
Decidability of Resilience
for Well-Structured Graph
Transformation Systems

Okan Özkan(B)

University of Oldenburg, Oldenburg, Germany

o.oezkan@informatik.uni-oldenburg.de

Abstract. Resilience is a concept of rising interest in computer sci-
ence and software engineering. For systems in which correctness w.r.t.
a safety condition is unachievable, fast recovery is demanded. We ask
whether we can reach a safe state in a bounded number of steps when-
ever we reach a bad state. In a well-structured framework, we investigate
problems of this kind where the bad and safety conditions are given as
upward/downward-closed sets. We obtain decidability results for graph
transformation systems by applying our results for subclasses of well-
structured transition systems. Moreover, we identify sufficient criteria of
graph transformation systems for the applicability of our results.

Keywords: Resilience · Graph transformation systems · Decidability ·
Well-structured transition systems

1 Introduction

Resilience is a broadly used concept in computer science and software engineer-
ing (e.g., [11]). In general engineering systems, fast recovery from a degraded
state is often termed as resilience, see, e.g., [17]. In view of the latter interpreta-
tion of resilience, we investigate on the question whether a SAFE state can be
reached in a bounded number of steps from any BAD state (where BAD is not
necessarily the complement of SAFE). This concept is meaningful for systems in
which violation of SAFE cannot be avoided. Our notion of resilience generalizes
correctness (e.g., [2,10,15]) w.r.t. a safety condition.

For modeling systems, we use graph transformation systems (GTSs) in the
single pushout approach (SPO), as considered, e.g., in [7], which provide visual
interpretability but yet also a precise formalism. In this perception, system states
are captured by graphs and state changes by graph transformations. Our goal is
to obtain decidability results for GTSs by considering their induced transition
systems. A transition system consists of a set of states of any kind (not necessarily
graphs) and a transition relation on the state set.

Usually, the state set (set of graphs) is infinite. To handle infinite state sets,
we employ the concept of well-structuredness studied, e.g., in [1,9]. A well-
structured transition system (WSTS) is, informally, a transition system equipped
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Behr and D. Strüber (Eds.): ICGT 2022, LNCS 13349, pp. 38–57, 2022.
https://doi.org/10.1007/978-3-031-09843-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09843-7_3&domain=pdf
http://orcid.org/0000-0002-4345-1472
https://doi.org/10.1007/978-3-031-09843-7_3

Decidability of Resilience for Well-Structured GTSs 39

with a well-quasi-order satisfying that larger states simulate smaller states (also
called compatibility condition) and that certain predecessor sets can be effec-
tively computed. In this well-structured setting, ideal-based sets (upward- or
downward-closed sets) play an important role. They enjoy a number of suitable
properties for verification such as finite representation (of upward-closed sets)
and closure properties. For WSTSs, the ideal reachability (coverability) problem
is decidable [1,9], which is an integrant of our results.

Well-structuredness of GTSs is investigated, e.g., in [12] for several well-
quasi-orders. The well-quasi-order we use is the subgraph order which permits
strong compatibility but comes with the restriction of path-length-boundedness
on the graph class.

We show decidability for subclasses of GTSs of bounded path length. Each
subclass exhibits additional requirements, i.e., effectiveness or unreliability prop-
erties. Additionally, we identify sufficient criteria of GTSs for the applicability
of the results.

More precisely, we consider the explicit resilience problem where the bound
on the number of steps for recovery is given and the bounded resilience problem
which asks whether there exists such a bound. These problems are formulated
for marked GTSs each of which consists of a GTS together with a graph class
closed under rule application and an INITial subset of graphs. We ask: Starting
from any graph in INIT, whenever we reach a BAD graph, can we reach a SAFE
graph in ≤ k (in a bounded number of) steps?

To illustrate the idea of our resilience concept, we give an example.

Example (circular process protocol). Consider a ring of three processes
P0, P1, P2 each of which has an unordered collection (multiset) containing com-
mands. Each command belongs to a process and is labeled accordingly as c0, c1,
or c2. The protocol is described below. A formalization as GTS can be found in
Sect. 4.

– The process P0 liberal, i.e., it can initiate (generate) a command c0 in the
collection of the next process.

– Every process Pi can forward a command cj , i �= j, not belonging to itself.
– If a process Pi receives a command ci, it is enabled and can

1. execute its specific process action, or
2. clear all commands in its collection and forward a command of the next

process, or
3. leave the process ring (if i �= 0) and forward a command of the next

process.
Afterwards, the command ci is deleted.

– Any command may get lost in any state.

The process action of P0 is to forward two commands, c1 and c2. The process
action of P1 (P2) is to forward a command c2 (c1). The topology of the process
ring changes when a process leaves the ring. Processes P1 and P2 can leave the
ring only if the other process has not left the ring before. In Fig. 1, the initial
state where every process Pi has one command ci in its collection and the three

40 O. Özkan

possible topologies are shown. A process Pi is represented by an edge labeled
with Pi. The collections are represented by white nodes which may have loops
labeled with ci corresponding to the contained commands.

P0 P1

P2

c2c0

c1
P0

P1

P0 P1

P2

P0

P2

Fig. 1. Initial state and topologies of the circular process protocol.

Consider the following instances of the bounded resilience problem with the
initial state as in Fig. 1:

BAD ¬AllEnabled Command(c2) AllEnabled NoCommand
SAFE AllEnabled Collection(c0, c1) ¬AllEnabled No3Processes

For every instance of the bounded resilience problem, we are interested in a
bound k for the number of steps needed for recovery. In the first instance, we
ask whether we can reach a state where every process is enabled in ≤ k steps
whenever we reach a state where this is not the case. In the second instance, we
ask whether we can reach a state with a collection containing commands c0, c1
in ≤ k steps whenever we reach a state with a collection containing c2. The third
instance is the “dual” problem to the first one where the constraints for BAD
and SAFE are exchanged. In the fourth instance, we ask whether we can reach
a state containing no three processes in ≤ k steps whenever we reach a state
without commands. One may ask:

– Does such a k exist? If so, what is the minimal k?
– Is there a generic method for problems of this kind?

We will answer these questions in Sect. 3 and 4.
This paper is organized as follows: In Sect. 2, we recall preliminary concepts

of GTSs and (WS)TSs. We show decidability of the resilience problems for sub-
classes of marked WSTSs in Sect. 3. In Sect. 4, we apply our results to marked
GTSs. In Sect. 5, we give sufficient, rule-specific criteria for the applicability of
our results. We present related concepts in Sect. 6 and close with a conclusion
in Sect. 7. The proofs in full length and a further example can be found in a
technical report [13].

2 Preliminaries

We recall the concepts used in this paper, namely graph transformation systems
[6,7] and (in particular well-structured) transition systems [9].

Decidability of Resilience for Well-Structured GTSs 41

2.1 Graph Transformation Systems

In the following, we recall the definitions of graphs, graph constraints, rules, and
graph transformation systems [6,7].

A directed, labeled graph consists of a finite set of nodes and a finite set of
edges where each edge is equipped with a source and a target node and where
each node and edge is equipped with a label. Note that this kind of graphs are
a special case of the hypergraphs considered in [12].

Definition 1 (graphs & morphisms). A (directed, labeled) graph (over a
finite label alphabet Λ = ΛV ∪ΛE) is a tuple G = 〈VG, EG, srcG, tgtG, labV

G, labE
G〉

with finite sets VG and EG of nodes (or vertices) and edges, functions srcG, tgtG :
EG → VG assigning source and target to each edge, and labeling functions labV

G :
VG → ΛV , labE

G : EG → ΛE . A (simple, undirected) path in G of length � is
a sequence 〈v1, e1, v2 . . . , v�, e�v�+1〉 of nodes and edges s.t. srcG(ei) = vi and
tgtG(ei) = vi+1, or tgtG(ei) = vi and srcG(ei) = vi+1 for every 1 ≤ i ≤ �,
and all contained nodes and edges occur at most once. Given graphs G and
H, a (partial graph) morphism g : G ⇀ H consists of partial functions gV :
VG ⇀ VH and gE : EG ⇀ EH which preserve sources, targets, and labels, i.e.,
gV ◦ srcG(e) = srcH ◦ gE(e), gV ◦ tgtG(e) = tgtH ◦ gE(e), labV

G(v) = labV
H ◦ gV (v),

and labE
G(e) = labE

H ◦ gE(e) on all nodes v and egdes e, for which gV (v), gE(e)
is defined. Furthermore, if a morphism is defined on an edge, it must be defined
on both incident nodes. The morphism g is total (injective) if both gV and gE

are total (injective). If g is total and injective, we also write g : G ↪→ H. The
composition of morphisms is defined componentwise. A pair 〈G → C,G′ → C〉
of morphisms is jointly surjective if every item of C has a preimage in G or G′.

Convention. We draw graphs as usual. Labels are indicated by a symbol or a
color. In (partial) morphisms, we equip the image of a node with the same index.
Nodes on which the morphism is undefined have no index.

We consider a special case of graph constraints [10,16], which are non-nested
and based on positive (∃G)/negative (¬∃G) constraints. For simplicity, we call
them also positive (negative) constraints.

Definition 2 (positive & negative constraints). The class of positive
(negative) (graph) constraints is the smallest class of expressions which con-
tains ∃G (negative: ¬∃G) for every graph G and is closed under ∨ and ∧.
A graph G satisfies ∃G′ if there exists a total, injective morphism G′ ↪→ G.
The semantics of the logical operators are as usual. We write G |= c if G satis-
fies the positive/negative constraint c. For a positive/negative constraint c, we
denote by [[c]] the set of all graphs G of the considered graph class with G |= c.

Using jointly surjective morphisms, every positive constraint can algorithmi-
cally be converted into an equivalent “∨-normal form”.

Fact 1 (from ∧ to ∨). For every positive contraint c, we can effectively con-
struct a positive constraint c′ of the form

∨
1≤i≤n ∃Gi s.t. [[c]] = [[c′]] and there

exists no total, injective morphism Gi ↪→ Gj for i �= j.

42 O. Özkan

We use the single pushout (SPO) approach [7] with injective matches for
modeling graph transformations.

Definition 3 (graph transformation). A (graph transformation) rule r =
〈L ⇀ R〉 is a partial morphism from a graph L to a graph R. A graph transfor-
mation system (GTS) is a finite set of rules. A transformation G ⇒ H from a
graph G to a graph H applying a rule r at a total, injective match morphism
g : L ↪→ G is given by a pushout as shown in Fig. 2 (1) (for existence and con-
struction of pushouts, see, e.g., [7]). We write G ⇒r H to indicate the applied
rule, and G ⇒R H if G ⇒r H for a rule r in the rule set R.

In Fig. 2 (2), an example for a transformation is shown.

L R

G H

(1)g

r
1 2

P1

c0

1 2

P1

c0

3
1

2

P0 P1

P2

c0

3
1

2

P0 P1

P2

c0

→ →

(2)

Fig. 2. Pushout scheme and example of a transformation.

2.2 Transition Systems and Well-structuredness

We recall the notion of transition systems.

Definition 4 (transition system). A transition system (TS) 〈S,→〉 consists
of a (possibly infinite) set S of states and a transition relation →⊆ S × S.
Let →0= IdS (identitiy on S), →1=→, and →k=→k−1 ◦ → for every k ≥ 2.
Let →≤k=

⋃
0≤j≤k →j for every k ≥ 0. The transitive closure is given by

→∗=
⋃

k≥0 →k.

Often we are interested in the predecessors or successors of state set.

Definition 5 (pre- & postsets). Let 〈S,→〉 be a transition system. For S′ ⊆ S
and k ≥ 0, we define prek(S′) = {s ∈ S | ∃s′ ∈ S′ : s →k s′} and postk(S′) =
{s ∈ S | ∃s′ ∈ S′ : s′ →k s}. Let pre≤k(S′) =

⋃
j≤k prej(S′), pre∗(S′) =

⋃
k≥0 prek(S′), post≤k(S′) =

⋃
j≤k postj(S′), and post∗(S′) =

⋃
k≥0 postk(S′).

We abbreviate post1(S′) by post(S′) and pre1(S′) by pre(S). A TS 〈S,→〉 is
finite-branching if post(s) is finite and computable for every given state s.

Several problems are undecidable for infinite-state TSs in general. However,
interesting decidability results can be achieved if the system is well-structured
[1,9,12]. A prerequisite for this concept is a well-quasi-order on the state set.

Decidability of Resilience for Well-Structured GTSs 43

Definition 6 (well-quasi-order). A quasi-order is a reflexive, transitive rela-
tion. A well-quasi-order (wqo) over a set X is a quasi-order ≤⊆ X × X s.t. every
infinite sequence 〈x0, x1, . . .〉 in X contains an increasing pair xi ≤ xj with i < j. A
(well-)quasi-order is decidable if it can be decided whether x ≤ x′ for all x, x′ ∈ X.

In our setting, the subgraph order is of crucial importance.

Example 1 (subgraph order). The subgraph order ≤ is given by G ≤ H iff
there is a total, injective morphism G ↪→ H. Let S� be a graph class of bounded
path length (with bound �). The restriction of ≤ to S� is a wqo [4,12]. However,
it is not a wqo on all graphs: The infinite sequence 〈 , , , . . .〉 of cyclic
graphs of increasing length contains no increasing pair.

Assumption. From now on, we implicitly equip every set of graphs with the
subgraph order. By “≤” we mean either an abstract wqo or the subgraph order.

Upward- and downward-closed sets are of special interest.

Definition 7 (ideal & basis). Let X be a set and ≤ a quasi-order on X. For
every subset A of X, we denote by ↑ A = {x ∈ X | ∃a ∈ A : a ≤ x} the
upward-closure and ↓A = {x ∈ X | ∃a ∈ A : x ≤ a} the downward-closure of A.
An ideal I ⊆ X is an upward-closed set, i.e., ↑ I = I . An anti-ideal J ⊆ X is a
downward-closed set, i.e., ↓J = J . An (anti-)ideal is decidable if membership for
every x ∈ X is decidable. A basis of an ideal I is a subset B ⊆ I s.t. (i) ↑B = I
and (ii) b �= b′ ⇒ b �≤ b′ for all b, b′ ∈ B .

Fact 2 (ideals of graphs). For every positive (negative) constraint c, [[c]] is
an (anti-)ideal.

Ideals are, in general, infinite but can be represented by finite bases (a min-
imal generating set), similar to algebraic structures.

Fact 3 (finite basis [1, Lemma 3.3]). Every ideal has a basis and every basis
is finite, provided that the superset is equipped with a wqo. Given a finite set
A, a basis of ↑A is computable, provided that the quasi-order is decidable.

Anti-ideals are the complements of ideals. Since an anti-ideal does not have an
“upward-basis” in general, we will later demand that membership is decidable.

For well-structuredness, we demand that the wqo yields a simulation of
smaller states by larger states. This condition is called compatibility.

Definition 8 (well-structured transition systems). Let 〈S,→〉 be transi-
tion system and ≤ a decidable wqo on S. The tuple 〈S,≤,→〉 is a well-structured
transition system (WSTS), if:

(i) The wqo is compatible with the transition relation, i.e., for all s1, s
′
1, s2 ∈ S

with s1 ≤ s′
1 and s1 → s2, there exists s′

2 ∈ S with s2 ≤ s′
2 and s′

1 →∗ s′
2. If

s′
1 →1 s′

2, we say that it is strongly compatible. Both is illustrated in Fig. 3.
(ii) For every s ∈ S, a basis of ↑pre(↑{s}) is computable.

44 O. Özkan

s1 s2

s1 s2

≤ ≤

∗

∀
∃

(a) Compatibility

s1 s2

s1 s2

≤ ≤

1

∀
∃

(b) Strong compatibility

Fig. 3. Visualization of (strong) compatibility.

A strongly WSTS (SWSTS) is a WSTS with strong compatibility.

Remark. For GTSs, strong compatibility is achieved by applying the same rule
to the bigger graph. In contrast to the double pushout (DPO) approach [6], SPO
has the suitable property that every rule is applicable to the bigger graph.

Assumption. Let 〈S,≤,→〉 be a well-structured transition system.

The set of ideals of S is closed under preset, union, and intersection.

Fact 4 (stability of ideals [1, Lemma 3.2]). For ideals I , I ′ ⊆ S, the sets
pre∗(I), I ∪ I ′, and I ∩ I ′ are ideals. For SWSTSs, the sets pre(I), pre≤k(I) for
every k ≥ 0 are ideals.

An important point in our argumentation is the observation that every infi-
nite, ascending sequence of ideals w.r.t. a wqo eventually becomes stationary.

Lemma 1 (Noetherian state set [1, Lemma 3.4]). For every infinite, ascend-
ing sequence 〈I0 ⊆ I1 ⊆ . . .〉 of ideals, ∃k0 ≥ 0 s.t. Ik = Ik0 for all k ≥ k0.

Abdulla et al. [1] exploit Lemma 1 to show the decidability of ideal reachabil-
ity (coverability) for SWSTSs. The idea is to iteratively construct the sequence
of the ideals I k = pre≤k(I) until it becomes stable. This construction is carried
out by representing ideals by bases. This argumentation is similarly feasible for
WSTSs, see, e.g., [9, proof of Thm. 3.6].

Lemma 2 (ideal reachability [1, Thm. 4.1]). Given a basis of an ideal
I ⊆ S and a state s of a SWSTS, we can decide whether we can reach a state
sI ∈ I from s. In particular, pre≤k(I) = pre∗(I) ⇐⇒ pre≤k+1(I) = pre≤k(I),
and a basis of pre∗(I) is computable.

3 Decidability

We show the decidability of resilience problems for subclasses of SWSTSs by
extending the idea in [14] to a systematic investigation.

In our setting, ideal-based sets of states play an important role.

Definition 9 (ideal-based). A set is ideal-based if it is (i) an ideal with a given
basis, or (ii) a decidable anti-ideal. We denote by

(i) I the set of ideals with given bases, (ii) J the set of decidable anti-ideals.

Decidability of Resilience for Well-Structured GTSs 45

We formulate resilience problems for marked WSTSs, i.e., WSTSs with a
specified set INIT of inital states starting from which we investigate resilience.

Definition 10 (marked WSTS). A marked WSTS is a tuple 〈S,≤,→, INIT〉
where 〈S,≤,→〉 is a WSTS and INIT ⊆ S. If INIT is finite, we call it fin-marked.

Explicit Resilience Problem for WSTSs

Given: A marked WSTS 〈S,≤,→, INIT〉, ideal-based sets SAFE, BAD ⊆ S,
a natural number k ≥ 0.

Question: ∀s ∈ INIT : ∀(s →∗ s′ ∈ BAD) : ∃(s′ →≤k s′′ ∈ SAFE) ?

Bounded Resilience Problem for WSTSs

Given: A marked WSTS 〈S,≤,→, INIT〉, ideal-based sets SAFE, BAD ⊆ S.
Question: ∃k ≥ 0 : ∀s ∈ INIT : ∀(s →∗ s′ ∈ BAD) : ∃(s′ →≤k s′′ ∈ SAFE) ?

For our further considerations, we regard requirements in order to obtain decid-
ability, i.e., we consider the following subclasses of marked WSTSs.

Definition 11 (requirements). A marked WSTS 〈S,≤,→, INIT〉 is

(1) post∗-effective if INIT is finite and a basis of ↑post∗(INIT) is computable,
(2) lossy if ↓post∗(INIT) = post∗(INIT),
(3) ⊥-bounded (bottom-bounded) if there exists � ≥ 0 s.t. sB ∈ post≤�(s) for

every s ∈ S and every element sB of a basis of S with s ≥ sB .

The requirement of post∗-effectiveness describes the computability of the
smallest reachable states from the initital states. The notion of lossiness means
that the set of reachable states from the initital states is downward-closed. This
is an abstraction from the lossiness concept in [9, p. 83]. Usually, the term “lossy”
describes the circumstance that (almost) any piece of information of a state may
get lost. Another kind of unreliability is ⊥-boundedness which means that from
every state, every smaller basis element (the bottom underneath) is reachable
in a bounded number of steps. Thereby (almost) all information of a state may
get lost in a bounded of number of steps.

The following lemma is crucial for many following proofs.

Lemma 3 (ideal-inclusion [14, Lemma 4]). Let A be a set, I an ideal, and
J an anti-ideal. Then, A ∩ J ⊆ I ⇐⇒ ↑A ∩ J ⊆ I .

Applying this lemma to a basis BI of an ideal I , we obtain that the inclusion
I ∩ J ⊆ I ′ in an ideal I ′ can be checked by computing BI ∩ J and then checking
whether BI ∩ J ⊆ I ′.

We give a characterization of post∗-effectiveness via “anti-ideal reachability”.

46 O. Özkan

Proposition 1 (characterization of post∗-effectiveness). For a class of
finite-branching WSTSs, a basis of ↑ post∗(s) is computable for every given
state s iff the anti-ideal reachability problem is decidable, i.e., given a state s
of a WSTS in the regarded class and a decidable anti-ideal J , it can be decided
whether ∃s′ ∈ J : s →∗ s′.

Proof (sketch) On one hand, we can decide the anti-ideal reachability problem
by computing a basis of ↑post∗(s) and checking whether the intersection with the
anti-ideal is empty (Lemma 3). One the other hand, we can compute a basis of
↑post∗(s) by computing the sequence of ideals Pk =↑post≤k(s) until it becomes
stationary (Lemma 1). The stop condition, i.e., the condition which guarantees
that we can terminate the algorithm, is formalized as anti-ideal reachability. �

The characterization in Proposition 1 is used to show that Petri nets are
post∗-effective. It is well-known that Petri nets constitute SWSTSs [9, Thm.
6.1].

Example 2 (variations of Petri nets). (1) Petri nets (equipped with any
finite set of initial states) are post∗-effective by Proposition 1: Reachability for
Petri nets is decidable and recursively equivalent to submarking reachability [8,
p.6]. This corresponds to the anti-ideal reachability problem for Petri nets.
(2) Lossy Petri nets are Petri nets where in any state, one token may get lost at
any place. Lossy Petri nets are lossy for every set of initial states.
(3) Reset-lossy (mixed-lossy) Petri nets are reset Petri nets [5] where in any state,
all tokens (or one token) may get lost at any place. Reset-lossy (mixed-lossy)
Petri nets are ⊥-bounded (and lossy for every set of initial states).

For some results, we assume that a basis of the set of all states is given. This
is only relevant if we use these basis elements for computations.

Notation. For a WSTS 〈S,≤,→〉 with a given basis of S, we write WSTSB .

The next proposition shows how the requirements are related provided that
a basis of the set of all states is given. The Venn diagram in Fig. 4 illustrates the
relations of the subclasses corresponding to the requirements.

Proposition 2. Lossy (⊥-bounded) fin-marked WSTSBs are post∗-effective.

post∗-effective

lossy ⊥-bounded

Petri nets

lossy Petri
nets

reset-lossy
Petri nets

mixed-lossy
Petri nets

Fig. 4. Subclasses of fin-marked WSTSBs.

Decidability of Resilience for Well-Structured GTSs 47

Proof (sketch). Let 〈S,≤,→, INIT〉 be a lossy (⊥-bounded) fin-marked WSTSB .
To compute a basis of ↑post∗(INIT) for a finite set INIT, we look at the reachable
elements of a basis of the set S of all states. Such a basis element is reachable
iff its upward-closure is reachable. By Lemma 2, the latter is decidable. �

Our main result for fin-marked SWSTSs terms sufficient criteria under which
the resilience problems are decidable.

Theorem 1 (decidability for fin-marked SWSTSs). Both resilience prob-
lems are decidable for fin-marked SWSTSs which are

(1) post∗-effective if BAD ∈ J , SAFE ∈ I (corresp. [14, Thm. 1]),
(2) lossy if BAD,SAFE ∈ I.

The bounded resilience problem is decidable for fin-marked SWSTSBs which are

(3) lossy and ⊥-bounded if BAD ∈ I, SAFE ∈ J ,
(4) ⊥-bounded if BAD,SAFE ∈ J .

Key Idea of the Proof. We compute a finite representation of post∗(INIT)∩BAD
for checking inclusion in a decidable ideal I which is a predecessor set of SAFE.

The proof structure is shown in Fig. 5: Lemma 4 states that for post∗-effective
(lossy) fin-marked SWSTSs, a finite representation of post∗(INIT) ∩ BAD is
computable, i.e., inclusion in a decidable ideal is decidable. In the case SAFE ∈ I,
the set pre≤k(SAFE) is a decidable ideal for every k ≥ 0. (Lemma 5 shows the
existence of bounds for the set of all predecessors of SAFE ∈ J provided that
the SWSTS is ⊥-bounded.) Proposition 3 shows that pre∗(SAFE) constitutes a
decidable ideal in the case SAFE ∈ J if the SWSTSB is ⊥-bounded.

post∗(INIT) ∩ BAD ⊆
decidable ideal

pre≤k/∗(SAFE)
decidable

post∗-eff WSTS
BAD ∈ J

lossy WSTS
BAD ∈ I

Lem. 4

SWSTS
SAFE ∈ I

⊥-bounded SWSTSB

SAFE ∈ J
Prop. 3

Fig. 5. Structure of the decidability proof for fin-marked SWSTSs.

The following lemma states that the inclusion of post∗(INIT) ∩ BAD in an
decidable ideal is decidable if we consider post∗-effective in the case BAD ∈ J
or lossy fin-marked WSTSs in the case BAD ∈ I.

48 O. Özkan

Lemma 4 (checking inclusion). Let 〈S,≤,→, INIT〉 be a fin-marked WSTS,
BAD ⊆ S, and I ⊆ S be a decidable ideal. Then, it is decidable whether
post∗(INIT)∩BAD ⊆ I provided that the fin-marked WSTS is (a) post∗-effective
and BAD ∈ J , (b) lossy and BAD ∈ I.

Proof (sketch). We compute a finite representation of post∗(INIT) ∩ BAD for
checking inclusion in the decidable ideal I . To this aim, we use Lemma 3. In
case (a), the finite representation is Bpost ∩ BAD where Bpost is a basis of
↑ post∗(INIT). In case (b), the finite representation is ↓ post∗(INIT) ∩ BBAD

where BBAD is a basis of BAD. �

By the next lemma, ⊥-boundedness implies that for any anti-ideal J , pre∗(J)
is an ideal and pre∗(J) = pre≤k(J) for a k ≥ 0.

Lemma 5 (existence of bounds). For every ⊥-bounded SWSTS and every
anti-ideal J , there exists a k ≥ 0 s.t. pre∗(J) =↑pre∗(J) = pre≤k(J).

Proof (sketch). By Lemma 1, for every set A of states, there exists a k0 ≥ 0 s.t.
↑ pre∗(A) =↑ pre≤k0(A). By strong compatibility and ⊥-boundedness, there
exists a constant � ≥ 0 s.t. ↑ pre≤k(J) ⊆ pre≤k+�(J) for every anti-ideal J .
Hence, pre∗(J) ⊆↑pre∗(J) =↑pre≤k0(J) ⊆ pre≤k0+�(J) ⊆ pre∗(J). �

The following proposition identifies sufficient prerequisites s.t. pre∗(SAFE)
constitutes a decidable ideal in the case SAFE ∈ J .

Proposition 3 (decidable ideals). For every ⊥-bounded SWSTSB and every
decidable anti-ideal J , the set pre∗(J) is a decidable ideal.

Proof (sketch). By Lemma 5, ↑ pre∗(J) = pre∗(J). Thus, it is an ideal. By
Lemma 3, s �∈ pre∗(J) ⇐⇒ Bpost(s) ∩ J = ∅ where Bpost(s) is a basis of
↑ post∗(s). By Proposition 2, ⊥-boundedness implies post∗-effectiveness w.r.t.
any finite set of initial states, provided that a basis of S is given. Hence, mem-
bership is decidable. �

We compile our preparatory results to prove Theorem1.

Proof (of Theorem 1). Cases (1) & (2). By Fact 4, pre≤k(SAFE) is an ideal
for every k ≥ 0 since SAFE ∈ I. For every k ≥ 0, pre≤k+1(SAFE) =
pre(pre≤k(SAFE)) ∪ SAFE. By Definition 8 and Fact 3, a basis of pre≤k(SAFE)
is iteratively computable. By Lemma 4, we can decide whether post∗(INIT) ∩
BAD ⊆ pre≤k(SAFE) for (1) post∗-effective fin-marked SWSTSs and (2) lossy
fin-marked SWSTSs, respectively. By Lemma 1, the infinite ascending sequence
SAFE ⊆ pre≤1(SAFE) ⊆ pre≤2(SAFE) ⊆ . . . becomes stationary, i.e., there is
a minimal k0 ≥ 0 s.t. pre≤k0(SAFE) = pre∗(SAFE). By Lemma 2, we can also
determine this k0. Thus, we can determine the minimal number k = kmin s.t.
post∗(INIT) ∩ BAD ⊆ pre≤k(SAFE) (if it exists) and also whether it exists.
Hence, we can decide the bounded resilience problem and given any k, we can
check whether kmin ≤ k to decide the explicit resilience problem.

Decidability of Resilience for Well-Structured GTSs 49

Cases (3) & (4). By Lemma 5, for ⊥-bounded SWSTSs, there exists a k ≥ 0
s.t. pre∗(SAFE) = pre≤k(SAFE). Hence, checking bounded resilience is equiv-
alent to testing inclusion in pre∗(SAFE). By Proposition 3, for ⊥-bounded
SWSTSBs, pre∗(SAFE) is a decidable ideal since SAFE ∈ J . By Lemma 4,
we obtain that checking post∗(INIT) ∩ BAD ⊆ pre∗(SAFE) is decidable for (3)
lossy, ⊥-bounded fin-marked SWSTSBs and (4) post∗-effective, ⊥-bounded fin-
marked SWSTSBs, respectively. By Proposition 2, ⊥-boundedness implies post∗-
effectiveness provided that a basis of the set of all states is given. �

4 Application to Graph Transformation Systems

We translate the results for WSTSs into the GTS setting.
The sets of positive and negative constraints are subsumed as ideal-based

constraints.

Definition 12 (ideal-based constraints). We denote the set of positive (neg-
ative) constraints by Ic (Jc). An ideal-based constraint is an element of Ic ∪ Jc.

Recall that we consider the subgraph order as wqo. Path-length-boundedness
on the graph class guarantees that the subgraph order yields a wqo.

Similarly to marked WSTSs, a marked GTS is a GTS together with a graph
class closed under rule application and a subset INIT of graphs.

Definition 13 (marked GTS). A marked GTS is a tuple 〈S,R, INIT〉 where S
is a (possibly infinite) set of graphs, R is a GTS with ⇒R⊆ S×S, and INIT ⊆ S.
We speak of a marked GTS of bounded path length, shortly GTSbp, if S is of
bounded path length and there exist I ∈ I, J ∈ J (in the class of all graphs)
s.t. S = I ∩ J .

Remark. Ususally, one considers S as a decidable anti-ideal, as, e.g., in [12].
Then, the basis of S is given by the empty graph. By allowing S = I ∩ J , we
can consider more arbitrary bases of graphs. This is relevant for lossiness and
⊥-boundedness. A basis of S is given by BI ∩ J where BI is basis of I .

Example 3 (starry sky). The rules 〈∅ ⇀ A 〉 and 〈 A1 ⇀ A1 〉 together
with the set of disjoint unions of unboundedly many star-shaped graphs (includ-
ing isolated nodes) and any subset form a marked GTSbp.

We formulate the resilience problems for marked GTSs.

Explicit Resilience Problem for GTSs

Given: A marked GTS 〈S,R, INIT〉, ideal-based constraints Safe,Bad, a
natural number k ≥ 0.

Question: ∀G ∈ INIT : ∀(G ⇒∗ G′ |= Bad) : ∃(G′ ⇒≤k G′′ |= Safe) ?

50 O. Özkan

Bounded Resilience Problem for GTSs

Given: A marked GTS 〈S,R, INIT〉, ideal-based constraints Safe,Bad.
Question: ∃k ≥ 0 : ∀G ∈ INIT : ∀(G ⇒∗ G′ |= Bad) : ∃(G′ ⇒≤k G′′ |= Safe) ?

In the resilience problems for WSTSs, we considered ideal-based sets. We
show that one can input ideal-based constraints instead.

Lemma 6 (ideal-based graph sets). Let S = I ∩ J be a graph class where
I ∈ I and J ∈ J . For every positive (negative) constraint c, [[c]] ∈ I (J).

Proof. By Fact 2, for every positive (negative) constraint c, the set [[c]] is an
(anti-)ideal. Satisfaction (|=) of negative constraints is decidable. Let c be a
positive constraint and b =

∨
G∈B ∃G where B is a given basis of I . Then, b ∧ c

is a positive constraint. By Fact 1, we can compute a positive constraint c′ s.t.
[[c′]] =[[b ∧ c]] (in the class of all graphs) and c′ is of the form

∨
1≤i≤n ∃Gi where

Gi �≤ Gj for i �= j. Since J ∈ J , we can compute the set {Gi ∈ J : 1 ≤ i ≤ n}
which is a basis of [[c]]S = {G ∈ S : G |= c}. Hence, we can assume that a basis
of [[c]]S is given. �

Remark. More general constraints [10,16] do not constitute (anti-)ideals w.r.t.
the subgraph order, in general. Consider, e.g., the “nested” constraint AllLoop =
∀(1 ,∃(1)) expressing that every node has a loop. The graph consisting
of one node and one loop satisfies the latter constraint. However, the bigger
graph consisting of two nodes and one loop does not satisfy it. (The smaller
graph consisting of a single node does not satisfy it either.) Thus, [[AllLoop]] is
not an (anti-)ideal. Regarding the induced subgraph order [12], some “nested”
constraints constitute ideals: The constraint ∃(G,

∧
G+∈Ext(G) ¬∃(G ↪→ G+))

expresses that the graph G is an induced subgraph of the considered graph.
Here Ext(G) is the set of all graphs G+ obtained from G by adding one edge.

The following result of König & Stückrath terms a sufficient criterion for
GTSs to be well-structured.

Lemma 7 (well-structured GTS [12, Prop. 7]). Every marked GTSbp

induces a marked SWSTSB (equipped with the subgraph order).

In particular, they give an effective procedure for obtaining a basis of
pre(↑ {G}) for every given graph G. Note that in [12], König & Stückrath con-
sider labeled hypergraphs. However, the proof in our case is the same.

Convention. When speaking of a (fin-)marked GTSbp, we consider the induced
(fin-)marked SWSTSB . We also adopt the terminology for “post∗-effective”,
“lossy”, and “⊥-bounded”.

We apply our results from Sect. 3 to fin-marked GTSbp.

Decidability of Resilience for Well-Structured GTSs 51

Theorem 2 (decidability for fin-marked GTSs). Both resilience problems
are decidable for fin-marked GTSbps which are

(1) post∗-effective if Bad ∈ Jc, Safe ∈ Ic,
(2) lossy if Bad,Safe ∈ Ic.

The bounded resilience problem is decidable for fin-marked GTSbps which are

(3) lossy and ⊥-bounded if Bad ∈ Ic, Safe ∈ Jc,
(4) ⊥-bounded if Bad,Safe ∈ Jc.

Proof. By Lemma 7 [12], every fin-marked GTSbp induces a fin-marked SWSTSB .
Thus, the statements of Theorem 1 apply to GTSbps with the respective require-
ments. By Lemma 6, one can input ideal-based constraints instead of ideal-based
sets. �

We illustrate our decidability results by an example.

Example: Circular Process Protocol

In Fig. 6, the formalization as GTS of the circular process protocol in Sect. 1
is shown. Note that each Clear-rule is undefined on the node which has a ci-
labeled loop. In a rule application, this node will be deleted and recreated. Note
also that each Leave-rule identifies two nodes.

Initiate : 1 2

P0

1 2

P0

c0

Execute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2

P0

c0

1 2

P0

c1
c2

1 2

P1

c1

1 2

P1

c2

1 2

P2

c2

1 2

P2

c1

Loose : 1

ci

1

Forward : 1 2

Pi

cj
i = j

1 2

Pi

cj

Clear

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Pi

Pj

ci

1

Pi

Pj

cj

1 2

Pk Pi

Pj

ci

1 2

Pk Pi

Pj

cj

Leave : 1
2

3

Pk Pi

Pj

ci

i = 0

1 2, 3

Pk

Pj

cj

Fig. 6. Rules of the circular process protocol.

We consider all graphs with arbitrarily many commands of any kind (labeled with
c0, c1, or c2) in any collection, fitting to one of the topologies shown in Fig. 1. This
graph class is of bounded path length. A basis of this graph class is given by the

52 O. Özkan

topologies without any commands as in Fig. 1. The marked GTSbp is lossy since
the rules for loosing a command ci may be applied to any graph containing a
command ci. It is ⊥-bounded since we can reach a graph with the same topology
but containing no commands by (i) initiating a command c0, (ii) forwarding it
to the collection of P0, (iii) clearing all collections one after another, and (iv)
loosing the only remaining command. By Proposition 2, it is post∗-effective.

The example constraints for BAD and SAFE in Sect. 1 can be expressed as
positive/negative constraints:

AllEnabled = ∃
(

P0 P1

P2

c2c0

c1)

∨
∨

i=1,2

∃
(

P0

Pi

c0 ci
)

,

Collection(c0, c1) = ∃
(

c0
c1

)

, Command(c2) = ∃
(

c2
)

,

No3Processes = ¬∃
(

P0 P1

P2

)

, NoCommand =
∧

i=0,1,2

¬∃
(

ci
)

.

It can be verified that the given k’s in the following table are minimal.

BAD ¬AllEnabled Command(c2) AllEnabled NoCommand
SAFE AllEnabled Collection(c0, c1) ¬AllEnabled No3Processes

k 6 4 1 5

By clearing the collection of Pi, it is not enabled. Thus, for the third instance,
kmin = 1 since kmin �= 0. Using the algorithms presented in Sect. 3, we can
compute kmin for the remaining cases.1

5 Rule-Specific Criteria

We identify sufficient and handy GTS criteria for the requirements in Theorem2.
These criteria comprise properties of the rules.

Definition 14 (rule properties). A rule 〈L p
⇀ R〉 is node-bijecitve if p is

bijective on the nodes. It is preserving if p is total and injective. A GTS is
node-bijective (preserving) if all its rules are node-bijective (preserving).

For lossiness and ⊥-boundedness, we consider sets of rules contained in a
GTS in order to reach smaller graphs (but not smaller than basis elements).

Assumption. Let S be a graph class over Λ and B a basis of S.

1 If SAFE ∈ J \ I, our method provides only the answer whether there is a bound k.

Decidability of Resilience for Well-Structured GTSs 53

Each lossy rule deletes one item (node or edge/loop) outside of a basis ele-
ment.2 Therefore they are constructed s.t. in each rule, a basis element is present.

Construction 1 (lossy rules). The set Rloss(S) of lossy rules w.r.t. S are
constructed as follows.

(1) For graphs G ∈ B, H ∈ HΛ, the set C(G,H) is defined as all graphs C s.t.
∃〈G ↪→ C,H ↪→ C〉 jointly surjective, and

HΛ =

{

x , x y
a

, x

a ∣
∣
∣
∣ x, y ∈ ΛV , a ∈ ΛE

}

.

(2) For every graph C ∈ C(G,H)∩S, every rule 〈C p
⇀ p(C)〉 where p is undefined

on exactly one item (node or edge) which is not in (the image of) G and the
identity otherwise, is a lossy rule.

A similar idea works for ⊥-boundedness. Each bottom rule either deletes a
node outside of a basis element, or deletes and recreates a node (with its incident
edges) of a basis element.

Construction 2 (bottom rules). The set R⊥(S) of bottom rules w.r.t. S are
constructed as follows. For every basis element G ∈ B and

(1) for every label x ∈ ΛV s.t. G + x ∈ S, the rule 〈G + x
p
⇀ G〉 where p is

undefined on the node x and the identity otherwise, is a bottom rule,3

(2) for every node v ∈ VG, the rule 〈G p
⇀ G〉 where p is undefined on v and its

incident edges, and the identity otherwise, is a bottom rule.

For ⊥-boundedness, we additionally restrict the graph class. A graph class is
node-bounded if the number of nodes in any graph of the class is bounded.

The following result shows that the rule-specific criteria are sufficient.

Theorem 3 (criteria). A marked GTSbp 〈S,R, INIT〉 is

(1) post∗-effective if (INIT is finite and) R is node-bijective or preserving,
(2) lossy if Rloss(S) ⊆ R,
(3) ⊥-bounded if S is node-bounded and R⊥(S) ⊆ R.

Proof (sketch). (1) If R is preserving, the statement follows by Fact 3 since
↑ post∗(INIT) =↑ INIT. If R is node-bijective, the statement follows by the
reduction in the proof of [3, Prop. 10]. For any graph G, a Petri net with initial
marking is constructed s.t. reachability and the wqo correspond to G ⇒∗

R and
the subgraph order, respectively. Petri nets are post∗-effective, see Example 2.

2 In [12], “lossy rules” w.r.t. the minor order, i.e., edge contraction rules, are considered
in order to obtain well-structuredness for GTSs.

3 The symbol “+” denotes the disjoint union of graphs.

54 O. Özkan

(2) Using the lossy rules, we can delete any item in G\i(GB) for every G ∈ S
and G ≥ GB ∈ B where B is a basis of S and i : GB ↪→ G. Hence, a sequence of
node and edge deletions from G to any smaller graph G′ ∈ S is also feasible via
the lossy rules.

(3) Since S is node-bounded, we can delete all nodes in G\i(GB) in a bounded
number of steps for every G ∈ S and G ≥ GB ∈ B where B is a basis of S and
i : GB ↪→ G. Then, by applying the rules for deleting and recreating, we can
reach any smaller basis element in ≤ maxGB∈B |VGB

| steps. �

Remark. A lossy/bottom rule intended for node deletion will delete dangling
edges outside of (the image of) a basis element. A bottom rule of the “second
type” is intended to delete dangling edges and restore items of the basis element.

Example 4 (criteria). (1) The GTS in Fig. 6 (circular process protocol) with-
out the Clear- and Leave-rules is node-bijective. (2) The Loose-rules in Fig. 6
can be adapted (see Fig. 7) s.t. they fit in our definition of lossy rules, taking
into account the three basis elements in Fig. 1.

Rloss(S)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2

Pi

Pj

cn

1 2

Pi

Pj

1
2

3

Pk Pi

Pj

cn

1
2

3

Pk Pi

Pj

Fig. 7. The lossy rules of the circular process protocol.

(3) We adapt Example 3 (starry sky) s.t. the criterion for ⊥-boundedness is
fulfilled. Let Dn be the disjoint union of n A-labeled nodes and Dloop

1 an A-
labeled node with a single loop. We restrict the graph class to all graphs with
exactly n A-labeled nodes and unboundedly many loops. The single basis element
is the graph Dn. Consider the rule 〈D1 ↪→ Dloop

1 〉 and the bottom rule 〈Dn
p
⇀

Dn〉, i.e., deleting and recreating one node in Dn.

6 Related Concepts

The concept of resilience [11,17] is broadly used with varying definitions.
For modeling systems, we use SPO graph transformation as in [7].
Abdulla et al. [1] show the decidability of ideal reachability (coverability),

eventuality properties and simulation in (labeled) SWSTSs. We use the presented
algorithm as an essential integrant of our decidability proof.

Decidability of Resilience for Well-Structured GTSs 55

Finkel and Schnoebelen [9] show that the concept of well-structuredness
is ubiquitous in computer science by providing a large class of example models.
They give several decidability results for well-structured systems with varying
notions of compatibility, also generalizing the algorithm of [1] to WSTSs.

König and Stückrath [12] extensively study the well-structuredness of
GTSs regarding three types of wqos (minor, subgraph, induced subgraph). All
GTSs are strongly well-structured on graphs of bounded path length w.r.t. the
subgraph order. This result enables us to apply our abstract results to GTSs.
They regard Q-restricted WSTSs whose state sets have not to be a wqo but
rather a subset Q of the states is a wqo. König & Stückrath develop a backwards
algorithm based on [9] for Q-restricted WSTSs (GTSs).

Bertrand et al. [3] study the decidability of reachability and coverability for
GTSs using, in parts, well-structuredness. A variety of rule-specific restrictions
is investigated, e.g., containedness of node/edge-deletion rules. We use one of
their results to obtain a sufficient criterion for post∗-effectiveness. In contrast to
[3], we stay in the framework of well-structured GTSs.

In Fig. 8, the main results of this paper (bold boxes) are placed in the context
of known results. The arrows () mean “used for”, the hooked arrows ()
mean “instance of” or “generalized to”. Our result for SWSTSs uses the well-
known coverability algorithm [1,9] for (S)WSTSs which exploits the Noetherian
property (a general concept for algebraic structures). For ⊥-bounded SWSTSs,
we also employ the Noetherian property. On the level of GTSs, we use the
predecessor-basis procedure of [12]. To the best of the author’s knowledge, the
considered notion of resilience was first studied in [14]. We extended the latter to
a systematic investigation. The result for SWSTSs in [14] (Thm. 1) corresponds
to case (1) of our Theorem 1. The result for GTSs in [14] (Thm. 2) is slightly
less general than case (1) of our Theorem 2. For case (1) of Theorem 3, we use a
result in [3] and well-known results for Petri nets [8].

Resilience in SWSTSs
Thm. 1

Case (1) corresp. [14, Thm. 1]

Coverability in (S)WSTSs [1,9]
Abdulla et al. ’96, Thm. 4.1

Finkel & Schnoebelen ’01, Thm. 3.6

Coverability in Q-restr WSTSs [12]
1.mhT,71’htarkcütS&ginöK

Resilience in GTSs
Thm. 2

Coverability in GTSs [12]
K 4.porP,71’htarkcütS&ginö
Method: Pred-basis Procedure

decid Ideals in ⊥-bnd SWSTSs
Prop. 3

lossy ∨ ⊥-bounded ⇒ post∗-eff
Prop. 2

Noetherian Property
e.g., [1, Lem. 3.4]

GTS Criteria
Thm. 3 Node-bijective GTSs [3]

Bertrand et al. ’12, Prop. 10

PNs are post∗-eff, Ex. 2
Submarking Reachability in PNs

e.g., [8, p.6]

Fig. 8. Our results in the context of the theory of WSTSs and (ideal) reachability.

56 O. Özkan

7 Conclusion

We provided a systematic investigation on resilience problems obtaining decid-
ability results for subclasses of marked GTSs by using the concept of well-
structuredness. The used well-quasi-order on graphs is the subgraph order, i.e.,
a prerequisite is the path-length-boundedness on the graph class. The require-
ments for decidability are post∗-effectiveness or a kind of unreliability (lossy,
⊥-bounded). We identified sufficient rule-specific criteria for these requirements.

For future work, we will consider (1) possibilities of a modified approach for
typed graphs [6], (2) other proof methods to handle nested constraints [10], and
(3) other well-quasi-orders on graphs, e.g., the induced subgraph order [12].

Acknowledgment. I am grateful to Annegret Habel, Nick Würdemann, and the
anonymous reviewers for their helpful comments.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proceedings of the LICS 1996, pp. 313–321. IEEE
(1996). https://doi.org/10.1109/LICS.1996.561359

2. Apt, K.R., Olderog, E.: Verification of Sequential and Concurrent Programs. Texts
and Monographs in Computer Science. Springer, Heidelberg (1991). https://doi.
org/10.1007/978-1-4757-4376-0

3. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decid-
ability status of reachability and coverability in graph transformation systems. In:
23rd International Conference on Rewriting Techniques and Applications (RTA
2012). LIPIcs, vol. 15, pp. 101–116 (2012). https://doi.org/10.4230/LIPIcs.RTA.
2012.101

4. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theory 16(5), 489–502
(1992). https://doi.org/10.1002/jgt.3190160509

5. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055044

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series,
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

7. Ehrig, H., et al.: Algebraic approaches to graph transformation - part II: sin-
gle pushout approach and comparison with double pushout approach. In: Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume
1: Foundations, pp. 247–312. World Scientific (1997). https://doi.org/10.1142/
9789812384720 0004

8. Esparza, J., Nielsen, M.: Decidability issues for petri nets. BRICS Rep. Ser. 1(8)
(1994). https://doi.org/10.7146/brics.v1i8.21662

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
Theor. Comput. Sci. 256(1–2), 63–92 (2001). https://doi.org/10.1016/S0304-
3975(00)00102-X

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.4230/LIPIcs.RTA.2012.101
https://doi.org/10.4230/LIPIcs.RTA.2012.101
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1142/9789812384720_0004
https://doi.org/10.1142/9789812384720_0004
https://doi.org/10.7146/brics.v1i8.21662
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X

Decidability of Resilience for Well-Structured GTSs 57

10. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rel-
ative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

11. Jackson, S., Ferris, T.L.J.: Resilience principles for engineered systems. Syst. Eng.
16, 152–164 (2013). https://doi.org/10.1002/sys.21228

12. König, B., Stückrath, J.: Well-structured graph transformation systems. Inf. Com-
put. 252, 71–94 (2017). https://doi.org/10.1016/j.ic.2016.03.005

13. Özkan, O.: Decidability of resilience for well-structured graph transformation sys-
tems. Technical report, Department of Computing Science, University of Oldenburg
(2022). https://uol.de/fs/publikationen#c352844

14. Özkan, O., Würdemann, N.: Resilience of well-structured graph transformation
systems. In: Proceedings of 12th International Workshop on Graph Computational
Models. EPTCS, vol. 350, pp. 69–88 (2021). https://doi.org/10.4204/EPTCS.350.
5

15. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam.
Informaticae 118(1–2), 135–175 (2012). https://doi.org/10.3233/FI-2012-708

16. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

17. Trivedi, K.S., Kim, D.S., Ghosh, R.: Resilience in computer systems and networks.
In: Proceedings of the ICCAD 2009, pp. 74–77. IEEE/ACM (2009). https://doi.
org/10.1145/1687399.1687415

https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1002/sys.21228
https://doi.org/10.1016/j.ic.2016.03.005
https://uol.de/fs/publikationen#c352844
https://doi.org/10.4204/EPTCS.350.5
https://doi.org/10.4204/EPTCS.350.5
https://doi.org/10.3233/FI-2012-708
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1145/1687399.1687415
https://doi.org/10.1145/1687399.1687415

	Decidability of Resilience for Well-Structured Graph Transformation Systems
	1 Introduction
	2 Preliminaries
	2.1 Graph Transformation Systems
	2.2 Transition Systems and Well-structuredness

	3 Decidability
	4 Application to Graph Transformation Systems
	5 Rule-Specific Criteria
	6 Related Concepts
	7 Conclusion
	References

