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Abstract. Graph grammars based on contextual hyperedge replace-
ment (CHR) extend the generative power of the well-known hyperedge
replacement (HR) grammars to an extent that makes them useful for
practical modeling. Recent work has shown that acyclicity is a key con-
dition for parsing CHR grammars efficiently. In this paper we show that
acyclicity of CHR grammars is decidable and that the generative power
of acyclic CHR grammars lies strictly between that of HR grammars and
unrestricted CHR grammars.
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1 Introduction

Contextual hyperedge replacement (CHR, [3,4]) strengthens the generative
power of hyperedge replacement (HR, [11]) significantly, e.g., to languages of
unbounded treewidth. This is achieved by a moderate extension: productions
may glue a graph not only to nodes attached to the nonterminal hyperedge being
replaced, but also to nodes in the context. The applicability of such productions
thus depends on the presence of context nodes created by other derivation steps.

In previous work, we have devised efficient parsing algorithms for subclasses
of HR grammars, which rely on canonical orders for replacing nonterminals [5,6].
When these algorithms are extended to CHR, the canonical orders may be in
conflict with dependencies arising from the creation and use of context nodes.
Recently [9] we have shown that a CHR grammar Γ can be turned into an HR
grammar generating graphs where the context nodes of Γ are “borrowed”, i.e.,
generated like ordinary nodes. From these graphs, those generated by Γ can be
obtained by “contraction”, i.e., merging borrowed nodes with other nodes. This
is correct provided that contractions cannot create cyclic chains of dependencies.
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In this paper, we establish two important properties of acyclic CHR gram-
mars that have been left open in [9]. (1) It is decidable whether a CHR grammar
is acyclic or not (Sect. 3). (2) Acyclicity reduces the generative power of CHR
grammars by limiting the possibility to exploit node dependencies between pro-
ductions (Sect. 4).

We start by recapitulating CHR grammars, borrowing grammars and con-
tractions as well as acyclicity taken from [9] before we present the results of this
paper in Sect. 3 and Sect. 4. Finally, we conclude the paper by discussing related
and future work in Sect. 5.

2 Contextual Hyperedge Replacement

We let N denote the set of non-negative integers, and [n] the set {1, . . . , n} for
all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the empty
sequence is denoted by ε, and the length of a sequence α by |α|. For a function
f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by f∗(a1 · · · an) =
f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A. As usual, →+ and →∗ denote
the transitive and the transitive reflexive closure of a binary relation →.

Graphs. Let Σ = Σ̇�Σ̄ be an alphabet of labels for nodes and edges respectively,
where edge labels come with a rank function rank : Σ̄ → N.

Then a (hyper-) graph over Σ is a tuple G = (Ġ, Ḡ, attG, labG), where Ġ and
Ḡ are disjoint finite sets of nodes and (hyper-) edges, respectively, the function
attG : Ḡ → Ġ∗ attaches sequences of nodes to edges, and the labeling function
labG : Ġ ∪ Ḡ → Σ maps Ġ to Σ̇ and Ḡ to Σ̄ in such a way that |attG(e)| =
rank(labG(e)) for every edge e ∈ Ḡ. We assume that the attachment sequences
are free of repetitions. GΣ denotes the class of graphs over Σ. An edge carrying
a label σ ∈ Σ̄ is called σ-edge. G◦ denotes the discrete subgraph of a graph G,
which is obtained by removing all edges.

A graph G ∈ GΣ is called a σ-handle (or just a handle) if G has a single
σ-edge e with σ ∈ Σ̄, and each node of G is attached to e. HΣ shall denote the
set of handles of Σ. If rank(σ) = 0, a σ-handle is unique (up to isomorphism);
we denote such a handle by σ•.

G − x shall denote the graph G without the edge x ∈ Ḡ. A set of edges
E ⊆ Ḡ induces the subgraph consisting of these edges and their attached nodes.
Given graphs G1, G2 ∈ GΣ with disjoint edge sets, a graph G = G1 ∪G2 is called
the union of G1 and G2 if G1 and G2 are subgraphs of G, Ġ = Ġ1 ∪ Ġ2, and
Ḡ = Ḡ1 ∪ Ḡ2. Note that G1 ∪ G2 exists only if common nodes are consistently
labeled, i.e., labG1(v) = labG2(v) for v ∈ Ġ1 ∩ Ġ2.

For graphs G and H, a morphism m : G → H is a pair m = (ṁ, m̄) of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserve attachments and labels, i.e.,
attH(m̄(v)) = ṁ∗(attG(v)), labH(ṁ(v)) = labG(v), and labH(m̄(e)) = labG(e)
for all v ∈ Ġ and e ∈ Ḡ.

The morphism is injective or surjective if both ṁ and m̄ have this property,
and a subgraph inclusion of G in H if m(x) = x for every node or edge x in G;
then we write G ⊆ H. If m is surjective and injective, we say that G and H are
isomorphic, written as G ∼= H.
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Contextual Hyperedge Replacement (CHR). The set Σ̄ of edge labels is
assumed to contain a subset N of nonterminal labels; edges with labels in N are
nonterminal while all others are terminal.

A production p = (L,R) consists of graphs L and R over Σ such that (1) the
left-hand side L contains exactly one edge x, which is a nonterminal, and (2) the
right-hand side R is an arbitrary supergraph of L − x. Nodes in L that are not
attached to x are the context nodes of L (and of p); p is called context-free if it
has no context nodes, and contextual otherwise.

We use a special form of standard double-pushout graph transformation [10]
for applying productions: Let p be a production as above, and consider some
graph G. An injective morphism m : L → G is called a matching for p in G. If
such a matching exists, we say that p is applicable to the nonterminal m(x) ∈ Ḡ.
The replacement of m(x) by R (via m) is then given as the graph H obtained
from the disjoint union of G − m(x) and R by identifying every node v ∈ L̇
with m(v). We write this as G ⇒m,p H, but omit m if it is irrelevant, and write
G ⇒P H if G ⇒p H for some p taken from a set P of productions.

This leads to the notion of a CHR grammar [3,4].

Definition 1 (CHR grammar). A contextual hyperedge replacement gram-
mar Γ = 〈Σ,N ,P, S〉 (CHR grammar) consists of alphabets Σ and N as above,
a finite set P of productions over Σ, and a start symbol S ∈ N such that
rank(S) = 0. The language generated by Γ is given as L(Γ ) = {G ∈ GΣ\N |
S• ⇒∗

P G}. Γ is a (context-free) hyperedge replacement grammar (HR grammar
[11]) if all productions in P are context-free.

CHR grammars can generate languages that cannot be generated by HR
grammars. In particular, this includes languages of unbounded treewidth, like
the language GΣ of all graphs and our running example introduced next.

Example 1 (CHR grammar for dags). Figure 1 shows our running example,
and introduces our conventions for drawing graphs and productions. Nodes are
circles, nonterminal edges are rectangular boxes containing the corresponding
labels, and terminal edges are shapes like �. (In this example, all nodes are
labeled with the “invisible” label �, i.e., they are effectively unlabeled.) Edges

Fig. 1. Productions for generating dags (Example 1)

Fig. 2. A derivation with Δ
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are connected to their attached nodes by lines ordered counter-clockwise around
the edge, starting at noon. For productions (L,R), we draw L and R, and specify
the inclusion of L̇ in Ṙ by ascribing the same identifier to them, like x and y in
our example.

Figure 1 defines the productions δ0 to δ3 of the CHR grammar Δ. S and A
are nonterminal labels of rank 0 and 1, respectively, and � is a binary terminal
label. A derivation with this grammar is shown in Fig. 2.

It is easy to see that Δ derives only non-empty unlabeled acyclic graphs
(dags, for short): In every derivation, the A-edge is attached to a node with
indegree 0 so that no cycles may be introduced by production δ3. Vice versa,
every non-empty dag D can be generated with Δ: The nodes of D can be sorted
topologically, e.g., as v1, . . . , vn. Then every vi can be generated with production
δ2, and its outgoing edges can be generated with production δ3 since the targets
of these edges must be nodes vj with j < i. So L(Δ) is indeed the set of all
non-empty dags.

In previous work, we have devised efficient parsing algorithms for HR gram-
mars [5,8]. These algorithms apply productions in canonical order (analogous to
leftmost and rightmost derivations in string grammars). When extending these
algorithms to CHR grammars, a production may only be applied when its con-
text nodes have been created in previous steps. This may be in conflict with the
canonical application orders. In [9], we have shown that there is a close relation-
ship between a CHR grammar Γ and its so-called borrowing (HR) grammar Γ̂ :
every graph H ∈ L(Γ ) is a “contraction” of a graph G ∈ L(Γ̂ ). Moreover, the
converse is also true as long as Γ is acyclic, a notion to be recalled later.

In the following, we assume that Σ\N contains two auxiliary edge labels that
are not used elsewhere in Γ : edges carrying the unary label � will mark borrowed
nodes, and binary edges labeled �= will connect borrowed nodes with other nodes
in the same right-hand side, to signify that they must not be identified with each
other by contraction later on.

Definition 2 (Borrowing grammar). Let Γ = 〈Σ,N ,P, S〉 be a CHR gram-
mar. For p = (L,R) ∈ P, its borrowing production p̂ = (L̂, R̂) is obtained by
(1) removing every context node from L̂ and (2) constructing R̂ from R as fol-
lows: for every context node v of p, attach a new �-edge to v, and add �=-edges
from v to every other node with the label labL(v). The borrowing grammar
Γ̂ = 〈Σ,N , P̂ , S〉 of Γ is given with P̂ = {p̂ | p ∈ P}.

Note that p̂ = p if p is context-free.

Definition 3 (Contraction). For a graph G let

Ġ� = {v ∈ Ġ | v = attG(e) for a �-edge e ∈ Ḡ} and
�=G = {(u, v) ∈ Ġ × Ġ | uv = attG(e) for a �=-edge e ∈ Ḡ}.

A morphism μ : G → H is called a joining morphism for G if Ḣ = Ġ \ Ġ�,
H̄ = Ḡ, μ̄ and the restriction of μ̇ to Ġ \ Ġ� are inclusions, and (v, μ̇(v)) /∈ �=G

for every v ∈ Ġ�. The graph core(H) obtained from H by removing all edges
with labels � and �= is called the μ-contraction of G or just a contraction of G.
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Fig. 3. Borrowing productions for generating dags

Fig. 4. A derivation with Δ̂

Fig. 5. The four contractions of the graph derived in Fig. 4

Example 2 (Borrowing grammar). Figure 3 shows the borrowing productions
for the productions of the CHR grammar of dags in Fig. 1, where the contextual
production δ3 is replaced by the borrowing production δ̂3.

A derivation with the borrowing grammar Δ̂ is shown in Fig. 4; the resulting
terminal graph can be contracted in four possible ways, to the graphs C1 to C4

shown in Fig. 5. The contraction C4 yields a cyclic graph; it is the only one of
these four that cannot be generated with the productions of the CHR grammar Δ
in Example 1.

Definition 4 (Borrowing version of a derivation). Let Γ = 〈Σ,N ,P, S〉
be a CHR grammar and Γ̂ its borrowing grammar. A derivation

S• ⇒m̂1
p̂1

H1 ⇒m̂2
p̂2

H2 ⇒m̂3
p̂3

· · · ⇒m̂n

p̂n
Hn

in Γ̂ is a borrowing version of a derivation

S• ⇒m1
p1

G1 ⇒m2
p2

G2 ⇒m3
p3

· · · ⇒mn
pn

Gn

in Γ if the following hold, for i = 1, 2, . . . , n and pi = (L,R):

1. p̂i is the borrowing production of pi,
2. if L̄ = {e} then m̂i(e) = mi(e), and
3. for every x ∈ R̄ ∪ (Ṙ \ L̇), the images of x in Gi and Hi are the same.

By a straightforward induction, it follows that every derivation in Γ has a
borrowing version in Γ̂ , and Gi is the μi-contraction of Hi for i ∈ [n], where the
joining morphism μi is uniquely determined by μ̄i(e) = e for all e ∈ H̄i.

Theorem 1 will show that the converse is also true, i.e., that every contraction
of a graph in L(Γ̂ ) can also be derived in Γ , provided that Γ is acyclic. Informally,
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Γ is cyclic if there is a derivation of a graph G in Γ̂ and a contraction H of G
so that there is a cyclic dependency between derivation steps that create nodes
and derivation steps that use them as context nodes. These cyclic dependencies
then result in derivations of graphs in Γ̂ having a contraction that cannot be
derived in Γ because there is no reordering of the derivation steps that yields a
valid derivation in Γ .

For the definition of acyclicity in Definition 6, we need the well-known notion
of derivation trees, which reflect the context-freeness of HR grammars [2, Defi-
nition 3.3]. Here we use the slightly modified version introduced in [9].

Definition 5 (Derivation tree). Let Γ = 〈Σ,N ,P, S〉 be a HR grammar.
The set TΓ of derivation trees over Γ and the mappings root : TΓ → HΣ as well
as result : TΓ → GΣ are inductively defined as follows:

– Each handle G ∈ HΣ is in TΓ , and root(G) = result(G) = G.
– A triple t = 〈G, p, c〉 consisting of a nonterminal handle G ∈ HN , a production

p ∈ P, and a sequence c = t1t2 · · · tn ∈ T
∗
Γ is in TΓ if the union graphs

G′ = G◦ ∪ ⋃n
i=1 root(ti) and G′′ = G◦ ∪ ⋃n

i=1 result(ti) exist, G ⇒p G′, and
nodes(result(ti)) ∩ nodes(result(tj)) = nodes(root(ti)) ∩ nodes(root(tj)) for
all distinct i, j ∈ [n], where nodes(H) denotes the node set of a graph H.
Furthermore, we let root(t) = G and result(t) = G′′.

We assume the ordering of the subtrees in c = t1t2 · · · tn within a derivation
tree t = 〈G, p, c〉 to be chosen arbitrarily, but kept fixed.

Let t, t′ be any derivation trees. We call t a parent tree of t′, written t  t′, if
t = 〈G, p, t1t2 · · · tn〉 and t′ = ti for some i, and we call t′ a subtree of t if t′ = t
or t = 〈G, p, t1t2 · · · tn〉 and t′ is a subtree of ti for some i. A derivation tree t
introduces a node u (at its root) if t = 〈G, p, t1t2 · · · tn〉 and u ∈ nodes(root(ti))\
Ġ for some i. The set of all these nodes is denoted by intro(t).

The following theorem is equivalent to Theorem 3.4 in [2]:

Lemma 1 (See [9, Theorem 1]). Let Γ = 〈Σ,N ,P, S〉 be a HR grammar,
H ∈ HΣ a handle and G ∈ GΣ a graph. There is a derivation tree t ∈ TΓ with
root(t) = H and result(t) = G iff H ⇒∗

P G.

Note that derivation trees are defined only for HR grammars. In the con-
textual case, any properly labeled node can be used as a context node as long
as it has been created earlier in a derivation. This fact produces dependencies
between derivation steps which do not exist in HR derivations.

In order to describe these additional dependencies, let us define the relation
�μ on subtrees of a derivation tree t ∈ TΓ̂ described by a joining morphism μ
for result(t). For any two subtrees t′, t′′ of t, we let t′ �μ t′′ iff there is a node
u ∈ intro(t′′) so that μ̇(u) �= u and μ̇(u) ∈ intro(t′).

Informally, t′ �μ t′′ means that t′ describes a derivation step (the topmost one
that transforms the root handle of t′), which creates a node used as a contextual
node in the corresponding topmost contextual derivation step described by t′′.
This restricts the set of all borrowing versions of derivations characterized by t:
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Fig. 6. Derivation tree of the derivation in Fig. 4

the derivation step described by t′′ must occur after the one described by t′.
However, the order of derivation steps must obey the parent tree relation  as
well. This motivates the following:

Definition 6 (Acyclic CHR grammar). A CHR grammar Γ is acyclic if
( ∪ �μ)+ is irreflexive for all derivation trees t ∈ TΓ̂ over Γ̂ and all joining
morphisms μ for result(t). Otherwise, Γ is cyclic.

Example 3 (Derivation tree for dags). The derivation tree of the borrowing
derivation in Fig. 4 is shown in Fig. 6 in black. Edges between derivation tree
nodes represent the parent tree relation . The thick dashed arrows drawn in
red represent the relation �μ for the joining morphism μ defined by μ(e) = b and
μ(c) = d, yielding contraction C4 in Fig. 5. This implies t3 �μ t11 and t9 �μ t5,
respectively, when derivation subtrees are referred to by the numbers at their
root nodes. Relations  and �μ thus introduce a cycle affecting t5 and t9.

Theorem 1 (See [9, Theorem 2]). Let Γ be a CHR grammar and Γ̂ its
borrowing grammar. For every graph H ∈ L(Γ ), there is a graph G ∈ L(Γ̂ ) so
that H is a contraction of G. Moreover, every contraction of a graph in L(Γ̂ ) is
in L(Γ ) if Γ is acyclic.

3 Acyclicity of CHR Grammars is Decidable

Definition 6 does not provide effective means to check whether a CHR grammar is
acyclic or not. In [9], we have devised a decidable sufficient criterion for acyclicity
based on the so-called grammar graph GG(Γ ) of a CHR grammar Γ (see [9,
Definition 11]).
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Fig. 7. Grammar graph of the CHR grammar Π

GG(Γ ) has nonterminal edge labels, node labels and productions (or pro-
duction names) as nodes, and binary edges so that (1) every production is the
target of an edge from its left-hand side nonterminal, and source of edges to the
nonterminals on its right-hand side, (2) every node label 
 is the source of edges
to all productions with 
-nodes as context nodes, and the target of edges from
all productions introducing 
-nodes on their right-hand side.

If GG(Γ ) does not have a cycle that contains a node label as node, one
can conclude that Γ is acyclic by [9, Lemma 1]. However, this criterion is not
necessary, i.e., one cannot be sure that Γ is cyclic if GG(Γ ) has such a cycle, as
the following (pathological) example shows.

Example 4 (Acyclic CHR grammar with cyclic grammar graph). Let Π be the
CHR grammar with the following productions over nullary nonterminal labels S
(the start symbol), A, B, C, and node labels a, b:

Figure 7 shows the grammar graph GG(Π) that has clearly a cycle containing
node labels a and b as nodes. Even so, Π is acyclic as one can see as follows:
The borrowing grammar Π̂ has only the following two derivations, each of them
with one possible contraction:

Both of them do not borrow any node before it has been created, i.e., (
∪ �μ)+ is irreflexive. Therefore, Π is acyclic.

We will now provide a decidable criterion for acyclicity of CHR grammars
that is both sufficient and necessary, by turning a CHR grammar into a HR
grammar whose language contains cyclic graphs iff the CHR grammar is cyclic.
We start by motivating the construction of the HR grammar.

The dependency grammar ΓD of a CHR grammar Γ is a HR grammar that
has as its language graphs that contain derivation trees of the borrowing gram-
mar Γ̂ . To be more precise, if there is a derivation of a graph H in Γ̂ , ΓD derives
a graph D that has a subgraph D′ whose nodes correspond to the nonterminal
derivation tree nodes of H, and its edges from parent to child nodes represent
the parent tree relation  on derivation trees. D contains additional nodes that
represent nodes of H created by derivation steps, and additional edges. When-
ever there is a possibility for a joining morphism μ to merge a node n with a
borrowed node n′ in H, D will contain a path between those nodes t and t′ in
D′ that represent the creation of n and n′, respectively. This path represents
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t �μ t′, and thus D contains a cycle iff ( ∪ �μ)+ is reflexive, characterizing
the cyclicity of Γ . This makes acyclicity of Γ decidable because it is decidable
whether the language of an HR grammar contains cyclic graphs.

Let us first introduce some auxiliary concepts before we formally define
dependency grammars: a production p = (L,R) borrows a node label 
 ∈ Σ̇
if L has a context node labeled 
; p creates 
 if it creates a node labeled 
, i.e.,

 = lab(v) for some v ∈ Ṙ \ L̇. We denote the sets of node labels borrowed and
created by p by B(p) and C(p), respectively.

Definition 7 (Dependency grammar). Let Γ = 〈Σ,N ,P, S〉 be a CHR
grammar, where Σ̇ = {a1, . . . , am}. The dependency grammar of Γ is the HR
grammar ΓD = 〈ΣD,ND,PD, S〉 consisting of the following components:

ND = {AD | A ∈ N} ∪ {S} Σ̄D = ND ∪ {a, b, c, d, e, f, t}
Σ̇D = N ∪ {↑a1, . . . , ↑am, ↓a1, . . . , ↓am} PD = {(S•, dep(S))} ∪ {pD | p ∈ P}

where rank(AD) = 2m + 1 for all A ∈ N , S is nullary, and all other edge labels
are binary.

To define the productions, let us denote by dep(A), for A ∈ N , the
AD-handle consisting of an AD-edge e which is attached to nodes n0, . . . , n2m

labeled by A, ↑a1, . . . , ↑am, ↓a1, . . . , ↓am, respectively. For each of the labels 
 ∈
{A, ↑a1, . . . , ↑am, ↓a1, . . . , ↓am}, the unique node attached to e which is labeled 

will be denoted by e.
. We call e.A the main node of the handle and the nodes e.↑ai

and e.↓ai its satellites. (We also consider e.A to be its own satellite.)
Now, for p = (L,R) ∈ P the dependency production pD = (LD, RD) is defined

as follows: Suppose that the nonterminal edge of L has the label A0 ∈ N and
the nonterminal edges of R, ordered arbitrarily, have the labels A1, . . . , Ak ∈ N .
Then LD = dep(A0) and RD is the disjoint union of all handles dep(Ai) for
i ∈ [k], the set L̇D of all left-hand side nodes, and additional binary edges as
specified below, where we denote the nonterminal edge in LD by e0 and that of
dep(Ai) in RD by ei (for i ∈ [k]). Denoting a binary x-edge from ei.
 to ej .


′ by
ei.
 →x ej .


′, the terminal edges in R are:

e0.A0 →t ei.Ai for all i ∈ [k] (1)
e0.A0 →a e0.↑a for all a ∈ C(p) (2)
ei.↑a →b e0.↑a for all i ∈ [k] (3)
ei.↑a →c ej .↓a for all i, j ∈ [k] , i �= j (4)
e0.↓a →d ei.↓a for all i ∈ [k] (5)
e0.↓a →e e0.A0 for all a ∈ B(p) (6)
ei.↑a →f e0.A0 for all i ∈ [k] and a ∈ B(p) (7)

Note that each node in the right-hand side of a production is attached to one
and only one nonterminal edge e, i.e., its denotation as e.
 is unique. Therefore,
the derivation of a graph D ∈ L(ΓD) induces a unique partition of Ḋ into subsets,
each consisting of a main node and its satellites that have at some point during
the derivation been attached to the same nonterminal.
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Fig. 8. Dependency productions for pro-
ductions δ2 and δ3 of grammar Δ

Fig. 9. Dependency graph of the
derivation in Fig. 4

Derivations in borrowing grammars and dependency grammars are closely
related: Consider a CHR grammar Γ , its borrowing grammar Γ̂ , and its depen-
dency grammar ΓD. The first step of a derivation in ΓD yields dep(S). For p ∈ P,
the nonterminals in pD (both in the left- and right-hand side) correspond bijec-
tively to those in p, where each label A in p has been replaced by AD in pD. Thus,
every derivation tree t ∈ TΓ̂ corresponds to a unique derivation tree tD ∈ TΓD ,
and vice versa. We call the graph result(tD) the dependency graph of t. By the
above discussion, each graph derived by ΓD is the dependency graph of some
derivation tree t ∈ TΓ̂ .

Now, given such a dependency graph D = result(tD), consider the subgraph
D′ of D induced by its t-edges (defined by (1) in Definition 7). By (1), the nodes
of D′ are the main nodes of D, i.e., those carrying a label A ∈ N . As explained
above, in the derivation of D each such node was – together with its satellites –
attached to a unique nonterminal edge, and this edge carried the corresponding
label AD. This means that D′ is a tree which is isomorphic to the derivation tree
t of which D is the dependency graph, provided that we disregard the leaves of t.
The isomorphism relates each node n of D′ to a unique subtree T (n) = 〈H, p, c〉
of t, and the node label of n coincides with the nonterminal label of H.

Example 5. We consider CHR gammar Δ for dags again (see Example 1). Pro-
duction δ2 does not borrow any node, but creates the “invisible” node label
�, i.e., C(δ2) = {�} and B(δ2) = ∅. Production δ3 does not create any node,
but borrows the node label �, i.e., C(δ3) = ∅ and B(δ3) = {�}. Figure 8 shows
the corresponding dependency productions where ↑ and ↓ denote ↑� and ↓�,
respectively. The main nodes are drawn with a blueish background.

Figure 9 shows a dependency graph D created by ΔD. It corresponds to
the derivation shown in Fig. 4. The main nodes of D are drawn with a blueish
background again; they are also the nodes of tree D′ induced by the t-edges.

In the following, consider an arbitrary CHR grammar Γ , its dependency
grammar ΓD, and any dependency graph D ∈ L(ΓD).
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Lemma 2. Every cycle in D contains an edge →e or →f.

Proof. We first show that every cycle in D contains a node labeled A for some
A ∈ N . If all the nodes in a cycle carried labels of the form ↑a or ↓a, then
the cycle can only contain edges labeled b, c, or d. But the definition of these
edges in (3)–(5) prohibits such a cycle. Since the t-edges in D form a tree, the
incoming edge of some A-node (A ∈ N ) in the cycle is not a t-edge, and must
thus be labeled e or f. ��

In the following, we write paths as an alternating sequence of nodes and
edges like n0 →a1 n1 →a2 · · · →al

nl. We may omit nodes between consecutive
edges, and use the shorthand notation n →∗

u n′ and n →+
u n′ if there is a path

from node n to n′ consisting exclusively of →u-edges. n →∗
u n′ also permits the

empty path, i.e., n = n′, but n →+
u n′ requires a path with at least one edge.

We define further relations � and � on nodes of D: n � n′ iff there is a path
n →+

t →a→∗
b→f n′, and n � n′ iff there is a path n →∗

t→a→∗
b→c→∗

d→e n′.

Lemma 3. D is cyclic iff n � n or n �k n for some n ∈ Ḋ and k > 1.

Proof. D is obviously cyclic if it contains such a node n.
If D is cyclic, let D′ be the tree induced by the t-edges of D. We distinguish

between two cases: First assume that D contains an f-edge, say n′ →f n. Node
n′ must be labeled ↑a for some a ∈ Σ̇ and, by (2) and (3), there must be nodes
n′′, n′′′ such that n′′ →a n′′′ →∗

b n′ →f n. Note that n and n′′ carry nonterminal
labels in N and are thus main nodes of D. Now let m′ and m′′′ be the main
nodes of satellites n′ and n′′′, respectively. Then n,m′, n′′,m′′′ are nodes of D′.
By (2), (3), and (7), n′′ = m′′′, m′′′ is a (not necessarily proper) descendant of
m′, and m′ is a child of n, i.e., n′′ is a proper descendant of n, and therefore
n →+

t n′′. This shows that n � n.
Now consider the case where D does not contain an edge →f. We select any

cycle of D, which must contain a node n with an incoming edge →e by Lemma 2.
Removing all occurrences of →e in the cycle decomposes it into k paths. These
paths have the form →∗

t→a→∗
b→c→∗

d , i.e., we have n �k n for some k ≥ 1.
But then we must have k > 1, which can be seen as follows. Consider a path
n1 →∗

t n2 →a n3 →∗
b n4 →c n5 →∗

d n6 →e n7, and let mi be the main node of
satellite ni, for i ∈ [7]. Then each mi is a node of D′. In D′, the path from m1

to m2 descends down the tree (by (1)), then stays at m2 = m3 (by (2)), and
ascends to an ancestor m4 of m3 (by (3)). Now, by (4), m5 is a proper sibling
of m4, and m6 = m7 is a descendant of m5 (by (5) and (6)). Since D′ is a tree,
this implies that n1 �= n7. Therefore, we cannot have n � n for any node n. ��
Lemma 4. Let Γ be a CHR grammar and ΓD its dependency grammar. Γ is
cyclic iff the language of ΓD contains a cyclic graph.

Proof. Let Γ = 〈Σ,N ,P, S〉 be a CHR grammar, Γ̂ its borrowing grammar, and
ΓD its dependency grammar.

Let us first assume that the language of ΓD contains a cyclic graph D, which
is the dependency graph of a derivation tree t ∈ TΓ̂ over Γ̂ . Mirroring Lemma 3,
we distinguish two cases:
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Case 1: D contains a node n such that n �k n for some k > 1, i.e., there are
nodes n0, n1, . . . , nk ∈ Ḋ, n′

i, n
′′
i , n′′′

i ∈ Ḋ, subtrees 〈Hi, pi, ci〉 and 〈H ′
i, p

′
i, c

′
i〉 of

t, and node labels ai, . . . , ak ∈ Σ̇ such that n0 = n = nk and labD(n′′
i ) = ↑ai,

labD(n′′′
i ) = ↓ai, T (ni) = 〈Hi, pi, ci〉, T (n′

i) = 〈H ′
i, p

′
i, c

′
i〉, and ni−1 →∗

t n′
i →a

n′′
i →∗

b→c→∗
d n′′′

i →e ni for i ∈ [k].
By the condition in (6), n′′′

i →e ni implies that ai ∈ B(pi), i.e., pi has
a context node labeled ai. By the condition in (2), n′

i →a n′′
i further implies

that ai ∈ C(p′
i), i.e., p′

i creates a node labeled ai. Therefore, by merging the
corresponding nodes, there is a joining morphism μi such that T (n′

i) �μi
T (ni).

Note that n′
i �= ni follows from the fact that the path from n′

i to ni contains an
edge →c, which implies that there is no �=-edge between those ai-nodes, and thus
that these nodes are not prevented from becoming merged. Finally, ni−1 →∗

t

n′
i implies that T (n′

i) is a subtree of T (ni−1) in t, and therefore T (ni−1) ∗

T (n′
i) �μi

T (ni) for i ∈ [k]. It should be clear that there is a joining morphism
that can act as μi for i ∈ [k], and therefore, T (n)( ∪ �μ)+T (n), i.e., Γ is cyclic
by Definition 6.

Case 2: D contains a node n such that n � n. i.e., there is a path
n →+

t →a→∗
b→f n in D. By arguments entirely analogous to Case 1, one can

then conclude that there is a joining morphism μ such that T (n)( ∪ �μ)+T (n),
i.e., Γ is cyclic.

Assume now that Γ is cyclic. By Definition 6, there is a derivation tree t ∈ TΓ̂

and a joining morphism μ for result(t) such that ( ∪ �μ)+ is reflexive. Because
+ is irreflexive, there must be subtrees t0, . . . , tk and t′1, . . . , t

′
k of t for some

k ≥ 1 such that t0 = tk and ti−1 ∗ t′i �μ ti for i ∈ [k]. Let us choose such
subtrees t0, . . . , tk and t′1, . . . , t

′
k of t, with the additional condition that k is

minimal (with respect to the given t), and let D be the dependency graph of t.
If k = 1, we have t0 ∗ t′1 �μ t0, i.e., t′1 is a (proper) subtree of t0, and the

topmost derivation step of t0 uses a node with label a ∈ Σ̇ as a context node
that is created by the topmost derivation step of t′1, indicated by μ merging the
corresponding nodes. Let n and n′ be the nodes of D such that T (n) = t0 and
T (n′) = t′1. Clearly, D contains the cycle n →+

t n′ →a n′′ →∗
b n′′′ →f n for some

nodes n′′, n′′′ with labD(n′′) = labD(n′′′) = ↑a.
If k > 1, we can conclude that t′i is not a subtree of ti for any i ∈ [k].

Otherwise, we would have ti ∗ t′i �μ ti, contradicting the selection of k > 1
being minimal for t.

Let ni ∈ Ḋ such that T (ni) = ti for i = 0, . . . , k and n′
i ∈ Ḋ such that

T (n′
i) = t′i for i ∈ [k] and assume that ti uses a node with label ai ∈ Σ̇ as

context node that is created by the topmost derivation step of t′i for i ∈ [k],
indicated by μ merging the corresponding nodes. D thus contains paths ni−1 →∗

t

n′
i →a n′′

i →∗
b→c→∗

d n′′′
i →e ni where n′′

i , n′′′
i ∈ Ḋ such that labD(n′′

i ) = ↑ai and
labD(n′′′

i ) = ↓ai for i ∈ [k]. These paths define a cycle in D because n0 = nk. ��
Example 6. The dependency graph shown in Fig. 9 in Example 5 has a cycle
drawn in red indicating that the CHR grammar Δ for dags is indeed cyclic.

Let us reconsider the “pathological” CHR grammar Π introduced in Exam-
ple 4. The criterion devised in [9] does not help to decide whether Π is acyclic
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Fig. 10. Dependency graphs for the grammar in Example 4

or cyclic, but Lemma 4 does: Fig. 10 shows the only two dependency graphs of
L(ΠD). Π is indeed acyclic because they do not contain any cycle.

Theorem 2. Acyclicity of CHR grammars is decidable.

Proof. Following Definition 7, the dependency grammar ΓD of a CHR grammar
Γ can effectively be constructed. Moreover, it is decidable whether the language
of an HR grammar such as ΓD contains cyclic graphs [12]. Therefore, acyclicity
of CHR grammars is decidable by Lemma 4. ��
The construction of the dependency grammar ΓD of a CHR grammar Γ accord-
ing to rules (1)–(6) can be made in polynomial time. However, a straightforward
cyclicity check would inspect all combinations of the finite set of dependency
productions PD, taking exponential time. We are not aware of any more efficient
cyclicity checks for HR grammars. However, this problem closely corresponds to
the circularity problem of attribute grammars. Attribute grammars are a well-
known formalism for adding semantic information to context-free string gram-
mars, and a proper definition of their semantics requires acyclic dependencies
between attributes [14]. Knuth’s (corrected) algorithm for checking circularity
of an attribute grammar has an exponential worst-case running time [15]; Jaza-
yeri et al. [13] have further proved that any deterministic algorithm solving this
problem requires exponential running time, so that an efficient algorithm for
checking the cyclicity of CHR grammars is unlikely to exist.

4 Acyclicity Restricts Generative Power

In this section, we answer the second question left open in [9], namely whether
the class of graph languages generated by acyclic CHR grammars is a proper
subset of the class of all CHR languages. It was conjectured in [9] that the set of
all dags (see Example 1) could not be generated by an acyclic CHR grammar,
a proof of which would thus answer the question positively. We now show that
this is indeed the case.

As usual, we call two nodes v, v′ of a graph G adjacent if both v and v′

occur in attG(e), for some edge e ∈ Ḡ. It is well known that HR languages are
graph languages of bounded treewidth. Since the number of (unordered) pairs
of adjacent nodes in a graph G of bounded treewidth is linearly bounded by the
number |Ġ| of its nodes, the following observation is immediate.
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Observation 1. For every HR language L there is a constant w such that no
graph G ∈ L contains more than w|Ġ| pairs of adjacent nodes.

In a borrowing grammar, each borrowed node is connected via �=-edges to
at most s other nodes, where s is the number of nodes of the largest right-hand
side of the grammar. Hence, if we are given a joining morphism μ : G → H for a
graph G in the borrowing language generated by this grammar, and z ∈ Ġ \ Ḣ
is a borrowed node, then for all but at most s nodes v ∈ Ḣ, we can instead map
z to v to obtain another valid joining morphism.

To express this formally, let us first note that a joining morphism μ is uniquely
determined by μ̇. More precisely, given a graph G, consider a function f : Ġ →
Ġ \ Ġ� such that, for all u, v ∈ Ġ,

(J1) if u /∈ Ġ� then f(u) = u, and
(J2) f(u) = f(v) only if u and v are not connected by a �=-edge.

Then there is a unique joining morphism μ : G → H with μ̇ = f . In particular,
H is uniquely determined by f . This also implies that, given a joining morphism
μ and a borrowed node z ∈ Ġ�, we can modify μ so that it, instead of joining z
with μ̇(z), joins it with any other node v ∈ Ġ\ Ġ�, provided that condition (J2)
is fulfilled. In the following, the resulting joining morphism is denoted by μz �→v,
i.e., μz �→v is the unique joining morphism such that, for all u ∈ Ġ,

μ̇z �→v(u) =
{

v if u = z
μ̇(u) otherwise.

Using this notation, the observations above can be stated formally as follows.

Observation 2. For every borrowing language L, there is a constant s such
that the following holds. Let G ∈ L, and let μ : G → H be a joining morphism
for G. Then, for every node z ∈ Ġ�, there are at least |Ḣ| − s nodes v ∈ Ḣ such
that μ̇z �→v determines a valid joining morphism for G.

We can now show that the language L(Δ) of Example 1 is a CHR language
beyond the generative capacity of acyclic CHR grammars.

Lemma 5. The language of all (unlabeled) dags can be generated by a CHR
grammar but not by an acyclic CHR grammar.

Proof. Example 1 shows that the language D of all directed acyclic graphs is
indeed a CHR language. It remains to show that D cannot be generated by an
acyclic CHR grammar. To prove this by contradiction, assume that there is an
acyclic CHR grammar Γ auch that L(Γ ) = D. We can assume that Γ̂ does not
generate borrowed nodes that are only incident with �- and �=-edges, because
it is well known that Γ̂ can otherwise be modified to remove such nodes from
its language, and by the definition of contraction, such nodes do not affect the
result of a contraction.

For m,n ∈ N, define Hmn to be the unlabeled graph with Ḣmn =
{u1, . . . , um} ∪ {v1, . . . , vn} ∪ {u′

1, . . . , u
′
m} with um = v1 and vn = u′

1, such
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that there are edges from ui to ui+1 and from u′
i to u′

i+1 for all i ∈ [m − 1],
as well as from vi to vj for 1 ≤ i < j ≤ n. Thus, Hmn consists of a complete
graph on n nodes between two chains of m nodes from above and below (if edges
point downwards). In the following, we consider pairs of graphs Gmn ∈ L(Γ̂ )
and Hmn ∈ L(Γ ) such that Gmn contracts to Hmn via a joining morphism μ.

We first fix m in such a way that it is larger than the constant s of Observation
2 applied to Γ̂ . Then Gmn can have at most 2(m − 1) + 2(n − 1) nodes u such
that μ̇(u) ∈ {u1, . . . , um, u′

1, . . . , u
′
m} (since each of these nodes has at least one

incident edge while Hmn contains only 2(m − 1) + 2(n − 1) edges incident with
them in total). Since we have fixed m, this number is linear in n. However, the
total number of edges of Hmn – and thus that of Gmn – grows quadratically in n,
which by Observation 1 means that we can choose n sufficiently large to make
sure that Gmn contains at least one node z ∈ Ġmn \ Ḣmn such that μ̇(z) = vi

for some i ∈ {2, . . . , n − 1}.
Now, consider such a node z. Since m > s, where s is the constant of Obser-

vation 2, by that same observation there is at least one j ∈ [m] such that
μz �→uj

is also a valid joining morphism. The same holds for u′
1, . . . , u

′
m instead

of u1, . . . , um.
Let e be an edge incident with z that is neither a �- nor a �=-edge. If z

is the target of e, then its source is a node u such that μ̇(u) = vp for some
p < i. Consider an appropriate j ∈ [m] such that μz �→uj

is a joining morphism
(which, by the previous paragraph, exists). Thus, instead of being joined with
vi by μ, we join z with uj by μz �→uj

. Since this leaves the edges originating from
uj , . . . , um unaffected, the path from uj to um = v1 still exists in the contraction
with respect to μz �→uj

, and so does the edge from v1 to vp. However, e now leads
from vp to uj , which results in the cycle uj , . . . , um, vp, uj .

The case where z is the source of e is symmetric, using μz �→u′
j

instead of
μz �→uj

. Thus, both cases lead us to the conclusion that L(Γ ) contains a graph
that has a cycle, contradicting the initial assumption that L(Γ ) = D. ��

From Lemma 5, Example 1 and the fact (known from [9]) that acyclic CHR
grammars can generate various graph languages that are not HR languages, we
get the second main result of this paper as an immediate consequence.

Theorem 3. The generative power of acyclic CHR grammars lies strictly
between the generative powers of HR and CHR grammars.

5 Conclusions

In this paper, we have established two main results: (1) acyclicity of CHR gram-
mars is decidable and (2) the generative power of acyclic CHR grammars lies
strictly between that of HR and CHR grammars. Since acyclicity is one condi-
tion for efficient parsing with the predictive top-down and predictive shift-reduce
algorithms of [7,9], this is important for the practical use of CHR grammars.

Since this paper is on a very specific topic, related work is rare. We are only
aware of Berglund’s pumping lemma for CHR grammars [1], which shows their
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close relation to context-free hyperedge replacement. (It seems that this pumping
lemma cannot be used to prove Lemma 5.)

In future work, we plan to compensate for the restricted generative power
of acyclic CHR grammars by conditional contractions, which may require or
forbid the existence of certain paths. Then, e.g., the language of all dags can
be generated by a conditional acyclic CHR grammar that forbids that there is
a path to a borrowed node from its contracted node. The specification of such
paths could be based on the “navigational logic” proposed by Orejas et al. [16].
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