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Abstract. We introduce a component model for graph rewriting that
allows to model a system as a network of components with interfaces
representing shared views of internal states and transformations. Their
composition assembles a global view whose behaviour is equivalent to the
synchronised distributed execution of local components in the network.
Formally, components are arrows in a category with interfaces as objects
that, with suitable component connectors, forms a Frobenius algebra.
This allows the use of string diagrams to model the architecture of basic
components and connectors, such that their assembly is freely generated
by the algebraic structure. The compositionality of the proposed model
is reflected by Structural Operational Semantic rules.

Keywords: Graph transformation · Software components · String
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1 Introduction

Software development relies on encapsulation, modularity, and reuse to manage
complexity. At the level of software architecture, these principles are supported
by components that provide the basic blocks from which larger systems are
built. While languages, technologies, and architectural styles change over time
and differ between domains, the main feature that separates components from
lower-level (e.g., object-oriented) concepts is the use of interfaces describing not
only the services provided by components but also their requirements towards
their runtime context. This enables reuse of components across contexts that
satisfy the stated requirements.

With the confluence of concepts from semantic web, graph databases, and
model-based engineering, knowledge graphs [15] are emerging as key technology
in enterprise and e-commerce applications, medical data management, cognitive
digital twins, and social networks [16] to support data integration, sharing and
mapping, graph-based analytics and machine learning [17]. In current applica-
tions, knowledge graphs lack the basic modularity, encapsulation and flexibility
of deployment offered by most component models. But global centralised data
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models make applications hard to evolve and maintain, hinder reuse, distributed
development, analysis, and verification [8]. We need a discipline of graph-based
software engineering using dedicated abstractions and language constructs to
develop modular graph-based applications.

This paper addresses the theoretical foundations of components in graph-based
applications, where graphs are central runtime artefacts to be shared, queried,
mapped and synchronised, updated, transformed and analysed. Such operations
can commonly be described by graph rewriting. The novel challenge for compo-
nents of graph rewriting-based applications is that, while traditionally the inter-
nal state is fully encapsulated, graph data must be shared between organisations
along with rights to query, change or analyse graphs locally and coordinate changes
globally. Access to and operations on graphs should be offered as services ensuring
data integrity. While maintaining local ownership, a virtual global graph should
emerge as the central artefact for data integration and analytics [19].

We propose the architectural abstraction of Graph Rewriting Components
(GReCos) as building blocks for graph-based systems, encapsulating graphs and
their operations and offering these to other components and applications. This
is realised by defining GReCos as graph transformation systems with interfaces
for composition with other systems.

Formally, GReCos are cospans of morphisms between graph transformation
systems with state, called runtime systems, where the central system represents
the partially hidden implementation, the left interface describes the types, rules
and graph provided and the right interface those required by the component. In
particular, we are interested in strict components, where the interface graphs
are projections of the internal state graph.

Morphisms between runtime systems that are strict in that sense reflect trans-
formations, so interfaces provide a partial view of the behaviour of the imple-
mentation. We can compose components via pushouts of such morphisms, and
if the given components are strict and satisfy a compatibility condition ensuring
that their composition is strict, too, the resulting component represents a global
view of the synchronised execution of its constituents. Vice versa, the global
behaviour can be decomposed into matching local behaviours, allowing us to
move freely between the two levels. This supports the need for a virtual global
graph that can be used centrally without giving up localised representation.

To support flexible connections between components we establish the cate-
gory of graph rewriting components as a symmetric monoidal category, specifi-
cally a Frobenius algebra [3], and use the associated syntax of string diagrams
to represent the interconnection of components and interfaces. This view of the
software architecture is analogous to component diagrams in UML. Given real-
isations of the basic components in terms of GReCos, architecture-level string
diagrams are mapped freely to (basic and composite) GReCos, compiling the
system from its architecture description and its basic components.

The approach thus represents a convergence of distributed graph transfor-
mation [18], service-oriented and modular graph transformation [7], and string
diagrams [3]. We prove compositionality results relating local and composite
behaviours. In particular, the behaviour of (disjoint) parallel compositions and
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(interface-based) functional compositions of components can be fully inferred
from the behaviours of their constituents and basic architectural connectors.
This supports the reuse of components in different contexts, guaranteeing that
behavioural equivalence of components is maintained by composition.

2 Example

We model a simple architecture to motivate, illustrate and evaluate our concepts
and results. The model consists of three components: a Client C, a Service S and
a Database D. The component diagram below gives a high-level view of the
architecture. The components are connected via three interfaces. The Service
Interface SI describes the operations provided by S and used by C. Conversely,
the Client Interface CI is implemented by C and used by S. The idea is that C
sends a requests through SI to be executed by S which, in turn, replies via the
callback interface CI. While executing the request, S calls on D to verify and
update the data.

Components and interfaces are typed graph transformation systems with states
related by morphisms. For our architecture. they are shown in Fig. 1. For each
system we have the type graph in the left, followed by the rules, and the state
graph made up of a single customer and its contract as a minimal test case.

The morphisms mapping type, state graphs and rules between interfaces and
components are indicated by vertical arrows on the left. They describe how
internal type and state graphs are partially visible through the interfaces. Rules
in the interfaces are subrules of projections of the rules in components to the
interface types. If the projection results in a rule without effect, this rule can
be dropped, e.g. the process rule is in S but not SI, unless we want to use it to
synchronise actions between components, e.g. between S and D via DI. Rules
that are vertically aligned are related by morphisms. We use the integrated
rule notation where left and right-hand sides are shown in the same graph, with
deleted and created elements distinguished by colours blue and green and labelled
{delete} and {new} respectively. In the bottom we show the global system view
Sys obtained by composing components over their shared interfaces.

The model describes a claims process where C represents an insurance com-
pany’s customer interface used to issue a request for payment. S is the service
processing the request by checking the data D of the contract and, if successful,
marking the customer as OK. Then a decision is made to either accept or reject
the request, where acceptance requires a successful check and results in remov-
ing the link between customer and contract, indicating that after a payout the
contract needs to be renewed. Either decision results in deleting the request’s
link to the customer to avoid making a decision repeatedly.
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Fig. 1. Typed graph transformation systems with runtime states for components and
interfaces.

Apart from the rules modelling operations that can be invoked through an
interface, we distinguish change event rules, such as new-req and del-custlink,
representing change events whose purpose is to notify a component that is shar-
ing part of its state with another one that this other component has changed
the shared state. This is conceptually different from an operation call, although
it can be implemented as one, and is essential for keeping states synchronised
between components.

3 Basic Notions

Assume an adhesive base category C with a strict initial object ∅ and arbitrary
pushouts, where pushouts are stable under pullbacks; for example, let C be
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Graph, the category of directed multigraphs. Then, for any object T of C the
slice category CT represents instances over T and their morphisms. Formally,
an object of CT is an arrow g : G → T in C where T represents the type,
G an instance object with g providing the typing. A morphism h : g → g′ for
g′ : G′ → T is a morphism f in C such that g′ ◦ h = g.

The types in T represent domain or application concepts that may vary
between different systems. When we relate states or rules between systems we
should be able to do so across different types. Given a morphism of types f : T →
T ′, we can define an operations of retyping by pullback of instances from target
to source types. This defines retyping functors f< : CT ′ → CT for all f : T → T ′.
From the local categories CT and the retyping functors we can define a global
category TC whose objects are morphisms g : G → T . Morphisms are pairs
f = 〈fτ , fG〉 : g → g′ with fτ : T → T ′ in C and fG : G → f<

τ (G′) ∈ CT . It can
be shown that TC is equivalent to the arrow category C→, and thus it inherits
limits and colimits from C, computed componentwise.1 A morphism 〈fτ , fG〉 is
strict if fG is an iso. For the pushout of two strict morphisms the injections are
not strict in general: a sufficient condition, by adhesivity of C, is that one of the
type morphism is mono.

Rules and transformations in a system are represented by spans of monomor-
phisms s = L

l←− K
r−→ R in CT , i.e. they are defined over the local type T

of the system. Morphisms between spans are DPO diagrams, i.e., triples of mor-
phisms h = 〈hL, hK , hR〉 : s → s′ with hL : L → L′, hK : K → K ′, hR : R → R′

and such that the resulting squares are pushouts. This defines the local cate-
gories MSpanT . A morphism in MSpanT represents a relation between rules
where the target rule of the morphism creates and deletes the same structures
as the source, but may have additional context.

To relate rules across different types we let MSpan be the category that
has as objects monic spans s in CT for some T in C and as morphisms pairs
f = 〈fτ , fπ〉 : s → s′ with fτ : T → T ′ in C and fπ : s → f<

τ (s′) ∈ MSpanT .
Composition of such morphisms is well-defined: in fact the pullback functor pre-
serves pushouts because they are stable under pullbacks in C. This category has
pullbacks and is finitely co-complete thanks to the properties of C. In particular,
the initial object is span 〈∅ ← ∅ → ∅〉, called the empty rule, typed over ∅.

Another interpretation of morphisms in MSpanT is as DPO transforma-
tions, with the source representing the rule applied and the target the state
transformation. Sometimes we want to relate such transformations, and for this
purpose we introduce DPOT , the arrow category MSpan→

T , which has local
MSpanT morphisms (i.e., DPO diagrams over T ) d : s1 → s2 as objects and
pairs of such morphisms 〈ftop, fbot〉 : d → d′ as arrows where ftop : s1 → s′

1 and
fbot : s2 → s′

2 such that the resulting square in MSpanT commutes.
We relate DPO diagrams across different types in a global category DPO

that has as objects DPO diagrams d in CT for some T in C and as morphisms

1 TC is obtained by applying the Grothendieck construction to the indexed cate-
gory Cop → Cat, mapping each object T to category CT and each arrow to the
corresponding retyping functor.
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pairs f = 〈fτ , fd〉 : d → d′ with fτ : T → T ′ in C and fd : d → f<
τ (d′) ∈ DPOT .

That means, objects in DPO represent DPO transformations in different sys-
tems, and morphisms are mappings between them allowed to extend types and
rules. Composition, limits and colimits are defined component-wise in MSpan.

Categories TC, MSpan, and DPO are equipped with a functor to C map-
ping objects and morphisms to their type objects and morphisms, respectively,
which we denote by τ : X → C for X ∈ {TC,MSpan,DPO}.

4 Transformation and Runtime Systems

We want to use the empty rule to model steps at an interface due to unobservable
steps in the body of a component, but also to model idle steps in the body itself.
To this aim we introduce the rule name φ that maps to the empty rule. Apart
from this feature, the following definition is standard.

Definition 1 (transformation systems). A transformation systems is a
triple R = 〈T, P, π〉 where

– T ∈ |C| is a type object;
– P is a set of rule names, including the special rule name φ;
– π : P → |MSpanT | assigns a monic span over T to each rule name, such

that π(φ) = ∅ ← ∅ → ∅.
Assuming a second system R′ = 〈T ′, P ′, π′〉, a morphism of transformation sys-
tems is a triple f = 〈fτ , fp, fπ〉 : R → R′ of

– a morphism of types fτ : T → T ′

– a mapping from target to source rule names fP : P ′ → P
– a P ′-indexed family of MSpan morphisms fπ(p′) : π(fP (p′)) → π′(p′)

such that fτ = (fπ(p′))τ for all p′ ∈ P ′. This defines the category Sys.

Morphisms are defined to reflect behaviour, as discussed later. Observe that
each rule name p′ ∈ P ′ of the target system S′ is mapped to a rule name
fP (p′) ∈ P of the source system S, and there is an MSpan morphism fπ(p′) from
the latter rule to the first one. Spelling out the definiton of MSpan morphism,
there is a DPO morphism from π(fP (p′)) to the retyped rule f<

τ (π′(p′)). In
particular, this implies that if fP (p′) = φ, then the retyped rule must be a span
of isomorphisms, i.e. it has no effect when applied to any graph.

To model a system at runtime, we include its current state.

Definition 2 (runtime systems). A runtime system S = 〈R,G〉 consists of a
transformation system R = 〈T, P, π〉 and a state object G in CT . A morphism of
runtime systems f = 〈fR, fG〉 : S → S′ with S′ = 〈〈T ′, P ′, π′〉, G′〉 is a morphism
of transformation systems fR = 〈fτ , fp, fπ〉 augmented by a TC morphism fG =
〈fτ , f ′

G〉 : G → G′. Morphism f : S → S′ is strict if so is fG, i.e. if f ′
G : G →

f<
τ (G′) is an isomorphism. This defines the category RSys of runtime systems.
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Coming back to the example, in Fig. 1 we show seven runtime systems (three
components, three interfaces and one global system), each with their type graph,
rule names and associated rule spans (in integrated notation), and runtime state.
The morphisms indicated in the left margin are all strict, representing inclusions
of type graphs, state graphs, and sets of rule names, except for change event rules
where request in S and C both map to new-req in CI, and accept and reject in
S and C all map to del-custlink in SI. Implicitly, component rules that do not
have a corresponding rule in an interface map to the empty rule φ, i.e., process
in S maps to φ in both SI and CI and request in S maps to φ in DI. As observed
above, this is allowed because after retyping these rules along the injections of
type graphs, the resulting rules are spans of isomorphisms.

Given a transformation system R with type T , a transformation via p in
R, denoted G

p,m
=⇒R H, is a DPO diagram seen as an MSpanT morphism t =

〈tL, tK , tR〉 : π(p) → s that relates the rule span π(p) = L ← K → R and
the bottom span s = (G ← D → H), with match tL = m. We also write
p/t : G ⇒R H or just ⇒R for the set of transformations.

A transformation sequence s = G0
p1,m1=⇒ . . .

pn,mn=⇒ Gn in R is a sequence of
transformations.2 We write ⇒∗

R for the set of transformation sequences in R.
Transformations in R′ are reflected by Sys morphisms. That means, if p′/t′ is

a transformation in R′ then f<(p′/t′) = fP (p′)/f<
τ (t′)◦fπ(p′) is a transformation

in R because f<
τ preserves DPO diagrams and DPOs compose vertically (as

MSpan morphisms). This yields a function f< : (⇒R′) → (⇒R) extending to
sequences as f< : (⇒R′)∗ → (⇒R)∗.

Transformation sequences in a runtime system S = 〈R,G〉 are sequences in R
that start from state G. The projection of sequences against morphisms extends
to runtime systems as f< : (⇒S′)∗ → (⇒S)∗, provided that f : S → S′ is strict.
Strict morphisms are preserved by transformations, that is, if f = 〈fR, fG〉 :
〈R,G〉 → 〈R′, G′〉 is strict, p′/t′ : G′ ⇒ H ′ in R′ and f<(p′/t′) : G ⇒ H in R,
then 〈fR, idH〉 : 〈R,H〉 → 〈R′,H ′〉 is strict, as H = f<

τ (H ′).
Sys is finitely co-complete because it has an initial object R∅ = 〈∅, {φ}, π〉,

where π(φ) = ∅ ← ∅ → ∅, and pushouts are built component-wise as pushouts
on types, pullbacks on sets of rule names, and using amalgamation (pushouts in
MSpan) on rule spans.

Definition 3 (pushouts of systems). Given a span of transformation systems

R1
f1←− R0

f2−→ R2 in Sys with Ri = 〈Ti, Pi, πi〉, their pushout R1
f∗
2−→ R

f∗
1←− R2

with R = 〈T, P, π〉, is defined as follows.

– T1
f2

∗
τ−→ T

f1
∗
τ←− T2 is a pushout of T1

f1τ←− T0
f2τ−→ T2 in C

– P1
f2

∗
P←− P

f1
∗
P−→ P2 is a pullback of P1

f1P−→ P0
f2P←− P2 in Set•

– for p ∈ P with f2
∗
P (p) = p1, f1

∗
P (p) = p2, and f1P (p1) = p0 = f2P (p2),

let f2
∗
π(p), f1∗

π(p) and π(p) be defined by the pushout π1(p1)
f2

∗
π(p)−→ π(p)

f1
∗
π(p)←−

π2(p2) of π1(p1)
f1π(p1)←− π0(p0)

f2π(p2)−→ π2(p2) in MSpan.
2 We may drop the reference to the system if this is clear from context.
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For a similar span in RSys with local state graphs G1
f1G←− G0

f2G−→ G2, the
pushout in Sys of the underlying transformation systems is lifted to RSys by

the pushout G1
f2

∗
G−→ G

f1
∗
G←− G2 over the span of state graphs.

Set• is the category of pointed sets, i.e., sets with a distinguished element
that is preserved by mappings. In our case these are the sets of rule names with
the distinguished name φ bound to the empty rule. It is easy to see that pushouts
injections thus constructed are indeed Sys or RSys morphisms because their
components are pushouts in C,Set• and MSpan. The universal property follows
directly from the component-wise construction.

Applying this to our example in Fig. 1, the pushout of S and D via DI results
in a union of their type and state graphs and an amalgamation of rules over
shared interface rules in DI. This leads to a disjoint parallel composition of rules
where this interface rule is empty.

A coproduct of two systems R1 and R2 is a pushout over the empty system
R∅, which is initial in Sys. By contravariance of mapping types and rule names,
this results in a coproduct of types and a product of rule names, such that each
pair of rule names in the product is assigned a coproduct of the associated rules.

We can compose and decompose transformations over pushouts of systems if
the morphisms relating them are strict.

Theorem 1 (compositionality of transformations). Assume

– a pushout S1
f∗
2−→ S

f∗
1←− S2 of runtime systems S1

f1←− S0
f2−→ S2, where all

morphisms are strict, Si = 〈Ri, Gi〉 for i ∈ {0, 1, 2} and S = 〈R,G〉;
– a triple of transformations pi/ti : Gi ⇒ Hi in Ri, whose DPO diagrams ti

are related by DPO morphisms t1
f1π(p1)←− t0

f2π(p2)−→ t2 and where f1P (p1) =
p0 = f2P (p2).

Then, the transformations can be composed by a pushout in DPO to yield a
transformation p/t : G ⇒ H in S with f∗

1 P (p) = p2 and f∗
2 P (p) = p1.

Vice versa, a transformation p/t : G ⇒ H in 〈R,G〉 decomposes into a

pushout of transformations over S1
f1←− S0

f2−→ S2 as p1/t1 = f∗
2

<(p/t) in S1,
p2/t2 = f∗

1
<(p/t) in S2 and f1

<(p1/t1) = p0/t0 = f2
<(p2/t2) in S0.

Proof (sketch). Both directions require that pushouts are stable under pullbacks,
which is true in C by assumption.

Applying a sequence of accept, process, accept to the state graph in S, the
result is a graph that looks like the right-hand side (preserved black and new
green parts) of accept. In D the first step is an application of the empty rule φ,
the second step has no effect on the graph but extends the match of process in
S to check for a contract linked to the customer, and the third step deletes that
link and adds the accept node and its edge, leaving a graph that looks like the
right-hand side accept in D.

Since the state graph of S in Fig. 1 is a subgraph of that of D, when the
pushout of runtime systems S and D via DI merges their state graphs, the
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resulting graph is isomorphic to that of D. The result above ensures that we can
either transform this graph in the pushout system of S and D over DI, or do
so in S and D with shared transformations in DI and then merge the resulting
graphs, i.e. synchronised local transformations exist if and only if there is a global
transformation, and they have the same effect.

Theorem 1 ensures the compositionality of the operational semantics of com-
ponents in Sect. 7, where transformations compose along composition of compo-
nents and transformations in a composite component can be decomposed into
synchronised transformations in its constituents.

5 Components

A component has runtime systems as body, left and right interfaces. Both inter-
faces are equipped with a morphism to the body. Formally, components are
defined as abstract cospans in RSys. Components with matching left-right
interfaces can be composed using pushouts in RSys. Note that, in our run-
ning example, the left and right interfaces are conceptually the provided and
required interfaces of components. However, we stick to the typical left/right
terminology of cospans, instead of using the provide/require terminology of soft-
ware components, because in our operational semantic introduced later both
interfaces behave identically, allowing to synchronize the transformations of the
components they are connected to. The provided/required terminology suggests
instead an invocation-based semantics, where a component can trigger through
the required interface the execution of another component connected to the
matching provided interface. This kind of semantics is topic of future work.

Components can also be composed in parallel using coproducts. The resulting
structure is a symmetric monoidal category Com having the same objects of
RSys and components as arrows (from the left to the right interface). This
category is shown to be also a Frobenius algebra, implying that one can define
arbitrary topologies of components.

Here we focus on the static interconnections of components, while in Sect. 7
we discuss their operational semantics based on transformations. We anticipate
that the rich structure of the category of components cannot be fully exploited
for the operational semantics, because only strict morphisms reflect transforma-
tions. We introduce strict components, where morphism to the body are strict,
and discuss conditions ensuring that strictness is preserved by composition.

Cospans c = (A a−→ C
b←− B) and c′ = (A a′

−→ C ′ b′
←− B) are isomorphic

if there is an isomorphism i : C → C ′ commuting the resulting triangles. We
denote by A[ a−→ C

b←−]B the isomorphism class of c, called an abstract cospan.

Definition 4 (components). A component is an abstract cospan c = 〈Li[ li−→
Bd

ri←−]Ri〉 in RSys. Morphisms li : Li → Bd and ri : Ri → Bd map the left
and right interfaces to the body. Component c is strict if both li and ri are strict.
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The category Com of components has runtime systems as objects and com-
ponents as arrows. The composition of components c2 ◦ c1, for ci = 〈Lii[

lii−→
Bdi

rii←−]Rii〉 and i = 1, 2, is defined if Li2 = Ri1. Then

c2 ◦ c1 = 〈Li1[
li−→ Bd

ri←−]Ri2〉 : Li1 → Ri2

is the isomorphism class of the cospan obtained by a pushout Bd1
li∗

2−→ Bd
ri∗

1←−
Bd2 of ri1 and li2 with li = li∗2 ◦ li1 and ri = ri∗1 ◦ ri2. If c1 and c2 are both
strict, then they are compatible if the pushout injections li∗2 and ri∗1 are strict.
In this case also c2 ◦ c1 is strict because strict morphisms compose. If c1 and c2
are strict and compatible we will denote their strict composition also by c2 ◦s c1.

For a runtime system S in |RSys| its identity component is given by idS =
〈S[ idS−→ S

idS←−]S〉, and it is strict.

Composition over shared interfaces allows to connect strict components by
synchronising their transformations. In Com our example’s components are rep-
resented as arrows C : CI → SI, S : SI → CI + DI and D : DI → R∅, their
composition realised by the composition in Com, e.g., S ◦ C : CI → CI + DI is
the composition of C and D over SI. In order to link interface CI from the right
of S to the left of C (as required for its use as a callback interface) we need the
additional structure of parallel composition and component connectors.

Definition 5 (parallel composition in Com). The parallel composition
c1 + c2 of components ci = 〈Lii[

lii−→ Bdi
rii←−]Rii〉 for i = 1, 2 is defined as the

isomorphism class of the cospans obtained by a coproduct of the interface and
body systems in RSys

c1 + c2 = 〈Li1 + Li2[
li1+li2−→ Bd1 + Bd2

ri1+ri2←− ]Ri1 + Ri2〉.

This defines a monoidal functor + : Com × Com → Com. Furthermore, for

each S, S′, let σS,S′ : 〈S + S′[
[inrS ,inlS′ ]−→ S′ + S

idS′+S←− ]S′ + S〉 be their symmetry
component.

The parallel composition of two strict components can be shown to be strict,
and so are the symmetries. We can represent a component c, the composition
c2 ◦ c1 and the parallel composition c1 + c2 in an intuitive graphical way as:

Identity and symmetry components are seen as connectors passing actions from
one interface to the other. Other such connectors can be defined, for every sys-
tems S and S′, by exploiting suitable morphisms in RSys.



30 R. Heckel et al.

– The duplicator is component

Δ

S = 〈S[ idS−→ S
[idS ,idS ]←− ]S + S〉;

– The co-duplicator is component ΔS = 〈S + S[
[idS ,idS ]−→ S

idS←−]S〉;
– The discharger is component !S = 〈S[ idS−→ S

∅←−]R∅〉;
– The co-discharger is component ?S = 〈R∅[ ∅−→ S

idS←−]S〉.

Graphically, we show such connector components, which are all strict, as:

Theorem 2 (Com as Frobenius algebra). Category Com with the monoidal
functor + and the family σ of symmetries of Definition 5 is a symmetric monoidal
category. Furthermore, equipped with the families of connector components

Δ

, Δ,
! and ? as defined above Com is a Frobenius algebra.

Proof. The category of abstract cospans built from a category with coproducts
inherits a monoidal structure, induced by coproducts, which satisfies the laws
for Frobenius algebras: see e.g. [3, Section 2.2].

6 Architectural Models

Due to Theorem 2 we can depict networks of components as string diagrams [3],
a graphical syntax for structures whose basic elements take multiple inputs and
outputs. The axioms of Frobenius algebras are sound and complete for string
diagrams, in the sense that the diagrams representing two terms of the algebra
can be topologically deformed into each other without cutting or joining wires
if and only if the two terms are provably equal by the axioms.

Thanks to the axioms of symmetric monoidal categories (which we omit for
brevity) the axioms of Frobenius algebras can be depicted as follows.

– for each object, Δ and ? form a commutative monoid, i.e., they satisfy asso-
ciativity, commutativity, and ? is the unit:

= = =

– for each object,

Δ

and ! form a cocommutative comonoid, i.e., they satisfy
associativity, commutativity, and ! is the counit:

= = =
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– the monoid and comonoid structures satisfy the Frobenius and special laws:

= =

Since Com satisfies the axioms of Frobenius algebras, we can specify a complex
component in Com by connecting the interfaces of its basic components. Any
such drawings representing the same connections between interfaces are equiv-
alent, such as two the string diagrams on the left below, both representing the
component diagram of Sect. 2 with basic components C, S, and D.

On the right we show how the left string diagram arises as sequential composition
?CI ;

Δ

CI ; idCI+C; idCI+S; ΔCI+idDI ; !CI+D of expressions in the algebra of
components and connectors, with vertical dashed lines in the figure representing
“;”. Based on the interpretation of basic components and connectors in Com,
the constituent expressions represent the following cospans.

1. ?CI = 〈R∅[ ∅−→ CI
idCI←−]CI〉;

2.

Δ

CI = 〈CI[idCI−→ CI
[idCI ,idCI ]←− ]CI + CI〉;

3. idCI + C = 〈CI + CI[idCI+ciC−→ CI + C
idCI+siC←− ]CI + SI〉;

4. idCI + S = 〈CI + SI[idCI+siS−→ CI + S
idCI+[ciS ,diS ]←− ]CI + CI + DI〉;

5. ΔCI + idDI = 〈CI + CI + DI[
[idCI ,idCI ]+idDI−→ CI + DI

idCI+idDI←− ]CI + DI〉;
6. !CI + D = 〈CI + DI[idCI+diD−→ CI + D

[∅,∅]←−]R∅〉.
Thus string diagrams serve as a bridge between the network-level description
of an architecture in a component diagram and its “implementation” in graph
rewriting components. The result of composing cospans 1–6 is the global system
Sys in Fig. 1 with global rules emerging as amalgamation of component over
interfaces rules and global state as pushout of component over interface states.

String diagrams providing a syntax for component networks are generated
freely from an architectural signature of basic components and interfaces, just
as term syntax for algebras is generated freely from an algebraic signature.

Definition 6 (architectural signature). An architectural signature AS =
〈I, C, dom, cod〉 consists of sets of interface names I and component names
C with functions dom, cod : C → I∗ assigning each component name their
sequences of names of left and right interfaces.

The free Frobenius algebra frob(AS) over AS is a category that has sequences
I∗ as objects. Morphisms are directed hypergraphs with sorted interface nodes,
called network graphs. They play the role of terms in algebraic signatures. Named
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components are represented by hyberedges distinguishing attachments of left and
right interfaces. An architectural model assigns interpretations to interface and
component names.

Definition 7 (interpretation, model). An interpretation for a signature AS
is a hypergraph morphism f = 〈fI , fC〉 : AS → Com, i.e. a pair of mappings
compatible with the domains and codomains of component names in AS and
components in Com. That means, each c : Li1 . . . Lin → Ri1 . . . Rim in AS is
mapped to an arrow fC(c) : fI(Li1) + · · · + fI(Lin) → fI(Ri1) + · · · + fI(Rim).

The architectural model for interpretation f is given by the functor F :
frob(AS) → Com that freely extends the given interpretation, i.e., such that
F ◦ ηAS = f for the embedding ηAS : AS → frob(AS).

Theorem 2 ensures that F is well defined, i.e., for g, h : S → T in frob(AS),
g = h implies F (g) = F (h), because Com satisfies the Frobenius algebra axioms.

Category frob(AS) and model functor F represent the space of all component
networks over a given collection of basic components with their interpretations.
Since frob(AS) is free over AS, the extension F is unique and can be represented
finitely by the hypergraph morphism f : AS → Com. If we consider the states
of components only, this is similar to distributed graphs where a network graph
forms the shape of a diagram in a category of local graphs, except that in our
case graphs with interfaces are (part of) the arrows rather than the objects
of the categories involved. However, in addition to states, we distribute entire
runtime systems with interfaces along a network graph given by a morphism g
in frob(AS). For a model F , a configuration consists of g and its interpretation
F (g) mapping the components named in g to their implementation in Com.

In our example, interface names are I = {si, ci, di} and component names
are C = {c, s, d} with dom and cod given by c : ci → si, s : si → ci di and
d : di → ε (the empty sequence). Interpretation f is defined by replacing lower
with upper case characters, e.g., f(s : si → ci di) = S : SI → CI + DI.

7 Structural Operational Semantics

We exploit the compositionality of runtime system transformations for defining
a structural operational semantics that derives the behaviour of complex com-
ponents from that of basic ones and Frobenius algebra connectors. Since only
morphims that are strict reflect transformations between runtime systems, we
will focus on strict components only.

When presenting an architecture model, a basic component with n left
interfaces and m right interfaces is shown as a diagram in RSys of shape

D = 〈Lii
lii−→ Bd

rij←− Rij〉 with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In Com this
basic component is an abstract cospan constructed by the coproducts of their
left and right interfaces as

cospan(D) = 〈Li1 + · · · + Lin
li−→ Bd

ri←− Ri1 + · · · + Rim〉
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where li = [li1, . . . , lin] and ri = [ri1, . . . , rim] are the co-pairings of the inter-
face morphisms, induced by the universality of the respective coproducts. It is
sufficient to require that all the interface morphisms are strict: the strictness of
the co-pairing morphisms can be shown easily.

Since strict components are based on strict RSys morphisms, they have an
internal state in the body projected to corresponding states of the interfaces.
Let c = 〈Li[ li−→ Bd

ri←−]Ri〉 be a strict component. When the state changes
through an internal transformation s : GBd ⇒c GBd′ of the body, s is only
partly hidden because it is reflected by the strict morphisms li and ri to interface
transformation a = li<(s) in Li and b = ri<(s) in Ri, that we call (left and right)
observations. This defines a strict component transformation that we denote as

s : c
a=⇒
b

c′

where c′ is the resulting component that shares types and rules with c, and may
only differ for the states. Note that this notation only makes sense if c is strict,
thus its use establishes an assumption or a proof obligation, depending on the
context. The strictness of c′ follows by that of c and because strict morphisms
are preserved by transformations.

If strict components ci = 〈Lii[
lii−→ Bdi

rii←−]Rii〉 for i = 1, 2 are connected
through Li2 = Ri1, internal transformations of c1 and c2 need to synchronize by
projecting the same observation to the shared interface, that is if

c1
a1=⇒
b1

c′
1 and c2

a2=⇒
b2

c′
2

then we must have b1 = a2. If c1 and c2 are compatible (and thus c2 ◦ c1 is
strict, see Definition 4) then also c′

1 and c′
2 can be shown to be compatible, and

this results in a composed transformation of c2 ◦s c1, projecting to interfaces Li1
and Ri2 the same observation projected by the transformations of c1 and c2,
respectively.

For the parallel composition of strict components, which is strict, recall that
the set of rule names of a coproduct of systems R1 + R2 is a product P1 × P2.
Therefore, a transformation a = p/t in R1 + R2 is an application of a rule pair
p = 〈p1, p2〉 ∈ P1×P2 with pi ∈ Pi. The rule span π(〈p1, p2〉) = π1(p1)+π2(p2) is
a coproduct in MSpan and the DPO diagram t = t1 + t2 a coproduct in DPO.
Hence, a represents the disjoint parallel occurrence of transformations ai = pi/ti
in Ri for i = 1, 2, which we write using juxtaposition as a1 a2.

Summarizing, for strict and parallel composition we have the rules

c1
a=⇒
b

c′
1 , c2

b=⇒
c

c′
2 , c1 and c2 compatible

c2 ◦s c1
a=⇒
c

c′
2 ◦s c′

1

c1
a=⇒
b

c′
1 , c2

c=⇒
d

c′
2

c1 + c2
a c=⇒
b d

c′
1 + c′

2

.

For all connector components, we can easily infer from the definitions that their
transformations are triggered by a transformation in the left or right interface.
For interface transformations a : S ⇒ S′, ai : Si ⇒ S′

i, we have the following
connector component transformations:
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– idS
a=⇒
a

idS′ synchronises transformations between the two interfaces;

– σS1,S2

a1a2=⇒
a2a1

σS′
2,S′

1
crosses the wires between S1 + S2 and S2 + S1;

–

Δ

S
a=⇒
aa

Δ

S′ synchronises transformations of its left and two right interfaces;

– ΔS
aa=⇒
a

ΔS′ synchronises transformations of its right and two left interfaces;

– !S
a=⇒
∅

!S′ allows arbitrary transformations on its left interface;

– ?S
∅=⇒
a

?S′ allows arbitrary transformations on its right interface.

Component transformations can be composed and decomposed along both strict
and parallel composition of components.

Theorem 3 (composition and decomposition of transformations).

Assume strict components ci = 〈Lii[
lii−→ Bdi

rii←−]Rii〉 for i = 1, 2. Then,

s1 : c1
a1=⇒
b1

c′
1 and s2 : c2

a2=⇒
b2

c′
2 if and only if s : c1 + c2

a1 a2=⇒
b1 b2

c′
1 + c′

2.

For c1, c2 as above such that Li2 = Ri1 and c1, c2 compatible,

s1 : c1
u=⇒
v

c′
1 and s2 : c2

v=⇒
w

c′
2 if and only if s : c2 ◦s c1

u=⇒
w

c′
2 ◦s c′

1.

Proof. The parallel composition c1 +c2 is based on a component-wise coproduct
of the body and interface runtime systems of c1 and c2. Viewing the coproduct
as a pushout over the initial system R∅, we can use Theorem 1 to derive s as
composition of s1 and s2, and s1, s2 as decomposition of s.

This means that rule and DPO diagram of s are coproducts of rules and
DPO diagrams of s1 and s2, respectively. Since a1, a2, b1, b2 are defined by pro-
jections via pullbacks which, in an adhesive category with strict initial object,
preserve coproducts, the same relation holds for the rules and transformations
of interfaces. Hence a1, a2 and b1, b2 composes into a1 a2 and b1 b2 respectively,
and vice versa. For strict composition we can apply Theorem1 directly: The
body of c2 ◦s c2 is a pushout of those of c1 and c2 over the shared interface, and
interface states and transformations are projections of those in the bodies, so s
is the composition of s1 and s2 and vice versa.

With bisimilarity ≡ of strict components as the largest relation satisfying
f ≡ g iff for all a, b f

a=⇒
b

h iff g
a=⇒
b

k and h ≡ k, we have the following result.

Theorem 4 (bisimilarity as congruence). Bisimilarity ≡ on strict compo-
nents is a congruence for parallel composition + and strict composition ◦s.
Proof. Assume f ≡ f ′, g ≡ g′. If g ◦s f

a=⇒
b

k ◦s h then f
a=⇒
c

h and g
c=⇒
b

k by Theorem 3 (decomposition). This implies f ′ a=⇒
c

h′ and g′ c=⇒
b

k′ since

f ≡ f ′ and g ≡ g′, and then g′ ◦s f ′ a=⇒
b

k′ ◦s h′ by Theorem 3 (composition).

Reversing the roles of f, g and f ′, g′ we can show the inverse implication. Then,
by coinduction, h ◦s k ≡ h′ ◦s k′ implies g ◦s f ≡ g′ ◦s f ′. The proof for + is
analogous.
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Concretely this means that, if a component works in a given context, e.g. C
in the context of S and D as defined in our example architecture, and we replace
that context by a behaviourally equivalent one, e.g., adding a second instance of
D for redundancy, the resulting system will have an equivalent overall behaviour.

8 Conclusion and Related Work

We introduced a component model for graph rewriting systems that allows to
represent a global system as a network of components with interfaces repre-
senting shared views of internal states and transformations, and such that their
composition reconstructs the global system.

Formally and conceptually our model represents the convergence of three
main ingredients: Distributed graph transformations [18] formalise synchronised
transformations of distributed graphs. Various notions of morphisms between
graph transformation systems, discussed in [7] with their semantic properties,
support the modularisation of types and rules. Algebraic representations of (net-
work) graphs as arrows in a symmetric monoidal category and their visualisation
by string diagrams [3] provide a syntax for component architectures.

Early steps towards modularity of formal specifications have been made in
algebraic specifications [5] where the body of a module is related by morphisms
with its import and export interfaces defining, respectively, required and pro-
vided services. In graph rewriting, work on modularity was inspired by algebraic
specifications, programming and software engineering concepts [5], resulting in
a number of proposals surveyed in [13]. More recently, [11] also proposes a com-
positional approach to graph transformations where local graphs with shared
interfaces are composed via colimits into a global graph, and rules acting on
local graphs are composed into a global rule acting on the global graph. Differ-
ently from our approch, however, compositionality is addressed at the instance
level, not at the type level. Several other contributions address compositionality
in graph transformation at instance level, including among others synchronized
hyperedge replacement [9,14], rule amalgamation [2], distributed graph trans-
formation [18] and borrowed contexts [1,6]. An interesting topic for future work
is to compare the expressive power of compositionality modeled at instance or
at type level.

Modules of typed graph transformation systems [12] follow the structure
of algebraic specification modules while [7] combines modularity and service-
oriented concepts. None of the above include a notion of state, i.e. they struc-
ture the specification but not the runtime of a system. We consider this the
main difference between modules and components. Conversely, distributed graph
transformations capture the distribution of graphs, rules and transformations in
a category of diagrams over graphs [18] but without modularity at specification
level.

We provide for the first time a component model integrating these two fea-
tures. In this more general setting we achieve compositionality like in distributed
graph transformations, relating global and synchronised local transformations,
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and describe the network architecture using Frobenius algebras to provide a con-
structive “compilation” assembling complex components from basic constituents.

In the future we would like to make explicit the invocation-based intuition
of components, using a type system and refined operational semantics to distin-
guish provided and required interfaces and caller/callee roles in the synchronised
applications of rules. We will exploit and extend the Frobenius structure to (1)
support architectural equations defining, e.g., derived components as expres-
sions over basic ones or behavioural equalities between configurations; (2) allow
architectural reconfiguration as string diagram rewriting; and (3) consider a
bigraph-like network level with hierarchical components.

Our notion of bisimilarity over doubly-labelled transformations as a congru-
ence is analogous to functoriality of tile bisimilarity, and we can indeed phrase
our operational semantics as an instance of the tile model [10]. In [4] tile bisim-
ilarity is extended to remain compositional under dynamic reconfiguration.
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