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Abstract. Nowadays, as a strongly time-dependent data type, the ubiq-
uity of social media messages enables the detection and analysis of real-
time events. Through the clustering of online posts concerning their top-
ics, existing methods can quickly identify the current trends on social
media, which helps discover marketing opportunities, prevent potential
crises, etc. However, due to the diversity of social network users, the per-
formance of current approaches is significantly affected by the long tail
of random topics, which should be regarded as outliers in a clustering
problem. Besides, current models are weak in detecting events that last
for multiple days, which is common in real-world scenarios. Therefore, we
propose the FS-GNN, a graph neural network based on a filtering strat-
egy, for incremental social event detection in data streams. Our method
uses heterogeneous information networks (HINs) to construct a social
message graph, and we propose a centrality-based scoring mechanism
to grade and filter noisy data before clustering. In addition, a message
complement window is introduced to connect the same topic mentioned
across multiple days for better clustering accuracy. Extensive experimen-
tal results demonstrate the superiority of FS-GNN over multiple baselines
in both offline and online scenarios.

Keywords: Social event detection · Online clustering · Graph neural
network

1 Introduction

The recent surge of social media platforms, like Twitter, Facebook and Weibo,
encourages more users to share their daily lives publicly, which also causes an
explosive increase of social messaging data. Such User-Generated Content (UGC)
can be utilized in various data mining tasks. As one of its major applications,
in recent years, researchers start to analyse online social media posts to detect
real-time events [11,20].

Existing works represent a social message by the keywords it mentions, so
the task of detecting events in a social message stream can be described as
finding clusters of messages mentioning the same set of topics. As the traditional
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clustering algorithms only extract topics from formally-written articles and news,
there is a strong need for a new method to detect events from highly-diversified
social message streams. Recent research shows that the Graph Neural Network
(GNN) has strong capabilities in aggregating the structure and semantics of
data, and the GNN-based social message analytic framework has shown its good
performance in event detection [13]. However, two issues remain unsolved for
event detection: 1) as the social media users are highly-diversified, most of their
posts focus on random topics that are irrelevant to major ongoing events, so these
‘noisy’ posts will reduce the accuracy of our event detection task; 2) the influence
of an event to the social media is usually long-lasting and scattered sometimes.
For example, before a contagious disease outbreak is identified, multiple scattered
posts mentioning related symptoms have appeared on social media. Due to the
lack of long-term incremental clustering, the existing method cannot detect such
signs before the outbreak spike kicks in, making the event detection less effective.

In this paper, we propose the FS-GNN, a model for incremental social event
detection in social message streams. In our model, we use heterogeneous informa-
tion networks (HINs) to map social communication elements to a unified hetero-
geneous graph, then we leverage GNNs to extract knowledge from the semantic
and structural information contained in the social graph. Besides, we provide an
effective solution to the aforementioned issues: 1) To solve the data noise problem,
we propose a centrality-based scoring mechanism to score the nodes in the social
graph based on their density. We then retain the nodes with higher scores, which
imply high relevance to the event clustering problem. 2) To achieve better per-
formance in long-term event detection, we design a message complement window
in the incremental clustering phase to capture the correlation of messages across
days. Overall, the life cycle of our model consists of an initial phase detecting new
message events, and an incremental phase, which extends the knowledge of the
model by resuming the training process. In the incremental phase, we employ a
triplet loss set that contrasts positive message pairs with corresponding negative
pairs. Meanwhile, we introduce an additional global-local pairs [1,7,15] loss func-
tion to fit the incremental context and incorporate graph structure information.

We conduct extensive experiments on the large-scale Twitter corpus [12] and
the event detection corpus [17] which are publicly available. The empirical results
show that FS-GNN achieves better performance over multiple baselines. Overall,
we summarize our main contributions as follows:

• We design a new incremental social event detection model based on filtering
strategies. Our proposed model can effectively filter data noise, and enhance
the accuracy of the model for social event detection.

• We define an information complement window to capture the long-term
correlation of message flows. Experiments demonstrate that our proposed
information-completion scheme has higher clustering accuracy in incremental
scenarios.

• Extensive experimental results on large-scale real-world datasets show that
our proposed model is effective and stable in an incremental environment
while guaranteeing clustering effectiveness.
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2 Related Work

The social events discussed in this paper are coarse-grained, which include gen-
eral events and emergent events. As a social message detection problem, existing
solutions mainly fall into the following three categories:

Textual Information Extraction. As social messages are purely text mes-
sages, it is natural and common to detect social events through textual infor-
mation extraction. For example, Liu et al. [10] use Word2Vec to merge identical
entities and similar phrases to automatically detect events in multilingual-mixed
long text streams. To further investigate deeper semantic meanings, Liu et al.
[9] extract textual information into a more fine-grained representation and used
this to construct story trees to represent the categories of subsequent events.
However, on bigger social media platforms (such as Twitter), the detection of
multilingual mixed social events becomes a major challenge. To solve this ques-
tion, Hu et al. [8] use a probability distribution to represent semantic categories
of multilingual mixed text divided into a fixed time slice window to detect events
online. These methods focus on how to represent textual semantic information
quantitatively using data structures, models or mathematical methods, but they
rarely consider the data noise involved, which can strongly affect the performance
of social event detection [14].

Structural Information Extraction. In addition to text content, the diver-
sity of social connections between users and their non-textual properties have
become a new source for social event detection. Specifically, some existing works
focus on location, Zhang et al. [19] capture a novel authority metric of geo-
thematic correlation between messages to extract high-quality events. Xing et
al. [18] further consider the tags in the messages, they use probabilistic mod-
els to generate distributions of tags and topic text and propose the MGe-LDA
model for discovering and representing sub-events. Chen et al. [3] utilize the
message forwarding information (like the retweet in Twitter) to model the flow
of information propagation, and they propose an RL-LDA model to discover
the correlation between forwarding behaviour and events. Considering that the
mentions among social messages speed up the spread of information, Adrien et
al. [6] use the frequency of mentions to detect important events and estimate
their level of impact on the population. Structural information can be seen as
an additional attribute in social networks, but they also suffer from data noise.
At the same time, the time-sensitive nature of structural information poses a
greater challenge for the online detection of social events.

Hybrid Information Extraction. Some recent works consider both the tex-
tual and structural information in feature extraction and utilize deep learning
models, like graph neural networks, to mine the social data. It aggregates infor-
mation from the input graph data and acquires a vectorized representation of
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the nodes. Cao et al. [2] is selective in retaining old knowledge in GNN to achieve
online clustering. Qiu et al. [14] define a comprehensive similarity index to fil-
ter the noisy node in the social network. Cui et al. [4] use the subject labels
of events to construct multi-view text messages and design an attention neural
network-based model to fuse event features between multiple views. Graves et
al. [5] use BiLSTM to capture the relationship between messages better. GNNs
are good at aggregating semantic information in social messages, but they can
not satisfy the online detection of social events.

Overall, none of the three categories we have mentioned takes into account
both the data noise and the real-time nature of social messaging, which are the
main focus of our paper.

3 Preliminaries

In this section, we will introduce the problem definition and the framework
overview.

3.1 Problem Definition

Definition 3.1 (Social Message Stream). A social message stream Sm is a
series of social messages arriving continuously and chronologically, defined as
Sm = {m1,m2, ...,mi}, where mi represents a social message arriving at time i.

Definition 3.2 (Social Events). A social event set E is a set containing all
social events mentioned in a social message stream, which is defined as E =
e1, e2, ..., ek where ek represents a social event.

Here, we specify that each social message ma is only associated with no more
than one social event eb through mentioning.

Definition 3.3 (Representation Learning Model). Given a social message
mi, the representation learning converts each social message into a vector rep-
resenting the semantic information about itself and its neighbours, depicted as
fv(mi, σ) = ri, where ri denotes the vector representation of message mi, and σ
represents the set of parameters of the model fv.

Definition 3.4 (Social Event Detection). The social event detection prob-
lem aims to identify social events mentioned by messages in a social message
stream via a representation learning model. The problem can be formalised as
fs(fv, θ) = E, where fv denotes representation learning model, θ is the parame-
ters of fs and E represents the detected social event set.

According to Definition 3.4, to design a better representation learning model
fv(mi, σ) = ri for event detection, the main objectives of this paper are to
improve the quality of mi, i.e. social message data, as well as optimizing param-
eter σ to get correct results through complete information. Therefore, we propose
a model named FS-GNN to address them, respectively, which will be introduced
in the next section.
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3.2 Framework Overview

According to Algorithm 1, our framework is divided into two parts. In part of the
initial phase, we use a social message stream to construct a social graph and then
clean them with our filtering strategy. And next, we use the purified graph data
to train an initial model. In part of the incremental phase, we use the remaining
data to construct the message blocks for model retraining. Specifically, we use
the information complement window to supplement the link between cross-days.
Finally, we use the vectorized representation of the model output to cluster the
social events.

Algorithm 1. FS-GNN
Input: A social stream Sm = m0,m1,m2, ...,mi,

the number of layers L, window size w, the number of mini-batches B.
Output: Sets of social events: e0, e1, e2, ...

1: /∗ Start the initial phase ∗/
2: min = 0
3: for j = 0, 1, 2, ..., 6 do
4: min+ = j
5: end for
6: Gin ← Create pure initial social message graph(min)
7: Gf ← Flitering(Gin)
8: for L = 1, 2, ... do
9: h

(l)
mi = concat(h

(l)
mi

⊕
Aggregator∀mj∈Nei(mi)(Extractor(h

(l−1)
mi ))

10: ej ← Clustering by hmi

11: end for
12: /∗ Start the incremental phase ∗/
13: k = 0
14: for i = 7, 8, 9, ... do
15: Gi ← Create incremental social message graph(mi)
16: k+ = 1
17: if i ≥ 7 then
18: Gi ← Delete obsolete nodes
19: save the obsolete nodes ni from Gi

20: end if
21: if k%w == 0&k! = 0 then
22: Completes the information of ni to Gi+2

23: for L = 1, 2, ... do
24: h

(l)
mi = concat(h

(l)
mi

⊕
Aggregator∀mj∈Nei(mi)(Extractor(h

(l−1)
mi ))

25: end for
26: Lt =

∑
t∈T max

{‖V (mi) − V (mi+)‖2
2 − ‖V (mi) − V (mi−)‖2

2 + a, 0
}

27: Lp = 1
N

∑N
i

(
logP (hmi , s) + log

(
1 − P

(
h̃ml , s

)))

28: ei ← Clustering by hmi

29: end if
30: end for
31: return the social event sets E
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4 Methodology

As mentioned in Sect. 3.2, our FS-GNN method aims at improving the accuracy
of event detection by (1) proposing the centrality-based filtering strategy in
the initial phase and (2) introducing the information complement window to
maintain the long-term message links in the incremental phase. In this section,
we elaborate on the details of the two phases, respectively.

4.1 The Initial Phase

Figure 1 demonstrates the workflow of the initial phase. According to the figure,
this phase consists of four steps: Step 1. A homogeneous message graph is first
constructed from input social messages by modelling and extracting the corre-
lations between them. (As shown in Fig. 1, circles represent messages, squares
represent common words between message streams, diamonds represent common
locations, triangles represent common friends, etc.) Step 2. A node filtering
process is applied to the constructed graph to remove nodes that are noisy to
the clustering task. Step 3. The filtered graph is used as input to a L-layer
neural network to learn the representations. Step 4. The representations are
finally grouped into multiple clusters representing the detected social events.
Facing massive social message streams with complex attributes, our method is
expected to 1) make full use of the social message data features to precisely
model the correlation between messages via the message graph (Step 1), and 2)
further improve the quality of the message graph by removing messages that are

Fig. 1. Workflow of the initial phase
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irrelevant to the event detection task (Step 2). To this end, we leverage the Het-
erogeneous Information Network (HIN) to construct the initial message graph
and then filter the constructed graph by our proposed centrality-based filtering
strategy.

4.1.1 Heterogeneous Social Message Modeling
The HIN is a graph that contains multiple types of nodes, which help us to
represent the properties and structure of the message data better. Figure 1 shows
an example, different elements in a message, such as words, locations and users,
are represented as different types of nodes in the graph. And an edge between
two message nodes is added when they share any element. Here, we label the
node messages, words, entities and users as m,w, e, u, respectively.

Different from previous heterogeneous GNNs, FS-GNN focuses on learning
correlations between messages. We use a specific method to map the original
graph to a homogeneous message graph to retain only the message nodes. The
mapping process is expressed as follows:

Ai,j = min

⎧
⎨

⎩

[
∑

k

Wmk · WT
mk

]

i,j

, 1

⎫
⎬

⎭
, k ∈ {w, e, u}, (1)

where A ∈ {0, 1}N×N is the adjacency matrix of the homogeneous message
graph, N is the total number of messages in the graph. i, j denotes the matrix
element in row i column j and k denotes the node type. Wmk is a submatrix
of the adjacency matrix of the heterogeneous message graph containing rows of
type m and columns of type k. In general, if messages mi and mj both connect
to some nodes of type k,

[
Wmk · WT

mk

]

i,j
will be no less than 1 and the Ai,j will

be equal to 1.

4.1.2 Filtering Strategy
The research on network centrality originates from the study of social networks
and is described as the degree to which a node is central to the network. In our
task, as an event is usually followed by an extensive number of social messages
discussing relevant topics, whereas other random posts are less likely to form
dense social connections, we use the concept of centrality to describe the density
of nodes for node filtering. Hence, we define I as the lower bound within the
interval where the degree of the dense node lies. Based on this, the filtering
strategy can be defined as follows:

I = K · Dall

Nnode
, (2)

where K represents the density factor, Dall denotes the total number of node
degrees in the social message graph, and Nnode represents the total number of
nodes during a week. To decide an appropriate density factor K, we introduce
the three most common types of centrality measures, shown in Table 1:
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Table 1. Three types of centrality.

Centrality Degree centrality Closeness centrality Betweenness centrality

Formulas D (Ni) =
∑

xij

D−1
C (ni) = 1

∑
d(ni,nj)

B (ni) =
∑

s �=t∈N
σst(ni)

σst

Degree Centrality: The degree of the node as a proportion of the total degree
of all points. In the equation, D denotes the degree of all nodes in the network,
xij indicates of connections of the node i to other nodes j, i.e. the number of
degrees. Closeness Centrality: the inverse of the average of the distances from
the node to all other nodes; In the equation, d (ni, nj) denotes the shortest path
of node ni to node nj . Betweenness Centrality: the ratio of the shortest
path through a node and connecting two other nodes to the total number of
shortest paths between those two nodes. In the equation, σst (ni) denotes the
total number of paths passing through the node ni in the shortest path between
node s and node t, and σst denotes the total number of shortest paths between
node s and node t.

4.2 The Incremental Phase

Figure 2 illustrates the procedure in the incremental phase. This phase can
be divided into three steps: Step 1. as time goes, new messages (m4 in the
figure) are updated to the message graph as well as obsoleted messages (m2)
to be removed. Step 2. An information complement window is designed to
aggregate the obsoleted node mi−2 at ti−2 time with message graph. Step 3.
The new graph is input into the model for retraining and add a new event
independently represented by R4. Facing missing information between cross-day
messages, our method is expected to: 1) capture information across days to
complete the new messages (Step 2), and 2) learn to detect unknown events
more accurately. To this end, we design an information complement window to
supplement the message correlations across days, and then add two loss functions
to detect events more precisely.

Fig. 2. Workflow of the incremental phase
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4.2.1 Representation Learning
To observe the interaction between the preserved nodes and new message nodes,
we use GNN to learn the message representation: EG : RN×d × {0, 1}N×N →
R

N×d
′

and EG(X,A) = {hmi
∈ R

d
′ |1 ≤ i ≤ N} (Line 23–25 in Alg. 1). It is

formalized as:

h(l)
mi

= concat
(
h(l)
mi

⊕ Aggregator ∀mj∈ Nei (mi)

(
Extractor

(
h(l−1)
mi

)))
, (3)

where hl
mi

is the representation of mi at the l-th level in the GNN. Nei(mi)
represents the set of neighbours of mi obtained from the adjacency matrix A, and
⊕ represents the aggregation of the information contained in its two operands.
Concat(·) represents a multi-headed cascade. Extractor(·) and Aggregator(·)
denote the extraction of useful information from the representation of adjacent
messages and the summarization of adjacent information, respectively. We use
hl
mi

as the final representation of hl
mi

, i.e. hmi
. In order to incrementally perform

embedding operations on message blocks, we use the graph attention mechanism
[16] for neighbourhood information extraction and aggregation.

In order to complement the message correlations across days, we design a
message complement window to hold the correlations between nodes joined on
the day i + 2 and nodes on the day i, which is formalized as:

A
′
i,j = min

⎧
⎨

⎩

[
∑

k

W i
k · (W i+2

k )T
]

i,j

, 1

⎫
⎬

⎭
, k ∈ {w, e, u} (4)

Similar to the mapping process of homogeneous message graph, W i
k denote

the submatrix of an adjacency matrix of node type k that was deleted at time i,
W i+2

k denote the submatrix of an adjacency matrix of node type k at time i+2.
T represents the matrix transpose.

4.2.2 Contrastive Learning
To handle the raw messages, we use a triplet loss function to enable FS-GNN to
learn new event categories without limiting the total number of events (Line 26
in Algorithm 1). The function can be expressed as:

Lt =
∑

t∈T

max
{∥

∥V (mi) − V
(
m+

i

)∥
∥2

2
− ∥

∥V (mi) − V
(
m−

i

)∥
∥2

2
+ a, 0

}
, (5)

where V denotes the vector representation of the message stream mi and
‖·‖22 denotes the Euclidean distance between the two vectors calculated. The
triplet satisfies

∥
∥V (mi) − V

(
m+

i

)∥
∥2

2
>

∥
∥V (mi) − V

(
m−

i

)∥
∥2

2
. t denotes a triplet

as (mi,m
+
i ,m−

i ), m+
i is a positive message (a message stream from the same cat-

egory), m−
i is a negative message (a message stream from a different category)

and T denotes the set of triplets drawn in the incremental scene.
To address the problem of updating structural information in message graphs,

we construct a global-local pair loss function that enables FS-GNN to discover
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and preserve features of similar local structures (Line 27 in Algorithm 1). The
function can be expressed as:

Lp =
1
N

N∑

i=1

(
log P

(
hm′

i
s
)

+ log
(
1 − P

(
h̃mi

, s
)))

, (6)

where Lp represents the global-local pair loss function and s ∈ R
d

′
is the average

of all message representations. P represents a bi-linear scoring function that
outputs the probability of its two operands coming from the joint distribution.
Lt and Lp represents the overall loss of the FS-GNN.

5 Experiments

5.1 Datasets

We use two large-scale, publicly available datasets, namely Twitter and MAVEN,
for our experiments. Both datasets are preprocessed by the providers to remove
duplicate and invalid data for better data quality. Table 2 shows the statistics
of datasets.

Twitter [12]: the Twitter dataset contains 68,841 manually tagged tweets
associated with 503 event classes, distributed over four weeks.

MAVEN [17]: the MAVEN dataset is a generic domain event detection
dataset constructed from Wikipedia documents with no sentence (i.e. messages)
associated with multiple event types. The dataset contains 10,242 messages with
154 associated event categories.

Table 2. Statistics of datasets.

Datasets Nodes Edges Event categories

Twitter 68,841 16,358,812 503

MAVEN 10,242 24,238,110 154

5.2 Baselines and Metrics

We compare FS-GNN with general similarity metrics, offline social event detec-
tion methods, and incremental methods.

BiLSTM [5]: a model for learning bidirectional, long-term dependencies
between words of a message. However, as it only focuses on words, the model
does not utilize other attributes in social messages.

EventX [9]: this is a method for online event detection based on text after
fine-grained text segmentation. Same as BiLSTM, it also ignores other attributes
in social messages.
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KPGNN [2]: it is an incremental learning approach based on knowledge
preservation and shows good performance in an incremental environment, but
it ignores the data noise and the information that exists between a span of days
in data.

We also set up comparison experiments under different filtering strategies.
To evaluate the performance of all models, we compare the similarity between
the message clusters detected by the models and the ground-truth clusters using
the following metrics:

NMI (Normalized Mutual Information): it measures the amount of informa-
tion extracted from the distribution of ground truth labels.

NMI(U, V ) =
MI(U, V )

F{H(U),H(V )} (7)

AMI (Adjusted Mutual Information): it is similar to NMI that measures the
mutual information between two clusters.

AMI(U, V ) =
MI(U, V ) − E{MI(U, V )}

F{H(U),H(V )} − E{MI(U, V )} (8)

In the two formulas above, U denotes ground-truth vectors, V denotes pre-
dicted label vectors. H denotes information entropy. MI represents mutual infor-
mation of U and V . Generally, F denotes arithmetic mean. E represents the
expected value. Both two metrics are based on a mutual information approach
to measuring the fit of the data distribution between the clustering results and
the actual category information. NMI takes values in the range [0,1] and AMI
takes values in the range [−1, 1]. A larger value means that the clustering result
matches the real situation more closely.

5.3 Experimental Settings

We set the hyperparameters in EventX to their default values mentioned in the
original paper [9]. For BiLSTM and FS-GNN, the Table 3 shows our parame-
ters setting. In the initial phase, we use the K-Means clustering to set the total
number of classes to the number of true classes after getting the message rep-
resentation. And in the incremental phase, we use DBSCAN to fit the scenario
that a total number of classes is unknown.

Table 3. Parameter settings.

Methods Layer Optimizer Embedding

dimension

Retraining

window size

Small

batch

training

size

a of the

triplet loss

function

# of

neighbours

sampled per

message

FS-GNN 2 Adam 32 3 2000 3 800

BiLSTM 2 Adam 32 – – – –

All experiments are conducted on a 12 cores Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20 GHz and 1×NVIDIA GeForce GTX 1080 Ti GPU.
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5.4 Experimental Results

5.4.1 The Initial Phase
Without loss of generality, we partitioned 70%, 20% and 10% of the two datasets
for training, testing and validation respectively. Figure 3 shows the result of the
experiments conducted by FS-GNN with baselines on both datasets.
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Fig. 3. The results of initial phase.

Our proposed FS-GNN method has a significant advantage over all types of
baselines. Based on the Twitter and MAVEN datasets, FS-GNN outperforms all
types of baselines by 13%–102.9% (NMI) and 18%–210.5% (AMI), respectively.
However, it is worth noting that the NMI value of BiLSTM is unusually low for
the MAVEN dataset. This is because BiLSTM is a text-semantic information-
based method and the dimensionality of the MAVEN dataset is only 8 while
the Twitter is 16. Low experimental results of BiLSTM on MAVEN dataset due
to the sparsity of data in the dataset. EventX and BiLSTM rely on message
embedding and focus excessively on the interaction between text messages, thus
ignoring the structural information in the social message stream. KPGNN and
FS-GNN use a small batch training approach to partition the huge dataset,
while the GNN-based approach can better aggregate semantic and structural
information in social networks and abstract them into vectorized representations,
which gives them an excellent performance on both datasets. Nonetheless, our
proposed model FS-GNN employs a filtering strategy to deal with data noise
and complements message associations across days, which allowing to achieve
better results than any other baselines in the experiments.

We also compare the speed of the four methods during the training phase. In
Fig. 4, we can see that EventX has a much larger time overhead than the other
methods, as EventX uses a tree structure to divide the hierarchy of events. Each
merge, expansion, insertion, etc. of the tree diagram requires a significant time
overhead. In contrast, our FS-GNN model uses a filtering strategy to clean the
data, and the time overhead in the training phase is smaller than that of the
same KPGNN method. In terms of accuracy and time overhead, our proposed
model FS-GNN has a very strong performance advantage.



78 L. Chen et al.

0

7

14

21

28

35

42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
in

Training speed in initial phase

EventX Bi-LSTM
KPGNN FS-GNN

Fig. 4. The speed of 20 epochs in training.

Regarding the effectiveness of filtering strategy, Table 4 shows the improve-
ment when applying different filtering strategies. In particular, “Degree Max” is
an extra filtering strategy that indicates the proportion of the maximum degree
in datasets to all degrees. Due to the negative result of the experiment with
“Closeness Centrality”, we also add an experiment with it removed to illustrate
the effect of it on filtering strategy. The reason is that this strategy filters almost
half of the nodes, including the high-density ones. In the end, the best result of
these experiments will be chosen and act on the next stage.

Table 4. Results for different filtering strategies.

Metrics Degree Max Degree

centrality

Closeness

centrality

Betweenness

centrality

Average of four

strategies

Average of three

strategies (without

closeness centrality)

Value 0.02 0.12 0.45 0.01 0.15 0.05

NMI 0.73 0.73 0.68 0.75 0.77 0.78

AMI 0.62 0.62 0.54 0.65 0.68 0.69

To further prove that the performance advantage of our solution does not
only come from the filtering, we apply the filtering strategy to the EventX (as
other baseline methods are not applicable due to the lack of homogeneous graph
structure) Fig. 5 shows the result of the experiments. We can see that the filtering
strategies does not improve the performance of EventX consistently, especially
in the Maven dataset, as the dataset has less semantic information when the
EventX is a text-based semantic information approach. The addition of the fil-
tering strategy filters out the noise in the MAVEN dataset and also reduces the
textual semantic information needed for EventX, leading to a decrease in the
experimental results. This batch of experiments demonstrates that our proposed
FS-GNN still outperforms the other methods even in the same data set. The
performance gains of other methods with filtering are not significant, indicating
that other parts of FS-GNN also have performance advantages.
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Fig. 5. The filtering strategy in different methods.

5.4.2 The Incremental Phase
The number of message blocks should be consistent across each baseline. First, we
note the message blocks used for initial model training and exclude them. Then,
we divide the remaining message streams into a total of 21 blocks to simulate the
incremental scenes. Finally, we use diverse methods to detect events in different
message blocks and then obtain their results separately for comparison.

Table 5. The NMI of incremental scenarios.

Blocks M1 M2 M3 M4 M5 M6 M7

EventX 0.36 0.67 0.66 0.63 0.56 0.69 0.51

BiLSTM 0.24 0.48 0.38 0.40 0.40 0.49 0.32

KPGNN 0.38 0.78 0.76 0.67 0.73 0.82 0.53

FS-GNN 0.76 0.65 0.80 0.75 0.74 0.85 0.22

Blocks M8 M9 M10 M11 M12 M13 M14

EventX 0.71 0.66 0.68 0.64 0.60 0.56 0.57

BiLSTM 0.49 0.43 0.51 0.48 0.38 0.44 0.40

KPGNN 0.77 0.72 0.79 0.73 0.68 0.68 0.67

FS-GNN 0.49 0.79 0.76 0.78 0.71 0.80 0.80

Blocks M15 M16 M17 M18 M19 M20 M21

EventX 0.48 0.61 0.58 0.57 0.60 0.67 0.53

BiLSTM 0.38 0.50 0.48 0.46 0.48 0.44 0.38

KPGNN 0.58 0.78 0.70 0.71 0.72 0.71 0.58

FS-GNN 0.69 0.79 0.73 0.78 0.74 0.73 0.64

Table 5 and Table 6 show that our proposed FS-GNN performs better and
more consistently in the incremental scenario than the various types of baselines
which completes the missing information across days. The experimental results
of BiLSTM are very poor. Due to the fact that when we divide the datasets
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by days, we reduce the density of semantic information, which leads to poor
experimental results. However, as we can see in the two tables, the blocks M7 and
M8 exhibit very low precision in two evaluation metrics. The reason is explained
as: when the information complement window is working in the incremental
phase, there is less information across days between the two message blocks. But
our information complement window mistakenly added the unnecessary nodes
as missing information into the message graph, which causes a loss of accuracy.

Table 6. The AMI of incremental scenarios

Blocks M1 M2 M3 M4 M5 M6 M7

EventX 0.06 0.28 0.17 0.18 0.13 0.27 0.13

BiLSTM 0.12 0.40 0.31 0.30 0.32 0.36 0.20

KPGNN 0.36 0.74 0.73 0.64 0.70 0.78 0.52

FS-GNN 0.76 0.63 0.76 0.72 0.71 0.79 0.17

Blocks M8 M9 M10 M11 M12 M13 M14

EventX 0.20 0.18 0.24 0.23 0.15 0.16 0.13

BiLSTM 0.34 0.32 0.38 0.36 0.30 0.31 0.34

KPGNN 0.75 0.71 0.77 0.71 0.65 0.65 0.67

FS-GNN 0.43 0.74 0.74 0.77 0.66 0.76 0.79

Blocks M15 M16 M17 M18 M19 M20 M21

EventX 0.06 0.19 0.18 0.16 0.16 0.17 0.09

BiLSTM 0.26 0.40 0.34 0.34 0.35 0.33 0.31

KPGNN 0.54 0.72 0.70 0.69 0.72 0.67 0.54

FS-GNN 0.66 0.75 0.73 0.75 0.74 0.71 0.61

6 Conclusions

In this paper, we proposed a new model named FS-GNN which combines a fil-
tering strategy with GNN that incorporates the rich semantic and structural
information in social message streams and filters harmful noise nodes. In incre-
mental scenarios, the introduction of the information complement window can
more effectively compensate for the lack of information between them, achieving
good detection results while ensuring the stability of event detection. With the
filtering strategy and information completion window in different stages, our pro-
posed model FS-GNN achieved better performance over multiple baselines. The
better values shown in metrics NMI and AMI at different stages demonstrated
the superiority of FS-GNN compared to baseline.
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graph infomax. ICLR (Poster) 2(3), 4 (2019)

16. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

17. Wang, X., Wang, Z., Han, X.: MAVEN: a massive general domain event detection
dataset. In: EMNLP, pp. 1652–1671 (2020)

18. Xing, C., Wang, Y., Liu, J., Huang, Y., Ma, W.: Hashtag-based sub-event discovery
using mutually generative LDA in Twitter. In: AAAI, pp. 2666–2672 (2016)

19. Zhang, C., Zhou, G., Yuan, Q.: GeoBurst: real-time local event detection in geo-
tagged tweet streams. In: SIGIR, pp. 513–522 (2016)

20. Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J.
23(3), 381–400 (2013). https://doi.org/10.1007/s00778-013-0320-3

https://doi.org/10.1007/s11704-019-8201-6
https://doi.org/10.1007/s11704-019-8201-6
https://doi.org/10.1007/s00778-013-0320-3

	Online Social Event Detection via Filtering Strategy Graph Neural Network
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Framework Overview

	4 Methodology
	4.1 The Initial Phase
	4.2 The Incremental Phase

	5 Experiments
	5.1 Datasets
	5.2 Baselines and Metrics
	5.3 Experimental Settings
	5.4 Experimental Results

	6 Conclusions
	References




