the end of round
�′+C(prej′−2(s))+3. From the pseudocode, if sj′−1 = 0, then C(sj′−1) = 1 round
later, v listens and appends a character to accv. If sj′−1 = 1, then C(sj′−1) = 3
rounds later, v next listens and appends a character to accv. Thus, v appends
the next character to accv at round �′ + C(prej′−2(s)) + 3 + C(sj′−1) = �′ +
C(prej′−1(s)) + 3.

Let u be a node at level �′ +1. By the induction hypothesis, u appends sj′−1

to accu at round �′ + 1+C(prej′−2(s)) + 3. Thus, if sj′−1 = 0, then u listens at
round �′ + 1 + C(prej′−2(s)) + 3 = �′ + C(prej′−1(s)) + 3. If sj′−1 = 1, then, u
idles at round 2 + �′ + 1 + C(prej′−2(s)) + 3 = �′ + C(prej′−1(s)) + 3. Hence,
nodes at level �′ + 1 do not beep at round �′ + C(prej′−1(s)) + 3.

If �′ = 1, then, by Observation 1, the source node beeps at round 3 +
C(prej′−1(s))+1 = �′+C(prej′−1(s))+3 if and only if sj′ = 1. So, suppose �′ ≥ 2.
By the induction hypothesis, each node w at level �′ − 1 appends sj′ to accw at
round �′ − 1 +C(prej′−1(s)) + 3. From the pseudocode, if terminalw = False, w
beeps at round �′ +C(prej′−1(s))+3 if and only if sj′ = 1. Therefore, v receives
a signal at round �′ +C(prej′−1(s)) + 3 if and only if sj′ = 1. Since v appends 1
to accu if it receives a signal and appends 0 if it receives nothing, v appends sj′

to accv at round �′ + C(prej′−1(s)) + 3.

Now, we show that all nodes learn s and terminate by the end of round
D + C(pre|s|−1(s)) + 3.

Exactly Optimal Deterministic Radio Broadcasting 241

Lemma 3. For all 1 ≤ � ≤ D, nodes at level � learn the value of s at round �+
C(prej−1(s))+3. Each node v at level � terminates at round �+C(pre|s|−1](s))+
3 + s|s| if terminalw = False and terminates at round � + C(pre|s|−1(s)) + 3 if
terminalw = True.

Proof. Let 1 ≤ � ≤ D and let v be a node at level �. By Lemma2, accv = s at
the end of round � + C(prej−1(s)) + 3. If s|s| = 0 or terminalv = True, then v
terminates at the end of this round. Otherwise, v terminates one round later.

Let m ≥ 2. We now explain how to modify the algorithm to broadcast any
value from {1, . . . , m}. Since each value of an arbitrary set of size m can be
mapped to a value in {1, . . . , m}, this method can be used to broadcast a value
from an arbitrary set of size m.

First, we recursively construct a prefix-free set of binary strings Wi such
that, for all i ≥ 3 and all w ∈ Wi, C(pre|w|−1(w)) ≤ i − 3. Let W0 = {0},
W1 = W2 = {1}, W3 = {0, 1}, W4 = {00, 01, 1} and W5 = {000, 001, 01, 1}. For
all i ≥ 6, Wi consists of the strings in Wi−1 prepended by 0 (denoted by 0 ·Wi−1)
and the strings in Wi−3 prepended by 1 (denoted by 1 · Wi−3). For all i ≥ 0,
let wi = |Wi|. Then, w0 = w1 = w2 = 1 and, for all i ≥ 3, wi = wi−1 + wi−3.
Note that, w0, w1, w2, . . . is Narayana’s cows sequence [23]. We show that Wi is
prefix-free.

Lemma 4. For all i ≥ 0, there is no string in Wi that is a prefix of any other
string in wi.

Proof. By inspection, the claim holds for 0 ≤ i ≤ 5. Let i ≥ 6 and assume the
claim is true for Wi−1 and Wi−3. Hence, no string in 0 · Wi−1 is a prefix of any
other string in 0 · Wi−1. Similarly, no string in 1 · Wi−3 is a prefix of any other
string in 1 · Wi−3. Since Wi = 0 · Wi−1 ∪ 1 · Wi−3, no string in Wi is a prefix of
any other string in Wi.

Next, we describe the relationship between w ∈ Wi and the function C for
all i ≥ 3.

Lemma 5. For all i ≥ 3, all w ∈ Wi, C(pre|w|−1(w)) ≤ i − 3.

Proof. By inspection, the claim holds for 3 ≤ i ≤ 5. Let i ≥ 6 and assume
the claim is true for Wi−1 and Wi−3. Let w ∈ Wi be arbitrary. If w = 0 · w′,
then w′ ∈ Wi−1. By the induction hypothesis, C(pre|w′|−1(w′)) ≤ i − 4. Hence,
C(pre|w|−1(w)) ≤ i − 3. If w = 1 · w′, then w′ ∈ Wi−3. By the induction
hypothesis, C(pre|w′|−1(w′)) ≤ i − 6. Hence, C(pre|w|−1(w)) ≤ i − 3.

Next, we describe how to modify the algorithm to broadcast a value from
{1, . . . , m}. Let r be the smallest value such that wr ≥ m. Since m ≥ 2, it follows
that r ≥ 3. Let S = Wr = {s1, s2, . . . , swr

}. To broadcast μ ∈ {1, . . . , m}, the
source node sets s = M(μ) and performs the steps in Algorithm 1. Each non-
source node performs steps in Algorithm 2, but when it terminates it decodes
the message as M−1(accv). By observation 1 and Lemma 3, all nodes terminate

242 K. Nanahji

within D + C(pre|M(μ)|−1](M(μ))) + 3 rounds. Since r ≥ 3, Lemma5 implies
that C(pre|M(μ)|−1](M(μ))) ≤ r − 3. Thus, all nodes learn μ and terminate
within D + r rounds.

It is known that wi =
⌊
dci + 1

2

⌋
, where c ≈ 1.4656 is the real root of x3−x2−1

and d ≈ 0.6115 is the real root of 31 ·x3 − 31 ·x2+9 ·x− 1 [10]. Thus
⌊
dcr−1

⌋
=

wr−1 < m. Since m is an integer, dcr−1 < m, so r < logc m − logc d + 1 <
2 log2 m + 3. Since r is an integer, r ≤ 2�log2 m� + 2.

Theorem 1. Let m ≥ 2 and let r ≥ 3 be the smallest value such that wr ≥ m.
Consider the algorithm in Algorithms 1 and 2 that enables the source node to
broadcast any message from {1, . . . , m}. For all D ≥ 1 and all μ ∈ {1, . . . , m},
all nodes learn μ and terminate within D + r ≤ D + 2�log2 m� + 2 rounds
during the execution of the algorithm with message μ on every graph of source
eccentricity D.

5 Lower Bound

It is convenient for the proof of the lower bound to strengthen the model by
assuming that each node knows its level and whether that level is the final level
of the graph. We also assume that the source node is fixed. Since a node that
listens can simulate idling by throwing away any information it receives, we
assume that nodes either listen or transmit at each round.

We define a family of graphs used in the proof. For all D ≥ 2, let ED be the
graph with a source node and two nodes at each level 1 through D, such that,
for all 0 ≤ � ≤ D − 1, each node at level � is connected to both nodes at level
� + 1. Figure 1 shows graph E3.

Fig. 1. The graph E3 with source node s.

Algorithms executing on ED have some nice properties. In the full version of
this paper [22], we consider an arbitrary algorithm A that does not necessarily
perform broadcast, but does have the property that all nodes eventually wake
up during the execution of A with message μ on ED, for all D ≥ 12 and all
messages μ ∈ M . We prove that, all nodes at the same level, �, wake up at the
same round, tA(D,μ, �), during the execution of A with message μ on ED, for
each D ≥ 12 and each μ ∈ M . Then we show that, for each level � ≥ 2, all
nodes at level � transition to the same state, cA(�, 0), when they wake up during
the execution of A with message μ on ED, for every μ ∈ M and every D ≥ 12,
provided � is not the last level of ED.

Exactly Optimal Deterministic Radio Broadcasting 243

The main result in this section is the following theorem, where w0, w1, w2, . . .
is Narayana’s cows sequence. It proves that the algorithm in 1 and 2 is optimal
in the radio broadcast model with collision detection.

Theorem 2. Let m ≥ 2 and let r ≥ 3 be the smallest value such that wr ≥ m.
Consider any algorithm B that enables the source node to broadcast any message
from {1, . . . , m}. Then there exist D ≥ 12, a message μ ∈ {1, . . . , m}, and a
non-source node that uses at least D + r rounds during the execution of B with
message μ on ED.

Let m ≥ 2 and let r ≥ 3 be the smallest value such that wr ≥ m. Since
wr−1 < m ≤ wr, an algorithm that enables the source node to broadcast any
message from {1, . . . , m} also enables the source node to broadcast any message
from {1, . . . , wr−1 + 1}. Therefore, it suffices to assume that m = wr−1 + 1.

To obtain a contradiction, assume there exists an algorithm B that enables
the source node to broadcast any message from {1, . . . , wr−1 +1} such that, for
all D ≥ 12 and all μ ∈ {1, . . . , wr−1 + 1}, all non-source nodes terminate within
D + r − 1 rounds during the execution of B with message μ on ED.

From algorithm B, we construct an algorithm B′, which still terminates within
D + r − 1 rounds, but the nodes at each level wake up as early as possible. This
reduces the number of cases that will have to be considered. In particular, nodes
at level D wake up at round D of B′ and, hence, distinguish between all wr−1+1
messages within r−1 rounds after waking up. We show that, for all 2 ≤ � ≤ D−1,
during B′, all nodes at level � also distinguish between all source messages within
r − 1 rounds after waking up. These properties are formalised in the following
definition.

Definition 1. An algorithm A has property P(k) if, for all D ≥ 12,

1. for all μ ∈ {1, . . . , wk−1 +1} and for all 1 ≤ � ≤ D, the nodes at level � wake
up at round � during the execution of A with message μ on ED and,

2. for all distinct μ, μ′ ∈ {1, . . . , wk−1 + 1} and for all 2 ≤ � ≤ D − 1, there
exists 0 ≤ t� ≤ k − 1 such that the nodes at level � are in different states at
the end of round �+ t� during the executions of A with messages μ and μ′ on
ED.

First, we will explain why algorithm B′ has property P(r). The proof of
this result appears in the full version of this paper [22]. Then, we inductively
prove that, for all k ≥ 3, no algorithm has property P(k). Since algorithm B′

has property P(r), this contradicts the existence of algorithm B′ and, hence,
algorithm B does not exist.

First, we construct algorithm B′ and show that it satisfies condition 1 of
property P(r).

Lemma 6. There exists an algorithm B′ that enables the source node to broad-
cast any message from {1, . . . , wr−1+1}, such that, for all D ≥ 12, all 1 ≤ � ≤ D
and all μ ∈ {1, . . . , wr−1 + 1}, the nodes at level � wake up at round � and all
non-source nodes terminate by the end of round D + r − 1 during the execution
of B′ with message μ on ED.

244 K. Nanahji

Proof Sketch. We show that there are finitely many levels � ≥ 2 such that nodes
in state cB(�, 0) listen. Let �0 ≥ 9 be such that nodes in state cB(�, 0) transmit
for all � ≥ �0. Since all non-source nodes terminate within �0 +D+ r − 1 rounds
during the execution of B on E�0+D and nodes at level �0+ � wake up at or after
round �0+ �, the nodes at level �0+ � terminate within D− �+r−1 rounds after
waking up. We also show that, for all D ≥ 12 and all 0 ≤ � ≤ D, the nodes at
level �0 + � wake up at round tB(�0 + D,μ, �0 + �) = tB(�0 + 1, μ, �0) + � during
the execution of B with message μ on E�0+D.

We construct algorithm B′ so that, for all D ≥ 12, every execution of B′ with
a message μ ∈ {1, . . . , wr−1 + 1} on ED simulates the execution of B with the
same message on E�0+D: During the execution of B′ on ED, the source node
simulates levels 0 through �0 in E�0+D and, each non-source node, from when it
wakes up, simulates a node �0 levels higher in E�0+D, from when it wakes up.
In B′, each node transmits the round after it wakes up and, hence, the nodes at
level � wake up at round � for 1 ≤ � ≤ D. More generally, during the execution
of B′ with message μ on ED, for all t ≥ 0, at the end of round � + t, the nodes
at level � are in the same state as the nodes at level �0 + � at the end of round
tB(�0 + 1, μ, �0) + � + t in the execution of B with message μ on E�0+D. Since
the nodes at level �0 + � terminate within D − � + r − 1 rounds after waking
up during the execution of B with message μ on E�0+D, the nodes at level �
terminate within D − � + r − 1 rounds after waking up (at round �) during the
execution of B′ with message μ on ED.

Next, we show that algorithm B′ also satisfies condition 2 of property P(r).
In particular, for any pair of messages in {1, . . . , wr−1 + 1}, the nodes at level
2 ≤ � ≤ D − 1 must be able to distinguish between them within r − 1 rounds
after waking up.

Lemma 7. For all distinct μ, μ′ ∈ {1, . . . , wr−1+1}, all D ≥ 12 and all 2 ≤ � ≤
D − 1, there exists 0 ≤ t� ≤ r − 1 such that, the nodes at level � are in different
states at the end of round �+ t� during the executions of B′ with messages μ and
μ′ on ED.

Proof Sketch. To obtain a contradiction, suppose there exist distinct μ, μ′ ∈
{1, . . . , wr−1+1}, D ≥ 12 and a level 2 ≤ � ≤ D−1 such that, for all 0 ≤ t ≤ r−1,
the nodes at level � are in the same states at the end of round �+t of the execution
with message μ on ED as they are at the end of round � + t of the execution
with message μ′ on ED. We show that, for all 0 ≤ t ≤ r − 1, the nodes at level
D are in the same states at the end of round D + t of the execution of B′ with
message μ on ED as they are at the end of round D + t of the execution of B′

with message μ′ on ED. Hence, the nodes at level D cannot distinguish between
μ and μ′ at the end of first D+ r −1 rounds of the execution of B′ with message
μ on ED. This is a contradiction because the nodes at level D terminate within
D + r − 1 rounds.

Let k ≥ 3 be the smallest value such that there exists an algorithm X with
property P(k). First, we show that, if algorithm X has some additional proper-
ties, then we can construct another algorithm X ′′ from X that satisfies property

Exactly Optimal Deterministic Radio Broadcasting 245

P(k′), where k′ < k. We present a high level description of the construction of
algorithm X ′′. A more detailed description appears in the full version of this
paper [22].

Lemma 8. Suppose that there exist a level 2 ≤ �0 ≤ 4, a round 3 ≤ t0 ≤ 5, and
a set S of size wk−t0+1+1 such that, for all 0 ≤ t ≤ t0, the nodes at level �0 are
in the same state at the end of round �0 + t during the execution of X with all
messages μ ∈ S on E12. Then, there exists an algorithm X ′′ that has property
P(k − t0 + 2).

Proof Sketch. For all D ≥ 12, every execution of X ′′ with message μ ∈ S on ED

simulates the execution of X with the same message on E�0+D+6.
In X ′′, each node transmits the round after it wakes up and, hence, the nodes

at level � wake up at round � for 1 ≤ � ≤ D. Thus, X ′′ satisfies the first condition
of property P(k − t0 + 2).

The source node listens for three rounds after first transmitting. At round 5,
the source node performs the same operation (either transmitting or listening)
as the nodes at level �0 at round �0 + t0 + 3 in the execution of X with message
μ on E�0+D+6. From then on, the source node simulates the nodes at levels 0
through �0 in X starting at round �0 + t0 +4, communicating with the nodes at
level 1 during X ′′ in the same way as the nodes at level �0 communicate with
the nodes at level �0 + 1 during X .

For 1 ≤ � ≤ �0 + D − 1, let s(�, t) denote the state of the nodes at level � at
the end of round t of during the execution of X with the message μ on E�0+D+6.
Nodes at level 1 listen for two rounds after first transmitting and, then, at the
end of round 4, they transition to state s(�0 + 1, �0 + t0 + 2). Thus, at round 5,
nodes at level 1 perform the same operation (transmitting or listening) as the
nodes at level �0 +1 at round �0 + t0 +3. Starting at round 6, the nodes at level
1 simulate the nodes at level �0 + 1 starting at round �0 + t0 + 4.

For 2 ≤ � ≤ D − 1, at round � + 2, the nodes at level � perform the same
operation (transmitting or listening) as the nodes at level �0+� at round �0+�+t0.
At the end of round �+2, the nodes at level � transition to state s(�0+�, �0+�+t0).
Starting at round �+3, each node at level � simulates a node at level �0+� starting
at round �0+ �+ t0+1. So, for all t ≥ 0, at the end of round �+2+ t, the nodes
at level � are in state s(�0 + �, �0 + � + t0 + t). Table 1 shows some of the states
of nodes at levels 1 through 4 in X ′′ at the end of rounds 4, 5, and 6.

Table 1. Some of the states of nodes at levels 1 through 4 at rounds 4,5, and 6.

Round Level 1 Level 2 Level 3 Level 4

4 s(�0 + 1, �0 + t0 + 2) s(�0 + 2, �0 + t0 + 2)

5 s(�0 + 1, �0 + t0 + 3) s(�0 + 2, �0 + t0 + 3) s(�0 + 3, �0 + t0 + 3)

6 s(�0 + 1, �0 + t0 + 4) s(�0 + 2, �0 + t0 + 4) s(�0 + 3, �0 + t0 + 4) s(�0 + 4, �0 + t0 + 4)

Starting at round D+2, nodes at level D simulate the nodes at levels �0+D
through �0+D+6 starting at round �0+D+t0, communicating with the nodes at

246 K. Nanahji

level D−1 during X ′′ in the same way as the nodes at level �0+D communicate
with the nodes at level �0 + D − 1 during X .

Since X has property P(k), such that, it follows that, for all distinct μ, μ′ ∈ S,
all D ≥ 12 and all 2 ≤ � ≤ D − 1, there exists 0 ≤ t�0+� ≤ r − 1 such that, the
nodes at level �0 + � are in different states at the end of round �0 + � + t�0+�

during the executions of X with messages μ and μ′ on E�0+D+6. We show that
the nodes at level �0 + � are in the same states at the end of the first �0 + �+ t0
rounds during the execution of X with all messages μ ∈ S on E�0+D+6. Hence
t�0+� > t0. The nodes at level �, at the end of round � + t�0+� − t0 + 2 ≥ � + 2
during the execution of X ′′ on ED, are in the same state as the nodes at level
�0+ � at the end of round �0+ �+ t�0+� during the execution of X with the same
message on E�0+D+6. Thus, the nodes at level � are in different states at the end
of round � + t�0+� − t0 + 2 during the executions of X ′′ with messages μ and μ′

on ED. Since t�0+� − t0 + 2 ≤ k − t0 + 1 and |S| = wk−t0+1 + 1, it follows that
X ′′ satisfies the second condition of property P(k − t0 + 2).

The first condition of property P(k) implies that, for all � ≥ 2, nodes in state
cX (�, 0) transmit and transition to the same state. We call this state cX (�, 1). If
nodes in state cX (�, 1) transmit, let cX (�, 2) be the state to which they transition
after transmitting. Otherwise, let cX (�, 2) be the state to which they transition
after receiving a collision signal. If � + 1 is not the last level in the graph, the
nodes at level � + 1 transmit at round � + 2, so the nodes at level � receive a
collision signal at round �+2 if they are listening. Thus, if � ≤ D − 2, the nodes
at level � are in state cX (�, 2) at the end of round � + 2 during the execution of
X on ED.

Lemma 9. For all D ≥ 12, all 2 ≤ � ≤ D − 2 and all 0 ≤ t ≤ 2, the nodes at
level � are in the same states at the end of round � + t during the execution of
X with all messages μ ∈ {1, . . . , wk−1 + 1} on ED.

Hence, X does not satisfy the second condition of property P(3). Since X has
property P(k), it follows that k ≥ 4.

We focus on nodes at levels 2, 3, and 4 and get an upper bound on the
number of messages that they cannot distinguish from one another three rounds
after they wake up.

Lemma 10. For 2 ≤ � ≤ 4, there are at most wk−2 different messages μ ∈
{1, . . . , wk−1 + 1} such that, during the execution of X with message μ on E12,
the nodes at level � are in the same state at the end of round � + 3.

Proof. To get a contradiction, suppose there exist a level 2 ≤ �′ ≤ 4, a set
S ⊆ {1, . . . , wk−1 + 1} with |S| ≥ wk−2 + 1, and a state q such that, for all
μ ∈ S, the nodes at level �′ are in state q at the end of round �′ + 3 during the
execution of X with message μ on E12.

During the execution of X with all messages μ ∈ S on E12, the nodes at level
�′ are in the same state at the end of round �′ + t for 0 ≤ t ≤ 2 and they are
in state q at the end of round �′ + 3. Thus, the precondition of Lemma 8 holds

Exactly Optimal Deterministic Radio Broadcasting 247

for �0 = �′ and t0 = 3. Hence, there is an algorithm with property P(k − 1). By
definition of k, no such algorithm exists. Thus, |S| ≤ wk−2.

Recall that, for 2 ≤ � ≤ 4, the nodes at level � are in state cX (�, 2) at the end
of round �+2 during the execution of X for every message μ ∈ {1, . . . , wk−1+1}
on E12. If nodes in state cX (�, 2) transmit, nodes at level � transition to the same
state at the end of round �+3. By Lemma 10, there are at most wk−2 < wk−1+1
different messages such that the nodes at level � are in the same state at the
end of round � + 3. Thus, nodes in state cX (�, 2) listen. Nodes at levels 2 and
greater can receive only a collision signal or nothing while listening during any
execution on E12. Thus, there are two states that are reachable by nodes at
level � from state cX (�, 2), we call these states cX (�, 3) and c′

X (�, 3). Next, we
show that nodes in state cX (�, 3) perform different operation than nodes in state
c′

X (�, 3), for � = 2, 3.

Lemma 11. For � = 2, 3, nodes in exactly one of the states cX (�, 3) and c′
X (�, 3)

transmit.

Proof. To obtain a contradiction, assume that for � = 2 or � = 3, nodes in
both cX (�, 3) and c′

X (�, 3) transmit or nodes in both these states listen. Let
μ, μ′ ∈ {1, . . . , wk−1 + 1}. Let αμ and αμ′ be the executions of X with messages
μ and μ′ on E12, respectively. At the end of round �+3 of αμ and αμ′ , the nodes
at level � are in one of the states cX (�, 3) and c′

X (�, 3), the nodes at level � + 1
are in state cX (� + 1, 2), and the nodes at level � + 2 are in state cX (� + 2, 1).
Since nodes in both of the states cX (�, 3) and c′

X (�, 3) transmit or nodes in
both of these states listen, the nodes at level � + 1 cannot distinguish between
executions αμ and αμ′ at the end of round �+4. Hence, the nodes at level �+1
are in the same state at the end of round � + 4 of αμ and αμ′ . Therefore, for
all μ ∈ {1, . . . , wk−1 + 1}, during the execution of X with message μ on E12,
the nodes at level � + 1 are in the same state at the end of round (� + 1) + 3.
However, this contradicts Lemma 10 because wk−1 + 1 > wk−2.

For � = 2, 3, suppose nodes in state cX (�, 3) transmit and nodes in state
c′

X (�, 3) listen. Let U ⊆ {1, . . . , wk−1+1} be the set of messages such that nodes
at level 2 are in state cX (2, 3) at the end of round 5 during the executions of X
with message μ ∈ U on E12 and let U ′ = {1, . . . , wk−1 + 1} \ U . By Lemma10,
|U | ≤ wk−2. Since |U |+ |U ′| = wk−1+1, it follows that |U ′| ≥ wk−1+1−wk−2 =
wk−4 + 1. Similarly, |U ′| ≤ wk−2 and |U | ≥ wk−4 + 1.

By assumption, nodes in state cX (2, 3) transmit and, hence, there can be
only one state to which nodes in state cX (2, 3) transition. Thus, the nodes at
level 2 cannot distinguish between the values in U at the end of the first 4 rounds
after they wake up on E12.

Lemma 12. For all 0 ≤ t ≤ 4, the nodes at level 2 are in the same states at the
end of round 2 + t during the execution of X with all messages μ ∈ U on E12.

Hence, X does not satisfy the second condition of property P(5). Since X has
property P(k), it follows that k ≥ 6.

248 K. Nanahji

Now, we show that, during the execution of X on E12 with message μ ∈ U ,
the nodes at level 3 listen at round 7.

Lemma 13. Nodes in state cX (3, 2) transition to state c′
X (3, 3) after receiving

a collision signal.

Proof. To obtain a contradiction, assume that nodes in state cX (3, 2) transition
to state cX (3, 3) after receiving a collision signal. We will construct an algorithm
that has property P(k − 3). By definition of k, no such algorithm exists. Thus,
we obtain a contradiction.

For all μ ∈ U , during the execution of X with message μ on E12, at the end
of round 5, the nodes at level 2 are in state cX (2, 3) and the nodes at level 3 are
in state cX (3, 2). Nodes in state cX (2, 3) transmit and nodes in state cX (3, 2)
listen. Thus, by assumption, the nodes at level 3 are in state cX (3, 3) at the end
of round 6 and, hence, they transmit at round 7.

Let cX (2, 4) be the state to which nodes in state cX (2, 3) transition after
transmitting. If nodes in state cX (2, 4) transmit, then let cX (2, 5) be the state
to which they transition after transmitting. If nodes in state cX (2, 4) listen,
then let cX (2, 5) be the state to which they transition after receiving a collision
signal. For all μ ∈ U , during the execution of X with message μ on E12, since
the nodes at level 3 transmit at round 7, the nodes at level 2 receive a collision
signal at round 7 if they are listening and, hence, they are in state cX (2, 5) at
the end of round 7, whether they listen or transmit at round 7. Since nodes at
level 2 are in state cX (2, t) at the end of round 2 + t for 0 ≤ t ≤ 2, during
the execution of X with any message μ ∈ {1, . . . , wk−1 + 1} on E12, it follows
that, for all 0 ≤ t ≤ 5, the nodes at level 2 are in state cX (2, t) at the end of
round 2 + t during the execution of X with any message μ ∈ U on E12. Thus,
the precondition of Lemma 8 holds for �0 = 2 and t0 = 5. Hence, there is an
algorithm with property P(k − 3).

We know that at the end of round 5 nodes at level 4 are in state cX (4, 1) and
at the end of round 6 they are in state cX (4, 2). At round 6, either they listen
and receive a collision signal or they transmit. Now we show that they never
transmit at round 6.

Lemma 14. Nodes in state cX (4, 1) listen.

Proof. To obtain a contradiction, suppose nodes in state cX (4, 1) transmit. For
all μ ∈ {1, . . . , wk−1 + 1}, at the end of round 5 during the execution of X with
message μ on E12, the nodes at level 3 are in state cX (3, 2) and the nodes at level
4 are in state cX (4, 1). Since nodes in state cX (4, 1) transmit, the nodes at level 4
transmit at round 6 and the nodes at level 3 receive a collision signal. Therefore,
for all μ ∈ {1, . . . , wk−1 +1}, during the execution of X with message μ on E12,
the nodes at level 3 are in state c′

X (3, 3) at the end of round 6. However, this
contradicts Lemma 10 because wk−1 + 1 > wk−2.

By definition of U ′, for all μ ∈ U ′, at the end of round 5 during the execution
of X with message μ on E12, the nodes at level 2 are in state c′

X (2, 3), the nodes

Exactly Optimal Deterministic Radio Broadcasting 249

at level 3 are in state cX (3, 2), and the nodes at level 4 are in state cX (4, 1).
Since nodes in state c′

X (2, 3) listen, the nodes at level 2 listen at round 6. By
Lemma 14, the nodes at level 4 listen at round 6. Thus, the nodes at level 3
listen in state cX (3, 2) at round 6 and receive nothing. By Lemma 13, nodes
in state cX (3, 2) transition to state c′

X (3, 3) after receiving a collision signal
and transition to state cX (3, 3) after receiving nothing. Therefore, we have the
following observation.

Observation 2. For all μ ∈ U ′, the nodes at level 3 are in state cX (3, 3) at the
end of round 6 during the execution of X with message μ on E12.

Now we improve the upper bound on the cardinality of U and U ′.

Lemma 15. |U |, |U ′| ≤ wk−3.

Proof. To obtain a contradiction, suppose |U | ≥ wk−3+1 or |U ′| ≥ wk−3+1. By
definition of U , for all μ ∈ U , the nodes at level 2 are in state cX (2, 3) at the end
of round 5 during the execution of X with message μ on E12. By Observation 2,
for all μ ∈ U ′, the nodes at level 3 are in state cX (3, 3) at the end of round 6
during the execution of X with message μ on E12.

Let S be one of the sets U and U ′. If S = U , then let �′ = 2. Otherwise, let
�′ = 3. Since nodes in state cX (�′, 3) transmit, there can be only one state to
which nodes in state cX (�′, 3) transition after transmitting. We call this state
cX (�′, 4). Since nodes at level �′ are in state cX (�′, t) at the end of round �′+t for
0 ≤ t ≤ 2, during the execution of X with any message μ ∈ {1, . . . , wk−1+1} on
E12, it follows that, for all 0 ≤ t ≤ 4, the nodes at level �′ are in state cX (�′, t) at
the end of round �′+t during the execution of X with any message μ ∈ S on E12.
Thus, the precondition of Lemma 8 holds for �0 = �′ and t0 = 4. Hence, there
is an algorithm with property P(k − 2). By definition of k, no such algorithm
exists. Thus, |S| ≤ wk−3.

Recall that |U | + |U ′| = wk−1 + 1. Since |U |, |U ′| ≤ wk−3, it follows that
|U | + |U ′| ≤ wk−3 + wk−3 = wk−3 + wk−4 + wk−6. Note that, w0, w1, . . . , is a
non-decreasing sequence and, hence, wk−6 ≤ wk−5. Thus, |U | + |U ′| ≤ wk−3 +
wk−4+wk−5 = wk−2+wk−4 = wk−1. This is a contradiction. Thus, we conclude
the proof of Theorem 2.

6 Future Work

In this paper, we presented an improved algorithm to broadcast a message from
a finite set of values that works on the beeping model. We proved an exactly
matching lower bound in the radio broadcast model with collision detection.
This shows that the ability to send arbitrarily long messages instead of just a
collision signal does not improve the round complexity.

Our algorithm relies on an encoding mechanism that requires the set of pos-
sible messages to be finite and known in advance. One way to extend our algo-
rithm to handle an infinite set of possible messages is to have the source node

250 K. Nanahji

first broadcast r using another algorithm (for example, using Beep Waves to
broadcast a self-delimiting encoding of r [12]). A natural question is whether
this approach or a recursive version of this approach is optimal.

A variant of the broadcast problem is the acknowledged broadcast problem
in which the source node needs to eventually be informed that all nodes have
learned the message. Chlebus, Gąsieniec, Gibbons, Pelc, and Rytter [6] provided
a deterministic acknowledged broadcast algorithm in the radio broadcast model
with collision detection, assuming that each node has a distinct identifier. A pos-
sible approach to solve the acknowledged broadcast problem in the anonymous
beeping model is to extend our approach by modifying the algorithm as follows.
The extension relies on the fact that, in our algorithm, all nodes at each level
learn the last bit of the message at the same round, which is one round later
than the nodes in the previous level. Each node v that is not connected to a
node at a higher level terminates immediately after learning the last bit of the
message. Now consider any node v at level � ≥ 1 that is connected to a node at
level �+1. Node v starts executing the acknowledgment process one round after
relaying the last bit of the message to its neighbours at level �+1. It repeatedly
executes phases of three rounds until it receives an acknowledgement from nodes
at level �+1, which causes it to terminate. In the first round, v beeps to inform
the nodes at level � − 1 that it has not yet received an acknowledgement. Once
v has received an acknowledgement, it terminates, so it does not beep in the
first round of this phase. This serves as an acknowledgement for the nodes at
level � − 1. In the second round, v listens to detect whether the nodes at level
� + 1 have received an acknowledgement. Specifically, if v receives nothing, it
means that the nodes at level � + 1 have received the acknowledgement. Oth-
erwise, v receives a beep, in which case it idles for one round and, then, starts
executing the next phase. An interesting extension of our paper would be to see
if this modified algorithm has optimal round complexity for the acknowledged
broadcast problem in anonymous radio networks with collision detection.

In addition to round complexity, energy complexity has also received con-
siderable attention in radio broadcast models. Energy complexity is generally
defined as the maximum, over all nodes, of the number of rounds in which the
node transmits or listens. Chang, Dani, Hayes, He, Li, Pettie [4] provided broad-
cast algorithms in the radio broadcast model with collision detection. In their
model, they assumed that nodes have distinct identifiers and are given the num-
ber of nodes in the network, the maximum number of neighbours of any node in
the network, and the maximum distance between any two nodes in the network.
By modifying our encoding mechanism, we can improve the energy complexity of
our algorithm. In particular, instead of using set Wi we can use the set W ′

i , which
is defined as follows. Let W ′

1 = {0}, W ′
2 = {1}, W ′

3 = {0, 1}, W ′
4 = {00, 01, 1}

and, for all i ≥ 5, W ′
i = 0 · W ′

i−1 ∪ 1 · W ′
i−2. For all i ≥ 1, let w′

i = |Wi|. Then,
w′

1 = w′
2 = 1 and, for all i ≥ 3, w′

i = w′
i−1+w′

i−2. Note that, w′
1, w

′
2, w

′
3, . . . is the

Fibonacci sequence. The optimal energy complexity of the broadcast problem
remains open.

Exactly Optimal Deterministic Radio Broadcasting 251

Acknowledgments. I would like thank my supervisor, Faith Ellen, for her patience
and support throughout this project. Her insightful feedback and guidance brought my
work to a much higher level. I would also like to thank the anonymous reviewers for
their time and helpful comments.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

3. Bu, G., Potop-Butucaru, M., Rabie, M.: Wireless broadcast with short labels. In:
Georgiou, C., Majumdar, R. (eds.) NETYS 2020. LNCS, vol. 12129, pp. 146–169.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67087-0_10

4. Chang, Y.J., Dani, V., Hayes, T.P., He, Q., Li, W., Pettie, S.: The energy com-
plexity of broadcast. In: Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pp. 95–104 (2018)

5. Chlamtac, I.: The wave expansion approach to broadcasting in multihop radio
networks. IEEE Trans. Commun. 39(3), 426–433 (1991)

6. Chlebus, B., Gąsieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in ad hoc radio networks. Distrib. Comput. 15(1), 27–38 (2002)

7. Chlebus, B.S., Gçasieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 717–729. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45022-X_60

8. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. J. Algorithms 43(2), 177–189 (2002)

9. Clementi, A., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of
unknown topology. Theoret. Comput. Sci. 302(1–3), 337–364 (2003)

10. Cloitre, B.: The online encyclopedia of integer sequences (2002). http://oeis.org
11. Czumaj, A., Davies, P.: Deterministic communication in radio networks. SIAM J.

Comput. 47(1), 218–240 (2018)
12. Czumaj, A., Davies, P.: Communicating with beeps. J. Parallel Distrib. Comput.

130, 98–109 (2019)
13. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown

topology. J. Algorithms 60(2), 115–143 (2006)
14. Ellen, F., Gilbert, S.: Constant-length labelling schemes for faster deterministic

radio broadcast. In: Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 213–222 (2020)

15. Ellen, F., Gorain, B., Miller, A., Pelc, A.: Constant-length labeling schemes for
deterministic radio broadcast. ACM Trans. Parallel Comput. 8(3), 1–17 (2021)

16. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 748–766. SIAM (2013)

17. Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized broadcast in radio net-
works with collision detection. Distrib. Comput. 28(6), 407–422 (2014). https://
doi.org/10.1007/s00446-014-0230-7

18. Hounkanli, K., Pelc, A.: Deterministic broadcasting and gossiping with beeps.
arXiv preprint arXiv:1508.06460 (2015)

https://doi.org/10.1007/978-3-030-67087-0_10
https://doi.org/10.1007/3-540-45022-X_60
https://doi.org/10.1007/3-540-45022-X_60
http://oeis.org
https://doi.org/10.1007/s00446-014-0230-7
https://doi.org/10.1007/s00446-014-0230-7
http://arxiv.org/abs/1508.06460

252 K. Nanahji

19. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distrib.
Comput. 18(1), 43–57 (2005)

20. Kowalski, D., Pelc, A.: Optimal deterministic broadcasting in known topology radio
networks. Distrib. Comput. 19(3), 185–195 (2007)

21. Kushilevitz, E., Mansour, Y.: An ω(d · log n
d
) lower bound for broadcast in radio

networks. SIAM J. Comput. 27(3), 702–712 (1998)
22. Nanah Ji, K.: Exactly optimal deterministic radio broadcasting with collision detec-

tion. arXiv preprint arXiv:2202.06375 (2022)
23. Pandita, N.: Ganita Kaumudi (1356)

http://arxiv.org/abs/2202.06375

Lower Bounds on Message Passing
Implementations of Multiplicity-Relaxed

Queues and Stacks

Edward Talmage(B)

Bucknell University, Lewisburg, PA, USA

elt006@bucknell.edu

Abstract. A multiplicity-relaxed queue or stack data type allows mul-
tiple Dequeue or Pop operations to return the same value if they are
concurrent. We consider the possible efficiency of message-passing imple-
mentations of such data types. We show that both the worst case and
amortized time cost for Dequeues and Pops are nearly as high as upper
bounds for their worst-case time in unrelaxed queues and stacks. Relaxed
data types are of interest since they can in some cases trade off some
of data types’ ordering guarantees for increased performance or easier
implementation. The multiplicity relaxation, in particular, is interesting
as it has been shown to be less computationally complex than unrelaxed
queues and stacks. Our results explore a different aspect of these data
types, considering communication time complexity in a message passing
system and showing limits on possible improved time performance.

Keywords: Distributed Data Structures · Message Passing · Relaxed
Data Types · Lower Bounds

1 Introduction and Related Work

Organized access to data is a fundamental necessity for efficient computation.
In a distributed setting, this access is non-trivial to implement, as physically-
separated computing entities may have different data, and sharing that data
requires explicit coordination between processes. Such coordination is typically
costly, since the time delays inherent to communication across large distances
are much greater than those in accessing local storage devices. Other issues, such
as failures of participants in an algorithm and breakdowns of the communication
network, can also interfere with efforts to coordinate data access.

This work continues exploration of a topic of recent interest: the notion of
relaxing [1,5], or weakening, data type specifications in carefully defined ways
to improve the performance of algorithms for distributed data structures. Past
work has shown that traditional data types are inherently expensive [2,6,13],
but certain relaxations can decrease the amortized cost of data structure imple-
mentations [11].
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 253–264, 2022.
https://doi.org/10.1007/978-3-031-09993-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_14

254 E. Talmage

Parallel to the exploration of the time costs of relaxed data structure imple-
mentations, various researchers have been exploring the computational power of
relaxed data types. [10] and [12] computed the consensus numbers, a standard
measurement of a data type’s computational strength, of several relaxations of
queues. [4] continued from there to consider a different relaxation, multiplicity,
which allows some concurrent actions to be oblivious to each other. They showed
that in a shared-memory system, queues and stacks with multiplicity are imple-
mentable, either in a wait-free or non-blocking way, from read/write registers.
This implies that their computational strength is relatively low, and that they
are achievable in systems without strong primitive data operations, despite pro-
viding nearly the full guarantees of first-in, first out queues and last-in first-out
stacks.

Given the potential usefulness of multiplicity in shared memory systems,
we ask how useful they would be in message passing systems, as it would be
helpful to have relaxations which are useful in many settings. Further, intuition
suggests that multiplicity might increase performance, since Dequeue and Pop
instances no longer need to know about concurrent instances, so may be able
to determine a return value more quickly. In this paper, we analyze the time
cost of message-passing implementations of relaxed queues and stacks. We give
lower bounds which show that the multiplicity relaxation cannot avoid the bulk
of the cost of waiting for messages about concurrent instances, as compared to
implementations of unrelaxed queues and stacks.

While we show a limited amount of possible performance gain, our bounds
are not quite tight against the best known upper bounds [13], leaving open the
question of whether multiplicity might still carry some performance advantages.
There is also work to be done moving from the idealized model we consider in
this paper to a more realistic model, since multiplicity may tolerate failures or
decreased synchrony better than an unrelaxed type.

2 Model and Definitions

2.1 System Model

We consider a standard partially-synchronous, fault-free message passing model,
based on that in [7]. We assume that each of the n processes participating in a
shared memory implementation provides an interface by which users may invoke
operations and the processes may generate responses to those invocations. Each
process is sequential, so a user may not invoke an operation at a particular
process until any previous instances at that process have returned. Beyond that
constraint, invocations may arrive at any time. Each process pi has a local clock,
which runs at the same rate as real time, but may be offset by a constant ci.
We assume, for the sake of focusing on the communication costs inherent in
distributed systems, that local computation is instantaneous. Each of the pro-
cesses in the system is a state machine where steps may be sending or receiving
a message, performing local computation, setting a timer, or a timer expiration.

Multiplicity Queues and Stacks in Message Passing 255

Each step has an associated time, which is the current value of the local clock
at the process where the step took place.

A run of an algorithm is a set of sequences, one for each process, of valid
state machine steps at that process. Every process’ sequence is infinite or ends
with no messages to that process which have been sent and not received and
no timers at that process which have not yet expired. A run is admissible with
respect to parameters d, u, and n if there is a bijection from message sends to
later receives, each message is received at least d − u and no more than d time
after it is sent, and the maximum difference (known as skew) between local clock
offsets is at most ε ≤ (1 − 1/n)u (shown as optimal and achievable in [8]). We
also assume that algorithms are eventually quiescent, which means that if all
users cease invoking operations, after a finite time the system will reach a state
with no timers set and no messages in transit and remain in that state until
another invocation.

We require that any implementation of a data type satisfy a liveness property:
every operation invocation has a matching response, and every response follows
a matching invocation. This invocation-response pair is an operation instance.
We are interested in the real time which elapses between operation invocations
and responses. Specifically, we focus on the worst-case time, |OP |, and amortized
time, |OP |am, for an operation OP . Worst-case time is the greatest time which
may elapse, in any admissible run, between the invocation and response of any
single instance of OP . Amortized time is the maximum, over all admissible
runs, of the sum of the time from invocation to response of every instance of
OP , divided by the number of instances of OP in the run.

A set-sequential specification of a data type T defines a set of operations,
with their argument and return types, and a set of sequences of sets of instances
of those operations which are legal. Each element in a legal sequence is a set
of operation instances, each with an argument and return value. A run of an
algorithm A implementing T is set-linearizable if there is a way to gather oper-
ation instances in the run into sets and order those sets in a legal sequence
which respects the order of non-overlapping instances–if an operation instance
op responds before another op′ is invoked, op precedes op′ in the sequence. We
say that A is a set-linearizable implementation of T if every admissible run of A
is set-linearizable.

2.2 Multiplicity

Intuitively, a queue with multiplicity is a First-In, First-Out queue structure, but
with an explicit allowance for abnormal behavior in the presence of concurrency.
In a traditional FIFO queue, each element may only be removed (by the Dequeue
operation) one time. But when multiple users may invoke Dequeue, each of their
Dequeue instances must communicate to collectively determine which instance
returns which value to prevent duplicate returns. Multiplicity weakens the queue
definition to (hopefully) reduce this communication requirement by loosening
the unique-value requirement on Dequeue in the presence of concurrency. When
a set of Dequeue instances are all concurrent, they are allowed (though not

256 E. Talmage

required) to return the same value. That value must still be the first value
placed in the queue in the set-linearization of the run which has not yet been
returned, maintaining FIFO ordering.

Stacks with multiplicity are defined similarly, with Pop taking the place of
Dequeue. Concurrent instances of Pop may return the same value, as long as
that is the most recently-added value in the stack in the set-linearization of the
run.

Since these definitions explicitly refer to concurrency, they cannot be
expressed as a sequential specification, which is the standard way to define data
types, even in concurrent systems. Instead, we must use a concurrent specifica-
tion to formally define a queue or stack with multiplicity. Following [4], we give
set-sequential specifications for queues and stacks with multiplicity.

Definition 1. A queue with multiplicity is a data type with two operations:
Enqueue and Dequeue. Enqueue accepts one value from some set V of possible
values as an argument and returns the constant ACK. Dequeue takes no argu-
ment and returns one value from V ∪ {⊥}, where ⊥ is a special symbol denoting
empty. A sequence of sets of Enqueue and Dequeue instances is legal if

– Every Enqueue instance is in a singleton set.
– Each set of Dequeue instances ordered in the sequence contains only Dequeue

instances with the same return value.
– Each Dequeue instance d returns the argument of the first Enqueue instance

before d in the sequence which has not been returned by another Dequeue
instance before d in the sequence. If there is no such Enqueue instance,
Dequeue returns ⊥.

Definition 2. A stack with multiplicity is a data type with two operations:
Push and Pop. Push accepts one value from some set V of possible values as an
argument and returns the constant ACK. Pop takes no argument and returns
one value from V ∪ {⊥},⊥ �∈ V . A sequence of sets of Push and Pop instances
is legal if

– Every Push instance is in a singleton set.
– Each set of Pop instances ordered in the sequence contains Pop instances

with the same return value.
– Each Pop instance p returns the argument of the last Push instance before p

in the sequence which has not been returned by another Pop instance before
p in the sequence. If there is no such Push instance, Pop returns ⊥.

2.3 Shifting Arguments

For some of our results, we will use shifting arguments to show that runs are
indistinguishable [3,8]. Shifting is a technique which takes advantage of the
uncertainty in message delays and the skew between local clock values to adjust
the real times when events occur. Given a run R, and a real-valued shift vector
s of length n, we can create a new run R′ by adjusting the real times at which

Multiplicity Queues and Stacks in Message Passing 257

all events at each process i occur by s[i], the corresponding component of the
shift vector. Thus, if an event e occurred at process 0 at real time tr, it will now
occur at real time tr + s[0]. We also adjust pi’s clock offset ci by −s[i] so that
events at each process occur at the same local clock value. In our example, e
still occurs at the same local time, since local time is determined by real time
and offset: (tr + s[0]) + (ci − s[0]).

If we can verify that the maximum skew between local clocks in R′ is no
more than ε and all message delays are still in the range [d − u, d], then R′ is
also an admissible run. Since all events occur at the same local clock values and
all messages arrive at the same times, the runs R and R′ are indistinguishable
to every process.

Such arguments are useful for proving lower bounds on linearizable and, as
we do in this paper, set-linearizable implementations of data types. The primary
way we use them is in showing that a run with overlapping operation instances at
different processes is indistinguishable from another run where some operation
instances are not concurrent. When they are not concurrent, we can draw conclu-
sions about the order in which they must appear to occur and thus their return
values. By carrying those conclusions back to the original run with concurrent
instances, we can deduce time bounds.

3 Worst-Case Lower Bounds

3.1 Dequeue and Pop

We prove a lower bound on the worst-case cost of Dequeue in our relatively
well-behaved partially synchronous, crash-free model. While this model may not
be the most realistic, because of its strong assumptions, a lower bound in this
model also applies in a less well-behaved model, such as one with asynchrony
or faults. As a result, we know that it is impossible to implement a queue with
multiplicity more efficiently in a realistic model than we can here. The proof of
this theorem does not change if we consider Pop on a stack with multiplicity
instead of a Dequeue, so we have the same lower bound for Pop.

To prove this bound, we carefully construct runs in which we can predict
what value a Dequeue must return, by the data type semantics. We then alter
these runs slightly to change the behavior of certain instances, then argue what
values they return. We do this in a couple of different ways. First, we use the
shifting technique to prove that a pair of overlapping Dequeue instances must
return different values, as they cannot tell that they are concurrent, since the
run is undetectably shifted from one in which they are not concurrent. We then
create a third run with slightly different, but still admissible, message delays and
consider how this affects when processes have and can have knowledge of events
in the system which might change their behavior. This allows us to argue that
if a certain Dequeue instance returned before a certain point in time, then it
would necessarily return an illegal value, such as the same value as another, non-
concurrent, Dequeue instance. This proves that these particular instances must

258 E. Talmage

have a certain minimum duration, proving the lower bound on the worst-cast
time for Dequeue.

Theorem 1. Any set-linearizable implementation of a queue with multiplicity
on a system with at least three processes must have |Dequeue| ≥ min

{
2d
3 , d+u

2

}
.

Proof. We will construct a set of runs and show that a particular Dequeue
instance in one of these admissible runs must return an incorrect value unless it
takes at least min

{
2d
3 , d+u

2

}
time.

For all of our runs, we first invoke the sequence of Enqueue instances

Enqueue(0) · Enqueue(1) · Enqueue(2) · Enqueue(3)

sequentially at p0. We invoke no more operations until the system becomes
quiescent. Call the quiescent time t.

p0

p1

p2

t0 t1 t2

d0

d1

d2

d

d

(a) R1

p0

p1

p2

t0 t1 t2

d0

d1

d2

d− u

d

(b) R2

p0

p1

p2

t0 t1 t2

d0

d1

d2

d

d

(c) R3

Fig. 1. Runs used in the proof of Theorem 1. Time increases to the right. Rectangles are
operation instances. Curved red lines are messages, labeled with their delays; dashed
blue indicates the missing information whose absence p2 can detect to differentiate R2

and R3. (Color figure online)

Define run R1 as follows: All messages from p0 have delay d, all messages to
p0 have delay d − u, and all other messages have delay d. p0’s local clock value
is ε ≤ 2u/3 lower than those of all other processes at the same real time. At
time t0 > t, process p0 invokes a Dequeue, d0. Let t1 be the real time when d0
returns. Immediately after t1, p1 invokes a Dequeue, d1, which returns at real

Multiplicity Queues and Stacks in Message Passing 259

time t2. Immediately after t2, process p2 invokes a Dequeue, d2. (See Fig. 1a.)
Since none of these Dequeue instances are concurrent, they must set-linearize
in singleton sets as the sequence {d0} · {d1} · {d2}, and must return the values
0, 1, 2, respectively.

Define run R2 (Fig. 1b) by shifting run R1 by the shift vector
〈0,−u,−u, . . . ,−u〉, shifting all processes but p0 back in real time. Messages
from p0 now have delay d − u, since their receive events are sooner, and those
to p0 now have delay d, since their send events are sooner. Other messages’
delays are unaffected, since their senders and receivers are shifted identically.
p0’s local clock is now ahead of those of p1 and p2 (and all other processes) by
u/3 < ε. Thus, R2 is admissible, by the bounds on message delay and clock skew.
Since this run is a shift of R1, no process can distinguish them, so the Dequeue
instances have the same return values, despite d0 and d1 now being concurrent.

Finally, we define R3 from R2 (Fig. 1c) by increasing the delay for messages
from p0 to p1 to d. We are not shifting the run, so processes may be able to
distinguish the result from R2, but we can determine when they will first be
distinguishable. There are two possibilities for when the earliest possible message
from p0 to p1 announcing the invocation of d0 may arrive and from these we
obtain the two terms of our lower bound. Call this hypothetical message m0.

First, suppose that m0 arrives before d1 returns. Then we can directly calcu-
late a bound on the response time of Dequeue, since two Dequeue instances
which only overlap by u must take more than one message delay. That is,
2|Dequeue| − u > d, giving |Dequeue| > d+u

2 .
If |Dequeue| is smaller than this bound, it follows that m0 must arrive after d1

returns. Then p1 must have chosen a return value for d1 without any knowledge
of d0. In this case, p1 cannot distinguish, until after d1 returns, R3 from a run
in which p0 and p2 take no action. In such a run, set-linearization implies that
d1 must return 0, so it must do the same in R3.

It is legal by the specification of a queue with multiplicity for both d0 and d1
to return the same value in R3, since the two instances are concurrent. However,
d1 now has a different return value than in R2 and thus affects the behavior of
d2. The earliest time when p2 can distinguish R3 from R2 is if p1 sent a message
m1 to p2 immediately on receiving m0 in R2. Since m0 arrives later in R3, p1
may send a different or no message at the local time it received m0 in R2 but
not in R3. m0 would have arrived at real time t0+(d−u)+d in R2, so t0+2d−u
is the earliest real time when p2 can distinguish R2 and R3. If d2 returns before
this time, then it must return the same value in both runs, but if it does so and
returns 2 in R3, there is no valid set-linearization, since no Dequeue instance
returns 1, and thus none may return 2. Thus, d2 cannot return until at least real
time t0 + 2d − u.

Now, we can set up an equation for the duration of the Dequeue instances.
The three instances are end-to-end, with the exception of d0 and d1 overlapping
by u. Thus, we have 3|Dequeue| − u ≥ 2d − u. This reduces to |Dequeue| > 2d

3 ,
giving us the second part of the lower bound.

260 E. Talmage

Theorem 2. Any set-linearizable implementation of a stack with multiplicity
on a system with at least three processes must have |Pop| ≥ min

{
2d
3 , d+u

2

}
.

3.2 Amortized Cost Lower Bounds

While we’ve shown that the worst-case cost of Dequeue and Pop is relatively
high, even with multiplicity, there is still the possibility of improved amortized
complexity, as was the case for other relaxations in [11]. However, we next show
that this cannot happen. For amortized cost to be lower than worst case, there
must be instances which have lower cost than the worst case. The scenario which
gave us our lower bound on worst-case cost does not depend on there being
previous Dequeue or Pop instances in a run, so if the run terminates immediately
after the worst-case instances, there are no cheaper instances over which we can
amortize the cost. This means the same lower bound must hold on amortized
cost as we have shown on worst-case cost, with only slight modifications to the
argument.

Further, we can argue that we could recreate the same scenario from the
proof of Theorem 1 over and over in a run. Thus, the lower bound on amortized
cost is not limited to runs with only a small number of Dequeue instances, but
applies for runs with any number (divisible by three) of instances.

Corollary 1. Any implementation of a queue with multiplicity on at least 3 pro-
cesses must have the amortized cost of Dequeue |Dequeue|am ≥ min

{
2d
3 , d+u

2

}
.

Any implementation of a stack with multiplicity on at least 3 processes must have
the amortized cost of Pop,

|Pop|am ≥ min
{

2d

3
,
d + u

2

}

Proof. Consider the runs R1, R2, R3 from the proof of Theorem 1, as shown in
Fig. 1. Recall that one of two cases must hold in R3: either m0 arrives at p1
before d1 returns or d2 cannot return until after message m1 sent by p1 when it
receives m0 in R2 would have arrived.

In the first case, two Dequeue instances which overlapped by only u time
took d time to complete. We here have no information on how long d2 took to
return, but since it is not invoked until after d0 and d1 return, there is another
run in which p0 and p1 behave exactly the same and p2 does not invoke d2. In
this run, the total cost of all Dequeue instances is d + u and there are only two
instances, so the amortized cost is d+u

2 .
In the second case, we can bound the total time which three Dequeue

instances, overlapping by only u, take to return. Here, two message delays must
elapse, so we have the total cost of all three Dequeue instances in the run is
2d − u + u = 2d. This gives an amortized cost of 2d

3 .
Since we do not know which case occurs, the overall bound is

|Dequeue|am ≥ min
{

d + u

2
,
2d

3

}

Multiplicity Queues and Stacks in Message Passing 261

3.3 Bound on Sum of Operations

We note that a simple argument will also give a lower bound for the sum of an
Enqueue and a Dequeue or the sum of a Push and a Pop. In an empty queue or
stack, an Enqueue immediately before a Dequeue or a Push immediately before
a Pop will determine the second operation instance’s return value. This is similar
to results from [9,13] and elsewhere on the sum of the costs of certain types of
operations, but since we are in a set-linearizable model, the existing proofs for
linearizability do not apply directly. Specifically, since overlapping operations
may return the same value, it is much harder to force incorrect return values in
shifting arguments. We present the simple results relevant to our current topic
and leave generalizations for future work.

Theorem 3. Any set-linearizable implementation of a queue with multiplicity
must have |Enqueue| + |Dequeue| ≥ d.

Proof. Consider the following run, pictured in Fig. 2: At time 0, p0 invokes
Enqueue(x). Immediately after that instance returns, p1 invokes Dequeue. Since
these instances are not concurrent, the Dequeue instance must be set-linearized
after Enqueue(x), and thus must return x, by the specification of a queue with
multiplicity since x is the only, and thus first, previously-enqueued value. For p1
to choose x as the return value for the Dequeue instance, it must be aware of
the Enqueue instance. Otherwise, p2 would not be able to distinguish this run
from one where it is the only process which acts, in which case the Dequeue
instance would return ⊥. p1 may not learn of Enqueue(x) until d real time after
p0’s invocation, since any message containing information about the invocation
may take that long to arrive. Thus, the Dequeue instance cannot return until at
least d real time after Enqueue(x)’s invocation, so the two instances’ durations
must sum to at least d.

p0

p1

Enq(x)

Deq
d

Fig. 2. Figure illustrating the run in the proof of Theorem 3 (Color figure online)

As with Theorems 1 and 2, the argument here works without further alter-
ation if we substitute Push for Enqueue and Pop for Dequeue, so we have
the below bound for stacks, as well. In fact, the argument for stacks is slightly
simpler, since any Push will affect the return value of an immediately-following
Pop, not only when the structure is empty.

Theorem 4. Any set-linearizable implementation of a stack with multiplicity
must have |Push| + |Pop| ≥ d.

262 E. Talmage

4 Tightness

An algorithm in the idealized model we use in this paper is of limited practical
value, since real systems are typically less well-behaved, but is still of theoretical
interest, since it can tell us if our lower bound is tight. The best upper bound
in the literature is that in [13], which provides a linearizable implementation of
unrelaxed queues with |Enqueue| = ε1 and |Dequeue| = d + ε, one maximum
message delay plus clock skew. Since a linearizable implementation is a set-
linearizable implementation, the bound carries over to the model we consider
here. Similarly, an unrelaxed queue implementation also satisfies the specification
of a queue with multiplicity, where no concurrent Dequeue instances happen to
return the same value, so the data type implemented there is sufficient to give
us an upper bound.

Corollary 2 (from Theorem 6 in [13]). There is a set-linearizable imple-
mentation of a queue with multiplicity with |Dequeue| = d + ε and |Enqueue| +
|Dequeue| = d + 2ε. There is a set-linearizable implementation of a stack with
multiplicity with |Pop| = d + ε and |Push| + |Pop| = d + 2ε.

Intuitively, it seems that it should be possible to achieve better performance
with a set-linearizable implementation than a fully linearizable implementation,
since there are fundamentally weaker constraints on the ordering, and thus on the
knowledge of previous and concurrent operation instances. However, multiplicity
only allows Dequeue (or Pop) instances to be combined into sets for linearization,
not Enqueue (or Push) instances. Thus, participating processes must still totally
order Enqueue (Push) instances, which can force Dequeue and Pop instances
to take longer to return, even if Enqueue and Push return quickly.

We could easily reduce the delay from invocation to response for Dequeue
instances to d and still correctly order Dequeue instances, since then each
instance can be guaranteed to know the return value of any strictly preced-
ing Dequeue instance and choose a different value. However, existing algorithms
(such as those in [11] and [13] order all instances by timestamp. If we continue
to use timestamps to order instances, due to the skew between local clocks,
there may be Enqueue instances invoked after a Dequeue instance but with a
smaller timestamp than that Dequeue. In that scenario, timestamp order forces
the delay of d + ε for Dequeue to learn about such Enqueue instances. While
that delay has not been proven to be necessary for all implementations, since we
could use other (set-)linearizations than timestamp order, constructing such a
set-linearization is far more complex. Thus, it remains an open question whether
it may be possible to reduce the cost of Dequeue to d.

There is still work to do to determine tight bounds on implementing queues
and stacks with multiplicity in the partially synchronous model we consider,
but there is a fairly small window (roughly, between d/3 and d/2) for possible
improvement in the complexity of Dequeue and Pop.

1 Recall that ε is the clock skew, the maximum difference between any two processes’
local clocks.

Multiplicity Queues and Stacks in Message Passing 263

5 Conclusion

Multiplicity is a natural relaxation, since it captures the fact that concurrent
actions may be unaware of each other. Since [4] showed that it is also compu-
tationally simple, it seems a natural candidate for widespread use in systems
which can trade complete uniqueness of dequeued values for performance. We
have begun exploring the feasibility of using queues and stacks with multiplicity
in message passing systems, from the perspective of the time cost required to
communicate updates to the structures.

We show lower bounds on queues and stacks with multiplicity in an idealized
model, both for worst-case and amortized time. Our results, while not yet tight,
imply that multiplicity gives at best a small space for possible increases in per-
formance. While concurrent Dequeue and Pop operation instances do not need
to know about each other, the requirements that they know about all preceding
instances and totally order Enqueue and Push instances still impose significant
minimum delays. It remains an open question whether a faster set-linearizable
algorithm for these structures is possible, or if another proof could yield larger
lower bounds.

Our results also show that, in terms of amortized cost, other relaxations may
be more efficient. [11] showed that queues with relaxed ordering constraints can
have an amortized cost inversely proportional to a degree-of-relaxation parame-
ter. For large relaxations, that amortized cost is lower than the lower bound we
showed on queues with multiplicity. Thus, in our idealized model, those order-
based relaxations appear to be more efficient, in an amortized sense.

The lower bounds we show in this paper also apply to any less well-behaved
model, so we can conclude that real-world implementations must also have costs
above our bounds. Since these lower bounds are close to upper bounds for unre-
laxed queues in the same model, we are inclined to guess that these relaxations
provide little time benefit in a real-world message-passing data type implemen-
tation. More work is required in models closer to the real world, however, to
determine whether unrelaxed types or other relaxations may have higher lower
bounds in systems with less timing information or which must tolerate failures.
It is still possible that multiplicity may result in performance gains in such a
model if it suffers less from weakening the computation model.

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-Linearizability: Relaxed Consistency
for Improved Concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-17653-1 29

2. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev,
M.T.: Laws of order: expensive synchronization in concurrent algorithms can-
not be eliminated. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26–28, 2011. pp. 487–498. ACM (2011). https://
doi.org/10.1145/1926385.1926442

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1145/1926385.1926442

264 E. Talmage

3. Attiya, H., Welch, J.: Distributed Computing. Wiley (2004). https://doi.org/10.
1002/0471478210.ch6

4. Castañeda, A., Rajsbaum, S., Raynal, M.: Relaxed queues and stacks from
read/write operations. In: Bramas, Q., Oshman, R., Romano, P. (eds.) 24th Inter-
national Conference on Principles of Distributed Systems, OPODIS 2020, Decem-
ber 14–16, 2020, Strasbourg, France (Virtual Conference). LIPIcs, vol. 184, pp.
13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.OPODIS.2020.13

5. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. In: Giacobazzi, R., Cousot, R. (eds.) The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2013, Rome, Italy - January 23–25, 2013. pp. 317–328. ACM
(2013). https://doi.org/10.1145/2429069.2429109

6. Kosa, M.J.: Time bounds for strong and hybrid consistency for arbitrary abstract
data types. Chic. J. Theor. Comput. Sci. 1999 (1999). http://cjtcs.cs.uchicago.
edu/articles/1999/9/contents.html

7. Lundelius, J., Lynch, N.A.: A new fault-tolerant algorithm for clock synchroniza-
tion. In: Kameda, T., Misra, J., Peters, J.G., Santoro, N. (eds.) Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, Vancou-
ver, B. C., Canada, August 27–29, 1984. pp. 75–88. ACM (1984). https://doi.org/
10.1145/800222.806738

8. Lundelius, J., Lynch, N.A.: An upper and lower bound for clock synchronization.
Inf. Control 62(2/3), 190–204 (1984)

9. Mavronicolas, M., Roth, D.: Linearizable read/write objects. Theor. Comput. Sci.
220(1), 267–319 (1999). https://doi.org/10.1016/S0304-3975(98)90244-4

10. Shavit, N., Taubenfeld, G.: The computability of relaxed data structures: queues
and stacks as examples. Distributed Comput. 29(5), 395–407 (2016). https://doi.
org/10.1007/s00446-016-0272-0

11. Talmage, E., Welch, J.L.: Improving average performance by relaxing distributed
data structures. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 421–438.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8 29

12. Talmage, E., Welch, J.L.: Anomalies and similarities among consensus numbers of
variously-relaxed queues. Computing 101(9), 1349–1368 (2019). https://doi.org/
10.1007/s00607-018-0661-2

13. Wang, J., Talmage, E., Lee, H., Welch, J.L.: Improved time bounds for linearizable
implementations of abstract data types. Inf. Comput. 263, 1–30 (2018). https://
doi.org/10.1016/j.ic.2018.08.004

https://doi.org/10.1002/0471478210.ch6
https://doi.org/10.1002/0471478210.ch6
https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.1145/2429069.2429109
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
https://doi.org/10.1145/800222.806738
https://doi.org/10.1145/800222.806738
https://doi.org/10.1016/S0304-3975(98)90244-4
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/978-3-662-45174-8_29
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1016/j.ic.2018.08.004
https://doi.org/10.1016/j.ic.2018.08.004

Fixed Points and 2-Cycles of Synchronous
Dynamic Coloring Processes on Trees

Volker Turau(B)

Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
turau@tuhh.de

Abstract. This paper considers synchronous discrete-time dynamical
systems on graphs based on the threshold model. It is well known that
after a finite number of rounds these systems either reach a fixed point
or enter a 2-cycle. The problem of finding the fixed points for this type
of dynamical system is in general both NP-hard and #P-complete. In
this paper we give a surprisingly simple graph-theoretic characterization
of fixed points and 2-cycles for the class of finite trees. Thus, the class
of trees is the first nontrivial graph class for which a complete char-
acterization of fixed points exists. This characterization enables us to
provide bounds for the total number of fixed points and pure 2-cycles. It
also leads to an output-sensitive algorithm to efficiently generate these
states.

1 Introduction

Synchronous discrete-time dynamical systems for information spreading received
a lot of attention in recent years. Often the following model is used: Let G be
a graph with an initial configuration, where each node is either black or white.
In discrete-time rounds, all nodes simultaneously update their color based on a
predefined local rule. The rule is local in the sense that the color associated with
a node in round t is determined by the colors of the neighboring nodes in round
t− 1. The main focus of the research so far has been on the stabilization time of
this process [19] and the dominance problem, e.g., how many nodes must initially
be black so that eventually all nodes are black [14]. These questions have been
considered for various classes of graphs. These discrete-time dynamical systems
are often based on the threshold model. In a simple version of this model a
node becomes black if at least a fraction of α of its neighbors are black and
white otherwise, α ∈ (0, 1) is a parameter of the model. In more elaborate
versions edges have weights and the local rules are based on the weighted fraction
of neighbors. The main property of these dynamical systems is that assuming
symmetric weights, the system has period 1 or 2 [8,15]. This means that such
a system eventually reaches a stable configuration or it toggles between two
configurations. Fogelman et al. proved that the stabilization time is in O(n2) [5].
Frischknecht et al. showed that this bound is tight, up to some poly-logarithmic
factor [6].
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 265–282, 2022.
https://doi.org/10.1007/978-3-031-09993-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_15&domain=pdf
http://orcid.org/0000-0001-9964-8816
https://doi.org/10.1007/978-3-031-09993-9_15

266 V. Turau

In this paper we analyze a different aspect of discrete-time dynamical sys-
tems: The number and structure of fixed points and 2-cycles. This research is
motivated by applications of so called Boolean networks (BN) [10], i.e., discrete-
time dynamical systems, where each node (e.g., gene) takes either 0 (passive)
or 1 (active) and the states of nodes change synchronously according to regu-
lation rules given as Boolean functions. An example for a regulation rule is the
majority rule, i.e., α = 0.5. Since the problem of finding the fixed points of a BN
is in general both NP-hard and #P-complete [3] (see Sect. 2), it is interesting
to find graph classes, for which the number of fixed points can be determined
efficiently. We regard our work as a step in this direction. Interest in the set of
fixed points of BNs was also sparked by a result of Milano and Roli [12]. They
use BNs to solve the satisfiability problem (SAT) by defining a mapping between
a SAT instance and a BN and prove that BN fixed points correspond to SAT
solutions.

This paper provides a characterization of the set of stable configurations
(a.k.a. fixed points) and the set of states of period 2 (a.k.a. 2-cycles) for a given
finite tree based on its edge set. We do this for two versions of the thresh-
old model: minority and majority process. While the stabilization times for the
majority and minority process can differ considerably for a given graph (see
Fig. 1), the sets of stable configurations of a tree turn out to be closely related
for both process types. Our main contributions are as follows:

1. We identify a subset Efix(T) of the power set of the edge set of a tree T
and show that the elements of Efix(T) correspond one-to-one with the fixed
points of T . Efix(T) is defined by a set of simple linear inequalities over
the node degrees. The fixed point corresponding to an element of Efix(T)
can be defined in simple terms. Efix(T) has the hereditary property, i.e., if
X ∈ Efix(T) then all subset of X are also elements of Efix(T). This property
allows to define a simple output-sensitive algorithm AM to explicitly generate
all fixed points. This allows to prove upper bounds for the number of fixed
points. We also show that elements of Efix(T) correspond to solutions of a
system of linear diophantine inequalities.

2. We characterize the configurations of period 2, where each node changes its
color in every round (a.k.a. pure configurations). As above we identify a sub-
set Epure(T) of the power set of the edge set of T such that the elements of
Epure(T) correspond one-to-one with the pure configurations of T . As above
the definition of Epure(T) is based on simple linear inequalities and it has the
hereditary property. The 2-cycle corresponding to an element of Epure(T) is
also defined in simple terms. Again this allows to define a simple algorithm
enumerating all 2-cycles and to prove upper bounds for their number. Inter-
estingly, Epure(T) is a subset of Efix(T).

3. Finally we look at general configurations with period 2. We show that for
each configuration c of this type each tree decomposes into subtrees, such
that c induces either a fixed point or a pure configuration on each subtree.
The subtrees allow to define a hyper structure of a tree, called the block tree.
As in previous cases we identify a subset Eblock(T) of the power set of the

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 267

edge set of a tree T and show that the elements of Eblock(T) correspond one-
to-one with the block trees of T . Eblock(T) is a subset of Efix(T). Since a
tree can have several pure colorings, a block tree does not uniquely define
a coloring. We define a subclass of 2-cycles called canonical colorings and
prove that there is a direct correspondence between Eblock(T) and canonical
colorings. The characterization of Eblock(T) is not as simple as in the above
cases, since Eblock(T) does not have the hereditary property.

All results are obtained for the minority and the majority model. A long version
of the paper including all proofs is available [17].

2 State of the Art

Most research on discrete-time dynamical systems on graphs consecrates one-
self to bounds of the stabilization time. Good overviews for the majority resp.
the minority process can be found in [19] resp. [13]. Rouquier et al. study the
minority process in the asynchronous model, i.e., not all nodes update their color
concurrently [16]. They show that the stabilization time strongly depends on the
topology and observe that the case of trees is non-trivial.

The analysis of fixed points of the majority or minority process received only
some attention. Královič determined the number of fixed points of a complete
binary tree for the majority process [11]. Agur et al. did the same for ring
topologies [2]. In both cases the number of fixed points is an exponentially small
fraction of all configurations.

Boolean networks have been extensively used as models for the dynamics of
gene regulatory networks. A gene is modeled by binary values, 0 or 1, indicating
two transcriptional states, either active or inactive, respectively. Each network
node operates by the same nonlinear majority rule, i.e., majority processes are
a particular type of BN [18]. The set of fixed points is an important feature of
the dynamical behavior of such networks [4]. The number of fixed points is a
measure for the general memory storage capacity of a system. Many fixed points
imply that a system can store a large amount of information, or, in biological
terms, has a large phenotypic repertoire [1]. However, the problem of finding the
fixed points of a Boolean network is in general both NP-hard and #P-complete
[3]. There are only a few theoretical results to efficiently determine this set [9].
Aracena determined the maximum number of fixed points in a particular class
of BN called regulatory Boolean networks [4].

3 Synchronous Discrete-Time Dynamical Systems

Let G(V,E) be a finite, undirected graph. A coloring c assigns to each node
of G a value of {0, 1} with no further constraints on c. Denote by C(G) the
set of all colorings of G, i.e., |C(G)| = 2|V |. A transition process M describes
the transition of one coloring to another, i.e., it is a mapping M : C(G) −→
C(G). Given an initial coloring c, a transition process produces a sequence of

268 V. Turau

colorings c,M(c),M(M(c)), We consider two transition processes: Minority
and Majority process and denote the corresponding mappings by MIN and
MAJ . They are local mappings in the sense that the new color of a node
is based on the current colors of its neighbors. To determine M(c) the local
mapping is executed concurrently by all nodes. The transition from c to M(c)
is called a round. In the minority (resp. majority) process each node adopts the
minority (resp. majority) color among all neighbors. In case of a tie the color
remains unchanged. Formally, the minority process is defined for a node v as
follows:

MIN (c)(v) =

{
c(v) if

∣∣N c(v)(v)
∣∣ ≤

∣∣N1−c(v)(v)
∣∣

1 − c(v) if
∣∣N c(v)(v)

∣∣ >
∣∣N1−c(v)(v)

∣∣
N i(v) denotes the set of v’s neighbors with color i (i = 0, 1). The definition of
MAJ is similar, only the binary operators ≤ and > are reversed. Sometimes
a result holds for both processes. To simplify matters in these cases we use the
symbol M as a placeholder for MIN and MAJ . Figure 1 depicts a sequence
of colorings for MIN .

Fig. 1. For the initial coloring on the left MIN reaches after five rounds the coloring
shown on the right. MAJ reaches for the same initial coloring after one round a
monochromatic coloring.

In this paper we are interested in colorings with specific properties. Let c ∈
C(G). If M(c) = c then c is called a fixed point. It is called a 2-cycle if M(c) �= c
and M(M(c)) = c. A 2-cycle is called pure if M(c)(v) �= c(v) for each node v of
G. c is called monochromatic if all nodes have the same color, i.e., c(v) = c(w) for
all v, w ∈ V . c is called independent if the color of each node is different from the
colors of all its neighbors. Clearly, a monochromatic (resp. independent) coloring
is a fixed point for the majority (resp. minority) process. An edge (v, w) is called
monochromatic for c if c(v) = c(w) otherwise it is called multichromatic.

For a mapping M denote by FM(G), C2
M(G), and PM(G), the set of all

c ∈ C(G) that constitute a fixed point, a 2-cycle, or a pure coloring for M. If c
belongs to one of these sets the complementary coloring and M(c) also belong
to this set. To cope with this fact we also define the sets FM(G)+, C2

M(G)+, and
PM(G)+ as the subsets of those colorings of the corresponding sets which assign
to a globally distinguished node v∗ color 0. Hence, if c ∈ FM(G) then either c
or the complement of c is in FM(G)+.

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 269

3.1 Notation

Let T (V,E) be a finite, undirected tree with n = |V |. For F ⊆ E let CT (F) be
the set of connected components of T\F . We define a tree TF with nodes CT (F)
and edges F . An edge of (u,w) ∈ F connects components T1, T2 ∈ CT (F) if and
only if u ∈ T1 and w ∈ T2. For F ⊆ E and v ∈ V denote the number of edges in
F incident to v by Fv.

The nodes of a nontrivial tree T can be uniquely partitioned into two subsets,
such that the nodes of each subset form an independent set. In the following we
denote these independent subsets by I0(T) and I1(T). To enforce unambiguous-
ness when dealing with these subsets we demand that v∗ is contained in I0(T).
A star graph is a tree with n−1 leaves. The maximal degree of a tree is denoted
by Δ. We denote the nth Fibonacci number by Fn, i.e., F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2. For a set S we denote by P(S) the power set of S, i.e., the
set of all subsets of S.

4 Fixed Points

In this section we provide a characterization of FM(T) with respect to subsets
of E. In particular; we identify a set Efix(T) ⊂ P(E) and define a bijection
Bfix between Efix(T) and FM(T)+. Efix(T) �= ∅ since ∅ ∈ Efix(T). This shows
that every tree has at least one fixed point. The definition of Bfix is different for
MIN and MAJ . These results allow to characterize the fixed points of paths.
In the second subsection we prove an upper bound for |FM(T)| in terms of n
and Δ. For the case of paths we give the exact numbers. In the last part we
provide an output-sensitive algorithm to enumerate all fixed points.

4.1 The Bijection Bf ix

It is easy to see that for c ∈ FMIN (T) nodes adjacent to edges monochromatic
for c have degree at least two, moreover at most one half of the adjacent edges
of each node are monochromatic for c. Surprisingly the inverse of this statement
is true in general and forms the basis for defining the bijection Bfix: If F is a
subset of the edges of T such that nodes adjacent to edges in F have degree at
least two and at most one half of the adjacent edges of each node are in F then
F uniquely defines a fixed point of T for M.

Lemma 1. Let T be a tree, c ∈ FM(T), and F the set of monochromatic (resp.
multicolored) edges (u,w) ∈ E if M = MIN (resp. M = MAJ). If (u,w) ∈ F
then degT (u) ≥ 2 and degT (w) ≥ 2. Furthermore, Fv ≤ degT (v)/2 for each node
v of T .

Proof. Assume M = MIN , the other case is proved similarly. Then∣∣∣N1−c(u)
T (u)

∣∣∣ ≥
∣∣∣N c(u)

T (u)
∣∣∣ ≥ 1 for (u,w) ∈ F . Thus, degT (u) =

∣∣∣N c(u)
T (u)

∣∣∣ +∣∣∣N1−c(u)
T (u)

∣∣∣ ≥ 2. Similarly degT (w) ≥ 2. Let v ∈ V . Then
∣∣∣N c(v)

T (v)
∣∣∣ ≤∣∣∣N1−c(v)

T (v)
∣∣∣ since c ∈ FM(T), i.e., deg(v) ≥ 2

∣∣∣N c(v)
T (v)

∣∣∣ = 2Fv.
�

270 V. Turau

The last lemma motivates the following definition of Efix(T). Note that
Efix(T) satisfies the hereditary property

Definition 1. Let T be a tree. E2(T) denotes the set of edges of T where each
end node has degree at least two. F ⊆ E2(T) is called legal if Fv ≤ deg(v)/2 for
each node v. Efix(T) denotes the set of all legal subsets of a tree T .

Theorem 1. For a tree T there exists a bijection Bfix between Efix(T) and
FM(T)+.

Proof. Assume M = MIN . Let F ∈ Efix(T). We define a coloring cF ∈
FMIN (T). Let T ∗ ∈ CT (F) with v∗ ∈ T ∗. Let cF (v∗) = 0 and extend cF to
an independent coloring of T ∗, e.g., by using breadth-first search. This uniquely
defines cF on T ∗. We extend cF successively to a coloring with cF ∈ FMIN (T)+.
While there exists an already colored node u that has an uncolored neighbor do
the following. Let T1 ∈ CT (F) with u ∈ T1, N1 = NT1(u), and N2 = NT (u) \N1.
All nodes in N1 have color 1− cF (u) and Fu = |N2|. No node of N2 has yet been
assigned a color. By assumption we have |N2| ≤ degT (u)/2. Hence, |N2| ≤ |N1|.
Set cF (w) = cF (u) for all w ∈ N2. For each w ∈ N2 let Tw ∈ CT (F) with w ∈ Tw.
Extend cF to an independent coloring on each Tw. Then

∣∣∣N cF (u)
T

∣∣∣ ≤
∣∣∣N1−cF (u)

T

∣∣∣.
Clearly this uniquely defines cF and cF ∈ FMIN (T)+. Now we can define
Bfix(F) = cF for each F ∈ Efix(T).

Let F1 �= F2 ∈ Efix(T) and e = (u,w) ∈ F1 \ F2. Then cF1(w) = cF1(u) and
cF2(w) �= cF2(u). Hence, cF1 �= cF2 . Thus, Bfix(F) is injective. Next, we prove
that Bfix is surjective, i.e., for every c ∈ FMIN (T)+ there exists Fc ∈ Efix(T)
such that Bfix(Fc) = c. For c ∈ FMIN (T)+ let Fc = {(u,w) ∈ E | c(u) =
c(w)}. Then Fc ∈ Efix(T) by Lemma 1. By the first part of this proof we have
BT (Fc) ∈ FMIN (T)+. Let v ∈ T ∗ and u ∈ NT ∗(v). Then c(u) �= c(v), otherwise
u �∈ T ∗. Hence, BT (Fc) is for T ∗ independent. Since cFc

(v∗) = c(v∗) = 0 we
have BT (Fc)(v) = c(v) for all v ∈ T ∗. Next we repeat this argument for all
T̂ ∈ CT (Fc). Thus, c and BT (Fc) define the same coloring of T , i.e., BT (Fc) = c.

�

Theorem 1 implies the following two results.

Corollary 1. Let T be a tree. The minority process has an independent fixed
point. It has a non-independent fixed point if and only if T has at least two
inner nodes. The majority process has a monochromatic fixed point. It has a
non-monochromatic fixed point if and only if T has at least two inner nodes.

Corollary 2. A coloring of a path is a fixed point of the minority (resp. major-
ity) process if and only if each node has at least one neighbor with a different
(resp. same) color.

4.2 Counting Fixed Points

Theorem 1 allows to compute the number of fixed points in specific cases. If
Δ = n − 1 (resp. Δ = n − 2) then |FMIN (T)| = 2 (resp. |FMIN (T)| = 4).

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 271

Furthermore, |FMIN (T)| ≤ 8 if Δ = n − 3. To get more general results we
describe an algorithm AM to generate all fix points of a given tree T . We start
with node v∗ and color it with 0. Algorithm AM is recursive and extends a
partial coloring by coloring all uncolored neighbors of an already colored node.
In this context a partial coloring is a coloring of a subset of the nodes of T with
the following property: Let v be an already colored node. Firstly, all nodes on
the path from v∗ to v in T are also colored. Secondly, if a neighbor of v other
than the one closer to v∗ is colored, then all neighbors of v are colored.

The details of a recursive call for the minority process, i.e., AMIN are as
follows. Given a partial coloring c, a single invocation generates several exten-
sions of c, all of them are again partial colorings covering more nodes. Let v
be an already colored node that has an uncolored neighbor. First, each uncol-
ored neighbor of v that is a leaf gets the complementary color of v. Then v has
r = deg(v) −

∣∣N0(v)
∣∣ −

∣∣N1(v)
∣∣ uncolored neighbors. Let U be the set of the

uncolored neighbors of v, note none of them is a leaf. We color N̂0 (resp. N̂1) of
these r neighbors with color 0 (resp. 1), i.e., r = N̂0 + N̂1. In order to produce
a fixed point the following inequality must be satisfied:∣∣∣N c(v)(v)

∣∣∣ + N̂c(v) ≤
∣∣∣N1−c(v)(v)

∣∣∣ + N̂1−c(v) =
∣∣∣N1−c(v)(v)

∣∣∣ + r − N̂c(v).

Hence,

N̂c(v) ≤
r +

∣∣N1−c(v)(v)
∣∣ −

∣∣Nc(v)(v)
∣∣

2
. (1)

Let
r0 = min

(
�(r +

∣∣N1−c(v)(v)
∣∣ −

∣∣Nc(v)(v)
∣∣)/2, r) . (2)

For i = 0, . . . , r0 we extend c by coloring a subset S of U of size i with color c(v)
and the remaining nodes U \ S with color c(v) − 1. This way we get

∑r0
i=0

(
r
i

)
extended partial colorings. AMIN is applied to each of these extensions and
terminates when all nodes are colored. Clearly, the resulting colorings are fixed
points and all fixed points are generated this way. Algorithm AMAJ differs only
in two places. Firstly, uncolored neighbors of v that are leaves gets the same color
as v. Secondly, in Eq. (1) operator ≥ must be replaced by ≤ and the assignment
of colors to nodes in U is reversed.

Next we prove an upper bound for |FM(T)|. According to Corollary 1 each
tree has at least two fixed points. A star graph is an extreme case, because it
only has two fixed points. The other extreme are paths as shown in this section.

Lemma 2. Let T be a tree with a path v0, v1, v2, v3 such that deg(v0) = 1 and
deg(v1) = deg(v2) = 2. Let T 0 = T \ v0 and T 1 = T 0 \ v1. Then |FM(T)| =∣∣FM(T 0)

∣∣ + ∣∣FM(T 1)
∣∣.

Theorem 2. Let T be a tree and P a path. Then |FM(T)| ≤ 2Fn−�Δ/2� and
|FM(P)| = 2Fn−1.

Figure 2 shows that the bound of Theorem 2 is not sharp. Let Bh be a
binary tree of depth h. The equation |FM(Bh)| = |FM(Bh−1)| (|FM(Bh−1)| +
2 |FM(Bh−2)|2) already contained in [11] directly follows from Theorem 1.

272 V. Turau

Fig. 2. Three trees with five nodes having 4, 2, and 6 fixed points for MIN .

4.3 Generating Fixed Points

The fixed points of a tree T can be generated by iterating over all subsets
of E2(T) and outputting the legal ones. The algorithm exploits the fact that
Efix(T) has the hereditary property, i.e., if X ∈ E2(T) is legal, all subset of
X are also legal. Algorithm 1 describes an output-sensitive algorithm running
in time O(n + |FM(T)| ×

∣∣E2(T)
∣∣). Since

∣∣E2(T)
∣∣ ≤ n the running time is in

O(n |FM(T)|). If E2(T) = {e1, . . . , el} then the edges {e1, . . . , ei} for i = 0, . . . , l.
The inner foreach-loop always iterates over the list fixedPoints beginning at the
first entry.

Algorithm 1: Algorithm to generate a list of all fixed points of a tree
T (V,E)
E2 := {(u,w) ∈ E | deg(u) ≥ 2 and deg(w) ≥ 2};
fixedPoints := ∅; fixedPoints.append(∅);
foreach e ∈ E2 do

count := fixedPoints.size();
foreach X ∈ fixedPoints do

if {e} ∪ X is legal then
fixedPoints.append({e} ∪ X);

count := count − 1;
if count == 0 then

break;

return fixedPoints;

Theorem 3. Algorithm 1 computes all |FM(T)| fixed points of a tree T in time
O(n + |FM(T)| ×

∣∣E2(T)
∣∣) using O(

∣∣E2(T)
∣∣ × |FM(T)|) memory.

Proof. By Theorem 1 each legal subset of E2(T) uniquely corresponds to a
fixed point of T . If a subset S of E2(T) is not legal, then no superset of S is
legal and if S is legal then all subsets of S are legal. Therefore, the algorithm
generates all legal subsets of E2(T). Let l =

∣∣E2(T)
∣∣. Denote by Si the set of

elements of the list fixedPoints at the beginning of the ith outer foreach-loop
and Sl+1 the elements of fixedPoints after the last execution. Then |S1| = 1
and |F(T)+| = |Sl+1|.

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 273

Next we prove that (4/5) |Si+1| ≥ |Si| for i = 1, . . . , l. Let e = (u,w) ∈
E2(T). For X ∈ Si denote the number of edges in X that are incident with a
node v by Xv. Let S̄ = Si and Ŝ = ∅. Let X ∈ S̄ with Xu + 1 > deg(u)/2 and
Xw + 1 > deg(w)/2. Let eu (resp. ew) be an edge of X that is incident with u
(resp. w). Then we remove X,X \ {eu, ew},X \ {eu}, and X \ {ew} from S̄ and
insert X,X \ {eu, ew},X \ {eu}, X \ {ew}, and X \ {eu, ew} ∪ {e} into Ŝ. We
repeat this process until there is no X in S̄ with the above property. Next, let
X ∈ S̄ with Xu + 1 > deg(u)/2 and Xw + 1 ≤ deg(w)/2. Let eu be an edge
of X that is incident with u. Then we remove X, and X \ {eu} from S̄ and
insert X,X \ {eu},X \ {eu} ∪ {e} into Ŝ. We repeat this process until there is
no X in S̄ with the above property. Finally, for the remaining X ∈ S̄ we insert
X,X ∪ {e} into Ŝ. Assume, that Si contains n1, n2 resp. n3 elements according
to the above classification, then |Si| = 4n1+2n2+n3 and

∣∣∣Ŝ∣∣∣ = 5n1+3n2+2n3.

Since Si+1 = Ŝ we have (4/5) |Si+1| ≥ |Si|. The overall number of executions of
the inner foreach-loop is

∑l
i=1 |Si|. Thus,

l∑
i=1

|Si| ≤ (4/5)
l+1∑
i=2

|Si| = (4/5)
l∑

i=1

|Si| + (4/5)(|Sl+1| − 1).

Hence,
∑l

i=1 |Si| ≤ 4(|Sl+1| − 1) < 4 |F(T)+|. In time O(n) we provide the
degrees of all nodes in an array. Also the test whether X ∪ e is legal and append
the entry to the list can be performed in time O(|X|).
�

The bound (4/5) |Si+1| ≥ |Si| for all i can be used to prove the lower bound
of ((5/4)l with l =

∣∣E2(T)
∣∣ for |FM(T)|. We conjecture that a more detailed

analysis of the relation between |Si+1| and |Si| leads to a better bound.
Finally, we sketch an alternative approach for computing all fixed points. The

elements of Efix(T) correspond to the solutions of a system of linear diophantine
inequalities Ax ≤ b. Here, A is a binary

∣∣E2(T)
∣∣×n matrix, where ai,j = 1 if node

i is incident with edge j of E2(T) and bi = �degT (i)/2. Thus, by Theorem 1 the
set of fixed points corresponds to the solutions of Ax ≤ b. Unfortunately there
isn’t much work available for solving systems of linear diophantine inequalities
[7].

5 General 2-Cycles

In this section we analyze the structure of C2
M(T). First we collect general results

about colorings from C2
MIN (T). In the second subsection we consider the set

c ∈ PM(T) of all pure colorings. We first prove properties of c and use these
to define the set Epure(T) and define a bijection Bpure between Epure(T) and
PM(T)+. Since Epure(T) �= ∅ this shows that every tree has pure coloring. These
results immediately lead to a simple characterization pure coloring of paths. In
the third subsection we derive from Bpure an upper bound for |PM(T)| in terms of
n. Finally we consider the general case of 2-cycles. We prove that T decomposes

274 V. Turau

into subtrees, such that c is either a fixed point or a pure coloring on each of
these subtrees. These subtrees provide the basis to define a hyper structure of a
tree, called the block tree. After analyzing properties of block trees we define a
set Eblock(T) of subsets of the edge set of a tree T and show in Theorem 6 that
the elements of Eblock(T) correspond one-to-one with the block trees of T . Since
Eblock(T) does not have the hereditary property, we cannot use the approach of
Algorithm 1 to enumerate all block trees.

5.1 General Results

Let c ∈ C2
M(T). We separate the nodes of T in two groups. A node u is called a

fixed node for c if M(c)(u) = c(u); it is called a toggle node for c if M(c)(u) �=
c(u). Note that in any case M(M(c))(u) = c(u). Denote by N i

f (u) (resp. N i
t (u))

the number of neighbors of u with color i that are fixed (resp. toggle) nodes for
c.

First, we provide a simple characterization of fixed and toggle nodes for
MIN , a corresponding result holds for MAJ .

Lemma 3. Let T be a tree and c ∈ C2
MIN (T). A node u of T is a fixed node of

c if and only if
∣∣∣N1−c(u)

t (u) − N
c(u)
t (u)

∣∣∣ ≤ N
1−c(u)
f (u) − N

c(u)
f (u) and a toggle

node of c if and only if
∣∣∣N c(u)

f (u) − N
1−c(u)
f (u)

∣∣∣ < N
c(u)
t (u) − N

1−c(u)
t (u).

5.2 Pure 2-Cycles

If c ∈ PM(T) then each node of T is a toggle node. In Theorem 4 we give
a characterization PM(T), it allows to generate all pure 2-cycles and compute
|PM(T)|.

Lemma 4. Let T be a tree, c ∈ CM(T). Then c ∈ PMIN (T) (resp. c ∈
PMAJ (T)) if and only if N c(u)(u) > N1−c(u)(u) (resp. N c(u)(u) < N1−c(u)(u))
for each node u.

As in Sect. 4.1 we use properties of monochromatic edges to characterize
pure 2-cycles. Corollary 3 is similar to Lemma 1 and is used to define the set
Epure(T).

Lemma 5. Let T be a tree, c ∈ PM(T), and e = (u,w) ∈ E with c(u) �= c(w)
if M = MIN and c(u) = c(w) if M = MAJ . Let Tu (resp. Tw) be the subtree
of T \ e that contains u (resp. w). Then u and w have degree at least 3, Tu and
Tw contain at least 3 nodes, and c induces a pure 2-cycle on both subtrees.

Proof. We state the proof for M = MIN . Since c is pure we have N
c(u)
T (u) >

N
1−c(u)
T (u) and since c(u) �= c(w) we also have N

1−c(u)
T (u) ≥ 1. Hence, deg(u) =

N
c(u)
T (u) + N

1−c(u)
T (u) ≥ 3. Similarly deg(w) ≥ 3. Let v ∈ Tu. If v �= u then all

neighbors of v in T are in Tu and thus
∣∣∣N c(u)

Tu
(u)

∣∣∣ >
∣∣∣N1−c(u)

Tu
(u)

∣∣∣. Next consider

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 275

the case v = u. Since c is pure, there exists in N(u) at least one more node with
color c(u) than with color c(w). Thus, u has at least two neighbors in Tu, hence
Tu contains at least three nodes. Since

∣∣∣N c(u)
Tu

(u)
∣∣∣ = ∣∣∣N c(u)

T (u)
∣∣∣ >

∣∣∣N1−c(u)
T (u)

∣∣∣ =∣∣∣N1−c(u)
Tu

(u)
∣∣∣ + 1 we have

∣∣∣N c(u)
Tu

∣∣∣ >
∣∣∣N1−c(u)

Tu
(u)

∣∣∣. Hence, Lemma 4 implies that
c induces a pure 2-cycle for MIN on Tu. The same is true for Tw.
�

Corollary 3. Let T be a tree. If c ∈ PMIN (T), Fc = {(u,w) ∈ E | c(u) �=
c(w)}, and T̂ ∈ CT (Fc) then

∣∣∣T̂ ∣∣∣ ≥ 3 and c induces a monochromatic coloring

on T̂ . If c ∈ PMAJ (T), Fc = {(u,w) ∈ E | c(u) = c(w)}, and T̂ ∈ CT (Fc)
then

∣∣∣T̂ ∣∣∣ ≥ 3 and c induces an independent coloring on T̂ . Furthermore, (Fc)v <

degT (v)/2 for v ∈ V .

Corollary 3 motivates the following definition of Epure(T). Note that
Epure(T) satisfies the hereditary property and Epure(T) = Efix(T) if all degrees
of T are odd.

Definition 2. Let T be a tree. E3(T) denotes the set of all edges of T where each
end node has degree at least three. F ⊆ E3(T) is called legal if Fv < deg(v)/2
for each node v. Epure(T) denotes the set of all legal subsets of E3(T).

Theorem 4. For a tree T there exists a bijection Bpure between Epure(T) and
PM(T)+.

Proof. Let F ∈ Epure(T). We uniquely partition the nodes of TF into two inde-
pendent subsets I0 and I1 with v∗ ∈ I0. Assume M = MIN . Define a map-
ping CF : CT (F) → {0, 1} by setting CF (T̂) = i if T̂ ∈ Ii. Based on CF

we define a coloring cF of T as follows cF (v) = CF (T̂) if v ∈ T̂ . Note that
cF (v∗) = 0. F uniquely defines cF , since for each node v there is a unique
T̂ ∈ CT (F) that contains v. First, we prove that cF ∈ PMIN (T)+. For v ∈ V

let T̂ ∈ CT (F) with v ∈ T̂ . Then N(v) ∩ T̂ = N
cF (v)
T (v). Since F ∈ Epure(T) we

have
∣∣∣N cF (v)

T (v)
∣∣∣ > deg(v)/2. Thus, 2

∣∣∣N cF (v)
T (v)

∣∣∣ >
∣∣∣N cF (v)

T (v)
∣∣∣ + ∣∣∣N1−cF (v)

T (v)
∣∣∣

and hence,
∣∣∣N cF (v)

T (v)
∣∣∣ >

∣∣∣N1−cF (v)
T (v)

∣∣∣ for all v. Hence, cF ∈ PMIN (T)+

by Lemma 4. Now we can define Bpure(F) = cF for each F ∈ Epure(T). Let
F1 �= F2 ∈ Epure(T) and e = (u,w) ∈ F1 \ F2. Then cF1(w) �= cF1(u) and
cF2(w) = cF2(u). Hence, cF1 �= cF2 , i.e., Bpure(F) is injective. Next, we prove
that Bpure is surjective, i.e., for every c ∈ PMIN (T)+ there exists Fc ∈ Epure(T)
with Bpure(Fc) = c. For c ∈ PMIN (T)+ define Fc = {(u,w) ∈ E | c(u) �=
c(w)}. By Lemma 5 we have Fc ∈ E3(T). Let v ∈ V . Since c is a pure 2-
cycle we have

∣∣∣N c(v)
T (v)

∣∣∣ >
∣∣∣N1−c(v)

T (v)
∣∣∣, i.e., deg(v) > 2

∣∣∣N1−c(v)
T (v)

∣∣∣. Since,

(Fc)v =
∣∣∣N1−c(v)

T (v)
∣∣∣ we have deg(v)/2 > (Fc)v. This yields Fc ∈ Epure(T).

By the first part of this proof we have Bpure(Fc) ∈ PMIN (T)+. By Corol-
lary 3 Bpure(Fc) is for each tree T̂ ∈ CT (Fc) a monochromatic coloring with

276 V. Turau

Bpure(Fc)(v) = c(v) for all v ∈ T̂ . Hence, c and Bpure(Fc) define the same color-
ing of T , i.e., Bpure(Fc) = c.

The proof for the case M = MAJ is similar. The main differences are that
we define cF such that it induces an independent coloring on each T̂ ∈ CT (F)
and in the second part we define Fc = {(u,w) ∈ E | c(u) = c(w)}.
�
Corollary 4. Every tree T has a pure coloring for the minority and the majority
process. T has a non-monochromatic (resp. non-independent) pure coloring for
the minority (resp. majority) process if and only if there exist an edge (u,w) ∈ T
such that deg(u) ≥ 3 and deg(w) ≥ 3.

Proof. We provide the proof for M = MIN . The result follows from Theorem 4.
Since ∅ ∈ Epure(T) we have c∅ ∈ FM(T)+. c∅ is a monochromatic coloring. T
has a non-monochromatic pure coloring if and only if Epure(T) �= ∅. This is
equivalent to having an edge with the stated properties.
�
Corollary 5. Let P be a path and c ∈ C(P). Then c ∈ PMIN (P) (resp. c ∈
PMAJ (P)) if and only if c(v) = c(w) (resp. c(v) �= c(w)) for each edge (v, w)
of P .

Since Epure(T) ⊆ Efix(T) we have PMAJ (T) ⊆ FMIN (T) and PMIN (T) ⊆
FMAJ (T). Figure 3 shows that there are trees T where PMAJ (T) ⊂ FMIN (T)
and PMIN (T) ⊂ FMAJ (T).

Fig. 3. The left coloring is in FMAJ (T) \ PMIN (T), the right one is in FMIN (T) \
PMAJ (T).

5.3 Counting Pure 2-Cycles

Theorem 4 allows to determine the pure 2-cycles of a tree T , and thus, |PM(T)|.
Since Epure(T) ⊆ Efix(T) we have |PM(T)| ≤ |FM(T)| and |PM(T)| ≤
2Fn−�Δ/2� by Theorem 2. To generate all pure 2-cycles Algorithm 1 can be
adopted, note that Epure(T) has the hereditary property. The difference is that
it uses E3(T) and the corresponding notion of legal. The algorithm works in time
O(n + |PM(T)|

∣∣E3(T)
∣∣). Next we provide a better upper bound for |PM(T)|.

Let eT =
∣∣E3(T)

∣∣.
Lemma 6. Let T be a tree, then eT ≤ (n − 4)/2.

The last lemma implies |PM(T)| ≤ 21+(n−4)/2. This bound is purely based
on the bound for

∣∣E3(T)
∣∣. By utilizing the constraints imposed by Epure(T)

better bounds may be derived. The tree Hn with n ≡ 0(2) that consists of a
path of length (n + 2)/2 and a single node attached to each inner node of the
path (see Fig. 4) shows that the bound of Lemma 6 is sharp, but there is large
gap between

∣∣E3(Hn)
∣∣ and |Epure(Hn)|.

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 277

Fig. 4. The graph H10, the three edges belonging to E3(H10) are depicted by solid
lines. In general we have

∣
∣E3(Hn)

∣
∣ = 2(n−4)/2 and |Epure(Hn)| = Fn/2.

5.4 Block Trees of 2-Cycles

In this section we consider general 2-cycles, i.e., those that have both fixed and
toggle nodes. We characterize the coarse grain structure of C2

M(T), called the
block tree of T .

Definition 3. Let T be a tree and c ∈ C2
M(T). Let Vf (resp. Vt) be the set of

fixed (resp. toggle) nodes of c and T f (resp. T t) the subgraph of T induced by Vf

(resp. Vt).

The next result shows that a 2-cycle c induces a structure on T that allows
to define a hypertree Bc(T).

Lemma 7. Let T be a tree, c ∈ C2
M(T), and T ′ a connected component of T f

(resp. T t). Then c induces a fixed point (resp. a pure 2-cycle) on T ′.

Proof. We assume M = MIN . Let T ′ be a connected component of T f

and u a node of T ′. With respect to T we have
∣∣∣N1−c(u)

t (u) − N
(u)
t (u)

∣∣∣ ≤
N

1−c(u)
f (u)−N

c(u)
f (u) by Lemma 3. Restricting c to T ′ gives N

c(u)
T ′ (u) = N

c(u)
f (u)

and N
1−c(u)
T ′ (u) = N

1−c(u)
f (u). Thus, N

1−c(u)
T ′ (u) ≥ N

c(u)
T ′ (u) and u is a fixed node

of T ′ for c. Hence, c is a fixed point for T ′. The result about components of T t

is proved similarly.
�

Lemma 7 provides the base to define the block tree of a coloring c ∈ C2
M(T).

Definition 4. Let T be a tree, c ∈ C2
M(T), and T1, . . . , Ts the connected com-

ponents of T f and T t. The block tree Bc(T) of T for c is a tree with nodes
{T1, . . . , Ts}, nodes Ti and Tj are connected if there exists (u,w) ∈ E with u ∈ Ti

and w ∈ Tj. A node Ti is called a fixed block (resp. toggle block) of Bc(T) if Ti

is a connected component of T f (resp. T t).

Obviously Bc(T) is a tree. Bc(T) is uniquely defined, but different 2-cycles
can induce the same block tree (see Fig. 5). Each edge e of Bc(T) connects a
fixed block with a toggle block, e uniquely corresponds to an edge of T . For
convenience we denote this edge also by e. If Ti is a toggle block then obviously
|Ti| ≥ 2, since all neighboring blocks are fixed blocks. Fixed blocks can consist
of a single node only (see Fig. 6).

278 V. Turau

Fig. 5. Two colorings leading to the same block tree. For the minority process both
colorings define the same block tree. The left block node is a toggle node while the
right is a fixed point.

Fig. 6. A block tree consisting of two toggle blocks and one fixed block with a single
node.

The goal of this section is to present a characterization of the set of all block
trees for a given tree T similar to Theorem 4, i.e., the trees TB for which there
exists c ∈ C2

M(T) such that TB = Bc(T). The following theorem summarizes
properties of 2-cycles.

Theorem 5. Let T be a tree, c ∈ C2
M(T), and e = (u,w) an edge of Bc(T).

Then

1. If degT (u) = 2 then u is a fixed node.
2. min(degT (u), degT (w)) ≥ 2 and max(degT (u), degT (w)) ≥ 3.
3. If T0 is a node of Bc(T), v ∈ T0, degT0(v) = 1 and degT (v) ≡ 0(2) then v is

a fixed node and T0 is a fixed block.
4. If T0 = {v} is a node of Bc(T) then v is a fixed node, T0 is a fixed block, and

degT (v) is even.

Proof. Assume M = MIN , the proof for MAJ is similar. Assume that u is
toggle node. Then

∣∣N c(u)(u)
∣∣ >

∣∣N1−c(u)
∣∣. Thus, if

∣∣N1−c(u)
∣∣ > 0 then degT (u) ≥

3. Therefore,
∣∣N1−c(u)

∣∣ = 0 and
∣∣N c(u)(u)

∣∣ = 2. Since u is toggle node, both
neighbors must change their color, i.e., both are toggle nodes. This yields that
w is a toggle node. Contradiction, since e(u,w) is an edge of Bc(T).

WLOG we assume that u is a fixed node while w toggles its color. Assume
that min(deg(u), deg(w)) = 1. If deg(u) = 1 then u cannot be a fixed
node because w toggles its color. Similarly, w cannot have degree 1. Hence,
min(deg(u), deg(w)) ≥ 2. Assume that deg(u) = deg(w) = 2. Then by the first
part, both nodes are fixed nodes. Contradiction. Assume that v is a toggle node.
Then N

c(v)
t = 1 and N

1−c(v)
t = 0. Hence, by Lemma 3 we have N

1−c(v)
f = N

c(v)
f

thus, degT (v) = 1 + 2N c(v)
f ≡ 1(2). Contradiction. Let T0 = {v}. If v is a

toggle node then all neighbors are fixed nodes. Hence, v is also a fixed node.
Contradiction. Lemma 3 yields that degT (v) is even.
�

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 279

The last theorem list properties of Bc(T) for c ∈ C2
M(T). As before we take

these properties to identify a set of edges Fc such that TFc
= Bc(T). The following

two definitions provide a formal framework for this purpose.

Definition 5. Let T be a tree. E 2.5(T) denotes the set of edges of T , where
one end node has degree at least two and the other has degree at least 3. For
F ⊆ E 2.5(T) a component T̂ ∈ CT (F) is called fixed if

∣∣∣T̂ ∣∣∣ = 1 or if there exists

v ∈ T̂ such that degT (v) ≡ 0(2) and degT̂ (v) = 1. Fix(T, F) denotes the set of
all fixed components of CT (F).

Definition 6. Let T be a tree. F ⊆ E 2.5(T) is called legal if all components of
Fix(T, F) are fully contained in I0(TF) and if T0 ∈ CT (F) with T0 = {v} then
degT (v) ≡ 0(2). Eblock(T) denotes the set of all legal subsets of E 2.5(T).

The next result reveals the significance of Eblock(T) for block trees.

Lemma 8. Let T be a tree, c ∈ C2
M(T), and Fc the edges of Bc(T). Then Fc ∈

Eblock(T).

Proof. Note that TFc
= Bc(T). By Theorem 5.2 we have Fc ⊆ E 2.5(T). By

construction of Bc(T) and Theorem 5.4 and 5.3 we have Fix(T, Fc) ⊆ I0(TFc
).

Theorem 5.4 completes the proof.
�

Definition 7. Let T be a tree. A coloring c ∈ C2
MIN (T) is called canonical if c

induces a monochromatic (resp. independent) coloring on each connected com-
ponent of T t (resp. T f). A coloring c ∈ C2

MAJ (T) is called canonical if c induces
an independent (resp. monochromatic) coloring on each connected component of
T t (resp. T f).

The next result lays the groundwork for our characterization of block trees.

Lemma 9. Let T be a tree and F ∈ Eblock(T). There exits c ∈ C2
M(T) with

Bc(T) = TF such that c is canonical and I0 (resp. I1) is the set of fixed (resp.
toggle) nodes of c.

Proof. Assume M = MIN , M = MAJ is similar. The proof is by induction on
|F |. The case |F | = 0 is obvious, c is the monochromatic coloring. Let |F | > 0.
Let L ∈ TF be a leaf and e = (u,w) ∈ F such that w ∈ L. Then |L| ≥ 2 if
L ∈ I0(TF) and |L| ≥ 3 if L ∈ I1(TF). Remember that I0(TF) contains the fixed
components of TF . By the definition of Eblock(T) we have to consider four cases.

Case 1: L ∈ I0(TF) and |L| > 2. We construct a tree T̃ as follows: Remove
from T all nodes of L except w and add a new neighbor v to w. Then

∣∣∣T̃ ∣∣∣ < |T |.
Then degT (u) > 2 otherwise L would not be in I0(TF). Hence, F ⊆ E2.5(T̃).
Denote the leaf of CT̃ (F) consisting of v and w by L̃. Thus, L̃ ∈ Fix(T̃ , F)
and Fix(T̃ , F) = Fix(T, F) ∪ L̃ \ L ⊆ I0(TF). Let T0 = {v} ∈ CT̃ (F). Then,
T0 ∈ CT (F). Hence, degT (v) ≡ 0(2) by assumption. Since T0 ∈ I0(TF) we also
have degT̃ (v) ≡ 0(2). This shows that T̃ and F satisfy the theorem’s assumption.

280 V. Turau

Hence, by induction there exists a canonical coloring c̃ ∈ C2(T̃) with Bc̃(T̃) = TF

satisfying all properties. We can extend c̃ to a coloring c ∈ C2(T) by setting
c(x) = c̃(x) for all nodes x ∈ T \ L, c(w) = c̃(w), and color the remaining nodes
of L in the canonical way for a fixed point.

Case 2: L ∈ I0(TF) and |L| = 2. Let F̃ = F \ e. Let v ∈ L be a neighbor of
w and set T̃ = T \ v. Let Tu ∈ CT (F) with u ∈ Tu. Then Tu ∈ I1(TF) and thus,
|Tu| > 1, degTu

(u) ≥ 1 and degT (u) ≥ 3. Let T̃u ∈ CT̃ (F̃) with u ∈ T̃u. Then
w ∈ T̃u, T̃u ∈ I1(TF) and Tu ⊂ T̃u. Clearly, F̃ ⊆ E2.5(T̃). Let T0 = {v0} ∈ CT̃ (F̃)
with |T0| = 1. Then T0 ∈ CT (F), thus degT (v0) ≡ 0(2). Hence, degT̃ (v0) ≡ 0(2).
Let T̂ ∈ CT̃ (F̃) and v0 ∈ T̂ with degT̂ (v0) = 1, degT̃ (v0) ≡ 0(2). Assume T̂ = T̃u.
Then v0 �= w since degT̃ (w) = 1 �≡ 0(2). Thus, T̂ = T̃u if v0 ∈ T̂ with degT̂ (v0) =
1 for some v0 �= w. Hence, T̂ ∈ Fix(T̃ , F̃) = Fix(T, F) ⊆ I0(TF) = I0(T̃F̃).

Therefore, T̃ and F̃ satisfy the theorem’s assumption. By induction there
exists a canonical coloring c̃ ∈ C2(T̃) with Bc̃(T̃) = TF̃ satisfying all properties.
Since T̃u ∈ I1(T) all nodes of T̃u have the same color, thus N

1−c̃(u)
t (u) = 0 and

c̃(u) = c̃(w). By Lemma 3 we have
∣∣∣N c̃(u)

f (u) − N
1−c̃(u)
f (u)

∣∣∣ < N
c̃(u)
t (u).

We change c̃ to a coloring c of T as follows. First, we set c(x) = c̃(x) for all
x �∈ {w, v}. We apply Lemma 3 to prove that u is still a toggle node for c.

If N
c̃(u)
f (u) > N

1−c̃(u)
f (u) we set c(w) = 1 − c̃(w) and c(v) = c̃(w). If

N
c̃(u)
f (u) < N

1−c̃(u)
f (u) we set c(w) = c̃(w) and c(v) = 1 − c̃(w). At last

consider the case N
c̃(u)
f (u) = N

1−c̃(u)
f (u). If N

c̃(u)
t (u) = 2 then N

c(u)
t (u) = 1,

i.e., degTu
(u) = 1. Also degT̃ (u) = 2N c̃(u)

f (u) + 2, i.e., degT (u) ≡ 0(2). Hence,

Tu ∈ I0(TF). Contradiction and thus N
c̃(u)
t (u) > 2. Set c(w) = 1 − c̃(w) and

c(v) = c̃(w). Then N
c(u)
t (u) > 1 and thus,

∣∣∣N c(u)
f − N

1−c(u)
f

∣∣∣ = 1 < N
c(u)
t (u).

Therefore, c has the desired properties.
�

Theorem 6. For a tree T there exists a bijection Bblock between Eblock(T) and
the set of block trees of T of the minority and the majority process.

Corollary 6. Let T be a tree where all nodes have odd degree. Then Eblock(T) =
{F ⊆ E3(T) | CT (F) does not contain a component of size 1}. Let P be a path.
Then C2

M(P) = PM(P).

5.5 Counting Block Trees

The concept of Algorithm 1 can not be used to generate all elements of Eblock(T)
because Eblock(T) does not have the hereditary property (see example in [17]).
Since Eblock(T) ⊆ Efix(T) each upper bound for |FM(T)| is also an upper bound
for

∣∣C2
M(T)

∣∣. A naive way to generate all block trees of a tree is to iterate over
the set Efix(T) and test, whether an element is legal according to Definition 6.

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes 281

6 Conclusion and Open Problems

In this paper we provided characterizations of several categories of colorings of
trees for the minority and majority process in terms of subsets of the tree edges.
This means that the class of trees is the first nontrivial graph class for which
a complete characterization of fixed points for the minority/majority process
exists. This includes an algorithm to enumerate all fixed points and upper bounds
for the number of fixed points.

There are several open questions that are worth pursuing. Firstly, is it pos-
sible to characterize fixed points and pure colorings for other graph classes?
Clearly, the results for trees do not hold for general graphs, e.g. for cycles. But,
it might be possible to use the same approach, i.e., find suitable subsets of the
edge set similar to Efix.

Furthermore, the current work for trees can be improved. It would be inter-
esting to find better general upper bounds for |FM(T)| and |PM(T)| for trees.
Also, we believe that the run-time of Algorithm 1 can be improved. Moreover,
an algorithm to enumerate all block trees is an open problem. Finally, a full
characterization of all 2-cycles with the help of a subset of the power set of the
tree edges is still missing.

Another line of research is to consider random trees and compute the
expected number of fixed points and pure colorings. Using our results, it suf-
fices to compute the expected sizes of |Efix(T)| and |Epure(T)| for these trees.

References

1. Agur, Z.: Fixed points of majority rule cellular automata with application to plas-
ticity and precision of the immune system. Complex Syst. 5(3), 351–357 (1991)

2. Agur, Z., Fraenkel, A., Klein, S.: The number of fixed points of the majority rule.
Discret. Math. 70(3), 295–302 (1988)

3. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: A system for identifying genetic
networks from gene expression patterns produced by gene disruptions and overex-
pressions. Genome Inform. 9, 151–160 (1998)

4. Aracena, J.: Maximum number of fixed points in regulatory boolean networks.
Bull. Math. Biol. 70(5), 1398 (2008)

5. Fogelman, F., Goles, E., Weisbuch, G.: Transient length in sequential iteration of
threshold functions. Discret. Appl. Math. 6(1), 95–98 (1983)

6. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (Social) influence
networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_30

7. Gao, C., Dong, Y.: ABS algorithm for solving a class of linear Diophantine inequal-
ities and integer LP problems. J. Appl. Math. Inf. 26(12), 349–353 (2008)

8. Goles, E., Olivos, J.: Periodic behaviour of generalized threshold functions. Discret.
Math. 30(2), 187–189 (1980)

9. Irons, D.: Improving the efficiency of attractor cycle identification in boolean net-
works. Physica D 217(1), 7–21 (2006)

10. Kauffman, S., et al.: The Origins of Order: Self-organization and Selection in Evo-
lution. Oxford University Press, USA (1993)

https://doi.org/10.1007/978-3-642-41527-2_30

282 V. Turau

11. Královič, R.: On majority voting games in trees. In: Pacholski, L., Ružička, P.
(eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 282–291. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45627-9_25

12. Milano, M., Roli, A.: Solving the satisfiability problem through boolean networks.
In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 72–83.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46238-4_7

13. Papp, P., Wattenhofer, R.: Stabilization time in minority processes. In: 30th Int.
Symp. on Algorithms & Computation, volume 149 of LIPIcs, pp. 43:1–43:19,
Dagstuhl (2019)

14. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoret.
Comput. Sci. 282(2), 231–257 (2002)

15. Poljak, S., Sura, M.: On periodical behaviour in societies with symmetric influences.
Combinatorica 3(1), 119–121 (1983)

16. Rouquier, J., Regnault, D., Thierry, É.: Stochastic minority on graphs. Theoret.
Comput. Sci. 412(30), 3947–3963 (2011)

17. Turau, V.: Fixed points and 2-cycles of synchronous dynamic coloring processes
on trees (2022). arXiv:2202.01580

18. Veliz-Cuba, A., Laubenbacher, R.: On the computation of fixed points in boolean
networks. J. Appl. Math. Comput. 39, 145–153 (2012)

19. Zehmakan, A.: On the Spread of Information Through Graphs. Ph.D. thesis, ETH
Zürich (2019)

https://doi.org/10.1007/3-540-45627-9_25
https://doi.org/10.1007/3-540-46238-4_7
http://arxiv.org/abs/2202.01580

Foremost Non-stop Journey Arrival
in Linear Time

Juan Villacis-Llobet1,2, Binh-Minh Bui-Xuan1(B), and Maria Potop-Butucaru1

1 LIP6 (CNRS – Sorbonne Université), Paris, France
{buixuan,maria.potop-butucaru}@lip6.fr

2 Institut Polytechnique de Paris, Palaiseau, France
juan.villacisllobet@ip-paris.fr

Abstract. A journey in a temporal graph is a sequence of adjacent and
dated edges preserving the increasing order of arrival dates to the con-
secutive edges. When a journey never visits a vertex twice it is also called
a temporal path. Given a pair of source and target vertices, a journey
connecting them is foremost if the arrival date at the target vertex is
the earliest. Like in the static case, there always exists a foremost jour-
ney which is also a temporal path because it is useless to circle around
an intermediary vertex. It is therefore equivalent to compute the arrival
date of a foremost journey or a foremost temporal path.

A non-stop journey is a journey where every pair of consecutive edges
must also fulfill a maximum waiting time constraint. Foremost non-stop
journeys can achieve strictly earlier arrival date than foremost non-stop
temporal paths. We present a linear time algorithm computing the ear-
liest arrival date of such a non-stop journey connecting any two given
vertices in a given temporal graph.

Keywords: temporal graph · foremost journey · non-stop journey

1 Introduction

In a static graph, both ShortestWalk and ShortestPath ask for the same
computation, that is, a path joining two given vertices with the least number of
edges. There is no need to make a distinction between walks and paths because
a shortest walk never visits a vertex twice, hence, is also a path. Moreover,
shortest paths fulfill a very convenient local optimisation property called prefix
preservation: any prefix of a shortest path is itself a shortest path. Exploiting
prefix preservation, popular greedy algorithms such as Dijkstra or Bellman-Ford
algorithms can be used to compute shortest path in polynomial time [4].

Generalising to the temporal case, given a temporal graph whose edges are
weighted with cost function c and two vertices s and t, a journey from s to t
is a sequence of dated edges (d1, s = v1, v2), (d2, v2, v3), . . . , (dp, vp, vp+1 = t)
satisfying some condition of realizability over the dates di’s. Furthermore, when
a journey never visits a vertex twice, it is called a temporal path. A fundamental
c© Springer Nature Switzerland AG 2022
M. Parter (Ed.): SIROCCO 2022, LNCS 13298, pp. 283–301, 2022.
https://doi.org/10.1007/978-3-031-09993-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09993-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-09993-9_16

284 J. Villacis-Llobet et al.

realizability constraint we will impose on all journeys appearing in this paper is
being timely increasing, that is, di + c(di, vi, vi+1) ≤ di+1 for every 1 < i ≤ p.
Finding the earliest arrival date at destination dp + c(dp, vp, vp+1 = t) of a jour-
ney, resp. temporal path, satisfying the timely increasing property, or outputting
a negative answer when such a date does not exist, is called the ForemostJour-
neyArrival, resp. ForemostTemporalPathArrival, problem. This helps
modelling both ground traffic [5] and TCP/IP transmission [10], where a vehi-
cle or a TCP/IP package need to be at successive checkpoints in increasing
arrival dates. Like in the static case, there is no need here to make a distinction
between journeys and temporal paths because removing from any foremost jour-
ney a cycle around an intermediary vertex does not modify the arrival date at
its final destination. Furthermore, prefix preservation can also be retrieved for
such journeys after a topological sort over the vertices [1]. From that point, the
Dijkstra or Bellman-Ford approach can be extended to compute a foremost jour-
ney in polynomial time. Prefix preservation also plays a crucial role in obtaining
algorithmic solutions for other path problems in temporal graphs [2,9].

In addition to the timely increasing property, a stronger realizability condi-
tion is to also have non-stop transit, that is, we also have the inequality the other
way around di+1 ≤ di + c(di, vi, vi+1) for every 1 < i ≤ p. Here, c(di, vi, vi+1)
represents exactly the time it takes for sailing from one vertex to another, where
the journey must continue without delays. This helps dealing with physical con-
straints when the traversal is performed by an aircraft or a boat [6]: while a
TCP/IP package can be retained at a vertex for an unlimited delay, an aircraft
can not perform a stationary flight at a vertex waiting for a better wind con-
dition. In the present paper, we address the slightly more general condition of
(α, β)-transit which allows for di+1 to depart within a time window, that is,
di + c(di, vi, vi+1) + α(vi+1) ≤ di+1 ≤ di + c(di, vi, vi+1) + β(vi+1) for every
1 < i ≤ p. This helps modeling disease spreading where an infection is supposed
not to stay on any infected individual vi+1 for more than β(vi+1) = 7 days.
With α being constantly equal to 0 and β constantly equal to 7 days, solving
the corresponding ForemostJourneyArrival under (α, β)-transit would let
us know if the destination vertex would be at risk of contamination whenever
the source vertex is infected.

On the theoretical side, not only ForemostJourneyArrival and Fore-
mostTemporalPathArrival strictly differ under (α, β)-transit, but it is also
unclear how to retrieve the prefix preservation property, as the topological sort
approach does not seem to give satisfying results. It is even more unfortunate
that ForemostTemporalPathArrival under (α, β)-transit is NP -hard [3].
The situation is better for ForemostJourneyArrival, where to the best of
our knowledge, it can be solved in O(n+m logm) time under (α, β)-transit, with
n being the number of vertices and m the number of dated edges in the input
temporal graph following a recent result in Ref. [8]. Therein, the main idea is
to slice the input temporal graph into graphs Gd containing arcs of the input
temporal graph dated with d, plus some well selected arcs with arrival date equal
to d. Then, by sliding the value of d over the time dimension, one can decompose
the original problem into a computation of journeys ending before d and what

Foremost Non-stop Journey Arrival in Linear Time 285

will be remaining. Using a Dijkstra approach to solve the former part, one can
achieve a global O(n+m logm) time solution for ForemostJourneyArrival
under (α, β)-transit, along with a larger class of path-like problems [8].

We present a linear time solution for ForemostJourneyArrival under
(α, β)-transit. Unlike the previous decomposition approach, we focus in reduc-
ing a set of relevant arcs into one arc which achieves the desired foremost journey
arrival date. It is divided into four stages which will be called sequentially. In
a nutshell, we first compute a representation for the arc set of a large gadget
digraph (first two stages), then traverse it (third stage) before a last scan to
filter the output (fourth stage). Considering implementation matters, we devise
the first two stages and the fourth stage using the filter-map-reduce program-
ming paradigm. Additionally, these stages can easily be batch-performed in a
distributed setting. Our third stage computation is a graph traversal and it is
very unclear whether this stage can be parallelized. Nevertheless, we leave open
the question whether the third stage can also be implemented using functional
programming, which would be interesting among other things for reuse matters.

In order to achieve linear time complexity, we cope with the gadget digraph
using an implicit representation. Originally, each vertex of the gadget graph is a
pair (d, u) denoting that it is possible in the input temporal graph to leave u at d
(to any destination). There is an arc from (d, u) to (d′, v) if it is possible to leave
u at d to arrive to v, and leave again v at d′ while fulfilling the (α, β)-transit
condition at v. We show that the gadget graph allows for encoding every infor-
mation we need to solve ForemostJourneyArrival. However, its size is very
large. For every fixed v, we then exploit the total order of the time dimension,
and regroup only relevant values of d′ into disjoint-sets using a restricted version
of disjoint-set data structure [7]. Finally, we show a constant upper bound for
the out-going degree of the leftover implicit representation of the gadget graph,
and use it to prove the global linear time complexity.

Our paper is organised as follows. We formalise in Sect. 2 problem Fore-
mostJourneyArrival under (α, β)-transit. In Sect. 3 we present the main
structures to be computed before solving this problem. We show in Sect. 4 how
to compute all these structures in linear time. In Sect. 5 we close the paper with
concluding remarks and open perspectives for further research.

2 Journey in a Temporal (di)graph

In this paper, digraphs are simple loopless directed graphs. This encompasses
the case of simple loopless undirected graphs, whose formalism is equivalent to
that of symmetric digraphs. We denote V ⊗ V = V × V \ {(v, v) : v ∈ V } for
any finite set V . A temporal digraph is a tuple G = (τ, V,A, c) where:

– τ ∈ N is an integer called the timespan of G. We define interval T = �0, τ −1�
as the set of time instants used in G.

– V is a finite set called the vertex set of G.
– A ⊆ T × V ⊗ V is called the arc set of G.
– c : A → N represents the traversal time of every arc, it is called the cost
function for G.

286 J. Villacis-Llobet et al.

For every arc a = (d, s, t) ∈ A, we denote s(a) = s the source vertex of the
arc, t(a) = t its target vertex, and d(a) = d its departure time. The traversal of
arc a departs from s towards t at departure time d and arrives to t at arrival
time d + c(a).

Remark 1. With this formalism, if a = (d, s, t) belongs to A and c(a) > 1, it is
still not necessarily the case that a′ = (d + 1, s, t) belongs to A. If both a and
a′ belong to A, the formalism allows for c(a) and c(a′) to differ arbitrarily. This
helps modeling the routing condition from s to t according to the moment the
arc is traversed.

We define journeys with waiting time constraints following the formalism
given in [8]. Let s, t ∈ V be two distinct vertices of G. Let α, β : V → N be two
functions representing the minimum and maximum waiting time at every vertex.
An (α, β)-journey from s to t is a sequence of arcs J = (a1, a2, . . . , ap) ∈ Ap,
where s(a1) = s, t(ap) = t, and for every 1 ≤ i < p we have both t(ai) = s(ai+1)
and d(ai) + c(ai) + α(t(ai)) ≤ d(ai+1) ≤ d(ai) + c(ai) + β(t(ai)). For 1 ≤ i < p,
the traversal of arc ai begins from source vertex s(ai) at departure time d(ai), it
takes c(ai) time steps to arrive at target vertex t(ai), where the journey has to
be delayed for at least α(t(ai)) and at most β(t(ai)) time steps before pursuing
with the traversal of arc ai+1. The arrival date of J is defined as d(ap) + c(ap).
A journey is called foremost when its arrival date is minimum.

On input a temporal graph G = (τ, V,A, c) with transit functions (α, β) and
two vertices s, t in G, the problem of computing the minimum value of arrival
date d(ap) + c(ap) taken over every (α, β)-journey J = (a1, a2, . . . , ap) from s
to t is called the ForemostJourneyArrival under (α, β)-transit problem.
When both α and β are constantly equal to 0, such a (0, 0)-journey J is called
a non-stop journey. Figure 1 exemplifies such journeys.

Fig. 1. A temporal digraph, the labels on the arcs denote the time instants where the
arcs are active. If the cost function is uniformly unitary, then the following journey
from A to E is foremost: A

1→ B
3→ E, while the journey A

1→ B
2→ C

3→ D
4→ E is

the foremost (0, 0)-journey, also known as non-stop.

3 From Journey to Time Set

In this section we prepare the way for solving ForemostJourneyArrival
under (α, β)-transit. Lemma 1 below is crucial because it helps us reduce a

Foremost Non-stop Journey Arrival in Linear Time 287

path-like problem down to a set problem. Then, Lemmas 2 and 4 introduce the
structures that will be used in next Sect. 4 to solve ForemostJourneyArrival
under (α, β)-transit. For the sake of clarity, the time complexity which will be
given in both Lemmas 2 and 4 is inefficient. In the next section, we depict
optimised replacements for these steps, reducing the time complexity down to
linear.

Let G = (τ, V,A, c) be a temporal digraph. Let α, β : V → N be two func-
tions representing the minimum and maximum waiting time constraints. For
any source vertex s ∈ V , we define the set of (α, β)-reachable arcs from s as
R(s) = {ap ∈ A : ∃ (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap ∧ s(a1) = s}.
We show below how to compute, from the supposed knowledge of set R(s), the
minimum arrival date of an (α, β)-journey from s to any target vertex t.

Lemma 1 (Reachable arcs). On input a temporal digraph G, a pair of source
and target vertices s, t in G, two constraint functions α, β : V → N, and the
above defined (α, β)-reachable arc set R(s), it is possible to output in linear time
the minimum arrival date of an (α, β)-journey from s to t. More precisely, the
minimum arrival date is equal to min{d(a) + c(a) : a ∈ R(s) ∧ t(a) = t}, which
can be reduced from R(s) in linear time. Moreover, the reduction can be done
using a functional programming approach as showed in Remark 2 below.

Proof. We first address the case when there exists an (α, β)-journey from s to
t. Let mad be the minimum arrival date of such a journey. Let m = min{d(a) +
c(a) : a ∈ R(s) ∧ t(a) = t}. We claim that m = mad.

Indeed, let J = (a1, a2, . . . , ap) ∈ Ap be an (α, β)-journey from s to t min-
imising the arrival date. By definition, we firstly have that mad is the arrival
date of J , that is, mad = d(ap) + c(ap). Besides, it also follows from definition
of J that t(ap) = t. Moreover, J is also such that s(a1) = s, therefore, we have
from definition of R(s) that ap ∈ R(s). Now, we have both ap ∈ R(s)∧ t(ap) = t,
therefore, by definition of m we have that m ≤ d(ap) + c(ap). Combining with
earlier proven mad = d(ap) + c(ap) we obtain m ≤ mad.

Conversely, let a ∈ R(s) such that t(a) = t. We claim that mad ≤ d(a)+c(a).
By definition of a ∈ R(s), there exists an (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap

such that s(a1) = s and ap = a. Combining with t(a) = t we have that J is
exactly an (α, β)-journey from s to t. Since the arrival date of J is d(a) + c(a),
we have that mad ≤ d(a) + c(a) because mad is the minimal arrival date taken
over all (α, β)-journeys from s to t. We have proven that mad ≤ d(a) + c(a) for
every a ∈ R(s) ∧ t(a) = t. Hence, mad ≤ m.

All in all we have just proved that m = mad. Therefore it is sufficient to
compute m in order to output the value of mad. Finally, computing m from the
input of R(s), vertex t, and cost function c can be done in linear time by any
standard streaming process.

When there is no (α, β)-journey from s to t then mad = ∞. In this case R(s)
contains no arc a such that t(a) = t and therefore m would have the value ∞
after performing the map-reduce (as no arc satisfies both properties needed to
be considered a suitable value for m). Therefore the result still holds for this
particular case.
�

288 J. Villacis-Llobet et al.

Remark 2. Lemma 1 is proper to temporal digraphs in the sense that we can
from input G = (τ, V,A, c) filter the set A to a smaller subset R(s) ⊆ A, then
filter further to the set of arcs whose target vertex is t, and finally reduce the
stream to find the minimum value d(a)+c(a). As a comparison no shortest path
algorithm on static (di)graphs allows for using filter-map-reduce programming
in such a straightforward manner.

We now introduce an intermediary step to compute the arc set R(s). We
define the set of valid transit departures in an (α, β)-journey from s as D(s) =
{(d, v) ∈ T × V : ∃ (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap, such that s(a1) =
s ∧ s(ap) = v ∧ d(ap) = d}.

Lemma 2 (Valid transit departures). On input a temporal digraph G, a
pair of source and target vertices s, t in G, two constraint functions α, β : V → N,
and the above defined set D(s) of valid transit departures in an (α, β)-journey
from s, it is possible to output in polynomial time the set R(s) of (α, β)-reachable
arcs from s.

Proof. A naive way to output R(s) from D(s) is as follows. We initialize a
boolean table R indexed by the elements of A. For any a ∈ A with a = (d, u, v),
we scan D(s) and check if (d, u) ∈ D(s). If this is the case we set R[a] to true.
At the end of the process, we scan R and output every index a where R[a] has
value true.
�

In the sequel we show how to compute in polynomial time the set D(s) from
the input of G. We first define a static digraph associated to temporal digraph
G, then we perform a graph search on the thus defined static graph.

The (α, β)-transit departure digraph of G, that we call GD = (VD, AD), is
defined as follows. First, VD = {(d, v) : ∃a ∈ A, s(a) = v ∧ d(a) = d} is the set
of all possible transit departures, including those not necessarily valid w.r.t. any
(α, β)-journey from s. In other words, D(s) ⊆ VD, however, VD could be much
larger than D(s). Then, for any pair of vertices x = (d, u) and y = (d′, v) of
VD, we define (x, y) ∈ AD if and only if we have both that a = (d, u, v) belongs
to A and that d + c(a) + α(v) ≤ d′ ≤ d + c(a) + β(v). Figure 2 exemplifies the
construction of a transit departure digraph.

We capture in the following property our main computational purposes of
defining GD. It gives a reasonable upper bound for both |VD| and |AD|.
Property 1. Let G = (τ, V,A, c) be a temporal digraph, α, β : V → N two func-
tions representing the minimum and maximum waiting time constraints, and
GD = (VD, AD) the (α, β)-transit departure digraph of G. Let γ = max{β(v) −
α(v) + 1 : v ∈ V }. Then, |VD| ≤ |A| and |AD| ≤ γ × |A|.
Proof. Note that two naive upper bounds for GD exist: |VD| ≤ τ × |V | and
|AD| = O(|VD|2). Furthermore, we can also note by definition VD = {(d, v) :
∃a ∈ A, s(a) = v ∧ d(a) = d} that |VD| ≤ |A| because there will be at most
one vertex in VD for every arc in A. As a side note, it could be the case that
|VD| < |A|: if we have (d, v, w) ∈ A and (d, v, w′) ∈ A for distinct vertices
w �= w′.

Foremost Non-stop Journey Arrival in Linear Time 289

Fig. 2. The corresponding static representation GD of the temporal graph in Fig. 1
taking 0 as minimum waiting time, 2 as the maximum waiting time and a traversal
time of 1 for all arcs.

Now, let us examine (x, y) ∈ AD with x = (d, u) and y = (d′, v). By definition,
a = (d, u, v) must belong to A, and d′ must satisfy the waiting time constraints
d+c(a)+α(v) ≤ d′ ≤ d+c(a)+β(v). Let us define function f : AD → A×�0, γ−1�
as f((d, u), (d′, v)) = (d, u, v, d′ − d − c(a)). Then, we can check that f is a well-
defined injective function, and therefore, deduce that |AD| ≤ γ × |A|.
�

Essentially, the size of thus defined graph GD is not far from linear in |A|. We
now would like to extract from VD all vertices belonging to D(s). By definition,
we have the following closure property: (x, y) ∈ AD ∧x ∈ D(s) implies y ∈ D(s).
Hence, D(s) encompasses the set of vertices in GD reachable from any vertex
of the set VD ∩ {(d, s) : 0 ≤ d < τ}. Moreover, we show in the following lemma
that D(s) is exactly the latter set.

Lemma 3. Let G = (τ, V,A, c) be a temporal digraph, α, β : V → N two func-
tions representing the minimum and maximum waiting time constraints, s ∈ V ,
and D(s) the set of valid transit departures in an (α, β)-journey from s. Let
GD = (VD, AD) be the (α, β)-transit departure digraph of G. Then, D(s) is
exactly the set of vertices in GD which are reachable from a (directed) path
beginning at any vertex of the set VD ∩ {(d, s) : 0 ≤ d < τ}.
Proof. We denote by RD(s) the set of vertices in GD which are reachable from
a (directed) path beginning at any vertex of the set VD ∩ {(d, s) : 0 ≤ d < τ}.
By definition of GD, we have the following closure property: if (x, y) ∈ AD and
x ∈ D(s) then y ∈ D(s). Besides, whenever (d, s) ∈ VD for any 0 ≤ d < τ ,
that is, whenever there exists a ∈ A such that s(a) = s and d(a) = d, we also
have that (d, s) ∈ D(s) by using the single-arc (α, β)-journey J = (a) in the
definition of D(s). Now, we use the above mentioned closure property in order
to deduce that RD(s) ⊆ D(s). Hence, the only thing left for us to show is that
D(s) ⊆ RD(s).

Let (d, v) ∈ D(s). We would like to prove that (d, v) ∈ RD(s). By definition of
D(s), there exists an (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap such that s(a1) =
s, s(ap) = v, and d(ap) = d. Let us consider Jq = (a1, a2, . . . , aq), for any
1 ≤ q ≤ p. For convenience, we denote dq = d(aq), vq = s(aq), and xq = (dq, vq).
Since aq ∈ A we have from definition of VD that xq ∈ VD, for any 1 ≤ q ≤ p.

290 J. Villacis-Llobet et al.

We claim that (x1, x2, . . . , xp) is a directed walk in the static digraph GD, with
x1 ∈ VD ∩ {(d, s) : 0 ≤ d < τ} and xp = (d, v).

Indeed, by definition of D(s) we have for any 1 ≤ q ≤ p that (dq, vq) ∈ D(s).
When q = 1, this implies v1 = s, and therefore x1 = (d1, v1) = (d1, s) belongs to
VD ∩{(d, s) : 0 ≤ d < τ}. Since the original J is an (α, β)-journey, it must satisfy
the waiting time constraints, that is, we have dq + c(aq) + α(t(aq)) ≤ dq+1 ≤
dq + c(aq)+β(t(aq)), for every 1 ≤ q < p. Besides, since t(aq) = s(aq+1) = vq+1,
we have both (dq, vq, vq+1) = aq ∈ A and dq + c(aq) + α(vq+1) ≤ dq+1 ≤
dq + c(aq) + β(vq+1). This implies (xq, xq+1) belongs to AD for every 1 ≤ q < p.
In other words, (x1, x2, . . . , xp) is a directed walk in GD. Since dp = d(ap) = d
and sp = s(ap) = v, we also have xp = (d, v). We have shown a directed walk
in GD beginning from vertex x1 ∈ VD ∩ {(d, s) : 0 ≤ d < τ}, and ending at
vertex xp = (d, v). This also implies there exists a directed path in GD from x1

to xp = (d, v). Hence, (d, v) ∈ RD(s). We have proved for every (d, v) ∈ D(s)
that (d, v) ∈ RD(s). In other words, D(s) ⊆ RD(s).
�
Lemma 4. On input a temporal digraph G, a source vertex s in G, two con-
straint functions α, β : V → N, it is possible to output in polynomial time the
set D(s) of valid transit departures in an (α, β)-journey from s.

Proof. Let G = (τ, V,A, c), and GD = (VD, AD) its (α, β)-transit departure
digraph. By Lemma 3, D(s) can be computed by a graph search on GD, that
is, in O(|VD|+ |AD|) time from the knowledge of GD. From Property 1, the size
of VD and AD is polynomial in |A|, α, and β. Hence, it is straightforward to
construct VD in O(τ × |V | × |A|), then AD in O(|VD|2 × |A|).
�

All in all, we presented in Lemmas 1, 2 and 4 polynomial procedures for
computing the minimum arrival date of an (α, β)-journey from s to t. Whereas
the procedure presented in Lemma 1 requires linear time, the other two might
take more time to terminate. The total time complexity is significantly worse
than the recently known O(|V | + |A| log |A|) algorithm presented in [8]. In the
next section we present an improvement in the way we construct the graph GD

and traverse it in linear time in |A|.

4 Foremost Non-stop Journey Arrival in Linear Time

In this section we show how to solve in linear time ForemostJourneyArrival
under (α, β)-transit from a source vertex s to a target vertex t in a temporal
digraph G = (τ, V,A, c). This encompass the case of foremost non-stop journeys
when both α and β are constantly equal to 0. We do this by an implicit traversal
of the (α, β)-transit departure digraph GD = (VD, AD) as defined in the previous
section. We suppose the three functions c, α, β are given as tables, so that the
cost for accessing c(a) for every a ∈ A, and the cost for accessing α(v) and β(v)
for every v ∈ V are constant.

Our algorithm is composed of four main stages, each one terminates in O(τ +
|V | + |A|) time: first we construct VD; then we construct a subset of AD of

Foremost Non-stop Journey Arrival in Linear Time 291

representative arcs whose number is bounded by 2× |A|; in a third stage we use
the previously constructed structures to compute an implicit representation of
the set D(s) defined in the previous section; finally, we use this information and
construct the set R(s) defined in Lemma 1, and result as a byproduct in the
earliest arrival date of an (α, β)-journey from s to t.

For use in Algorithm 1, we perform two linear bucket sorting processes (a.k.a.
radix sorting) as follows. We first initialize two arrays containing τ buckets each.
Each bucket is to contain a list of arcs initially empty. Then, we stream through
A, where for every arc a ∈ A we: first append a to the list present in the bucket
numbered d(a) in the first array of buckets; second append a to the list present
in the bucket numbered d(a)+ c(a) in the second array of buckets. For later use,
we also keep a variable counting the number of elements in every bucket. After
the streaming process, we have filled two arrays of τ buckets each, where every
bucket contains a list of arcs, as well as the number of arcs in the bucket. We now
iterate over the buckets by increasing order and concatenate all the two times τ
lists consecutively, resulting in a list of arcs sorted in increasing departure time
from source vertex, and a list of arcs sorted in increasing arrival time to target
vertex. Since the number of elements in each list is known, each concatenation
can be done in constant time. The whole procedure is hence in O(τ + |A|).

From now on we suppose A is given twice: sorted by increasing departure
time from source vertex, and sorted by increasing arrival time to target vertex.

Algorithm 1. Construction of VD, the vertex set of GD.
1: procedure GenerateVertices(G = (τ, V, A, c), α, β)
2: Departures← ∅ � Set containing all the new vertices in GD

3: Initialize table VDep with |V | entries � Same set, fast track for later use
4: Arrivals← ∅
5: Initialize table VArr with |V | entries
6: for each vertex v ∈ V do
7: VDep[v]← ∅
8: VArr[v]← ∅
9: for each arc a ∈ A in increasing departure time do

10: Append (d(a), s(a)) to Departures if not already present
11: Append d(a) to VDep[s(a)] if not already present
12: for each arc a ∈ A in increasing arrival time do
13: Append (d(a) + c(a), t(a)) to Arrivals if not already present
14: Append d(a) + c(a) to VArr[t(a)] if not already present
15: Either output VDep or Departures as the vertex set VD

16: For later use in Algorithm 2, also output VArr.

Stage 1: Construction of VD. We stream through every element a ∈ A in
increasing departure time and append (d(a), s(a)) to a Departures list. Sim-
ilarly, we stream through every element a ∈ A in increasing arrival time and
append (d(a) + c(a), t(a)) to an Arrivals list. By definition, the vertex set

292 J. Villacis-Llobet et al.

VD contains exactly the elements present in the Departures list. Furthermore,
we will organise VD in the following manner, for later use in Stage 2. Let
V = {v1, v2, . . . , V|V |}. We create |V | buckets numbered by these vi’s, each
bucket is to contain a list of departure times initially empty. When stream-
ing through every element a ∈ A, we also append d(a) to the list present in the
bucket numbered s(a). After the streaming process, we keep the |V | lists in a
table named VDep, indexed by the vi’s. Thus, for every vertex v ∈ V , reading
VDep[v] gives a quick access to all the departure times d associated to that ver-
tex, i.e. where (d, v) ∈ VD. Since A is sorted by increasing departure time, it is
also the case with list Departures, as well as with list VDep[v], for every v ∈ V .
For later use in Stage 2, we also organise Arrivals into a table named VArr, in
a similar way. In reality, we do not use Departures and Arrivals in the rest of
the manuscript. However, we keep them in the discussion for more clarity. We
capture the pseudo-code in Algorithm 1, and result in the following lemma.

Lemma 5. On input a temporal digraph G = (τ, V,A, c) and two constraint
functions α, β : V → N, Algorithm 1 correctly generates in time O(|V |+ |A|) all
the vertices of GD, the (α, β)-transit departure graph of G.

Proof. The algorithm’s correctness follows from definition. Lines 3,5,6–8 take
O(|V |) times while lines 9–14 take O(|A|) time.
�
Stage 2: Implicit representation of AD in O(|A|) space. If β(v) − α(v) = 1 for
every v ∈ V , then a similar argument as in the proof of Property 1 implies
|AD| ≤ 2× |A|. Indeed, every arc (d, u, v) = a ∈ A gives rise to at most two arcs
in GD: one from (d, u) to (d′, v) with d′ = d + c(a) + α(v) if the latter vertex
(d′, v) belongs to VD; one from (d, u) to (d′, v) with d′ = d + c(a) + β(v) if the
latter vertex (d′, v) belongs to VD.

Now if β(v)−α(v) is an arbitrary integer, we remark the following organisa-
tion of AD. Consider set D′ = {d′ : ((d, u), (d′, v)) ∈ AD}, then if both d′

1 ≤ d′
3

belong to D′ and d′
2 is such that we have both d′

1 ≤ d′
2 ≤ d′

3 and (d′
2, v) ∈ VD,

then d′
2 belong to D′. Moreover, in the (ordered) list VDep[v], the elements of D′

appear consecutively. Therefore, in order to represent all arcs of AD of the form
((d, u), (d′, v)), for every given (d, u, v) = a ∈ A, we only need to store the arc
from (d, u) to (d′

min, v) and the arc from (d, u) to (d′
max, v), where d′

min = minD′

and d′
max = maxD′. All the other arcs of the form ((d, u), (d′, v)) can be obtained

by enumerating from VDep[v] all d′ such that d′
min ≤ d′ ≤ d′

max.
In order to implement this idea, we define DPmin and DPmax to be two

tables, indexed by the elements of A. For every (d, u, v) = a ∈ A, we define
DPmin[(d, u, v)] = min{d′ : ((d, u), (d′, v)) ∈ AD} and DPmax[(d, u, v)] =
max{d′ : ((d, u), (d′, v)) ∈ AD}. Then, we will use in Stage 3 and Stage 4 the
input of VDep, DPmin, and DPmax as an implicit representation of GD = (VD, AD).

In order to avoid computing DPmin and DPmax in quadratic time in |A|,
our main trick is to break down the total transit time cost into two parts: the
traversal time represented by function c : A → N, and the delay time represented
by functions α, β : V → N. For this, we build auxiliary tables FirstTransit
and LastTransit with the help of Algorithm 1 table VArr. We capture the

Foremost Non-stop Journey Arrival in Linear Time 293

pseudo-code for first computing the auxiliary tables, then DPmin and DPmax in
Algorithm 2, and result in the following lemma.

Algorithm 2. Implicit representation of GD = (VD, AD) by VDep, DPmin, and
DPmax.
1: procedure GenerateTables(G = (τ, V, A, c), α, β)
2: Call Algorithm 1 GenerateVertices(G, α, β) and obtain VDep and VArr
3: Initialize table FirstTransit with |V | entries
4: Initialize table LastTransit with |V | entries
5: for each vertex v ∈ V do � Find for each arrival to v the first/last departure
6: darr ← first element of VArr[v]
7: Initialize table FirstTransit[v] with |VArr[v]| entries
8: d′

first ← first element of VDep[v]
9: while darr is still an element of VArr[v] do

10: while ¬(darr + α(v) ≤ d′
first) do

11: d′
first ← next element after d′

first in VDep[v]

12: FirstTransit[v][darr]← d′
first

13: darr ← next element after darr in VArr[v]
14: darr ← last element of VArr[v]
15: Initialize table LastTransit[v] with |VArr[v]| entries
16: d′

last ← last element of VDep[v]
17: while darr is still an element of VArr[v] do
18: while ¬(d′

last ≤ darr + β(v)) do
19: d′

last ← previous element before d′
last in VDep[v]

20: LastTransit[v][darr]← d′
last

21: darr ← previous element before darr in VArr[v]
22: Initialize table DPmin with |A| entries
23: Initialize table DPmax with |A| entries
24: for each arc (d, u, v) = a ∈ A do � Take c into account: darr = d + c(a)
25: DPmin[(d, u, v)]← FirstTransit[v][d + c(a)]
26: DPmax[(d, u, v)]← LastTransit[v][d + c(a)]
27: Output VDep, DPmin and DPmax as implicit representation of GD.

Lemma 6. On input a temporal digraph G = (τ, V,A, c) and two constraint
functions α, β : V → N, Algorithm 2 outputs in time O(|V | + |A|) three tables
called VDep, DPmin, and DPmax. From these tables one can generate GD, the
(α, β)-transit departure graph of G, in linear time (in the size of the input G
and the output GD).

Proof. It is a standard exercise to prove that Algorithm 2 correctly com-
putes DPmin[(d, u, v)] = min{d′ : ((d, u), (d′, v)) ∈ AD} and DPmax[(d, u, v)] =
max{d′ : ((d, u), (d′, v)) ∈ AD}, e.g. by induction on the total size of VArr.

294 J. Villacis-Llobet et al.

Fig. 3. Data structure used in Algorithm 2 for each vertex v ∈ V , where we suppose
α(v) = 0 and β(v) = 2. In this case it is done for the node c in the temporal graph of
Fig. 1. List VArr[v] is represented by the “Arrivals” row on top, it contains all times at
which a path arrives to node c. List VDep[v] is represented by the “Departures” row on
the bottom, it contains all times at which a path departs from node c. For every element
darr in VArr[v], its associated value FirstTransit[v][darr] in VDep[v] is pointed to by
the min arrow departing from darr, while its associated value LastTransit[v][darr] in
VDep[v] is pointed to by the max arrow.

For complexity issues, the main point lies in the chasing while loops which
happens twice, once at lines 9–13, and the other time at lines 17–21. Here, vertex
v ∈ V is already fixed. In the first case, lines 9–13, variables darr and d′

first

can only move forward in lists VArr[v] and VDep[v], respectively. Accordingly,
at the end of the process lines 9–13, every entry in VArr[v] and VDep[v] are
visited exactly once. The case with lines 17–21 is similar, where variables darr
and d′

last can only move backward. Figure 3 exemplifies for every entry of table
VArr[v][darr] the position of FirstTransit[v][darr] and LastTransit[v][darr] in
VDep[v].

Summing up over every vertex v ∈ V , at the end of the process lines 5–21,
every elements in VArr and VDep are visited exactly twice. Since the total size
of VArr is at most |A|, and so is the total size of VDep, cf. Property 1, Lemma 5
and Algorithm 1, we deduce that the total contribution of lines 9–13 and 17–21
to the for loop lines 5–21 is O(|A|). The contribution of lines 7 and 15 is O(|A|),
and that of lines 6,8,14,16 is O(|V |). To complete the complexity analysis for
Algorithm 2, we note that line 2 takes O(|V | + |A|) time (Lemma 5), lines 3–4
take O(|V |) time, and lines 23–26 take O(|A|) times.

In order to generate VD, we scan over all elements of VDep. The enumeration
of AD can proceed as follows. For every arc (d, u, v) = a ∈ A, we scan from the
element DPmin[(d, u, v)] of VDep[v] to its element equal to DPmax[(d, u, v)] and
enumerate all d′ in between, generating an arc ((d, u), (d′, v)) for each of them.
By definition of DPmin and DPmax, we have AD = {((d, u), (d′, v)) : (d, u, v) ∈
A ∧ (d′, v) ∈ VD ∧ DPmin[(d,u,v)] ≤ d′ ≤ DPmax[(d,u,v)]}.
�
Stage 3: Marking all vertices in VD whether it belongs to D(s). After the first two
stages, every vertex of GD = (VD, AD) is constructed, as well as an implicit rep-
resentation of the arcs of GD. We now need to visit the vertices of GD and mark
them according to Lemma 3. Because the representation does not include all arcs
of GD, solving this step using standard graph searches such as Breadth-First

Foremost Non-stop Journey Arrival in Linear Time 295

Search seems difficult. More precisely, our implicit representation only stores
in entries DPmin[(a)] and DPmax[(a)] the earliest and the latest departure dates
for a valid transit at vertex v = t(a) w.r.t. the (α, β)-transit condition. Let us
assume (d, u) ∈ D(s) for d = d(a) and u = s(a), and let us consider v = t(a):
if we do test whether (d′, v) belongs to D(s) by naively scanning all potential
values of d′ s.t. DPmin[(a)] ≤ d′ ≤ DPmax[(a)], then the overall complexity will
have a factor depending on maxv∈V |VArr[v]|, which is a sharp upper bound for
DPmax[(a)]−DPmin[(a)]. This could lead to a non-linear complexity in the worst
case.

Algorithm 3. Traverse the graph GD

1: procedure Traverse(G, α, β, s)
2: Call Algorithm 2 GenerateTables(G, α, β) and obtain VDep, DPmin and DPmax
3: � We refer to VD as the concatenation of all entries in VDep
4: Q ← a queue initially with all vertices in VDep[s]
5: Traversed ← a list that stores all vertices that are visited during the traversal
6: for each vertex u ∈ V do
7: Make disjoint-set Du � With .join(d, d′) for union and .comp(d) for find
8: for each vertex (d, u) ∈ VD do
9: Bu[d] = −1 � Values in Bu will represent the date when vertex

10: � (d, u) ∈ VD was visited before, −1 represents false
11: while Q is not empty do
12: (d, u) ← Q.pop()
13: for each a = (d, u, v) ∈ A and d′ = DPmin[(a)] do � Implicit iteration
14: � over ((d, u), (d′, v)) ∈ AD

15: d′
max ← DPmax[(d, u, v)]

16: d′
now ← d′

17: d′
prev ← d′

18: while d′
now ≤ d′

max do
19: visited = Bv[Dv.comp(d′

now)]
20: temp ← max(Bv[Dv.comp(d′

prev)], Bv[Dv.comp(d′
now)])

21: Dv.join(d
′
now, d′

prev)
22: Bv[Dv.comp(d′

now)] ← temp
23: if visited �= −1 then � Value in Bv states if the vertex was visited
24: d′

now ← Bv[Dv.comp(d′
now)] � Jump to the vertex with the

25: � largest time in that component
26: else
27: Q.push((d′

now, v))
28: Traversed.append((d′

now, v))

29: Bv[Dv.comp(d′
now)] = max(d′

now, Bv[Dv.comp(d′
now)])

30: d′
prev ← d′

now

31: (d′
now, v) ← next vertex after (d′

now, v) in VArr[v]

To achieve linear runtime, we use two main ideas. First, we use disjoint-set
data structure to dynamically join the possible values of d′ whenever we do
the test whether (d′, v) belongs to D(s), for every v ∈ V . Generally, the use of

296 J. Villacis-Llobet et al.

disjoint-set data structure leads to a quasi-linear time complexity. In our case,
note that the possible values of d′ for every v ∈ V are in reality values in VArr[v],
Furthermore, already after calling Algorithm 1 the original values present in
VArr[v] are both known and totally ordered. Therefore, a faster case of disjoint-
set data structure [7] can be used, with O(1) amortised cost per operation.
Hence, there is only a total contribution in time O(

∑
v∈V |VArr[v]|) = O(|A|)

for disjoint-set operations. The second idea is captured in the proof of Lemma 9.
Roughly, we show with Lemma 9 that after joining dynamically the values of d′

while testing whether (d′, v) belongs to D(s), we can control the out-degree of
what is leftover in our implicit representation of GD.

We formalize Stage 3 of our computation in Algorithm 3. Roughly, we ini-
tialize a visiting queue with all vertices in VD associated to s, that is, of the
form (d, s) for any d. At each iteration we remove the top element (d, u) of the
queue, which is considered as a vertex of GD. In this iteration, we would like
to follow all arcs that the vertex (d, u) might have in GD. For this purpose
we make an implicit iteration: by iterating over every arc a = (d, u, v) ∈ A and
every possible value of d′ s.t. DPmin[(a)] ≤ d′ ≤ DPmax[(a)], as explained in Algo-
rithm 2 and Lemma 6. However, to control the global runtime, we only start with
d′
now ← d′ = DPmin[(a)], and our plan is to check whether (d′

now, v) belongs to
D(s) while dynamically joining all previously visited Dv.comp(d′

now), for every
possible value of d′

now between d′ = DPmin[(a)] and d′
max = DPmax[(a)]. These

values are read from VArr[v].
More precisely, for each unvisited vertex visited in this process the algorithm

marks it as visited, adds it to the queue, joins the components for it and the
previous vertex (itself in case it is the first one) in the disjoint-set Dv, sets as d′

max

the reference to the largest visited vertex for its component and continue to the
next vertex in increasing order of time in VArr[v]. When the algorithm reaches
a vertex previously visited it goes to Dv and gets the identifier of the component
it belongs to, jumps to the vertex with the maximum time that belongs to the
component and continues to the next vertex. In total, the algorithm will visit the
number of unvisited arcs in between d′ and d′

max plus at most 3 previously visited
vertices. The previous value 3 comes from the fact that when the algorithm gets
for the first time to a visited vertex it will follow the link to the visited vertex with
the largest time value in that component, then it continues iterating vertices until
it arrives once more to a visited vertex and follows the link again. The link of the
second visited vertex necessarily has to lead to a vertex with a time component
at least as large as d′

max, and then the visiting process for this particular arc has
finished. This is proven in Lemma 9. From the previous analysis it follows that
over the whole traversal the algorithm will make at most 3|A|+ |A| steps, where
the first term comes from the bound obtained earlier and the second term is the
maximum number of vertices in the graph.

Figure 4 exemplifies Algorithm 3. Therein, the upper and lower arrows indi-
cate the links towards d′ and d′

max at each time. Eventually, all vertices in
between become part of the same component, which is represented by the same
color, with the vertex in darker shade indicates the component with the largest

Foremost Non-stop Journey Arrival in Linear Time 297

time. As we move from left to right we can see the progression of the components
as they are visited. On the leftmost column of the picture we can see the compo-
nent derived from a path arriving to b whose minimum departure time is 3 and
whose maximum departure time is 6 (denoted by the top and bottom arrows
pointing to these nodes). As there were no previous components on the disjoint-
set data structure at this iteration we create a component that contains all nodes
within those times. On the second column we see the resulting components after
a path with minimum departure time 8 and maximum departure time 9. As this
times do not intersect with those of the previous components we get two disjoint
components. The same process can be seen in the third column, where the red
component is expanded to include the node (7, b). On the last column we get the
result of processing a path that has minimum departure time from b equal to 5
and maximum departure time from b equal to 8. The nodes comprised between
these times contain elements from both sets in the disjoint-set data structure.
Therefore they are merged, resulting in a single set of all vertices of the form
(d′, b) in VD.

Fig. 4. The process of visiting all vertices in VD associated with a single vertex b in V .

We recall that for each arc a = (d, u, v) ∈ A a vertex (d, u) ∈ VD will have
arcs towards all vertices in GD associated to vertex v between time d′ and d′

max.
However, our representation of GD does not include all these arcs: only (d′, v)
and (d′

max, v) are explicit. We will call all of these vertices associated to the same
vertex v ∈ V to which (d, u) has an arc in GD cousins with respect to (d, u).
This is defined formally in the following definition.

Definition 1. Two vertices (d′
1, v) and (d′

2, v) ∈ VD associated to the same
vertex v ∈ V are cousins with respect to a vertex (d, u) ∈ VD if arc (d, u, v) ∈ A
exists, d+ c((d, u, v)) + α(v) ≤ d′

1 ≤ d+ c((d, u, v)) + β(v) and d+ c((d, u, v)) +
α(v) ≤ d′

2 ≤ d + c((d, u, v)) + β(v).

298 J. Villacis-Llobet et al.

Lemma 7. There does not exist a vertex (d′
2, v) ∈ VD such that there exist two

vertices (d′
1, v) and (d′

3, v) ∈ VD both associated to the same vertex v ∈ V and
Dv.comp(d′

1) = Dv.comp(d′
3) �= Dv.comp(d′

2) and d′
1 < d′

2 < d′
3.

Proof. The only place where components are joined in the disjoint-set in Algo-
rithm 3 is in line 21. As can be seen in this line of the algorithm, only components
that are next to each other in the order given by VArr[v] can be merged. Lets
suppose that d′

1 and d′
3 are part of the same component. As at the beginning all

vertices belong to distinct components there should have been a moment when
the components of d′

1 and d′
3 were merged. This implies that the components

were next to each other and therefore there cannot be a value d′
2 in between

these two components because otherwise the merge operation would not have
been possible. This leads to the fact that all members of the same component
are sequential in the order given by VArr[v] and proves the lemma.
�
Lemma 8. All vertices that are cousins with respect to a vertex (d, u) will be
in the same component after (d, u) has been popped from the queue and its arcs
traversed in Algorithm 3.

Proof. Let C denote the component of all vertices that are cousins with respect
to vertex (d, u). From the definition of the cousin relationship it is known that
all vertices in C are sequential. After (d, u) has been popped from Q and the
processing of all vertices begins through the while loop located in line 18 the
algorithm starts processing the vertex with the smallest time d′ and continues
all the way until the vertex with the largest time d′

max each time going to the
next vertex after the current component. The following will analyze each case
the algorithm might encounter

– Reaches a previously unvisited vertex: The algorithm merges it with the previ-
ous component, by Lemma 7 all vertices in this new component are sequential.

– Reaches a previously visited vertex: The algorithm merges this component
with the previous one and moves to the last visited vertex of this component.
By Lemma 7 both merged components are sequential and therefore their
merge produces a component with no gap.

Therefore all merged vertices will be sequential and because the process visits
all components between d′ and d′

max all previously existing components in that
range will become one after the end of the process.
�
Lemma 9. For each arc (d, u, v) ∈ A Algorithm 3 will visit e(d,u,v) + 4 vertices
where

∑
a∈A ea = O(|A|).

Proof. From Algorithm 2, each arc in (d, u, v) ∈ A leads to two explicit arcs
((d, u), (d′, v)) and ((d, u), (d′

max, v)) of GD, along with several implicit arcs of
GD, where d′ = DPmin[(d, u, v)] and d′

max = DPmax[(d, u, v)]. After following
one explicit arc it is possible to visit several other vertices by moving through
the ordered list of vertices VArr created in Algorithm 1. From the inner while
loop in line 18 of the algorithm it can be seen that the number of steps that

Foremost Non-stop Journey Arrival in Linear Time 299

Algorithm 3 takes is bounded by the number of vertices visited by each explicit
arc in GD (by the for in line 13). What follows will analyze how many vertices
will be visited in the traversal process, as this will be the number of steps that
Algorithm 3 will perform. This can be seen in lines 18–31 of Algorithm 3 where
for each iteration of the while loop there is a vertex that is processed. Therefore it
is of interest to count the number of these aforementioned loops. The algorithm
will loop until the value of d′

now is greater than that of d′
max. In lines 15–17 d′

now

receives as initial value the minimum time d′ such that the path that contains
(d, u, v) can continue through an outgoing arc from v at time d′, while d′

max

receives as value the maximum at which the journey could continue through an
outgoing arc from v. Both values where calculated in Algorithm 2. When the
algorithm visits a vertex (d′

now, v) there are 2 possibilities, depending on whether
(d′

now, v) has been visited before or not. What follows will analyze both cases. If
the vertex has not been previously visited then it is marked as visited (line 22),
its component is joined with that of the previous visited vertex (line 21) and
the algorithm moves to the successor vertex. In this case the value of e(d,u,v) is
increased by one. In this case vertex (d′

now, v) becomes the largest visited vertex
of the component containing all vertices associated with v with times between
d′ and d′

now as can be deduced from the analysis of Lemma 8.
If the vertex has been visited previously then in line 24 we get the reference to

the largest visited vertex of the component and move to the successor vertex. In
what follows the argument that this can happen at most two times is presented.
This is the same as showing that at most two previously visited components will
be visited. By the definition of disjoint-set it is deduced that vertices in the first
and second components of visited vertices cannot intersect because otherwise
they would be part of the same set. By Lemma 7 it is also known that the vertex
of the second component with the minimum time (let it be denoted by d′′) should
have a time bigger than that of d′ because even if d′ is the last vertex from the
first visited set, vertex (d′′, v) is at least the successor of the last vertex from the
first visited set. Now following the link to the latest vertex of this component
would lead to at least time DPmax[(d′′, u, v)] given that from Lemma 8 it follows
that if this is the first vertex in the component it will have at least enough
vertices to lead to the said time, which because d′′ > d′ should be at least as
big as DPmax[(d′, u, v)] and as such we have at least reached time d′

max and we
finish the loop.
�
Stage 4: Computing R(s) and a foremost (α, β) -journey from s to t. Now that
we have described the 3 main stages of the algorithm, we present them together
in the form of the full procedure in Algorithm 4 and show that it is linear in
Theorem 1.

Theorem 1. On input a temporal digraph G, a pair of source and target vertices
s, t in G, and two constraint functions α, β : V → N, Algorithm 4 computes the
arrival date of a foremost (α, β)-journey from s to t in linear time.

300 J. Villacis-Llobet et al.

Algorithm 4. Foremost (α, β)-journey arrival date in linear time
1: procedure Foremost(G, α, β, s, t)
2: GenerateVertices(G, α, β) � Algorithm 1
3: GenerateTables(G, α, β) � Algorithm 2
4: Traverse(G, α, β, s) � Algorithm 3
5: ArrivalDate = ∞
6: for each arc (d, u, v) in A do
7: if v = t and (d, u) in traversed then
8: ArrivalDate = min(ArrivalDate, d + c((d, u, v)))

9: return ArrivalDate � the time of the foremost journey from s to t

Proof. From Lemmas 5 and 6 it is known that Algorithms 1 and 2 have lin-
ear complexity. All that is left to do is show that Algorithm 3 is linear.
From Lemma 9 it is known that for each unvisited vertex the value of e(d,u,v)
is increased by one, and because there are at most 2|A| vertices in V then∑

a∈A ea ≤ 2|A|. Because each arc in A produces at most one iteration of the for
loop in line 13 of Algorithm 3 then from Lemma 9 it is deduced that the number
of visited vertices over all Algorithm 3 is smaller than |A| + 4|A| and therefore
the number of visited vertices is linear in the size of |A| for Algorithm 3. Now
that the complexity of Algorithms 1, 2 and 3 are linear it follows that Algo-
rithm 4’s complexity is linear as it is a combination of the three aforementioned
algorithms plus an iteration over all arcs in A.
�

5 Conclusion and Perspectives

We addressed the problem of computing in a temporal graph the arrival date
of a foremost journey under non-stop transit constraints. It is a polynomial
time problem, contrary to the computation of a temporal path under the same
constraints which is NP -hard. We then depict a linear time solution for finding
the minimum arrival date of a foremost non-stop journey.

As for perspectives, it turns out that most our algorithmic steps follow the
filter-map-reduce programming paradigm. In particular, we make intensive use
of bucket sorting (a.k.a. radix sort) which can very naturally be implemented
by lambdas. We believe that bucket sorting is important for processing historic
data in general, and temporal graphs in particular. In this sense, we raise the
open question whether our algorithm can be rewritten using a fully functional
programming approach.

Acknowledgements. We are grateful to the anonymous reviewers for their helpful
comments which greatly improved the paper.

References

1. Bui-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

Foremost Non-stop Journey Arrival in Linear Time 301

2. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015)

3. Casteigts, A., Himmel, A.S., Molter, H., Zschoche, P.: Finding temporal paths
under waiting time constraints. Algorithmica 83, 2754–2802 (2021)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge(1989)

5. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. ACM
J. Exp. Algorithm. 23, 1–56 (2018)

6. Dupuy, M., d’Ambrosio, C., Liberti, L.: Optimal paths on the ocean (2021).
https://hal.archives-ouvertes.fr/hal-03404586

7. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set
union. J. Comput. Syst. Sci. 30, 209–221 (1985)

8. Himmel, A.S., Bentert, M., Nichterlein, A., Niedermeier, R.: Efficient computation
of optimal temporal walks under waiting-time constraints. In: 8th International
Conference on Complex Networks and Their Applications. SCI, vol. 882, pp. 494–
506 (2019)

9. Rymar, M., Molter, H., Nichterlein, A., Niedermeier, R.: Towards Classifying the
Polynomial-Time Solvability of Temporal Betweenness Centrality. In: Kowalik, Ł,
Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 219–231.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_17

10. Saramäki, J., Kivelä, M., Karsai, M.: Weighted temporal event graphs. Temporal
Network Theory, pp. 107–128 (2019)

https://hal.archives-ouvertes.fr/hal-03404586
https://doi.org/10.1007/978-3-030-86838-3_17

Author Index

Balliu, Alkida 1
Ben Shimon, Yoav 21
Böhnlein, Toni 62
Buchin, Kevin 42
Bui-Xuan, Binh-Minh 283

Cohen, Sarel 79

d’Amore, Francesco 98

Erlich, Sapir 62

Fischbeck, Philipp 79
Fischer, Orr 21
Flocchini, Paola 42
Fraigniaud, Pierre 116
Friedrich, Tobias 79

Gleinig, Niels 135

Heydt, Ozan 154
Hirvonen, Juho 1
Hoefler, Torsten 135

Imbs, Damien 174
Italiano, Giuseppe F. 191

Jauregui, Benjamin 212

Kostitsyna, Irina 42
Krejca, Martin S. 79

Lotker, Zvi 62

Melnyk, Darya 1
Montealegre, Pedro 116, 212

Nanahji, Koko 234

Olivetti, Dennis 1
Oshman, Rotem 21

Pattanayak, Debasish 191
Peters, Tom 42
Potop-Butucaru, Maria 283

Rapaport, Ivan 116, 212
Rawitz, Dror 62
Raynal, Michel 174
Rybicki, Joel 1

Santoro, Nicola 42
Sauerwald, Thomas 79
Sharma, Gokarna 191
Siebertz, Sebastian 154
Suomela, Jukka 1

Talmage, Edward 253
Taubenfeld, Gadi 174
Todinca, Ioan 116
Turau, Volker 265

Vigny, Alexandre 154
Villacis-Llobet, Juan 283

Wada, Koichi 42

Ziccardi, Isabella 98

	 Preface
	 Organization
	 Contents
	Local Mending
	1 Introduction
	2 Contributions and Key Ideas
	3 Related Work
	4 Defining Mendability
	4.1 Additional Definitions

	5 From Local Mendability to Local Solvability
	6 From Local Solvability to Local Mendability
	6.1 Cycles

	7 Landscape of Mendability
	References

	Proof Labeling Schemes for Reachability-Related Problems in Directed Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Building Blocks
	4.1 DFS-Based Schemes
	4.2 Canonical Proof Labeling Scheme
	4.3 The Charge-Distribution Protocol

	5 Decidability of Reachability-Related Problems
	5.1 Global Source
	5.2 Global Sink
	5.3 Strong Connectivity

	6 Sufficient and Necessary Conditions for Universal Decidability
	7 Conclusion
	References

	On the Computational Power of Energy-Constrained Mobile Robots: Algorithms and Cross-Model Analysis
	1 Introduction
	2 Models and Preliminaries
	3 Computational Relationship Between Rsynch and Ssynch
	3.1 Power of Rsynch in FC,FS and OB
	3.2 Power of Rsynch in

	4 Computational Relationship Between Fsynch and Rsynch
	4.1 Dominance of Fsynch over Rsynch
	4.2 Orthogonality of Fsynch with Rsynch

	5 Analysis Within Rsynch
	6 Concluding Remarks
	References

	Randomized Strategies for Non-additive 3-Slope Ski Rental
	1 Introduction
	2 Preliminaries: Profiles and Transition Functions
	3 Optimal Profile for Three Slopes
	3.1 Progressive and Tight Pairs of Profile and Transition Function
	3.2 Reconstruction: Profile and Transition Function

	4 Computing a Near-Optimal Strategy
	4.1 Monotonicity of the Competitive Ratio and Interval
	4.2 Outline of Our Algorithm

	5 Future Directions
	References

	Accelerated Information Dissemination on Networks with Local and Global Edges
	1 Introduction
	2 Preliminaries
	2.1 Percolation Processes
	2.2 Graph Classes

	3 Extreme Thresholds
	4 Polynomial-to-Rapid Activation Rate
	4.1 Polynomial Rate
	4.2 Rapid Rate on the Global Graph

	5 Experimental Results
	5.1 Erdős–Rényi Graphs
	5.2 Other Global-Graph Models

	6 Outlook
	References

	Phase Transition of the 3-Majority Dynamics with Uniform Communication Noise
	1 Introduction
	1.1 Our Results and Their Consequences
	1.2 Related Works
	1.3 Structure of the Paper

	2 Preliminaries
	3 Results
	4 Analysis
	4.1 Victory of the Majority
	4.2 Symmetry Breaking
	4.3 Victory of Noise

	References

	A Meta-Theorem for Distributed Certification
	1 Introduction
	2 Preliminaries
	3 A Protocol Certifying a 3-Approximation of the Treewidth
	4 Certifying Regular Properties
	5 Conclusion
	References

	The Red-Blue Pebble Game on Trees and DAGs with Large Input
	1 Introduction
	1.1 Related Work
	1.2 The Red-Blue Pebble Game
	1.3 Notations and Definitions

	2 Bounds for Trees
	3 Bounds for General DAGs
	4 I/O-Bounds in a Parallel Setting
	5 Experiments
	5.1 Regular Tree, Varying Memory Size
	5.2 Random DAGs with Large Inputs
	5.3 General Random DAGs with Varying Numbers of Vertices

	6 Conclusions
	References

	Local Planar Domination Revisited
	1 Introduction
	2 Preliminaries
	3 Phase 1: Preprocessing
	4 Phase 2: Analyzing the Local Dominators
	5 Phase 3: LP-Based Approximation
	5.1 LP-Based Approximation
	5.2 Solving LPs Locally
	5.3 From Bounded Residual Degree to Bounded Degree
	5.4 Conclusion of the Algorithm

	6 Alternative Phase 3: Greedy Domination in Planar Graphs of Maximum Residual Degree
	7 Restricted Classes of Planar Graphs
	7.1 LP-Based Approximation
	7.2 Greedy Approximation

	References

	Election in Fully Anonymous Shared Memory Systems: Tight Space Bounds and Algorithms
	1 Introduction
	1.1 Leader Election
	1.2 System Models
	1.3 Related Works on Anonymous Memories
	1.4 Motivation and Content

	2 d-Election in the RMW Model Where Participation is Not Required
	2.1 A Necessary Condition for d-election
	2.2 A d-election algorithm in RMW fully anonymous systems
	2.3 Proof of Algorithm 1

	3 Exact d-election in the RMW Model Where Participation is Required
	3.1 A Necessary Condition for Exact d-election
	3.2 An Exact d-election algorithm
	3.3 Proof of Algorithm 2

	4 d-Election in the RMW Model Where Participation is Required
	4.1 A Necessary Condition for d-election
	4.2 A Necessary and Sufficient Condition for d-election

	5 Impossibility in the RW Communication Model
	6 Conclusion
	A The Case Where m=1
	References

	Dispersion of Mobile Robots on Directed Anonymous Graphs
	1 Introduction
	2 Model and Preliminaries
	3 Impossibility and Lower Bounds
	4 DFS Dispersion Algorithm
	4.1 Analysis of the Algorithm

	5 BFS Dispersion Algorithm
	6 Extensions to Crash Faults
	References

	Distributed Interactive Proofs for the Recognition of Some Geometric Intersection Graph Classes
	1 Introduction
	1.1 Proof-Labeling Schemes and Distributed Interactive Proofs
	1.2 Geometric Intersection Graph Classes
	1.3 Our Results
	1.4 Related Work

	2 Preliminaries
	3 Toolbox
	3.1 Spanning Tree and Related Problems
	3.2 Problems Equality and Permutation

	4 Permutation and Trapezoid Graphs
	5 Circle and Polygon Circle Graphs
	6 Lower Bounds
	References

	Exactly Optimal Deterministic Radio Broadcasting with Collision Detection
	1 Introduction
	2 Model
	3 Related Work
	4 Algorithm
	5 Lower Bound
	6 Future Work
	References

	Lower Bounds on Message Passing Implementations of Multiplicity-Relaxed Queues and Stacks
	1 Introduction and Related Work
	2 Model and Definitions
	2.1 System Model
	2.2 Multiplicity
	2.3 Shifting Arguments

	3 Worst-Case Lower Bounds
	3.1 Dequeue and Pop
	3.2 Amortized Cost Lower Bounds
	3.3 Bound on Sum of Operations

	4 Tightness
	5 Conclusion
	References

	Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes on Trees
	1 Introduction
	2 State of the Art
	3 Synchronous Discrete-Time Dynamical Systems
	3.1 Notation

	4 Fixed Points
	4.1 The Bijection Bfix
	4.2 Counting Fixed Points
	4.3 Generating Fixed Points

	5 General 2-Cycles
	5.1 General Results
	5.2 Pure 2-Cycles
	5.3 Counting Pure 2-Cycles
	5.4 Block Trees of 2-Cycles
	5.5 Counting Block Trees

	6 Conclusion and Open Problems
	References

	Foremost Non-stop Journey Arrival in Linear Time
	1 Introduction
	2 Journey in a Temporal (di)graph
	3 From Journey to Time Set
	4 Foremost Non-stop Journey Arrival in Linear Time
	5 Conclusion and Perspectives
	References

	Author Index

