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Abstract. The analysis of behavioral models such as Graph Transfor-
mation Systems (GTSs) is of central importance in model-driven engi-
neering. However, GTSs often result in intractably large or even infinite
state spaces and may be equipped with multiple or even infinitely many
start graphs. To mitigate these problems, static analysis techniques based
on finite symbolic representations of sets of states or paths thereof have
been devised. We focus on the technique of k-induction for establish-
ing invariants specified using graph conditions. To this end, k-induction
generates symbolic paths backwards from a symbolic state represent-
ing a violation of a candidate invariant to gather information on how
that violation could have been reached possibly obtaining contradictions
to assumed invariants. However, GTSs where multiple agents regularly
perform actions independently from each other cannot be analyzed using
this technique as of now as the independence among backward steps may
prevent the gathering of relevant knowledge altogether.

In this paper, we extend k-induction to GTSs with multiple agents
thereby supporting a wide range of additional GTSs. As a running exam-
ple, we consider an unbounded number of shuttles driving on a large-
scale track topology, which adjust their velocity to speed limits to avoid
derailing. As central contribution, we develop pruning techniques based
on causality and independence among backward steps and verify that
k-induction remains sound under this adaptation as well as terminates
in cases where it did not terminate before.

Keywords: k-inductive invariant checking · causality · parallel and
sequential independence · symbolic analysis · bounded backward model
checking

1 Introduction

The verification of formal models of dynamic systems featuring complex concur-
rent behavior w.r.t. formal specifications is one of the central problems in model
driven engineering. However, the required expressiveness of modeling and speci-
fication formalisms that must be used for these complex dynamic systems often
leads to undecidable analysis problems. For example, the formalism of GTSs
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considered in this paper is known to be Turing complete. Hence, fully-automatic
procedures for the analysis of meaningful properties on the behavior of such
GTS-based systems returning definite correct judgements cannot always termi-
nate. Analysis becomes even more intricate when the start graph is not precisely
known or when the system behavior is to be verified for a large or even infinite
number of start graphs.

The technique of (forward) model checking generates the entire state space
and checks this state space against the given specification. However, this tech-
nique is inapplicable when the state space is intractably large or even infinite.
To mitigate this problem, large or even infinite sets of concrete states that are
equivalent w.r.t. the property to be analyzed may be aggregated into symbolic
states. Model checking then generates symbolic state spaces consisting of sym-
bolic states and symbolic steps between them. However, these symbolic state
spaces may still be intractably large depending on the size of the models1 and
there is usually no adequate support for multiple symbolic start states.

In backward model checking, a backward state space is generated from a
set of target states derived from the specification by incrementally adding all
steps leading to states that are already contained in the backward state space.
For invariant properties, the target states are given by the states not satisfying
the candidate invariant. As for model checking, sets of concrete states may be
aggregated into symbolic states, which may also lead to a single symbolic target
state. Clearly, in backward model checking, only backward paths containing
exclusively reachable states are significant but during the analysis also paths
containing unreachable states may be generated requiring techniques to prune
such paths as soon as possible.

The technique of k-induction is a variant of bounded backward model check-
ing for establishing state invariants. In k-induction, generated backward paths
are (a) limited to length k and (b) end in a state violating the candidate invari-
ant. Definite judgements are derived in two cases. A backward path extended to
a start state leads to candidate invariant refutation and the candidate invariant
is confirmed when no backward path of length k is derivable.

In this paper, we extend earlier work on k-induction from [6,19] by solving
the following open problem. When the system under analysis features concur-
rency such as in a multi-agent context, backward steps may be independent
as k backward steps may be performed by k different agents that may be log-
ically/spatially apart. In that case, the k backward steps do not accumulate
knowledge on why the violating graph could be reached preventing the deriva-
tion of a definite judgement. This problem can even occur when every target
state contains a single agent since backward steps can still introduce further
agents. To solve this problem, we introduce several novel GTS-specific pruning
techniques. Firstly, we prune backward paths in which the last added step does
not depend on the already accumulated knowledge. This causality pruning avoids
the inclusion of steps of unrelated agents in a backward path. Secondly, we prune
states containing an agent that is permanently blocked from further backward

1 Approaches such as CEGAR [4] also aim at minimizing symbolic state spaces.
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steps. This evolution pruning (assuming that agents existed in the start graph or
are created in some step) is required when all backward steps of a certain agent
have been pruned by some other pruning technique (while other agents are still
able to perform backward steps). Thirdly, when a state is removed in evolution
pruning, we propagate this state prunability forward across backward steps until
the blocked agent has an alternative backward step. This evolution-dependency
pruning is, in conjunction with our explicit handling of independent steps, able
to prune also other backward paths (with common suffix) where independent
steps of other agents are interleaved differently. For these three novel pruning
techniques, we ensure that they do not affect the correctness of derived judge-
ments and that our approach presented here is a conservative extension in the
sense that it terminates whenever the single-agent approach terminated before.2

As a running example, we consider an unbounded number of shuttles driving
on a large-scale track topology, which avoid collisions with each other. As a can-
didate invariant to be confirmed, shuttles in fast driving mode should not drive
across construction sites to avoid derailing. To ensure this candidate invariant,
warnings are installed at a certain distance in front of construction sites. Agents
in this running example are the shuttles and backward steps can be performed
by different shuttles on the track topology. However, only the steps of the single
shuttle violating the speed limit at a construction site as well as (possibly) the
steps of shuttles that forced the shuttle to navigate to that construction site are
in fact relevant to the analysis. Any other steps (possibly of shuttles far away on
the considered track topology) should not be considered during analysis. Hence,
the novel pruning techniques are designed to focus our attention on the relevant
steps of relevant agents only.

Invariant analysis for GTSs has been intensively studied. Besides the approach
from [19], which is restricted to single-agent GTSs, earlier approaches for estab-
lishing invariants for GTSs lack a formal foundation such as [2] or are restricted to
k-induction for k = 1 such as [7] or to syntactically limited nested conditions such
as [6]. Moreover, tools such as Groove [12], Henshin [11], and AutoGraph [18]
can be used for invariant analysis if the considered GTSs induce small finite state
spaces. However, there are some approaches that also support invariant analysis
for infinite state spaces. For example, the tool Augur2 [1] abstracts GTSs by
Petri nets but imposes restrictions on graph transformation rules thereby limit-
ing expressiveness. Moreover, static analysis of programs for GTSs w.r.t. pre/post
conditions has been developed in [16] and [17]. Finally, an approach for the ver-
ification of invariants (similar to k-induction) is considered in [24] where graphs
are abstracted by single so-called shape graphs, which have limited expressiveness
compared to the nested graph conditions used in this work.

2 Intuitively, GTSs have no built-in support for different agents as opposed to other
non-flat formalisms (such as e.g. process calculi) where a multi-agent system is lazily
constructed using a parallel composition operation where interaction steps between
agents are then resolved at runtime. For such different formalisms, causality is much
easier to analyze but it is one of the many strengths of GTSs that agents can interact
in complex patterns not restricted by the formalism at hand.
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The representation of causality and the focus on causally connected steps dur-
ing analysis is important in various domains. For example, for Petri nets where
tokens can be understood as agents, event structures and causal/occurrence
nets have been used extensively to represent causality in a given run (see e.g.
[15,22,23]). Similarly, causality-based analysis can also be understood as cone
of influence-based analysis [3] where events are derived to be insignificant when
they are logically/spatially disconnected from considered events.

This paper is structured as follows. In Sect. 2, we recapitulate the technique
of k-induction based on labeled transition systems. In Sect. 3, we recall prelim-
inaries on graph transformation and introduce our running example. In Sect. 4,
we present an abstraction of GTSs to symbolic states and steps. In Sect. 5, we
extend existing notions capturing causality and compatibility among steps to
the employed symbolic representation. In Sect. 6, we discuss the k-induction
procedure with the novel pruning techniques relying on causality and fairness
among multiple agents in the GTS. Finally, in Sect. 7, we close the paper with a
conclusion and an outlook on future work. Further details are given in a technical
report [21].

2 Labeled Transition Systems and k-Induction

A Labeled Transition System (LTS) L = (Q,Z : Q B, L,R ⊆ Q × L × Q)
consists of a set of states Q, a state predicate Z identifying start states in Q,
a set L of step labels, and a binary step relation R on Q where each step has
a step label from L. An LTS L represents a state space and induces paths
π̃ ∈ Π(L) traversing through its states. We write L1 ⊆ L2 and L1 ∪ L2 for their
componentwise containment and union, respectively.

A state predicate P : Q B is an invariant of L when P is satisfied by all
states reachable from start states. A shortest violation of an invariant is given
by a path π̃ of length n traversing through states si when (a) π̃ starts in a start
state and never revisits a start state (i.e., Z(si) iff i = 0) and (b) π̃ ends in a
violating state and never traverses another violating state (i.e., ¬P (si) iff i = n).

The k-induction procedure attempts to decide whether a shortest violation
for a candidate invariant P exists. For shortest violations, in iteration 0 ≤ i ≤ k
the paths of length i that may be suffixes of shortest violations are generated.
That is, in iteration i = 0, all paths of length 0 consisting only of states q satisfy-
ing ¬P (q) are generated. In iterations i > 0, each path π̃ of length i− 1 starting
in state q is extended to paths π̃′ of length i by prepending all backward steps
(q′, a, q) ∈ R such that P (q′) is satisfied. The k-induction procedure (a) rejects
the candidate invariant P when in some iteration a path starting in a start state
is generated, (b) confirms the candidate invariant P when in some iteration no
path is derived, and (c) terminates without definite judgement when in the last
iteration i = k some path is generated.
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Pruning techniques restrict the set of generated paths in each iteration to a
relevant subset and only the retained paths are then considered for the abortion
criteria (a)–(c). While the additional computation that is required for pruning
can be costly, pruning can speed up the subsequent iterations by reducing the
number of paths to be considered in the next iteration. More importantly, prun-
ing may prevent the generation of paths of length k, which lead to an indefinite
judgement. For example, when A :Q B is an assumed invariant (either estab-
lished in an earlier application of the same or another technique or assumed
without verification), all paths in which some state q satisfies ¬A(q) are pruned
as in [6,19] attempting to limit constructed paths to reachable states. Further
pruning techniques introduced later on are designed specifically for the case of
GTSs taking the content of states and the nature of steps among them into
account.3

3 Graph Transformation and Running Example

Our approach generalizes to the setting of M-adhesive categories and M-
adhesive transformation systems with nested application conditions as intro-
duced in [10]. Nevertheless, to simplify our presentation, we consider the M-
adhesive category of typed directed graphs (short graphs) using the fixed type
graph TG from Fig. 1a (see [8–10] for a detailed introduction). In visualizations
of graphs such as Fig. 1b, types of nodes are indicated by their names (i.e., Si and
Ti are nodes of type Shuttle and Track) whereas we only use the type names for
edges. We denote the empty graph by ∅, monomorphisms (monos) by f :H H ′,
and the initial morphism for a graph H by i(H) : ∅ H. Moreover, a graph is
finite when it has finitely many nodes and edges and a set S of morphisms with
common codomain X is jointly epimorphic, if morphisms g, h :X Y are equal
when ∀f ∈ S. g ◦ f = h ◦ f holds.

In our running example, we consider an unbounded number of shuttles driv-
ing on a large-scale track topology where subsequent tracks are connected using
next edges (see again TG in Fig. 1a and the example graph in Fig. 1b). Each
shuttle either drives fast or slow (as marked using fast or slow loops). Shuttles
approaching track-forks (i.e., a track with two successor tracks) decide non-
deterministically between the two successor tracks. Certain track-forks consist
of a regular successor track and an emergency exit successor track (marked
using an ee loop) to be used only to avoid collisions with shuttles on the regu-
lar successor track. Construction sites may be located on tracks (marked using
cs loops) and, to inform shuttles about construction sites ahead, warnings are
installed four tracks ahead of them (marked using warn edges instead of next
edges). To exclude the possibility of shuttles derailing, analysis should confirm

3 The computational trade-off between pruning costs and costs for continued analysis
of retained paths will play out differently for each example but, due to the usually
exponential number of paths of a certain length, already the rather simple pruning
technique based on assumed invariants was highly successful in [6,19] where it was
also required to establish a definite judgement at all.
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Fig. 1. Running example.

the candidate invariant P stating that shuttles never drive fast on construction
sites. Assumed invariants are used to rule out track topologies with undesired
characteristics such as missing warn edges. We model this shuttle scenario using
a GTS with rules featuring application conditions as well as assumed and candi-
date invariants all given by (nested) Graph Conditions (GCs). For this purpose,
we now recall GCs and GTSs in our notation.
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The graph logic GL from [10] allows for the specification of sets of graphs and
monos using GCs. Intuitively, for a host graph G, a GC over a finite subgraph
H of G given by a mono m : H G states the presence (or absence) of graph
elements in G based on m. In particular, the GC ∃(f : H H ′, φ′) requires that
m must be extendable to a match m′ :H ′ G of a larger subgraph H ′ where the
nested sub-GC φ′ restricts m′. The combination of propositional operators and
the nesting of existential quantifications results in an expressiveness equivalent
to first-order logic on graphs [5].

Definition 1 (Graph Conditions (GCs)). If H is a finite graph, then φ is
a graph condition (GC) over H, written φ ∈ GC(H), if an item applies.

• φ = ¬φ′ and φ′ ∈ GC(H).
• φ = ∨(φ1 , . . . , φn) and {φ1 , . . . , φn} ⊆ GC(H).
• φ = ∃(f : H H ′, φ′) and φ′ ∈ GC(H ′).

Note that the empty disjunction ∨() serves as a base case not requiring the prior
existence of GCs. We obtain the derived operators false ⊥, true �, conjunction
∧(φ1 , . . . , φn), and universal quantification ∀(f, φ) in the expected way.

We now define the two satisfaction relations of GL capturing (a) when a
mono m : H G into a host graph G satisfies a GC over H and (b) when a
graph G satisfies a GC over the empty graph ∅.

Definition 2 (Satisfaction of GCs). A mono m : H G satisfies a GC φ
over H, written m |= φ, if an item applies.

• φ = ¬φ′ and ¬(m |= φ′).
• φ = ∨(φ1 , . . . , φn) and ∃1 ≤ i ≤ n. m |= φi.
• φ = ∃(f : H H ′, φ′) and ∃m′ : H ′ G. m′ ◦ f = m ∧ m′ |= φ′.

A graph G satisfies a GC φ over the empty graph ∅, written G |= φ, if the
(unique) initial morphism i(G) : ∅ G satisfies φ.

For our running example, (a) the GC φAI from Fig. 1h expresses the assumed
invariant stating that there is always a warning preceding each construction
site4, (b) the GC φCI from Fig. 1i expresses the candidate invariant P stating
that there is no fast shuttle at a track with a construction site, and (c) the GC
φSC from Fig. 1g expresses that there is no fast shuttle already in the critical
section between a warning and a construction site. Note that in visualizations of
GCs, we represent monos f : H H ′ in quantifications by only visualizing the
smallest subgraph of H ′ containing H ′ − f(H).

We rely on the operation shift from e.g. [10] for shifting a GC φ over a graph
H across a mono g :H H ′ resulting in a GC shift(g, φ) over H ′. The following
fact states that GC shifting essentially expresses partial GC satisfaction checking
for a morphism decomposition f ◦ g.

4 To ease the presentation, we omit further assumed invariants excluding graphs with
duplicate next edges or tracks with more than two successor/predecessor tracks.
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Fig. 2. Visualizations for definitions.

Fact 1 (Operation shift [10]). f |= shift(g, φ) iff f ◦ g |= φ

GTSs with multiple start graphs are now defined by specifying these start graphs
using aGCover the empty graph.We employ theDoublePushout (DPO) approach
to graph transformation with nested application conditions (see [8–10] for details)
in which rules contain two morphisms � : K L and r : K R describing the
removal of the elements in L − �(K) and the addition of elements in R − r(K) as
well as a left-hand side (nested) application condition given by a GC over L to be
satisfied by the match morphism.

Definition 3 (Graph Transformation System (GTS)). ApairS = (φ0 , P )
is a graph transformation system (GTS), if φ0 is a GC over the empty graph ∅
and P is a finite set of graph transformation rules (short rules) of the form ρ =
(� : K L, r : K R,φ) where L, K, and R are finite and φ is a GC over L.

If G, G′ are graphs, σ = (ρ,m : L G,n : R G′) is a step label containing
a rule ρ = (� : K L, r : K R,φ) of S, a match m,5 and a comatch n, the
DPO diagram in Fig. 2a exists, and m |= φ, then G σ G′ is a (GT) step of the
LTS Lgraphs induced by the GTS S. Also, the notion of derived rules drule(σ) =
(f, g, shift(m,φ)) captures the transformation span of the step and the instantiated
application condition.

For our running example, we employ the GTS S = (φSC ∧ φCI, {ρdrive, ρdriveEE,
ρwarnS, ρwarnF}) using the GCs and rules from Fig. 1. For each rule, we use an
integrated notation in which L, K, and R are given in a single graph where graph
elements marked with � are from L − �(K), graph elements marked with ⊕ are
from R − r(K), and where all other graph elements are in K. The application
condition of each rule is given on the left side of the � symbol. The rule ρdrive
states that a shuttle can advance to a next track T2 when no other shuttle is on
T2 and when T2 is not marked to be an emergency exit. The rule ρdriveEE states
5 Note that our approach extends to the usage of general match morphisms.
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that a shuttle can advance to a next track T2 marked to be an emergency exit
when the regular successor track T3 is occupied by another shuttle. The rule
ρwarnS states that a slow shuttle can advance to a next track T2 passing by a
warning when no other shuttle is on T2. Finally, the rule ρwarnF states that a
fast shuttle can slow down and advance to a next track T2 passing by a warning
when no other shuttle is on T2.

To accumulate the knowledge captured in application conditions and the
candidate invariant over steps of a backward path, we employ the operation L
from e.g. [10] for shifting a GC φ′ over a graph R across a rule ρ = (� :K L, r :
K R,φ) resulting in a GC L(ρ, φ′) over L. The following fact states that the
operation L translates post-conditions of steps into equivalent pre-conditions.

Fact 2 (Operation L [10]). G ρ,m,n G′ implies (m |= L(ρ, φ′) iff n |= φ′).

For our running example, we expect the k-induction procedure to confirm the
candidate invariant φCI for k ≥ 4 realizing that a fast shuttle at a construction
site must have passed by a warning 4 steps earlier due to the assumed invari-
ant φAI, which ensures that the shuttle drives slowly onto the construction site
later on.6 When applying the k-induction procedure, we start with the minimal
graph Gvio representing a violation (see the graph used in φCI in Fig. 1i). To
extend a given backward path from G to Gvio by prepending a backward step
using a certain rule, we first extend G to a graph E by adding graph elements
to be then able to apply the rule backwards to E (as discussed in more detail
in the next section based on a symbolic representation of states and steps).
Consider the graph Gex in Fig. 1b, which can be reached using this iterative
backward extension from Gvio by a path of length 5 (see Fig. 5a). Since the
relevant shuttle S1 has no further enabled backward step from Gex according to
the rules of the GTS (because fast shuttles cannot advance backwards over warn
edges), any path leading to Gex and any other path that varies by containing
additional/fewer/differently ordered independent steps can be pruned (as dis-
cussed in more detail in Sect. 6). For example, the similar path (see Fig. 5b)
where the shuttle S2 has only been moved backwards to T6 is pruned as well.
Hence, with such additional pruning techniques, we mitigate the problem that
the relevant shuttle S1 does not move backwards in every backward step of every
path. Instead, it is sufficient that S1 is being moved backwards three times in
some path. Still, all interleavings of backward steps must be generated (since, for
arbitrary GTSs, it cannot be foreseen which interleaving results in a prunable
path later on) but pruning one of these paths can result in the pruning of many
further paths.

6 The candidate invariant φCI could also be violated because (a) it is not satisfied by all
start graphs (which is excluded since φSC ∧ φCI captures the start graphs of the GTS),
(b) a slow shuttle becomes a fast shuttle between a warning and a construction site
(for which no rule exists in the GTS), and (c) a pair of a warning and a construction
site could wrap a fast shuttle at runtime (for which no rule exists in the GTS).
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4 Symbolic States and Steps

Following [19], concrete states of a GTS are given by graphs and its symbolic
states are given by pairs (G,φ) of a graph G and a GC φ over G. A symbolic
state (G,φ) represents all graphs H for which some m : G H satisfies φ.

This symbolic representation extends to GT steps and symbolic steps and
paths thereof. To obtain a backward step from a state (G,φ) (cf. Fig. 2b), (i) G is
overlapped with the right-hand side graph R of some rule ρ where the overlapping
consists of the comatch n of the backward step and the embedding morphism e
and (ii) the GC φ and the application condition φac of the rule are shifted to
the resulting symbolic state (G′, φ′). As discussed before, further graph elements
are added using e as required for the k-induction procedure in which we start
with (usually very small) graphs representing violations and then accumulate
additional context also in terms of additional graph elements.

Definition 4 (Symbolic Step). If (G′, φ′) and (G,φ) are symbolic states, ρ =
(�:K L, r :K R,φac) is a rule, σ = (ρ,m:L G′, n:R E) is a step label,
G′

σE is a DPO step, e:G E is a mono, e and n are jointly epimorphic, and
φ′ = L(drule(σ), shift(e, φ)) ∧ shift(m,φac), then is a symbolic
step of the LTS Lsymb induced by the GTS S (see Fig. 2b).

To obtain concrete paths π̂ represented by a symbolic path π, the implicit
requirements given by the GCs in symbolic states and the incremental con-
text extensions via monos e are resolved. This entails a forward propagation of
additional graph elements resulting in a consistent perspective throughout all
graphs traversed in π̂. However, making these additional graph elements explicit
may change satisfaction judgements for application conditions and assumed or
candidate invariants implying that a symbolic path may represent no concrete
path relevant in the context of k-induction or even no concrete path at all. Since
some pruning techniques require that we are able to operate on the symbolic
step relation, we only concretize symbolic paths using forward propagation that
may represent concrete paths being shortest violations.

Definition 5 (Concretization of Symbolic Path). A concrete path π̂ is
a concretization of a symbolic path π with first state (G′, φ′) for a mono m′ :
G′ H ′ satisfying φ′, written π̂ ∈ refine(π,m′), if an item applies.

• π = (G′, φ′) and π̂ = H ′.
• π = (G′, φ′) ·σ ·e · (G,φ) ·π′, σ = (ρ,m, n), σ′ = (ρ,m′ ◦m,n′ ◦n), H ′

σ′ H,
π̂′ ∈ refine((G,φ) · π′, n′ ◦ e), and π̂ = H ′ · σ′ · π̂′ (see Fig. 2b).

The symbolic representation given by symbolic paths is complete in the sense of
the following lemma stating that the concrete paths of a GTS correspond to the
concretizations of all symbolic paths.

Lemma 1 (Full Coverage). Π(Lgraphs) =
⋃{refine(π,m′) | π ∈ Π(Lsymb)}

Proof (Sketch). By mutual inclusion of the sets and induction over the length of
paths in both cases. Every concrete path of the GTS is represented by a symbolic
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Fig. 3. Linearization of parallel independent backward steps.

path where monos e are identities and GCs are �. Every symbolic path only
represents concrete paths of the GTS since the operation refine checks satisfaction
of the GCs with the additional contexts accumulated via the e monos.

For our running example, the violating symbolic state used for the symbolic paths
of length 0 during k-induction is (Gvio,�) (see Fig. 1i). Note that we implicitly
rewrite symbolic states (G,φ) into symbolic states (G′, φ′) using the symbolic
model generation technique from [20] to accumulate all positive requirements
of G and φ in the graph G′ and to store the remaining negative requirements
(stating how G′ cannot be extended) in φ′. Without this technique, k-induction
would be limited to candidate invariants of the form ¬∃(i(G),�) and graph
patterns required by positive application conditions would not be explicitly con-
tained in the graph and could therefore not be overlapped leading to indefinite
judgements in some cases. However, if multiple states (G′, φ′) are obtained using
this rewriting, we would perform k-induction for each of these states separately.
For the running example, (Gvio,�) is obtained by rewriting (∅,¬¬∃(i(Gvio),�))
using this technique.

5 Causality and Independence in GTS

According to [8, p. 8] in the context of GTSs, causal independence of rule appli-
cations allows for their execution in arbitrary order.

In the general setting of an LTS L, considering Fig. 3a, (a) the two parallel
steps with source s3 (to s1 and s2), (b) the two parallel steps with target s0
(from s1 and s2), (c) the two sequential steps traversing through s1 (from s3
and to s0), or (d) the two sequential steps traversing through s2 (from s3 and to
s0) are independent iff the respective remaining two steps exist resulting in the
square given in Fig. 3a (which we represent by ((s3, b2, s1), (s1, a1, s0), (s3, a2, s2),
(s2, b1, s0)) ∈ SQ(L)) where, for x ∈ {a, b}, the labels x1 and x2 are required to
be equivalent in an LTS specific sense in each case (a)–(d). Clearly, in such an
obtained square, each pair of sequential steps is sequentially independent and
each pair of parallel steps (with common source/target) is parallel independent.
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Subsequently, we call two successive steps causally connected when they are
sequentially dependent and, correspondingly, two alternative steps incompatible
when they are parallel dependent. In the context of k-induction where steps are
derived backwards, we primarily consider parallel independence for steps with
common target graph.

Sequential and parallel independence for common source graphs have been
formalized for GTSs in [10]. The reverse notion of parallel independence for
common target graphs is derived as expected essentially relying on the fact that
GT steps can be reversed by applying the reversed rule. The Local Church-
Rosser Theorem (see [10, Theorem 4.7]) provides the results corresponding to
the discussion for LTSs from above. Technically, for concrete GT steps, for x ∈
{a, b}, two step labels σx1

and σx2
must then use the same rule and must match

essentially the same graph elements.7 Moreover, for symbolic steps, for x ∈ {a, b},
we additionally require that the step labels σx1

, ex1 and σx2
, ex2 state the same

extensions using ex1 and ex2 .
8

We use the operation linearize to obtain all linearizations for a given set of
parallel steps with common target. For example, given the two parallel steps
with target s0 in Fig. 3a, linearize constructs the two further backward steps
and the square given in Fig. 3a when the two steps are parallel independent
and no further backward steps and no square otherwise. In general, for a given
LTS L and a subset δ ⊆ Q × L × Q of size n ≥ 0 of parallel steps of L with
common target, linearize(δ) = (sq, δ′) generates the set sq ⊆ SQ(L) of all squares
that can be constructed by rearranging those parallel steps into corresponding
sequences of length at most n and a set δ′ of all generated steps including δ.
More precisely, linearize iteratively constructs a square for each pair of distinct
parallel independent steps with common target (considering for this the steps
from δ and all steps generated already).9 For the cases of n = 0 and n = 1
no additional steps are generated. For the cases of n = 2 and n = 3, Fig. 3a
and Fig. 3b depict the maximal set δ′ of resulting steps that may be generated
when all pairs of distinct parallel steps are parallel independent throughout the
application of linearize (note that we omit in Fig. 3b the differentiation between
different ai, bi, and ci steps for improved readability).

When some pair of steps with common target is not parallel independent
(which is often the case), fewer squares and steps are generated.

7 The considered GT steps must preserve the matched graph elements and thereby
explain how one match is propagated over a GT step resulting in the other match.

8 Similarly to the requirement on matches, which must essentially match the same
graph elements, the extension monos must extend the graphs with the same graph
elements up to the propagation along the considered symbolic steps.

9 For concrete GT steps, we rely on [10, Theorem 4.7] to obtain a construction proce-
dure for the operation linearize. Also, this construction procedure extends to the case
of symbolic steps as the additional GCs in symbolic states are extended precisely by
the application conditions of the two involved rules in exchanged order only.
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Fig. 4. Fragment of backward state space constructed for running example. We abbre-
viate symbolic states by only providing a tuple of the track numbers on which shuttles
are located. See Fig. 1b or Fig. 5a for the graph part of state (4,8).

Fig. 5. Two backward paths. We abbreviate symbolic states by providing a tuple of
the track numbers on which shuttles are located as used in Fig. 4 and the graph part
of the symbolic state.
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6 Causality-Based k-Induction and Pruning Techniques

We now present our adaptation of the k-induction procedure from Sect. 2 defined
on an arbitrary LTS Lc but apply this procedure later on only to the LTS Lsymb

induced by the symbolic step relation from Sect. 4. Hence, Lc is only assumed to
be available in terms of its step relation and a method for identifying start states
as well as states satisfying the assumed invariant.10 Hereby, we rely on the notion
of parallel independence of steps with common target and linearizations of such
steps resulting in sequences of sequentially independent steps as introduced in
the previous section. The paths derived within this procedure consist then of
steps from Lc and are given in the procedure by a partial LTS Lp contained
in the complete LTS Lc. The k-induction procedure has a start state q0 and
modifies this state up to k times using a single step of type Q Q as explained
subsequently in more detail.

States of k-induction: The traversed states q∈ Q are of the form (Lc,Lp,
N, sq) where Lc = (Qc, Zc, Lc, Rc) is the complete LTS as discussed above, Lp =
(Qp, Zp, Lp, Rp) ⊆ Lc is a partial LTS contained in Lc recording the steps derived
so far, N ⊆ Qp is the subset of states to be considered next, and sq ⊆ SQ(Lc)
records the derived squares of independent steps.

Start state of k-induction: For a given complete LTS Lc and a state q0 ∈ Qc

violating the candidate invariant from which backward paths are constructed,
the start state q0 of k-induction is given by q0 = (Lc, ({q0}, ∅, ∅, ∅), {q0}, ∅).

Single step of k-induction: The single step of k-induction executes (a) the
operation extend : Q Q generating additional steps with target in N , extend-
ing the LTS Lp by these steps and all further steps obtained using lineariza-
tion, and then (b) the operation prune : Q Q applying pruning techniques.
The operation extend first derives the set δ = {(q, a, q′) ∈ Rc | q′ ∈ N} of all
backward steps with target in N and generates all linearizations linearize(δ) =
(sqext, δext) of these steps.11 The operation extend then returns extend(q) =
q′ = (Lc,L′

p, N
′, sq′) where L′

p = Lp ∪ Lext is obtained by merging the pre-
vious partial LTS with the extension Lext = (Q′

p, {q �→ Zc(q) | q ∈ Q′
p}, {a |

(q, a, q′) ∈ δ}, δext) containing all steps derived in the current iteration using
the set of all states Q′

p = {q | (q, a, q′) ∈ δext} derived in the current itera-
tion, N ′ = {q | (q, a, q′) ∈ δ} contains all predecessor states of those in N , and

10 A symbolic state (G, φ) satisfies the start state condition φSC (or analogously an
assumed invariant φAI) iff φ ∧ φSC is satisfiable. The model generation procedure
from [20] implemented in the tool AutoGraph [18] can be used to check GCs for
satisfiability (if it returns unknown, the problem must be delegated to the user for
φSC and satisfiability may be assumed for φAI). If φ∧¬φSC (or, analogously, φ∧¬φAI)
is also satisfiable, not every concretization of paths (G, φ) ·π will be a violation. This
source of overapproximation can be eliminated using splitting of states as in [19].

11 Note that, due to linearization, Rp may already contain some of the steps derived
here. By implicitly comparing steps derived here to those in Rp, we ensure to not
derive isomorphic copies of steps. Also, two distinct parallel independent steps do
not need to be linearized if not both steps are already contained in Rp.
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sq′ = sq ∪sqext additionally includes all squares derived in the current iteration.
The operation prune is then applied to q′ and discussed separately below.

For our running example, consider Fig. 4 where, initially in state (1), there
is a single (fast) shuttle S1 located on track T1. A second shuttle S2 is then
added onto track T6 in the first backward step to (2, 6). When reaching the state
(4, 8), of which the graph part is given in Fig. 1b, the shuttles S1 and S2 moved
backwards 3 and 2 times, respectively. See also Fig. 5a for this backward path
from (4, 8) to (1) and an additional backward path in Fig. 5b from (4, 6) to (1),
which is also included in abbreviated form in Fig. 4. The pruning of state (4, 6)
in Fig. 5b due to the blocked agent (given by the shuttle S1) leads to the pruning
of also the states (3, 6), (2, 6), and (1) in Fig. 5b and consequently also the path
in Fig. 5a.

Termination condition of k-induction: The k-induction procedure applies the
single step up to k times on the start state q0 . When a state is derived with
N = ∅, the procedure concludes satisfaction of the candidate invariant. When a
state is derived with Zp mapping some state q to �, the procedure concludes non-
satisfaction of the candidate invariant and returns (Lp, q) as a counterexample.
When the single step has been applied k times and none of the previous two
cases applies, the procedure returns an indefinite judgement.

GTS-specific pruning: For the GTS setting where Lc = Lsymb as discussed
above, we now present five pruning techniques (where the first two have been
used already in [6,19]), which are used to remove certain states (and all steps
depending on these states) recorded in the partial LTS L′

p.
For assumed invariant pruning, we remove all states not satisfying the

assumed invariant φAI as in prior work on GTS k-induction. For our running
example, when moving the shuttle S1 backwards from (4, 6), a next edge is
added leading to track T4, which is forbidden by the assumed invariant φAI from
Fig. 1h. Hence, this backward step of that shuttle is pruned.

For realizability pruning, we first determine states q that are identified to be
start states via Zp(q) = �. Since each such state q represents a violating path
leading to the refutation of the candidate invariant at the end of the iteration, we
attempt to exclude false positives where each symbolic path π in Lp from q to the
violating state q0 cannot be concretized to a GTS path according to Definition 5.
For this purpose, for q = (G,φ), we use the model generation procedure from
[20] to generate extensions m : G G′ satisfying φ∧φSC∧φAI. We then attempt
to concretize some symbolic path π from q to q0 to a concrete path π̂ using m. If
some π̂ is obtained representing a shortest violation, the k-induction procedure
terminates after this iteration refuting the candidate invariant. If the model
generation procedure does not terminate, q may be a false positive and the k-
induction procedure terminates with an indefinite judgement. However, if both
cases do not apply, q is removed from L′

p.
Certainly, any derived state q may not allow for a concretization along the

same lines. However, not checking each such state for realizability along the same
lines may only lead to indefinite judgements and there is a trade off between
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the cost for realizability pruning and the cost of exponentially more backward
extensions leading to q to be generated and analyzed.

For causality pruning, a state q′ is pruned when there is some symbolic back-
ward step where n and e have non-overlapping images. We thereby
ensure that the number of weakly connected components12 of the graph under
transformation does not increase over backward steps. For our running exam-
ple, we prune states where further shuttles are added that are structurally not
connected to the subgraph originating from the start state. Note that further
shuttles can still be included as for the graph in Fig. 1b where the shuttle S2

has been added according to the rule ρdriveEE used in the first backward step.
For evolution pruning, a state q is pruned when it contains an agent (given in

our running example by shuttles) for which permanent blockage is detected. Note
that, as explained in Sect. 1, the inability of some agent to partake in a backward
step does not preclude the ability of some other agent to partake in a backward
step. Hence, when not removing such states, irrelevant steps of additional agents
may prolong analysis or even prevent definite judgements. Also note that an
agent is in general allowed to be blocked forever when it reaches its local config-
uration in a start graph of the GTS allowing other agents to perform backward
steps to jointly reach a start graph. Since GTSs are Turing complete, no precise
identification of such agents can be achieved and, to preclude the derivation of
incorrect judgements, we must underapproximate the set of such agents. Tech-
nically, we attempt to identify all agents in states q that will unexpectedly never
again be able to partake in a backward step using an additional blocked agent
GC φBA. Such a blocked agent GC is (a finite disjunction of GCs) of the form
∃(i(H),�) where H represents a minimal pattern containing a blocked agent.
For our running example, see Fig. 1j for the GC φBA capturing a fast shuttle (i.e.,
an agent) that is blocked by not being able to move backwards across a warn
edge. To maintain soundness of k-induction, we can verify the blocked agent GC
φBA by checking that there is no symbolic backward step from (H,�) preventing
that any further backward steps from q can reach a state where the matched
agent can partake in a backward step. A state q = (G,φ) is then pruned using
the blocked agent GC φBA when ∃(i(G), φ)∧ φAI ∧ φBA is satisfiable. For our run-
ning example, the shuttle S1 is blocked according to the GC φBA in the states
(4, 6), (4, 7), and (4, 8) (marked blue in Fig. 4), which are therefore pruned.

For evolution-dependency pruning, we extend the state-based evolution prun-
ing to a step- and square-based pruning technique propagating the information
about blocked agents forward across steps. In particular, given a step (q′, a, q)
where q′ was pruned (due to a blocked agent), q is also pruned unless there is
a backward step (q′′, b, q) to a non-pruned state q′′ that is parallel dependent to
(q′, a, q). The step (q′′, b, q) then potentially represents an alternative backward
path not leading to a blocked agent.13 However, only relying on the notion of

12 Two nodes n1 and n2 of a graph G are in a common weakly connected component
(given by a set of nodes of G) of G iff there is a sequence of the edges of G from n1

to n2 where edges may be traversed in either direction.
13 Parallel independent backward steps are always performed by different agents.
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parallel independence considering steps from a global perspective and not track-
ing which agents actually participated in the two backward steps can lead to an
underapproximation of the steps that can be pruned potentially leading to avoid-
able indefinite returned judgements.14 That is, backward steps of two distinct
agents can be parallel dependent, which would then not allow to propagate the
knowledge of one of them being blocked forwards. Constructing explicitly the
squares in our backward state space generation procedure is essential for dissect-
ing alternative backward steps. The forward propagation of prunability thereby
allows to prune states and hence also all other paths traversing through these
additionally pruned states where different step interleavings (of other agents)
are executed (hence assuming that the blocked agent would be treated unfairly
in all these other paths).

The usage of squares in k-induction supports evolution-dependency pruning
since pruning a state also prunes all paths traversing through it, which would
not be the case when we would construct a set of (disconnected) backward
sequences or a tree (or forest) of backward steps. Moreover, minimizing the size
of the state space representation using squares reduces the number of states for
which blocked agents must be detected and from which evolution-dependency
pruning must be performed. Also, when only constructing backward sequences
instead, there would e.g. in our running example be a backward path not moving
the initially given shuttle S1 backwards to a situation where that shuttle would
be blocked. Hence, employing a directed acyclic graph given by the square-
based compressed backward state space, we can easily detect states occurring
in different backward paths and thereby do not need to treat fairness among
different agents beyond generating the backward state space using breadth-first
search.

For our running example, the pruning of the state (4, 6) and the non-existence
of a backward step parallel dependent to the step from (4, 6) to (3, 6) leads to
the pruning of the state (3, 6) as well. Analogously, the states (2, 6) and then (1)
are also pruned leaving an empty state space, which leads to termination and
candidate invariant confirmation at the end of the iteration.

Finally, we state that the presented k-induction procedure is sound and at
least as complete as the previous variants from [6,19].

Theorem 1 (Soundness of k-Induction). For a given GTS S, a candidate
invariant φCI, an assumed invariant φAI, and a blocked agent GC φBA, the k-
induction procedure confirms/refutes φCI only if φCI is an invariant/is no invari-
ant. Also, it returns such a definite judgement whenever the k-induction proce-
dure from [6,19] without the novel pruning techniques and the use of causality
and independence did.

Proof (Sketch). Extending [6,19], we only need to ensure that the novel prun-
ing techniques never prune states/paths that would otherwise be extended to
shortest violations (the pre-existing assumed invariant pruning and realizability
14 This pruning technique can be refined by attributing agents to steps to then deter-

mine prunable states with greater precision complicating forward propagation.
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pruning do not need to be reexamined here). Causality pruning only removes
steps where a disconnected agent is introduced: these steps can never help
in gathering knowledge about the past of the actors involved in the violation
and, moreover, the inclusion of such disconnected agents can always be delayed
to later steps where they are then connected to a part of the current graph.
The validity of the blocked agent GC φBA ensures that evolution pruning only
prunes states containing an agent permanently blocked precluding the reach-
ability of a start graph of the GTS. Evolution-dependency pruning then only
prunes states/paths from which that agent unavoidably reaches such a blocking
situation lacking alternative backward steps.

7 Conclusion and Future Work

We extended the k-induction procedure from [6,19] to support the verification
of state invariants also for multi-agent GTSs. The presented extension relies on
novel pruning techniques determining generated backward paths that cannot be
extended to paths capturing a violation of the candidate invariant. It only returns
sound judgements on candidate invariants, succeeds when the prior versions in
[6,19] did, and succeeds for additional multi-agent GTSs.

In the future, we will extend our approach to Probabilistic Timed Graph
Transformation Systems (PTGTSs) [13] in which dependencies among agents
are also induced by the use of clocks (as in timed automata). This additional
coupling among agents will complicate our analysis but will also reduce the
number of possible backward paths to be constructed. Moreover, we will extend
our prior implementations on k-induction to the presented approach and will
evaluate the expected performance gain when restricting backward steps to a
fixed underlying static topology fragment as in [14].
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