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Abstract. Predicting users’ actions based on anonymous sessions is a
challenging problem due to the uncertainty of user behavior and limited
information. Recent advances in graph neural networks (GNN) have led
to a promising approach for addressing this problem. However, existing
methods have three major issues. First, they are incapable of modeling
the transitions between inconsecutive items. Second, they are infeasi-
ble for learning the cross-feature interactions when learning the item
relationships. Third, very few models can adapt to the improvement of
embedding quality to help improve recommendation performance. There-
fore, to address these issues, we propose a novel model named Multilevel
Feature Interactions Learning (MFIL) that effectively learns item and
session representation using GNN. By leveraging item side information,
e.g., brands and categories, MFIL can model transitions between incon-
secutive items in the session graph (session-level). We further design
hierarchical structures to learn the feature interactions, which is effec-
tive to estimate the importance weights of different neighboring items in
the global graph (global-level). In addition, an effective learning strategy
is employed to enhance MFIL’s capability, and it performs better than
the classic regularization methods. Extensive experiments conducted on
real-world datasets demonstrate that MFIL, significantly outperforms
existing state-of-the-art graph-based methods.

Keywords: Graph neural networks · Recommender systems ·
Session-based recommendation

1 Introduction

The recommender systems play a crucial role in helping users target their inter-
ests. Conventional recommendation approaches usually rely on clicks feedback
and may perform poorly in real-world scenarios. Consequently, session-based
recommendation has attracted considerable interest recently, which predicts
the next interacting item based on users’ behaviors. Recently, the graph-based
approaches [13,30] use graph neural networks (GNN) to capture the higher-order
interaction and get the item representations. However, these methods can not
effectively address the following issues in a session-based recommendation.
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The first issue is the insufficient modeling of item transitions in the session.
Previous works are based only on the pairwise item-transitions [22,23,31], and
do not fully model the transitions between inconsecutive items. The idea of these
works is to calculate how consecutive items communicate with each other. Some
recent attempts have employed multilayer structures [9,17], but they only use
the direct connections between consecutive items. Hence, there is a need for more
effective exploration to learn the transitions of inconsecutive items.

Second, current recommendation methods ignore feature interactions, and
this may affect recommendation performance in two aspects: 1) these methods
may not be expressive enough to capture complex patterns of feature interac-
tions. For example, the element-wise product [11,14,16] and nonlinear transfor-
mation [20,24] operations lack the ability of learning feature interactions [5]; 2)
these models do not make full use of co-occurrence information [15,26]. Thus,
exploring more effective structures and using the co-occurrence information when
learning the feature interactions will be helpful.

The third is that they fail to adapt themselves to the embedding quality
improvement, which may limit the further optimization of weight parameters and
decrease model-learning capability. In the literature, some methods [8] have pro-
posed employing regularization techniques (e.g., learning rate decay and dropout)
to enhance performance. However, these strategies prevent the further improve-
ment of model performance when embedding quality is improved to a certain
extent. Hence, a more effective learning strategy to enhance the model’s learning
capability rather than merely prevent overfitting is required.

The main contributions of this work are summarized as follows:

• We leverage side information (e.g., brands or categories, as we mentioned in
the Abstract) to learn the transitions of items within a session graph. An
adjacent matrix is constructed, and it is capable of propagating information
between relevant items, even if they are inconsecutive.

• We propose a hierarchical graph model to learn feature interactions and use
the co-occurrence information, which can estimate the importance weights of
different items in the global graph.

• A more effective learning strategy is employed, which can adapt the model to
the improvement of embedding by adjusting internal structures, and performs
better than the classical regularization methods, e.g., learning rate decay.

• Extensive experiments show that MFIL achieves significant improvements
over state-of-the-art graph-based baseline models.

2 Related Work

2.1 Graph Neural Networks (GNN)

The most critical aspect of the aforementioned methods is the network structures
because it directly decides the recommendation performance [31]. So, we mainly
introduce the GNN techniques here. Among various GNN architectures [21],
gated GNN (GGNN), graph attention network (GAT), and graph convolutional
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network (GCN) are widely used. GGNN-based methods [8,9,25] adopt long short-
term memory (LSTM) in the update step. GAT-based methods [10,16] update
the vector of node by a weighted summation of its neighboring items. GCN-based
methods [6,28] generally aggregate feature information using convolutional neural
networks. The other methods [7,15,31] usually adopt mean/pooling for aggrega-
tion and concatenation/nonlinear transformation for update. Different from these
works, we employ hierarchical structures for information propagation, which effec-
tively estimate the importance weights between items.

2.2 GNN for Session-Based Recommendation

The use of GNN techniques in session-based recommender systems is attracting
increasing attention recently. The core idea of these works is to capture transition
patterns in sessions. For example, SR-GNN [22] considers the transitions between
items, and combines long-term preferences with current interests. FGNN [10]
captures item transitions and employs the readout function to learn the session
embedding. DGTN [31] and GCE-GNN [16] model item transitions in not only
the current session and but also the neighboring sessions. TAGNN [25] designs
a target-aware attention module to learn interest representations with different
target items. MA-GNN [7] integrates the static, dynamic, and long-term user
preferences with item co-occurrence patterns. Compared to previous works that
construct the session graph using edges between two consecutive items, we propose
building a graph with side information and capture transition patterns between
inconsecutive items.

2.3 Regularization Techniques

Regularization techniques have been investigated extensively because of their
capability to avoid overfitting; a widely used approach is lp regularization [10].
Moreover, item sharing, dropout, layer normalization [4], gradient clipping, max
norm regularization [19], and the learning rate decay [16] are effective in prac-
tice. Many new regularization techniques have been developed recently. Stochas-
tic shared embedding [18,19], stochastically replaces embeddings with another
embedding with some pre-defined probability. A graph-based regularization app-
roach that serves as a counterpart of the l2 regularization has been proposed
in [29]. In addition, a regularization-based approach that optimizes for robust-
ness on rule-based (a set of expert-defined categorical rules) input perturbations
has been proposed in [1]. In this paper, we apply a more effective learning strat-
egy to enhance MFIL’s capability instead of simply using classic regularization
techniques, such as learning rate decay and dropout.

3 Methodology

3.1 Problem Definition

Let V = {v1, v2, ..., vm} be the item set, where m denotes the number of items.
A session is defined as an interaction list S = {vs

1, v
s
2, ..., v

s
l } in chronological
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order, where vs
i denotes the i-th item within session S, and l denotes the

length of S, and we use I = {is1, i
s
2, ..., i

s
l } to represent the corresponding side

information. The co-occurrence information of each item can be denoted as
N = {Nε(vs

1), Nε(vs
2), ..., Nε(vs

l )}, where Nε(vs
i ) represents the co-occurrence

items of vs
i in neighbor sessions. The details of Nε (·) will be described in Sub-

sect. 3.4. Formally, the task is to predict the top-N items that the user is likely
to interact with at (l + 1)-th step.

3.2 Model Overview

We illustrate MFIL in Fig. 1, which contains three main components: a session-
level item representation learning module, a global-level item representation
learning module, and a session representation learning module. The session-
level module learns item embeddings with the side information I in the session
graph, and the global-level module incorporates information from neighboring
items in the global graph based on the co-occurrence information N . The ses-
sion representation learning module generates a representation of the session by
aggregating the representations from the two learning modules.

Fig. 1. Overall framework of MFIL. At first, the global graph and neighbors of session
s1 are extracted from the given sessions simultaneously and then fed into the session
module and global module to learn item embeddings Hl and Hg. Then, they are fed
into the session represent module to assemble the representation of session s1, which
is denoted as H.

3.3 Session-Level Item Representation Learning Module

In this subsection, we introduce how to obtain the representation Hl ∈ R
L×d

of items from session-level, and different from Subsect. 3.1, we use l to rep-
resent session-level. First, we extract the latest L items in s in chronological
order, which is abbreviated as S = {vs

1, v
s
2, ..., v

s
L}. Let M ∈ R

m×d denotes the
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learnable item embedding matrix with d as the latent dimensionality. The ses-
sion S is represented as El =

{
ms

v1
,ms

v2
, ...,ms

vL

} ∈ R
L×d. We also employ the

corresponding side information I = {is1, i
s
2, ..., i

s
L} ∈ R

L.
We build the adjacent matrices to model the item transitions leveraging item

side information, as we mentioned in the first issue in the introduction. For exam-
ple, consider a session S = {v1, v2, v3, v4, v5, v4, v6} and the corresponding side
information (e.g., brands or categories) I = {i1, i2, i1, i1, i2, i1, i2}, the session
graph, and adjacent matrices are shown in Fig. 2. In the left matrix A1, for sim-
plicity, we use symbols like 1, 2, 3, and 4 to represent the self-loop, in-come,
out-come, and in-out relationships between two consecutive items [16], respec-
tively. In the right matrix A2, we set A2

ij = 1, if vi and vj belong to the same
brand or category. If we consider only the relationships in matrix A1, we will
be incapable of capturing the transitions between v1 and v3(v4), as well as v2
and v5(v6), v∗ represents the item in the sequence. With the help of different
matrices, we can learn the transitions of consecutive and inconsecutive items.

Information Propagation: We use the attention mechanism to learn the
weights of different items α ∈ R

L×L in the session graph. To model the feature
interactions, we repeat El in the first and second dimensions L times to obtain
E1

l ∈ R
(L×L)×d and E2

l ∈ R
L×(L×d), respectively, and then model the feature

interactions by concatenation operation and multilayer perception (MLP):

a1 = (E1
l × E2

l ) ||E1
l ,

a2 = LeakyReLU(a1W1 + b1)W2 + b2,

a3 = LeakyReLU(a2W3 + b3)W4 + b4,

(1)

where || denotes the vector concatenation operation, × denotes the element-
wise multiplication operation, W1 ∈ R

2d×2d, W2,W4 ∈ R
2d×d, W3 ∈ R

d×2d

and b∗ are weight matrices and biases for the two layers, a1 ∈ R
L×L×2d, a2 and

a3 ∈ R
L×L×d, only a3 will be used in subsequent stages, and it is calculated

by a1 and a2.

Fig. 2. Session graph of s and its adjacent matrices. In the left matrix (any two directly
adjacent items) A1, for simplicity, we use 1, 2, 3, and 4 to represent the self-loop, in-
come, out-come, and in-out relationship, and the matrix shows the adjacency of items
in the sequence. In the right matrix A2, A2

ij = 1 represents that vi and vj belong to
the same brand or category.
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In the following, we will use the a3 to get different α∗, and then get the final
weight matrix α ∈ R

L×L. For each relationship (e.g., in-out or ‘adjacent’, as
shown in Fig. 2) in the session graph, MFIL calculates and gets the corresponding
matrix α∗ similarly:

α∗ = a3W
α
∗ , (2)

where Wα
∗ ∈ R

d×1 and α∗ ∈ R
L×L. We use ∗ to represent the self-loop, in-

come, out-come, in-out, and ‘adjacent’ relationship, respectively, and please
note that each relationship has a corresponding weight matrix W∗ and
α∗. We only keep the items in α∗ if A1

ij=1 (when ∗ represents self-loop, etc.) or
A2

ij=1 (for the ‘adjacent’ relationship).
We stack different α∗ in the order of self-loop, in-come, out-come, in-out, and

‘adjacent’ to obtain the final weight matrix α ∈ R
L×L, we believe that the ‘adja-

cent’ relationship is more important than the others, and the in-out relationship
is different from the in-come (or out-come) relationship. The first L represents
the length of the session, and the second represents the relationships between a
specific item and other L items in the session. We use a toy example to explain
the stack operation. For vectors v1 = [1, 1, 0, 0] and v2 = [0, 2, 2, 0], if we stack
them in the order of v1 and v2, we could obtain vstack = [1, 2, 2, 0].

Information Aggregation: the representation of items in the session graph
Hl ∈ R

L×d is defined with β ∈ R
1 as follows:

Hl = β(softmax(α)El) + El. (3)

As we mentioned in the introduction, to adapt the model to the embedding
quality improvement, we will update β. When the embedding quality is improved
to a certain extent, the input El already contains explicit semantic information,
and we should focus more on El for the follow-up tasks, especially in the later
stage of training, so we adjust β during training to ensure that the model can
be further optimized. It performs better than some classic regularization, and
we will discuss it in Subsect. 4.4. We update β with initial value β0 at fixed rate
when the training epoch is larger than epochl:

β = β0 − (epoch − epochl) × rate, epoch ≥ epochl. (4)

3.4 Global-Level Item Representation Learning Module

In this subsection, we introduce how to incorporate information from the global-
level [16] and obtain the representation Hg ∈ R

L×d of items. First, we use El ={
ms

v1
,ms

v2
, ...,ms

vL

} ∈ R
L×d to denote items in the current session, and N =

{Nε(vs
1), Nε(vs

2), ..., Nε(vs
L)} ∈ R

L×n×d to denote the co-occurrence information
in the global session, where Nε(vs

i ) ∈ R
n×d represents the n ε-neighbor items of

vs
i with d as the latent dimensionality [16]. We also employ the co-occurrence

information which can be represented as w = {ws
1, w

s
2, ..., w

s
L}, where ws

i ∈ R
1

represents the co-occurrence times of vi’s n neighbor items in the global graph.
For example, consider the sessions s1 = {v1, v2, v3, v5} and its neighbor sessions
(which also contains v2) s2 = {v3, v5, v2, v6} and s3 = {v4, v2, v6}, as shown in the
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center of Fig. 3, for the target item v2, we can obtain N2 (v2) = {v3, v5, v6, v1, v4}
and the corresponding w = {2, 2, 2, 1, 1}, as shown on the left of Fig. 3. The 1-
neighbors of v2 are {v6, v1, v3, v4, v5} with co-occurrence times {2, 1, 1, 1, 1}. We
also show the global graph of v2 on the right of Fig. 3.

Fig. 3. Sessions that contain v2. The 2-neighbors of v2 are {v3, v5, v6, v1, v4} with co-
occurrence times {2, 2, 2, 1, 1}. The global graph of v2 is also shown on the right.

Information Propagation: We learn the weights of items in N2 (v2) for each
item vi in the session. First, we can obtain the representation of current session
s ∈ R

d, which is obtained by computing the average of El:

s =
1

|El|
∑

mi∈El

mi. (5)

To model the feature interactions, we repeat s in the first dimension L times
to obtain s

′ ∈ R
L×d, and then repeat s

′
n times in the second dimension to

obtain s
′′ ∈ R

L×n×d, and model the feature interactions between each item with
co-occurrence information w as follows:

a4 = [(s
′′ × N) || sigmoid(w)]W5,

a5 = mean(a4N,−2),
a6 = γa5 + El,

(6)

where W5 ∈ R
(d+1)×1, a4 ∈ R

L×n×1 models the attention scores of the items in
N , a4N ∈ R

L×n×d , a5 ∈ R
L×d represents the average of N , and a6 ∈ R

L×d is
the information propagated from N (a set of neighbours), please note that only
a6 will be used in subsequent stages, and it is calculated by a4 and a5. γ is a
hyperparameter to be tuned. Notably, for matrix X ∈ R

a×b×c, mean(X,−2) ∈
R

a×c.
As we mentioned in the introduction, in order to adapt the model to the

embedding quality improvement, we only reserve the top-k scores in a4 in the
second dimension for the same purpose in the previous section, and we calculate
k when the training epoch is larger than epochg as follows:

k = n − epoch//rate, epoch ≥ epochg, (7)

where // is the division operation, for example, 5//2 = 2 and 7//2 = 3.
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Information Aggregation: We aggregate El and a6 with W6 ∈ R
2d×d to

obtain the representation Hg ∈ R
L×d of items in the current session graph:

Hg = dropout([a6 ||El]W6). (8)

3.5 Session Representation Learning and Training

With W7 ∈ R
2d×d, we can obtain a representation H ∈ R

L×d by aggregating
Hl ∈ R

L×d and Hg ∈ R
L×d, and we also add a learnable position embedding

matrix P = [p1, p2, ..., pL] ∈ R
L×d to suggest the importance of each item:

H = tanh([(Hl + Hg) ||P ]W7). (9)

Following previous works [8,16], we use a soft-attention mechanism and
multi-head attention [10] to learn the corresponding weights ω∗ ∈ R

L×1 of each
item in H, and obtain the final session representation E ∈ R

1×d as follows:
ωk = sigmoid(HW k

8 + s′W k
9 + bk)qk,

E =
1

K

K∑

k=1

(

L∑

i=1

ωk�
i Hi),

(10)

where K is the number of heads, W ∗
8 ,W ∗

9 ∈ R
d×d, and q∗ ∈ R

d×1, b∗ is the bias
and � denotes the transpose of the vector or the matrix.

We obtain the interaction probability ŷ ∈ R
m of each item in M , and adopt

binary cross-entropy loss function with one-hot ground truth y ∈ R
m as follows:

ŷ = softmax(EM�),

L(ŷ) = −
m∑

i=1

yilog(ŷi) + (1 − yi)log(1 − ŷi).
(11)

4 Experiments

We have conducted experiments to answer the following questions:

• RQ1: How well does MFIL outperform state-of-the-art models?
• RQ2: Do the transitions between inconsecutive items improve the perfor-

mance?
• RQ3: What is the role of each structure in the proposed model?
• RQ4: Can the proposed learning strategy enhance the performance?

Datasets. We conduct experiments using two million-scale datasets, Diginetica1

and JDATA2, for the category information in these two datasets is more diverse,
compared with Yoochoose, and we abandoned it for the same reason. Please
note that JDATA is also a large-scale session-based recommendation dataset.
1 https://competitions.codalab.org/competitions/11161.
2 https://jdata.jd.com/html/detail.html?id=8.

https://competitions.codalab.org/competitions/11161
https://jdata.jd.com/html/detail.html?id=8
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The average number of brands in the interaction sequence is 1.95 for Diginet-
ica and 2.54 for JDATA; each training sample is truncated at length 20. We
retain the first one million records in JDATA to generate JD-1 m dataset due to
computing power limitations. Following previous works [22], we also simulate a
sparse dataset JD-100 k through retaining the first 100 k records in the origin
JDATA dataset. We took the earlier 90% and subsequent (most recent) 10% user
behaviors as the training and test set, respectively. We search the parameters
on a validation set which is a random 10% subset of the training set. Statistical
details are shown in Table 1.

Table 1. Dataset statistics (after preprocessing)

Dataset Train sessions Test sessions Items Avg. length

Diginetica 167,506 18,842 33,444 4.36

JD-1m 533,981 60,484 66,976 4.96

JD-100k 43,411 5126 12,346 4.62

Baselines. Due to the space limitation, we ignore the classic models like RNN
or KNN, which had been fully explored in [16,31]. We compare our method with
classic method SR-GNN and three latest state-of-the-art models:

• SR-GNN [22]: It applies a gated graph convolutional layer to obtain item
embeddings, followed by a self-attention of the last item to combine long-term
and current preferences of sessions to predict users’ next actions.

• FGNN [10]: It models the item transitions via a weighted attention graph
layer, propose a readout function to learn the embedding of the whole session,
and incorporates the edge weight of neighboring items.

• DGTN [31]: It models item transitions within not only the current session
but also the neighbor sessions. They are integrated into a graph, and then the
embeddings are fed into the fusion function to obtain the final embedding.

• GCE-GNN [16]: Similar to DGTN, it exploits item transitions over all
sessions in a more subtle manner for inferring the preference of the current
session and aggregates the representations with a soft-attention mechanism.

Evaluation Metrics and Parameter Settings. By following previous base-
lines, we adopt the same widely used metrics P@N and M@N [22]. For our model,
we use the Adam optimizer with the initial learning rate of 10−3 and the linear
schedule decay rate of 0.1 for every 3 epochs. The dimension of the latent vectors
is set to 64, and the batch size is set to 128. We set the number of neighbors and
the maximum distance of adjacent items ε to 12 and 2, respectively. The epochl

and epochg are set to 4. The rate used in Eq. (4) is set to 0.01, and the β0 is
set to 0.2, γ is set to 0.2. The dropout ratio is set to 0.2 for Diginetica and 0.5
for JDATA, respectively. For the other baselines, to make a fair comparison, we
adjust the hyperparameters (e.g., learning rate, dropout ratio, and numbers of
attention heads) to obtain a better result.
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4.1 Performance Comparisons (RQ1)

In Table 2, the best result in each column is marked in bold, and the second-best
one is ‘underlined’. ‘Impro.(%)’ denotes the percentage improvement of MFIL
with respect to the best performing value in the baselines.

Table 2. Recommendation performance. All numbers are in percentage

Diginetica JD-1 m JD-100 k

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20

SR-GNN 41.24 14.77 54.64 16.15 28.82 13.00 37.41 14.09 18.83 5.69 21.48 9.07

FGNN 40.58 13.62 53.18 16.03 26.66 10.04 34.24 11.63 22.27 8.98 27.63 11.70

DGTN 46.21 15.89 61.21 16.54 30.28 10.41 41.17 11.72 24.80 10.08 31.16 12.31

GCE-GNN 45.71 16.37 61.84 17.38 32.78 11.35 43.32 12.70 25.63 11.61 32.85 12.01

MFIL 51.44 19.88 69.91 21.09 35.53 15.67 45.27 16.73 29.75 13.83 37.69 14.39

Impro.(%) 11.3 21.4 13.0 21.3 8.4 20.5 4.5 18.7 16.1 19.1 14.7 16.9

MFIL achieved the best performance on all the datasets compared with base-
lines, which demonstrates its superiority. On average, MFIL improved GCE-
GNN by 11.9% (10.73%) in terms of P@10(20), and 19.3% (18.9%) in terms
of M@10(20). We observe that out MFIL surpasses the classic method SR and
FGNN, which means only modeling the current session are inadequate to obtain
a desirable result. Moreover, we notice that though considering the neighbor
sessions, DGTN and GCE-GNN are still challenged by MFIL in all cases, which
actually justifies our motivations mentioned in the contribution.

We have stated the disadvantages of the four baseline models in the intro-
duction and Subsect. 2.2, and the experiment results can validate our analysis.
GCE-GNN exhibited the second-best performances more than others, probably
because it did not consider the transitions of inconsecutive items and fail to
model the feature interactions, which has been explored in MFIL. The DGTN
slightly performed worse than GCE-GNN, except on two metrics, but still sig-
nificantly outperformed SR-GNN and FGNN in most cases. Different from our
model, it did not learn the transitions of inconsecutive items in the target session.

Different from MFIL, FGNN did not consider the items in the neighbor
session and did not beat SR-GNN in the first two datasets, but performed better
than SR-GNN in the sparse datasets JD-100k. For SR-GNN, it only obtained
the second-best performance on JD-1m in terms of M@10(20). Different from
these methods, our approach learns the transitions of inconsecutive items, and
explores more effective structures with the help of a different learning strategy,
leading to better performance.

4.2 Impact of Side Information (RQ2)

Next, we conduct experiments on the first two large datasets, Diginetica and
JD-1m, to evaluate the effectiveness of learning the transitions of inconsecutive
items by leveraging item side information. We design four contrast models:
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• MFIL w/o side information: It does not use the right matrix in Fig. 2 and
only considers the self-loop, in-come, out-come, and in-out relationship.

• MFIL summation: It only utilizes the right matrix in Fig. 2 by summation
and does not consider the feature interaction in Eq. (1).

• MFIL w/o share: The in-out and ‘adjacent’ relationship do not share the
same weight matrix in Eq. (2), so there will be five Wα

∗ matrices for the
self-loop, in-come, out-come, in-out, and ‘adjacent’ relationship.

• MFIL interaction: It uses both the two matrices in Fig. 2, and when modeling
the feature interactions in Eq. (1), it combines the item embedding El and
side information embedding I to obtain a1 used in Eq. (1).

Fig. 4. Recommendation performance of MFIL with different structural designs in
RQ2. All the numbers are percentage numbers with % omitted

Figure 4 shows the comparison of performance between different contrast
models. The original MFIL achieves better performance. Comparing with MFIL
w/o side information and MFIL summation, the original MFIL performs better
on two datasets, which demonstrates the importance of side information and
the ‘adjacent’ relationship shown in Fig. 2. The original MFIL also outperforms
the last two models, MFIL w/o share and MFIL interaction. Therefore, it is
less effective to introduce more parameters to describe the relationship between
items, or combine the side information and learn the transitions of inconsecutive
items. These results show that the original MFIL that considered about both
the two kinds of relationships is more effective in balancing them.

Some possible reasons are as follows: 1) MFIL w/o side information per-
formed worse than MFIL summation in all cases, so the ‘adjacent’ relationship
was important for information propagation; 2) For MFIL interaction and MFIL
w/o share, MFIL w/o share performed worse performance than the original
MFIL. MFIL interaction’s performance was even worse than that of MFIL w/o
side information. So, integrating the side information into the interaction may
be less efficient.
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4.3 Impact of Structures (RQ3)

Then, we conduct experiments on the first two datasets, to evaluate the effective-
ness of the proposed hierarchical structures in two learning modules. Specifically,
we design three contrast models:

• MFIL w/o session: In the session learning module, it considers two kinds of
relationships in Fig. 2 but does not use the MLP or concatenation operations
in Eq. (1), which is similar to [16,31]. It only obtains a1 ∈ R

L×L×d:

a1 = (E1
l × E2

l ) (12)

• MFIL w/o global: In the global learning module, it connects the embedding
of items, with W

′
5 ∈ R

(2d+1)×1, the average of neighbor embedding and the
co-occurrence information to obtain the a4 used in Eq. (6) as follows:

a4 = [s
′′ ||N || sigmoid(w)]W

′
5 (13)

• MFIL single head: In the session representation module, we do not use the
multi-head attention mechanism in (10).

Fig. 5. Recommendation performance of MFIL with different structural designs in RQ3
and RQ4. All the numbers are percentage numbers with % omitted

Figure 5 (a) shows the comparison of performance between different contrast
models. The original MFIL achieved better performance and demonstrated the
superiority of learning feature interactions with hierarchical structures. The core
idea of the two learning modules is to obtain better weight scores of the neighbor
items in the current session (or neighbor sessions), and we introduced the feature
interactions to model the weight scores more precisely. Compared with the first
two methods, MFIL single head usually had better performance for session-
based recommendation. This result demonstrated the effectiveness of aggregating
different representations from different levels. The first two methods obtained
similar performance, indicating that they were equally important.
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4.4 Impact of Learning Strategy (RQ4)

We conducted experiments on two large datasets and reported the evaluation
score at the end of each epoch to evaluate the effectiveness of the proposed
learning strategy:

• Learning w/o session: In the session learning module, it ignored embedding
quality and did not calculate the β in (3).

• Learning w/o global: In the global learning module, it simply reserved all
scores in a4 and ignored the k in Eq. (7).

• MFIL w/o residual: It ignored the residual connection operation in Eq. (3)
and El when computing a6 in (6).

Figure 5 (b) shows the comparison between different contrast models. Com-
pared with the first two methods, the proposed learning strategies can improve
the capability of MFIL. This actually justified our motivation to adopt the model
to the embedding quality improvement. We also found that even in the later stage
of training (16th epoch or later in JD-1m), the original MFIL could still optimize
parameters and achieved better performance, whereas the third model began to
overfit in the 10th epoch and stopped in the 13th epoch, as shown in Fig. 6. For
MFIL w/o residual, we found that it is reasonable to introduce the proposed
learning strategy.

Fig. 6. Recommendation performance of MFIL with different learning strategies. All
the numbers are percentage numbers with % omitted

5 Conclusion

In this paper, we propose a novel model, termed as MFIL, which learns the tran-
sitions of inconsecutive items and models feature interactions when propagating
information. The experimental results show that it is reasonable to build adja-
cent matrices via item side information, and the hierarchical structure is able
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to learn the feature interactions. We also adopt a learning strategy to enhance
the model capability, which can enhance the learning capability of out model.
Extensive experiments demonstrate the superiority of MFIL.

In the future, we plan to find more methods to fuse different representa-
tions [2,12]. We also try to use multiple attributes, such as price or creation time.
We will also explore knowledge graphs [8] and transformers [3,24] to improve
the performance and efficiency of the proposed model, as well as use the items
attribute [27,32] to better propagate information.
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