
A Generic Construction for Crossovers
of Graph-Like Structures

Gabriele Taentzer(B) , Stefan John(B) , and Jens Kosiol(B)

Philipps-Universität Marburg, Marburg, Germany
{taentzer,johns,kosiolje}@mathematik.uni-marburg.de

Abstract. In model-driven optimization (MDO), domain-specific mod-
els are used to define and solve optimization problems with evolution-
ary algorithms. Models are typically evolved using mutations, which can
be formally specified as graph transformations. So far, only mutations
have been used in MDO to generate new solutions from existing ones;
a crossover mechanism has not yet been elaborated. In this paper, we
present a generic crossover construction for graph-like structures that
can be used to implement crossover operators in MDO. We prove basic
properties of our construction and show how it can be used to implement
a whole set of crossover operators that have been proposed for specific
problems and situations on graphs.

Keywords: Evolutionary Computation · Crossover · Model-driven
optimization · Category Theory

1 Introduction

In software development, software engineers often make design decisions in the
context of competing constraints ranging from requirements to technology. To
efficiently find optimal solutions, Search-Based Software Engineering (SBSE) [16]
attempts to formulate software engineering problems as optimization problems
that capture the constraints of interest as objectives. By using meta-heuristic
search techniques, good solutions can often be found with reasonable effort.
Because of their generality, evolutionary algorithms, and in particular genetic
algorithms [5,17] that use mutation, crossover, and selection to perform a guided
search over the search space, are a technique of particular relevance. According
to e.g. [13], the definition of an evolutionary algorithm requires a representation
of problem instances and search space elements (i.e., solutions). It also includes
a formulated optimization problem that clarifies which of the solutions are feasi-
ble (i.e., satisfy all constraints of the optimization problem) and best satisfy the
objectives. The key ingredients of the optimization process are a procedure for
generating a start population of solutions, a mechanism for generating new solu-
tions from existing ones (e.g., by mutation and crossover), a selection mechanism
that typically establishes the evolutionary concept of survival of the fittest, and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Behr and D. Strüber (Eds.): ICGT 2022, LNCS 13349, pp. 97–117, 2022.
https://doi.org/10.1007/978-3-031-09843-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09843-7_6&domain=pdf
http://orcid.org/0000-0002-3975-5238
http://orcid.org/0000-0002-1936-5144
http://orcid.org/0000-0003-4733-2777
https://doi.org/10.1007/978-3-031-09843-7_6

98 G. Taentzer et al.

a condition for stopping evolutionary computations. Selecting these ingredients
so that an evolutionary algorithm is effective and efficient is usually a challenge.

Model-driven optimization (MDO) aims at reducing the required level of
expertise of users of meta-heuristic techniques. Two main approaches have
emerged in MDO: the model-based approach [7,8] performs optimization directly
on models, while the rule-based approach [1,4] searches for optimized model
transformation sequences. In this paper, we focus on the model-based approach
since it tends to be more effective [20] and refer to it as MDO for short. In MDO,
optimization problems are specified as models that capture domain-specific infor-
mation about a problem and its solutions. In that way, users can interact with a
domain-specific formulation of their problem, rather than traditional encodings
that are typically closer to implementation. While the search space consists of
models, the mutation of search space elements is specified by model transfor-
mations. In sophisticated evolutionary algorithms, mutations typically perform
local changes, while crossovers are used to generate offspring by recombining
existing search space elements. For (the model-based approach to) MDO, no
crossover mechanism has been worked out yet. This paper fills this research gap
and presents a crossover construction for graph-based models.

Several graph-based approaches to crossover have been suggested in the liter-
ature, e.g. [27,29]. In most cases, these crossovers are not generic (in the sense of
different kinds of graphs), but are designed with specific semantics of the underly-
ing graphs in mind. We aim to develop a generic construction of crossovers that can
be applied to different kinds of graph-like structures. Moreover, this construction
of crossovers is applicable regardless of the semantics of the graphs of interest. We
also prove the correctness and completeness of our crossover construction.

The paper is organized as follows: We start with an example MDO problem
and discuss a possible crossover in this context in Sect. 2. Section 3 recalls
preliminaries. The main contribution of this paper, a pushout-based crossover
construction, is presented in Sect. 4. In Sect. 5, we explain how our new crossover
construction encompasses important, more specific approaches to crossover (on
graph-like structures) that have been suggested in the literature. We close with
a discussion of related work and a conclusion in Sects. 6 and 7. All proofs are
given in Appendix A.

2 Running Example

The CRA case [6] is an optimization problem from the domain of software design
that has recently established itself as an easily understood use case in the con-
text of MDO. Given a software product represented by a set of features (i.e.,
attributes and methods) and dependency relations between them, the task is
to modularize the software by encapsulating its features into classes. Two well-
known quality aspects are used to evaluate the quality of solutions: cohesion
and coupling. Cohesion rewards classes in which features are highly interde-
pendent, while coupling captures the interdependencies of features that exist
between classes. A highly cohesive design with low coupling is considered easy to

A Generic Construction for Crossovers of Graph-Like Structures 99

understand and maintain. Therefore, maximizing cohesion and minimizing cou-
pling are the opposing objectives of the CRA case.

Fig. 1. Type graph of the CRA case. White
solid elements specify invariant problem
parts, the red colored class element and its
relations are solution specific.

The structure of models in the
CRA case can be defined by the type
graph shown in Fig. 1. A problem
instance consists at least of the fea-
tures and their dependencies. These
elements form the invariant part of a
concrete problem. Classes (and their
relationships), on the other hand, can
be added, modified and removed to
explore the search space and create
new solutions. Typical mutations for
the CRA case include small changes like adding or removing a class, assigning
a feature to a class, or changing the assignment of a feature from one class to
another. Mutation usually does not consider already well optimized substruc-
tures that might be worth being shared with other solutions.

In the CRA case, a subset of features, along with their current assignment to
classes, contains potentially valuable information. The exchange of this informa-
tion between two solutions represents a promising crossover as we will see in the
following example. Consider solutions E and F in Fig. 2, for a problem instance
consisting of four methods and two attributes. Let a crossover choose to recom-
bine them by exchanging their assignment information for the features 1:Method,
2:Attribute and 3:Method. This results in two offspring solutions. Solution E1F2

keeps the original assignments of 4:Method, 5:Attribute, and 6:Method as found
in solution F and combines them with the assignments of E for the exchanged
features. The solution E2F1 is constructed in the opposite way.

Note that combining 1:Method, 2:Attribute and 3:Method into one class (as
done in solution E) seems a reasonable choice. Their pairwise dependencies pro-
mote cohesion, while splitting them would lead to coupling. The same is true
for the features of class 12: Class in solution F. Consequently, the offspring E1F2

combines the best of both worlds.

3 Preliminaries: M-Adhesive Categories

In this section, we briefly recall our central formal preliminaries, namely M-
adhesive categories and M-effective unions [12], which provide the setting in which
we formulate our contribution. M-adhesive categories with M-effective unions
are categories where pushouts along certain monomorphisms interact in a partic-
ularly nice way with pullbacks. This is of importance because our construction
of crossovers is based on pushouts. Moreover, working in the framework of M-
adhesive categories allows us to easily abstract from the concrete choice of graphs
used to formalize the models of interest (such as typed, labeled, and attributed
graphs). We only use category-theoretic concepts that are common in the context
of algebraic graph transformation, and refer to [11,12] for introductions.

100 G. Taentzer et al.

Fig. 2. Example crossover in the CRA case that creates the offspring E1F2 and E2F1 by
exchanging the assignments of features 1:Method, 2:Attribute, and 3:Method between
the solutions E and F.

Definition 1 (M-adhesive category). A category C with a morphism class
M is an M-adhesive category if the following properties hold:

– M is a class of monomorphisms closed under isomorphisms (f isomorphism
implies that f ∈ M), composition (f, g ∈ M implies g ◦ f ∈ M), and decom-
position (g ◦ f, g ∈ M implies f ∈ M).

– C has pushouts and pullbacks along M-morphisms, i.e., pushouts and pull-
backs where at least one of the given morphisms is in M, and M-morphisms
are closed under pushouts and pullbacks, i.e., given a pushout like the left
square in Fig. 3a, m ∈ M implies n ∈ M and, given a pullback, n ∈ M
implies m ∈ M.

– Pushouts in C along M-morphisms are vertical weak van Kampen squares,
i.e., for any commutative cube in C (as in the right part of Fig. 3a) where we
have the pushout with m ∈ M in the bottom, b, c, d ∈ M, and pullbacks as
back faces, the top is a pushout if and only if the front faces are pullbacks.

We speak of M-adhesive categories (C,M) and indicate arrows from M as
hooked arrows in diagrams. Examples of categories that are M-adhesive include
sets with injective functions, graphs with injective graph morphisms and various
varieties of graphs with special forms of injective graph morphisms. In particu-
lar, typed attributed graphs form an M-adhesive category (where the class M
consists of injective morphisms where the attribute part is an isomorphism).

The existence of M-effective unions ensures that the M-subobjects of a given
object form a lattice.

Definition 2 (M-effective unions). An M-adhesive category (C,M) has
M-effective unions if for each pushout of a pullback of a pair of M-morphisms
the induced mediating morphism belongs to M as well, i.e., if in each diagram like

A Generic Construction for Crossovers of Graph-Like Structures 101

Fig. 3. Defining M-adhesive categories with M-effective unions

the one depicted in Fig. 3b where the outer square is a pullback of M-morphisms
and the inner one a pushout, the induced morphism x is an M-morphism.

4 A Pushout-Based Crossover Construction

In this section, we develop our approach to crossover. We start with introducing
the objects to which crossover will be applied.

Fig. 4. Computation ele-
ments and ce-morphism

In MDO, optimization problems are defined based
on modeling languages, typically specified with meta-
models. Various MDO approaches in the literature
such as [7,8] have chosen to represent problem
instances and solutions by models. Both can contain
invariant problem parts as well as solution specific
parts, a distinction typically embedded in the associ-
ated meta-model. In our formalization, this is reflected
in the fact that a computation element is given by
an object that conforms to a computation type object.
The type object specifies which parts of a computation element are invariant
and which parts contribute to the solution. A concrete problem to be optimized
is given by a problem instance; every computation element can serve as such.
The search space of a problem instance includes all computation elements with
the same problem object as specified by the given problem instance. In MDO,
problem instances and solutions are typically further constrained by additional
conditions. We leave this refinement to future work.

Definition 3 (Computation element. Problem instance. Search space).
Let (C,M) be an M-adhesive category. A computation type object in C is an
M-morphism tp : TP ↪→ T; TP is called the problem type object. A computation
element E = (e : EP ↪→ E, tEP

, tE) over tp is an M-morphism e together with
typing morphisms tEP

: EP → TP and tE : E → T such that the induced square
(over tp) is a pullback. The pair (EP , tEP

) is the problem object of E. If defined,
the initial pushout over e yields the solution part of E, written E \ EP .

A computation-element morphism m = (mP ,m), short ce-morphism, from
computation element E to computation element F is a pair of morphisms
mP : EP → FP and m : E → F that are compatible with typing, i.e., tFP

◦mP =

102 G. Taentzer et al.

tEP
and tF ◦ m = tE (see Fig. 4). A ce-morphism m is problem-invariant if mP

is an isomorphism between EP and FP .
Given a computation type object tp : TP ↪→ T in C, a problem instance PI of

tp is a computation element PI = (p : PI P ↪→ PI , tPIP
, tPI) over tp. It defines

the search space

S(PI) := {E = (e : EP ↪→ E, tEP
, tE) ∈ CS |

there exists an isomorphism aP : PI P
∼−→ EP s.t. tEP

◦ aP = tPIP
}.

Each element of the search space S(PI) is called solution (object) for PI .
Given a solution E for PI , a subsolution of E is a solution E1 from the

search space S(PI) such that there exists a problem-invariant ce-morphism s1

from E1 to E where s1 ∈ M.

Before providing an example, some remarks with respect to the above defini-
tion and notation are in order. Since the typing of the problem object of a com-
putation element is defined via a pullback, pullback decomposition implies that
a ce-morphism is indeed a pullback square (compare Fig. 4). Thus, in abstract
terms, we fix an M-morphism TP ↪→ T from a given M-adhesive category C.
We then work in the category that has pullback squares over TP ↪→ T as objects
and pullbacks between such pullback squares as arrows. The results in [23, Theo-
rem 1] ensure that this category is again M-adhesive, provided that the original
category C is also partial-map adhesive (as defined in [18]); a property that is
satisfied by the category of attributed graphs; see, for example, [23, Corollary 1].
However, in this paper it will suffice to consider the arising diagrams as diagrams
in the M-adhesive category C.

To shorten the presentation, we often only speak of computation elements E
and ce-morphisms m and use their components (such as EP , tEP

, or m) freely
without introducing them explicitly. Furthermore, we often let the typing be
implicit; in particular, we omit it in almost all diagrams. In our examples, we
use the category of graphs as the underlying M-adhesive category C. Finally, we
specify problem instances in terms of the actual computation elements (and not
just in terms of their problem objects) to account for the fact that in practice
the problem of interest may be given as part of a (suboptimal) solution.

Example 1. The graph T in Fig. 1 can be viewed as a compact representation of
a computation type graph where the black part marks the embedded problem
type graph. Similarly, the typed graphs of Fig. 2 are interpreted as computation
elements over T , with the black parts typed over the problem type graph; the
typing is indicated by the names of the nodes. Since the typing morphisms
form pullbacks, these black parts represent the problem graphs of the respective
computation elements. Having identical problem graphs, all four graphs belong
to the same search space, which can be defined using either of them. This reflects
that a user might want to optimize an existing assignment of features to classes,
rather than just specifying the features and their interdependencies.

A Generic Construction for Crossovers of Graph-Like Structures 103

Fig. 5. Split of solution E

Taking two computation elements (from the same
search space) and splitting their solution parts, two
offspring solutions are constructed by recombining
the resulting subsolutions crosswise. In the follow-
ing, we formally develop this intuition (based on the
category-theoretic concept of pushouts) and prove
basic properties of this construction of crossovers. We
begin by defining the split of a given solution.

Definition 4 (Split). Given a problem instance PI and a solution E for PI , a
split of E is a commuting cube as depicted in Fig. 5 where the bottom square is a
pushout, the vertical squares constitute ce-morphisms, all morphisms come from
M, and all problem objects (the objects in the square at the top) are isomorphic
to PI P . The bottom square is called solution split and EI is a split point of E.
The subsolutions E1 and E2 of E are called (solution) split objects of E.

A solution can be split in several ways; the central idea is that each solution
item of E occurs in (at least) one of the solution parts of E1 or E2. We next
present a concrete construction that implements the above declarative definition.

Definition 5 (Split construction). Given a solution E, the split construc-
tion consists of the following steps:

1. Choose an M-subobject s1 : E1 ↪→ E from E (in C) such that when pulling
back s1 along e, the morphism s1P opposite to s1 is an isomorphism (in par-
ticular, E1

P
∼= EP

∼= PI P , where E1
P is the object computed by this pullback).

The typing morphisms tE1
P

and tE1 are defined as tEP
◦s1P and tE ◦s1, respec-

tively.
2. Choose another such M-subobject s2 : E2 ↪→ E from E such that s1, s2 are

jointly epi (again, typing is defined by composition).
3. Complete the cube by constructing pullbacks. That is, determine EI as the

pullback of s1 and s2, EI
P as the pullback of the isomorphisms at the top of

the cube, and eI : EI
P ↪→ EI as the morphism that is induced by the univer-

sal property of the bottom pullback. Again, when considered as computation
element, the typing of EI is defined by composition.

Remark 1. While in general categories the above construction need not be con-
structive, it is when the underlying category is one of the familiar categories of
graphs (being, e.g. typed, labeled, or attributed). Then, the choice of E1 amounts
to extending (an isomorphic copy of) EP by a choice of solution elements from E;
s1 extends the isomorphism accordingly. Since pullbacks of injective morphisms
compute intersections, the pullback of s1 along e computes the chosen isomorphic
copy (up to unique isomorphism). For the choice of E2, one again extends an iso-
morphic copy of EP by a choice of solution elements from E. To ensure that s1 and
s2 become jointly epi (that is, jointly surjective in our case), one must include at
least all solution elements of E not chosen in the construction of E1.

104 G. Taentzer et al.

Fig. 6. A split of solution E

Example 2. Given the two degrees of freedom for a split, different splits can be
constructed from solution E shown in Fig. 2. In steps (1) and (2) we have all possi-
bilities to extend its problem graph EP (or an isomorphic copy) with solution parts
that yield E1 and E2 as long as E1 and E2 form graphs and jointly cover E.

A possible split of the solution E is shown in Fig. 6. Here, E is split by first
inserting the assignment relations of 1:Method, 2:Attribute, and 3:Method into E1

along with the associated class 7:Class. The rest of the feature assignments and the
necessary classes become part of E2. The pullback EI of E1 and E2 contains their
common solution element 7:Class. To simplify the presentation, the problem graph
EP is reused in all four graphs. Note that the morphisms in Fig. 6 are indicated by
equal numbers in the corresponding nodes. They uniquely induce the mapping of
edges. We use these conventions in all of the following examples.

Proposition 1 (Correctness and completeness of split construction).
In an M-adhesive category with M-effective unions, the split construction in
Definition 5 is correct and complete: it always yields a split of the given solution
and every possible split can be realized through it. Moreover, for each choice of
an M-subobject s1 : E1 ↪→ E there exists at least one possible split.

Fig. 7. Crossover point

Given a problem instance PI and two solutions
E and F for it, a crossover of E and F can be per-
formed. Their offspring are basically constructed
by recombining solution split objects crosswise.
Variations of recombinations are possible, since
solution-split objects resulting from solution splits
of E and F can be recombined with more or less
overlap. To uniquely determine a crossover of E
and F , we define a crossover point that specifies
the overlap of their solution split objects.

A Generic Construction for Crossovers of Graph-Like Structures 105

Definition 6 (Crossover point). Given a problem instance PI , two solu-
tions E and F for PI , with splits having split points EI and F I , respectively, a
crossover point CP is a common subsolution of EI and F I . That is, a crossover
point is a span of problem-invariant ce-morphisms as depicted in Fig. 7 (with
bottom components coming from M).

We will explain crossover points later along with the crossover operation as
such. Next we briefly mention that it is always possible to find a crossover point
in a trivial way – the problem object of the given problem instance can always
serve as such.

Lemma 1 (Existence of crossover points). Given a problem instance
PI = (p : PI P ↪→ PI , tPIP

, tPI) over type object tp, two solutions E and F

for PI , and splits with split points EI and F I , respectively, CP := (id : PI P ↪→
PI P , tPIP

, tp ◦ tPIP
) is always a crossover point for them. In particular, for

each two splits of solutions for the same problem instance there always exists a
crossover point.

Taking two solutions E and F for a common problem instance and splitting
them into subsolutions E1, E2 and F 1, F 2, we choose a crossover point for these
splits and now define a crossover of these solutions. It basically recombines the
subsolutions of E and F crosswise at the crossover point and yields the com-
putation elements E1F 2 and E2F 1. We show in Proposition 2 that these two
offspring are also solutions to the joint problem instance.

Definition 7 (Crossover). Let a problem instance PI , two solutions E and
F for PI , splits of these two solutions with split objects E1, E2, F 1, F 2 and split
points EI and F I , respectively, and a crossover point CP for these splits be
given. Then, a crossover of solutions E and F (at CP and these splits) yields
the two offspring solutions O1 and O2 of E and F that are shown in Fig. 8 and
constructed as follows:

1. The ce-morphisms from CP to E1 and E2 are obtained by composing the
ce-morphism from CP to EI (given by the crossover point) with the ce-
morphisms from EI to E1 and E2 (given by the solution split of E), respec-
tively. The ce-morphisms from CP to F 1 and F 2 are obtained analogously.

2. The top and bottom squares of the cubes are computed as pushouts (in C) yielding
the objects (E1F 2)P , E1F 2, (E2F 1)P , and E2F 1. The typing morphisms for
these objects are obtained from the universal properties of the respective pushout.

3. The morphisms o1 : (E1F 2)P ↪→ E1F 2 and o2 : (E2F 1)P ↪→ E2F 1 are also
induced by the universal property of the pushout squares at the top of the
cubes. These morphisms form the objects of O1 and O2.

We illustrate the construction before establishing some of its basic properties
such as its correctness.

Example 3. A split of solution F (introduced in Fig. 2) is shown in Fig. 9. Again,
the split point extends the problem graph by a Class element. Therefore, a

106 G. Taentzer et al.

Fig. 8. Crossover of solutions E and F

crossover point for E and F (with the splits given in Figs. 6 and 9) consists
either of their common problem graph only, or of this problem graph extended
by a single Class. Figure 2 already shows the two offspring graphs that result from
applying crossover to E and F where the problem graph is chosen as crossover
point. In contrast, adding a Class to the crossover point would merge 7:Class and
11:Class during the recombination and result in the offspring shown in Fig. 10.

Fig. 9. A split of solution F originally presented in Fig. 2

The next proposition shows that a crossover calculate the offspring correctly,
i.e. all offspring calculated represent solutions (for the given problem instance).

Proposition 2 (Correctness of offspring). Given a problem instance PI ,
two solutions E and F for PI , splits with split objects E1, E2, F 1, F 2 and split
points EI and F I , respectively, and a crossover point CP for these splits, then
there is always a crossover and the two offspring solutions O1 and O2 are solu-
tions for PI .

Next we characterize the expressiveness of the presented crossover construc-
tion: Given two solutions E and F , all solutions that can be understood as

A Generic Construction for Crossovers of Graph-Like Structures 107

Fig. 10. Two offspring models E1F2, E2F1, based on the splits of Figs. 6 and 9 and a
crossover point containing an additional class

results of splitting E and F and their recombination can indeed be generated
as offspring of the construction in Definition 7 (by different choices of solution
splits and crossover points). This is reminiscent of the expressiveness of uniform
crossover when using arrays of, e.g., bits as genotype [13].

Proposition 3 (Completeness of crossover). Let the underlying M-
adhesive category C have M-effective unions, and let a problem instance PI
and solutions E, F , and O for PI be given. The solution O can be obtained as
offspring from a crossover of E and F if and only if there are subsolutions E1 of
E and F 2 of F with problem-invariant ce-morphisms ī : E1 → O and j̄ : F 2 → O
such that i and j are jointly epic M-morphisms.

Discussion. As mentioned earlier, M-adhesive categories include various cat-
egories of (typed, labeled, or attributed) graphs that can be used to formal-
ize modeling approaches. In particular, our construction supports crossovers of
graphs with inheritance and attribution – concepts that are regularly used in
modeling. As for the construction of splits and crossover points, our approach
provides several degrees of freedom. In principle, for any implementation of these
variation points, the definitions and results in this section are sufficient to com-
plement evolutionary computations in model-based MDO with crossovers. More-
over, our proposed crossover construction is generic in the sense that it can be
applied to any meta-model; it only needs to be possible to formalize the optimiza-
tion problem of interest and its search space according to Definition 3. Then,
whenever two solution models are chosen for crossover, Proposition 1 ensures
that both can be split. Next, Lemma 1 ensures that regardless of which splits
are chosen, a crossover point exists for these splits. Finally, Proposition 2 ensures
that, for two splits and a crossover point, there is always a crossover that provides
solutions of the search space.

Beyond typing, meta-modeling typically employs integrity constraints that
express further requirements for instances being considered well-formed; multi-
plicities are a typical example. We do not consider such constraints so far. This
means that given a meta-model with additional integrity constraints and two of
its instance models satisfying these constraints, computing crossover as specified
in this work may result in offspring models that violate the constraints. We illus-
trate this with our running example: In practical applications, the meta-model
(type graph) from Fig. 1 would have a constraint requiring each Method and

108 G. Taentzer et al.

each Attribute to be associated with at most one Class. A slight adjustment of
the split and crossover points in Examples 2 and 3 results in the offspring shown
in Fig. 11; both graphs violate the considered constraint. The splits of E and
F were adjusted to additionally include the edge to 5:Attribute in E1 as well as
in F 1 (from 7:Class and 11:Class, respectively); the problem part served as the
crossover point. Computing offspring that violate such additional constraints is
not in itself a problem; several methods have been developed in evolutionary
algorithm research to deal with this. For example, such infeasible solutions can
be eliminated by the selection operator, or they can be tolerated (with a reduced
fitness assigned to them); after all, even an infeasible solution can lead to a feasi-
ble solution of high quality later during the evolutionary computation. However,
producing too many infeasible solutions can waste valuable resources and slow
down the evolutionary computation process.

Summarizing, we expect evolutionary search to profit most if domain-specific
knowledge is used to direct the choices of splits and crossover points, that is, if
these choices are adapted to the problem at hand (possibly including the preser-
vation of additional constraints). Thus, while our construction can principally
yield problem-agnostic crossovers, it can also (and maybe better) be understood
as a generic construction that offers a unifying framework for the implemen-
tation of specific crossovers on graph-like structures. In the next section, we
substantiate the claim that our construction offers such a unifying framework.

Fig. 11. Offspring violating an integrity constraint

5 Instantiating Existing Approaches to Graph-Based
Crossover

In this section, we exemplify how our generic construction includes existing
crossover operators that can be applied to graph-like structures. We discuss uni-
form, k-point and subtree crossover, as these are classic operators that are com-
monly applied [13,24]. In addition, we consider horizontal gene transfer (HGT),
which was recently introduced in a setting similar to ours [2].

Uniform and k-Point Crossover are crossover operators commonly used when
solutions are encoded as strings (arrays) of bits (or other alphabets) [13]. In
k-point crossover, two given parent strings of equal length are split into k + 1
substrings at k randomly selected crossover points (at equal positions in both

A Generic Construction for Crossovers of Graph-Like Structures 109

strings). The two offspring solutions are obtained by alternately concatenating a
substring from each parent, resulting in solutions of the same length as the given
parents. In uniform crossover, a new decision is made at each position (according
to a given probability) which offspring gets the entry from which parent. This
can be understood as k-point crossover with varying k.

Strings can be represented as graphs by simply considering each character of
a string as an edge typed or labeled with that character; see, e.g., [30]. Using
this representation, our construction of crossovers can be used to implement
uniform and k-point crossover. Here, the problem object (graph) is given by the
nodes of the graphs (which encode the length of the given strings). The splits
are chosen such that (i) the edges are partitioned (disjointly) into the solution
splits and (ii) the same partitions are chosen for both parents (i.e., if the first
edge of the first parent is included in its first subsolution, the first edge of the
second parent is also included in its first subsolution). This partitioning can be
done according to the rules of k-point or uniform crossover. The only available
crossover point is the set of nodes (i.e. the problem graph), since the edges are
distributed disjointly. The calculation of the crossover, i.e.performing the two
pushouts, results in two offspring solutions with the same length as the parents.

Fig. 12. Implementing classic 2-point crossover

For the k-point crossover, we consider the concrete example of a 2-point
crossover of the strings s1 : 0|0|0 and s2 : 1|1|1, where | represents the chosen
crossover points. The computed offspring strings are o1 : 010 and o2 : 101.
Figure 12 outlines how this calculation is implemented in our approach.

Subtree Crossover is the recombination operator commonly used in genetic pro-
gramming [24]. In genetic programming, a program is represented by its syntax
tree. Such a tree serves as a genotype for an evolutionary computation that
aims at finding an (optimal) program for the given task. Given two syntax trees,
subtree crossover (randomly) selects and exchanges one subtree from each of
them. With our approach, we can implement subtree crossover if we use a lit-
tle trick in representing the trees: We explicitly encode the edges of the trees
as nodes (for a representation of (hyper)edges as special kinds of nodes, see,
e.g., their (visual) representation in [31]). The problem tree (graph) is always
empty. A split divides a tree into a subtree and the remaining tree, where the
node encoding the reference to the subtree is common in both split objects. This

110 G. Taentzer et al.

node serves as a crossover point to exchange subtrees crosswise at the correct
positions. Figure 13 schematically represents a subtree crossover, where R1 is
the root node of the first tree, all STi represent subtrees, and nodes of type ref
represent edges. Note that representing edges as nodes allows us to split an edge
into two parts and distribute it between the two split parts. In this way, we can
redirect edges.

Fig. 13. Implementing subtree crossover

Fig. 14. Example of the horizontal gene transfer (HGT) proposed in [2]. o is the fixed
output node. Active nodes are depicted in white, passive nodes are gray. i1 and i2
are input nodes. The marked nodes of the receiver (including outgoing edges) are
substituted by the marked parts of the donor.

Horizontal Gene Transfer (HGT) was proposed by Atkinson et al. in [2] as a non-
recombinative method for transferring genetic information between individuals.
In their work, graphs are used to represent functions (or, with small adaptations,
neural networks); the reachability of fixed output nodes determines the active
component of a graph. As indicated in Fig. 14, HGT takes the active component
of one graph (the donor) and copies it to the passive component of another graph
(the receiver); to maintain a fixed number of nodes, an appropriate number of
passive nodes is deleted from the receiver beforehand. Input nodes representing
parameters are identified during that process. In our construction the output
and input nodes would be considered the problem part. Choosing the active
component as the solution split for the donor, the subgraph that remains after
deleting the passive nodes as the solution split of the receiver, and the problem
part as crossover point, our approach can compute HGT as a crossover.

A Generic Construction for Crossovers of Graph-Like Structures 111

6 Related Work

In addition to the approaches presented in detail above in Sect. 5, we now relate
our crossover construction to other variants of crossover on graph-like structures.
For each approach, we clarify whether it can be simulated by our approach and
how expressive it is. We then discuss the crossover variants used so far in MDO.

6.1 Further Approaches for Graph-Based Crossover

The two most general crossover variants on graph-like structures that we are
aware of are those proposed by Niehaus [27] and Machado et al. [26]. Niehaus
introduces random crossover on directed graphs, where a subgraph of one graph
is removed and replaced by a subgraph of another graph; in particular, only one
offspring is computed. To avoid dangling edges, the exchanged subgraphs must
have the same in- and out-degrees with respect to the edges that connect them
to the rest of the graph. By using the trick of representing edges as a special
kind of node, we can realize this crossover with our approach.

Machado et al. [26] also exchange subgraphs between graphs. The sub-
graphs are constructed as radii around randomly chosen nodes. To connect the
exchanged subgraphs to their new host graphs, a correspondence is established
between the nodes that were adjacent to them in their former host graphs. If
this correspondence is one-to-one, we can implement this operator in our app-
roach by again representing edges by a special type of node. However, Machado
et al. also allow for correspondences that are not one-to-one. To implement this
feature, we would need to allow non-injective mappings from the crossover point
to the splits in our approach. Unlike this approach, our approach is not limited
to choosing subgraphs as radii around randomly chosen nodes.

Other approaches are less general since they depend to a greater extent on
the chosen representation or semantics of the graphs used [9,10,19,21,22,28]. In
these cases, it does not seem straightforward to apply the proposed crossovers in
other contexts. The kind of computations that can be performed using crossover
may also be less expressive than those in the approaches already discussed [19,21,
22,28,29]. We can implement the crossovers proposed in [9,10,19,28,29] in our
approach, often by representing edges as a special type of node. The approach by
Kantschik and Banzhaf [22] cannot be implemented for reasons similar to those
discussed for [26]. Furthermore, we cannot implement the subgraph crossover
proposed in [21], because this approach allows random insertion of new edges
into an offspring and these edges do not come from any parent.

In summary, our generic approach to crossover on graph-like structures
encompasses most of the approaches proposed for more specific situations.
Our approach allows more general exchanges of subgraphs than most of the
approaches discussed. Moreover, our Theorem 3 is the first result (that we know
of) that formally clarifies the expressiveness of the proposed crossover. We have
identified two reasons why our approach is not able to encompass an existing
approach: First, crossover could cause two (or more) edges that targeted differ-
ent nodes in their original graph to target the same node in their new context.

112 G. Taentzer et al.

Second, elements that do not originate from either parent are reintroduced in
the offspring. However, both kinds of changes can be realized in our approach by
the subsequent application of mutation operators. We could also solve the first
problem by allowing non-injective mappings from crossover points to the splits
when performing crossover. However, this would complicate the theory we can
provide for our construction: Pushouts along any two morphisms need not exist
in M-adhesive categories, and even if the necessary pushouts did exist, ensuring
that the computed results come from the search space under consideration (i.e.,
represent an M-morphism) would only be possible for certain morphisms.

6.2 Crossover in MDO

In the rule-based approach to MDO, the solutions are represented as sequences
of model transformations [1,4]. This allows traditional crossovers (e.g., k-point
crossover, uniform crossover) to be applied seamlessly. However, they have been
shown to be disruptive because the transformations can depend on each other [20]
and repair strategies must be used to mitigate this problem. As for the effects
of crossover in the rule-based approach, no theoretical results are available. To
date, neither a formal basis nor alternatives to traditional crossover have been
developed in this context.

Burton et al. were the first to perform optimization directly on models as
search space elements [8]. Their specific use case allows for the adaptation of
single-point crossover through model transformations. However, their crossover
implementation is not described in detail. Recent applications of the model-
based approach neglect crossover and stick to mutation as their only change
operator, such as [7]. In [32], Zschaler and Mandow present a generalized view
on the model-based approach to MDO and point out the challenge of specifying
crossover in such a setting. They briefly discuss model differencing and model
merging as related concepts, but do not elaborate on this idea. To our knowledge,
this paper presents the first approach to address this issue.

7 Conclusion

There is theoretical and practical evidence that evolutionary algorithms in gen-
eral benefit from the use of crossover [2,9,19] in the sense that the search for
optimal solutions can be more effective and efficient. However, in the absence
of suitable crossover approaches for (the model-based approach to) MDO, the
effect of crossover in this context has not yet been studied. Our proposed generic
crossover construction can serve as a basis to start with.

How existing solutions are split and the selection of common crossover points
for such splits are critical design decisions. Which of these decisions are benefi-
cial to the effectiveness and efficiency of an optimization remains to be explored.
Apart from the typing of objects, our approach neglects additional constraints
of an optimization problem, i.e., crossover may lead to violations of constraints.
Whether our approach needs to be refined to guarantee constraint-preserving

A Generic Construction for Crossovers of Graph-Like Structures 113

offspring remains for future work. In addition to theoretical exploration of our
approach, an implementation is needed to enable empirical analysis. Addition-
ally, specification concepts need to be elaborated to allow users to conveniently
specify different split strategies and crossover points that fit their domain.

Acknowledgements. This work has been partially supported by the German
Research Foundation (DFG), grant no. TA 294/19-1. We thank the anonymous review-
ers for their insightful comments.

A Proofs

The following lemma is the central ingredient for the proof of Proposition 1
and also used in the one of Theorem 3. For adhesive categories, it has already
been stated in the extended version of [14]. Here, we present it in the more gen-
eral context of M-adhesive categories. Because of that, we need to additionally
assume the existence of M-effective unions.

Lemma 2 (Pullbacks as pushouts). In an M-adhesive category (C,M) with
M-effective unions, let (e1, e2) : L1, L2 ↪→ E be a pair of jointly epimorphic M-
morphisms. Then the pullback of (e1, e2) is also a pushout.

Proof. Given the diagram below, where P arises as pullback of (e1, e2), Q as
pushout of (p1, p2), and the morphism h from the universal property of Q, we
show that h is an isomorphism.

L1

P Q E X

L2

p1

p2

q1
e1

q2
e2

h

f

g

First, since e1, e2 are M-morphisms, the morphism h is an M-morphism,
assuming M-effective unions. This means that h is a regular monomorphism
(compare [25, Lemma 4.8], which is easily seen to also hold in M-adhesive cat-
egories).

Secondly, given two morphisms f, g : E → X with f ◦ h = g ◦ h, it follows
that f ◦h◦q1 = g ◦h◦q1 which implies f ◦e1 = g ◦e1; analogously, f ◦e2 = g ◦e2
holds. Since e1, e2 are jointly epimorphic, it follows that f = g, and h is an
epimorphism. Thus, h is epi and regular mono and therefore an isomorphism. ��
Proof (of Proposition 1). Given a solution split as depicted in Fig. 5, it is straight-
forward to realize this split via the split construction. One just chooses the
already given morphisms s1 and s2. As the bottom square in Fig. 5 is a pushout,
s1 and s2 are jointly epimorphic. Moreover, in an M-adhesive category that
square is also a pullback because EI ↪→ E1 (or, equally, EI ↪→ E2) ∈ M.

114 G. Taentzer et al.

To show that the construction always computes a solution split, we have to
show that it produces a commuting cube of M-morphisms (with isomorphisms
at the top) such that the bottom square is a pushout and the four vertical
squares constitute ce-morphisms (i.e., are also pullbacks and are compatible
with typing). It is well-known that, in every category, in a cube that is computed
via pullbacks as stipulated by our construction, all squares are pullbacks; see,
e.g., [3, 5.7 Exercises, 2. (b)]. By closedness of M-morphism under pullbacks,
this in turn implies that all morphisms are M-morphisms (because e, s1, and
s2 are). The two morphisms at the front of the top square are isomorphisms by
assumption; the other two become isomorphisms by closedness of isomorphisms
under pullback. Finally, in an M-adhesive category with M-effective unions, the
pullback of jointly epimorphic M-morphisms is always a pushout (see Lemma 2
above). Therefore, the bottom square (computed as pullback of the jointly epic
M-morphisms s1 and s2) is a pushout as desired. The typing of E1 and E2 is
compatible with the typing of E by definition; moreover, the squares obtained
from the typing morphisms are pullbacks by pullback composition.

For the last statement, it suffices to observe that E2 can always be chosen
as E, embedded via the identity morphism (which then leads to EI ∼= E1). ��
Proof (of Lemma 1). To prove the statement, we have to show that there exists
a ce-morphism (aP , a) from CP := (id : PI P ↪→ PI P , tPIP

, tp ◦ tPIP
) to EI such

that aP is an isomorphism and a ∈ M; the analogous statement for F I is proved
in exactly the same way.

Fig. 15. Showing CP to constitute a crossover point

We define such a ce-morphism using the isomorphism aP with tEI
P
◦aP = tPIP

that exists since EI is an element of the search space of PI . Figure 15 depicts this.
The square commutes and a, eI ◦a ∈ M by closedness of M under isomorphisms
and composition. Moreover, using the fact that eI is a monomorphism, it is also
easy to check that the square constitutes a pullback. Finally, using tEI

P
◦ aP =

tPIP
we compute

tEI ◦ eI ◦ aP = tp ◦ tEI
P

◦ aP

= tp ◦ tPIP

which shows (aP , eI ◦ aP) to be type-compatible. ��

A Generic Construction for Crossovers of Graph-Like Structures 115

Proof (of Proposition 2). First, in an M-adhesive category, pushouts along M-
morphisms exist. This means that, given two solution splits and a crossover point,
crossover is always applicable. Since isomorphisms are closed under pushout,
the top squares in the construction consist of isomorphisms only. In particular,
(E1F 2)P ∼= PI P

∼= (E2F 1)P (because E1
P

∼= PI P
∼= E2

P by assumption).
By definition, o1 is the unique morphism such that

o1 ◦ aP = a ◦ e1 and o1 ◦ bP = b ◦ f2,

where (aP , a) and (bP , b) denote the ce-morphisms from e1 and f2 to o1 (see Fig. 8).
A standard diagram chase (using the facts that the top squares in Fig. 8 consist
of isomorphisms only and that diagrams remain commutative if one replaces iso-
morphisms by their inverses) then shows that a ◦ e1 ◦a−1

P (or, equally, b ◦ f2 ◦ b−1
P)

exhibits this universal property. Therefore, o1 = a ◦ e1 ◦ a−1
P ∈ M as composition

of M-morphisms. Again, this uses the fact that M contains all isomorphisms.
Finally, that the typing morphisms of O1 induce even a pullback square over

tp (and not merely a commuting one) follows exactly as in the proof of Lemma 2.2
in [15], using the facts that the ambient category C is M-adhesive and tp ∈ M. ��
Proof (of Proposition 3). Let solution O be computed via a crossover from E and
F . It is immediately clear from the construction that there exist the two required
ce-morphisms ī and j̄ such that i, j are jointly epic M-morphisms because the pro-
jections of a pushout are jointly epi and M-morphisms are closed under pushout.

For the converse direction, O is jointly covered by E1 and F 2, which stem from
subsolutions E1 and F 1 of E and F by assumption. If the underlying category has
M-effective unions, pulling these morphisms back results in a pushout. Let CP be
the object resulting from that pullback (exactly as in the proof of Proposition 1).
We merely have to show that there exist solution splits of E and F that split up
E into E1 and some suitable subsolution E2 of E and F into F 2 and some suit-
able subsolution F 1 of F for which CP can serve as a crossover point. As in (the
proof of) the second part of Proposition 1, we can use E as E2 and, because of the
symmetric nature of a solution split, F as F 1 and obtain splits of E and F with
EI = E1 and F I = F 2. Hence, CP , together with the morphisms that stem from
its computation as a pullback, can serve as a crossover point for these splits, and
applying the crossover construction computes the given solution O. ��

References

1. Abdeen, H., et al.: Multi-objective optimization in rule-based design space explo-
ration. In: Crnkovic, I., Chechik, M., Grünbacher, P. (eds.) ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2014, Vasteras, Swe-
den - 15–19 September 2014, pp. 289–300. ACM (2014). https://doi.org/10.1145/
2642937.2643005

2. Atkinson, T., Plump, D., Stepney, S.: Horizontal gene transfer for recombining
graphs. Genet. Program. Evolvable Mach. 21(3), 321–347 (2020). https://doi.org/
10.1007/s10710-020-09378-1

https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1007/s10710-020-09378-1
https://doi.org/10.1007/s10710-020-09378-1

116 G. Taentzer et al.

3. Awodey, S.: Category Theory, Oxford Logic Guides, 2nd edn. vol. 52. Oxford Uni-
versity Press, Oxford (2010)

4. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local and global
tour on MOMoT. Softw. Syst. Model. 18(2), 1017–1046 (2019). https://doi.org/
10.1007/s10270-017-0644-3

5. Boussäıd, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-based model-driven
engineering. Autom. Softw. Eng. 24(2), 233–294 (2017). https://doi.org/10.1007/
s10515-017-0215-4

6. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment
problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
Trans. Softw. Eng. 36(6), 817–837 (2010). https://doi.org/10.1109/TSE.2010.70

7. Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic multiplicity-
preserving search operators for search-based model engineering. Softw. Syst. Model.
20(6), 1857–1887 (2021). https://doi.org/10.1007/s10270-021-00914-w

8. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving acquisition problems using model-driven engineering. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 428–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31491-9 32

9. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theor. Comput. Sci. 425, 17–33 (2012). https://doi.org/10.1016/j.
tcs.2010.10.035

10. Downey, C., Zhang, M., Browne, W.N.: New crossover operators in linear genetic
programming for multiclass object classification. In: Pelikan, M., Branke, J. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2010, Portland, Oregon, USA, 7–11 July 2010. pp. 885–892. ACM (2010). https://
doi.org/10.1145/1830483.1830644

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer, Heidel-
berg (2006).https://doi.org/10.1007/3-540-31188-2

12. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and model transformation
- general framework and applications. In: Monographs. in Theoretical Computer
Science. An EATCS Series, Springer (2015). https://doi.org/10.1007/978-3-662-
47980-3

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS, Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

14. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-cut rules. In: Mazzara, M.,
Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 415–430. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 30

15. Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories.
Theory Appl. Categor. 27(3), 27–46 (2012), https://www.emis.de/journals/TAC/
volumes/27/3/27-03abs.html

16. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001). https://doi.org/10.1016/S0950-5849(01)00189-6

17. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
trends, techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012).
https://doi.org/10.1145/2379776.2379787

18. Heindel, T.: Adhesivity with partial maps instead of spans. Fundam. Informaticae
118(1-2), 1–33 (2012). https://doi.org/10.3233/FI-2012-704

https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/s10515-017-0215-4
https://doi.org/10.1007/s10515-017-0215-4
https://doi.org/10.1109/TSE.2010.70
https://doi.org/10.1007/s10270-021-00914-w
https://doi.org/10.1007/978-3-642-31491-9_32
https://doi.org/10.1007/978-3-642-31491-9_32
https://doi.org/10.1016/j.tcs.2010.10.035
https://doi.org/10.1016/j.tcs.2010.10.035
https://doi.org/10.1145/1830483.1830644
https://doi.org/10.1145/1830483.1830644
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-030-04771-9_30
https://www.emis.de/journals/TAC/volumes/27/3/27-03abs.html
https://www.emis.de/journals/TAC/volumes/27/3/27-03abs.html
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.3233/FI-2012-704

A Generic Construction for Crossovers of Graph-Like Structures 117

19. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic pro-
gramming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez,
P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77553-1 13

20. John, S., Alexandru Burdusel, R.B., Strüber, D., Taentzer, G., Zschaler, S., Wim-
mer, M.: Searching for optimal models: comparing two encoding approaches. J.
Obj. Technol. 18(3), 6:1–22 (2019). https://doi.org/10.5381/jot.2019.18.3.a6

21. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for Carte-
sian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haas-
dijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 294–310.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 19

22. Kantschik, W., Banzhaf, W.: Linear-graph GP - a new GP structure. In: Foster,
J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS,
vol. 2278, pp. 83–92. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45984-7 8

23. Kosiol, J., Fritsche, L., Schürr, A., Taentzer, G.: Double-pushout-rewriting in
S -cartesian functor categories: rewriting theory and application to partial triple
graphs. J. Log. Algebraic Methods Program. 115, 100565 (2020). https://doi.org/
10.1016/j.jlamp.2020.100565

24. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Complex Adaptive Systems (1992)

25. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO Theor.
Informat. Appl. 39(3), 511–545 (2005). https://doi.org/10.1051/ita:2005028

26. Machado, P., Nunes, H., Romero, J.: Graph-based evolution of visual languages.
In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A.,
Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N.
(eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 271–280. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12242-2 28

27. Niehaus, J.: Graphbasierte Genetische Programmierung. Ph.D. thesis, Technical
University of Dortmund (2003). http://hdl.handle.net/2003/2744

28. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G.: The foundation of evolution-
ary Petri Nets. In: Balbo, G., Heiner, M. (eds.) Proceedings of the International
Workshop on Biological Processes & Petri Nets, Milano, Italy, CEUR 24 June 2013.
http://ceur-ws.org/Vol-988/paper6.pdf

29. Pereira, F.B., Machado, P., Costa, E., Cardoso, A.: Graph based crossover - a
case study with the busy beaver problem. In: Banzhaf, W., Daida, J.M., Eiben,
A.E., Garzon, M.H., Honavar, V. (eds.) Proceedings of the 1st Annual Conference
on Genetic and Evolutionary Computation, GECCO 1999, Vol. 2, pp. 1149–1155.
Morgan Kaufmann Publishers Inc., San Francisco (1999)

30. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Informaticae
33(2), 201–209 (1998). https://doi.org/10.3233/FI-1998-33204

31. Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 2, pp. 3–61. World Scientific (1999). https://doi.org/10.1142/
9789812815149 0001

32. Zschaler, S., Mandow, L.: Towards model-based Optimisation: using domain knowl-
edge explicitly. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS,
vol. 9946, pp. 317–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50230-4 24

https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.5381/jot.2019.18.3.a6
https://doi.org/10.1007/978-3-319-55696-3_19
https://doi.org/10.1007/3-540-45984-7_8
https://doi.org/10.1007/3-540-45984-7_8
https://doi.org/10.1016/j.jlamp.2020.100565
https://doi.org/10.1016/j.jlamp.2020.100565
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-642-12242-2_28
http://hdl.handle.net/2003/2744
http://ceur-ws.org/Vol-988/paper6.pdf
https://doi.org/10.3233/FI-1998-33204
https://doi.org/10.1142/9789812815149_0001
https://doi.org/10.1142/9789812815149_0001
https://doi.org/10.1007/978-3-319-50230-4_24
https://doi.org/10.1007/978-3-319-50230-4_24

	A Generic Construction for Crossovers of Graph-Like Structures
	1 Introduction
	2 Running Example
	3 Preliminaries: M-Adhesive Categories
	4 A Pushout-Based Crossover Construction
	5 Instantiating Existing Approaches to Graph-Based Crossover
	6 Related Work
	6.1 Further Approaches for Graph-Based Crossover
	6.2 Crossover in MDO

	7 Conclusion
	A Proofs
	References

