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Abstract. As deep learning (DL) technologies have developed rapidly,
many new techniques have become available for recommender systems.
Yet, there is very little research addressing how users’ feedback for par-
ticular items (such as ratings) can affect recommendations. This feed-
back can assist in building more fine-grained user profiles, as not all raw
clicks will truly reflect a user’s preference. The challenge of encoding such
records, which are typically prohibitively long, also prevents research
from considering using the whole click history to learn representations.
To address these challenges, we propose MARF, a novel model for click
prediction. Specifically, we construct fine-grained user representations
(by considering both the multiple items browsed, and user’s feedback
on them) and item representations (by considering browsing histories
from multiple users, and their feedback). Moreover, the flexible up-down
strategy is designed to avoid loading incomplete or overloaded historical
information by selecting representative users/items based on their feed-
back records. A comprehensive evaluation on three large scale real-world
benchmark datasets, showing that MARF significantly outperforms a
variety of state-of-the-art solutions. Furthermore, MARF model is eval-
uated through an ablation study that validates the contribution of each
component. As a final demonstration, we show how MARF can be used
for cross-domain recommendation.

Keywords: Click-through rate prediction · Deep learning · Cross
domain recommendation

1 Introduction

Predicting whether users will click on ads or items is a crucial problem in
online advertising and recommender systems, where accurate predictions drive
increased customer satisfaction and ultimately improve revenues [2,16,21,22].
Interestingly, the trend is that most recent solutions adopt deep learning tech-
niques for click prediction.

Capturing user interests and constructing user profiles is an essential rec-
ommendation task. Normally, user interests are encoded into user embeddings,
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which are randomly initialised at first and then optimised against records of user
click behaviour. This conventional approach, while simple, does not improve rec-
ommendation quality as much as more recent sophisticated methods that either
employ a sequence-based neural network with attention mechanism [5,21,22] to
capture deep user interests through their behaviour history, or Graph Neural
Networks [15,17] to generate richer user representations that capture both gen-
eral and current interests.

Scope. We are interested in recommendation models to maximise CTR where
the primary input is a dataset of implicit feedback from interactions [4] (e.g.
dwelling time, number of views), while also leveraging available user and item
metadata.

Fig. 1. Distribution of user preference cross
different genres

Problem Statement. We believe
that relying strictly on user behaviour
or click sequences from implicit feed-
back may not fully represent user
interests. Besides, people are normally
“cheated” to click an item by the
attractive title/cover of the item and
end up being dissatisfied [19]. In the
movie domain, for instance, a user
might watch several films of a partic-
ular genre but like a few of them; see
Fig 1. Some of the clicking (e.g. 98 out
of 337 drama movies) does not match
users’ favourites. So there is an oppor-
tunity to mine click histories for additional input signals that can complement
the default implicit feedback used for click prediction. Such signals could be
item ratings (explicit). For the sake of simplicity, we will henceforth refer to
such complementary signals as feedback.

In addition, much of the work in click-through rate (CTR) maximisation
focuses on enriching user profiles to improve performance. So far, there is hardly
any work that considers the whole click histories as a means of representing
items. This is probably because it is more challenging to simultaneously encode
long, dense histories for popular items and short click histories for fresh items
in the long tail. This challenge also exists when building user profiles from click
histories.

Therefore, to address these issues, we propose MARF, a new recommender
for CTR maximisation that incorporates feedback when encoding user profiles.
Through a novel flexible up-down sampling strategy, MARF is able to focus
on representative interactions that produce richer representations to improve
recommendation performance.
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Contributions. The main contributions of this paper are:

– We introduce the feedback as an important feature that captures user and
item properties from their interaction history.

– We propose MARF, a new recommender model for CTR maximisation that
leverages feedback not only to produce richer user and item representations,
but also to improve recommendation quality.

– Flexible up-down sampling strategy is proposed to choose representative users
and items so that the computational costs and the impact of the long-tail
problem are reduced.

– We conduct empirical tests to demonstrate the superiority of MARF over
state-of-the-art models across multiple public datasets. We also present an
ablation study to validate the utility of the various components in MARF.

– Finally, we show that MARF could potentially transfer knowledge across
different domains with overlapping users or items.

2 The MARF Model

Our proposed, MARF model (depicted in Fig. 2) is split into three main com-
ponents. Briefly, the modelling process starts from a set of inputs derived from
user/item metadata and interactions. These inputs are used both to learn embed-
dings for users and items and as their feedback. Each user and item embedding

Fig. 2. The overall architecture of the proposed MARF model. The flexible up-down
sampling strategy selects representative users/items with feedback to avoid loading
incomplete/overloaded historical information. Projection Layer aims at projecting two
different embedding into the same space and output the user/item representations
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is concatenated with its matching feedback embedding. Separately, the Sequence
Extraction Layer with our novel flexible up-down sampling strategy generates
fine-grained representations from both user and item sequences. Finally, the out-
puts from the sequence extraction layer are merged with the embeddings learned
from user/item side features and fed into a prediction output layer. In the rest
of this section, we will describe these components in detail.

2.1 Model Inputs and Feature Representation

Overall, we use four forms of input for MARF, each composed from several sparse
features. For any (u, i) interaction between user u and item i, we have these
inputs: UserProfile provides a list of user attributes (e.g. gender, age, occupation)
for the user u, whereas ItemProfile represents the features or metadata (e.g. color
and category) of the item i. The UserBehavior is a sequence of (iu, rui) tuples,
where iu is an item interacted with by the user u and rui is a feedback score (e.g.
rating) assigned by the user u to item i. Similarly, ItemHistory is a sequence of
(ui, riu) pairs.

2.2 Embedding for User and Item Profiles

This component of MARF maps large sparse categorical features into low dense
representations. In UserProfile, the k-th group of features such as occupation
can be represented by Pk ∈ RVk×ds , where Vk is the size of the sparse feature in
UserProfile and ds is the size of the sparse embedding. Similarly, in ItemProfile,
the j-th group of features such as genres can be represented by Qj ∈ RMj×ds ,
where Mj is the size of the sparse features in ItemProfile.

At the same time, UserBehavior can be represented by Su = [i1 : r1; . . . ; iuk
:

ruik ; . . . ; iNu
: rNu

] ∈ RNu×(di+dr), where Nu is the length of the user’s behavior
history, and iuk

is the embedding of the item that the user interacts with at
timestamp k, ruik is the feedback embedding for item i from the user u, whereas
di and dr are the sizes of the item and the rating embedding respectively. Then
we concatenate the embeddings of iuk

and ruik to construct user behavior at
timestamp k. Similar to the UserBehavior, the ItemHistory is represented by
Sv = [u1 : r1; . . . ;uk : ruki; . . . ;uNv

: rNv
] ∈ RNv×(du+dr), where Nv is the

length of the item’s history, uk is the embedding of the user, and ruki is the
feedback embedding for items i from the user u.

2.3 Flexible Up-Down Sampling

Most CTR models, including MARF, are characterised by a large number of
parameters and are easily affected by the long-tail problem—80% of the data is
comprised of information from only 20% of the users. For this reason, a large
amount of the computational cost and the user and item historical sequence are
significantly unbalanced. To tackle this problem, and improve memory consis-
tency and computational efficiency, we propose the flexible up-down sampling
strategy.
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This flexible up-down sampling strategy is applied before each training step to
reconstruct varying user and item historical sequences into a constant sequence.
For instance, consider the example user profile in Fig. 1: a user is likely to have
a propensity for certain kinds of items, thus we need not incorporate all items
seen by the user into their behavior sequence. As such, for each user behavior
sequence, we categorise items by their feedback (rating) and only sample a frac-
tion of them per category as representative items. This operation is similar to
the stratified random sampling [1] or cluster-based sample [20] that is commonly
used to obtain representative samples from a set of entities. As a result, for any
given entity (i.e. user or item) e, the size of their sequence—UserBehavior or
ItemHistory—will be reconstructed to that of a constant sequence N . The num-
ber of samples we need to sample from each category is based on the portion of
total number of interactions, such as (N × n

(c)
e )/Ne, where n

(c)
e is the number

of elements in category c and Ne is the total number of elements in the input
sequence of the entity (i.e. user or item), whereas N ∈ Z

+ is a hyper-parameter
referring to the expected sequence length for the user or item that we need to
reconstruct. It is important to note that the input sequence (user behaviour or
item history) is concatenated with its respective feedback before the flexible up-
down sampling strategy. Since different entities have different sequence lengths,
the N hyper-parameter decides whether we perform an up-sampling or a down-
sampling operation. If N ≥ Ne, we up-sample, and if N < Nu we down-sample.

Another noteworthy point is that not all users and items in datasets par-
ticipate in the training process. This is because the flexible up-down sampler
prioritises only representative users and items chosen from each category when
reconstructing user and item sequence histories. For instance, Table 1 shows the
percentage of users/items involved during the training process in three different
datasets when the constant sequence length N = 25.

2.4 The Sequence Extraction Layer

To extract user interests, we begin from a set of item sequences with corre-
sponding feedback, i.e. Su = [i1 : r1; . . . ; iuk

: ruik ; . . . ; iNu
: rNu

]. After flexible
up-down sampling to get the reconstructed sequence indicated as Sun, we pass
this input through an MLP fusion layer to project the item and the feedback
embeddings into the same space to get SEu = [e1; ...; ei; ...; eN ] ∈ RN×de , where
de is the fusion embedding size and N is the constant sequence length. Then
we sum pooling the produced embeddings, SEu, as the output for the user u’s
behavior representations SE′

u. We adopt a similar workflow to generate item
history representations SE′

v.

2.5 The Prediction Layer

In previous sections we described how MARF learns embeddings from user and
item features where a feature (e.g. genre) has multiple values (e.g. crime, fic-
tion), the embedding process (described in Sect. 2.2) learns separate embeddings
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for each feature value, and then the feature’s embeddings are computed as the
average of all the embeddings of its feature values. These transformed profile
embeddings along with those learned by the Sequence Extraction Layer are then
concatenated and fed into an MLP, with a final sigmoid function to predict the
probability of the user liking an item.

We adopt the most widely used loss function in CTR prediction, the negative
log-likelihood function defined as:

L = − 1
N

∑
(x,y)∈D(y log p(x) + (1 − y) log(1 − p(x))) (1)

where D is the training set of size N , with x as input of the network, y ∈ {0, 1}
represents if the user liked the item and p(.) is the final output of the network
representing the prediction probability that the user likes the item.

3 Experiments

In this section, we compare the performance of MARF against that of several
state-of-the-art models on three public datasets. We conduct an ablation study
to verify the efficacy of each MARF model component.

3.1 Datasets

For the purpose of availability, we select datasets containing explicit ratings as
an feedback feature. Table 2 summarises the key statistics of the datasets.

The Amazon dataset [14] contains ratings, product reviews and metadata
from Amazon, and is used as a benchmark dataset in [9]. We use a subset named
musical instrument which contains 903,330 users and 112,222 items, 1,512,530
samples and 505 categories. Due to sparsity, we adopt the k-core pruning method
[6] to filter short profiles and only keep users with at least 20 ratings. We include
item style, category, and price as features during training.

We selected ML1M and ML20M due to their familiarity to recommender
systems researchers. ML1M contains 6,040 unique users, 3,706 unique items and
1,000,209 samples. We use genre, zipcode, gender, age, and occupation as side

Table 1. Percentage of user/
item involved in training

Datasets Involved
users(%)

Involved
items(%)

Amazon
Music Instr.

98.39% 79.58%

ML1M 89.64% 89.43%

ML20M 38.16% 58.16%

Table 2. Statistics of datasets

Dataset Users Items Features Samples

Amazon
Music Instr.

903,330 112,222 510 1,512,530

ML1M 6,040 3,706 26 1,000,209

ML20M 138,493 26,744 23 20,000,263
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features. ML20M is composed of 138,493 users, 26,744 items and 20,000,263
samples. The genre attribute is used as a side feature.

The statistics of the above datasets are summarized in Table 2. For all
datasets, we train test split based on [12,16] where we randomly select 80%
of samples for training and split the rest into validation and test datasets with
equal size. We use the validation dataset for hyper parameter tuning. Each exper-
iment is repeated 5 times, and the average performance with standard deviation
is reported on the hold out test dataset. For all datasets, we treat samples with
a rating less than 3 as negative samples, taking the lower score to indicate user
dislike. Similarly, we treat ratings greater than 3 as positive samples. Samples
with a rating of 3 are treated as neutral and removed from all datasets.

3.2 Baselines

In this section, we introduce the state-of-the-art baseline models chosen for com-
parison with MARF:

– CCPM [13] uses convolutional layers to capture partial dependencies
between input features. It also turns the pooling layer into flexible p-max
pooling to deal with flexible length of input.

– NFM [10] uses a second-order interaction layer called bi-interaction and a
sum pooling layer to capture high-order feature interactions.

– Wide&Deep [2] is popular in production, and uses a wide network for cross
product features while learning feature dependencies in its deep network.

– DeepFM [8] is an enhanced version of Wide&Deep where the wide part is
replaced by a factorization machine.

– AutoInt [16] employs a self-attention mechanism to learn higher-order fea-
ture interactions.

– FiBiNet [12] learns feature importances using a Squeeze-Excitation Network
(SENET), and feature interactions using inner product and hadamard prod-
uct.

– DIN [22] uses local activation units to learn user interest representations
from click histories.

– DIEN [21] employs an interest extractor (GRU) layer to capture users’ tem-
poral interests and an interest evolving layer (attention mechanism) to cap-
ture the change in interest that is relative to the target item.

– AFN [3] propose a new framework to learn arbitrary-order cross features
adaptively from data so as to learn useful cross features from data adaptively,
and the maximum order can be delivered on the fly.

3.3 Evaluation Metrics

We use two metrics in our evaluation: AUC and Log Loss.

– AUC: is a widely accepted metric for CTR tasks. It measures the probability
that a random positive sample is ranked ahead of a random negative one [7].
A higher score denotes better performance.
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– Log loss: is widely used in machine learning for binary classification tasks.
It measures the difference between two distributions. The lower bound of log
loss is 0, which indicates that there is no difference between two distributions.
The lower value indicates better performance.

It is noteworthy that, in CTR prediction tasks, a slightly higher AUC or a lower
log loss results in a significant boost for production systems [8,18].

3.4 Hyperparameters

In all embedding layers, regardless of the evaluation dataset, the dimension of
the feedback, user ID and item ID is fixed at 200. We apply a one layer MLP for
both user and item sequence extraction layer where the size is 256. The dimen-
sion of other sparse features is 56. For ML1M datasets, the model converges
around 100 epochs, while the other datasets are run for 130 epochs.

Hyperparameter Search. We conducted a grid search on the ML1M dataset
to find the constant sequence length value N . Figure 3 shows the AUC score
and log loss on the validation split. Clearly, for ML1M, N = 25 has the highest
AUC score, and its log loss is within bounds of the lowest log loss observed
during the grid search. We keep the same constant length value for other the
two datasets. For the optimization method, we use Adam with a mini-batch size
of 1024 for both ML1M and ml20m, and 256 for amazon musical instrument
dataset. The learning rate is set to 0.0001. The DNN layers are set to 2 with the
size of the middle layer set as 256. The hidden layer activation function is ReLU
and sigmoid is used for the output. For all baseline models, we apply Adam
learning algorithm with the learning rate λ = 0.001. In the output layer of all
baselines models, we apply two layers of DNN hidden units with sizes of 256 and
128 respectively. With the AutoInt, we apply a 3 layer attention structure with
two heads for training to achieve the best results. We fine-tuning all baseline
models with sparse feature dimension at parameters [4, 6, 8, 10, 15] and report
the best results in validation set with dimension setting (after each result of the

Table 3. Performance comparison between MARF and eight baselines, showing
MARF’s superiority across three datasets.

ML1M Amazon review ML20 M

Model AUC Log loss AUC Log loss AUC Log loss

CCPM 0.8657 ± 0.002 (15) 0.4058 ± 0.0058 0.8029 ± 0.0117 (15) 0.2882 ± 0.037 0.8825 ± 0.0008 (10) 0.3491 ± 0.001

NFM 0.8843 ± 0.0008 (4) 0.3436 ± 0.0034 0.8239 ± 0.0115 (4) 0.2717 ± 0.0134 0.886 ± 0.0011 (4) 0.3481 ± 0.0038

WideDeep 0.8864 ± 0.0007 (4) 0.3339 ± 0.0023 0.8424 ± 0.0086 (8) 0.234 ± 0.0159 0.8875 ± 0.0003 (8) 0.3395 ± 0.0011

DeepFM 0.8854 ± 0.0012 (4) 0.3343 ± 0.0026 0.8297 ± 0.0083 (4) 0.312 ± 0.0343 0.8878 ± 0.0006 (4) 0.3426 ± 0.0009

DIN 0.8625 ± 0.0011 (8) 0.3343 ± 0.0017 0.8219 ± 0.0093 (8) 0.2650 ± 0.0137 0.8762 ± 0.0013 (8) 0.3432 ± 0.0003

DIEN 0.8723 ± 0.0039 (8) 0.3371 ± 0.0003 0.8135 ± 0.0086 (8) 0.3019 ± 0.0235 0.8804 ± 0.0002 (8) 0.3522 ± 0.0028

AutoInt 0.8863 ± 0.001 (4) 0.3355 ± 0.0022 0.8279 ± 0.0064 (10) 0.3051 ± 0.0327 0.8867 ± 0.0004 (10) 0.3444 ± 0.002

FiBiNet 0.8821 ± 0.0009 (10) 0.3852 ± 0.0033 0.8244 ± 0.0099 (10) 0.3486 ± 0.0205 0.8855 ± 0.0005 (10) 0.357 ± 0.0034

AFN 0.8884 ± 0.0008 (10) 0.3264 ± 0.0015 0.8206 ± 0.0049 (10) 0.1972 ± 0.0072 0.8871 ± 0.0003 (15) 0.3307 ± 0.0007

MARF (our) 0.8968± 0.0007 0.3193± 0.0005 0.8462± 0.0137 0.1682± 0.0113 0.8958± 0.0021 0.3242± 0.0003
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AUC score), are shown in Table 3. The code used for this work is available on
github.com1

3.5 Performance Comparison

Fig. 3. Grid search sequence length for
sampling

In this section, we summarize the hold-
out test performance of the selected
algorithms on the ML1M, ML20M and
Amazon datasets. For all baselines, we
use the validation dataset for hyper
parameter tuning, and report results
on the hold out test dataset. From the
results, shown in Table 3, it is clear
that MARF significantly outperforms
the baseline models on both the ML1M
and Amazon datasets. For the ML20M
dataset, all baseline models achieve
similar performance, but MARF out-
performs them marginally.

3.6 Ablation Study

Despite demonstrating strong empirical results, so far we have not isolated the
specific contribution of each component of MARF. In this section we conduct
an ablation study with the ML1M dataset. Table 4 shows the results of test-
ing different components in MARF. Firstly, we seek to evaluate the impact
of the up-down flexible sampling strategy. We only utilize each user and item
rating sequence, sorted by their timestamps to construct UserBehavior and
ItemHistory. Rather than using the whole user and item sequence profile, we
choose the latest session and a random session of each user/item profile where we
keep session length N = 25 as the input for the sequence extractor layer. Then
we put the generated representations into a 2 layer MLP after concatenation. In
Table 4, the RS indicates that the model only uses rating feature sequences as
input. Compared to using either the latest, or a random sequence, the up-down
flexible strategy outperforms the baselines significantly.

To explore the impact of the feedback feature, we choose the popular neural
collaborative filtering model [11] as a base model. It uses trained user/item
embedding pairs as the input to an MLP prediction layer, and achieves 0.8649
AUC score and 0.3589 log loss on our test set. Then we average each user/item
rating in their profile as the overall feedback feature and concatenate them with
their embedding as the MLP prediction input, and the performance improves
slightly. After changing to our proposed sequence extraction layer with up-down
flexible sample strategy to generate user and item embeddings, the performance
substantially improves. With additional side features, we get our final reported

1 https://github.com/doubleblind3372857384/MARF.

https://github.com/doubleblind3372857384/MARF
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Table 4. The performance of different components in MARF

Model AUC Log loss

RS-Last Sequence 0.827 0.3924

RS-Random Sequence 0.827 0.3931

RS-up-down flexible sampling 0.8546 0.3649

Base Model 0.8649 0.3585

Base Model with Feedback 0.8694 0.3523

MARF without Side Features 0.8814 0.3379

MARF 0.8961 0.3158

results using the MARF model. We can take the following observations from the
results in Table 4:

– Flexible up-down sample strategy is necessary for MARF: we can see that
the performance drops significantly when it is replaced with the other two
methods.

– MARF’s user and item representations are superior to randomly initialized
embeddings from the NCF model.

3.7 Potential Transferability Analysis

So far, we have described MARF and demonstrated its ability to learn more
informative user and item representations. The user representations are learned
by combining user features, implicit interaction data from item and feedback
signals. Item representations are learned in a similar manner but from item
metadata, interaction histories from user, and feedback signals. These rich repre-
sentations present an opportunity to apply MARF in a transfer learning scenario
where two domain datasets have overlapping users or items. For example, com-
modities could appear in two different platforms, while the ItemHistories vary
cross different platforms. One platform has a lot of interactions on items called
luxury platform while the other has few called sparse platform. Because items in
sparse platform have less user interactions which is hard for model to generate
informative information, we use the luxury platform datasets to train MARF to
get the item representations apply on sparse platform datasets. On the user rep-
resentations, we can utilise pre-trained item embeddings from luxury platform
and user UserBehavior from sparse platform to generate user embeddings.

Table 5. The analysis of transferability of the MARIF without side features

Datasets AUC score Log loss

ML100 K 0.8585 0.3759

ML1M 0.8869 0.3159

ML1M to ML100 K 0.7934 0.4409
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Accordingly, we conduct the following experiments on ML100 K and ML1
M, which share 1,236 overlapping items—while excluding item metadata and
features—to test the transferability of the model. We use ML1M dataset to
pretrain the MARF model and then use the ML100 K dataset for evaluation.
Without training the model using the ML100 K dataset, we get an AUC score
of 0.7934 and a log loss of 0.4409 on the ML100 K test set. Table 5 shows
a comparison of the performance between the MARF models trained with and
without transferability on two datasets ML100 K, ML1M. It also demonstrates
the performance of applying pre-trained embedding from ML1M to ML100 K.
Although directly applying pre-trained embeddings from ML1M to ML100 K
compromises the performance, it is acceptable compared to the cost of re-training
the model.

4 Conclusion and Future Work

In this paper, we proposed a novel deep network method, namely MARF, to
model user and item representations. MARF not only enhances the resulting
user and item representations, but also leads to a significant improvement on the
CTR task. To that end, we designed a flexible up-down sample strategy to sample
both representative user and item sequences with feedback, while maintaining
the original distribution of user/item rating habits, and also keeps the implicit
properties of items/users in different rating categories. Using the projection layer
to project the embeddings into the same space and utilizing average sum method
to get the final representation of users and items. Their representation becomes
more informative than random initialized and easier for CTR prediction task.
Last but not least, we show a potential application to transfer learning, if cross
domain datasets have either overlapping users or items. In future work, we will
try to integrate implicit data which can reflect both user attitudes and item
properties.
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