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Abstract. Cyber-physical systems often encompass complex concurrent
behavior with timing constraints and probabilistic failures on demand.
The analysis whether such systems with probabilistic timed behavior
adhere to a given specification is essential. When the states of the system
can be represented by graphs, the rule-based formalism of Probabilistic
Timed Graph Transformation System (PTGTSs) can be used to suitably
capture structure dynamics as well as probabilistic and timed behavior
of the system. The model checking support for PTGTSs w.r.t. properties
specified using Probabilistic Timed Computation Tree Logic (PTCTL)
has been already presented. Moreover, for timed graph-based runtime
monitoring, Metric Temporal Graph Logic (MTGL) has been developed
for stating metric temporal properties on identified subgraphs and their
structural changes over time.

In this paper, we (a) extend MTGL to the Probabilistic Metric Tem-
poral Graph Logic (PMTGL) by allowing for the specification of proba-
bilistic properties, (b) adapt our MTGL satisfaction checking approach
to PTGTSs, and (c) combine the approaches for PTCTL model checking
and MTGL satisfaction checking to obtain a Bounded Model Checking
(BMC) approach for PMTGL. In our evaluation, we apply an implemen-
tation of our BMC approach in AutoGraph to a running example.

Keywords: cyber-physical systems · probabilistic timed systems ·
qualitative analysis · quantitative analysis · bounded model checking

1 Introduction

Cyber-physical systems often encompass complex concurrent behavior with tim-
ing constraints and probabilistic failures on demand [23,26]. Such behavior can
then be captured in terms of probabilistic timed state sequences (or spaces)
where time may elapse between successive states and where each step in such
a sequence has a designated probability. The analysis whether such systems
adhere to a given specification describing admissible or desired system behavior
is essential in a model-driven development process.

Graph Transformation Systems (GTSs) [10] can be used for the modeling
of systems when each system state can be represented by a graph and when
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all changes of such states to be modeled can be described using the rule-based
approach to graph transformation. Moreover, timing constraints based on clocks,
guards, invariants, and clock resets have been combined with graph transformation
in Timed Graph Transformation Systems (TGTSs) [4] and probabilistic aspects
have been added to graph transformation in Probabilistic Graph Transformation
Systems (PGTSs) [18]. Finally, the formalism of PTGTSs [21] combines timed
and probabilistic aspects similar to Probabilistic Timed Automata (PTA) [20]
and offers model checking support w.r.t. PTCTL [19,20] properties employing the
Prism model checker [19]. The usage of PTCTL allows for stating probabilistic
real-time properties on the induced PTGT state space where each graph in the
state space is labeled with a set of Atomic Propositions (APs) obtained by evaluat-
ing that graph w.r.t. e.g. some property specified using Graph Logic (GL) [12,26].1

However, structural changes over time in the state space cannot always be
directly specified using APs that are locally evaluated for each graph.2 To express
such structural changes over time, MTGL [11,26] has been introduced based on
GL. Using MTGL conditions, an unbounded number of subgraphs can be tracked
over timed graph transformation steps in a considered state sequence once bind-
ings have been established for them via graph matching. Moreover, MTGL con-
ditions allow to identify graphs where certain elements have just been added to
(removed from) the current graph. Similarly to MTGL, for runtime monitoring,
Metric First-Order Temporal Logic (MFOTL) [3] (with limited support by the
tool Monpoly) and the non-metric timed logic Eagle [1,14] (with full tool sup-
port) have been introduced operating on sets of relations and Java objects as
state descriptions, respectively. In [7–9], sequences are monitored using model
queries to identify complex event patterns of interest. In [15], the Quantified
Temporal Logic (QTL) is introduced, which supports bindings and state repre-
sentation similarly to MFOTL but supports only properties referring to the past
and does not support metric bounds in its temporal operators. Besides these
logic-based approaches, a multitude of further techniques have been developed
based on e.g. automata for monitoring the system’s behavior in the context of
runtime monitoring (see [2] for a survey). Finally, note that runtime monitoring
(as well as MTGL) focuses on the specification of single sequences whereas the
analysis of probabilistic effects is meaningful only when considering a system
with a branching behavior (due to non-determinism and/or probabilism).

Obviously, both logics PTCTL and MTGL have distinguishing key strengths
but also lack bindings on the part of PTCTL and an operator for expressing

1 Furthermore, Uppaal [28] is an analysis tool for timed automata featuring model
checking support for standard metric temporal properties and simulation-based sup-
port for cyber-physical systems extending timed automata but does not support prob-
abilistic analysis. Lastly, the Modest toolset [6,13] also provides analysis support for
more complex cyber physical systems representable by e.g. stochastic hybrid automata
w.r.t. probabilistic metric temporal requirements.

2 For example, tracking (structural changes to) individual graph elements allows to
express and analyze deadlines for each individual graph element whereas APs cannot
distinguish between individual graph elements and hence cannot help in mapping
each of them to their corresponding deadline.
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probabilistic requirements on the part of MTGL.3 Furthermore, specifications
using both, PTCTL and MTGL conditions, are insufficient as they cannot capture
phenomena based on probabilistic effects and the tracking of subgraphs at once.
Hence, a more complex combination of both logics is required. Moreover, realis-
tic systems often induce infinite or intractably large state spaces prohibiting the
usage of standard model checking techniques. Bounded Model Checking (BMC)
has been proposed in [16] for such cases implementing an on-the-fly analysis. Simi-
larly, reachability analysis w.r.t. a bounded number of steps or a bounded duration
have been discussed in [17].

To combine the strengths of PTCTL and MTGL, we introduce PMTGL by
enriching MTGL with an operator for expressing probabilistic requirements as
in PTCTL. Moreover, we present a BMC approach for PTGTSs w.r.t. PMTGL
properties by combining the PTCTL model checking approach for PTGTSs from
[21] (which is based on a translation of PTGTSs into PTA) with the satisfaction
checking approach for MTGL from [11,26]. In our approach, we just support
bounded model checking since the binding capabilities of PMTGL conditions
require non-local satisfaction checks taking possibly the entire history of a (finite)
path into account as for MTGL conditions. However, we obtain even full model
checking support for two cases: (a) for the case of finite loop-free state spaces
and (b) for the case where the given PMTGL condition does not need to be
evaluated beyond a maximal time bound.

As a running example, we consider a system in which a sender decides to
send messages at nondeterministically chosen time points, which have then to
be transmitted to a receiver via a network of routers within a given time bound.
In this system, transmission of messages is subject to a probabilistic failure on
demand requiring a retransmission of a message that was lost at an earlier trans-
mission attempt. For this scenario, we employ PMTGL to express the desired
system property of timely message reception. Firstly, using the capabilities inher-
ited from MTGL, we identify messages that have just been sent, track them
over time, and check whether their individual deadlines are met. Secondly, using
the probabilistic operator inherited from PTCTL, we specify lower and upper
bounds for the probability with which such an identified message is transmitted
to the receiver before the deadline expires. During analysis, we are interested
in determining the expected best-case and worst-case probabilities for a success-
ful multi-hop message transmission from sender to receiver. For our evaluation,
we also consider further variants of the considered scenario where messages are
dropped after n transmission failures.

This paper is structured as follows. In Sect. 2, we recall the formalism of
PTA. In Sect. 3, we discuss further preliminaries including graph transformation,
graph conditions, and the formalism of PTGTSs. In Sect. 4, we recall MTGL and
present the extension of MTGL to PMTGL in terms of syntax and semantics. In
Sect. 5, we present our BMC approach for PTGTSs w.r.t. PMTGL properties.
In Sect. 6, we evaluate our BMC approach by applying its implementation in

3 PTCTL model checkers such as Prism do not support the branching capabilities of
PTCTL as of now due to the complexity of the corresponding algorithms.
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Fig. 1. PTA A, one of its paths, and its symbolic state space.

the tool AutoGraph [24] to our running example. Finally, in Sect. 7, we close
the paper with a conclusion and an outlook on future work. Further details are
given in a technical report [25].

2 Probabilistic Timed Automata

We briefly review PTA [20], which combine the use of clocks to capture real-time
phenomena and probabilism to approximate/describe the likelihood of outcomes
of certain steps, and PTA analysis as supported by Prism [19].

For a set of clocks X, clock constraints ψ ∈ CC(X) also called zones are finite
conjunctions of clock comparisons c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X,
∼ ∈ {<,>,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation (v : X R0) ∈ CV(X)
satisfies a zone ψ, written v |= ψ, as expected. The initial clock valuation ICV(X)
maps all clocks to 0. For a clock valuation v and a set of clocks X ′, v[X ′ := 0]
is the clock valuation mapping the clocks from X ′ to 0 and all other clocks
according to v. For a clock valuation v and a duration δ ∈ R0 , v + δ is the clock
valuation mapping each clock x to v(x) + δ. A Discrete Probability Distribution
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(DPD) μ : A [0, 1], written μ ∈ DPD(A), satisfies
∑

a∈A μ(a) = 1. An element
a ∈ A is in the support of μ, written a ∈ supp(μ), if μ(a) > 0.

A PTA (see Fig. 1a for an example) is of the form A = (L, � ∈ L,X, I :
L CC(X), δ ⊆ L × A × CC(X) ×DPD(2X × L),L : L 2AP ) where L is a set
of locations, � is an initial location, X is a set of clocks, I maps each location to
an invariant, δ contains edges e = (�, a, ψ, μ) where � is the source location, a ∈ A
is an action4, ψ is a guard, and μ is a DPD where μ(X ′, �′) is the probability to
reach the target location �′ while resetting the clocks in X ′ to 0, and L labels
each location with a set of atomic propositions from AP .

The states of a PTA are of the form (�, v) ∈ L × CV(X) with v |= I(�).
The initial state is (�, ICV(X)). The labeling of a state (�, v) is given by L(�).
PTA allow for timed and discrete steps between states resulting in paths (such
as the one in Fig. 1b). A timed step (�, v)[δ, μ〉(�, v + δ) of duration δ ∈ R
and DPD μ must satisfy that (�, v + δ′) is a state for every 0 < δ′ < δ and
μ(�, v + δ) = 1. A discrete step (�, v)[0, μ〉(�′, v′) of duration 0 and DPD μ using
some (�, a, ψ, μ) ∈ δ and (X ′, �′) ∈ supp(μ) must satisfy v |= ψ, v′ = v[X ′ := 0],
and μ(�′, v′) =

∑
X′,v′=v[X′:=0] μ(X ′, �′).5

Prism supports PTA analysis returning minimal and maximal probabilities
Pmin=?(F ap) and Pmax=?(F ap) with which an ap labeled state can be reached.
These two probabilities may differ due to different resolutions of the nonde-
terminism among timed and discrete steps for which adversaries are employed
as usual. For effective analysis, Prism does not compute the (usually infi-
nite) induced state space but computes instead a finite symbolic state space
(such as the one in Fig. 1c) intuitively eliminating the impact of guards, invari-
ants, and resets. In this finite symbolic state space, states are of the form
(�, ψ) ∈ L × CC(X) symbolically representing all states (�, v) with v |= ψ.

For example, the PTA A from Fig. 1a (for which adversaries only decide
how much time to spend in location �1), Pmax=?(F success) = 0.7 + 0.05 using
a probability maximizing adversary that lets 5 ≤ δ ≤ 6 time units elapse in
�1 (0.25 is not added as �4 is not reachable using this adversary). Similarly,
Pmin=?(F success) = 0.05 using a probability minimizing adversary that lets
3 < δ < 5 time units elapse in �1 (0.25 and 0.7 are not added as �4 and �6 are
not reachable using this adversary).

4 Actions in edges can be used to describe the purpose of the edge during modeling
but also allow to define PTA based on a parallel composition of multiple PTA where
these PTA synchronize on common actions. In [21], actions are used to store in PTA
edges information about the PTGT steps from which they originate (as also stated
in Sect. 3) while actions (being a standard part of PTA) do not play an important
role in our BMC approach presented in Sect. 5.

5 Here, μ captures the unique successor state for timed steps and sums (possibly mul-
tiple non-zero) probabilities of domain elements of μ leading to a common successor
state for discrete steps (in particular for the case that clocks to be reset have already
the value 0).
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Fig. 2. Components of the PTGTS for the running example.
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3 Probabilistic Timed Graph Transformation Systems

We briefly recall graphs, graph conditions, and PTGTSs in our notation.
Using the variation of symbolic graphs [22] from [26], we consider typed

attributed graphs (short graphs) (such as G0 in Fig. 2b), which are typed over a
type graph TG (such as TG in Fig. 2a). In such graphs, attributes are connected
to local variables and an Attribute Condition (AC) over a many sorted first-order
attribute logic is used to specify the values for these local variables.6 Morphisms
m : G1 G2 must ensure that the AC of G2 (e.g. y = 4) implies the AC of
G1 (e.g. m(x ≥ 2) = (y ≥ 2)). Lastly, monomorphisms (short monos), denoted
by m : G1 G2, map all elements injectively.

Graph Conditions (GCs) [12,26] of GL are used to state properties on graphs
requiring the presence or absence of certain subgraphs in a host graph using
propositional connectives and (nested) existential quantification over graph pat-
terns. For example, the GC φallDone from Fig. 2c is satisfied by all graphs, in
which all messages are equipped with a done loop.

A Graph Transformation (GT) step is performed by applying a GT rule ρ =
(� :K L, r :K R, γ) for a match m :L G on the graph to be transformed
(see [26] for technical details). A GT rule specifies that (a) the graph elements in
L − �(K) are to be deleted and the graph elements in R − r(K) are to be added
using the monos � and r, respectively, according to a Double Pushout (DPO)
diagram and (b) the values of variables of R are derived from those of L using
the AC γ (e.g. x′ = x + 2) in which the variables from L and R are used in
unprimed and primed form, respectively.7

PTGTSs introduced in [21] are a probabilistic real-time extension of Graph
Transformation Systems (GTSs) [10]. PTGTSs can be translated into equivalent
PTA according to [21] and, hence, PTGTSs can be understood as a high-level
language for PTA following similar mechanics.

PTGT states are pairs (G, v) of a graph and a clock valuation. The initial
state is given by a distinguished initial graph and a valuation mapping all clocks
to 0. For our running example, the initial graph G0 (given in Fig. 2b) captures
a sender, which is connected via a network of routers to a receiver, and two
messages to be send. The type graph of a PTGTS also identifies attributes
representing clocks, which are the clock attributes of a message in Fig. 2a.

PTGT rules of a PTGTS contain (a) a left-hand side graph L, (b) an AC
specifying as an attribute guard non-clock attributes of L that must be satisfied
by any match of L, (c) an AC specifying as a clock guard clock attributes of L
that must be satisfied to permit the application of the PTGT rule, (d) an AC
specifying as a clock invariant clock attributes of L that must never be violated
6 In our implementation, we employ the SMT solver Z3 to determine satisfiability of

ACs. When more complex operations are used in ACs, SMT solvers can be unable
to return definitive judgements in time, which does not happen for the running
example. If this case would occur, the users would be inform accordingly.

7 Nested application conditions given by GCs to further restrict rule applicability are
straightforwardly supported by our approach but, to improve readability, not used
in the running example and omitted subsequently.
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for a match of L, (e) a natural number describing a priority preventing the
application of the PTGT rule when a PTGT rule with higher priority can be
applied, and (f) a nonempty set of tuples of the form (�:K L, r:K R, γ,C, p)
where (�, r, γ) is an underlying GT rule, C is a set of clocks contained in R to
be reset, and p is a real-valued probability from [0, 1] where the probabilities of
all such tuples must add up to 1.

For our running example, the PTGTS contains the four PTGT rules from
Fig. 2d. The PTGT rules σsend, σreceive, and σdrop have each a unique under-
lying GT rule ρsend,doneS, ρreceive,doneR, and ρdrop,doneD, respectively, whereas the
PTGT rule σtransmit has two alternative underlying GT rules ρtransmit,success and
ρtransmit,failure. For each of these underlying GT rules, we depict the graphs L, K,
and R in a single graph where graph elements to be removed and to be added
are annotated with 
 and ⊕, respectively. Further information about the PTGT
rule and its underlying GT rules are given in gray boxes. The PTGT rule σsend

is used to push the next message into the network by connecting it to the router
that is adjacent to the sender. Thereby, the attribute num of the sender is used
to push the messages in the order of their id attributes. The PTGT rule σreceive

has the higher priority 1 and is used to pull a message from the router that is
adjacent to the receiver by marking the message with a done loop. The PTGT
rule σtransmit is used to transmit a message from one router to the next one.
This transmission is successful with probability 0.8 and fails with probability
0.2. The clock guard and the clock invariant of σtransmit (together with the fact
that the clock of the message is reset to 0 whenever σtransmit is applied or when
the message was pushed into the network using σsend) ensures that transmission
attempts happen within 2–5 time units. Lastly, the PTGT rule σdrop has priority
1 and is used to drop messages for which transmission has failed. In our evalua-
tion in Sect. 6, we also consider the cases that messages are never dropped or not
dropped before the second transmission failure by changing the attribute guard
of σdrop from f > 0 to ⊥ and f > 1, respectively. PTGTS steps (G, v)[δ, μ〉(G′, v′)
are timed and discrete steps as for PTA.

PTGT APs are GCs φ and PTGT states (G, v) are labeled by φ when G
satisfies φ. For our running example, the AP φallDone labels states where each
message has been successfully delivered. Subsequently, we introduce PMTGL to
identify relevant target states for analysis not relying on PTGT APs.

Besides translating a PTGTS into a PTA following [21], we can generate
directly a symbolic state space (cf. Fig. 1c for the PTA case) using the tool
AutoGraph [24] where each symbolic state (G,ψ) represents all states (G, v)
with v |= ψ and where ψ is encoded as a Difference Bound Matrix (DBM) [5].

4 Probabilistic Metric Temporal Graph Logic

Before introducing PMTGL, we recall MTGL [11,26] and adapt it to PTGTSs.
To simplify our presentation, we focus on a restricted set of MTGL operators
and conjecture that the presented adaptations of MTGL are compatible with full
MTGL from [26] as well as with the orthogonal MTGL developments in [27].
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Fig. 3. PMTGC χmax where the additional MTGL operator forall-new (written ∀N) is
derived from the operator exists-new by ∀N(f, θ) = ¬∃N(f, ¬θ).

The Metric Temporal Graph Conditions (MTGCs) of MTGL are specified
using (a) the GC operators to express properties on a single graph in a path and
(b) metric temporal operators to navigate through the path. For the latter, the
operator ∃N (called exists-new) is used to extend a current match of a graph
H to a supergraph H ′ in the future such that some additionally matched graph
element could not have been matched earlier. Moreover, the operator U (called
until) is used to check whether an MTGC θ2 is eventually satisfied in the future
within a given time interval while another MTGC θ1 is satisfied until then.

Definition 1 (MTGCs). For a graph H, θH ∈ MTGC(H) is a metric temporal
graph condition (MTGC) over H defined as follows:

θH ::= � | ¬θH | θH ∧ θH | ∃(f, θH′) | ν(g, θH′′) | ∃N(f, θH′) | θH UI θH

where f : H H ′ and g : H ′′ H are monos and where I is an interval over R0.

For our running example, consider the MTGC given in Fig. 3 inside the operator
Pmax=?(·). Intuitively, this MTGC states that (forall-new) whenever a message
has just been sent from the sender to the first router, (restrict) when only track-
ing this message by match restriction (since at least the edge e2 can be assumed
to be removed in between), (until) eventually within 5 time units, (exists) this
message is delivered to the receiver as indicated by the done loop.

In [11,26], MTGL was defined for timed graph sequences in which only dis-
crete steps are allowed each having a duration δ > 0. We now adapt MTGL to
PTGTSs in which multiple graphs may occur at the same time point.

For tracking subgraphs in a path π over time using matches, we first identify
the graph π(τ) in π at a position τ = (t, s) ∈ R0 × N where t is a total time
point and s is a step index starting at 0 after every non-zero timed step.8

Definition 2 (Graph at Position). A graph G is at position τ = (t, s) in a
path π of a PTGTS S, written π(τ) = G, if the auxiliary function pos defined
below returns pos(π, i, t, s, δ) = G for the ith step of π and delay δ (since the last
change of the step index s).

• If π0 = ((G, v)[δ, μ〉(G′, v′)), then pos(π, 0, 0, 0, 0) = G.
• If πi = ((G, v)[δ, μ〉(G′, v′)), pos(π, i, t, s, 0) = G, and δ > 0, then
pos(π, i, t + δ′, 0, δ′) = G for each δ′ ∈ (0, δ) and pos(π, i + 1, t + δ, 0, 0) = G′

8 To compare positions, we define (t, s) < (t′, s′) if either t < t′ or t = t′ and s < s′.
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• If πi = ((G, v)[0, μ〉(G′, v′)) and pos(π, i, t, s, δ) = G, then
pos(π, i + 1, t, s + 1, 0) = G′

A match m : H π(τ) into the graph at position τ can be propagated for-
wards/backwards over the steps in a path to the graph π(τ ′). Such a propagated
match m′ :H π(τ ′), written m′ ∈ PM(π,m, τ, τ ′), can be obtained uniquely if
all matched graph elements m(H) are preserved by the considered steps, which
is trivially the case for timed steps. When some graph element is not preserved,
PM(π,m, τ, τ ′) is empty.

We now present the semantics of MTGL by providing a satisfaction relation,
which is defined as for GL for the operators inherited from GL and as explained
above for the operators exists-new and until .

Definition 3 (Satisfaction of MTGCs). An MTGC θ ∈ MTGC(H) over a
graph H is satisfied by a path π of the PTGTS S, a position τ ∈ R0 × N, and
a mono m : H π(τ), written (π, τ,m) |= θ, if an item applies.

• θ = �.
• θ = ¬θ′ and (π, τ,m) �|= θ′.
• θ = θ1 ∧ θ2 , (π, τ,m) |= θ1 , and (π, τ,m) |= θ2 .
• θ = ∃(f : H H ′, θ′) and ∃m′ : H ′ π(τ). m′ ◦ f = m ∧ (π, τ,m′) |= θ.
• θ = ν(g : H ′′ H, θ′) and (π, τ,m ◦ g) |= θ′.
• θ = ∃N(f : H H ′, θ′) and there are τ ′ ≥ τ , m′ ∈ PM(π,m, τ, τ ′), and

m′′ : H ′ π(τ ′) s.t. m′′ ◦ f = m′, (π, τ ′,m′′) |= θ, and for each τ ′′ < τ ′ it
holds that PM(π,m′′, τ ′, τ ′′) = ∅.

• θ = θ1 UI θ2 , τ = (t, s), and there are δ ∈ I and τ ′ = (t + δ, s′) s.t.
◦ s′ ≥ s if δ = 0,
◦ there is m′ ∈ PM(π,m, τ, τ ′) s.t. (π, τ ′,m′) |= θ2 , and
◦ for every τ ≤ τ ′′ < τ ′ there is m′′ ∈ PM(π,m, τ, τ ′′) s.t. (π, τ ′′,m′′) |= θ1 .

Moreover, if θ ∈ MTGC(∅), τ = (0, 0), and (π, τ, i(π(τ))) |= θ, then π |= θ.

We now introduce the Probabilistic Metric Temporal Graph Conditions (PMT-
GCs) of PMTGL, which are defined based on MTGCs.

Definition 4 (PMTGCs). Each probabilistic metric temporal graph condi-
tion (PMTGC) is of the form χ = P∼c(θ) where ∼ ∈ {≤, <,>,≥}, c ∈ [0, 1] is
a probability, and θ ∈ MTGC(∅) is an MTGC over the empty graph. Moreover,
we also call expressions of the form Pmin=?(θ) and Pmax=?(θ) PMTGCs.

The satisfaction relation for PMTGL defines when a PTGTS satisfies a PMTGC.

Definition 5 (Satisfaction of PMTGCs). A PTGTS S satisfies the PMTGC
χ = P∼c(θ), written S |= χ, if, for any adversary Adv, the probability over all
paths of Adv that satisfy θ is ∼ c. Moreover, Pmin=?(θ) and Pmax=?(θ) denote
the infimal and supremal expected probabilities over all adversaries to satisfy θ.
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For our running example, the evaluation of the PMTGC χmax from Fig. 3 for the
PTGTS from Fig. 2 results in the probability of 0.84 = 0.4096 using a probability
maximizing adversary Adv as follows. Whenever the first graph of the PMTGC
can be matched, this is the result of an application of the PTGT rule σsend. The
adversary Adv ensures then that the matched message is transmitted as fast as
possible to the destination router R3 by (a) letting time pass only when this is
unavoidable to satisfy the guard for the next transmission step and (b) never
allowing to match the router R4 by the PTGT rule σtransmit as this leads to a
transmission with 3 hops. For each message, the only transmission requiring at
most 5 time units transmits the message via the router R2 to router R3 using 2
hops in at least 2+2 time units. The urgently (i.e., without prior delay) applied
PTGT rule σreceive then attaches a done loop to the message as required by χmax.
Since the transmissions of the messages do not affect each other and messages
are successfully transmitted only when both transmission attempts for each of
the messages succeeded, the maximal probability to satisfy the inner MTGC
is (0.8 × 0.8)2 = 0.84. Using Pmin=?(·) results in a probability of 0 since there is
e.g. the adversary Adv ′ that only allows a transmission with 3 hops via router
R4 exceeding the deadline.

5 Bounded Model Checking Approach

We now present our BMC approach in terms of an analysis algorithm for a fixed
PTGTS S, PMTGC χ = P∼c(θ), and time bound T ∈ R0 ∪ {∞}. Using this
algorithm, we analyze whether S satisfies χ when restricting the discrete behavior
of S to the time interval [0, T ). In fact, we consider in this algorithm PMTGCs
of the form Pmax=?(θ) or Pmin=?(θ) for computing expected probabilities since
they are sufficient to analyze PMTGCs of the form P∼c(θ).9 In the subsequent
presentation, we focus on the case of Pmax=?(θ) and point out differences for the
case of Pmin=?(θ) where required.

Step 1: Encoding the Time Bound into the PTGTS
For the given PTGTS S and time bound T , we construct an adapted PTGTS S′

into which the time bound T is encoded (for T = ∞, to be used when all paths
derivable for the PTGTS are sufficiently short, we use S′ = S). In S′, we ensure
that all discrete PTGT steps are disabled when time bound T is reached and that
the PTGT invariants are then disabled. For this purpose, we (a) create a fresh
local variable xT of sort real and a fresh clock variable xc (for which fresh types are
added to the type graph to ensure non-ambiguous matching of variables during
GT rule application), (b) add both variables and the attribute constraint xT = T
to the initial graph of S, (c) add both variables to the graphs L, K, and R of each
underlying GT rule ρ = (�:K L, r:K R, γ) of each PTGT rule σ of S and add
xc < xT as an additional clock guard to each PTGT rule to prevent the application
of PTGT rules beyond time bound T , and (d) add a PTGT rule σBMC with a clock
guard xc ≥ xT and a clock invariant xc ≤ xT , which (in its single underlying GT

9 For example, Pmin=?(θ) = c implies satisfaction of P≥c′(θ) for any c′ ≤ c.



Probabilistic Metric Temporal Graph Logic 69

rule) deletes the variable xT from the matched graph. The application of σBMC

at time xT ensures that no PTGT rule can be applied subsequently and that all
PTGT invariants are disabled due to step (c).10 For the resulting PTGTS S′, we
then solve the model checking problem for the given PMTGC χ.

Lemma 1 (Encoded BMC Bound). If π is a path of the PTGTS S′,then the
time point of the last discrete step (if any exists) precedes T .

Step 2: Construction of Symbolic State Space and Timing Specification
Following the construction of a symbolic state space for a given PTA by the
Prism model checker (where states are given by pairs of locations and zones over
the clocks of the PTA (cf. Sect. 2)), we may construct a symbolic state space
for a given PTGTS where states are given by pairs of graphs and zones over
the clocks contained in the graph. Paths π̂ through such a symbolic state space
are of the form s1[μ2〉s2[μ3〉 . . . sn consisting of states and (nondeterministically
selected) DPDs on successor states (i.e., μi(si) > 0). Note again that each such
path π̂ is symbolic itself by not specifying the amount of time that elapses in each
state. We call a path π of the form s1[δ2, μ2〉s2[δ3, μ3〉 . . . sn a timed realization
of π̂ when the added delays δi ≥ 0 are a viable selection according to the zones
contained in the states (e.g. for the symbolic state space in Fig. 1c, the zone
c1 = c2 ≤ 6 of the initial state allows any selection δ1 ≤ 6).

As a deviation from the symbolic state space generation approach for PTA,
we generate a tree-shaped symbolic state space M by not identifying isomorphic
states. The absence of loops in M guaranteed by the tree-shaped form ensures
that, as required by Step 3, every path of M is finite (on time diverging paths).
Moreover, for each path π̂ of M , guards, invariants, and clock resets have been
encoded in the zones of the states also ensuring the existence of at least one
timed realization π for each π̂. For our analysis algorithm, ultimately deriving
the resulting probabilities in Step 5, we now use the guards, invariants, and
clock resets again to derive for each path11 π̂ of M a timing specification TS(π̂).
This timing specification captures for a path π̂ when each of its states has been
reached (which may be impossible without the tree-shaped form of the symbolic
state space) thereby characterizing all viable timed realizations π of π̂. To define
TS(π̂), we use time point clocks tpci for 1 ≤ i ≤ n where n is the maximal
length of any path of M . For a path π̂, tpci then represents in TS(π̂) the time
point when state i has been just reached in π̂. Hence, TS(π̂) ranges over tpci

for 1 ≤ i ≤ m where m is the length of π̂. In the following, we also use the
notion of the total time valuation ttv(π) to be the AC equating the time point
clock tpci and the time point

∑
1≤k<i δi of the ith step in π. Using this notion,

we characterize that π is a timed realization of π̂ (performing the same discrete
steps) when TS(π̂) ∧ ttv(π) is satisfiable.

To define TS(π̂), we use a map LastReset(k, c) = k′ returning for an index
1 ≤ k ≤ m and a clock c the largest index k′ ≤ k where c was reset in π̂ (which
10 The additional PTGT rule σBMC is used since PTGT invariants cannot be disabled by

changing them from γ to γ ∨ xc ≥ T due to the limited syntax of zones.
11 We only consider paths starting in the initial state and ending in a leaf state.
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can be easily computed by iterating once through π̂). Recall that all clocks c
are reset in the initial state, i.e., LastReset(1, c) = 1. We include the ACs in
TS(π̂) as follows for each state si. Firstly, when i = 1 (i.e., si is the initial state),
we add tpc1 = 0 to TS(π̂). Secondly, when i > 1, we add tpci−1 ≤ tpci to
TS(π̂). Thirdly, when si was reached by respecting a guard ψ (implying i > 1),
we add ψ to TS(π̂) after replacing each clock c contained in ψ by tpci − tpck′

where k′ = LastReset(i− 1, c).12 Fourthly, when si was reached by respecting an
invariant ψ′, we add ψ′ to TS(π̂) after replacing each clock c contained in ψ′ by
tpci+1 − tpck′ where k′ = LastReset(i, c).13

Lemma 2 (Sound Timing Specification). If π̂ is a path of the symbolic state
space M constructed for the PTGTS S′, then there is a one-to-one correspon-
dence between valuations of the time point clocks tpci satisfying TS(π̂) and the
time points at which states are reached in the timed realizations π of π̂.

For our running example (considering the restriction to a single message in the
initial graph), for a path π̂ex where the message is sent to router R1, transmitted
to router R2, transmitted to router R3, and then received by receiver R, we derive
(after simplification) TS(π̂ex) as the conjunction of tpc1 = 0, 0 ≤ tpc2 ≤ 10,
tpc2 + 2 ≤ tpc3 ≤ tpc2 + 5, and tpc3 + 2 ≤ tpc4 = tpc5 ≤ tpc3 + 5 essentially
encoding the guards and invariants as expected.14

In the next two steps of our algorithm, we derive for the MTGC θ (contained
in the given PMTGC Pmin=?(θ) or Pmax=?(θ)) and a path π̂ an AC describing
timed realizations π of π̂ satisfying θ. For our running example and the path π̂ex

from above, this derived AC will be tpc5 − tpc2 ≤ 5 expressing that the time
elapsed between the sending of the message and its reception by the receiver
is at most 5 time units as required by θ. Then, in Step 5 of the algorithm, we
will identify (a) successful paths π̂ to be those where TS(π̂) and the derived AC
are satisfiable at once and (b) failing paths π̂ to be those where TS(π̂) and the
negated derived AC are satisfiable together.

Step 3: From MTGC Satisfaction to GC Satisfaction
Following the satisfaction checking approach for MTGL from [11,26], we trans-
late the MTGC satisfaction problem into an equivalent, yet much easier to check,
GC satisfaction problem using the operations fold and encode (presented below).
The operation fold aggregates the information about the nature and timing of
all GT steps of π̂ into a single Graph with History (GH). The operation encode
translates the MTGC into a corresponding GC.15 Technically, the MTGC θ is

12 Intuitively, tpci − tpck′ is the duration between the last reset of c and the time point
when the guard was checked upon state transition to si.

13 Intuitively, tpci+1 − tpck′ is the duration between the last reset of c and the time
point at which the invariant was no longer checked due to the state transition to
si+1.

14 Note that tpc4 = tpc5 since the message reception by R takes no time.
15 The operations fold and encode presented here are adaptations of the corresponding

operations from [11,26] to the modified MTGL satisfaction relation for PTGTSs from
Definition 3 allowing for successive discrete steps with zero-time delay in-between.
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Fig. 4. A part of the GH GH obtained using the operation fold for the path π̂ex of the
running example.

satisfied by a timed realization π of a path π̂ of M precisely when the encoded
MTGC is satisfied by the folded GH GH once the total time valuation AC ttv(π)
is added to GH (incorporating the precise timing of steps in π).

Theorem 1 (Soundness of fold and encode). If θ is an MTGC over the
empty graph, encode(θ) = φ, π̂ is a path through the symbolic state space con-
structed for the PTGTS S′, fold(π̂) = GH , π is a timed realization of π̂ (i.e., a
path through S′), and G′

H is obtained from GH by adding the AC ttv(π), then
π |= θ iff G′

H |= φ.

The operation fold generates for a path π̂ the corresponding GH GH by (a)
constructing the union of all graphs of π̂ where nodes/edges preserved in steps are
identified and (b) recording for each node/edge in the resulting GH the position
τ (cf. Definition 2) when it was created and deleted (if the node/edge is deleted at
some point) in π̂ using additional creation/deletion time stamp attributes cts/dts
and creation/deletion index attributes cidx/didx . In particular, (i) nodes/edges
contained in the initial state of π̂ are equipped with attributes cts = tpc1 and
cidx = 0, (ii) nodes/edges added in step i of π̂ are equipped with attributes
cts = tpci and cidx = i, (iii) nodes/edges deleted in step i of π̂ are equipped
with attributes dts = tpci and didx = i, and (iv) nodes/edges contained in the
last state of π̂ are equipped with attributes dts = −1 and didx = −1. For the
path π̂ex from our running example, see Fig. 4 depicting the part of the GH GH

that is matched when checking the GC encode(θ) against GH .
The operation encode generates for the MTGC θ contained in the given

PMTGC χ the corresponding GC φ (note that encode does not depend on a
path and is therefore executed precisely once). Intuitively, it recursively encodes
the requirements expressed using MTGL operators (see the items of Definition 3)
on a timed realization π of a path π̂ by using GL operators on the GH (obtained
by folding π̂) with additional integrated ACs. In particular, quantification over
positions τ = (t, s) of global time t and step index s, as for the operators exists-
new and until , is encoded by quantifying over additional variables xt and xs

representing t and s, respectively. Also, matching of graphs, as for the operators
exists and exists-new , is encoded by an additional AC alive. This AC requires
that each matched node/edge in the GH has cts, dts, cidx , and didx attributes
implying that this graph element exists for the position (xt, xs) in π. Lastly,
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matching of new graph elements using the exists-new operator is encoded by an
additional AC earliest. This AC requires that one of the matched graph elements
has cts and cidx attributes equal to xt and xs, respectively.

Step 4: Construction of AC-Restrictions for Satisfaction
In this step, we obtain for each leaf state s of M a symbolic characterization in
terms of an AC over the time point clocks tpci of all timed realizations π of the
path π̂ ending in s satisfying the given MTGC θ. Firstly, the timed realizations π
of the path π̂ ending in s are characterized by the timing specification TS(π̂) as
discussed in Step 2. Secondly, we refine the set of such timed realizations using
an AC γπ̂ over the time point clocks tpci symbolically describing when such a
timed realization satisfies the given MTGC θ. The AC γπ̂ is obtained by checking
the GC encode(θ) = φ against the GH fold(π̂) = GH . The conjunction of TS(π̂)
and γπ̂ is then recorded in the set of state conditions SC(s) and is satisfied by
precisely those valuations of the time point clocks tpci that correspond to timed
realizations π ending in s satisfying the MTGC θ.16 In Step 5, we also use the
notion of state probability SP(s) assigning a probability of 1 to a state s when
the AC in SC(s) is satisfiable and 0 otherwise.

Lemma 3 (Correct ACs). If θ is an MTGC over the empty graph, π̂ is a path
of the symbolic state space constructed for the PTGTS S′ ending in state s, and
π is a timed realization of π̂, then π |= θ iff TS(π̂) ∧ γπ̂ ∧ ttv(π) is satisfiable.

For our running example, when checking the encoded MTGC (cf. Fig. 3) for the
GH partially given in Fig. 4, (a) the graph elements S, R1, M1, e1, and e2 are
matched for the forall-new operator and (b) the graph elements M1 and e3 are
matched for the exists operator. For (a), all matched graph elements are alive at
the symbolic position (tpc2, 1) characterizing all positions (t, 1) where tpc2 = t.
The ACs in the encoded MTGC then ensure that e.g. e1 is alive since it was
created not after tpc2 (cts = tpc1 ≤ tpc2 and cidx = 0 ≤ 1) and it has never
been deleted (dts = −1) whereas e.g. e2 is alive since it was created at (tpc2, 1)
and it has been deleted strictly later (dts = tpc2 but 1 < didx ). Moreover, the
matched graph elements are not alive earlier since e2 was created at (tpc2, 1). For
(b), all matched graph elements are alive at (tpc5, 4). Overall, we obtain (after
simplification) the AC requiring that tpc5 − tpc2 ≤ 5 as the encoded MTGC
expresses the time bound ≤ 5 used in the until operator. For the last state of
the path π̂ex, we obtain the AC TS(π̂ex) ∧ tpc5 − tpc2 ≤ 5, which is e.g. satisfied
by the valuation {tpc1 = 0, tpc2 = 0, tpc3 = 2, tpc4 = 4, tpc5 = 4} representing a
timed realization πex of π̂ex where the message is transmitted as early as possible
in both transmission steps.

Step 5: Computation of Resulting Probabilities
In this step, we compute the maximal/minimal probability for the satisfaction of
the given MTGC θ, i.e., for reaching states s with clock valuation v satisfying the
AC contained in the state conditions SC(s). However, this kind of specification
of target states is not supported by Prism, which requires a clock-independent
16 For the case of Pmin=?(θ), we define SC(s) = {TS(π̂) ∧ ¬γπ̂}.
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specification of target states. Therefore, we propose a custom analysis procedure
to solve the analysis problem from above.

In the following, we first discuss, on an example, an analysis procedure for
the case of a clock-independent labeling of states and then expand this pro-
cedure to the additional use of state conditions SC(s). For the symbolic state
space in Fig. 1c, the maximal probability to reach a state labeled with success
can be computed by propagating restrictions of valuations given by zones back-
wards. Initially, each state is equipped only with the zone given in the state
space and the probability 1 when it is a target state. The zone/probability pairs
(c1 − c2 ≤ 3, 1) and (5 ≤ c1 − c2 ≤ 6, 1) of the �4-state and the �6-state are then
propagated backwards without change to the �3-state and the �5-state, respec-
tively. However, when steps have multiple target states, any subset of the target
states is considered and the probabilities of pairs for the considered target states
are summed up when the conjunction of their zones is satisfiable. For example,
we obtain (5 ≤ c1 − c2 ≤ 6, 0.75) for the �2-state since the conjunction of the
zones obtained for the �5- and �9-states is satisfiable whereas the other sub-
sets of target states result in unsatisfiable conjunctions or lower probabilities.
When multiple zone/probability pairs with a common maximal probability are
obtained, they are all retained for the source state of the step.

We now introduce our backward analysis procedure by adapting the pro-
cedure from above to the usage of the ACs contained in the state condition
SC(s) instead of zones. Technically, our (fixed-point) backward analysis proce-
dure updates the state conditions SC and state probability SP, which record the
AC/probability pairs, until no further modifications can be performed according
to the following definition.

Definition 6 (Backward Analysis Procedure). The subsequent operation
updating SC and SP is performed until a fixed-point is reached. When SC, SP,
and I assign to each state s of M a set of ACs, a probability, and the depth of s in
the tree-shaped state space M , respectively, (s, μ) is an edge of M , S′ ⊆ supp(μ)
is a subset of the target states of μ, f selects for each target state s′ ∈ S′ an AC
from SC(s′), γ = ∃tpcI(s).

∧
s′∈S′ f(s′) is the AC derived for the state s based

on the selections S′ and f , γ is satisfiable, and p =
∑

s′∈S′(μ(s′) × SP(s′)) is
the new probability for s based on the selections S′ and f , then (a) SC(s) and
SP(s) are changed to {γ} and p when p > SP(s) recording the AC γ and the
new maximal probability p derived for s and (b) SC(s) is changed to SC(s)∪{γ}
when p = SP(s) recording an additional AC γ and not changing the probability
SP(s).

Finally, using our BMC approach introduced in this section, we derive the
expected maximal probability.17

Theorem 2 (Soundness of BMC Approach). The presented BMC approach
in terms of the presented 5-step analysis algorithm returns the correct probability
for a given PTGTS S, PMTGC χ, and time bound T .
17 For Pmin=?(θ), the procedure from Definition 6 returns 1−Pmin=?(θ) maximizing the

probability of failing paths by minimizing the probability for successful paths.
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6 Evaluation

Our implementation of the presented BMC approach in AutoGraph [24]
reports for all considered variations of our running example the expected best-
case probability for timely message transmission of 0.82n (and the worst-case
probability of 0) for n messages to be transmitted. For our experiments, we
employed the time bound T = 20 corresponding to the maximum duration
required for sending the message and transmitting it via the shortest connection.
Note that an unbounded number of transmission retries for T = ∞ is unrealistic
and would not allow for a finite state space M to be generated in Step 2. Also,
any message transmission failure inevitably leads to a non-timely transmission
of that message due to the time bound used in the PMTGC χmax. However,
the size of M is exponential in the number of messages to be transmitted as
their transmission is independent from each other resulting in any resolution of
their concurrent behavior to be contained in M . Hence, allowing for up to 10
transmission attempts via time bound T = 20 resulted in 31 states for n = 1 but
exceeded our memory at 83000 states for n = 2. Using the drop rule to further
limit the number of transmission retries allowed to analyze the variation of our
running example in which two messages are transmitted but dropped after the
second transmission failure resulting in 12334 states.

However, as of now, the bottle neck of our current implementation, which
is faithful to our presentation from the previous section, is not the runtime but
the memory consumption. To overcome this limitation, we plan to generate the
tree-shaped state space M in a depth-first manner performing the subsequent
steps of the analysis algorithm (Step 3–Step 5) on entirely generated subtrees
of M (before continuing with the state space generation). This would allow to
dispose paths from M that are no longer needed in subsequent steps of the
algorithm. Also, when the memory consumption has been drastically reduced
along this line, a multithreaded implementation would be highly beneficial due
to the tree-shaped form of M and the independent analysis for its subtrees.

7 Conclusion and Future Work

We introduced PMTGL for the specification of cyber-physical systems with prob-
abilistic timed behavior modeled as PTGTSs. PMTGL combines (a) MTGL with
its binding capabilities for the specification of timed graph sequences and (b) the
probabilistic operator from PTCTL to express best-case/worst-case probabilis-
tic timed reachability properties. Moreover, we presented a novel BMC approach
for PTGTSs w.r.t. PMTGL properties.

In the future, we plan to apply PMTGL and our BMC approach to the case
study [21,23] of a cyber-physical system where, in accordance with real-time con-
straints, autonomous shuttles exhibiting probabilistic failures on demand navi-
gate on a track topology. Moreover, we plan to extend our BMC approach by
supporting the analysis of so-called optimistic violations introduced in [27].
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