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Abstract. Developing complex software requires thatmultiple views and
versions of the software can be developed in parallel and merged as sup-
ported by views and managed by version control systems. In this context,
this paper considers permanent monitoring of merging and related consis-
tency problems at the level of models and abstract syntax. The presented
approach introducesmulti-versionmodels based on typed graphs that per-
mit to store changes and multiple versions in one graph in a compact form
and allow (1) to study well-formedness for all versions without the need
to extract each version individually, (2) to report all possible merge con-
flicts without the need to merge all pairs of versions, and (3) to report
all violations of well-formedness conditions that will result for merges of
any two versions independent of any merge decisions without the need to
merge all pairs of versions. Thereby, the approach aims to permit early and
frequent conflict detection while developing in parallel. The paper defines
the related concepts and algorithms operating on multi-version models,
proves their correctness w.r.t. the usually employed three-way-merge, and
reports on preliminary experiments concerning the scalability.

1 Introduction

Developing complex software nowadays requires that multiple views and versions
of the software can be developed in parallel and merged as supported by views and
managed by version control systems [12]. For complex software, living with incon-
sistencies at least temporarily is inevitable, as enforcing consistency may lead to
loss of important information [11] and is hence neither always possible nor desir-
able. However, working with multiple versions in parallel and changing each ver-
sion on its own for longer periods of time can introduce substantial conflicts that
are difficult and expensive to resolve. Therefore, it is necessary to manage consis-
tency when combining views and versions using merge approaches [12,20].

This paper considers permanent monitoring of merging and related consis-
tency problems at the level of models and abstract syntax. This aims to permit
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early and frequent conflict detection while developing in parallel, as suggested
in approaches to detect conflicts early and to enable collaboration to manage
conflicts and their risks [4].

The presented approach therefore introduces multi-version models based on
typed graphs, which permit to store changes and multiple versions in one graph
in a compact form and allow to study the different versions and their merge com-
binations. The following capabilities are considered: (1) Study well-formedness
for all versions at once without the need to extract and explicitly consider each
version individually. (2) Report all possible merge conflicts that may result for
merges of any two versions without the need to extract and explicitly merge all
pairs of versions. (3) Report all violations of well-formedness conditions that will
result for merges of any two versions independent of any merge decisions without
the need to extract and explicitly merge all pairs of versions.

The approach thus promises to support early conflict detection and collabo-
ration for managing conflicts and their risks, while not having to decide how to
later merge conflicting versions. The technique also aims for a better scalability
in case there are many versions that are considered in parallel.

Furthermore, the developed multi-version models permit to study the phe-
nomena of versions, merging, and well-formedness conditions in the unifying
framework of typed graphs. This enables us to (a) formulate algorithms that can
obtain several analysis results without the need to consider a specific version,
merge of a pair of versions, or strategy for conflict resolution and (b) prove that
the algorithms compute the same results as if we would explicitly consider all
specific versions, merges of pairs of versions, or strategies for conflict resolution.

The paper defines the related concepts and algorithms operating on multi-
version models, proves their correctness w.r.t. the usually employed three-way-
merge, and reports on first experiments concerning the scalability. In Sect. 2,
we summarize the preliminaries of the presented approach, including basic def-
initions for typed graphs, well-formedness conditions, and graph modifications.
Then, as a baseline, single-version models in the form of typed graphs with
well-formedness conditions are defined in Sect. 3, before multi-version models
are introduced in Sect. 4. Determining all merge conflicts and checking well-
formedness for all merge results based on multi-version models is then consid-
ered in Sect. 5. Results of first experiments for our prototypical implementation
of the algorithms are presented in Sect. 6. A summary of related work is given
in Sect. 7. Finally, the conclusions of the paper and an outlook of planned future
work are presented in Sect. 8.

2 Preliminaries

We briefly reiterate the basic concepts of graphs, graph modifications, and well-
formedness conditions used in the remainder of the paper.

A graph G = (V G, EG, sG, tG) consists of a set of nodes V G, a set of edges
EG and two functions sG : EG → V G and tG : EG → V G assigning each edge its
source and target, respectively. We assume that graph elements have identities
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and source and target of an edge are invariant if an edge is part of multiple
graphs, that is, for two graphs G and H and an edge e ∈ EG ∩EH , it holds that
sG(e) = sH(e) and tG(e) = tH(e). This also implies that, in the context of this
paper, (V G = V H ∧ EG = EH) → (G = H).

A graph morphism m : G → H is given by a pair of functions mV : V G → V H

and mE : EG → EH that map elements from G to elements from H such that
sH ◦ mE = mV ◦ sG and tH ◦ mE = mV ◦ tG [9].

A graph G can be typed over a type graph TG via a typing morphism type :
G → TG, forming the typed graph GT = (G, typeG). A typed graph morphism
between two typed graphs GT = (G, typeG) and HT = (H, typeH) with the same
type graph then denotes a graph morphism mT : G → H such that typeG =
typeH ◦ mT . A (typed) graph morphism m is a monomorphism iff its functions
mV and mE are injective.

Figure 1 shows an example typed graph M1 and associated type graph TM
from the software development domain. M1 represents an abstract syntax graph
for a program written in an object-oriented language that contains four classes
represented by nodes. The type graph also allows representing superclass rela-
tionships with edges.

Fig. 1. Example graph, type graph, and violation pattern

The structure of a typed graph G can be restricted by a well-formedness
condition φ, which in the context of this paper is characterized by a typed
graph Q typed over the same type graph. G then satisfies the condition φ,
denoted G |= φ, iff there exists no monomorphism m : Q → G. We also call such
monomorphisms matches and Q the violation pattern of φ.

Figure 1 shows a violation pattern Q for an example well-formedness con-
straint that forbids a class having two outgoing superclass relationships.

A graph modification as defined by Taentzer et al. [26] formalizes the dif-
ference between two graphs G and H and is characterized by an intermediate
graph K and a span of monomorphisms (G ← K → H). In this paper, we assume
that the two morphisms are always subgraph inclusions. K then characterizes
the subgraph that is preserved through the modification, whereas elements in G
that are not in K are deleted and elements in H but not in K are created.

Figure 2 shows an example graph modification from the graph M1 from Fig. 1
to a new graph M2, where a superclass edge from class c1 to class c3 is created
and the class c4 is deleted. The morphisms are implied by node labels.
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Fig. 2. Example graph modification

Graphs and graph modifications correspond to versions and differences in
conventional, line-based version control systems like Git [16], where versions of a
development artifact and intermediate differences form a directed acyclic graph.

3 Single-Version Models

In this paper, we consider models in the form of typed graphs that are required
to adhere to a set of well-formedness conditions. Effectively, the combination
of type graph and well-formedness conditions then acts as a metamodel with
potential further constraints. Note that attributes, as usually employed in real-
world models, can in this context be modeled as dedicated nodes [17].

For Φ the set of well-formedness conditions, a model Mi is well-formed iff
∀φ ∈ Φ : Mi |= φ. We assume pcheck(Mi, φ) to report all violations to property
φ with violation pattern Q for model Mi in the form of matches for Q, essentially
realizing |= as pcheck(Mi, φ) = ∅ ⇐⇒ Mi |= φ. If violations exist, the model
Mi is also called ill-formed.

For the notion of models as typed graphs, model modifications correspond to
graph modifications as presented in Sect. 2. We say a model modification (Mi ←
K → Mj) with subgraph inclusions is maximally preserving iff it does not delete
and recreate identical elements. Formally, K = (V Mi ∩V Mj , EMi ∩EMj , sK , tK),
where sK and tK are uniquely defined assuming invariant edge sources and
targets. Consequently, for two models Mi and Mj , the maximally preserving
model modification (Mi ← K → Mj) is uniquely defined.

For a set of model modifications ΔM{1,...,n} between models M{1,...,n} =
{M1, . . . ,Mn}, with ∀(G ← K → H) ∈ ΔM{1,...,n} : G ∈ M{1,...,n} ∧ H ∈
M{1,...,n}, we can define the set of predecessors pre(i) ⊂ M{1,...,n} of a version Mi

as the set of versions Mj such that there exists a sequence of model modifications
(Mx1 ← Kx1 → Mx2), (Mx2 ← Kx2 → Mx3), . . . , (Mxn−1 ← Kxn−1 → Mxn

)
where x1 = j, xn = i, and (Mxk

← Kxk
→ Mxk+1) ∈ ΔM{1,...,n} for 1 ≤ k < n.

ΔM{1,...,n} describes a correct version history if all morphisms in the indi-
vidual model modifications are subgraph inclusions, all model modifications are
maximally preserving, the pre relation is acyclic and there exists a model Mα

such that Mα ∈ pre(i) for all models Mi �= Mα. Effectively, a correct version
history describes a directed acyclic graph of model versions M{1,...,n} that are
derived from an original model Mα via the model modifications in ΔM{1,...,n} ,
and therefore closely corresponds to the versioning of some development artifact
in a conventional version control system.
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Taentzer et al. [26] define a merge operation for model modifications m1 =
(Mc ← Ki → Mi) and m2 = (Mc ← Kj → Mj) with common source Mc, which
unifies m1 and m2 into a merged model modification mm = merge(m1,m2) =
(Mc ← Km → Mm). We denote the merged model by Mm = mergeG(m1,m2).
This merge operation is similar to a three-way-merge in conventional version
control systems [20], since mm in the default case (i) preserves an element x ∈ Mc

iff it is preserved by both m1 and m2 (ii) deletes an element x ∈ Mc iff it is deleted
by m1 or m2 (iii) creates an element x ∈ Mm iff it is created by m1 or m2.

However, according to [26], model modifications can be in conflict in two
cases: (i) insert-delete conflict and (ii) delete-delete conflict. Taentzer et al. state
that only (i), where one modification creates an edge connected to a node deleted
by the other modification, is an actual conflict, which has to be resolved to create
a correct merge result. In this case, the merge result may deviate from the default
case. Such conflicts will be reported by mcheck((Mc ← Ki → Mi), (Mc ← Kj →
Mj)) in the form (e, v), where e is an edge created by one of the modifications
and v is a node deleted by the other modification.

For a correct version history ΔM{1,...,n} , we say that two sequences of model
modifications Mc ⇒∗ Mi and Mc ⇒∗ Mj are in conflict iff their corresponding
maximally preserving model modifications (Mc ← Kc,i → Mi) and (Mc ←
Kc,j → Mj) are in conflict. In this case, we also say that Mi and Mj are in
conflict for the common predecessor Mc.

Insert-delete conflicts can be resolved by equipping the merge operation with
a manual or automatic strategy for conflict resolution. We consider such a strat-
egy valid if it decides for each conflict whether to either revert the edge creation
or the node deletion and always produces a proper merged graph. The approach
in [26] effectively proposes an automatic strategy that favors insertion over dele-
tion in order to preserve as many model elements as possible. Therefore, it reverts
any deletions of nodes that would lead to insert-delete conflicts.

In contrast, a strategy for conflict resolution may favor deletion over insertion
by reverting any creations of edges that would lead to insert-delete conflicts.
Specifically, for model modifications m1 = (Mc ← Ki → Mi) and m2 = (Mc ←
Kj → Mj), the model modification mmin = mergemin(m1,m2), with mergemin

a merge operation equipped with this strategy, only creates an edge created by
m1 or m2 if neither its source nor target is deleted by the other modification.

If all well-formedness conditions are specified by simple violation patterns,
mmin also yields a model where all well-formedness violations are also present
in the merge result for any other conflict resolution strategy:

Theorem 1. For two model modifications m1 = (Mc ← Ki → Mi) and m2 =
(Mc ← Kj → Mj) and a well-formedness constraint φ with violation pattern Q,
it holds that

pcheck(mergemin
G (m1,m2), φ) =

⋂

str∈S

pcheck(mergestr
G (m1,m2), φ),

with S the set of all valid conflict resolution strategies.
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Proof. (Sketch) Follows directly from the fact that mergemin
G (m1,m2) is the

smallest common subgraph of all graphs produced by the operation merge for
any valid conflict resolution strategy. ��

If there are no conflicts in the merged model operations, the merge operation
produces the same result regardless of the chosen strategy for conflict resolution.

For a correct version history, two model versions Mi and Mj , and the set of
versions P = pre(i) ∩ pre(j), we define the function

preC(i, j) =

{
∅ Mi ∈ pre(j) ∨ Mj ∈ pre(i)
{Mc ∈ P | ∀Mx ∈ P : Mc /∈ pre(x)} otherwise

,

which returns the set of latest common predecessors of Mi and Mj . Note that
our definition of preC corresponds to the definition of a best common ancestor in
conventional version control systems such as Git [16], which is used to compute
the base for three-way merges in these systems.

Figure 3 shows an exemplary version history based on the graph M1 from
Fig. 1. The initial graph Mα = M1 contains four classes. The modification m1

(not to be confused with a morphism) to M2 creates a superclass edge from c1 to
c3 and deletes the node c4. The modification m2 to graph M3 creates superclass
edges from c1 to c2 and from c4 to c2. There is an insert-delete conflict between
the two modifications, since the modification to M2 deletes a node that is needed
as the source of an edge created by the modification to M3. Furthermore, the
result of the merge of the two modifications would violate the well-formedness
constraint with the violation pattern Q from Fig. 1, since without additional
modifications, the node c1 would have two outgoing superclass edges.

Fig. 3. Example version history

4 Multi-version Models as Typed Graphs

A correct version history ΔM{1,...,n} with model versions M{1,...,n} conforming
to a type graph TM can be represented by a multi-version model in the form of
a single graph that is typed over an adapted type graph.

The adapted type graph TMmv contains a node for each node and edge in
TM . It also contains edges connecting each node in TMmv that represents an
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edge in TM to the nodes representing the edge’s source and target in TM .
This yields a bijective function corrmv : V TM ∪ ETM → V TMmv , which maps
elements from TM to the corresponding node in TMmv, and two bijective func-
tions corrs

mv, corrt
mv : ETM → ETMmv mapping edges from TM to the edges

in TMmv encoding the source and target relation in TM . In addition, TMmv

contains a node version, an edge suc with source and target version, and two
edges cvv and dvv from each other node v ∈ V TMmv to the version node.

A multi-version model MVM for ΔM{1,...,n} is then constructed by an oper-
ation comb as follows: A subgraph PM

mv encodes structural information about
all model versions and is constructed by translating PM =

⋃
Mi∈M{1,...,n} Mi to

conform to TMmv using an operation transmv. Since source and target functions
are invariant in a correct version history, PM is well-defined.

For each v ∈ vPM

, transmv creates a node of type corrmv(v) in V PM
mv . For

each e ∈ EPM

, a node of type corrmv(e) is created. This yields a bijection origin :
PM

mv → PM mapping translated elements to their original representation.
In addition, for each edge e ∈ EPM

, an edge of type corrs
mv(e) with source

origin−1(e) and target origin−1(sPM

(e)) and an edge of type corrt
mv(e) with

source origin−1(e) and target origin−1(tP
M

(e)) are created in EPM
mv . Since edge

sources and targets are invariant, the corresponding node ve = origin−1(e) in
the end has exactly one edge of type corrs

mv(e) and one of type corrt
mv(e).

We thus have two functions smv : origin−1(EPM

) → EPM
mv respectively tmv :

origin−1(EPM

) → EPM
mv encoding these mappings.

Another, distinct subgraph PV
mv contains versioning information and is con-

structed as follows: For each Mi ∈ M{1,...,n}, PV
mv contains a corresponding node

of type version. For each (Mi ← K → Mj) ∈ ΔM{1,...,n} , PV
mv contains an edge

of type suc from the node representing Mi to the node representing Mj .
For each modification (Mi ← K → Mj), a cv-edge with the node correspond-

ing to Mj as its target is added to all nodes corresponding to elements created
by the modification. A dv-edge with the node corresponding to Mj as its target
is added to all nodes corresponding to elements deleted by the modification.
Additionally, a cv edge with the node corresponding to the initial version Mα as
its target is added to all nodes corresponding to elements in Mα.

Since attributes can be encoded by dedicated nodes and assignment edges
[17], the construction can be performed analogously for attributed graphs.

For v ∈ PM
mv and Mi ∈ M{1,...,n}, we say that v is mv-present in Mi, iff for

a node mcv connected to v via a cv edge, there exists a path from mcv to the
node representing Mi via suc edges that does not go through a node connected
to v via a dv edge. We denote the set of versions where v is mv-present by p(v).

A model version Mi can then be derived from MVM via an operation proj as
follows: Collect all nodes Vp = {vp ∈ V PM

mv |Mi ∈ p(vp)}, that is, all nodes that
are mv-present in Mi, and translate the induced subgraph into the single-version
model Mi with V Mi = {origin(vv)|vv ∈ V MV M ∧ corr−1

mv(typeMV M (vv)) ∈
V TM}, EMi = {origin(ve)|ve ∈ V MV M ∧ corr−1

mv(typeMV M (ve)) ∈ ETM},
sMi = origin ◦ tMV M ◦ smv ◦origin−1, and tMi = origin ◦ tMV M ◦ tmv ◦origin−1.
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Correctness

Theorem 2. For a correct version history ΔM{1,...,n} holds concerning comb
and proj:

∀i ∈ {1, . . . , n} : Mi = proj(comb(ΔM{1,...,n}), i).

Proof. (Sketch) Any element in a version Mi has a corresponding node v in
comb(ΔM{1,...,n}). By construction, v is connected to a node corresponding to
some version Mj via a cv edge, for which there exists a path of suc edges to the
node corresponding to Mi. That path does not go through a node connected to v
by a dv edge. v is thus mv-present in Mi and hence contained in the projection.

Inclusion of elements in the opposite direction can be shown analogously.
Because edge sources and targets are invariant over all graphs, the edges in
comb(M1, . . . ,Mn) correctly encode the source and target functions by construc-
tion. Thus, ∀i ∈ {1, . . . , n} : Mi = proj(comb(M1, . . . ,Mn), i). ��

More detailed proofs for this and other theorems in the paper can be found
in the appendix of the preprint version [2].

A maximally preserving model modification (Mi ← K → Mj) with Mi,Mj ∈
M{1,...,n} (and thus any model modification in ΔM{1,...,n}) can be derived from
MVM via projΔ as follows: Mi and Mj can be derived via the operation proj.
K is then the graph containing all elements from Mi ∩ Mj , with sK and tK

uniquely defined by the corresponding functions from Mi and Mj and partial
identities as morphisms into Mi and Mj .

Theorem 3. For a correct version history ΔM
{1,...,n} holds concerning comb and

projΔ:

∀Mi,Mj ∈ M{1,...,n} : mi,j = projΔ(comb(ΔM{1,...,n}), i, j),

with mi,j the maximally preserving model modification from Mi to Mj.

Proof. Follows trivially from Theorem 2 and the definition of the maximally
preserving model modification (Mi ← Ki,j → Mj). ��

Figures 4 and 5 visualize the multi-version model MV M constructed for the
example history in Fig. 3 and the associated adapted type graph TMmv. MV M
contains a node for each node and edge in the models of the example history, one
node of type version for each of the graphs M1, M2, and M3, and appropriate
edges as created by comb.

4.1 Directly Checking Well-Formedness for Multi-version Models

We can use a multi-version model to directly find all well-formedness viola-
tions in all individual versions via an operation pcheckmv. For a multi-version
model MVM with a bijective mapping into a union of original model versions
originM and a well-formedness constraint φ with associated violation pattern Q,
pcheckmv(MVM , φ) works as follows:
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Fig. 4. Multi-version model for the history in Fig. 3

Fig. 5. Adapted type graph for type graph in Fig. 1

First, the graph Q typed over the original type graph is translated into a
corresponding graph Qmv typed over the adapted type graph using transmv.
This yields a bijective mapping originQ : Qmv → Q.

Then, all matches for Qmv in MVM are found. For each such match mmv,
pcheckmv computes all versions for which all vertices in the image of the match
are mv-present by P =

⋂
v∈V Qmv p(mmv(v)). If P �= ∅, the match into the

original model versions m = originM ◦mmv◦origin−1
Q is constructed and reported

as a violation in all versions in P .

Correctness

Theorem 4. For a well-formedness constraint φ with violation pattern Q, a
correct version history ΔM{1,...,n} , and MVM = comb(ΔM

{1,...,n}) holds:

pcheckmv(MVM , φ) =
⊎

i∈{1,...,n}
{(i,m)|m ∈ pcheck(proj(MVM , i), φ)}.

Proof. (Sketch) A match m : Q → Mi for any version Mi has one correspond-
ing match mmv with m = originM ◦ mmv ◦ origin−1

Q , where edges created by
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transmv ensure correct connectivity. P =
⋂

v∈V Qmv p(mmv(v)) contains exactly
the versions containing all elements in m(Q). This yields the stated equality. ��

Complexity. The effort for searching all versions M{1,...,n} of some version
history ΔM{1,...,n} for a pattern Q using pcheck is in O(

∑
Mi∈M{1,...,n} C(Mi, Q)),

with C(Mi, Q) the effort for finding all matches of Q into Mi.
PM

mv = transmv(PM ) and Qmv = transmv(Q) are only different encodings
of PM =

⋃
Mi∈M{1,...,n} Mi and Q. Considering computation of the mv-present

predicate, the effort for pcheckmv is hence in O(C(
⋃

Mi∈M{1,...,n} Mi, Q) + X ·
|V Qmv | · |ΔM1,...,n |), with X the number of matches for Qmv into PM

mv.

Discussion. If many elements are shared between individual versions and modi-
fications only perform few changes, the size of the union of all model versions will
be small compared to the sum of the sizes of all individual versions. If pattern
matching is efficient with respect to the size of the considered model, pattern
matching over the union of all model versions will then likely require less effort
than matching over each individual version. Intuitively, pcheckmv avoids redun-
dant searches over model parts that are shared between multiple versions and
thus saves the related effort. If the number of matches for violation patterns is
low, the associated checks performed by pcheckmv will likely be more efficient
than the pattern matching over the individual versions.

Overall, pcheckmv will thus likely be more efficient than using pcheck in
scenarios where pattern matching is efficient, the number of changes between
versions is low, and the number of violations in the union of versions is low.

5 Directly Checking Merge Results for Multi-version
Models

We can consider multi-version models to directly detect whether (a) merge
conflicts exist for any valid pair of encoded model modifications via an oper-
ation mcheckmv and (b) any resulting merged model is ill-formed via an oper-
ation pcheckm

mv, where a pair of model modifications (Mc ← Ki → Mi) and
(Mc ← Kj → Mj) is valid iff Mc ∈ preC(Mi,Mj).

5.1 Directly Checking for Merge Conflicts

mcheckmv can be realized for a multi-version model MVM = comb(ΔM{1,...,n})
as follows: First, the operation collects all nodes in MVM representing edges
that are created by some model modification. This means all nodes ve ∈ V MV M

where corr−1
mv(typeMV M (v)) ∈ ETM connected to a node mx via a cv edge, where

mx does not correspond to Mα and with TM the original type graph. Then, for
each node ve, we compute the set of versions P = p(ve) where it is mv-present.
If P �= p(vs), where vs = sMVM (smv(ve)), we then compute a set of versions D
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that correspond to nodes reachable via suc edges from a node connected to vs

via a dv edge without going through nodes connected to vs via a cv edge.
Afterwards, for each pair of versions Mi ∈ P and Mj ∈ D, we check for each

latest common predecessor Mc ∈ preC(i, j) whether Mc ∈ p(vs) ∧ Mc /∈ P . For
any triplet of versions (i, j, c) where this is the case, the edge origin(ve) is then in
an insert-delete conflict with its source. To facilitate formalization, this conflict is
reported in the normalized form (min(i, j),max(i, j), c, (origin(ve), origin(vs))).
Insert-delete conflicts with the edge’s target are computed analogously.

Correctness

Theorem 5. For a version history ΔM{1,...,n} and the associated multi-version
model MVM = comb(ΔM

{1,...,n}) holds:

mcheckmv(MVM ) =
⊎

(i,j,c)∈Y

{(i, j, c,m)|m ∈ mcheck(mc,i,mc,j)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and with
mc,i = projΔ(MVM , c, i) and mc,j = projΔ(MVM , c, j).

Proof. (Sketch) The collected nodes representing edges correspond to a superset
of edges that may be involved in a conflict. The construction of the sets P and
D for a collected node ve ensures that any pair of versions where one may create
e = origin(ve) and the other may delete the source (or target) of e is considered.
The condition checked for each common predecessor of a version pair then yields
exactly the triplets of versions where e is part of an insert-delete conflict. Because
of the normalization of the results of mcheckmv, we have the stated equality. ��

Complexity. The function preC
mv can be precomputed in O(|M{1,...,n}|4).

Since information about creation and deletion of elements is not explicitly
available in a näıve representation, finding all insert-delete conflicts between two
model modifications via mcheck has to be done by checking for each edge in
either modification’s resulting model whether it is created by that modification
and its source or target is deleted by the other modification. Since there may
exist up to O(|M{1,...,n}|3) possible merges in a version history, in the worst case,
this implies effort in O(|M{1,...,n}|4 + |EMmax | · |M{1,...,n}|3), where |EMmax | is
the maximum number of edges present in a single model version.

Created edges can be retrieved efficiently from a multi-version model given
appropriate data structures. Computing and checking the required version sets
takes O(|M{1,...,n}|3) steps per edge. Therefore, the overall computational com-
plexity of mcheckmv is in O(|M{1,...,n}|4 + Δ+ · |M{1,...,n}|3), where Δ+ is the
overall number of elements created in the version history.
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Discussion. The efficiency of mcheckmv compared to using mcheck mostly
depends on the number of edges created by some model modification compared
to the number of edges in the individual versions. If most edges are present
in the original model version and are shared between many model versions,
mcheckmv will be more efficient. Otherwise, mcheckmv will not achieve a signif-
icant improvement and might even perform worse than the operation based on
mcheck.

Version control systems such as Git typically select a single latest common
predecessor as the base for a three way merge [16]. Using a corresponding partial
function preC

1 : N × N → M{1,...,n} with preC
1 (i, j) ∈ preC(i, j) if preC(i, j) �= ∅

and preC
1 (i, j) =⊥ to select a single latest common predecessor of two versions

i and j rather than preC in mcheckmv, by the same logic as used in the proof
of correctness, we instead have an analogous equality for preC

1 . Disregarding the
computational effort for precomputing preC

1 , replacing preC by preC
1 reduces the

remaining computational complexity of mcheckmv to O(Δ+ · |M{1,...,n}|2).

5.2 Directly Checking Well-Formedness for Merge Results

To find all violations of a well-formedness constraint φ characterized by a pat-
tern Q via pcheckm

mv in merge results of a multi-version model MV M , we first
translate Q into Qmv = transmv. We then find all matches for Qmv in MV M .

For a match mmv for Qmv, we determine the set of versions Pv = p(v) for each
v ∈ mmv(V Qmv ). For each pair of versions Mi ∈ arg minP∈{p(v)|v∈mmv(V Qmv} |P |
and Mj ∈ ⋃

v∈V Qmv p(v), we check whether ∀v ∈ mmv(V Qmv ) : Mi ∈ p(v)∨Mj ∈
p(v). We then check for each latest common predecessor Mc ∈ preC(i, j) if for all
v ∈ V Qmv , it holds that v ∈ V Mc → (v ∈ V Mi∧v ∈ V Mj ), that is, v is not deleted
in Mi or Mj . If this is the case, the match m into

⋃
Mx∈M{1,...,n} Mx corresponding

to mmv represents a violation in mergemin((Mc ← Ki → Mi), (Mc ← Kj →
Mj)). We report results in the normalized form (min(i, j),max(i, j), c,m).

Correctness

Theorem 6. Given a well-formedness constraint φ, a correct version history
ΔM{1,...,n} , and the multi-version model MVM = comb(ΔM

{1,...,n}), it holds that:

pcheckm
mv(MVM , φ) =

⊎

(i,j,c)∈Y

{(i, j, c,m)|m ∈ pcheck(Mmin
i,j,c , φ)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and
Mmin

i,j,c = mergemin
G (projΔ(MVM , c, i), projΔ(MVM , c, j)).

Proof. (Sketch) For two versions Mi,Mj with latest common predecessor Mc, a
match m : Q → mergemin

G (projΔ(MVM , c, i), projΔ(MVM , c, j)) has one cor-
responding match mmv : transmv(Q) → MVM by construction, where the edges
created by transmv ensure the correct connectivity. The set of version pairs con-
sidered by pcheckm

mv contains all version pairs such that each matched element
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is contained in at least one of the versions. The condition checked for every
latest common predecessor ensures that only version triplets are reported where
the merge result also contains all matched elements if there are no merge con-
flicts. Since mergemin resolves conflicts by prioritizing deletion and, as ensured
by the check, no matched node is deleted by the merge, conflict resolution cannot
invalidate the match or create new matches. We thus have the stated equality. ��

By Theorem 1 and Theorem 6, we also have that pcheckm
mv yields the set of

violations that cannot be avoided by any conflict resolution strategy:

Corollary 1. Given a well-formedness constraint φ, a correct version history
ΔM{1,...,n} , and the multi-version model MVM = comb(ΔM{1,...,n}), it holds that:

pcheckm
mv(MVM , φ) =

⊎

(i,j,c)∈Y

⋂

str∈S

{(i, j, c,m)|m ∈ mcheck(Mstr
i,j,c, φ)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and
Mstr

i,j,c = mergestr
G (projΔ(MVM , c, i), projΔ(MVM , c, j)), and with S the set of

all valid conflict resolution strategies.

Complexity. The function preC
mv can be precomputed in O(|M{1,...,n}|4).

With C(Mi, Q) the effort for finding all matches of Q into Mi, finding viola-
tions characterized by a pattern Q in all results of a set of possible merges Y using
pcheck takes effort in O(O(|M{1,...,n}|4+

∑
(m1,m2)∈Y C(mergemin

G (m1,m2), Q)).
The computation and checking of version triplets for a match in pcheckm

mv

takes effort in O(|M{1,...,n}|3). For X matches for Qmv, the effort for pcheckm
mv

is thus in O(|M{1,...,n}|4 + C(
⋃

Mi∈M{1,...,n} Mi, Q) + X · |V Qmv | · |M{1,...,n}|3).

Discussion. By the same argumentation as for pcheckmv, pcheckm
mv will likely

be more efficient than the corresponding operation using pcheck in scenarios
where pattern matching is efficient, the number of changes between versions is
low, and the number of violations in the union of model versions is low.

Using some partial function preC
1 : N × N → M{1,...,n} to select a single

latest common predecessor rather than preC in pcheckm
mv, by the same logic as

in the proof of correctness, we have an analogous equality for preC
1 . Disregarding

the effort for precomputing preC
1 , replacing preC by preC

1 reduces the remaining
complexity of pcheckm

mv to O(C(
⋃

Mi∈M{1,...,n}
Mi, Q)+X · |V Qmv | · |M{1,...,n}|2).

6 Evaluation

For an initial empirical evaluation of the performance and scalability of the pre-
sented operations, we experiment with an application scenario from the software
development domain. Therefore, we extract abstract syntax graphs from a small
previous research project (rete) and a larger open source project (henshin
[1]) written in Java using the EMF-based [10] MoDisco tool [5]. We store the
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extracted models in a graph format and fold each of the projects into a multi-
version model, using a mapping strategy based on hierarchy and element names.

We then run implementations of the presented operations for conflict detec-
tion and well-formedness checking based on multi-version models (MVM) and
baseline implementations using corresponding single-version models (SVM).1

We consider three well-formedness constraints: uniqueness of a class’s superclass,
uniqueness of a method’s return type, and consistency of an overriden method’s
return type. We employ our own EMF-based tool [14] for pattern matching.

Figure 6 shows the measured execution times for the operations pcheckmv,
mcheckmv, and pcheckm

mv and related single-version-model-based operations over
the example models. The execution times for pcheckmv and pcheckm

mv correspond
to the combined pattern matching time for all considered well-formedness con-
straints. All reported times exclude the time for computing any merge results
required by SVM and the time required to precompute the preC function, since it
is required by both the MVM and the SVM implementation. Precomputing preC

took about 5 ms for the smaller project and about 3.5 s for the larger project.
For the tasks related to well-formedness checking, the MVM variant performs

better (up to factor 50) than SVM. Since there are only few to no matches for
the violation patterns of the considered constraints, the MVM implementation
only performs few of the potentially expensive checks over the version graph,
while avoiding most of the redundancy in the pattern matching of SVM.

Fig. 6. Measurement results for pcheckmv, mcheckmv, and pcheckm
mv

For conflict detection, MVM performs better than SVM for the smaller
project (factor 5), but has a substantially higher execution time for the larger
project (factor 10). The reason for the bad performance is that most edges are
not present in the initial model version. In fact, the number of edges created
throughout the version history is much higher than the number of edges in any
individual version. Furthermore, in contrast to the solution using mcheck, the
operation mcheckmv considers versions where the source or target of an edge
1 All experiments were executed on a Linux SMP Debian 4.19.67-2 machine with
Intel Xeon E5-2630 CPU (2.3GHz clock rate) and 386GB system memory running
OpenJDK version 1.8.0 242. Reported execution times correspond to the minimum of
at least five runs of the respective experiment. Memory measurements were obtained
in a single run using the native Java library. Our implementation and datasets are
available under https://github.com/hpi-sam/multi-version-models.

https://github.com/hpi-sam/multi-version-models
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is not present. Due to the high number of versions in the project and because
many elements are only present in few versions, this leads to the processing of
large version sets, which deteriorates the performance of MVM in this scenario.

The memory consumption of the multi-version models and their represen-
tations as collections of single-version models is displayed in Fig. 7. For both
projects, the representation as a multi-version model affords a more compact
representation compared to a näıve encoding (factor 30 for the larger project).

Fig. 7. Measurement results for memory consumption

Threats to Validity. Unexpected JVM behavior poses a threat to internal
validity, which we tried to mitigate by performing multiple runs of each experi-
ment measuring execution time and profiling time spent on garbage collection. To
address threats to external validity, we used real-world data and well-formedness
constraints in our experiments. While we used our own tool for pattern matching,
said tool has already been used in our previous works and has shown adequate
performance [14].

However, the example constraints are not representative and the folding of
individual model versions extracted from source code may yield a larger-than-
necessary multi-version model. Our results are thus not necessarily generalizable,
but instead constitute an early conceptual evaluation of the presented approach.

7 Related Work

While most practical version control systems operate on text documents [20],
versioning and merging of models has also been subject to extensive research.

There already exist several formal and semi-formal approaches to model
merging, which compute the result of a three-way-merge of model modifica-
tions [26,27]. Notably, the approach by Taentzer et al. [26] represents a formally
defined solution that works on the level of graphs, which is why for our app-
roach, we build on their notion of model merging. In their work, Taentzer et al.
also consider checking of well-formedness constraints by constructing a tentative
merge result over which the check is executed. While this allows their approach
to handle arbitrary constraints rather than just simple graph patterns, the check
has to be executed for each individual merge.
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Some approaches consider detection of merge conflicts [19] or model incon-
sistencies [3] based on the analysis of sequences of primitive changes. However,
these approaches do not consider the case of multiple versions and pairwise
merges and naturally do not employ a graph-based definition of inconsistencies.

For the more general problem of model versioning, both formal solutions
[8,24] and tool implementations [18,21] have been introduced. Similar to our
approach, some of these techniques are based on a joint representation of multiple
model versions [21,24]. However, to the best of our knowledge, joint conflict
detection or well-formedness checking for all merges at once is not considered.

Model repositories such as Hawk [13] allow storing the evolution of models
over time and enable the execution of queries equipped with temporal operators.
Folding and joint querying of the temporal evolution of graphs has also been
studied in previous work of our group [15,25]. However, these solutions focus on
sequences of graph modifications without diverging branches and hence do not
consider merging.

The presented encoding of different model versions in a unified multi-version
model bears similarity to so-called 150% models from software product lines
[6]. A 150% model represents different configurations of a software system as
a single unified model, where annotations determine the presence of individual
model elements in certain configurations. The derivation of a model instance for
a specific configuration from a 150% model then corresponds to the projection
from a multi-version model to a specific model version. A realization of 150%
models in the context of model-driven engineering is presented in [23].

Westfechtel and Greiner [28] present a solution for propagating presence
information from a unified encoding of multiple product line configurations along
model transformations. While their approach bears some similarity to the col-
lective well-formedness checking in our solution, the technique in [28] focuses on
product lines and hence does not consider version histories and merging.

[7] introduces a new semantics for OCL in the context of software product
lines, which allows the collective checking of well-formedness constraints over
a unified encoding of product line configurations. However, the application of
this approach to model versioning would require a translation of version graphs
and model modifications to an encoding of valid configurations and presence
annotations. This seems nontrivial, especially if the compression of version his-
tories achieved by multi-version models is to be preserved. However, by relying
on OCL as a specification language, the approach in [7] allows a much higher
expressiveness when formulating well-formedness conditions compared to simple
graph patterns. Adopting some of the ideas in [7] may therefore enable lifting
our definition of well-formedness to more expressive formalisms in future work.

A solution to conflict detection for features in software product lines is pre-
sented in [22]. In [22], product variability is encoded by so-called delta modules,
which represent operations for extending a basic version of the software by cer-
tain features and are thus similar to model modifications. The approach checks
for syntactic conflicts via pair-wise comparison of delta-modules and thus relates
to detection of merge conflicts in the context of model merging. The approach
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in [22] also considers the case where a third delta module fixes conflicts between
two other modules. Considering merges of more than two versions could also be
an interesting direction for future work in the context of multi-version models.

8 Conclusion

In this paper, we have presented an approach for encoding a model’s version
history as a single typed graph. Based on this representation, we have intro-
duced operations for finding merge conflicts and violations of well-formedness
conditions in the form of graph patterns in the entire history and related merge
results. We have conducted an initial empirical evaluation, which demonstrates
potential benefits of the approach, but also highlights shortcomings in unfavor-
able scenarios.

In future work, we plan to address these shortcomings by studying how to
compress the version graph or restrict the set of considered versions to those
most relevant to users. We also plan to explore how such a restriction may allow
the pruning of superfluous elements from a multi-version model and thereby pre-
vent performance degradation as more versions are introduced. Furthermore, we
want to investigate how to lift our notion of well-formedness constraints to more
expressive formalisms such as nested graph conditions and develop an incremen-
tal version of the approach. Finally, we will extend our empirical evaluation to
better characterize our technique’s performance.
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