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Abstract. Graph Neural Networks (GNNs) have recently become
increasingly popular due to their ability to learn node representations in
complex graphs. Existing graph representation learning methods primar-
ily target static graphs in Euclidean space, while many graphs in prac-
tical applications are dynamic and evolve constantly over time. Besides,
most of these methods underestimate the inherent complex and hierarchi-
cal properties in real-world graphs, leading to sub-optimal embeddings.
In this work, we propose a Dynamic Network in Hyperbolic space via
Self-Attention, referred to as DynHAT, a novel neural architecture that
computes node representations through joint two dimensions of hyper-
bolic structural graph and temporal attention graph. More specifically,
DynHAT maps the structural graph into hyperbolic space to capture
the hierarchical information, then temporal graph captures time-varying
dynamic evolution over multiple time steps by flexibly weighting histor-
ical representations. Experimental results on three real-world datasets
demonstrate the superiority of DynHAT for dynamic graph embedding,
as it consistently outperforms competing methods in link prediction
tasks.

Keywords: Dynamic graphs - Hyperbolic space - Self-attention -
Representation learning

1 Introduction

Graph Neural Networks (GNNs) are widely used to model the complex graphs
due to their ability to learn node representations. Its basic idea is to map each
node to a vector in a low-dimensional representation space. By learning graph
representations, classical machine learning algorithms can be applied to solve
various task, such as link prediction and node classification. However, many real-
world graphs, such as social networks where graph structures constantly evolve
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over time, often exhibit scale-free or hierarchical structure [4], and Euclidean
embeddings, used by existing GCNs, have a high distortion when embedding such
graphs [24]. Learning representations of dynamic structures is challenging but of
high importance since it describes how the network interacts and evolves, which
will help to understand and predict the behavior of the system [26]. This requires
the learned node representations to not only preserve structural proximity but
also jointly capture their temporal evolution.

Most of these existing studies model to dynamic graphs can be divided into
two different approaches: discrete-time approaches where the evolution of a
dynamic graph can be described by a sequence of static graphs, with a fixed
timestamp; and continuous-time approaches where the evolution is modeled at
a finer temporal granularity to encompass different events in real time [21].
Essentially, these two approaches both are primarily designed for the graphs in
Euclidean spaces. However, many real-world graphs, such as protein interaction
networks and social networks, often exhibit scale-free or hierarchical structure
[2]. In particular, the scale-free graphs have tree-like structure and in such graphs
the graph volume, defined as the number of nodes within some radius to a center
node, grows exponentially as a function of radius. In such cases, the polyno-
mial expansion Euclidean space can neither capture the exponential complexity
nor provide the most powerful or meaningful geometry for graph representation
learning. So, the volume of balls in Euclidean space only grows polynomial with
respect to the radius, which leads to high distortion embeddings [19], while in
hyperbolic space, this volume grows exponentially. Therefore, Hyperbolic geom-
etry offers an exciting alternative as it enables embeddings with much smaller
distortion when embedding scale-free and hierarchical graphs.

Learning dynamic node representations is challenging due to the complex
time-varying graph structures. This requires the learned node representations
to not only preserve structural proximity but also jointly capture their tempo-
ral evolution. For instance, in email communication networks whose interaction
structures may change dramatically due to sudden events, users will join or quit
a network at any time, and also they may develop new relationships or break
up with others over time. More information could be captured when we consider
the dynamic features of a graph. In this case, it is common practice to build a
recurrent neural networks (RNN) that summarize historical snapshots via hid-
den state, for example [7,8] which mainly focus on mining the pattern of graph
evolvement. However, the disadvantage of RNN is also obvious, which requires
amounts of data and scale poorly with an increase in number of time steps.
Attention mechanisms have recently achieved great success in many sequential
learning tasks. The idea behind the attention mechanism was to permit the
decoder to utilize the most relevant parts of the input sequence in a flexible
manner, by a weighted combination of all of the encoded input vectors, with
the most relevant vectors being attributed the highest weights. When a single
sequence is used as both the input and context, it is called self-attention, which
are initially designed to facilitate RNNs to capture long-range dependencies.
This paper [22] demonstrates the efficiency of a pure self-attentional network
in achieving state-of-the-art performance in machine translation. As the change
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on graphs may be periodical and frequent, self-attention is able to draw con-
text from all past graph snapshots to adaptively assign interpretable weights for
previous time steps.

Inspired by the aforementioned insight, we present a novel neural architecture
named Dynamic Network in Hyperbolic Space via Self-Attention, referred to as
DynHAT, to learn latent node representations on dynamic graphs. DynHAT fully
leverages the implicit hierarchical information to capture the spatial dependency
and graph evolution over multiple time steps by flexibly weighting historical
representations. In summary, the main contributions are stated as follows:

e We propose a novel hyperbolic temporal graph embedding model, named
DynHAT, to learn temporal regularities, topological dependencies, and
implicitly hierarchical organization.

e We devise a modular temporal self-attention layer, which captures the most
relevant historical contexts through efficient self-attentions. To the best of our
knowledge, this is the first study on dynamic graph embedding that utilizes
joint hyperbolic structural and temporal self-attention.

e Experimental results on three real-world datasets demonstrate the superiority
of DynHAT for dynamic graph embedding, as it consistently outperforms
competing methods in link prediction tasks. The ablation study further gives
insights into how each proposed component contributes to the success of the
model.

2 Related Works

Our work mainly relates to representation learning on structure graph embed-
dings and temporal graph embeddings.

Structure Graph Embeddings. Static network embedding methods can be
classified into two categories: one for plain networks, another one for complex
information networks. The first type of approaches only utilizes the topological
structure information for embedding. DeepWalk [18] transforms graph structure
information into sequences by random walk. Node2vec [9] improves the random
walk strategies of DeepWalk by a controllable deep or wide walking possibility.
Instead of shallow embeddings, several graph neural network architectures have
achieved tremendous success. GCN [13] performs graph convolutions for aggre-
gation and update motivated by spectral convolution. GAT [23] incorporates the
attention mechanism into the aggregation step. GraphSAGE [11] considers from
the spatial perspective and introduces an inductive learning method. All these
methods assume the representation space to be Euclidean.

Hyperbolic Graph Embeddings. Hyperbolic space provides an exciting
alternative. An increasing number of studies generalize the graph convolution
into hyperbolic space, recent works including HGNN [15], HGCN [3] and HGAT
[27]. HGCN is a generalization of inductive GCNs in hyperbolic geometry that
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benefits from the expressiveness of both graph neural networks and hyperbolic
embeddings. HGAT employs the framework of gyrovector spaces to implement
the graph processing in hyperbolic spaces and design an attention mechanism
based on hyperbolic proximity. The superior performance brought by hyperbolic
geometry on static graphs motivates us to explore it on temporal graphs.

Dynamic Graph Embeddings. Recently, several solutions for dynamic graph
are proposed. As discussed earlier, Temporal graphs are mainly defined in two
ways: discrete-time approaches, where its life span is a discrete set, hence the
evolution of a dynamic graph can be described by a sequence of static graphs,
with a fixed timestamp; and continuous-time approach, where its life span is a
continuous set, therefore the evolution is modeled at a finer temporal granularity
to encompass different events in real time [25]. We here mainly focus on represen-
tation learning over discrete temporal graphs. DynamicTriad [28] constraints the
representation in each time step, by the formulation that triadic closure process
is more frequent along graph evolving. Dyngraph2vec [7] and Dyngem [8] use
Auto-Encoder to learn the graph and use the Recurrent Neural Network (RNN)
to model the relations over time. DySAT [20] applies attention mechanism in it,
learning structural and temporal attention to adaptively obtain useful informa-
tion for embedding. Most of the prevalent methods are built-in Euclidean space
which leads to high distortion embeddings.

3 Preliminary

In this section, we first present the problem formulation of temporal graph
embedding. Then, we introduce some fundamentals of hyperbolic geometry.

3.1 Problem Formulation

In this work, we formally define the problem of dynamic graph representation
learning. A dynamic graph is defined as a series of observed static graph snap-
shots, G = {Gi,...,Gr} where T is the number of time steps. Each snapshot
G = (Vi, Ay) € G is a weighted and undirected network snapshot recorded at
time ¢, where V; is the set of vertices and A; is the corresponding adjacency
matrix at time step t. Unlike some previous methods that assume links can only
be added in dynamic graphs, we also support removal of links over time. Dynamic
graph representation learning aims to learn a mapping function that obtains a
low-dimensional representation for each node at time steps t = {1,2,...,T}. Each
node embedding h! preserves both local graph structures centered at v and its
temporal evolutionary behaviors such as link connection and removal up to time
step t.

3.2 Hyperbolic Geometry

A Riemannian manifold M is a space that generalizes the notion of a 2D surface
to higher dimensions [5]. For each point x € M, it associates with a (Euclidean)
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tangent space 7, M of the same dimensionality as M. Intuitively, 7x M con-
tains all possible directions in which one can pass through x tangentially (see
Fig.1).

P
W\

Fig. 1. The tangent space 7xM and a tangent vector v, along the given point x of a
curve traveling through the manifold M.

There are multiple equivalent models for hyperbolic space, with each repre-
sentation conserving some geometric properties, but distorting others. In this
paper, we adopt the Poincare ball model which is a compact representative pro-
viding visualizing and interpreting hyperbolic embeddings.

The Poincare ball model with negative curvature —c(c > 0) corresponds to
the Riemannian manifold (H™¢, gy), where H™¢ = {x € R" : ¢||x||? < 1} is an
open n-dimensional ball. If ¢ = 0, it degrades to Euclidean space, i.e., H™* = R"™.
In addition, [5] shows how Euclidean and hyperbolic spaces can be continuously
deformed into each other and provides a principled manner for basic operations
(e.g., addition and multiplication) as well as essential functions (e.g., linear maps
and softmax layer) in the context of neural networks and deep learning.

4 Proposed Model

The overall framework of the proposed model (DynHAT) is illustrated in
Fig.2. DynHAT has two primary modules: Hyperbolic structure attention;
Euclidean temporal attention, which benefits from the expressiveness of both
hyperbolic embeddings and temporal evolutionary embeddings. More specifi-
cally, our model can be summarized as two procedures: (1) Given the original
input node feature, this procedure projects it into hyperbolic space, and aggre-
gates the latent node embeddings via attention mechanism based on the hyper-
bolic proximity. This procedure concerns topological embedding in hyperbolic
space, which is similar to the model HGAT that designs an attention-based
graph convolution in hyperbolic space. (2) These sequences of node represen-
tations then feed as input to the temporal attention, which are performed in
Euclidean space due to its computational efficiency. Owing to the superiori-
ties of self-attention, this unit fuses the final embedding by figuring out the
importance of each time step graph snapshots. The outputs of temporal module
comprise the set of final dynamic node representations. Furthermore, we endow
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our model with expressivity to capture dynamic graph evolution from differ-
ent latent perspectives through multi-head attentions [22]. Finally, we feed the
aggregated representations to a loss function for downstream task. We elaborate
on the details of each respective module in the following paragraphs.

Euclidean Temporal attention
Node embeddings

Position-aware Temporal Self-Attention —
- t.. 1.
& D" position embeddings @ P 4
g7 Posgongrtpangs g
CLTh; [ i i A I

T \

Output: H

Hyperbolic Structure attention

TxH - H | : exponential map [ 7. ] :logarithmic map

Fig. 2. Neural architecture of DynHAT: we employ structural attention layer in Hyper-
bolic space followed by temporal attention layers in Euclidean space.

4.1 Feature Map

Before going into the details of each module, we introduce two bijection oper-
ations, the exponential map and the logarithmic map, for mapping between
hyperbolic space and tangent space with a local reference point [3,15], as pre-
sented below.

Proposition 1. For x' € H%¢, a € T, H%¢, b € H*®, and a # 0, b # x’, then
the exponential map is formulate as:

xﬁx\ifllaH) a
2 Vellall

W is conformal factor and & is Mobius addition, for any

expS/ (a) = x' ®° (tanh(

); (1)

where \§, =
u,v € Hb:
(1 + 2¢ (u,v) + lfo][)u + (1 = cl[u|*)v

udv = . 2
T+ 2¢(, ) + [l P ol P @)

The logarithmic map is given by:
—x' ®°b

c 2 c
logs, (b) := ——— artanh(y/c|| — x' ® b||)m

Vo,

Note that z’ is a local reference point, we use the origin point 0 in our work.

3)
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4.2 Hyperbolic Structure Attention (HSA)

HSA is employed to extracts features from higher-order local neighborhoods of
each node through a self-attention aggregation and stacking, to compute interme-
diate node representations for each snapshot, which leveraging promising prop-
erties of hyperbolic geometry. The input of HSA is the node feature, whose norm
could be out of the Poincare ball defined in hyperbolic space. To make the node
feature available in hyperbolic space, we use the exponential map to project
the feature into the hyperbolic space, shown in proposition 1. Specifically, let a
Euclidean space vector xZ € R be the feature of node 4, and then we regard it
as the point in the tangent space Too H®%¢ with reference point x’ € H%¢, using
the exponential map to project it into hyperbolic space, obtaining x** € H®¢,
which is defined as:

x;* = expg (x[). (4)
We then transform x!* into a higher-level latent representation m!* to obtain
sufficient representation power, which is formulated as:

ml = W @ xH @ b. (5)

Considering vector multiplication and bias addition can not be directly applied
since the operations in hyperbolic space fail to meet the permutation invariant
requirement, for vector multiplication, we first project the hyperbolic vector to
the tangent space, which is given by:

W @°x1t .= expS, (W logs, (x1Y)). (6)

For bias addition, we transport the bias located at 7,H to the position 7, H
in parallel. Then we use expg to map it back to hyperbolic space and Mobius
addition to compute the bias addition: x™ @¢ b := expS (P,— . (b)).

The Hyperbolic Attention Mechanism. We perform a self-attention mecha-
nism on the nodes. Aggregation is to calculate a weighted midpoint in Euclidean
space [10], however, it is difficult to apply as it lacks a closed form to compute
the derivative easily [1]. Similar to [3,15,27], we address this issue by applying
the aggregation computation in the tangent space. The attention coefficient a;;,
which indicates the importance of node j to node 4, can be computed as:

exp(sij)
aij = softmazeniy)(sij) = s 7> 7
y en () (5is) > ren, ©xp(sij0) "
515 = o(a” logg (mb) | logg (ml ), ¥(i. ) € £. ®

Thus, a hyperbolic structural attention layer applies on a snapshot G outputs
node embeddings, through a self-attentional aggregation of neighboring node
embeddings, which can be viewed as a single message passing round among
immediate neighbors.
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4.3 Euclidean Temporal Attention (ETA)

The embeddings input to a layer can potentially vary across different snapshots.
We denote the node representations output by the HSA block, as hl, h2,....hT,
which feed as input to the temporal attention block. To further capture temporal
evolutionary patterns in a dynamic graph, we design a temporal self-attention
layer. Note that, this layer is performed in the tangent space due to its compu-
tational efficiency. The h! is expressed as:

hy, = X = logg (X1Y). 9)

This unit receives the sequential input Al for a particular node v at different
time steps from hyperbolic structure attention layer. The input representations
are assumed to sufficiently capture local structural information at each time step.
Once obtained the node representations for each time step snapshot, the next
is to aggregate these node embeddings across a series of time snapshots. First,
we capture the ordering information in the temporal attention module by using
position embedding [6], p*, p?, ..., p?, which embed the absolute temporal position
of each snapshot. The position embeddings are combined with the output of
the HSA module to obtain a sequence of input representations: hl + p*, h2 +
p?,...,hT + pT for node v across multiple time steps.

In contrast to HSA layer which operates on the representations of neighboring
nodes, temporal attention layer takes all the temporal history of each node into
account. To be specific, to compute the output representation of node v at time
step t, we use scaled dot-product form of attention [22] where the queries, keys,
and values are set as the input node representations. The (@, K, V) are first
transformed to a different space through linear projection matrices W, € RD'*F /,
Wi € RP™>F" and W, € RP"*F" respectively. Then, we allow each time step ¢ to
attend over all time steps up to and including ¢, to preserve the auto-regressive
property. The temporal self-attention function is defined as:

b (X W) (X, W) )i 3
e v
gi = o) 11
Sp_y exp(hik) "
Zy = ﬁv(Xva), (12)
H™ = exp (Zy) (13)

where X, denotes the hl + p? which as the query to attend over its historical
representations, 3, € RT*T is the attention weight matrix obtained by multi-
plicative attention function and M € RT*7 is a mask matrix with each entry
M;; € {—00,0} to enforce the auto-regressive property following the function
[20]. To encode the temporal order, we define M as:

0 1 < j
My=q" ‘=1 (14)
—00, otherwise



Dynamic Network Embedding in Hyperbolic Space via Self-attention 197

When M;; = —oo, the softmax results in a zero attention weight, i.e., 37 = 0,
which switches off the attention from time-step ¢ to j.

As the temporal attention is built in the Euclidean space, different with the
structure attention unit, we need to feed the output embeddings back to the
hyperbolic space (as given in Egs. (13)).

4.4 Learning Objective

We formulate the learning objective to maximize the probability of linked nodes
and minimize the probability of no interconnected nodes. In our model, we use
the dynamic representation of a node v at time step ¢, h! to preserve local
proximity around v at time step ¢. The loss function £ is based on binary cross-
entropy which is defined as:

L= > —logp(hy,ht)) —wn Y log(1—p(hy, b))  (15)

E=LVEV weNT k) W EP, (v)

where p is the probability which could be inferred by the Fermi-Dirac function
[3], and N}, (v) is the set of nodes that co-occur with v on fixed-length random
walks at snapshot t. P! is a negative sampling distribution for time step ¢, and
wy, is the negative sampling ratio, a hyper-parameter to balance the positive
and negative samples. Note that learning the representation of each node in
hyperbolic space, the loss function L; is only related to distance in the Poincare
ball, and benefits to large-scale datasets.

5 Experiments and Analysis

In this section, we conduct extensive experiments with the aim of answering the
following research questions:

e RQ1 How does DynHAT perform?
e RQ2 What does each component of DynHAT bring?

5.1 Datasets

To evaluate the effectiveness of our model, we conduct experiments on three
datasets from real-world platforms. The datasets are summarized in Table 1.

e Enron [14] Enron dataset was collected and prepared by the CALO Project
(A Cognitive Assistant that Learns and Organizes). It contains emails
between employees of the company between January 1991 and July 2002.

e UCI [16] UCI dataset draws on longitudinal network data from an online
community to examine patterns of users’ behavior and social interaction, and
infer the processes underpinning dynamics of system use. In this network,
connections between users are made through online information.
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e MovieLens [12] MovieLens contains rating data of multiple users for multiple
movies, including movie metadata information and user attribute information.
GroupLens Research collected data on movie ratings provided by MovieLens
users from the late 1990s to the early 2000s. In this paper, we use a subset
of MovieLens, ML-10M, consists of a user-tag interactions where the links
connect users with the tags they applied on certain movies.

Table 1. Summary of the datasets

Dataset Enron | UCI ML-10M
Nodes 143 1,809 |20,537
Edges® 2347 16,822 |43,760

Time steps® | 16 13 13

¢ Edge counts denotes the total edges
across all time steps.

® The duration of each snapshot will
affect the total number of snapshots.
The proper granularity is more benefi-
cial to capture evolving patterns.

5.2 Baselines

We present comparisons against several static graph embedding methods to ana-
lyze the gains of using temporal information for link prediction. To ensure a fair
comparison, we provide access to the entire history of snapshots by construct-
ing an aggregated graph up to time ¢, with link weights proportional to the
cumulative weight till ¢ agnostic to link occurrence time. More importantly, we
also conduct experiments on several temporal graph embedding models to fur-
ther demonstrate the superiority of the proposed DynHAT. These models are all
in Euclidean space. As for hyperbolic model, HGCN, a recent model for static
graphs, is used for one of baselines.

e Node2vec [9] Node2vec is a static embedding method to generate vector
representations of nodes on a graph. It learns low-dimensional representations
for nodes in a graph through the use of random walks.

e GraphSAGE [11] GraphSAGE is a framework for inductive representation
learning on large graphs. It can be used to generate node embeddings for
previously unseen nodes or entirely new input graphs, as long as these graphs
have the same attribute schema as the training data.

e GAT [23] GAT leverages masked self-attentional layers to address the short-
comings of prior methods based on graph convolutions or their approxima-
tions. The self-attention mechanism is an advanced method which our model
also takes advantage of.
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¢ HGCN [3] HGCN is a static embedding method which leverages both the
expressiveness of GCNs and hyperbolic geometry to learn node representa-
tions for hierarchical and scale-free graphs.

¢ EvolveGCN [17] EvolveGCN is a temporal model that extends GCN, which
computes a seperate GCN model for each time step. The model is updated
upon an input to the system every time, by using an RNN (e.g., GRU). There
are two versions of the EvolveGCN: EvolveGCN-O and EvolveGCN-H. We
test both and report the best result.

e DynamicTriad [28] DynamicTriad focuses on specific structure of triad to
model how close triads are formed from open triads in dynamic networks.

e DySAT [20] Dynamic network employs GAT as a static layer and self-
attention mechanism to capture the temporal graph evolution.

We use the same split as the previous works, i.e., 25% for the training set and
75% for the test set. The number of negative samples for each positive sample
is 1. Besides, we fix the curvature as 1 in Hyperbolic structure attention layer.

5.3 Link Prediction Comparison (RQ 1)

We obtain node representations from DynHAT which can be applied to link
prediction. In this paper, we conduct experiments on single-step and multi-step
link prediction. Using the node representation trained on graph snapshots up
to time step ¢, the single-step link prediction predicts the connections between
nodes at time step t+ 1, while the multi-step link prediction predicts at multiple
time steps start from ¢ + 1.

More specifically, given partially observed snapshots of a temporal graph
G = {Gwo, ..., G7}, for single-step prediction, the latest embeddings h! are used
to predict the links at G**!, classifying each node pair into links and non-links.
For multi-step link prediction, the latest embeddings are used to predict the links
at multiple future time steps {t+1,...,t + A}. In each dataset, we set A = 6 for
evaluation.

We use the Area Under the ROC Curve (AUC) [9] metric to evaluate link
prediction performance. Note that we uniformly train both the baselines and
DynHAT by using early stopping based on the performance of the training set.

Single-Step Link Prediction. The results of single-step link prediction are
shown in Table 2. Our results indicate that the proposed model achieves gains of
3-4% AUC and AP, comparing to the best baseline across all datasets. On the
one hand, the runners-up goes to the other temporal graph embedding model,
which confirms the importance of temporal regularity in dynamic graph model-
ing. On the other hand, for hyperbolic model in static graph, our model consis-
tently outperforms HGCN. In the following, we discuss the several insights from
the comparative analysis of different methods.

First of all, the DySAT achieves the competitive performance to dynamic
embedding methods across different datasets, underperforming DynHAT only
by 3.88% and 2.67% in AUC and AP scores, respectively, despite of in Euclidean
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Table 2. AUC (left) and AP (right) scores of single-step link prediction result.

Dataset AUC AP
Enron UCI ML-10M Enron UCI ML-10M

Node2vec 82.81 £0.8 79.45 £ 0.7 85.57 £ 0.2 81.44+1.1 78.22 £ 0.8 87.45 £ 0.3
GraphSAGE 84.3 £ 0.9 82.11 £ 0.6 87.3+ 0.1 85.57 £ 1.2 83.67 £ 0.9 86.2 + 0.1
GAT 83.8 +1.2 80.07 £ 0.9 85.4 + 0.1 83.17+ 1.9 79.93 £ 0.6 86.4 + 0.3
HGCN 85.66 + 0.8 82.71 £ 0.7 88.32+ 0.2 82.45 £ 0.9 85.63 £ 0.3 86.17 £ 0.4
EvolveGCN 84.85 £ 0.9 84.16 £ 0.4 87.9 + 0.2 86.23 £ 0.7 84.73 £ 1.1 86.72 £ 0.2
DynamicTriad | 81.02 + 0.6 84.51 £ 0.4 86.42 £ 0.1 85.83 £ 0.9 82.35 £ 0.5 86.59 £ 0.1
DySAT 88.50 £ 0.3 86.65 £ 0.2 89.73 £ 0.2 88.20 £ 0.4 86.7 £ 0.2 89.96 £ 0.1
DynHAT 91.88 + 1.2 | 88.78 + 0.2 | 91.23 £ 0.3 | 90.87 £+ 0.8 | 88.51 + 1.2 | 93.16 & 0.2

space. One possible explanation is that joint structural and temporal modeling
with expressive aggregators like multi-head attentions plays an important role
for superior performance on link prediction. The performance gap between Dyn-
HAT and DySAT suggests that the significantly benefit from hyperbolic geome-
try. Second, HGCN also has relatively good performance despite being agnostic
to temporal information, which indicates further improvements to DynHAT on
transforming the embeddings from Euclidean space to Hyperbolic space.

Multi-step Link Prediction. In this section, we select several relatively good
performance models from difference aspect for comparison, then evaluate them
on multi-step link prediction over t + A time steps, where A equals to 6. As is
shown in Fig. 3, we observe a slight decay in performance overtime for all the
models, which is expected. Specifically, we notice that the performance of each
method except DySAT drops by different degrees, while our model and DySAT
maintains a stable result overtime, that can attribute to the temporal attention
module. For instance, the performance of the HGCN degrades dramatically on
Enron from 85.54% to 82.88%, while DynHAT only declines about 1.3%. This
demonstrates the capability of the temporal attention module to capture the
most relevant historical context. Additionally, DynHAT maintains a consistent
performance, comparing with DySAT which learns the node representation in
Euclidean space. The superiority of hyperbolic space and the importance of
modeling temporal context are supported in the experimental results.

95%

95% 95%
Enron ucl ML-10M
90% \\‘\-‘ 90% 90% &
) B o "\_—0\\__—.
5 e grr— =) N‘_\.___*\ =) Lt R
< 85% < 85% g~ < 85% * .
8 % ~~—nas ) NEE
-
£ 0% ~N— S  so% Sy ® S s0%
K z z
75% 75% 75%
70% 70% 70%
11 12 13 14 15 16 8 9 10 11 12 13 8 9 10 11 12 13
Time Steps Time Steps Time Steps
—e—DynHAT —& GraphSAGE ~® -HGCN -~ DySAT ~ —e=DynHAT —&- GraphSAGE - ~HGCN -« - DySAT —e—DynHAT —& GraphSAGE - -HGCN -+ DySAT

Fig. 3. AUC performance of DynHAT with different models on multi-step link predic-
tion.
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5.4 Ablation Study (RQ 2)

To investigate the superiority of the main components of our model, we compare
DynHAT with different variants on Enron, UCI and Movielens datasets. We
show the variant models as following and their result in Table 3. To validate the
performance of temporal self-attention block for long-term prediction task, we
set the finer granularity of snapshot, which means the shorter of duration.

e DynHA DynHAT removes the temporal attention block. Note that the vari-
ant model is different from static models since the embeddings are jointly
optimized in Egs. (15) to predict snapshot-specific neighborhoods, however
without any explicit temporal evolution modeling.

e DynAT DyHAT without hyperbolic geometry where aggregating processes
are built in Euclidean space.

Table 3. Ablation study on structural and temporal attention layer.

Dataset | AUC AP

Enron UCI ML-10M Enron UCI ML-10M
DynHA | 88.93+0.5 86.12+ 0.5 |86.76 0.2 |89.83 £0.8 85.71 + 0.2 88.52 + 0.2
DynAT 89.82+ 0.4 |87.35+0.3 |90.68£0.5 |89.62+0.3 87.67+0.3 |91.73+0.3
Original | 91.88 4+ 1.2 | 88.78 &= 0.2 | 91.23 + 0.3 | 90.87 + 0.8 | 88.51 + 1.2 | 93.16 + 0.2

As is shown in Table 3, we first make the wrap-up observation that remov-
ing any of the components will cause performance degradation. The effect of
temporal self-attention layer is significant since the performance is decayed by
removing the temporal block. Besides, we find that the finer granularity of snap-
shots, which means the shorter of the duration, would more fully utilized the
historical representations especially in MovieLens dataset. This observation con-
forms to the nature of graph evolution since the rating behaviors in MovieLens
correlated with time-efficient, while the communications in Enron and UCI span
longer time intervals. We confirm that the proposed model leverage the tem-
poral evolution embedding to better perform the final results. Additionally, we
design the Euclidean variant of DynHAT, namely DynAT, proves that hyper-
bolic geometry enables the preservation of the hierarchical layout in the graph
data naturally. DynHAT consistently outperforms the variants with almost 3%
average gain in AUC and AP scores, validating our choice of joint structural
in hyperbolic and temporal self-attention. Finally, the addition of both DynHA
and DynAT improves performance even further, suggesting that both compo-
nents are important in DynHAT.
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6 Conclusions

In this work, we have presented a novel model DynHAT for dynamic graph repre-
sentation learning in hyperbolic space. In DynHAT, we stack temporal attention
layers on top of hyperbolic structural attention layers, considering distortions
when representing real-world in Euclidean space. More specifically, our model
computes dynamic node representations through joint two modules: hyperbolic
structure attention (HSA) and Euclidean temporal attention (ETA). HSA lever-
ages the superiority of hyperbolic mechanism and ETA captures the most rel-
evant historical contexts through efficient self-attentions. To the best of our
knowledge, this is the first work to address the temporal graph embedding via
self-attention mechanism built-in hyperbolic space. Experimental results show
the superiority of DynHAT for link prediction on several real-world datasets.
For future work, we hope that our work will inspire the future development of
dynamic graph embeddings in hyperbolic space.
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