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Abstract. Variational Autoencoder (VAE)-based collaborative filtering
(VAE-based CF) methods have shown their effectiveness in top-N rec-
ommendation. Mult-VAE is one of them that achieves state-of-the-art
performance. Multinomial likelihood and additional hyperparameter β
on the KL divergence term controlling the strength of regularization
make Mult-VAE a strong baseline. However, Mult-VAE uses non-linear
MLPs as its encoder and decoder, which will boost the performance on
the dense datasets but degrade the performance on the sparse datasets
in our experiments. While recent studies shed light on the non-linearity
for modeling the relationships between users and items, they ignore the
importance of linearity between users and items, especially on the sparse
datasets. To bridge the gap and consider both the linearity and non-
linearity user-item relationships, we design a hybrid encoder that incor-
porates both linearity and non-linearity, and use a linear decoder for
VAE-based CF, which can achieve competitive performance on both
sparse and dense datasets. Moreover, most VAE-based CF methods only
consider the relationships between users and items but ignore the rela-
tionships between items for improving the performance in collabora-
tive filtering. To overcome this limitation, we try to incorporate item-
item relationships into VAE-based CF with the help of cosine similarity
between items. Unifying these relationships into VAE-based CF forms
our proposed method, Variational Autoencoder with Multiple Relation-
ships (MRVAE) for collaborative filtering. Extensive experiments on sev-
eral dense and sparse datasets show the effectiveness of MRVAE.
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1 Introduction

Recommender Systems (RSs) are widely used in many platforms, such as e-
commerce, music apps, short videos platform and so on. RSs can help recommend
items to users according to their personalized preferences. Collaborative filtering
(CF) is an effective recommendation method for mining users’ personalized pref-
erences [15], given the implicit feedback data of user, e.g., click and purchase.
CF methods mainly use the similarity pattern (relationships) across users and
items for recommendations [10]. Recently, top-N recommendation with CF has
become prevalent in current researches [5,19].

Among the top-N recommendation CF methods, Variational Autoencoder
(VAE)-based methods, such as Mult-VAE [10], have achieved state-of-the-art
performance. Mult-VAE resembles the structure of common VAE but with some
changes: (1) additional hyperparameter β is introduced to the Kullback-Leibler
(KL) divergence term for controlling the regularization; (2) multinomial likeli-
hood is used for model training. While these changes are helpful in boosting
the recommendation performance in dense datasets, where each user has multi-
ple interactions on average, Mult-VAE achieves a poor performance in relatively
sparse datasets [4]. We attribute the performance degradation in sparse datasets
to the improper design of model structure: non-linear encoder and decoder with
neural networks. The non-linear structure makes Mult-VAE capture only the
non-linearity relationships between users and items, but ignore the linearity
relationships between users and items, which are important when the data is
sparse [11]. Recent study [13] shows that it is not wise to adopt non-linear
MLPs as the interaction function between users and items, compared with the
dot product, which indicates that the non-linear decoder used in Mult-VAE may
be burdensome and unnecessary and a linear decoder is desired.

While Mult-VAE considers only the relationships between users and items,
other relationships are lack of mining, e.g., item-item relationships. Item-
item relationships are proved significant for performance improvement in some
neighbor-based CF methods [1,15,16]. For instance, item-based CF is effective
in early rating prediction task [16]. They use the cosine similarity, the Pearson
correlation coefficient, or the ajusted cosine similarity to compute the similarity
between items. The calculated item-item similarity is used to select the most
similar items for rating prediction of the target item. We argue that such item-
item similarity can also be used in VAE-based CF to boost the recommendation
performance.

To combine the linearity and non-linearity user-item relationships, and item-
item relationships into a unified VAE-based framework, we propose a VAE-based
CF model called Variational Autoencoder with Multiple Relationships (MRVAE)
for CF. Firstly, we design a hybrid encoder that combines linear structure and
non-linear structure in parallel with self-attention. Then we simplify the non-
linear MLPs of the decoder in Mult-VAE into a linear single-layer neural network
that contains merely the weight and bias. Finally, we use the cosine similarity
to calculate the item-item similarity and select the top-M most similar items of
each interacted item for model training. To the best of our knowledge, MRVAE
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is the first VAE-based CF that considers these three relationships at a unified
model.

To sum up, the main contributions of this paper are summarized as follows:

– We propose a model termed MRVAE to incorporate the linearity and non-
linearity user-item relationships, and item-item relationships in a unified
model.

– We design an asymmetric model structure, including a hybrid encoder and a
linear decoder.

– We try to incorporate item-item relationships into MRVAE through calcu-
lating the item-item similarity with the cosine similarity, and selecting the
top-M most similar items of each interacted item for model training.

– We perform extensive experiments to show the effectiveness of MRVAE, com-
pared to other variants of VAE-based CF methods and other state-of-the-art
recommendation methods.

2 Preliminary

In this section, we will first introduce the notations used in this paper. Then,
the problem definition is presented. Finally, the basics of Mult-VAE will be
introduced.

2.1 Notations

Notations used in this paper are summarized in Table 1. We will use bold lower-
case letter to denote the vector, and bold upper-case letter to denote the matrix
by default. Further notations will be introduced when necessary in the later
section.

2.2 Problem Definition

We consider the implicit feedback setting as in many other literatures for top-N
recommendation. Our problem of top-N recommendation can be formulated as
follows: given a user u ∈ U and u’s interacted items, denoted by Nu, the goal is to
design a personalized recommendation method that can recommend the top-N
items user u most probably prefers among items user u has not interacted with,
i.e., I\Nu. For the binary matrix X ∈ R

|U|×|I|, a positive value (i.e., 1) of its
entry indicates that there is an interaction between the user and the item, while
a value 0 indicates the opposite.

2.3 Basics of Mult-VAE

Model Description. Mult-VAE is originally a generative model, which models
the generative process of user’s interaction data. As a latent factor model, Mult-
VAE assumes that the user’s interaction data is generated from a latent variable.
Figure 1 shows the graphical model of Mult-VAE. Taking user u as an example,
the generative process of u’s interaction data can be described as follows:
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Table 1. Notations.

Symbols Explanation

U The set of users

I The set of items

X User-item interaction matrix, a sparse binary matrix

xu Interaction vector of user u, xu ∈ R
|I|

zu Latent vector of user u

Fig. 1. Graphical model of Mult-VAE [10]. The shaded nodes are observed variables
while the transparent nodes are latent.

(1) The model samples a latent representation of user u, zu, from a Gaussian
prior;

(2) A non-linear function fθ (·) (usually MLPs), with zu as input, is used to
produce a probability πu over |I| items;

(3) The user u’s interaction vector, xu, is drawn from the multinomial distribu-
tion parameterized by πu.

Specifically, the generative process xu can be formulated as follows:

zu ∼ N (0, I), πu = softmax(fθ (zu)), xu ∼ Mult(nu,πu). (1)

nu denotes the number of interacted items of user u. Mult(nu,πu) represents the
multinomial distribution parameterized by nu and πu. The multinomial likeli-
hood for user u is:

log pθ (xu | zu) c=
∑

i

xui log πui. (2)

xui and πui are the i’s element in xu and πu, respectively.

Variational Inference. According to the Variational Inference [6], Mult-VAE
introduces a variational distribution qφ(zu | xu) with parameter φ to help learn
the model parameters θ in Eq. (1). Specifically, qφ(zu | xu) is used to approxi-
mate the intractable posterior distribution pθ (zu | xu), and the Evidence Lower
BOund (ELBO) can be derived as follows:

L(θ,φ;xu) = Eqφ (zu|xu)[log pθ (xu | zu)] − β · DKL(qφ(zu | xu)‖pθ (zu)), (3)
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where log pθ (xu | zu) refers to the negative reconstruction error, DKL(·‖·) refers
to the KL divergence between two distributions, pθ (zu) refers to the prior distri-
bution, and β is introduced to control the strength of the regularization, i.e., the
KL divergence term DKL(qφ(zu | xu)‖pθ (zu)). To calculate Eq. (3) analytically,
we need to calculate DKL(qφ(zu | xu)‖pθ (zu)) and Eqφ (zu|xu)[log pθ (xu | zu)],
respectively. When the prior pθ (zu) is a standard Gaussian distribution, the
KL divergence term DKL(qφ(zu | xu)‖pθ (zu)) can be calculated analytically.
Eqφ (zu|xu)[log pθ (xu | zu)] can be calculated with Eq. (2). However, zu needs
to be sampled from the variational distribution qφ(zu | xu) and the sampling
process is non-differentiable, which blocks the backpropagation with gradient
descent. To solve the problem, the reparameterization trick [9,14] is introduced:
zu = μφ(xu)+ε�Σφ(xu). μφ(xu) and Σφ(xu) together are the encoder of VAE,
implemented by non-linear MLPs. They produce the mean vector and variance
vector (diagonal elements of the covariance matrix) of qφ(zu | xu). ε is sampled
from standard Gaussian N (0 | I). The reparameterization trick samples zu in a
novel way and the gradient with respect to φ can be taken since ε is not required
to be optimized. So far, stochastic gradient descent can be applied to Eq. (3)
to learn model parameters φ and θ. After the parameters φ and θ are learned,
given a user interaction vector xu, we can reconstruct it with Mult-VAE, and
items in I\Nu with the top-N highest scores are recommended to the user.

3 MRVAE

In this section, we will firstly introduce the hybrid encoder and linear decoder.
We then detail how to incorporate item-item relationships into our model.

3.1 Hybrid Encoder and Linear Decoder

While Mult-VAE uses a non-linear encoder and a non-linear decoder that con-
sider the non-linearity between users and items, we instead design a model struc-
ture that considers both the linearity and non-linearity relationships between
users and items, so that our model can adapt to both sparse and dense datasets.

As mentioned in Sect. 2.3, the encoder of Mult-VAE consists of a mean net-
work and a variance network that output the mean and the diagonal elements of
the covariance matrix of the variational distribution, respectively. In MRVAE,
we use a single-layer neural network to serve as the variance network:

log Σφ(xu) = WT
Σxu + bΣ . (4)

WΣ ∈ R
|I|×K and bΣ ∈ R

K are weight and bias of the variance network, where
K is the latent dimension.

The mean network consists of two parallel networks, i.e., the linear network
and the non-linear network. The linear network has the same structure as the
variance network, described as follows:

μl
φ(xu) = Wl

μ

T
xu + bl

μ. (5)
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Fig. 2. The model structure of MRVAE. Inside the dotted rectangle is the backbone of
MRVAE that incorporates the linearity and non-linearity user-item relationships. The
‘item-item’ module introduces item-item relationships.

Wl
μ ∈ R

|I|×K and bl
μ ∈ R

K are weight and bias of the linear network. The
non-linear network is a two-layer MLPs with one hidden layer and the network
structure is: |I| → Kh → K, where Kh denotes the hidden dimension of the
hidden layer, described as follows:

μn
φ(xu) = Wn2

μ
T (σ(Wn1

μ
Txu + bn1

μ )) + bn2
μ . (6)

Wn2
μ ∈ R

Kh×K and Wn1
μ ∈ R

|I|×Kh refer to the weights of the non-linear
network, bn2

μ ∈ R
K and bn1

μ ∈ R
Kh are the biases. σ refers to the non-linear

activation function, e.g., tanh. To combine the linear network and the non-linear
network into a unified mean network, we resort to the self-attention mechanism.
Specifically, the final mean vector of user u is obtained by the weighted sum of
μl

φ(xu) ∈ R
K and μn

φ(xu) ∈ R
K :

μu = αl · μl
φ(xu) + αn · μn

φ(xu), (7)

where αl and αn can be calculated as follows:

αl =
exp(γl)

exp(γl) + exp(γn)
,

αn =
exp(γn)

exp(γl) + exp(γn)
.

(8)

According to the self-attention mechanism, γl and γn are expressed as follows:

γl = qT tanh(Wattμ
l
φ(xu) + batt),

γn = qT tanh(Wattμ
n
φ(xu) + batt).

(9)

qT ∈ R
K×1 is a learnable global query vector for self-attention. Watt ∈ R

K×K

and batt ∈ R
K are weight and bias of the self-attention network, respectively.
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After obtaining the mean vector and the variance vector, we can adopt repa-
rameterization trick to calculate zu. Then zu is fed into a linear decoder, which
can be expressed as follows:

fθ (zu) = WT
θ zu + bθ . (10)

Wθ ∈ R
K×|I| and bθ ∈ R

|I| are the weight and bias of the decoder, respectively.
The decoder is a simple single-layer MLP and is equivalent to dot product with
an additional bias.

The model structure of MRVAE is not a symmetric one as in Mult-VAE.
Instead, we incorporate linearity user-item relationships in both the encoder
and the decoder, and incorporate non-linearity user-item relationships in the
encoder only. In the experiments, we show that such a model structure can
achieve superior performance. Figure 2 shows the model structure of MRVAE.

3.2 Incorporating Item-Item Relationships

In this subsection, we detail the process of incorporating the item-item relation-
ships into our model.

Some early works [16] use cosine similarity to calculate the item-item similar-
ity between the target item and the rated items by the user for rating prediction.
To predict the rating of a target item of the user, the ratings of the rated items
of the user and their similarities are combined through weighted sum. However,
in MRVAE, which is a latent factor model for top-N recommendation, we take a
different strategy: we select the top-M most similar items to each interacted item
of the user to help model training. During training, for each interacted item of
the user, the selected top-M most similar items together with their similarities
to the interacted item are used to more accurately reconstruct the preference
score of each interacted item. To clearly show our strategy, we adapt Eq. (2) to
our strategy as follows:

log pθ (xu | zu) c=
∑

i

xui

⎛

⎝log πui + η
∑

j∈Ni

sij log πuj

⎞

⎠ . (11)

η is a hyperparameter used to control the strength of item-item relationships
and sij denotes the cosine similarity between item i and item j. Specifically, sij

is expressed as follows:

sij =
X∗,i · X∗,j

|X∗,i| · |X∗,j | , (12)

where X∗,i and X∗,j denote the interaction vectors of item i and item j, respec-
tively.

3.3 Discussion

Firstly, the linearity user-item relationships are reflected by both the encoder and
the decoder, especially by the decoder since the decoder directly reconstructs the



MRVAE 23

user’s interaction vector. If we regard the weights Wθ as the item embeddings
with each column representing an item’s embedding, the decoder is equivalent
to the dot product between the user embedding and item embedding, with an
additional bias term. This is in line with the finding in [13] that dot product
is a better approximation of the interaction function. As for the encoder, we
integrate the linear structure and the non-linear structure to let the model itself
learn when to focus on the linearity relationships more and when to concentrate
more on the non-linearity relationships, between users and items.

Secondly, while the design of encoder and decoder considers the linearity and
non-linearity user-item relationships, we incorporate item-item relationships by
means of the multinomial likelihood. The top-M most similar items measured by
cosine similarity of each interacted item of the user can provide more information
about the preferences of the user, thus can filter out the less preferred items and
give more attention to the preferred items. In the experiments, we empirically
choose a small value for M because a larger M will introduce some ‘negative’
items that the user dislikes.

4 Experiments

In this section, we empirically evaluate our method on four datasets in Top-N
recommendation task. We firstly show the experimental settings, followed by the
performance comparison of MRVAE with other competing methods. Ablation
study and hyperparameter analysis are also conducted.

4.1 Experimental Settings

Datasets and Evaluation Metrics. We use four public datasets that are
commonly used in the CF methods for implicit feedback: ML-1M [2], Yelp20181,
Amazon-Book and Video-Games. ML-1M, which contains one million explicit
ratings, is one of the version of MovieLens datasets2. We binarize the explicit
ratings by regarding ratings of four or higher as implicit feedback. Yelp2018 is
adopted from the 2018 edition of the Yelp challenge, where the local businesses
are viewed as items [19]. Amazon-Book and Video-Games are collected from
the Amazon-review datasets [3]. Yelp2018 and Video-Games are sparse datasets
since they have a small average number of user’s interactions, while Amazon-
Book and Ml-1M are relatively dense datasets. Table 2 shows the statistics of
the datasets. For each user, 80% of the interactions are used for training and
the remaining 20% of interactions are used for testing. From the training set, we
can select 10% of interactions as validation set to tune hyperparameters. We use
recall@20 and ndcg@20 computed by the all-rank protocol, i.e., all items that
are not interacted by a user are candidates, as the evaluation metrics.

1 https://www.yelp.com/dataset.
2 http://grouplens.org/datasets/movielens/1m/.

https://www.yelp.com/dataset
http://grouplens.org/datasets/movielens/1m/
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Table 2. Statistics of the experimented datasets.

Dataset #Users #Items #Int. Avg. #Int. per user Density

ML-1M 6, 027 3, 525 574, 155 95 0.02703

Yelp2018 31, 668 38, 048 1, 561, 406 49 0.00130

Amazon-Book 52, 643 91, 599 2, 984, 108 57 0.00062

Video-Games 24, 072 10, 622 174, 989 7 0.00068

Baseline Methods. Since MRVAE is a VAE-based CF method, we com-
pare MRVAE with several VAE-based CF variants. Moreover, we also compare
MRVAE with matrix factorization and graph-based CF methods. We choose the
MF-BPR [12] as the representative of matrix factorization method and Light-
GCN [4] as the representative of the graph-based CF method. We also addition-
ally include a popularity-based, non-personalized method ItemPop. They are
introduced as follows:

– ItemPop This is a non-personalized recommendation method that recom-
mends items based on how many users have interacted with the item.

– MF-BPR [12] This is a matrix factorization method that resorts to the
Bayesian personalized ranking loss for model learning.

– LightGCN [4] This is a state-of-the-art graph convolutional network (GCN)-
based CF method. It is the lighter version of NGCF [19]. By propagating the
embeddings of users and items on the user-item bipartite graph through graph
convolution, multiple relationships are implicitly captured in LightGCN.

– Mult-VAE [10] This is the base model of our proposed method. It uses non-
linear encoder and decoder. Only user-item relationships are considered in
Mult-VAE.

– EVCF [7] This is an enhancing VAE model for CF. It adopts flexible prior
and gating mechanism, to enhance the Gaussian prior and encoder in the
original Mult-VAE, respectively.

– RecVAE [17] This is an improved model of Mult-VAE. It adds multiple
novelties to Mult-VAE and improves the recommendation performance sig-
nificantly compared with Mult-VAE.

– BiVAE [18] This is a VAE-based CF method that uses two encoders to encode
user and item interaction vectors, respectively, and uses a simple decoder to
reconstruct the user interaction vectors for recommendations.

Hyperparameter Settings. For fair comparison, the embedding size or latent
dimension of MRVAE and all the latent factor models of the competing methods
are set to 64. For the VAE-based variants, we set the hidden dimension to 128
if a hidden layer exists. We tune the number of hidden layers among [0, 1, 2],
except for RecVAE that has a complicated encoder. For example, we adopt the
model architecture: 128 → 64 → 128, for Mult-VAE. All the models are trained
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with Adam [8]. The learning rates of all the methods are tuned among [1e-3, 5e-
4, 1e-4]. The number of graph convolution layers of LightGCN is tuned among
[2, 3, 4]. For MRVAE, we use MLPs with structure 64 → 64 for the non-linear
mean network to make MRVAE be in the same magnitude of parameters as
Mult-VAE. For simplicity, we set β to 0.8 without KL annealing for MRVAE.
The hyperparameter η is tuned among 0–100 and M is tuned among 5–100.

4.2 Performance Comparison

The experiment results of MRVAE and all other competing methods are shown
in Table 3. The results show that MRVAE surpasses all the competing meth-
ods in terms of the two evaluation metrics, on sparse and relatively dense
datasets. Firstly, MRVAE outperforms the traditional methods ItemPop and
MF-BPR. Secondly, MRVAE outperforms VAE-based variants, in particular,
by a large margin over Mult-VAE on four datasets (31.98% on recall@20 and
35.01% on ndcg@20, on average). EVCF, RecVAE and BiVAE achieve a better
performance than Mult-VAE, but by a relatively smaller margin, compared with
MRVAE’s performance, which indicates the significance of mining more relation-
ships among different entities in CF. Thirdly, MRVAE outperforms the strong
baseline LightGCN on four datasets, which shows that MRVAE can capture
more important relationships for recommendations.

4.3 Ablation Study

We conduct some experiments on the experimented datasets to justify the effec-
tiveness of the components of MRVAE, which include the hybrid encoder, the
integration of the linearity and non-linearity user-item relationships, the incorpo-
ration of item-item relationships. Five variants of MRVAE are considered, specif-
ically, variant (i) is generated by removing the linear mean network; variant (ii)

Table 3. The comparison of over performance of MRVAE and competing methods. The
best results are highlighted in bold. The second best ones are underlined. “%Improve”
denotes the performance improvement of MRVAE over Mult-VAE.

Dataset ML-1M Yelp2018 Amazon-Book Video-Games

Method Recall ndcg Recall ndcg Recall ndcg Recall ndcg

ItemPop 0.0196 0.0219 0.0125 0.0101 0.0051 0.0044 0.0403 0.0188

MF-BPR 0.0588 0.0527 0.0485 0.0392 0.0351 0.0267 0.1120 0.0492

LightGCN 0.0571 0.0528 0.0649 0.0530 0.0411 0.0315 0.1362 0.0596

Mult-VAE 0.0553 0.0532 0.0577 0.0465 0.0387 0.0297 0.1193 0.0516

EVCF 0.0564 0.0492 0.0586 0.0472 0.0403 0.0312 0.1352 0.0584

RecVAE 0.0575 0.0526 0.0557 0.0462 0.0424 0.0332 0.1271 0.0561

BiVAE 0.0445 0.0432 0.0621 0.0504 0.0401 0.0313 0.1290 0.0574

MRVAE 0.0595 0.0553 0.0704 0.0580 0.0644 0.0527 0.1526 0.0691

%Improve 7.59% 3.95% 22.01% 24.73% 66.41% 77.44% 27.91% 33.91%
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Table 4. Experiment results of ablation study. Variant (i) denotes MRVAE with non-
linear encoder and linear decoder; Variant (ii) denotes MRVAE with linear encoder and
linear decoder; Variant (iii) denotes MRVAE with non-linear encoder and non-linear
decoder; Variant (iv) denotes MRVAE without incorporating item-item relationships.
Variant (v) denotes MRVAE with self-attention in the hybrid encoder replaced by
average pooling. See the text for more details.

Dataset ML-1M Yelp2018 Amazon-Book Video-Games

Variants Recall ndcg Recall ndcg Recall ndcg Recall ndcg

MRVAE 0.0595 0.0553 0.0704 0.0580 0.0644 0.0527 0.1526 0.0691

Variant (i) 0.0573 0.0532 0.0692 0.0573 0.0626 0.0508 0.1473 0.0665

Variant (ii) 0.0535 0.0525 0.0698 0.0580 0.0619 0.0503 0.1445 0.0659

Variant (iii) 0.0575 0.0521 0.0619 0.0496 0.0617 0.0509 0.1351 0.0589

Variant (iv) 0.0594 0.0549 0.0692 0.0571 0.0492 0.0379 0.1516 0.0681

Variant (v) 0.0581 0.0551 0.0691 0.0573 0.0638 0.0520 0.1481 0.0672

is generated by removing the non-linear mean network; variant (iii) is generated
by removing the linear mean network and transforming the linear decoder into
a non-linear decoder with network structure: 64 → 128 → |I|; variant (iv) is
generated by removing the item-item relationships; variant (v) is generated by
replacing self-attention in the hybrid encoder with average pooling. Variant (i)
verifies the hybrid encoder of MRVAE, variant (ii) and variant (iii) verify the
importance of integrating the linearity and non-linearity user-item relationships.
Variant (iv) verifies the effectiveness of item-item relationships. Variant (v) ver-
ifies the effectiveness of self-attention in the hybrid encoder. Experiment results
are shown in Table 4.

We have the following observations: (1) MRVAE outperforms all the variants
on four datasets, which indicates the necessity of fusing the linearity and non-
linearity user-item relationships, and item-item relationships; (2) the outperfor-
mance of MRVAE over variant (i) and variant (v) verifies the effectiveness of the
proposed hybrid encoder and the self-attention used in it; (3) in most cases, variant
(i) achieves better performance than variant (ii) and (iii), verifying our idea of inte-
grating the linearity and non-linearity user-item relationships; (4) the importances
of item-item relationships on different datasets vary, specifically, item-item rela-
tionships play an important role in Amazon-Book dataset but contribute less to
the performance improvement on other three datasets, by comparing MRVAE with
variant (iv); (5) comparing variant (ii) and variant (iii) shows that linearity user-
item relationships contribute more to the superiority of MRVAE on Yelp2018 and
Video-Games (sparse user interactions), but non-linearity user-item relationships
play a more important role on ML-1M and Amazon-Books (relatively dense user
interactions), which corresponds to the average number of interactions of users in
Table 2, i.e., datasetwith relatively dense user interactions favors non-linearity and
dataset with sparse user interactions favors linearity. We argue that dense dataset
with more ID features needs more powerful non-linear networks to learn while the
sparse dataset is the opposite.
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Fig. 3. The impact of M on the performance on Yelp2018 (left) and Video-Games
(right).

Fig. 4. The impact of η on the performance on four datasets. From left to right and
from top to bottom: ML-1M, Yelp2018, Amazon-Book and Video-Games.

4.4 Hyperparameter Analysis

In this subsection, we conduct experiments to explore the impact of the hyper-
parameters M and η on the recommendation performance in terms of recall@20
and ndcg@20.

Impact of M . Figure 3 shows the experiment results of MRVAE with different
M on Yelp2018 and Video-Games. We set M among [5, 10, 20, 40, 80, 100]. Usu-
ally, a small M can achieve the best performance, since a larger M will introduce
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some irrelevant item-item relationships which will hurt the performance instead,
e.g., we set M to 10 for Yelp2018 and Video-Games. Similar observations can
be found on ML-1M and Amazon-Book. Specifically, we set M to 5 for ML-1M
and Amazon-Book and omit their illustrations due to the page limit.

Impact of η. Figure 4 shows the experiment results on four datasets. The scales
of η on different datasets vary. On ML-1M, Yelp2018 and Video-Games, a small
value of η can achieve the best performance and a large η will degrade the
performance, especially on the ML-1M dataset. On the contrary, a relatively
larger value of η is favored on Amazon-Book. Specifically, the best η on ML-1M,
Yelp2018, Amazon-Book and Video-Games are 0.02, 0.08, 60 and 0.1, respec-
tively. These show that the contributions of item-item relationships to the per-
formance on different datasets vary. We conjecture that the linearity and non-
linearity user-item relationships are more important than item-item relationships
in ML-1M, Yelp2018 and Video-Games, for boosting the performance. Increas-
ing the influence of item-item relationships will instead make the linearity and
non-linearity user-item relationships fade away on these three datasets. While we
get the opposite conclusion on Amazon-Book, in which item-item relationships
dominate.

5 Related Works

5.1 VAE-Based CF Methods

In this subsection, we present some relevant VAE-based CF methods that make
top-N recommendation under the implicit feedback setting [7,10,17,18]. Mult-
VAE is the pioneer work that extends VAE to CF for implicit feedback. The
multinomial likelihood and hyperparameter β on the KL divergence term are
two novel contributions of Mult-VAE, which are adopted by later VAE-based CF
methods [17], including our proposed MRVAE. The work proposed by [7] uses
a more flexible prior to replace the original standard Gaussian distribution, and
uses gated linear units to deepen the neural networks of encoder and decoder.
RecVAE [17] proposes several novelties for improving Mult-VAE, including a
sophisticated encoder, a novel composite prior distribution, a new approach to
setting the hyperparameter β and a novel approach for training the model. Note
that RecVAE also proposes to use a linear encoder, but it does not consider the
linearity in the encoder and does not incorporate item-item relationships into the
model, compared with MRVAE. In [18], the authors propose to use two encoders,
user- and item-based, parameterized by neural networks and the decoder can
take any differentiable function, e.g., inner product. While two encoders are
used, they do not consider the combination of the linearity and non-linearity
user-item relationships as MRVAE. Our proposed MRVAE differs from these
VAE-based CF methods in that we focus on mining more relationships across
users and items, to further improve the recommendation performance.
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5.2 Other CF Methods

Latent factor models still dominate the CF methods family [4,11,12,19]. They
can roughly divided into the matrix factorization (MF) models [11,12] and mod-
els with more powerful encoder, e.g., graph-based CF methods [4,19]. MF models
project the user/item IDs into embeddings, then use dot product to calculate
the preference score on item for user. Point-wise loss [11] or pair-wise loss [12]
are widely used in these methods. While MF models only consider the pattern
between users and items, graph-based CF methods implicitly incorporate the
user-user, item-item and user-item relationships into the model, by conducting
multi-layer graph convolution on the user-item bipartite graph [4,19]. Though
multiple types of relationships are considered in the graph-based CF methods,
some relationships between entities may be harmful for model learning since
these relationships are incorporated in an implicit manner, without carefully
distinguishing the helpful ones from all the relationships. Instead, our proposed
MRVAE explicitly incorporates the linearity and non-linearity user-item relation-
ships, and item-item relationships. Especially for item-item relationships, we use
cosine similarity to measure the relative importance of item-item relationships
and selectively incorporate them to the model.

6 Conclusion

In this paper, we propose a model called MRVAE, aiming at incorporating more
relationships between entities (i.e., users or items), to boost the top-N recom-
mendation performance. Firstly, we carefully design a hybrid encoder and a lin-
ear decoder as a backbone of our model, in which the linearity and non-linearity
user-item relationships are considered. Secondly, we selectively incorporate item-
item relationships into the models further through adding additional term to
the multinomial likelihood. We use cosine similarity to calculate the similarity
between items. Extensive experiments demonstrate the effectiveness of MRVAE,
compared to other SOTAs. Future work could be exploring other similarity mea-
sures between items and attempting to incorporate user-user relationships into
the VAE-based CF methods. Mining more accurate relationships by incorporat-
ing side information into MRVAE can also be a possible direction in the future.
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