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Preface

This volume contains the proceedings of ICGT 2022, the 15th International Conference
on Graph Transformation, held during July 7–8, 2022, in Nantes, France. ICGT 2022
was affiliated with STAF (Software Technologies: Applications and Foundations), a
federation of leading conferences on software technologies. ICGT 2022 took place under
the auspices of the European Association of Theoretical Computer Science (EATCS),
the European Association of Software Science and Technology (EASST), and the IFIP
Working Group 1.3, Foundations of Systems Specification.

The ICGT series aims at fostering exchange and the collaboration of researchers
from different backgrounds working with graphs and graph transformation, either by
contributing to their theoretical foundations or by applying established formalisms to
classic or novel areas. The series not only serves as a well-established scientific publi-
cation outlet but also as a platform to boost inter- and intra-disciplinary research and to
stimulate for new ideas. The use of graphs and graph-like structures as a formalism for
specification and modeling is widespread in all areas of computer science as well as in
many fields of computational research and engineering. Relevant examples include soft-
ware architectures, pointer structures, state-space and control/data flow graphs, UML
and other domain-specific models, network layouts, topologies of cyber-physical envi-
ronments, quantum computing, and molecular structures. Often, these graphs undergo
dynamic change, ranging from reconfiguration and evolution to various kinds of behav-
ior, all of which may be captured by rule-based graph manipulation. Thus, graphs and
graph transformation form a fundamental universal modeling paradigm that serves as
a means for formal reasoning and analysis, ranging from the verification of certain
properties of interest to the discovery of fundamentally new insights.

ICGT 2022 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008, Enschede
(The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014, L’Aquila
(Italy) in 2015,Vienna (Austria) in 2016,Marburg (Germany) in 2017, Toulouse (France)
in 2018, Eindhoven (The Netherlands) in 2019, and online in 2020 and 2021, following
a series of six International Workshops on Graph Grammars and Their Application to
Computer Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing new unpublished con-
tributions in the theory and applications of graph transformation as well as tool presenta-
tion papers that demonstrate main new features and functionalities of graph-based tools.
All papers were reviewed thoroughly by at least three Program Committee members and
additional reviewers. We received 19 submissions, and the Program Committee selected
10 research papers and one tool presentation paper for publication in these proceedings,
after careful reviewing and extensive discussions. The topics of the accepted papers
cover a wide spectrum, including theoretical approaches to graph transformation, logic
and verification for graph transformation, andmodel transformation, as well as the appli-
cation of graph transformation in some areas. In addition to these paper presentations,
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we were delighted to host an invited talk by Christian Doczkal (Max Planck Institute for
Security and Privacy, Bochum, Germany).

A special focus of ICGT 2022 consisted of new approaches to formalizing the knowl-
edge in the research field of graph transformation theory via proof assistants such as Coq.
A long-termgoal of this kind of approach consists of establishing aCoq-enrichedwiki for
this research field akin to the nLab. This platform will serve as a sustainable mechanism
for curating applied and mathematical knowledge in graph transformation research, and
eventually as a research tool in its own right, notably through the provision of interactive
database-supported proof construction. Another avenue of research concerns executable
applied category theory (ExACT), i.e., code extraction from formalized categorical struc-
tures, with the perspective of curating a database of correct-by-construction reference
prototype algorithms for various forms of graph transformation semantics and graph-like
data structures. To introduce the initiative, facilitate the broad involvement of the ICGT
community, and collect feedback from participants regarding the scope and format of
such a wiki project, a peer-reviewed brainstorming session was conducted as one of the
events at the conference. Results of this session as well as further information on this
initiative are available via the GReTA ExACT working group website (https://www.irif.
fr/%7Egreta/gretaexact/).

We would like to thank all who contributed to the success of ICGT 2022, the invited
speaker Christian Doczkal, the authors of all submitted papers, and the members of the
Program Committee, as well as the additional reviewers, for their valuable contributions
to the selection process. We are grateful to Reiko Heckel, the chair of the Steering
Committee of ICGT, for his valuable suggestions; to Massimo Tisi and Gerson Sunye,
the general chair and the local chair, respectively, of STAF 2022; and to the STAF
federation of conferences for hosting ICGT 2022.Wewould also like to thank EasyChair
for providing support for the review process.

May 2022 Nicolas Behr
Daniel Strüber

https://www.irif.fr/%7Egreta/gretaexact/
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Graph Theory in Coq: Axiomatizing Isomorphism
of Treewidth-Two Graphs (Abstract of Invited Talk)

Christian Doczkal

Max Planck Institute for Security and Privacy (MPI-SP), Bochum, Germany

Despite the importance of graph theory in mathematics and computer science, there are
relatively few machine-checked proofs of graph theory results and even fewer general
purpose libraries. After the formalization of some basic concepts in HOL [1] and a
formalization of Euler’s theorem in Mizar [12] during the 90s, the 2000s saw several
results on planar graphs: Gonthier’s celebrated formal proof of the four-color theorem
[9] in Coq, the formalization of tame graphs as part of the Flyspeck project [13] in
Isabelle/HOL, and a study on Delaunay triangulations [8] by Dufourd and Bertot. More
recently,Noschinski developed a library for both simple andmultigraphs in Isabelle/HOL
[14].

Over the past couple of years, Damien Pous and I have developed a graph the-
ory library1,2 for the interactive theorem prover Coq3 based on the Mathematical
Components Library4.

The initial goal was to formalize soundness and completeness of a finite axiomati-
zation of isomorphism for the class of labeled treewidth-two multigraphs [10], a new
result answering positively – for this particular class of graphs – a question posed by
Courcelle [2, p. 118]. Since none of the available libraries suited our needs, we started
to develop a new graph theory library [3, 6, 7]. Since then, there has been some renewed
interest in the formalization of graph theory, both in Coq [15, 16] and in other systems
[11].

The development of our library and the aforementioned axiomatizability result that
guided the development process highlight the fruitful interplay between the develop-
ment of pen-and-paper proofs and the development of machine-checked mathematical
libraries. While the initial design of the library allowed us to formally verify [4] parts of
the original proofs, formalizing the full proof seemed out of reach. This prompted us to
develop a new pen-and-paper proof [5] that was significantly simpler and written with
formalization in mind. In addition, we revised and extended the library [7], allowing us
to overcome those difficulties that could not be sidestepped using the new proof. This
allowed us to finally verify [6] the completeness result we initially set out to prove.

Despite the use of a graph rewrite system, the completeness proof and its formal-
ization in Coq are elementary in the sense that we do not employ results from graph
transformation theory. This is due, at least in part, to us not being familiar with these

1 https://coq-community.org/graph-theory/.
2 With contributions from Daniel Severín, Guillaume Combette and Guillaume Ambal.
3 https://coq.inria.fr.
4 https://math-comp.github.io.

https://coq-community.org/graph-theory/
https://coq.inria.fr
https://math-comp.github.io
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techniques and there not being any preexisting graph transformation libraries, in partic-
ular none that would interface well with the Mathematical Components library. Further,
our simple 4-rule rewrite system could still be reasoned about directly, However, for
reasoning about more complex graph rewrite systems, using a more abstract approach
appears necessary.
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Acyclic Contextual Hyperedge
Replacement: Decidability of Acyclicity

and Generative Power

Frank Drewes1(B) , Berthold Hoffmann2(B) , and Mark Minas3(B)

1 Ume̊a Universitet, Ume̊a, Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany

mark.minas@unibw.de

Abstract. Graph grammars based on contextual hyperedge replace-
ment (CHR) extend the generative power of the well-known hyperedge
replacement (HR) grammars to an extent that makes them useful for
practical modeling. Recent work has shown that acyclicity is a key con-
dition for parsing CHR grammars efficiently. In this paper we show that
acyclicity of CHR grammars is decidable and that the generative power
of acyclic CHR grammars lies strictly between that of HR grammars and
unrestricted CHR grammars.

Keywords: Graph grammar · Hyperedge replacement · Contextual
hyperedge replacement · Acyclicity · Decidability · Generative power

1 Introduction

Contextual hyperedge replacement (CHR, [3,4]) strengthens the generative
power of hyperedge replacement (HR, [11]) significantly, e.g., to languages of
unbounded treewidth. This is achieved by a moderate extension: productions
may glue a graph not only to nodes attached to the nonterminal hyperedge being
replaced, but also to nodes in the context. The applicability of such productions
thus depends on the presence of context nodes created by other derivation steps.

In previous work, we have devised efficient parsing algorithms for subclasses
of HR grammars, which rely on canonical orders for replacing nonterminals [5,6].
When these algorithms are extended to CHR, the canonical orders may be in
conflict with dependencies arising from the creation and use of context nodes.
Recently [9] we have shown that a CHR grammar Γ can be turned into an HR
grammar generating graphs where the context nodes of Γ are “borrowed”, i.e.,
generated like ordinary nodes. From these graphs, those generated by Γ can be
obtained by “contraction”, i.e., merging borrowed nodes with other nodes. This
is correct provided that contractions cannot create cyclic chains of dependencies.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Behr and D. Strüber (Eds.): ICGT 2022, LNCS 13349, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-09843-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09843-7_1&domain=pdf
http://orcid.org/0000-0001-7349-7693
http://orcid.org/0000-0002-5608-996X
http://orcid.org/0000-0002-8968-9013
https://doi.org/10.1007/978-3-031-09843-7_1
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In this paper, we establish two important properties of acyclic CHR gram-
mars that have been left open in [9]. (1) It is decidable whether a CHR grammar
is acyclic or not (Sect. 3). (2) Acyclicity reduces the generative power of CHR
grammars by limiting the possibility to exploit node dependencies between pro-
ductions (Sect. 4).

We start by recapitulating CHR grammars, borrowing grammars and con-
tractions as well as acyclicity taken from [9] before we present the results of this
paper in Sect. 3 and Sect. 4. Finally, we conclude the paper by discussing related
and future work in Sect. 5.

2 Contextual Hyperedge Replacement

We let N denote the set of non-negative integers, and [n] the set {1, . . . , n} for
all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the empty
sequence is denoted by ε, and the length of a sequence α by |α|. For a function
f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by f∗(a1 · · · an) =
f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A. As usual, →+ and →∗ denote
the transitive and the transitive reflexive closure of a binary relation →.

Graphs. Let Σ = Σ̇�Σ̄ be an alphabet of labels for nodes and edges respectively,
where edge labels come with a rank function rank : Σ̄ → N.

Then a (hyper-) graph over Σ is a tuple G = (Ġ, Ḡ, attG, labG), where Ġ and
Ḡ are disjoint finite sets of nodes and (hyper-) edges, respectively, the function
attG : Ḡ → Ġ∗ attaches sequences of nodes to edges, and the labeling function
labG : Ġ ∪ Ḡ → Σ maps Ġ to Σ̇ and Ḡ to Σ̄ in such a way that |attG(e)| =
rank(labG(e)) for every edge e ∈ Ḡ. We assume that the attachment sequences
are free of repetitions. GΣ denotes the class of graphs over Σ. An edge carrying
a label σ ∈ Σ̄ is called σ-edge. G◦ denotes the discrete subgraph of a graph G,
which is obtained by removing all edges.

A graph G ∈ GΣ is called a σ-handle (or just a handle) if G has a single
σ-edge e with σ ∈ Σ̄, and each node of G is attached to e. HΣ shall denote the
set of handles of Σ. If rank(σ) = 0, a σ-handle is unique (up to isomorphism);
we denote such a handle by σ•.

G − x shall denote the graph G without the edge x ∈ Ḡ. A set of edges
E ⊆ Ḡ induces the subgraph consisting of these edges and their attached nodes.
Given graphs G1, G2 ∈ GΣ with disjoint edge sets, a graph G = G1 ∪G2 is called
the union of G1 and G2 if G1 and G2 are subgraphs of G, Ġ = Ġ1 ∪ Ġ2, and
Ḡ = Ḡ1 ∪ Ḡ2. Note that G1 ∪ G2 exists only if common nodes are consistently
labeled, i.e., labG1(v) = labG2(v) for v ∈ Ġ1 ∩ Ġ2.

For graphs G and H, a morphism m : G → H is a pair m = (ṁ, m̄) of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserve attachments and labels, i.e.,
attH(m̄(v)) = ṁ∗(attG(v)), labH(ṁ(v)) = labG(v), and labH(m̄(e)) = labG(e)
for all v ∈ Ġ and e ∈ Ḡ.

The morphism is injective or surjective if both ṁ and m̄ have this property,
and a subgraph inclusion of G in H if m(x) = x for every node or edge x in G;
then we write G ⊆ H. If m is surjective and injective, we say that G and H are
isomorphic, written as G ∼= H.
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Contextual Hyperedge Replacement (CHR). The set Σ̄ of edge labels is
assumed to contain a subset N of nonterminal labels; edges with labels in N are
nonterminal while all others are terminal.

A production p = (L,R) consists of graphs L and R over Σ such that (1) the
left-hand side L contains exactly one edge x, which is a nonterminal, and (2) the
right-hand side R is an arbitrary supergraph of L − x. Nodes in L that are not
attached to x are the context nodes of L (and of p); p is called context-free if it
has no context nodes, and contextual otherwise.

We use a special form of standard double-pushout graph transformation [10]
for applying productions: Let p be a production as above, and consider some
graph G. An injective morphism m : L → G is called a matching for p in G. If
such a matching exists, we say that p is applicable to the nonterminal m(x) ∈ Ḡ.
The replacement of m(x) by R (via m) is then given as the graph H obtained
from the disjoint union of G − m(x) and R by identifying every node v ∈ L̇
with m(v). We write this as G ⇒m,p H, but omit m if it is irrelevant, and write
G ⇒P H if G ⇒p H for some p taken from a set P of productions.

This leads to the notion of a CHR grammar [3,4].

Definition 1 (CHR grammar). A contextual hyperedge replacement gram-
mar Γ = 〈Σ,N ,P, S〉 (CHR grammar) consists of alphabets Σ and N as above,
a finite set P of productions over Σ, and a start symbol S ∈ N such that
rank(S) = 0. The language generated by Γ is given as L(Γ ) = {G ∈ GΣ\N |
S• ⇒∗

P G}. Γ is a (context-free) hyperedge replacement grammar (HR grammar
[11]) if all productions in P are context-free.

CHR grammars can generate languages that cannot be generated by HR
grammars. In particular, this includes languages of unbounded treewidth, like
the language GΣ of all graphs and our running example introduced next.

Example 1 (CHR grammar for dags). Figure 1 shows our running example,
and introduces our conventions for drawing graphs and productions. Nodes are
circles, nonterminal edges are rectangular boxes containing the corresponding
labels, and terminal edges are shapes like �. (In this example, all nodes are
labeled with the “invisible” label �, i.e., they are effectively unlabeled.) Edges

Fig. 1. Productions for generating dags (Example 1)

Fig. 2. A derivation with Δ
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are connected to their attached nodes by lines ordered counter-clockwise around
the edge, starting at noon. For productions (L,R), we draw L and R, and specify
the inclusion of L̇ in Ṙ by ascribing the same identifier to them, like x and y in
our example.

Figure 1 defines the productions δ0 to δ3 of the CHR grammar Δ. S and A
are nonterminal labels of rank 0 and 1, respectively, and � is a binary terminal
label. A derivation with this grammar is shown in Fig. 2.

It is easy to see that Δ derives only non-empty unlabeled acyclic graphs
(dags, for short): In every derivation, the A-edge is attached to a node with
indegree 0 so that no cycles may be introduced by production δ3. Vice versa,
every non-empty dag D can be generated with Δ: The nodes of D can be sorted
topologically, e.g., as v1, . . . , vn. Then every vi can be generated with production
δ2, and its outgoing edges can be generated with production δ3 since the targets
of these edges must be nodes vj with j < i. So L(Δ) is indeed the set of all
non-empty dags.

In previous work, we have devised efficient parsing algorithms for HR gram-
mars [5,8]. These algorithms apply productions in canonical order (analogous to
leftmost and rightmost derivations in string grammars). When extending these
algorithms to CHR grammars, a production may only be applied when its con-
text nodes have been created in previous steps. This may be in conflict with the
canonical application orders. In [9], we have shown that there is a close relation-
ship between a CHR grammar Γ and its so-called borrowing (HR) grammar Γ̂ :
every graph H ∈ L(Γ ) is a “contraction” of a graph G ∈ L(Γ̂ ). Moreover, the
converse is also true as long as Γ is acyclic, a notion to be recalled later.

In the following, we assume that Σ\N contains two auxiliary edge labels that
are not used elsewhere in Γ : edges carrying the unary label � will mark borrowed
nodes, and binary edges labeled �= will connect borrowed nodes with other nodes
in the same right-hand side, to signify that they must not be identified with each
other by contraction later on.

Definition 2 (Borrowing grammar). Let Γ = 〈Σ,N ,P, S〉 be a CHR gram-
mar. For p = (L,R) ∈ P, its borrowing production p̂ = (L̂, R̂) is obtained by
(1) removing every context node from L̂ and (2) constructing R̂ from R as fol-
lows: for every context node v of p, attach a new �-edge to v, and add �=-edges
from v to every other node with the label labL(v). The borrowing grammar
Γ̂ = 〈Σ,N , P̂ , S〉 of Γ is given with P̂ = {p̂ | p ∈ P}.

Note that p̂ = p if p is context-free.

Definition 3 (Contraction). For a graph G let

Ġ� = {v ∈ Ġ | v = attG(e) for a �-edge e ∈ Ḡ} and
�=G = {(u, v) ∈ Ġ × Ġ | uv = attG(e) for a �=-edge e ∈ Ḡ}.

A morphism μ : G → H is called a joining morphism for G if Ḣ = Ġ \ Ġ�,
H̄ = Ḡ, μ̄ and the restriction of μ̇ to Ġ \ Ġ� are inclusions, and (v, μ̇(v)) /∈ �=G

for every v ∈ Ġ�. The graph core(H) obtained from H by removing all edges
with labels � and �= is called the μ-contraction of G or just a contraction of G.
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Fig. 3. Borrowing productions for generating dags

Fig. 4. A derivation with Δ̂

Fig. 5. The four contractions of the graph derived in Fig. 4

Example 2 (Borrowing grammar). Figure 3 shows the borrowing productions
for the productions of the CHR grammar of dags in Fig. 1, where the contextual
production δ3 is replaced by the borrowing production δ̂3.

A derivation with the borrowing grammar Δ̂ is shown in Fig. 4; the resulting
terminal graph can be contracted in four possible ways, to the graphs C1 to C4

shown in Fig. 5. The contraction C4 yields a cyclic graph; it is the only one of
these four that cannot be generated with the productions of the CHR grammar Δ
in Example 1.

Definition 4 (Borrowing version of a derivation). Let Γ = 〈Σ,N ,P, S〉
be a CHR grammar and Γ̂ its borrowing grammar. A derivation

S• ⇒m̂1
p̂1

H1 ⇒m̂2
p̂2

H2 ⇒m̂3
p̂3

· · · ⇒m̂n

p̂n
Hn

in Γ̂ is a borrowing version of a derivation

S• ⇒m1
p1

G1 ⇒m2
p2

G2 ⇒m3
p3

· · · ⇒mn
pn

Gn

in Γ if the following hold, for i = 1, 2, . . . , n and pi = (L,R):

1. p̂i is the borrowing production of pi,
2. if L̄ = {e} then m̂i(e) = mi(e), and
3. for every x ∈ R̄ ∪ (Ṙ \ L̇), the images of x in Gi and Hi are the same.

By a straightforward induction, it follows that every derivation in Γ has a
borrowing version in Γ̂ , and Gi is the μi-contraction of Hi for i ∈ [n], where the
joining morphism μi is uniquely determined by μ̄i(e) = e for all e ∈ H̄i.

Theorem 1 will show that the converse is also true, i.e., that every contraction
of a graph in L(Γ̂ ) can also be derived in Γ , provided that Γ is acyclic. Informally,
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Γ is cyclic if there is a derivation of a graph G in Γ̂ and a contraction H of G
so that there is a cyclic dependency between derivation steps that create nodes
and derivation steps that use them as context nodes. These cyclic dependencies
then result in derivations of graphs in Γ̂ having a contraction that cannot be
derived in Γ because there is no reordering of the derivation steps that yields a
valid derivation in Γ .

For the definition of acyclicity in Definition 6, we need the well-known notion
of derivation trees, which reflect the context-freeness of HR grammars [2, Defi-
nition 3.3]. Here we use the slightly modified version introduced in [9].

Definition 5 (Derivation tree). Let Γ = 〈Σ,N ,P, S〉 be a HR grammar.
The set TΓ of derivation trees over Γ and the mappings root : TΓ → HΣ as well
as result : TΓ → GΣ are inductively defined as follows:

– Each handle G ∈ HΣ is in TΓ , and root(G) = result(G) = G.
– A triple t = 〈G, p, c〉 consisting of a nonterminal handle G ∈ HN , a production

p ∈ P, and a sequence c = t1t2 · · · tn ∈ T
∗
Γ is in TΓ if the union graphs

G′ = G◦ ∪ ⋃n
i=1 root(ti) and G′′ = G◦ ∪ ⋃n

i=1 result(ti) exist, G ⇒p G′, and
nodes(result(ti)) ∩ nodes(result(tj)) = nodes(root(ti)) ∩ nodes(root(tj)) for
all distinct i, j ∈ [n], where nodes(H) denotes the node set of a graph H.
Furthermore, we let root(t) = G and result(t) = G′′.

We assume the ordering of the subtrees in c = t1t2 · · · tn within a derivation
tree t = 〈G, p, c〉 to be chosen arbitrarily, but kept fixed.

Let t, t′ be any derivation trees. We call t a parent tree of t′, written t  t′, if
t = 〈G, p, t1t2 · · · tn〉 and t′ = ti for some i, and we call t′ a subtree of t if t′ = t
or t = 〈G, p, t1t2 · · · tn〉 and t′ is a subtree of ti for some i. A derivation tree t
introduces a node u (at its root) if t = 〈G, p, t1t2 · · · tn〉 and u ∈ nodes(root(ti))\
Ġ for some i. The set of all these nodes is denoted by intro(t).

The following theorem is equivalent to Theorem 3.4 in [2]:

Lemma 1 (See [9, Theorem 1]). Let Γ = 〈Σ,N ,P, S〉 be a HR grammar,
H ∈ HΣ a handle and G ∈ GΣ a graph. There is a derivation tree t ∈ TΓ with
root(t) = H and result(t) = G iff H ⇒∗

P G.

Note that derivation trees are defined only for HR grammars. In the con-
textual case, any properly labeled node can be used as a context node as long
as it has been created earlier in a derivation. This fact produces dependencies
between derivation steps which do not exist in HR derivations.

In order to describe these additional dependencies, let us define the relation
�μ on subtrees of a derivation tree t ∈ TΓ̂ described by a joining morphism μ
for result(t). For any two subtrees t′, t′′ of t, we let t′ �μ t′′ iff there is a node
u ∈ intro(t′′) so that μ̇(u) �= u and μ̇(u) ∈ intro(t′).

Informally, t′ �μ t′′ means that t′ describes a derivation step (the topmost one
that transforms the root handle of t′), which creates a node used as a contextual
node in the corresponding topmost contextual derivation step described by t′′.
This restricts the set of all borrowing versions of derivations characterized by t:
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Fig. 6. Derivation tree of the derivation in Fig. 4

the derivation step described by t′′ must occur after the one described by t′.
However, the order of derivation steps must obey the parent tree relation  as
well. This motivates the following:

Definition 6 (Acyclic CHR grammar). A CHR grammar Γ is acyclic if
( ∪ �μ)+ is irreflexive for all derivation trees t ∈ TΓ̂ over Γ̂ and all joining
morphisms μ for result(t). Otherwise, Γ is cyclic.

Example 3 (Derivation tree for dags). The derivation tree of the borrowing
derivation in Fig. 4 is shown in Fig. 6 in black. Edges between derivation tree
nodes represent the parent tree relation . The thick dashed arrows drawn in
red represent the relation �μ for the joining morphism μ defined by μ(e) = b and
μ(c) = d, yielding contraction C4 in Fig. 5. This implies t3 �μ t11 and t9 �μ t5,
respectively, when derivation subtrees are referred to by the numbers at their
root nodes. Relations  and �μ thus introduce a cycle affecting t5 and t9.

Theorem 1 (See [9, Theorem 2]). Let Γ be a CHR grammar and Γ̂ its
borrowing grammar. For every graph H ∈ L(Γ ), there is a graph G ∈ L(Γ̂ ) so
that H is a contraction of G. Moreover, every contraction of a graph in L(Γ̂ ) is
in L(Γ ) if Γ is acyclic.

3 Acyclicity of CHR Grammars is Decidable

Definition 6 does not provide effective means to check whether a CHR grammar is
acyclic or not. In [9], we have devised a decidable sufficient criterion for acyclicity
based on the so-called grammar graph GG(Γ ) of a CHR grammar Γ (see [9,
Definition 11]).



10 F. Drewes et al.

Fig. 7. Grammar graph of the CHR grammar Π

GG(Γ ) has nonterminal edge labels, node labels and productions (or pro-
duction names) as nodes, and binary edges so that (1) every production is the
target of an edge from its left-hand side nonterminal, and source of edges to the
nonterminals on its right-hand side, (2) every node label 
 is the source of edges
to all productions with 
-nodes as context nodes, and the target of edges from
all productions introducing 
-nodes on their right-hand side.

If GG(Γ ) does not have a cycle that contains a node label as node, one
can conclude that Γ is acyclic by [9, Lemma 1]. However, this criterion is not
necessary, i.e., one cannot be sure that Γ is cyclic if GG(Γ ) has such a cycle, as
the following (pathological) example shows.

Example 4 (Acyclic CHR grammar with cyclic grammar graph). Let Π be the
CHR grammar with the following productions over nullary nonterminal labels S
(the start symbol), A, B, C, and node labels a, b:

Figure 7 shows the grammar graph GG(Π) that has clearly a cycle containing
node labels a and b as nodes. Even so, Π is acyclic as one can see as follows:
The borrowing grammar Π̂ has only the following two derivations, each of them
with one possible contraction:

Both of them do not borrow any node before it has been created, i.e., (
∪ �μ)+ is irreflexive. Therefore, Π is acyclic.

We will now provide a decidable criterion for acyclicity of CHR grammars
that is both sufficient and necessary, by turning a CHR grammar into a HR
grammar whose language contains cyclic graphs iff the CHR grammar is cyclic.
We start by motivating the construction of the HR grammar.

The dependency grammar ΓD of a CHR grammar Γ is a HR grammar that
has as its language graphs that contain derivation trees of the borrowing gram-
mar Γ̂ . To be more precise, if there is a derivation of a graph H in Γ̂ , ΓD derives
a graph D that has a subgraph D′ whose nodes correspond to the nonterminal
derivation tree nodes of H, and its edges from parent to child nodes represent
the parent tree relation  on derivation trees. D contains additional nodes that
represent nodes of H created by derivation steps, and additional edges. When-
ever there is a possibility for a joining morphism μ to merge a node n with a
borrowed node n′ in H, D will contain a path between those nodes t and t′ in
D′ that represent the creation of n and n′, respectively. This path represents
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t �μ t′, and thus D contains a cycle iff ( ∪ �μ)+ is reflexive, characterizing
the cyclicity of Γ . This makes acyclicity of Γ decidable because it is decidable
whether the language of an HR grammar contains cyclic graphs.

Let us first introduce some auxiliary concepts before we formally define
dependency grammars: a production p = (L,R) borrows a node label 
 ∈ Σ̇
if L has a context node labeled 
; p creates 
 if it creates a node labeled 
, i.e.,

 = lab(v) for some v ∈ Ṙ \ L̇. We denote the sets of node labels borrowed and
created by p by B(p) and C(p), respectively.

Definition 7 (Dependency grammar). Let Γ = 〈Σ,N ,P, S〉 be a CHR
grammar, where Σ̇ = {a1, . . . , am}. The dependency grammar of Γ is the HR
grammar ΓD = 〈ΣD,ND,PD, S〉 consisting of the following components:

ND = {AD | A ∈ N} ∪ {S} Σ̄D = ND ∪ {a, b, c, d, e, f, t}
Σ̇D = N ∪ {↑a1, . . . , ↑am, ↓a1, . . . , ↓am} PD = {(S•, dep(S))} ∪ {pD | p ∈ P}

where rank(AD) = 2m + 1 for all A ∈ N , S is nullary, and all other edge labels
are binary.

To define the productions, let us denote by dep(A), for A ∈ N , the
AD-handle consisting of an AD-edge e which is attached to nodes n0, . . . , n2m

labeled by A, ↑a1, . . . , ↑am, ↓a1, . . . , ↓am, respectively. For each of the labels 
 ∈
{A, ↑a1, . . . , ↑am, ↓a1, . . . , ↓am}, the unique node attached to e which is labeled 

will be denoted by e.
. We call e.A the main node of the handle and the nodes e.↑ai

and e.↓ai its satellites. (We also consider e.A to be its own satellite.)
Now, for p = (L,R) ∈ P the dependency production pD = (LD, RD) is defined

as follows: Suppose that the nonterminal edge of L has the label A0 ∈ N and
the nonterminal edges of R, ordered arbitrarily, have the labels A1, . . . , Ak ∈ N .
Then LD = dep(A0) and RD is the disjoint union of all handles dep(Ai) for
i ∈ [k], the set L̇D of all left-hand side nodes, and additional binary edges as
specified below, where we denote the nonterminal edge in LD by e0 and that of
dep(Ai) in RD by ei (for i ∈ [k]). Denoting a binary x-edge from ei.
 to ej .


′ by
ei.
 →x ej .


′, the terminal edges in R are:

e0.A0 →t ei.Ai for all i ∈ [k] (1)
e0.A0 →a e0.↑a for all a ∈ C(p) (2)
ei.↑a →b e0.↑a for all i ∈ [k] (3)
ei.↑a →c ej .↓a for all i, j ∈ [k] , i �= j (4)
e0.↓a →d ei.↓a for all i ∈ [k] (5)
e0.↓a →e e0.A0 for all a ∈ B(p) (6)
ei.↑a →f e0.A0 for all i ∈ [k] and a ∈ B(p) (7)

Note that each node in the right-hand side of a production is attached to one
and only one nonterminal edge e, i.e., its denotation as e.
 is unique. Therefore,
the derivation of a graph D ∈ L(ΓD) induces a unique partition of Ḋ into subsets,
each consisting of a main node and its satellites that have at some point during
the derivation been attached to the same nonterminal.
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Fig. 8. Dependency productions for pro-
ductions δ2 and δ3 of grammar Δ

Fig. 9. Dependency graph of the
derivation in Fig. 4

Derivations in borrowing grammars and dependency grammars are closely
related: Consider a CHR grammar Γ , its borrowing grammar Γ̂ , and its depen-
dency grammar ΓD. The first step of a derivation in ΓD yields dep(S). For p ∈ P,
the nonterminals in pD (both in the left- and right-hand side) correspond bijec-
tively to those in p, where each label A in p has been replaced by AD in pD. Thus,
every derivation tree t ∈ TΓ̂ corresponds to a unique derivation tree tD ∈ TΓD ,
and vice versa. We call the graph result(tD) the dependency graph of t. By the
above discussion, each graph derived by ΓD is the dependency graph of some
derivation tree t ∈ TΓ̂ .

Now, given such a dependency graph D = result(tD), consider the subgraph
D′ of D induced by its t-edges (defined by (1) in Definition 7). By (1), the nodes
of D′ are the main nodes of D, i.e., those carrying a label A ∈ N . As explained
above, in the derivation of D each such node was – together with its satellites –
attached to a unique nonterminal edge, and this edge carried the corresponding
label AD. This means that D′ is a tree which is isomorphic to the derivation tree
t of which D is the dependency graph, provided that we disregard the leaves of t.
The isomorphism relates each node n of D′ to a unique subtree T (n) = 〈H, p, c〉
of t, and the node label of n coincides with the nonterminal label of H.

Example 5. We consider CHR gammar Δ for dags again (see Example 1). Pro-
duction δ2 does not borrow any node, but creates the “invisible” node label
�, i.e., C(δ2) = {�} and B(δ2) = ∅. Production δ3 does not create any node,
but borrows the node label �, i.e., C(δ3) = ∅ and B(δ3) = {�}. Figure 8 shows
the corresponding dependency productions where ↑ and ↓ denote ↑� and ↓�,
respectively. The main nodes are drawn with a blueish background.

Figure 9 shows a dependency graph D created by ΔD. It corresponds to
the derivation shown in Fig. 4. The main nodes of D are drawn with a blueish
background again; they are also the nodes of tree D′ induced by the t-edges.

In the following, consider an arbitrary CHR grammar Γ , its dependency
grammar ΓD, and any dependency graph D ∈ L(ΓD).
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Lemma 2. Every cycle in D contains an edge →e or →f.

Proof. We first show that every cycle in D contains a node labeled A for some
A ∈ N . If all the nodes in a cycle carried labels of the form ↑a or ↓a, then
the cycle can only contain edges labeled b, c, or d. But the definition of these
edges in (3)–(5) prohibits such a cycle. Since the t-edges in D form a tree, the
incoming edge of some A-node (A ∈ N ) in the cycle is not a t-edge, and must
thus be labeled e or f. ��

In the following, we write paths as an alternating sequence of nodes and
edges like n0 →a1 n1 →a2 · · · →al

nl. We may omit nodes between consecutive
edges, and use the shorthand notation n →∗

u n′ and n →+
u n′ if there is a path

from node n to n′ consisting exclusively of →u-edges. n →∗
u n′ also permits the

empty path, i.e., n = n′, but n →+
u n′ requires a path with at least one edge.

We define further relations � and � on nodes of D: n � n′ iff there is a path
n →+

t →a→∗
b→f n′, and n � n′ iff there is a path n →∗

t→a→∗
b→c→∗

d→e n′.

Lemma 3. D is cyclic iff n � n or n �k n for some n ∈ Ḋ and k > 1.

Proof. D is obviously cyclic if it contains such a node n.
If D is cyclic, let D′ be the tree induced by the t-edges of D. We distinguish

between two cases: First assume that D contains an f-edge, say n′ →f n. Node
n′ must be labeled ↑a for some a ∈ Σ̇ and, by (2) and (3), there must be nodes
n′′, n′′′ such that n′′ →a n′′′ →∗

b n′ →f n. Note that n and n′′ carry nonterminal
labels in N and are thus main nodes of D. Now let m′ and m′′′ be the main
nodes of satellites n′ and n′′′, respectively. Then n,m′, n′′,m′′′ are nodes of D′.
By (2), (3), and (7), n′′ = m′′′, m′′′ is a (not necessarily proper) descendant of
m′, and m′ is a child of n, i.e., n′′ is a proper descendant of n, and therefore
n →+

t n′′. This shows that n � n.
Now consider the case where D does not contain an edge →f. We select any

cycle of D, which must contain a node n with an incoming edge →e by Lemma 2.
Removing all occurrences of →e in the cycle decomposes it into k paths. These
paths have the form →∗

t→a→∗
b→c→∗

d , i.e., we have n �k n for some k ≥ 1.
But then we must have k > 1, which can be seen as follows. Consider a path
n1 →∗

t n2 →a n3 →∗
b n4 →c n5 →∗

d n6 →e n7, and let mi be the main node of
satellite ni, for i ∈ [7]. Then each mi is a node of D′. In D′, the path from m1

to m2 descends down the tree (by (1)), then stays at m2 = m3 (by (2)), and
ascends to an ancestor m4 of m3 (by (3)). Now, by (4), m5 is a proper sibling
of m4, and m6 = m7 is a descendant of m5 (by (5) and (6)). Since D′ is a tree,
this implies that n1 �= n7. Therefore, we cannot have n � n for any node n. ��
Lemma 4. Let Γ be a CHR grammar and ΓD its dependency grammar. Γ is
cyclic iff the language of ΓD contains a cyclic graph.

Proof. Let Γ = 〈Σ,N ,P, S〉 be a CHR grammar, Γ̂ its borrowing grammar, and
ΓD its dependency grammar.

Let us first assume that the language of ΓD contains a cyclic graph D, which
is the dependency graph of a derivation tree t ∈ TΓ̂ over Γ̂ . Mirroring Lemma 3,
we distinguish two cases:



14 F. Drewes et al.

Case 1: D contains a node n such that n �k n for some k > 1, i.e., there are
nodes n0, n1, . . . , nk ∈ Ḋ, n′

i, n
′′
i , n′′′

i ∈ Ḋ, subtrees 〈Hi, pi, ci〉 and 〈H ′
i, p

′
i, c

′
i〉 of

t, and node labels ai, . . . , ak ∈ Σ̇ such that n0 = n = nk and labD(n′′
i ) = ↑ai,

labD(n′′′
i ) = ↓ai, T (ni) = 〈Hi, pi, ci〉, T (n′

i) = 〈H ′
i, p

′
i, c

′
i〉, and ni−1 →∗

t n′
i →a

n′′
i →∗

b→c→∗
d n′′′

i →e ni for i ∈ [k].
By the condition in (6), n′′′

i →e ni implies that ai ∈ B(pi), i.e., pi has
a context node labeled ai. By the condition in (2), n′

i →a n′′
i further implies

that ai ∈ C(p′
i), i.e., p′

i creates a node labeled ai. Therefore, by merging the
corresponding nodes, there is a joining morphism μi such that T (n′

i) �μi
T (ni).

Note that n′
i �= ni follows from the fact that the path from n′

i to ni contains an
edge →c, which implies that there is no �=-edge between those ai-nodes, and thus
that these nodes are not prevented from becoming merged. Finally, ni−1 →∗

t

n′
i implies that T (n′

i) is a subtree of T (ni−1) in t, and therefore T (ni−1) ∗

T (n′
i) �μi

T (ni) for i ∈ [k]. It should be clear that there is a joining morphism
that can act as μi for i ∈ [k], and therefore, T (n)( ∪ �μ)+T (n), i.e., Γ is cyclic
by Definition 6.

Case 2: D contains a node n such that n � n. i.e., there is a path
n →+

t →a→∗
b→f n in D. By arguments entirely analogous to Case 1, one can

then conclude that there is a joining morphism μ such that T (n)( ∪ �μ)+T (n),
i.e., Γ is cyclic.

Assume now that Γ is cyclic. By Definition 6, there is a derivation tree t ∈ TΓ̂

and a joining morphism μ for result(t) such that ( ∪ �μ)+ is reflexive. Because
+ is irreflexive, there must be subtrees t0, . . . , tk and t′1, . . . , t

′
k of t for some

k ≥ 1 such that t0 = tk and ti−1 ∗ t′i �μ ti for i ∈ [k]. Let us choose such
subtrees t0, . . . , tk and t′1, . . . , t

′
k of t, with the additional condition that k is

minimal (with respect to the given t), and let D be the dependency graph of t.
If k = 1, we have t0 ∗ t′1 �μ t0, i.e., t′1 is a (proper) subtree of t0, and the

topmost derivation step of t0 uses a node with label a ∈ Σ̇ as a context node
that is created by the topmost derivation step of t′1, indicated by μ merging the
corresponding nodes. Let n and n′ be the nodes of D such that T (n) = t0 and
T (n′) = t′1. Clearly, D contains the cycle n →+

t n′ →a n′′ →∗
b n′′′ →f n for some

nodes n′′, n′′′ with labD(n′′) = labD(n′′′) = ↑a.
If k > 1, we can conclude that t′i is not a subtree of ti for any i ∈ [k].

Otherwise, we would have ti ∗ t′i �μ ti, contradicting the selection of k > 1
being minimal for t.

Let ni ∈ Ḋ such that T (ni) = ti for i = 0, . . . , k and n′
i ∈ Ḋ such that

T (n′
i) = t′i for i ∈ [k] and assume that ti uses a node with label ai ∈ Σ̇ as

context node that is created by the topmost derivation step of t′i for i ∈ [k],
indicated by μ merging the corresponding nodes. D thus contains paths ni−1 →∗

t

n′
i →a n′′

i →∗
b→c→∗

d n′′′
i →e ni where n′′

i , n′′′
i ∈ Ḋ such that labD(n′′

i ) = ↑ai and
labD(n′′′

i ) = ↓ai for i ∈ [k]. These paths define a cycle in D because n0 = nk. ��
Example 6. The dependency graph shown in Fig. 9 in Example 5 has a cycle
drawn in red indicating that the CHR grammar Δ for dags is indeed cyclic.

Let us reconsider the “pathological” CHR grammar Π introduced in Exam-
ple 4. The criterion devised in [9] does not help to decide whether Π is acyclic
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Fig. 10. Dependency graphs for the grammar in Example 4

or cyclic, but Lemma 4 does: Fig. 10 shows the only two dependency graphs of
L(ΠD). Π is indeed acyclic because they do not contain any cycle.

Theorem 2. Acyclicity of CHR grammars is decidable.

Proof. Following Definition 7, the dependency grammar ΓD of a CHR grammar
Γ can effectively be constructed. Moreover, it is decidable whether the language
of an HR grammar such as ΓD contains cyclic graphs [12]. Therefore, acyclicity
of CHR grammars is decidable by Lemma 4. ��
The construction of the dependency grammar ΓD of a CHR grammar Γ accord-
ing to rules (1)–(6) can be made in polynomial time. However, a straightforward
cyclicity check would inspect all combinations of the finite set of dependency
productions PD, taking exponential time. We are not aware of any more efficient
cyclicity checks for HR grammars. However, this problem closely corresponds to
the circularity problem of attribute grammars. Attribute grammars are a well-
known formalism for adding semantic information to context-free string gram-
mars, and a proper definition of their semantics requires acyclic dependencies
between attributes [14]. Knuth’s (corrected) algorithm for checking circularity
of an attribute grammar has an exponential worst-case running time [15]; Jaza-
yeri et al. [13] have further proved that any deterministic algorithm solving this
problem requires exponential running time, so that an efficient algorithm for
checking the cyclicity of CHR grammars is unlikely to exist.

4 Acyclicity Restricts Generative Power

In this section, we answer the second question left open in [9], namely whether
the class of graph languages generated by acyclic CHR grammars is a proper
subset of the class of all CHR languages. It was conjectured in [9] that the set of
all dags (see Example 1) could not be generated by an acyclic CHR grammar,
a proof of which would thus answer the question positively. We now show that
this is indeed the case.

As usual, we call two nodes v, v′ of a graph G adjacent if both v and v′

occur in attG(e), for some edge e ∈ Ḡ. It is well known that HR languages are
graph languages of bounded treewidth. Since the number of (unordered) pairs
of adjacent nodes in a graph G of bounded treewidth is linearly bounded by the
number |Ġ| of its nodes, the following observation is immediate.
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Observation 1. For every HR language L there is a constant w such that no
graph G ∈ L contains more than w|Ġ| pairs of adjacent nodes.

In a borrowing grammar, each borrowed node is connected via �=-edges to
at most s other nodes, where s is the number of nodes of the largest right-hand
side of the grammar. Hence, if we are given a joining morphism μ : G → H for a
graph G in the borrowing language generated by this grammar, and z ∈ Ġ \ Ḣ
is a borrowed node, then for all but at most s nodes v ∈ Ḣ, we can instead map
z to v to obtain another valid joining morphism.

To express this formally, let us first note that a joining morphism μ is uniquely
determined by μ̇. More precisely, given a graph G, consider a function f : Ġ →
Ġ \ Ġ� such that, for all u, v ∈ Ġ,

(J1) if u /∈ Ġ� then f(u) = u, and
(J2) f(u) = f(v) only if u and v are not connected by a �=-edge.

Then there is a unique joining morphism μ : G → H with μ̇ = f . In particular,
H is uniquely determined by f . This also implies that, given a joining morphism
μ and a borrowed node z ∈ Ġ�, we can modify μ so that it, instead of joining z
with μ̇(z), joins it with any other node v ∈ Ġ\ Ġ�, provided that condition (J2)
is fulfilled. In the following, the resulting joining morphism is denoted by μz �→v,
i.e., μz �→v is the unique joining morphism such that, for all u ∈ Ġ,

μ̇z �→v(u) =
{

v if u = z
μ̇(u) otherwise.

Using this notation, the observations above can be stated formally as follows.

Observation 2. For every borrowing language L, there is a constant s such
that the following holds. Let G ∈ L, and let μ : G → H be a joining morphism
for G. Then, for every node z ∈ Ġ�, there are at least |Ḣ| − s nodes v ∈ Ḣ such
that μ̇z �→v determines a valid joining morphism for G.

We can now show that the language L(Δ) of Example 1 is a CHR language
beyond the generative capacity of acyclic CHR grammars.

Lemma 5. The language of all (unlabeled) dags can be generated by a CHR
grammar but not by an acyclic CHR grammar.

Proof. Example 1 shows that the language D of all directed acyclic graphs is
indeed a CHR language. It remains to show that D cannot be generated by an
acyclic CHR grammar. To prove this by contradiction, assume that there is an
acyclic CHR grammar Γ auch that L(Γ ) = D. We can assume that Γ̂ does not
generate borrowed nodes that are only incident with �- and �=-edges, because
it is well known that Γ̂ can otherwise be modified to remove such nodes from
its language, and by the definition of contraction, such nodes do not affect the
result of a contraction.

For m,n ∈ N, define Hmn to be the unlabeled graph with Ḣmn =
{u1, . . . , um} ∪ {v1, . . . , vn} ∪ {u′

1, . . . , u
′
m} with um = v1 and vn = u′

1, such
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that there are edges from ui to ui+1 and from u′
i to u′

i+1 for all i ∈ [m − 1],
as well as from vi to vj for 1 ≤ i < j ≤ n. Thus, Hmn consists of a complete
graph on n nodes between two chains of m nodes from above and below (if edges
point downwards). In the following, we consider pairs of graphs Gmn ∈ L(Γ̂ )
and Hmn ∈ L(Γ ) such that Gmn contracts to Hmn via a joining morphism μ.

We first fix m in such a way that it is larger than the constant s of Observation
2 applied to Γ̂ . Then Gmn can have at most 2(m − 1) + 2(n − 1) nodes u such
that μ̇(u) ∈ {u1, . . . , um, u′

1, . . . , u
′
m} (since each of these nodes has at least one

incident edge while Hmn contains only 2(m − 1) + 2(n − 1) edges incident with
them in total). Since we have fixed m, this number is linear in n. However, the
total number of edges of Hmn – and thus that of Gmn – grows quadratically in n,
which by Observation 1 means that we can choose n sufficiently large to make
sure that Gmn contains at least one node z ∈ Ġmn \ Ḣmn such that μ̇(z) = vi

for some i ∈ {2, . . . , n − 1}.
Now, consider such a node z. Since m > s, where s is the constant of Obser-

vation 2, by that same observation there is at least one j ∈ [m] such that
μz �→uj

is also a valid joining morphism. The same holds for u′
1, . . . , u

′
m instead

of u1, . . . , um.
Let e be an edge incident with z that is neither a �- nor a �=-edge. If z

is the target of e, then its source is a node u such that μ̇(u) = vp for some
p < i. Consider an appropriate j ∈ [m] such that μz �→uj

is a joining morphism
(which, by the previous paragraph, exists). Thus, instead of being joined with
vi by μ, we join z with uj by μz �→uj

. Since this leaves the edges originating from
uj , . . . , um unaffected, the path from uj to um = v1 still exists in the contraction
with respect to μz �→uj

, and so does the edge from v1 to vp. However, e now leads
from vp to uj , which results in the cycle uj , . . . , um, vp, uj .

The case where z is the source of e is symmetric, using μz �→u′
j

instead of
μz �→uj

. Thus, both cases lead us to the conclusion that L(Γ ) contains a graph
that has a cycle, contradicting the initial assumption that L(Γ ) = D. ��

From Lemma 5, Example 1 and the fact (known from [9]) that acyclic CHR
grammars can generate various graph languages that are not HR languages, we
get the second main result of this paper as an immediate consequence.

Theorem 3. The generative power of acyclic CHR grammars lies strictly
between the generative powers of HR and CHR grammars.

5 Conclusions

In this paper, we have established two main results: (1) acyclicity of CHR gram-
mars is decidable and (2) the generative power of acyclic CHR grammars lies
strictly between that of HR and CHR grammars. Since acyclicity is one condi-
tion for efficient parsing with the predictive top-down and predictive shift-reduce
algorithms of [7,9], this is important for the practical use of CHR grammars.

Since this paper is on a very specific topic, related work is rare. We are only
aware of Berglund’s pumping lemma for CHR grammars [1], which shows their
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close relation to context-free hyperedge replacement. (It seems that this pumping
lemma cannot be used to prove Lemma 5.)

In future work, we plan to compensate for the restricted generative power
of acyclic CHR grammars by conditional contractions, which may require or
forbid the existence of certain paths. Then, e.g., the language of all dags can
be generated by a conditional acyclic CHR grammar that forbids that there is
a path to a borrowed node from its contracted node. The specification of such
paths could be based on the “navigational logic” proposed by Orejas et al. [16].
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Abstract. We introduce a component model for graph rewriting that
allows to model a system as a network of components with interfaces
representing shared views of internal states and transformations. Their
composition assembles a global view whose behaviour is equivalent to the
synchronised distributed execution of local components in the network.
Formally, components are arrows in a category with interfaces as objects
that, with suitable component connectors, forms a Frobenius algebra.
This allows the use of string diagrams to model the architecture of basic
components and connectors, such that their assembly is freely generated
by the algebraic structure. The compositionality of the proposed model
is reflected by Structural Operational Semantic rules.

Keywords: Graph transformation · Software components · String
diagrams

1 Introduction

Software development relies on encapsulation, modularity, and reuse to manage
complexity. At the level of software architecture, these principles are supported
by components that provide the basic blocks from which larger systems are
built. While languages, technologies, and architectural styles change over time
and differ between domains, the main feature that separates components from
lower-level (e.g., object-oriented) concepts is the use of interfaces describing not
only the services provided by components but also their requirements towards
their runtime context. This enables reuse of components across contexts that
satisfy the stated requirements.

With the confluence of concepts from semantic web, graph databases, and
model-based engineering, knowledge graphs [15] are emerging as key technology
in enterprise and e-commerce applications, medical data management, cognitive
digital twins, and social networks [16] to support data integration, sharing and
mapping, graph-based analytics and machine learning [17]. In current applica-
tions, knowledge graphs lack the basic modularity, encapsulation and flexibility
of deployment offered by most component models. But global centralised data
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models make applications hard to evolve and maintain, hinder reuse, distributed
development, analysis, and verification [8]. We need a discipline of graph-based
software engineering using dedicated abstractions and language constructs to
develop modular graph-based applications.

This paper addresses the theoretical foundations of components in graph-based
applications, where graphs are central runtime artefacts to be shared, queried,
mapped and synchronised, updated, transformed and analysed. Such operations
can commonly be described by graph rewriting. The novel challenge for compo-
nents of graph rewriting-based applications is that, while traditionally the inter-
nal state is fully encapsulated, graph data must be shared between organisations
along with rights to query, change or analyse graphs locally and coordinate changes
globally. Access to and operations on graphs should be offered as services ensuring
data integrity. While maintaining local ownership, a virtual global graph should
emerge as the central artefact for data integration and analytics [19].

We propose the architectural abstraction of Graph Rewriting Components
(GReCos) as building blocks for graph-based systems, encapsulating graphs and
their operations and offering these to other components and applications. This
is realised by defining GReCos as graph transformation systems with interfaces
for composition with other systems.

Formally, GReCos are cospans of morphisms between graph transformation
systems with state, called runtime systems, where the central system represents
the partially hidden implementation, the left interface describes the types, rules
and graph provided and the right interface those required by the component. In
particular, we are interested in strict components, where the interface graphs
are projections of the internal state graph.

Morphisms between runtime systems that are strict in that sense reflect trans-
formations, so interfaces provide a partial view of the behaviour of the imple-
mentation. We can compose components via pushouts of such morphisms, and
if the given components are strict and satisfy a compatibility condition ensuring
that their composition is strict, too, the resulting component represents a global
view of the synchronised execution of its constituents. Vice versa, the global
behaviour can be decomposed into matching local behaviours, allowing us to
move freely between the two levels. This supports the need for a virtual global
graph that can be used centrally without giving up localised representation.

To support flexible connections between components we establish the cate-
gory of graph rewriting components as a symmetric monoidal category, specifi-
cally a Frobenius algebra [3], and use the associated syntax of string diagrams
to represent the interconnection of components and interfaces. This view of the
software architecture is analogous to component diagrams in UML. Given real-
isations of the basic components in terms of GReCos, architecture-level string
diagrams are mapped freely to (basic and composite) GReCos, compiling the
system from its architecture description and its basic components.

The approach thus represents a convergence of distributed graph transfor-
mation [18], service-oriented and modular graph transformation [7], and string
diagrams [3]. We prove compositionality results relating local and composite
behaviours. In particular, the behaviour of (disjoint) parallel compositions and
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(interface-based) functional compositions of components can be fully inferred
from the behaviours of their constituents and basic architectural connectors.
This supports the reuse of components in different contexts, guaranteeing that
behavioural equivalence of components is maintained by composition.

2 Example

We model a simple architecture to motivate, illustrate and evaluate our concepts
and results. The model consists of three components: a Client C, a Service S and
a Database D. The component diagram below gives a high-level view of the
architecture. The components are connected via three interfaces. The Service
Interface SI describes the operations provided by S and used by C. Conversely,
the Client Interface CI is implemented by C and used by S. The idea is that C
sends a requests through SI to be executed by S which, in turn, replies via the
callback interface CI. While executing the request, S calls on D to verify and
update the data.

Components and interfaces are typed graph transformation systems with states
related by morphisms. For our architecture. they are shown in Fig. 1. For each
system we have the type graph in the left, followed by the rules, and the state
graph made up of a single customer and its contract as a minimal test case.

The morphisms mapping type, state graphs and rules between interfaces and
components are indicated by vertical arrows on the left. They describe how
internal type and state graphs are partially visible through the interfaces. Rules
in the interfaces are subrules of projections of the rules in components to the
interface types. If the projection results in a rule without effect, this rule can
be dropped, e.g. the process rule is in S but not SI, unless we want to use it to
synchronise actions between components, e.g. between S and D via DI. Rules
that are vertically aligned are related by morphisms. We use the integrated
rule notation where left and right-hand sides are shown in the same graph, with
deleted and created elements distinguished by colours blue and green and labelled
{delete} and {new} respectively. In the bottom we show the global system view
Sys obtained by composing components over their shared interfaces.

The model describes a claims process where C represents an insurance com-
pany’s customer interface used to issue a request for payment. S is the service
processing the request by checking the data D of the contract and, if successful,
marking the customer as OK. Then a decision is made to either accept or reject
the request, where acceptance requires a successful check and results in remov-
ing the link between customer and contract, indicating that after a payout the
contract needs to be renewed. Either decision results in deleting the request’s
link to the customer to avoid making a decision repeatedly.
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Fig. 1. Typed graph transformation systems with runtime states for components and
interfaces.

Apart from the rules modelling operations that can be invoked through an
interface, we distinguish change event rules, such as new-req and del-custlink,
representing change events whose purpose is to notify a component that is shar-
ing part of its state with another one that this other component has changed
the shared state. This is conceptually different from an operation call, although
it can be implemented as one, and is essential for keeping states synchronised
between components.

3 Basic Notions

Assume an adhesive base category C with a strict initial object ∅ and arbitrary
pushouts, where pushouts are stable under pullbacks; for example, let C be
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Graph, the category of directed multigraphs. Then, for any object T of C the
slice category CT represents instances over T and their morphisms. Formally,
an object of CT is an arrow g : G → T in C where T represents the type,
G an instance object with g providing the typing. A morphism h : g → g′ for
g′ : G′ → T is a morphism f in C such that g′ ◦ h = g.

The types in T represent domain or application concepts that may vary
between different systems. When we relate states or rules between systems we
should be able to do so across different types. Given a morphism of types f : T →
T ′, we can define an operations of retyping by pullback of instances from target
to source types. This defines retyping functors f< : CT ′ → CT for all f : T → T ′.
From the local categories CT and the retyping functors we can define a global
category TC whose objects are morphisms g : G → T . Morphisms are pairs
f = 〈fτ , fG〉 : g → g′ with fτ : T → T ′ in C and fG : G → f<

τ (G′) ∈ CT . It can
be shown that TC is equivalent to the arrow category C→, and thus it inherits
limits and colimits from C, computed componentwise.1 A morphism 〈fτ , fG〉 is
strict if fG is an iso. For the pushout of two strict morphisms the injections are
not strict in general: a sufficient condition, by adhesivity of C, is that one of the
type morphism is mono.

Rules and transformations in a system are represented by spans of monomor-
phisms s = L

l←− K
r−→ R in CT , i.e. they are defined over the local type T

of the system. Morphisms between spans are DPO diagrams, i.e., triples of mor-
phisms h = 〈hL, hK , hR〉 : s → s′ with hL : L → L′, hK : K → K ′, hR : R → R′

and such that the resulting squares are pushouts. This defines the local cate-
gories MSpanT . A morphism in MSpanT represents a relation between rules
where the target rule of the morphism creates and deletes the same structures
as the source, but may have additional context.

To relate rules across different types we let MSpan be the category that
has as objects monic spans s in CT for some T in C and as morphisms pairs
f = 〈fτ , fπ〉 : s → s′ with fτ : T → T ′ in C and fπ : s → f<

τ (s′) ∈ MSpanT .
Composition of such morphisms is well-defined: in fact the pullback functor pre-
serves pushouts because they are stable under pullbacks in C. This category has
pullbacks and is finitely co-complete thanks to the properties of C. In particular,
the initial object is span 〈∅ ← ∅ → ∅〉, called the empty rule, typed over ∅.

Another interpretation of morphisms in MSpanT is as DPO transforma-
tions, with the source representing the rule applied and the target the state
transformation. Sometimes we want to relate such transformations, and for this
purpose we introduce DPOT , the arrow category MSpan→

T , which has local
MSpanT morphisms (i.e., DPO diagrams over T ) d : s1 → s2 as objects and
pairs of such morphisms 〈ftop, fbot〉 : d → d′ as arrows where ftop : s1 → s′

1 and
fbot : s2 → s′

2 such that the resulting square in MSpanT commutes.
We relate DPO diagrams across different types in a global category DPO

that has as objects DPO diagrams d in CT for some T in C and as morphisms

1 TC is obtained by applying the Grothendieck construction to the indexed cate-
gory Cop → Cat, mapping each object T to category CT and each arrow to the
corresponding retyping functor.
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pairs f = 〈fτ , fd〉 : d → d′ with fτ : T → T ′ in C and fd : d → f<
τ (d′) ∈ DPOT .

That means, objects in DPO represent DPO transformations in different sys-
tems, and morphisms are mappings between them allowed to extend types and
rules. Composition, limits and colimits are defined component-wise in MSpan.

Categories TC, MSpan, and DPO are equipped with a functor to C map-
ping objects and morphisms to their type objects and morphisms, respectively,
which we denote by τ : X → C for X ∈ {TC,MSpan,DPO}.

4 Transformation and Runtime Systems

We want to use the empty rule to model steps at an interface due to unobservable
steps in the body of a component, but also to model idle steps in the body itself.
To this aim we introduce the rule name φ that maps to the empty rule. Apart
from this feature, the following definition is standard.

Definition 1 (transformation systems). A transformation systems is a
triple R = 〈T, P, π〉 where

– T ∈ |C| is a type object;
– P is a set of rule names, including the special rule name φ;
– π : P → |MSpanT | assigns a monic span over T to each rule name, such

that π(φ) = ∅ ← ∅ → ∅.
Assuming a second system R′ = 〈T ′, P ′, π′〉, a morphism of transformation sys-
tems is a triple f = 〈fτ , fp, fπ〉 : R → R′ of

– a morphism of types fτ : T → T ′

– a mapping from target to source rule names fP : P ′ → P
– a P ′-indexed family of MSpan morphisms fπ(p′) : π(fP (p′)) → π′(p′)

such that fτ = (fπ(p′))τ for all p′ ∈ P ′. This defines the category Sys.

Morphisms are defined to reflect behaviour, as discussed later. Observe that
each rule name p′ ∈ P ′ of the target system S′ is mapped to a rule name
fP (p′) ∈ P of the source system S, and there is an MSpan morphism fπ(p′) from
the latter rule to the first one. Spelling out the definiton of MSpan morphism,
there is a DPO morphism from π(fP (p′)) to the retyped rule f<

τ (π′(p′)). In
particular, this implies that if fP (p′) = φ, then the retyped rule must be a span
of isomorphisms, i.e. it has no effect when applied to any graph.

To model a system at runtime, we include its current state.

Definition 2 (runtime systems). A runtime system S = 〈R,G〉 consists of a
transformation system R = 〈T, P, π〉 and a state object G in CT . A morphism of
runtime systems f = 〈fR, fG〉 : S → S′ with S′ = 〈〈T ′, P ′, π′〉, G′〉 is a morphism
of transformation systems fR = 〈fτ , fp, fπ〉 augmented by a TC morphism fG =
〈fτ , f ′

G〉 : G → G′. Morphism f : S → S′ is strict if so is fG, i.e. if f ′
G : G →

f<
τ (G′) is an isomorphism. This defines the category RSys of runtime systems.
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Coming back to the example, in Fig. 1 we show seven runtime systems (three
components, three interfaces and one global system), each with their type graph,
rule names and associated rule spans (in integrated notation), and runtime state.
The morphisms indicated in the left margin are all strict, representing inclusions
of type graphs, state graphs, and sets of rule names, except for change event rules
where request in S and C both map to new-req in CI, and accept and reject in
S and C all map to del-custlink in SI. Implicitly, component rules that do not
have a corresponding rule in an interface map to the empty rule φ, i.e., process
in S maps to φ in both SI and CI and request in S maps to φ in DI. As observed
above, this is allowed because after retyping these rules along the injections of
type graphs, the resulting rules are spans of isomorphisms.

Given a transformation system R with type T , a transformation via p in
R, denoted G

p,m
=⇒R H, is a DPO diagram seen as an MSpanT morphism t =

〈tL, tK , tR〉 : π(p) → s that relates the rule span π(p) = L ← K → R and
the bottom span s = (G ← D → H), with match tL = m. We also write
p/t : G ⇒R H or just ⇒R for the set of transformations.

A transformation sequence s = G0
p1,m1=⇒ . . .

pn,mn=⇒ Gn in R is a sequence of
transformations.2 We write ⇒∗

R for the set of transformation sequences in R.
Transformations in R′ are reflected by Sys morphisms. That means, if p′/t′ is

a transformation in R′ then f<(p′/t′) = fP (p′)/f<
τ (t′)◦fπ(p′) is a transformation

in R because f<
τ preserves DPO diagrams and DPOs compose vertically (as

MSpan morphisms). This yields a function f< : (⇒R′) → (⇒R) extending to
sequences as f< : (⇒R′)∗ → (⇒R)∗.

Transformation sequences in a runtime system S = 〈R,G〉 are sequences in R
that start from state G. The projection of sequences against morphisms extends
to runtime systems as f< : (⇒S′)∗ → (⇒S)∗, provided that f : S → S′ is strict.
Strict morphisms are preserved by transformations, that is, if f = 〈fR, fG〉 :
〈R,G〉 → 〈R′, G′〉 is strict, p′/t′ : G′ ⇒ H ′ in R′ and f<(p′/t′) : G ⇒ H in R,
then 〈fR, idH〉 : 〈R,H〉 → 〈R′,H ′〉 is strict, as H = f<

τ (H ′).
Sys is finitely co-complete because it has an initial object R∅ = 〈∅, {φ}, π〉,

where π(φ) = ∅ ← ∅ → ∅, and pushouts are built component-wise as pushouts
on types, pullbacks on sets of rule names, and using amalgamation (pushouts in
MSpan) on rule spans.

Definition 3 (pushouts of systems). Given a span of transformation systems

R1
f1←− R0

f2−→ R2 in Sys with Ri = 〈Ti, Pi, πi〉, their pushout R1
f∗
2−→ R

f∗
1←− R2

with R = 〈T, P, π〉, is defined as follows.

– T1
f2

∗
τ−→ T

f1
∗
τ←− T2 is a pushout of T1

f1τ←− T0
f2τ−→ T2 in C

– P1
f2

∗
P←− P

f1
∗
P−→ P2 is a pullback of P1

f1P−→ P0
f2P←− P2 in Set•

– for p ∈ P with f2
∗
P (p) = p1, f1

∗
P (p) = p2, and f1P (p1) = p0 = f2P (p2),

let f2
∗
π(p), f1∗

π(p) and π(p) be defined by the pushout π1(p1)
f2

∗
π(p)−→ π(p)

f1
∗
π(p)←−

π2(p2) of π1(p1)
f1π(p1)←− π0(p0)

f2π(p2)−→ π2(p2) in MSpan.
2 We may drop the reference to the system if this is clear from context.
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For a similar span in RSys with local state graphs G1
f1G←− G0

f2G−→ G2, the
pushout in Sys of the underlying transformation systems is lifted to RSys by

the pushout G1
f2

∗
G−→ G

f1
∗
G←− G2 over the span of state graphs.

Set• is the category of pointed sets, i.e., sets with a distinguished element
that is preserved by mappings. In our case these are the sets of rule names with
the distinguished name φ bound to the empty rule. It is easy to see that pushouts
injections thus constructed are indeed Sys or RSys morphisms because their
components are pushouts in C,Set• and MSpan. The universal property follows
directly from the component-wise construction.

Applying this to our example in Fig. 1, the pushout of S and D via DI results
in a union of their type and state graphs and an amalgamation of rules over
shared interface rules in DI. This leads to a disjoint parallel composition of rules
where this interface rule is empty.

A coproduct of two systems R1 and R2 is a pushout over the empty system
R∅, which is initial in Sys. By contravariance of mapping types and rule names,
this results in a coproduct of types and a product of rule names, such that each
pair of rule names in the product is assigned a coproduct of the associated rules.

We can compose and decompose transformations over pushouts of systems if
the morphisms relating them are strict.

Theorem 1 (compositionality of transformations). Assume

– a pushout S1
f∗
2−→ S

f∗
1←− S2 of runtime systems S1

f1←− S0
f2−→ S2, where all

morphisms are strict, Si = 〈Ri, Gi〉 for i ∈ {0, 1, 2} and S = 〈R,G〉;
– a triple of transformations pi/ti : Gi ⇒ Hi in Ri, whose DPO diagrams ti

are related by DPO morphisms t1
f1π(p1)←− t0

f2π(p2)−→ t2 and where f1P (p1) =
p0 = f2P (p2).

Then, the transformations can be composed by a pushout in DPO to yield a
transformation p/t : G ⇒ H in S with f∗

1 P (p) = p2 and f∗
2 P (p) = p1.

Vice versa, a transformation p/t : G ⇒ H in 〈R,G〉 decomposes into a

pushout of transformations over S1
f1←− S0

f2−→ S2 as p1/t1 = f∗
2

<(p/t) in S1,
p2/t2 = f∗

1
<(p/t) in S2 and f1

<(p1/t1) = p0/t0 = f2
<(p2/t2) in S0.

Proof (sketch). Both directions require that pushouts are stable under pullbacks,
which is true in C by assumption.

Applying a sequence of accept, process, accept to the state graph in S, the
result is a graph that looks like the right-hand side (preserved black and new
green parts) of accept. In D the first step is an application of the empty rule φ,
the second step has no effect on the graph but extends the match of process in
S to check for a contract linked to the customer, and the third step deletes that
link and adds the accept node and its edge, leaving a graph that looks like the
right-hand side accept in D.

Since the state graph of S in Fig. 1 is a subgraph of that of D, when the
pushout of runtime systems S and D via DI merges their state graphs, the
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resulting graph is isomorphic to that of D. The result above ensures that we can
either transform this graph in the pushout system of S and D over DI, or do
so in S and D with shared transformations in DI and then merge the resulting
graphs, i.e. synchronised local transformations exist if and only if there is a global
transformation, and they have the same effect.

Theorem 1 ensures the compositionality of the operational semantics of com-
ponents in Sect. 7, where transformations compose along composition of compo-
nents and transformations in a composite component can be decomposed into
synchronised transformations in its constituents.

5 Components

A component has runtime systems as body, left and right interfaces. Both inter-
faces are equipped with a morphism to the body. Formally, components are
defined as abstract cospans in RSys. Components with matching left-right
interfaces can be composed using pushouts in RSys. Note that, in our run-
ning example, the left and right interfaces are conceptually the provided and
required interfaces of components. However, we stick to the typical left/right
terminology of cospans, instead of using the provide/require terminology of soft-
ware components, because in our operational semantic introduced later both
interfaces behave identically, allowing to synchronize the transformations of the
components they are connected to. The provided/required terminology suggests
instead an invocation-based semantics, where a component can trigger through
the required interface the execution of another component connected to the
matching provided interface. This kind of semantics is topic of future work.

Components can also be composed in parallel using coproducts. The resulting
structure is a symmetric monoidal category Com having the same objects of
RSys and components as arrows (from the left to the right interface). This
category is shown to be also a Frobenius algebra, implying that one can define
arbitrary topologies of components.

Here we focus on the static interconnections of components, while in Sect. 7
we discuss their operational semantics based on transformations. We anticipate
that the rich structure of the category of components cannot be fully exploited
for the operational semantics, because only strict morphisms reflect transforma-
tions. We introduce strict components, where morphism to the body are strict,
and discuss conditions ensuring that strictness is preserved by composition.

Cospans c = (A a−→ C
b←− B) and c′ = (A a′

−→ C ′ b′
←− B) are isomorphic

if there is an isomorphism i : C → C ′ commuting the resulting triangles. We
denote by A[ a−→ C

b←−]B the isomorphism class of c, called an abstract cospan.

Definition 4 (components). A component is an abstract cospan c = 〈Li[ li−→
Bd

ri←−]Ri〉 in RSys. Morphisms li : Li → Bd and ri : Ri → Bd map the left
and right interfaces to the body. Component c is strict if both li and ri are strict.
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The category Com of components has runtime systems as objects and com-
ponents as arrows. The composition of components c2 ◦ c1, for ci = 〈Lii[

lii−→
Bdi

rii←−]Rii〉 and i = 1, 2, is defined if Li2 = Ri1. Then

c2 ◦ c1 = 〈Li1[
li−→ Bd

ri←−]Ri2〉 : Li1 → Ri2

is the isomorphism class of the cospan obtained by a pushout Bd1
li∗

2−→ Bd
ri∗

1←−
Bd2 of ri1 and li2 with li = li∗2 ◦ li1 and ri = ri∗1 ◦ ri2. If c1 and c2 are both
strict, then they are compatible if the pushout injections li∗2 and ri∗1 are strict.
In this case also c2 ◦ c1 is strict because strict morphisms compose. If c1 and c2
are strict and compatible we will denote their strict composition also by c2 ◦s c1.

For a runtime system S in |RSys| its identity component is given by idS =
〈S[ idS−→ S

idS←−]S〉, and it is strict.

Composition over shared interfaces allows to connect strict components by
synchronising their transformations. In Com our example’s components are rep-
resented as arrows C : CI → SI, S : SI → CI + DI and D : DI → R∅, their
composition realised by the composition in Com, e.g., S ◦ C : CI → CI + DI is
the composition of C and D over SI. In order to link interface CI from the right
of S to the left of C (as required for its use as a callback interface) we need the
additional structure of parallel composition and component connectors.

Definition 5 (parallel composition in Com). The parallel composition
c1 + c2 of components ci = 〈Lii[

lii−→ Bdi
rii←−]Rii〉 for i = 1, 2 is defined as the

isomorphism class of the cospans obtained by a coproduct of the interface and
body systems in RSys

c1 + c2 = 〈Li1 + Li2[
li1+li2−→ Bd1 + Bd2

ri1+ri2←− ]Ri1 + Ri2〉.

This defines a monoidal functor + : Com × Com → Com. Furthermore, for

each S, S′, let σS,S′ : 〈S + S′[
[inrS ,inlS′ ]−→ S′ + S

idS′+S←− ]S′ + S〉 be their symmetry
component.

The parallel composition of two strict components can be shown to be strict,
and so are the symmetries. We can represent a component c, the composition
c2 ◦ c1 and the parallel composition c1 + c2 in an intuitive graphical way as:

Identity and symmetry components are seen as connectors passing actions from
one interface to the other. Other such connectors can be defined, for every sys-
tems S and S′, by exploiting suitable morphisms in RSys.
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– The duplicator is component

Δ

S = 〈S[ idS−→ S
[idS ,idS ]←− ]S + S〉;

– The co-duplicator is component ΔS = 〈S + S[
[idS ,idS ]−→ S

idS←−]S〉;
– The discharger is component !S = 〈S[ idS−→ S

∅←−]R∅〉;
– The co-discharger is component ?S = 〈R∅[ ∅−→ S

idS←−]S〉.

Graphically, we show such connector components, which are all strict, as:

Theorem 2 (Com as Frobenius algebra). Category Com with the monoidal
functor + and the family σ of symmetries of Definition 5 is a symmetric monoidal
category. Furthermore, equipped with the families of connector components

Δ

, Δ,
! and ? as defined above Com is a Frobenius algebra.

Proof. The category of abstract cospans built from a category with coproducts
inherits a monoidal structure, induced by coproducts, which satisfies the laws
for Frobenius algebras: see e.g. [3, Section 2.2].

6 Architectural Models

Due to Theorem 2 we can depict networks of components as string diagrams [3],
a graphical syntax for structures whose basic elements take multiple inputs and
outputs. The axioms of Frobenius algebras are sound and complete for string
diagrams, in the sense that the diagrams representing two terms of the algebra
can be topologically deformed into each other without cutting or joining wires
if and only if the two terms are provably equal by the axioms.

Thanks to the axioms of symmetric monoidal categories (which we omit for
brevity) the axioms of Frobenius algebras can be depicted as follows.

– for each object, Δ and ? form a commutative monoid, i.e., they satisfy asso-
ciativity, commutativity, and ? is the unit:

= = =

– for each object,

Δ

and ! form a cocommutative comonoid, i.e., they satisfy
associativity, commutativity, and ! is the counit:

= = =
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– the monoid and comonoid structures satisfy the Frobenius and special laws:

= =

Since Com satisfies the axioms of Frobenius algebras, we can specify a complex
component in Com by connecting the interfaces of its basic components. Any
such drawings representing the same connections between interfaces are equiv-
alent, such as two the string diagrams on the left below, both representing the
component diagram of Sect. 2 with basic components C, S, and D.

On the right we show how the left string diagram arises as sequential composition
?CI ;

Δ

CI ; idCI+C; idCI+S; ΔCI+idDI ; !CI+D of expressions in the algebra of
components and connectors, with vertical dashed lines in the figure representing
“;”. Based on the interpretation of basic components and connectors in Com,
the constituent expressions represent the following cospans.

1. ?CI = 〈R∅[ ∅−→ CI
idCI←−]CI〉;

2.

Δ

CI = 〈CI[idCI−→ CI
[idCI ,idCI ]←− ]CI + CI〉;

3. idCI + C = 〈CI + CI[idCI+ciC−→ CI + C
idCI+siC←− ]CI + SI〉;

4. idCI + S = 〈CI + SI[idCI+siS−→ CI + S
idCI+[ciS ,diS ]←− ]CI + CI + DI〉;

5. ΔCI + idDI = 〈CI + CI + DI[
[idCI ,idCI ]+idDI−→ CI + DI

idCI+idDI←− ]CI + DI〉;
6. !CI + D = 〈CI + DI[idCI+diD−→ CI + D

[∅,∅]←−]R∅〉.
Thus string diagrams serve as a bridge between the network-level description
of an architecture in a component diagram and its “implementation” in graph
rewriting components. The result of composing cospans 1–6 is the global system
Sys in Fig. 1 with global rules emerging as amalgamation of component over
interfaces rules and global state as pushout of component over interface states.

String diagrams providing a syntax for component networks are generated
freely from an architectural signature of basic components and interfaces, just
as term syntax for algebras is generated freely from an algebraic signature.

Definition 6 (architectural signature). An architectural signature AS =
〈I, C, dom, cod〉 consists of sets of interface names I and component names
C with functions dom, cod : C → I∗ assigning each component name their
sequences of names of left and right interfaces.

The free Frobenius algebra frob(AS) over AS is a category that has sequences
I∗ as objects. Morphisms are directed hypergraphs with sorted interface nodes,
called network graphs. They play the role of terms in algebraic signatures. Named
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components are represented by hyberedges distinguishing attachments of left and
right interfaces. An architectural model assigns interpretations to interface and
component names.

Definition 7 (interpretation, model). An interpretation for a signature AS
is a hypergraph morphism f = 〈fI , fC〉 : AS → Com, i.e. a pair of mappings
compatible with the domains and codomains of component names in AS and
components in Com. That means, each c : Li1 . . . Lin → Ri1 . . . Rim in AS is
mapped to an arrow fC(c) : fI(Li1) + · · · + fI(Lin) → fI(Ri1) + · · · + fI(Rim).

The architectural model for interpretation f is given by the functor F :
frob(AS) → Com that freely extends the given interpretation, i.e., such that
F ◦ ηAS = f for the embedding ηAS : AS → frob(AS).

Theorem 2 ensures that F is well defined, i.e., for g, h : S → T in frob(AS),
g = h implies F (g) = F (h), because Com satisfies the Frobenius algebra axioms.

Category frob(AS) and model functor F represent the space of all component
networks over a given collection of basic components with their interpretations.
Since frob(AS) is free over AS, the extension F is unique and can be represented
finitely by the hypergraph morphism f : AS → Com. If we consider the states
of components only, this is similar to distributed graphs where a network graph
forms the shape of a diagram in a category of local graphs, except that in our
case graphs with interfaces are (part of) the arrows rather than the objects
of the categories involved. However, in addition to states, we distribute entire
runtime systems with interfaces along a network graph given by a morphism g
in frob(AS). For a model F , a configuration consists of g and its interpretation
F (g) mapping the components named in g to their implementation in Com.

In our example, interface names are I = {si, ci, di} and component names
are C = {c, s, d} with dom and cod given by c : ci → si, s : si → ci di and
d : di → ε (the empty sequence). Interpretation f is defined by replacing lower
with upper case characters, e.g., f(s : si → ci di) = S : SI → CI + DI.

7 Structural Operational Semantics

We exploit the compositionality of runtime system transformations for defining
a structural operational semantics that derives the behaviour of complex com-
ponents from that of basic ones and Frobenius algebra connectors. Since only
morphims that are strict reflect transformations between runtime systems, we
will focus on strict components only.

When presenting an architecture model, a basic component with n left
interfaces and m right interfaces is shown as a diagram in RSys of shape

D = 〈Lii
lii−→ Bd

rij←− Rij〉 with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In Com this
basic component is an abstract cospan constructed by the coproducts of their
left and right interfaces as

cospan(D) = 〈Li1 + · · · + Lin
li−→ Bd

ri←− Ri1 + · · · + Rim〉
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where li = [li1, . . . , lin] and ri = [ri1, . . . , rim] are the co-pairings of the inter-
face morphisms, induced by the universality of the respective coproducts. It is
sufficient to require that all the interface morphisms are strict: the strictness of
the co-pairing morphisms can be shown easily.

Since strict components are based on strict RSys morphisms, they have an
internal state in the body projected to corresponding states of the interfaces.
Let c = 〈Li[ li−→ Bd

ri←−]Ri〉 be a strict component. When the state changes
through an internal transformation s : GBd ⇒c GBd′ of the body, s is only
partly hidden because it is reflected by the strict morphisms li and ri to interface
transformation a = li<(s) in Li and b = ri<(s) in Ri, that we call (left and right)
observations. This defines a strict component transformation that we denote as

s : c
a=⇒
b

c′

where c′ is the resulting component that shares types and rules with c, and may
only differ for the states. Note that this notation only makes sense if c is strict,
thus its use establishes an assumption or a proof obligation, depending on the
context. The strictness of c′ follows by that of c and because strict morphisms
are preserved by transformations.

If strict components ci = 〈Lii[
lii−→ Bdi

rii←−]Rii〉 for i = 1, 2 are connected
through Li2 = Ri1, internal transformations of c1 and c2 need to synchronize by
projecting the same observation to the shared interface, that is if

c1
a1=⇒
b1

c′
1 and c2

a2=⇒
b2

c′
2

then we must have b1 = a2. If c1 and c2 are compatible (and thus c2 ◦ c1 is
strict, see Definition 4) then also c′

1 and c′
2 can be shown to be compatible, and

this results in a composed transformation of c2 ◦s c1, projecting to interfaces Li1
and Ri2 the same observation projected by the transformations of c1 and c2,
respectively.

For the parallel composition of strict components, which is strict, recall that
the set of rule names of a coproduct of systems R1 + R2 is a product P1 × P2.
Therefore, a transformation a = p/t in R1 + R2 is an application of a rule pair
p = 〈p1, p2〉 ∈ P1×P2 with pi ∈ Pi. The rule span π(〈p1, p2〉) = π1(p1)+π2(p2) is
a coproduct in MSpan and the DPO diagram t = t1 + t2 a coproduct in DPO.
Hence, a represents the disjoint parallel occurrence of transformations ai = pi/ti
in Ri for i = 1, 2, which we write using juxtaposition as a1 a2.

Summarizing, for strict and parallel composition we have the rules

c1
a=⇒
b

c′
1 , c2

b=⇒
c

c′
2 , c1 and c2 compatible

c2 ◦s c1
a=⇒
c

c′
2 ◦s c′

1

c1
a=⇒
b

c′
1 , c2

c=⇒
d

c′
2

c1 + c2
a c=⇒
b d

c′
1 + c′

2

.

For all connector components, we can easily infer from the definitions that their
transformations are triggered by a transformation in the left or right interface.
For interface transformations a : S ⇒ S′, ai : Si ⇒ S′

i, we have the following
connector component transformations:
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– idS
a=⇒
a

idS′ synchronises transformations between the two interfaces;

– σS1,S2

a1a2=⇒
a2a1

σS′
2,S′

1
crosses the wires between S1 + S2 and S2 + S1;

–

Δ

S
a=⇒
aa

Δ

S′ synchronises transformations of its left and two right interfaces;

– ΔS
aa=⇒
a

ΔS′ synchronises transformations of its right and two left interfaces;

– !S
a=⇒
∅

!S′ allows arbitrary transformations on its left interface;

– ?S
∅=⇒
a

?S′ allows arbitrary transformations on its right interface.

Component transformations can be composed and decomposed along both strict
and parallel composition of components.

Theorem 3 (composition and decomposition of transformations).

Assume strict components ci = 〈Lii[
lii−→ Bdi

rii←−]Rii〉 for i = 1, 2. Then,

s1 : c1
a1=⇒
b1

c′
1 and s2 : c2

a2=⇒
b2

c′
2 if and only if s : c1 + c2

a1 a2=⇒
b1 b2

c′
1 + c′

2.

For c1, c2 as above such that Li2 = Ri1 and c1, c2 compatible,

s1 : c1
u=⇒
v

c′
1 and s2 : c2

v=⇒
w

c′
2 if and only if s : c2 ◦s c1

u=⇒
w

c′
2 ◦s c′

1.

Proof. The parallel composition c1 +c2 is based on a component-wise coproduct
of the body and interface runtime systems of c1 and c2. Viewing the coproduct
as a pushout over the initial system R∅, we can use Theorem 1 to derive s as
composition of s1 and s2, and s1, s2 as decomposition of s.

This means that rule and DPO diagram of s are coproducts of rules and
DPO diagrams of s1 and s2, respectively. Since a1, a2, b1, b2 are defined by pro-
jections via pullbacks which, in an adhesive category with strict initial object,
preserve coproducts, the same relation holds for the rules and transformations
of interfaces. Hence a1, a2 and b1, b2 composes into a1 a2 and b1 b2 respectively,
and vice versa. For strict composition we can apply Theorem1 directly: The
body of c2 ◦s c2 is a pushout of those of c1 and c2 over the shared interface, and
interface states and transformations are projections of those in the bodies, so s
is the composition of s1 and s2 and vice versa.

With bisimilarity ≡ of strict components as the largest relation satisfying
f ≡ g iff for all a, b f

a=⇒
b

h iff g
a=⇒
b

k and h ≡ k, we have the following result.

Theorem 4 (bisimilarity as congruence). Bisimilarity ≡ on strict compo-
nents is a congruence for parallel composition + and strict composition ◦s.
Proof. Assume f ≡ f ′, g ≡ g′. If g ◦s f

a=⇒
b

k ◦s h then f
a=⇒
c

h and g
c=⇒
b

k by Theorem 3 (decomposition). This implies f ′ a=⇒
c

h′ and g′ c=⇒
b

k′ since

f ≡ f ′ and g ≡ g′, and then g′ ◦s f ′ a=⇒
b

k′ ◦s h′ by Theorem 3 (composition).

Reversing the roles of f, g and f ′, g′ we can show the inverse implication. Then,
by coinduction, h ◦s k ≡ h′ ◦s k′ implies g ◦s f ≡ g′ ◦s f ′. The proof for + is
analogous.
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Concretely this means that, if a component works in a given context, e.g. C
in the context of S and D as defined in our example architecture, and we replace
that context by a behaviourally equivalent one, e.g., adding a second instance of
D for redundancy, the resulting system will have an equivalent overall behaviour.

8 Conclusion and Related Work

We introduced a component model for graph rewriting systems that allows to
represent a global system as a network of components with interfaces repre-
senting shared views of internal states and transformations, and such that their
composition reconstructs the global system.

Formally and conceptually our model represents the convergence of three
main ingredients: Distributed graph transformations [18] formalise synchronised
transformations of distributed graphs. Various notions of morphisms between
graph transformation systems, discussed in [7] with their semantic properties,
support the modularisation of types and rules. Algebraic representations of (net-
work) graphs as arrows in a symmetric monoidal category and their visualisation
by string diagrams [3] provide a syntax for component architectures.

Early steps towards modularity of formal specifications have been made in
algebraic specifications [5] where the body of a module is related by morphisms
with its import and export interfaces defining, respectively, required and pro-
vided services. In graph rewriting, work on modularity was inspired by algebraic
specifications, programming and software engineering concepts [5], resulting in
a number of proposals surveyed in [13]. More recently, [11] also proposes a com-
positional approach to graph transformations where local graphs with shared
interfaces are composed via colimits into a global graph, and rules acting on
local graphs are composed into a global rule acting on the global graph. Differ-
ently from our approch, however, compositionality is addressed at the instance
level, not at the type level. Several other contributions address compositionality
in graph transformation at instance level, including among others synchronized
hyperedge replacement [9,14], rule amalgamation [2], distributed graph trans-
formation [18] and borrowed contexts [1,6]. An interesting topic for future work
is to compare the expressive power of compositionality modeled at instance or
at type level.

Modules of typed graph transformation systems [12] follow the structure
of algebraic specification modules while [7] combines modularity and service-
oriented concepts. None of the above include a notion of state, i.e. they struc-
ture the specification but not the runtime of a system. We consider this the
main difference between modules and components. Conversely, distributed graph
transformations capture the distribution of graphs, rules and transformations in
a category of diagrams over graphs [18] but without modularity at specification
level.

We provide for the first time a component model integrating these two fea-
tures. In this more general setting we achieve compositionality like in distributed
graph transformations, relating global and synchronised local transformations,
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and describe the network architecture using Frobenius algebras to provide a con-
structive “compilation” assembling complex components from basic constituents.

In the future we would like to make explicit the invocation-based intuition
of components, using a type system and refined operational semantics to distin-
guish provided and required interfaces and caller/callee roles in the synchronised
applications of rules. We will exploit and extend the Frobenius structure to (1)
support architectural equations defining, e.g., derived components as expres-
sions over basic ones or behavioural equalities between configurations; (2) allow
architectural reconfiguration as string diagram rewriting; and (3) consider a
bigraph-like network level with hierarchical components.

Our notion of bisimilarity over doubly-labelled transformations as a congru-
ence is analogous to functoriality of tile bisimilarity, and we can indeed phrase
our operational semantics as an instance of the tile model [10]. In [4] tile bisim-
ilarity is extended to remain compositional under dynamic reconfiguration.

References

1. Baldan, P., Ehrig, H., König, B.: Composition and decomposition of DPO trans-
formations with borrowed context. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 153–167.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841883 12

2. Boehm, P., Fonio, H., Habel, A.: Amalgamation of graph transformations: a syn-
chronization mechanism. J. Comput. Syst. Sci. 34(2/3), 377–408 (1987). https://
doi.org/10.1016/0022-0000(87)90030-4

3. Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram
rewrite theory I: rewriting with Frobenius structure. J. ACM 69(2), 14:1–14:58
(2022)

4. Bruni, R., Montanari, U., Sassone, V.: Observational congruences for dynami-
cally reconfigurable tile systems. Theoret. Comput. Sci. 335(2–3), 331–372 (2005).
https://eprints.soton.ac.uk/261844/

5. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. EATCS Monographs on Theoretical Computer Science, vol.
21. Springer Verlag, Berlin (1990). https://doi.org/10.1007/978-3-642-61284-8

6. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Math. Struct. Comput. Sci. 16(6), 1133–
1163 (2006). https://doi.org/10.1017/S096012950600569X

7. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph transfor-
mation modules. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 38–63. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31847-7 3

8. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, Boston (2004)

9. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyper-
edge replacement as a model for service oriented computing. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
22–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 2

https://doi.org/10.1007/11841883_12
https://doi.org/10.1016/0022-0000(87)90030-4
https://doi.org/10.1016/0022-0000(87)90030-4
https://eprints.soton.ac.uk/261844/
https://doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1017/S096012950600569X
https://doi.org/10.1007/978-3-540-31847-7_3
https://doi.org/10.1007/978-3-540-31847-7_3
https://doi.org/10.1007/11804192_2


Graph Rewriting Components 37

10. Gadducci, F., Montanari, U.: The tile model. In: Plotkin, G.D., Stirling, C., Tofte,
M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp.
133–166. The MIT Press, Cambridge (2000)

11. Ghamarian, A.H., Rensink, A.: Generalised compositionality in graph transforma-
tion. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 234–248. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33654-6 16

12. Groe-Rhode, M., Presicce, F.P., Simeoni, M.: Refinements and modules for typed
graph transformation systems. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol.
1589, pp. 138–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48483-3 10

13. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and comparison of
modularity concepts for graph transformation systems. In: Engels, G., Kreowski,
H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by
Graph Transformation, vol. 2, pp. 669–690. World Scientific (1999)

14. Dan, H., Ugo, M.: Synchronized hyperedge replacement with name mobility. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 121–136.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 9

15. Hogan, A., et al.: Knowledge Graphs. No. 22 in Synthesis Lectures on Data, Seman-
tics, and Knowledge, Morgan & Claypool (2021). https://kgbook.org/

16. Lassila, O.: Graph abstractions matter, December 2021. https://2021.connected-
data.world

17. Schad, J.: Graph powered machine learning: Part 1. ML Conference Berlin, October
2021. https://mlconference.ai/ml-summit/

18. Taentzer, G.: Distributed graphs and graph transformation. Appl. Categorical
Struct. 7(4), 431–462 (1999)

19. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an
overview of systems and use cases. Data Intell. 1(3), 201–223 (2019). https://
doi.org/10.1162/dint a 00011

https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/3-540-48483-3_10
https://doi.org/10.1007/3-540-48483-3_10
https://doi.org/10.1007/3-540-44685-0_9
https://kgbook.org/
https://2021.connected-data.world
https://2021.connected-data.world
https://mlconference.ai/ml-summit/
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011


Decidability of Resilience
for Well-Structured Graph
Transformation Systems
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Abstract. Resilience is a concept of rising interest in computer sci-
ence and software engineering. For systems in which correctness w.r.t.
a safety condition is unachievable, fast recovery is demanded. We ask
whether we can reach a safe state in a bounded number of steps when-
ever we reach a bad state. In a well-structured framework, we investigate
problems of this kind where the bad and safety conditions are given as
upward/downward-closed sets. We obtain decidability results for graph
transformation systems by applying our results for subclasses of well-
structured transition systems. Moreover, we identify sufficient criteria of
graph transformation systems for the applicability of our results.

Keywords: Resilience · Graph transformation systems · Decidability ·
Well-structured transition systems

1 Introduction

Resilience is a broadly used concept in computer science and software engineer-
ing (e.g., [11]). In general engineering systems, fast recovery from a degraded
state is often termed as resilience, see, e.g., [17]. In view of the latter interpreta-
tion of resilience, we investigate on the question whether a SAFE state can be
reached in a bounded number of steps from any BAD state (where BAD is not
necessarily the complement of SAFE). This concept is meaningful for systems in
which violation of SAFE cannot be avoided. Our notion of resilience generalizes
correctness (e.g., [2,10,15]) w.r.t. a safety condition.

For modeling systems, we use graph transformation systems (GTSs) in the
single pushout approach (SPO), as considered, e.g., in [7], which provide visual
interpretability but yet also a precise formalism. In this perception, system states
are captured by graphs and state changes by graph transformations. Our goal is
to obtain decidability results for GTSs by considering their induced transition
systems. A transition system consists of a set of states of any kind (not necessarily
graphs) and a transition relation on the state set.

Usually, the state set (set of graphs) is infinite. To handle infinite state sets,
we employ the concept of well-structuredness studied, e.g., in [1,9]. A well-
structured transition system (WSTS) is, informally, a transition system equipped
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with a well-quasi-order satisfying that larger states simulate smaller states (also
called compatibility condition) and that certain predecessor sets can be effec-
tively computed. In this well-structured setting, ideal-based sets (upward- or
downward-closed sets) play an important role. They enjoy a number of suitable
properties for verification such as finite representation (of upward-closed sets)
and closure properties. For WSTSs, the ideal reachability (coverability) problem
is decidable [1,9], which is an integrant of our results.

Well-structuredness of GTSs is investigated, e.g., in [12] for several well-
quasi-orders. The well-quasi-order we use is the subgraph order which permits
strong compatibility but comes with the restriction of path-length-boundedness
on the graph class.

We show decidability for subclasses of GTSs of bounded path length. Each
subclass exhibits additional requirements, i.e., effectiveness or unreliability prop-
erties. Additionally, we identify sufficient criteria of GTSs for the applicability
of the results.

More precisely, we consider the explicit resilience problem where the bound
on the number of steps for recovery is given and the bounded resilience problem
which asks whether there exists such a bound. These problems are formulated
for marked GTSs each of which consists of a GTS together with a graph class
closed under rule application and an INITial subset of graphs. We ask: Starting
from any graph in INIT, whenever we reach a BAD graph, can we reach a SAFE
graph in ≤ k (in a bounded number of) steps?

To illustrate the idea of our resilience concept, we give an example.

Example (circular process protocol). Consider a ring of three processes
P0, P1, P2 each of which has an unordered collection (multiset) containing com-
mands. Each command belongs to a process and is labeled accordingly as c0, c1,
or c2. The protocol is described below. A formalization as GTS can be found in
Sect. 4.

– The process P0 liberal, i.e., it can initiate (generate) a command c0 in the
collection of the next process.

– Every process Pi can forward a command cj , i �= j, not belonging to itself.
– If a process Pi receives a command ci, it is enabled and can

1. execute its specific process action, or
2. clear all commands in its collection and forward a command of the next

process, or
3. leave the process ring (if i �= 0) and forward a command of the next

process.
Afterwards, the command ci is deleted.

– Any command may get lost in any state.

The process action of P0 is to forward two commands, c1 and c2. The process
action of P1 (P2) is to forward a command c2 (c1). The topology of the process
ring changes when a process leaves the ring. Processes P1 and P2 can leave the
ring only if the other process has not left the ring before. In Fig. 1, the initial
state where every process Pi has one command ci in its collection and the three
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possible topologies are shown. A process Pi is represented by an edge labeled
with Pi. The collections are represented by white nodes which may have loops
labeled with ci corresponding to the contained commands.

P0 P1

P2

c2c0

c1
P0

P1

P0 P1

P2

P0

P2

Fig. 1. Initial state and topologies of the circular process protocol.

Consider the following instances of the bounded resilience problem with the
initial state as in Fig. 1:

BAD ¬AllEnabled Command(c2) AllEnabled NoCommand
SAFE AllEnabled Collection(c0, c1) ¬AllEnabled No3Processes

For every instance of the bounded resilience problem, we are interested in a
bound k for the number of steps needed for recovery. In the first instance, we
ask whether we can reach a state where every process is enabled in ≤ k steps
whenever we reach a state where this is not the case. In the second instance, we
ask whether we can reach a state with a collection containing commands c0, c1
in ≤ k steps whenever we reach a state with a collection containing c2. The third
instance is the “dual” problem to the first one where the constraints for BAD
and SAFE are exchanged. In the fourth instance, we ask whether we can reach
a state containing no three processes in ≤ k steps whenever we reach a state
without commands. One may ask:

– Does such a k exist? If so, what is the minimal k?
– Is there a generic method for problems of this kind?

We will answer these questions in Sect. 3 and 4.
This paper is organized as follows: In Sect. 2, we recall preliminary concepts

of GTSs and (WS)TSs. We show decidability of the resilience problems for sub-
classes of marked WSTSs in Sect. 3. In Sect. 4, we apply our results to marked
GTSs. In Sect. 5, we give sufficient, rule-specific criteria for the applicability of
our results. We present related concepts in Sect. 6 and close with a conclusion
in Sect. 7. The proofs in full length and a further example can be found in a
technical report [13].

2 Preliminaries

We recall the concepts used in this paper, namely graph transformation systems
[6,7] and (in particular well-structured) transition systems [9].
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2.1 Graph Transformation Systems

In the following, we recall the definitions of graphs, graph constraints, rules, and
graph transformation systems [6,7].

A directed, labeled graph consists of a finite set of nodes and a finite set of
edges where each edge is equipped with a source and a target node and where
each node and edge is equipped with a label. Note that this kind of graphs are
a special case of the hypergraphs considered in [12].

Definition 1 (graphs & morphisms). A (directed, labeled) graph (over a
finite label alphabet Λ = ΛV ∪ΛE) is a tuple G = 〈VG, EG, srcG, tgtG, labV

G, labE
G〉

with finite sets VG and EG of nodes (or vertices) and edges, functions srcG, tgtG :
EG → VG assigning source and target to each edge, and labeling functions labV

G :
VG → ΛV , labE

G : EG → ΛE . A (simple, undirected) path in G of length � is
a sequence 〈v1, e1, v2 . . . , v�, e�v�+1〉 of nodes and edges s.t. srcG(ei) = vi and
tgtG(ei) = vi+1, or tgtG(ei) = vi and srcG(ei) = vi+1 for every 1 ≤ i ≤ �,
and all contained nodes and edges occur at most once. Given graphs G and
H, a (partial graph) morphism g : G ⇀ H consists of partial functions gV :
VG ⇀ VH and gE : EG ⇀ EH which preserve sources, targets, and labels, i.e.,
gV ◦ srcG(e) = srcH ◦ gE(e), gV ◦ tgtG(e) = tgtH ◦ gE(e), labV

G(v) = labV
H ◦ gV (v),

and labE
G(e) = labE

H ◦ gE(e) on all nodes v and egdes e, for which gV (v), gE(e)
is defined. Furthermore, if a morphism is defined on an edge, it must be defined
on both incident nodes. The morphism g is total (injective) if both gV and gE

are total (injective). If g is total and injective, we also write g : G ↪→ H. The
composition of morphisms is defined componentwise. A pair 〈G → C,G′ → C〉
of morphisms is jointly surjective if every item of C has a preimage in G or G′.

Convention. We draw graphs as usual. Labels are indicated by a symbol or a
color. In (partial) morphisms, we equip the image of a node with the same index.
Nodes on which the morphism is undefined have no index.

We consider a special case of graph constraints [10,16], which are non-nested
and based on positive (∃G)/negative (¬∃G) constraints. For simplicity, we call
them also positive (negative) constraints.

Definition 2 (positive & negative constraints). The class of positive
(negative) (graph) constraints is the smallest class of expressions which con-
tains ∃G (negative: ¬∃G) for every graph G and is closed under ∨ and ∧.
A graph G satisfies ∃G′ if there exists a total, injective morphism G′ ↪→ G.
The semantics of the logical operators are as usual. We write G |= c if G satis-
fies the positive/negative constraint c. For a positive/negative constraint c, we
denote by [[c ]] the set of all graphs G of the considered graph class with G |= c.

Using jointly surjective morphisms, every positive constraint can algorithmi-
cally be converted into an equivalent “∨-normal form”.

Fact 1 (from ∧ to ∨). For every positive contraint c, we can effectively con-
struct a positive constraint c′ of the form

∨
1≤i≤n ∃Gi s.t. [[c ]] = [[c′ ]] and there

exists no total, injective morphism Gi ↪→ Gj for i �= j.
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We use the single pushout (SPO) approach [7] with injective matches for
modeling graph transformations.

Definition 3 (graph transformation). A (graph transformation) rule r =
〈L ⇀ R〉 is a partial morphism from a graph L to a graph R. A graph transfor-
mation system (GTS) is a finite set of rules. A transformation G ⇒ H from a
graph G to a graph H applying a rule r at a total, injective match morphism
g : L ↪→ G is given by a pushout as shown in Fig. 2 (1) (for existence and con-
struction of pushouts, see, e.g., [7]). We write G ⇒r H to indicate the applied
rule, and G ⇒R H if G ⇒r H for a rule r in the rule set R.

In Fig. 2 (2), an example for a transformation is shown.

L R

G H

(1)g

r
1 2

P1

c0

1 2

P1

c0

3
1

2

P0 P1

P2

c0

3
1

2

P0 P1

P2

c0

→ →

(2)

Fig. 2. Pushout scheme and example of a transformation.

2.2 Transition Systems and Well-structuredness

We recall the notion of transition systems.

Definition 4 (transition system). A transition system (TS) 〈S,→〉 consists
of a (possibly infinite) set S of states and a transition relation →⊆ S × S.
Let →0= IdS (identitiy on S), →1=→, and →k=→k−1 ◦ → for every k ≥ 2.
Let →≤k=

⋃
0≤j≤k →j for every k ≥ 0. The transitive closure is given by

→∗=
⋃

k≥0 →k.

Often we are interested in the predecessors or successors of state set.

Definition 5 (pre- & postsets). Let 〈S,→〉 be a transition system. For S′ ⊆ S
and k ≥ 0, we define prek(S′) = {s ∈ S | ∃s′ ∈ S′ : s →k s′} and postk(S′) =
{s ∈ S | ∃s′ ∈ S′ : s′ →k s}. Let pre≤k(S′) =

⋃
j≤k prej(S′), pre∗(S′) =

⋃
k≥0 prek(S′), post≤k(S′) =

⋃
j≤k postj(S′), and post∗(S′) =

⋃
k≥0 postk(S′).

We abbreviate post1(S′) by post(S′) and pre1(S′) by pre(S). A TS 〈S,→〉 is
finite-branching if post(s) is finite and computable for every given state s.

Several problems are undecidable for infinite-state TSs in general. However,
interesting decidability results can be achieved if the system is well-structured
[1,9,12]. A prerequisite for this concept is a well-quasi-order on the state set.
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Definition 6 (well-quasi-order). A quasi-order is a reflexive, transitive rela-
tion. A well-quasi-order (wqo) over a set X is a quasi-order ≤⊆ X × X s.t. every
infinite sequence 〈x0, x1, . . .〉 in X contains an increasing pair xi ≤ xj with i < j. A
(well-)quasi-order is decidable if it can be decided whether x ≤ x′ for all x, x′ ∈ X.

In our setting, the subgraph order is of crucial importance.

Example 1 (subgraph order). The subgraph order ≤ is given by G ≤ H iff
there is a total, injective morphism G ↪→ H. Let S� be a graph class of bounded
path length (with bound �). The restriction of ≤ to S� is a wqo [4,12]. However,
it is not a wqo on all graphs: The infinite sequence 〈 , , , . . .〉 of cyclic
graphs of increasing length contains no increasing pair.

Assumption. From now on, we implicitly equip every set of graphs with the
subgraph order. By “≤” we mean either an abstract wqo or the subgraph order.

Upward- and downward-closed sets are of special interest.

Definition 7 (ideal & basis). Let X be a set and ≤ a quasi-order on X. For
every subset A of X, we denote by ↑ A = {x ∈ X | ∃a ∈ A : a ≤ x} the
upward-closure and ↓A = {x ∈ X | ∃a ∈ A : x ≤ a} the downward-closure of A.
An ideal I ⊆ X is an upward-closed set, i.e., ↑ I = I . An anti-ideal J ⊆ X is a
downward-closed set, i.e., ↓J = J . An (anti-)ideal is decidable if membership for
every x ∈ X is decidable. A basis of an ideal I is a subset B ⊆ I s.t. (i) ↑B = I
and (ii) b �= b′ ⇒ b �≤ b′ for all b, b′ ∈ B .

Fact 2 (ideals of graphs). For every positive (negative) constraint c, [[c ]] is
an (anti-)ideal.

Ideals are, in general, infinite but can be represented by finite bases (a min-
imal generating set), similar to algebraic structures.

Fact 3 (finite basis [1, Lemma 3.3]). Every ideal has a basis and every basis
is finite, provided that the superset is equipped with a wqo. Given a finite set
A, a basis of ↑A is computable, provided that the quasi-order is decidable.

Anti-ideals are the complements of ideals. Since an anti-ideal does not have an
“upward-basis” in general, we will later demand that membership is decidable.

For well-structuredness, we demand that the wqo yields a simulation of
smaller states by larger states. This condition is called compatibility.

Definition 8 (well-structured transition systems). Let 〈S,→〉 be transi-
tion system and ≤ a decidable wqo on S. The tuple 〈S,≤,→〉 is a well-structured
transition system (WSTS), if:

(i) The wqo is compatible with the transition relation, i.e., for all s1, s
′
1, s2 ∈ S

with s1 ≤ s′
1 and s1 → s2, there exists s′

2 ∈ S with s2 ≤ s′
2 and s′

1 →∗ s′
2. If

s′
1 →1 s′

2, we say that it is strongly compatible. Both is illustrated in Fig. 3.
(ii) For every s ∈ S, a basis of ↑pre(↑{s}) is computable.
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s1 s2

s1 s2

≤ ≤

∗

∀
∃

(a) Compatibility

s1 s2

s1 s2

≤ ≤

1

∀
∃

(b) Strong compatibility

Fig. 3. Visualization of (strong) compatibility.

A strongly WSTS (SWSTS) is a WSTS with strong compatibility.

Remark. For GTSs, strong compatibility is achieved by applying the same rule
to the bigger graph. In contrast to the double pushout (DPO) approach [6], SPO
has the suitable property that every rule is applicable to the bigger graph.

Assumption. Let 〈S,≤,→〉 be a well-structured transition system.

The set of ideals of S is closed under preset, union, and intersection.

Fact 4 (stability of ideals [1, Lemma 3.2]). For ideals I , I ′ ⊆ S, the sets
pre∗(I ), I ∪ I ′, and I ∩ I ′ are ideals. For SWSTSs, the sets pre(I ), pre≤k(I ) for
every k ≥ 0 are ideals.

An important point in our argumentation is the observation that every infi-
nite, ascending sequence of ideals w.r.t. a wqo eventually becomes stationary.

Lemma 1 (Noetherian state set [1, Lemma 3.4]). For every infinite, ascend-
ing sequence 〈I0 ⊆ I1 ⊆ . . .〉 of ideals, ∃k0 ≥ 0 s.t. Ik = Ik0 for all k ≥ k0.

Abdulla et al. [1] exploit Lemma 1 to show the decidability of ideal reachabil-
ity (coverability) for SWSTSs. The idea is to iteratively construct the sequence
of the ideals I k = pre≤k(I ) until it becomes stable. This construction is carried
out by representing ideals by bases. This argumentation is similarly feasible for
WSTSs, see, e.g., [9, proof of Thm. 3.6].

Lemma 2 (ideal reachability [1, Thm. 4.1]). Given a basis of an ideal
I ⊆ S and a state s of a SWSTS, we can decide whether we can reach a state
sI ∈ I from s. In particular, pre≤k(I ) = pre∗(I ) ⇐⇒ pre≤k+1(I ) = pre≤k(I ),
and a basis of pre∗(I ) is computable.

3 Decidability

We show the decidability of resilience problems for subclasses of SWSTSs by
extending the idea in [14] to a systematic investigation.

In our setting, ideal-based sets of states play an important role.

Definition 9 (ideal-based). A set is ideal-based if it is (i) an ideal with a given
basis, or (ii) a decidable anti-ideal. We denote by

(i) I the set of ideals with given bases, (ii) J the set of decidable anti-ideals.
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We formulate resilience problems for marked WSTSs, i.e., WSTSs with a
specified set INIT of inital states starting from which we investigate resilience.

Definition 10 (marked WSTS). A marked WSTS is a tuple 〈S,≤,→, INIT〉
where 〈S,≤,→〉 is a WSTS and INIT ⊆ S. If INIT is finite, we call it fin-marked.

Explicit Resilience Problem for WSTSs

Given: A marked WSTS 〈S,≤,→, INIT〉, ideal-based sets SAFE, BAD ⊆ S,
a natural number k ≥ 0.

Question: ∀s ∈ INIT : ∀(s →∗ s′ ∈ BAD) : ∃(s′ →≤k s′′ ∈ SAFE) ?

Bounded Resilience Problem for WSTSs

Given: A marked WSTS 〈S,≤,→, INIT〉, ideal-based sets SAFE, BAD ⊆ S.
Question: ∃k ≥ 0 : ∀s ∈ INIT : ∀(s →∗ s′ ∈ BAD) : ∃(s′ →≤k s′′ ∈ SAFE) ?

For our further considerations, we regard requirements in order to obtain decid-
ability, i.e., we consider the following subclasses of marked WSTSs.

Definition 11 (requirements). A marked WSTS 〈S,≤,→, INIT〉 is

(1) post∗-effective if INIT is finite and a basis of ↑post∗(INIT) is computable,
(2) lossy if ↓post∗(INIT) = post∗(INIT),
(3) ⊥-bounded (bottom-bounded) if there exists � ≥ 0 s.t. sB ∈ post≤�(s) for

every s ∈ S and every element sB of a basis of S with s ≥ sB .

The requirement of post∗-effectiveness describes the computability of the
smallest reachable states from the initital states. The notion of lossiness means
that the set of reachable states from the initital states is downward-closed. This
is an abstraction from the lossiness concept in [9, p. 83]. Usually, the term “lossy”
describes the circumstance that (almost) any piece of information of a state may
get lost. Another kind of unreliability is ⊥-boundedness which means that from
every state, every smaller basis element (the bottom underneath) is reachable
in a bounded number of steps. Thereby (almost) all information of a state may
get lost in a bounded of number of steps.

The following lemma is crucial for many following proofs.

Lemma 3 (ideal-inclusion [14, Lemma 4]). Let A be a set, I an ideal, and
J an anti-ideal. Then, A ∩ J ⊆ I ⇐⇒ ↑A ∩ J ⊆ I .

Applying this lemma to a basis BI of an ideal I , we obtain that the inclusion
I ∩ J ⊆ I ′ in an ideal I ′ can be checked by computing BI ∩ J and then checking
whether BI ∩ J ⊆ I ′.

We give a characterization of post∗-effectiveness via “anti-ideal reachability”.
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Proposition 1 (characterization of post∗-effectiveness). For a class of
finite-branching WSTSs, a basis of ↑ post∗(s) is computable for every given
state s iff the anti-ideal reachability problem is decidable, i.e., given a state s
of a WSTS in the regarded class and a decidable anti-ideal J , it can be decided
whether ∃s′ ∈ J : s →∗ s′.

Proof (sketch) On one hand, we can decide the anti-ideal reachability problem
by computing a basis of ↑post∗(s) and checking whether the intersection with the
anti-ideal is empty (Lemma 3). One the other hand, we can compute a basis of
↑post∗(s) by computing the sequence of ideals Pk =↑post≤k(s) until it becomes
stationary (Lemma 1). The stop condition, i.e., the condition which guarantees
that we can terminate the algorithm, is formalized as anti-ideal reachability. �

The characterization in Proposition 1 is used to show that Petri nets are
post∗-effective. It is well-known that Petri nets constitute SWSTSs [9, Thm.
6.1].

Example 2 (variations of Petri nets). (1) Petri nets (equipped with any
finite set of initial states) are post∗-effective by Proposition 1: Reachability for
Petri nets is decidable and recursively equivalent to submarking reachability [8,
p.6]. This corresponds to the anti-ideal reachability problem for Petri nets.
(2) Lossy Petri nets are Petri nets where in any state, one token may get lost at
any place. Lossy Petri nets are lossy for every set of initial states.
(3) Reset-lossy (mixed-lossy) Petri nets are reset Petri nets [5] where in any state,
all tokens (or one token) may get lost at any place. Reset-lossy (mixed-lossy)
Petri nets are ⊥-bounded (and lossy for every set of initial states).

For some results, we assume that a basis of the set of all states is given. This
is only relevant if we use these basis elements for computations.

Notation. For a WSTS 〈S,≤,→〉 with a given basis of S, we write WSTSB .

The next proposition shows how the requirements are related provided that
a basis of the set of all states is given. The Venn diagram in Fig. 4 illustrates the
relations of the subclasses corresponding to the requirements.

Proposition 2. Lossy (⊥-bounded) fin-marked WSTSBs are post∗-effective.

post∗-effective

lossy ⊥-bounded

Petri nets

lossy Petri
nets

reset-lossy
Petri nets

mixed-lossy
Petri nets

Fig. 4. Subclasses of fin-marked WSTSBs.
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Proof (sketch). Let 〈S,≤,→, INIT〉 be a lossy (⊥-bounded) fin-marked WSTSB .
To compute a basis of ↑post∗(INIT) for a finite set INIT, we look at the reachable
elements of a basis of the set S of all states. Such a basis element is reachable
iff its upward-closure is reachable. By Lemma 2, the latter is decidable. �

Our main result for fin-marked SWSTSs terms sufficient criteria under which
the resilience problems are decidable.

Theorem 1 (decidability for fin-marked SWSTSs). Both resilience prob-
lems are decidable for fin-marked SWSTSs which are

(1) post∗-effective if BAD ∈ J , SAFE ∈ I (corresp. [14, Thm. 1]),
(2) lossy if BAD,SAFE ∈ I.

The bounded resilience problem is decidable for fin-marked SWSTSBs which are

(3) lossy and ⊥-bounded if BAD ∈ I, SAFE ∈ J ,
(4) ⊥-bounded if BAD,SAFE ∈ J .

Key Idea of the Proof. We compute a finite representation of post∗(INIT)∩BAD
for checking inclusion in a decidable ideal I which is a predecessor set of SAFE.

The proof structure is shown in Fig. 5: Lemma 4 states that for post∗-effective
(lossy) fin-marked SWSTSs, a finite representation of post∗(INIT) ∩ BAD is
computable, i.e., inclusion in a decidable ideal is decidable. In the case SAFE ∈ I,
the set pre≤k(SAFE) is a decidable ideal for every k ≥ 0. (Lemma 5 shows the
existence of bounds for the set of all predecessors of SAFE ∈ J provided that
the SWSTS is ⊥-bounded.) Proposition 3 shows that pre∗(SAFE) constitutes a
decidable ideal in the case SAFE ∈ J if the SWSTSB is ⊥-bounded.

post∗(INIT) ∩ BAD ⊆
decidable ideal

pre≤k/∗(SAFE)
decidable

post∗-eff WSTS
BAD ∈ J

lossy WSTS
BAD ∈ I

Lem. 4

SWSTS
SAFE ∈ I

⊥-bounded SWSTSB

SAFE ∈ J
Prop. 3

Fig. 5. Structure of the decidability proof for fin-marked SWSTSs.

The following lemma states that the inclusion of post∗(INIT) ∩ BAD in an
decidable ideal is decidable if we consider post∗-effective in the case BAD ∈ J
or lossy fin-marked WSTSs in the case BAD ∈ I.



48 O. Özkan

Lemma 4 (checking inclusion). Let 〈S,≤,→, INIT〉 be a fin-marked WSTS,
BAD ⊆ S, and I ⊆ S be a decidable ideal. Then, it is decidable whether
post∗(INIT)∩BAD ⊆ I provided that the fin-marked WSTS is (a) post∗-effective
and BAD ∈ J , (b) lossy and BAD ∈ I.

Proof (sketch). We compute a finite representation of post∗(INIT) ∩ BAD for
checking inclusion in the decidable ideal I . To this aim, we use Lemma 3. In
case (a), the finite representation is Bpost ∩ BAD where Bpost is a basis of
↑ post∗(INIT). In case (b), the finite representation is ↓ post∗(INIT) ∩ BBAD

where BBAD is a basis of BAD. �

By the next lemma, ⊥-boundedness implies that for any anti-ideal J , pre∗(J )
is an ideal and pre∗(J ) = pre≤k(J ) for a k ≥ 0.

Lemma 5 (existence of bounds). For every ⊥-bounded SWSTS and every
anti-ideal J , there exists a k ≥ 0 s.t. pre∗(J ) =↑pre∗(J ) = pre≤k(J ).

Proof (sketch). By Lemma 1, for every set A of states, there exists a k0 ≥ 0 s.t.
↑ pre∗(A) =↑ pre≤k0(A). By strong compatibility and ⊥-boundedness, there
exists a constant � ≥ 0 s.t. ↑ pre≤k(J ) ⊆ pre≤k+�(J ) for every anti-ideal J .
Hence, pre∗(J ) ⊆↑pre∗(J ) =↑pre≤k0(J ) ⊆ pre≤k0+�(J ) ⊆ pre∗(J ). �

The following proposition identifies sufficient prerequisites s.t. pre∗(SAFE)
constitutes a decidable ideal in the case SAFE ∈ J .

Proposition 3 (decidable ideals). For every ⊥-bounded SWSTSB and every
decidable anti-ideal J , the set pre∗(J ) is a decidable ideal.

Proof (sketch). By Lemma 5, ↑ pre∗(J ) = pre∗(J ). Thus, it is an ideal. By
Lemma 3, s �∈ pre∗(J ) ⇐⇒ Bpost(s) ∩ J = ∅ where Bpost(s) is a basis of
↑ post∗(s). By Proposition 2, ⊥-boundedness implies post∗-effectiveness w.r.t.
any finite set of initial states, provided that a basis of S is given. Hence, mem-
bership is decidable. �

We compile our preparatory results to prove Theorem1.

Proof (of Theorem 1). Cases (1) & (2). By Fact 4, pre≤k(SAFE) is an ideal
for every k ≥ 0 since SAFE ∈ I. For every k ≥ 0, pre≤k+1(SAFE) =
pre(pre≤k(SAFE)) ∪ SAFE. By Definition 8 and Fact 3, a basis of pre≤k(SAFE)
is iteratively computable. By Lemma 4, we can decide whether post∗(INIT) ∩
BAD ⊆ pre≤k(SAFE) for (1) post∗-effective fin-marked SWSTSs and (2) lossy
fin-marked SWSTSs, respectively. By Lemma 1, the infinite ascending sequence
SAFE ⊆ pre≤1(SAFE) ⊆ pre≤2(SAFE) ⊆ . . . becomes stationary, i.e., there is
a minimal k0 ≥ 0 s.t. pre≤k0(SAFE) = pre∗(SAFE). By Lemma 2, we can also
determine this k0. Thus, we can determine the minimal number k = kmin s.t.
post∗(INIT) ∩ BAD ⊆ pre≤k(SAFE) (if it exists) and also whether it exists.
Hence, we can decide the bounded resilience problem and given any k, we can
check whether kmin ≤ k to decide the explicit resilience problem.
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Cases (3) & (4). By Lemma 5, for ⊥-bounded SWSTSs, there exists a k ≥ 0
s.t. pre∗(SAFE) = pre≤k(SAFE). Hence, checking bounded resilience is equiv-
alent to testing inclusion in pre∗(SAFE). By Proposition 3, for ⊥-bounded
SWSTSBs, pre∗(SAFE) is a decidable ideal since SAFE ∈ J . By Lemma 4,
we obtain that checking post∗(INIT) ∩ BAD ⊆ pre∗(SAFE) is decidable for (3)
lossy, ⊥-bounded fin-marked SWSTSBs and (4) post∗-effective, ⊥-bounded fin-
marked SWSTSBs, respectively. By Proposition 2, ⊥-boundedness implies post∗-
effectiveness provided that a basis of the set of all states is given. �

4 Application to Graph Transformation Systems

We translate the results for WSTSs into the GTS setting.
The sets of positive and negative constraints are subsumed as ideal-based

constraints.

Definition 12 (ideal-based constraints). We denote the set of positive (neg-
ative) constraints by Ic (Jc). An ideal-based constraint is an element of Ic ∪ Jc.

Recall that we consider the subgraph order as wqo. Path-length-boundedness
on the graph class guarantees that the subgraph order yields a wqo.

Similarly to marked WSTSs, a marked GTS is a GTS together with a graph
class closed under rule application and a subset INIT of graphs.

Definition 13 (marked GTS). A marked GTS is a tuple 〈S,R, INIT〉 where S
is a (possibly infinite) set of graphs, R is a GTS with ⇒R⊆ S×S, and INIT ⊆ S.
We speak of a marked GTS of bounded path length, shortly GTSbp, if S is of
bounded path length and there exist I ∈ I, J ∈ J (in the class of all graphs)
s.t. S = I ∩ J .

Remark. Ususally, one considers S as a decidable anti-ideal, as, e.g., in [12].
Then, the basis of S is given by the empty graph. By allowing S = I ∩ J , we
can consider more arbitrary bases of graphs. This is relevant for lossiness and
⊥-boundedness. A basis of S is given by BI ∩ J where BI is basis of I .

Example 3 (starry sky). The rules 〈∅ ⇀ A 〉 and 〈 A1 ⇀ A1 〉 together
with the set of disjoint unions of unboundedly many star-shaped graphs (includ-
ing isolated nodes) and any subset form a marked GTSbp.

We formulate the resilience problems for marked GTSs.

Explicit Resilience Problem for GTSs

Given: A marked GTS 〈S,R, INIT〉, ideal-based constraints Safe,Bad, a
natural number k ≥ 0.

Question: ∀G ∈ INIT : ∀(G ⇒∗ G′ |= Bad) : ∃(G′ ⇒≤k G′′ |= Safe) ?
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Bounded Resilience Problem for GTSs

Given: A marked GTS 〈S,R, INIT〉, ideal-based constraints Safe,Bad.
Question: ∃k ≥ 0 : ∀G ∈ INIT : ∀(G ⇒∗ G′ |= Bad) : ∃(G′ ⇒≤k G′′ |= Safe) ?

In the resilience problems for WSTSs, we considered ideal-based sets. We
show that one can input ideal-based constraints instead.

Lemma 6 (ideal-based graph sets). Let S = I ∩ J be a graph class where
I ∈ I and J ∈ J . For every positive (negative) constraint c, [[c ]] ∈ I (J ).

Proof. By Fact 2, for every positive (negative) constraint c, the set [[c ]] is an
(anti-)ideal. Satisfaction (|=) of negative constraints is decidable. Let c be a
positive constraint and b =

∨
G∈B ∃G where B is a given basis of I . Then, b ∧ c

is a positive constraint. By Fact 1, we can compute a positive constraint c′ s.t.
[[c′ ]] =[[b ∧ c ]] (in the class of all graphs) and c′ is of the form

∨
1≤i≤n ∃Gi where

Gi �≤ Gj for i �= j. Since J ∈ J , we can compute the set {Gi ∈ J : 1 ≤ i ≤ n}
which is a basis of [[c ]]S = {G ∈ S : G |= c}. Hence, we can assume that a basis
of [[c ]]S is given. �

Remark. More general constraints [10,16] do not constitute (anti-)ideals w.r.t.
the subgraph order, in general. Consider, e.g., the “nested” constraint AllLoop =
∀( 1 ,∃( 1 )) expressing that every node has a loop. The graph consisting
of one node and one loop satisfies the latter constraint. However, the bigger
graph consisting of two nodes and one loop does not satisfy it. (The smaller
graph consisting of a single node does not satisfy it either.) Thus, [[AllLoop ]] is
not an (anti-)ideal. Regarding the induced subgraph order [12], some “nested”
constraints constitute ideals: The constraint ∃(G,

∧
G+∈Ext(G) ¬∃(G ↪→ G+))

expresses that the graph G is an induced subgraph of the considered graph.
Here Ext(G) is the set of all graphs G+ obtained from G by adding one edge.

The following result of König & Stückrath terms a sufficient criterion for
GTSs to be well-structured.

Lemma 7 (well-structured GTS [12, Prop. 7]). Every marked GTSbp

induces a marked SWSTSB (equipped with the subgraph order).

In particular, they give an effective procedure for obtaining a basis of
pre(↑ {G}) for every given graph G. Note that in [12], König & Stückrath con-
sider labeled hypergraphs. However, the proof in our case is the same.

Convention. When speaking of a (fin-)marked GTSbp, we consider the induced
(fin-)marked SWSTSB . We also adopt the terminology for “post∗-effective”,
“lossy”, and “⊥-bounded”.

We apply our results from Sect. 3 to fin-marked GTSbp.
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Theorem 2 (decidability for fin-marked GTSs). Both resilience problems
are decidable for fin-marked GTSbps which are

(1) post∗-effective if Bad ∈ Jc, Safe ∈ Ic,
(2) lossy if Bad,Safe ∈ Ic.

The bounded resilience problem is decidable for fin-marked GTSbps which are

(3) lossy and ⊥-bounded if Bad ∈ Ic, Safe ∈ Jc,
(4) ⊥-bounded if Bad,Safe ∈ Jc.

Proof. By Lemma 7 [12], every fin-marked GTSbp induces a fin-marked SWSTSB .
Thus, the statements of Theorem 1 apply to GTSbps with the respective require-
ments. By Lemma 6, one can input ideal-based constraints instead of ideal-based
sets. �

We illustrate our decidability results by an example.

Example: Circular Process Protocol

In Fig. 6, the formalization as GTS of the circular process protocol in Sect. 1
is shown. Note that each Clear-rule is undefined on the node which has a ci-
labeled loop. In a rule application, this node will be deleted and recreated. Note
also that each Leave-rule identifies two nodes.

Initiate : 1 2

P0

1 2

P0

c0

Execute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2

P0

c0

1 2

P0

c1
c2

1 2

P1

c1

1 2

P1

c2

1 2

P2

c2

1 2

P2

c1

Loose : 1

ci

1

Forward : 1 2

Pi

cj
i = j

1 2

Pi

cj

Clear

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Pi

Pj

ci

1

Pi

Pj

cj

1 2

Pk Pi

Pj

ci

1 2

Pk Pi

Pj

cj

Leave : 1
2

3

Pk Pi

Pj

ci

i = 0

1 2, 3

Pk

Pj

cj

Fig. 6. Rules of the circular process protocol.

We consider all graphs with arbitrarily many commands of any kind (labeled with
c0, c1, or c2) in any collection, fitting to one of the topologies shown in Fig. 1. This
graph class is of bounded path length. A basis of this graph class is given by the
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topologies without any commands as in Fig. 1. The marked GTSbp is lossy since
the rules for loosing a command ci may be applied to any graph containing a
command ci. It is ⊥-bounded since we can reach a graph with the same topology
but containing no commands by (i) initiating a command c0, (ii) forwarding it
to the collection of P0, (iii) clearing all collections one after another, and (iv)
loosing the only remaining command. By Proposition 2, it is post∗-effective.

The example constraints for BAD and SAFE in Sect. 1 can be expressed as
positive/negative constraints:

AllEnabled = ∃
(

P0 P1

P2

c2c0

c1 )

∨
∨

i=1,2

∃
(

P0

Pi

c0 ci
)

,

Collection(c0, c1) = ∃
(

c0
c1

)

, Command(c2) = ∃
(

c2
)

,

No3Processes = ¬∃
(

P0 P1

P2

)

, NoCommand =
∧

i=0,1,2

¬∃
(

ci
)

.

It can be verified that the given k’s in the following table are minimal.

BAD ¬AllEnabled Command(c2) AllEnabled NoCommand
SAFE AllEnabled Collection(c0, c1) ¬AllEnabled No3Processes

k 6 4 1 5

By clearing the collection of Pi, it is not enabled. Thus, for the third instance,
kmin = 1 since kmin �= 0. Using the algorithms presented in Sect. 3, we can
compute kmin for the remaining cases.1

5 Rule-Specific Criteria

We identify sufficient and handy GTS criteria for the requirements in Theorem2.
These criteria comprise properties of the rules.

Definition 14 (rule properties). A rule 〈L p
⇀ R〉 is node-bijecitve if p is

bijective on the nodes. It is preserving if p is total and injective. A GTS is
node-bijective (preserving) if all its rules are node-bijective (preserving).

For lossiness and ⊥-boundedness, we consider sets of rules contained in a
GTS in order to reach smaller graphs (but not smaller than basis elements).

Assumption. Let S be a graph class over Λ and B a basis of S.

1 If SAFE ∈ J \ I, our method provides only the answer whether there is a bound k.
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Each lossy rule deletes one item (node or edge/loop) outside of a basis ele-
ment.2 Therefore they are constructed s.t. in each rule, a basis element is present.

Construction 1 (lossy rules). The set Rloss(S) of lossy rules w.r.t. S are
constructed as follows.

(1) For graphs G ∈ B, H ∈ HΛ, the set C(G,H) is defined as all graphs C s.t.
∃〈G ↪→ C,H ↪→ C〉 jointly surjective, and

HΛ =

{

x , x y
a

, x

a ∣
∣
∣
∣ x, y ∈ ΛV , a ∈ ΛE

}

.

(2) For every graph C ∈ C(G,H)∩S, every rule 〈C p
⇀ p(C)〉 where p is undefined

on exactly one item (node or edge) which is not in (the image of) G and the
identity otherwise, is a lossy rule.

A similar idea works for ⊥-boundedness. Each bottom rule either deletes a
node outside of a basis element, or deletes and recreates a node (with its incident
edges) of a basis element.

Construction 2 (bottom rules). The set R⊥(S) of bottom rules w.r.t. S are
constructed as follows. For every basis element G ∈ B and

(1) for every label x ∈ ΛV s.t. G + x ∈ S, the rule 〈G + x
p
⇀ G〉 where p is

undefined on the node x and the identity otherwise, is a bottom rule,3

(2) for every node v ∈ VG, the rule 〈G p
⇀ G〉 where p is undefined on v and its

incident edges, and the identity otherwise, is a bottom rule.

For ⊥-boundedness, we additionally restrict the graph class. A graph class is
node-bounded if the number of nodes in any graph of the class is bounded.

The following result shows that the rule-specific criteria are sufficient.

Theorem 3 (criteria). A marked GTSbp 〈S,R, INIT〉 is

(1) post∗-effective if (INIT is finite and) R is node-bijective or preserving,
(2) lossy if Rloss(S) ⊆ R,
(3) ⊥-bounded if S is node-bounded and R⊥(S) ⊆ R.

Proof (sketch). (1) If R is preserving, the statement follows by Fact 3 since
↑ post∗(INIT) =↑ INIT. If R is node-bijective, the statement follows by the
reduction in the proof of [3, Prop. 10]. For any graph G, a Petri net with initial
marking is constructed s.t. reachability and the wqo correspond to G ⇒∗

R and
the subgraph order, respectively. Petri nets are post∗-effective, see Example 2.

2 In [12], “lossy rules” w.r.t. the minor order, i.e., edge contraction rules, are considered
in order to obtain well-structuredness for GTSs.

3 The symbol “+” denotes the disjoint union of graphs.
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(2) Using the lossy rules, we can delete any item in G\i(GB) for every G ∈ S
and G ≥ GB ∈ B where B is a basis of S and i : GB ↪→ G. Hence, a sequence of
node and edge deletions from G to any smaller graph G′ ∈ S is also feasible via
the lossy rules.

(3) Since S is node-bounded, we can delete all nodes in G\i(GB) in a bounded
number of steps for every G ∈ S and G ≥ GB ∈ B where B is a basis of S and
i : GB ↪→ G. Then, by applying the rules for deleting and recreating, we can
reach any smaller basis element in ≤ maxGB∈B |VGB

| steps. �

Remark. A lossy/bottom rule intended for node deletion will delete dangling
edges outside of (the image of) a basis element. A bottom rule of the “second
type” is intended to delete dangling edges and restore items of the basis element.

Example 4 (criteria). (1) The GTS in Fig. 6 (circular process protocol) with-
out the Clear- and Leave-rules is node-bijective. (2) The Loose-rules in Fig. 6
can be adapted (see Fig. 7) s.t. they fit in our definition of lossy rules, taking
into account the three basis elements in Fig. 1.

Rloss(S)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2

Pi

Pj

cn

1 2

Pi

Pj

1
2

3

Pk Pi

Pj

cn

1
2

3

Pk Pi

Pj

Fig. 7. The lossy rules of the circular process protocol.

(3) We adapt Example 3 (starry sky) s.t. the criterion for ⊥-boundedness is
fulfilled. Let Dn be the disjoint union of n A-labeled nodes and Dloop

1 an A-
labeled node with a single loop. We restrict the graph class to all graphs with
exactly n A-labeled nodes and unboundedly many loops. The single basis element
is the graph Dn. Consider the rule 〈D1 ↪→ Dloop

1 〉 and the bottom rule 〈Dn
p
⇀

Dn〉, i.e., deleting and recreating one node in Dn.

6 Related Concepts

The concept of resilience [11,17] is broadly used with varying definitions.
For modeling systems, we use SPO graph transformation as in [7].
Abdulla et al. [1] show the decidability of ideal reachability (coverability),

eventuality properties and simulation in (labeled) SWSTSs. We use the presented
algorithm as an essential integrant of our decidability proof.
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Finkel and Schnoebelen [9] show that the concept of well-structuredness
is ubiquitous in computer science by providing a large class of example models.
They give several decidability results for well-structured systems with varying
notions of compatibility, also generalizing the algorithm of [1] to WSTSs.

König and Stückrath [12] extensively study the well-structuredness of
GTSs regarding three types of wqos (minor, subgraph, induced subgraph). All
GTSs are strongly well-structured on graphs of bounded path length w.r.t. the
subgraph order. This result enables us to apply our abstract results to GTSs.
They regard Q-restricted WSTSs whose state sets have not to be a wqo but
rather a subset Q of the states is a wqo. König & Stückrath develop a backwards
algorithm based on [9] for Q-restricted WSTSs (GTSs).

Bertrand et al. [3] study the decidability of reachability and coverability for
GTSs using, in parts, well-structuredness. A variety of rule-specific restrictions
is investigated, e.g., containedness of node/edge-deletion rules. We use one of
their results to obtain a sufficient criterion for post∗-effectiveness. In contrast to
[3], we stay in the framework of well-structured GTSs.

In Fig. 8, the main results of this paper (bold boxes) are placed in the context
of known results. The arrows ( ) mean “used for”, the hooked arrows ( )
mean “instance of” or “generalized to”. Our result for SWSTSs uses the well-
known coverability algorithm [1,9] for (S)WSTSs which exploits the Noetherian
property (a general concept for algebraic structures). For ⊥-bounded SWSTSs,
we also employ the Noetherian property. On the level of GTSs, we use the
predecessor-basis procedure of [12]. To the best of the author’s knowledge, the
considered notion of resilience was first studied in [14]. We extended the latter to
a systematic investigation. The result for SWSTSs in [14] (Thm. 1) corresponds
to case (1) of our Theorem 1. The result for GTSs in [14] (Thm. 2) is slightly
less general than case (1) of our Theorem 2. For case (1) of Theorem 3, we use a
result in [3] and well-known results for Petri nets [8].

Resilience in SWSTSs
Thm. 1

Case (1) corresp. [14, Thm. 1]

Coverability in (S)WSTSs [1,9]
Abdulla et al. ’96, Thm. 4.1

Finkel & Schnoebelen ’01, Thm. 3.6

Coverability in Q-restr WSTSs [12]
1.mhT,71’htarkcütS&ginöK

Resilience in GTSs
Thm. 2

Coverability in GTSs [12]
K 4.porP,71’htarkcütS&ginö
Method: Pred-basis Procedure

decid Ideals in ⊥-bnd SWSTSs
Prop. 3

lossy ∨ ⊥-bounded ⇒ post∗-eff
Prop. 2

Noetherian Property
e.g., [1, Lem. 3.4]

GTS Criteria
Thm. 3 Node-bijective GTSs [3]

Bertrand et al. ’12, Prop. 10

PNs are post∗-eff, Ex. 2
Submarking Reachability in PNs

e.g., [8, p.6]

Fig. 8. Our results in the context of the theory of WSTSs and (ideal) reachability.
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7 Conclusion

We provided a systematic investigation on resilience problems obtaining decid-
ability results for subclasses of marked GTSs by using the concept of well-
structuredness. The used well-quasi-order on graphs is the subgraph order, i.e.,
a prerequisite is the path-length-boundedness on the graph class. The require-
ments for decidability are post∗-effectiveness or a kind of unreliability (lossy,
⊥-bounded). We identified sufficient rule-specific criteria for these requirements.

For future work, we will consider (1) possibilities of a modified approach for
typed graphs [6], (2) other proof methods to handle nested constraints [10], and
(3) other well-quasi-orders on graphs, e.g., the induced subgraph order [12].

Acknowledgment. I am grateful to Annegret Habel, Nick Würdemann, and the
anonymous reviewers for their helpful comments.
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Abstract. Cyber-physical systems often encompass complex concurrent
behavior with timing constraints and probabilistic failures on demand.
The analysis whether such systems with probabilistic timed behavior
adhere to a given specification is essential. When the states of the system
can be represented by graphs, the rule-based formalism of Probabilistic
Timed Graph Transformation System (PTGTSs) can be used to suitably
capture structure dynamics as well as probabilistic and timed behavior
of the system. The model checking support for PTGTSs w.r.t. properties
specified using Probabilistic Timed Computation Tree Logic (PTCTL)
has been already presented. Moreover, for timed graph-based runtime
monitoring, Metric Temporal Graph Logic (MTGL) has been developed
for stating metric temporal properties on identified subgraphs and their
structural changes over time.

In this paper, we (a) extend MTGL to the Probabilistic Metric Tem-
poral Graph Logic (PMTGL) by allowing for the specification of proba-
bilistic properties, (b) adapt our MTGL satisfaction checking approach
to PTGTSs, and (c) combine the approaches for PTCTL model checking
and MTGL satisfaction checking to obtain a Bounded Model Checking
(BMC) approach for PMTGL. In our evaluation, we apply an implemen-
tation of our BMC approach in AutoGraph to a running example.

Keywords: cyber-physical systems · probabilistic timed systems ·
qualitative analysis · quantitative analysis · bounded model checking

1 Introduction

Cyber-physical systems often encompass complex concurrent behavior with tim-
ing constraints and probabilistic failures on demand [23,26]. Such behavior can
then be captured in terms of probabilistic timed state sequences (or spaces)
where time may elapse between successive states and where each step in such
a sequence has a designated probability. The analysis whether such systems
adhere to a given specification describing admissible or desired system behavior
is essential in a model-driven development process.

Graph Transformation Systems (GTSs) [10] can be used for the modeling
of systems when each system state can be represented by a graph and when
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all changes of such states to be modeled can be described using the rule-based
approach to graph transformation. Moreover, timing constraints based on clocks,
guards, invariants, and clock resets have been combined with graph transformation
in Timed Graph Transformation Systems (TGTSs) [4] and probabilistic aspects
have been added to graph transformation in Probabilistic Graph Transformation
Systems (PGTSs) [18]. Finally, the formalism of PTGTSs [21] combines timed
and probabilistic aspects similar to Probabilistic Timed Automata (PTA) [20]
and offers model checking support w.r.t. PTCTL [19,20] properties employing the
Prism model checker [19]. The usage of PTCTL allows for stating probabilistic
real-time properties on the induced PTGT state space where each graph in the
state space is labeled with a set of Atomic Propositions (APs) obtained by evaluat-
ing that graph w.r.t. e.g. some property specified using Graph Logic (GL) [12,26].1

However, structural changes over time in the state space cannot always be
directly specified using APs that are locally evaluated for each graph.2 To express
such structural changes over time, MTGL [11,26] has been introduced based on
GL. Using MTGL conditions, an unbounded number of subgraphs can be tracked
over timed graph transformation steps in a considered state sequence once bind-
ings have been established for them via graph matching. Moreover, MTGL con-
ditions allow to identify graphs where certain elements have just been added to
(removed from) the current graph. Similarly to MTGL, for runtime monitoring,
Metric First-Order Temporal Logic (MFOTL) [3] (with limited support by the
tool Monpoly) and the non-metric timed logic Eagle [1,14] (with full tool sup-
port) have been introduced operating on sets of relations and Java objects as
state descriptions, respectively. In [7–9], sequences are monitored using model
queries to identify complex event patterns of interest. In [15], the Quantified
Temporal Logic (QTL) is introduced, which supports bindings and state repre-
sentation similarly to MFOTL but supports only properties referring to the past
and does not support metric bounds in its temporal operators. Besides these
logic-based approaches, a multitude of further techniques have been developed
based on e.g. automata for monitoring the system’s behavior in the context of
runtime monitoring (see [2] for a survey). Finally, note that runtime monitoring
(as well as MTGL) focuses on the specification of single sequences whereas the
analysis of probabilistic effects is meaningful only when considering a system
with a branching behavior (due to non-determinism and/or probabilism).

Obviously, both logics PTCTL and MTGL have distinguishing key strengths
but also lack bindings on the part of PTCTL and an operator for expressing

1 Furthermore, Uppaal [28] is an analysis tool for timed automata featuring model
checking support for standard metric temporal properties and simulation-based sup-
port for cyber-physical systems extending timed automata but does not support prob-
abilistic analysis. Lastly, the Modest toolset [6,13] also provides analysis support for
more complex cyber physical systems representable by e.g. stochastic hybrid automata
w.r.t. probabilistic metric temporal requirements.

2 For example, tracking (structural changes to) individual graph elements allows to
express and analyze deadlines for each individual graph element whereas APs cannot
distinguish between individual graph elements and hence cannot help in mapping
each of them to their corresponding deadline.
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probabilistic requirements on the part of MTGL.3 Furthermore, specifications
using both, PTCTL and MTGL conditions, are insufficient as they cannot capture
phenomena based on probabilistic effects and the tracking of subgraphs at once.
Hence, a more complex combination of both logics is required. Moreover, realis-
tic systems often induce infinite or intractably large state spaces prohibiting the
usage of standard model checking techniques. Bounded Model Checking (BMC)
has been proposed in [16] for such cases implementing an on-the-fly analysis. Simi-
larly, reachability analysis w.r.t. a bounded number of steps or a bounded duration
have been discussed in [17].

To combine the strengths of PTCTL and MTGL, we introduce PMTGL by
enriching MTGL with an operator for expressing probabilistic requirements as
in PTCTL. Moreover, we present a BMC approach for PTGTSs w.r.t. PMTGL
properties by combining the PTCTL model checking approach for PTGTSs from
[21] (which is based on a translation of PTGTSs into PTA) with the satisfaction
checking approach for MTGL from [11,26]. In our approach, we just support
bounded model checking since the binding capabilities of PMTGL conditions
require non-local satisfaction checks taking possibly the entire history of a (finite)
path into account as for MTGL conditions. However, we obtain even full model
checking support for two cases: (a) for the case of finite loop-free state spaces
and (b) for the case where the given PMTGL condition does not need to be
evaluated beyond a maximal time bound.

As a running example, we consider a system in which a sender decides to
send messages at nondeterministically chosen time points, which have then to
be transmitted to a receiver via a network of routers within a given time bound.
In this system, transmission of messages is subject to a probabilistic failure on
demand requiring a retransmission of a message that was lost at an earlier trans-
mission attempt. For this scenario, we employ PMTGL to express the desired
system property of timely message reception. Firstly, using the capabilities inher-
ited from MTGL, we identify messages that have just been sent, track them
over time, and check whether their individual deadlines are met. Secondly, using
the probabilistic operator inherited from PTCTL, we specify lower and upper
bounds for the probability with which such an identified message is transmitted
to the receiver before the deadline expires. During analysis, we are interested
in determining the expected best-case and worst-case probabilities for a success-
ful multi-hop message transmission from sender to receiver. For our evaluation,
we also consider further variants of the considered scenario where messages are
dropped after n transmission failures.

This paper is structured as follows. In Sect. 2, we recall the formalism of
PTA. In Sect. 3, we discuss further preliminaries including graph transformation,
graph conditions, and the formalism of PTGTSs. In Sect. 4, we recall MTGL and
present the extension of MTGL to PMTGL in terms of syntax and semantics. In
Sect. 5, we present our BMC approach for PTGTSs w.r.t. PMTGL properties.
In Sect. 6, we evaluate our BMC approach by applying its implementation in

3 PTCTL model checkers such as Prism do not support the branching capabilities of
PTCTL as of now due to the complexity of the corresponding algorithms.
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Fig. 1. PTA A, one of its paths, and its symbolic state space.

the tool AutoGraph [24] to our running example. Finally, in Sect. 7, we close
the paper with a conclusion and an outlook on future work. Further details are
given in a technical report [25].

2 Probabilistic Timed Automata

We briefly review PTA [20], which combine the use of clocks to capture real-time
phenomena and probabilism to approximate/describe the likelihood of outcomes
of certain steps, and PTA analysis as supported by Prism [19].

For a set of clocks X, clock constraints ψ ∈ CC(X) also called zones are finite
conjunctions of clock comparisons c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X,
∼ ∈ {<,>,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation (v : X R0) ∈ CV(X)
satisfies a zone ψ, written v |= ψ, as expected. The initial clock valuation ICV(X)
maps all clocks to 0. For a clock valuation v and a set of clocks X ′, v[X ′ := 0]
is the clock valuation mapping the clocks from X ′ to 0 and all other clocks
according to v. For a clock valuation v and a duration δ ∈ R0 , v + δ is the clock
valuation mapping each clock x to v(x) + δ. A Discrete Probability Distribution
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(DPD) μ : A [0, 1], written μ ∈ DPD(A), satisfies
∑

a∈A μ(a) = 1. An element
a ∈ A is in the support of μ, written a ∈ supp(μ), if μ(a) > 0.

A PTA (see Fig. 1a for an example) is of the form A = (L, � ∈ L,X, I :
L CC(X), δ ⊆ L × A × CC(X) ×DPD(2X × L),L : L 2AP ) where L is a set
of locations, � is an initial location, X is a set of clocks, I maps each location to
an invariant, δ contains edges e = (�, a, ψ, μ) where � is the source location, a ∈ A
is an action4, ψ is a guard, and μ is a DPD where μ(X ′, �′) is the probability to
reach the target location �′ while resetting the clocks in X ′ to 0, and L labels
each location with a set of atomic propositions from AP .

The states of a PTA are of the form (�, v) ∈ L × CV(X) with v |= I(�).
The initial state is (�, ICV(X)). The labeling of a state (�, v) is given by L(�).
PTA allow for timed and discrete steps between states resulting in paths (such
as the one in Fig. 1b). A timed step (�, v)[δ, μ〉(�, v + δ) of duration δ ∈ R
and DPD μ must satisfy that (�, v + δ′) is a state for every 0 < δ′ < δ and
μ(�, v + δ) = 1. A discrete step (�, v)[0, μ〉(�′, v′) of duration 0 and DPD μ using
some (�, a, ψ, μ) ∈ δ and (X ′, �′) ∈ supp(μ) must satisfy v |= ψ, v′ = v[X ′ := 0],
and μ(�′, v′) =

∑
X′,v′=v[X′:=0] μ(X ′, �′).5

Prism supports PTA analysis returning minimal and maximal probabilities
Pmin=?(F ap) and Pmax=?(F ap) with which an ap labeled state can be reached.
These two probabilities may differ due to different resolutions of the nonde-
terminism among timed and discrete steps for which adversaries are employed
as usual. For effective analysis, Prism does not compute the (usually infi-
nite) induced state space but computes instead a finite symbolic state space
(such as the one in Fig. 1c) intuitively eliminating the impact of guards, invari-
ants, and resets. In this finite symbolic state space, states are of the form
(�, ψ) ∈ L × CC(X) symbolically representing all states (�, v) with v |= ψ.

For example, the PTA A from Fig. 1a (for which adversaries only decide
how much time to spend in location �1), Pmax=?(F success) = 0.7 + 0.05 using
a probability maximizing adversary that lets 5 ≤ δ ≤ 6 time units elapse in
�1 (0.25 is not added as �4 is not reachable using this adversary). Similarly,
Pmin=?(F success) = 0.05 using a probability minimizing adversary that lets
3 < δ < 5 time units elapse in �1 (0.25 and 0.7 are not added as �4 and �6 are
not reachable using this adversary).

4 Actions in edges can be used to describe the purpose of the edge during modeling
but also allow to define PTA based on a parallel composition of multiple PTA where
these PTA synchronize on common actions. In [21], actions are used to store in PTA
edges information about the PTGT steps from which they originate (as also stated
in Sect. 3) while actions (being a standard part of PTA) do not play an important
role in our BMC approach presented in Sect. 5.

5 Here, μ captures the unique successor state for timed steps and sums (possibly mul-
tiple non-zero) probabilities of domain elements of μ leading to a common successor
state for discrete steps (in particular for the case that clocks to be reset have already
the value 0).
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Fig. 2. Components of the PTGTS for the running example.
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3 Probabilistic Timed Graph Transformation Systems

We briefly recall graphs, graph conditions, and PTGTSs in our notation.
Using the variation of symbolic graphs [22] from [26], we consider typed

attributed graphs (short graphs) (such as G0 in Fig. 2b), which are typed over a
type graph TG (such as TG in Fig. 2a). In such graphs, attributes are connected
to local variables and an Attribute Condition (AC) over a many sorted first-order
attribute logic is used to specify the values for these local variables.6 Morphisms
m : G1 G2 must ensure that the AC of G2 (e.g. y = 4) implies the AC of
G1 (e.g. m(x ≥ 2) = (y ≥ 2)). Lastly, monomorphisms (short monos), denoted
by m : G1 G2, map all elements injectively.

Graph Conditions (GCs) [12,26] of GL are used to state properties on graphs
requiring the presence or absence of certain subgraphs in a host graph using
propositional connectives and (nested) existential quantification over graph pat-
terns. For example, the GC φallDone from Fig. 2c is satisfied by all graphs, in
which all messages are equipped with a done loop.

A Graph Transformation (GT) step is performed by applying a GT rule ρ =
(� :K L, r :K R, γ) for a match m :L G on the graph to be transformed
(see [26] for technical details). A GT rule specifies that (a) the graph elements in
L − �(K) are to be deleted and the graph elements in R − r(K) are to be added
using the monos � and r, respectively, according to a Double Pushout (DPO)
diagram and (b) the values of variables of R are derived from those of L using
the AC γ (e.g. x′ = x + 2) in which the variables from L and R are used in
unprimed and primed form, respectively.7

PTGTSs introduced in [21] are a probabilistic real-time extension of Graph
Transformation Systems (GTSs) [10]. PTGTSs can be translated into equivalent
PTA according to [21] and, hence, PTGTSs can be understood as a high-level
language for PTA following similar mechanics.

PTGT states are pairs (G, v) of a graph and a clock valuation. The initial
state is given by a distinguished initial graph and a valuation mapping all clocks
to 0. For our running example, the initial graph G0 (given in Fig. 2b) captures
a sender, which is connected via a network of routers to a receiver, and two
messages to be send. The type graph of a PTGTS also identifies attributes
representing clocks, which are the clock attributes of a message in Fig. 2a.

PTGT rules of a PTGTS contain (a) a left-hand side graph L, (b) an AC
specifying as an attribute guard non-clock attributes of L that must be satisfied
by any match of L, (c) an AC specifying as a clock guard clock attributes of L
that must be satisfied to permit the application of the PTGT rule, (d) an AC
specifying as a clock invariant clock attributes of L that must never be violated
6 In our implementation, we employ the SMT solver Z3 to determine satisfiability of

ACs. When more complex operations are used in ACs, SMT solvers can be unable
to return definitive judgements in time, which does not happen for the running
example. If this case would occur, the users would be inform accordingly.

7 Nested application conditions given by GCs to further restrict rule applicability are
straightforwardly supported by our approach but, to improve readability, not used
in the running example and omitted subsequently.
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for a match of L, (e) a natural number describing a priority preventing the
application of the PTGT rule when a PTGT rule with higher priority can be
applied, and (f) a nonempty set of tuples of the form (�:K L, r:K R, γ,C, p)
where (�, r, γ) is an underlying GT rule, C is a set of clocks contained in R to
be reset, and p is a real-valued probability from [0, 1] where the probabilities of
all such tuples must add up to 1.

For our running example, the PTGTS contains the four PTGT rules from
Fig. 2d. The PTGT rules σsend, σreceive, and σdrop have each a unique under-
lying GT rule ρsend,doneS, ρreceive,doneR, and ρdrop,doneD, respectively, whereas the
PTGT rule σtransmit has two alternative underlying GT rules ρtransmit,success and
ρtransmit,failure. For each of these underlying GT rules, we depict the graphs L, K,
and R in a single graph where graph elements to be removed and to be added
are annotated with 
 and ⊕, respectively. Further information about the PTGT
rule and its underlying GT rules are given in gray boxes. The PTGT rule σsend

is used to push the next message into the network by connecting it to the router
that is adjacent to the sender. Thereby, the attribute num of the sender is used
to push the messages in the order of their id attributes. The PTGT rule σreceive

has the higher priority 1 and is used to pull a message from the router that is
adjacent to the receiver by marking the message with a done loop. The PTGT
rule σtransmit is used to transmit a message from one router to the next one.
This transmission is successful with probability 0.8 and fails with probability
0.2. The clock guard and the clock invariant of σtransmit (together with the fact
that the clock of the message is reset to 0 whenever σtransmit is applied or when
the message was pushed into the network using σsend) ensures that transmission
attempts happen within 2–5 time units. Lastly, the PTGT rule σdrop has priority
1 and is used to drop messages for which transmission has failed. In our evalua-
tion in Sect. 6, we also consider the cases that messages are never dropped or not
dropped before the second transmission failure by changing the attribute guard
of σdrop from f > 0 to ⊥ and f > 1, respectively. PTGTS steps (G, v)[δ, μ〉(G′, v′)
are timed and discrete steps as for PTA.

PTGT APs are GCs φ and PTGT states (G, v) are labeled by φ when G
satisfies φ. For our running example, the AP φallDone labels states where each
message has been successfully delivered. Subsequently, we introduce PMTGL to
identify relevant target states for analysis not relying on PTGT APs.

Besides translating a PTGTS into a PTA following [21], we can generate
directly a symbolic state space (cf. Fig. 1c for the PTA case) using the tool
AutoGraph [24] where each symbolic state (G,ψ) represents all states (G, v)
with v |= ψ and where ψ is encoded as a Difference Bound Matrix (DBM) [5].

4 Probabilistic Metric Temporal Graph Logic

Before introducing PMTGL, we recall MTGL [11,26] and adapt it to PTGTSs.
To simplify our presentation, we focus on a restricted set of MTGL operators
and conjecture that the presented adaptations of MTGL are compatible with full
MTGL from [26] as well as with the orthogonal MTGL developments in [27].
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Fig. 3. PMTGC χmax where the additional MTGL operator forall-new (written ∀N) is
derived from the operator exists-new by ∀N(f, θ) = ¬∃N(f, ¬θ).

The Metric Temporal Graph Conditions (MTGCs) of MTGL are specified
using (a) the GC operators to express properties on a single graph in a path and
(b) metric temporal operators to navigate through the path. For the latter, the
operator ∃N (called exists-new) is used to extend a current match of a graph
H to a supergraph H ′ in the future such that some additionally matched graph
element could not have been matched earlier. Moreover, the operator U (called
until) is used to check whether an MTGC θ2 is eventually satisfied in the future
within a given time interval while another MTGC θ1 is satisfied until then.

Definition 1 (MTGCs). For a graph H, θH ∈ MTGC(H) is a metric temporal
graph condition (MTGC) over H defined as follows:

θH ::= � | ¬θH | θH ∧ θH | ∃(f, θH′) | ν(g, θH′′) | ∃N(f, θH′) | θH UI θH

where f : H H ′ and g : H ′′ H are monos and where I is an interval over R0.

For our running example, consider the MTGC given in Fig. 3 inside the operator
Pmax=?(·). Intuitively, this MTGC states that (forall-new) whenever a message
has just been sent from the sender to the first router, (restrict) when only track-
ing this message by match restriction (since at least the edge e2 can be assumed
to be removed in between), (until) eventually within 5 time units, (exists) this
message is delivered to the receiver as indicated by the done loop.

In [11,26], MTGL was defined for timed graph sequences in which only dis-
crete steps are allowed each having a duration δ > 0. We now adapt MTGL to
PTGTSs in which multiple graphs may occur at the same time point.

For tracking subgraphs in a path π over time using matches, we first identify
the graph π(τ) in π at a position τ = (t, s) ∈ R0 × N where t is a total time
point and s is a step index starting at 0 after every non-zero timed step.8

Definition 2 (Graph at Position). A graph G is at position τ = (t, s) in a
path π of a PTGTS S, written π(τ) = G, if the auxiliary function pos defined
below returns pos(π, i, t, s, δ) = G for the ith step of π and delay δ (since the last
change of the step index s).

• If π0 = ((G, v)[δ, μ〉(G′, v′)), then pos(π, 0, 0, 0, 0) = G.
• If πi = ((G, v)[δ, μ〉(G′, v′)), pos(π, i, t, s, 0) = G, and δ > 0, then
pos(π, i, t + δ′, 0, δ′) = G for each δ′ ∈ (0, δ) and pos(π, i + 1, t + δ, 0, 0) = G′

8 To compare positions, we define (t, s) < (t′, s′) if either t < t′ or t = t′ and s < s′.
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• If πi = ((G, v)[0, μ〉(G′, v′)) and pos(π, i, t, s, δ) = G, then
pos(π, i + 1, t, s + 1, 0) = G′

A match m : H π(τ) into the graph at position τ can be propagated for-
wards/backwards over the steps in a path to the graph π(τ ′). Such a propagated
match m′ :H π(τ ′), written m′ ∈ PM(π,m, τ, τ ′), can be obtained uniquely if
all matched graph elements m(H) are preserved by the considered steps, which
is trivially the case for timed steps. When some graph element is not preserved,
PM(π,m, τ, τ ′) is empty.

We now present the semantics of MTGL by providing a satisfaction relation,
which is defined as for GL for the operators inherited from GL and as explained
above for the operators exists-new and until .

Definition 3 (Satisfaction of MTGCs). An MTGC θ ∈ MTGC(H) over a
graph H is satisfied by a path π of the PTGTS S, a position τ ∈ R0 × N, and
a mono m : H π(τ), written (π, τ,m) |= θ, if an item applies.

• θ = �.
• θ = ¬θ′ and (π, τ,m) �|= θ′.
• θ = θ1 ∧ θ2 , (π, τ,m) |= θ1 , and (π, τ,m) |= θ2 .
• θ = ∃(f : H H ′, θ′) and ∃m′ : H ′ π(τ). m′ ◦ f = m ∧ (π, τ,m′) |= θ.
• θ = ν(g : H ′′ H, θ′) and (π, τ,m ◦ g) |= θ′.
• θ = ∃N(f : H H ′, θ′) and there are τ ′ ≥ τ , m′ ∈ PM(π,m, τ, τ ′), and

m′′ : H ′ π(τ ′) s.t. m′′ ◦ f = m′, (π, τ ′,m′′) |= θ, and for each τ ′′ < τ ′ it
holds that PM(π,m′′, τ ′, τ ′′) = ∅.

• θ = θ1 UI θ2 , τ = (t, s), and there are δ ∈ I and τ ′ = (t + δ, s′) s.t.
◦ s′ ≥ s if δ = 0,
◦ there is m′ ∈ PM(π,m, τ, τ ′) s.t. (π, τ ′,m′) |= θ2 , and
◦ for every τ ≤ τ ′′ < τ ′ there is m′′ ∈ PM(π,m, τ, τ ′′) s.t. (π, τ ′′,m′′) |= θ1 .

Moreover, if θ ∈ MTGC(∅), τ = (0, 0), and (π, τ, i(π(τ))) |= θ, then π |= θ.

We now introduce the Probabilistic Metric Temporal Graph Conditions (PMT-
GCs) of PMTGL, which are defined based on MTGCs.

Definition 4 (PMTGCs). Each probabilistic metric temporal graph condi-
tion (PMTGC) is of the form χ = P∼c(θ) where ∼ ∈ {≤, <,>,≥}, c ∈ [0, 1] is
a probability, and θ ∈ MTGC(∅) is an MTGC over the empty graph. Moreover,
we also call expressions of the form Pmin=?(θ) and Pmax=?(θ) PMTGCs.

The satisfaction relation for PMTGL defines when a PTGTS satisfies a PMTGC.

Definition 5 (Satisfaction of PMTGCs). A PTGTS S satisfies the PMTGC
χ = P∼c(θ), written S |= χ, if, for any adversary Adv, the probability over all
paths of Adv that satisfy θ is ∼ c. Moreover, Pmin=?(θ) and Pmax=?(θ) denote
the infimal and supremal expected probabilities over all adversaries to satisfy θ.
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For our running example, the evaluation of the PMTGC χmax from Fig. 3 for the
PTGTS from Fig. 2 results in the probability of 0.84 = 0.4096 using a probability
maximizing adversary Adv as follows. Whenever the first graph of the PMTGC
can be matched, this is the result of an application of the PTGT rule σsend. The
adversary Adv ensures then that the matched message is transmitted as fast as
possible to the destination router R3 by (a) letting time pass only when this is
unavoidable to satisfy the guard for the next transmission step and (b) never
allowing to match the router R4 by the PTGT rule σtransmit as this leads to a
transmission with 3 hops. For each message, the only transmission requiring at
most 5 time units transmits the message via the router R2 to router R3 using 2
hops in at least 2+2 time units. The urgently (i.e., without prior delay) applied
PTGT rule σreceive then attaches a done loop to the message as required by χmax.
Since the transmissions of the messages do not affect each other and messages
are successfully transmitted only when both transmission attempts for each of
the messages succeeded, the maximal probability to satisfy the inner MTGC
is (0.8 × 0.8)2 = 0.84. Using Pmin=?(·) results in a probability of 0 since there is
e.g. the adversary Adv ′ that only allows a transmission with 3 hops via router
R4 exceeding the deadline.

5 Bounded Model Checking Approach

We now present our BMC approach in terms of an analysis algorithm for a fixed
PTGTS S, PMTGC χ = P∼c(θ), and time bound T ∈ R0 ∪ {∞}. Using this
algorithm, we analyze whether S satisfies χ when restricting the discrete behavior
of S to the time interval [0, T ). In fact, we consider in this algorithm PMTGCs
of the form Pmax=?(θ) or Pmin=?(θ) for computing expected probabilities since
they are sufficient to analyze PMTGCs of the form P∼c(θ).9 In the subsequent
presentation, we focus on the case of Pmax=?(θ) and point out differences for the
case of Pmin=?(θ) where required.

Step 1: Encoding the Time Bound into the PTGTS
For the given PTGTS S and time bound T , we construct an adapted PTGTS S′

into which the time bound T is encoded (for T = ∞, to be used when all paths
derivable for the PTGTS are sufficiently short, we use S′ = S). In S′, we ensure
that all discrete PTGT steps are disabled when time bound T is reached and that
the PTGT invariants are then disabled. For this purpose, we (a) create a fresh
local variable xT of sort real and a fresh clock variable xc (for which fresh types are
added to the type graph to ensure non-ambiguous matching of variables during
GT rule application), (b) add both variables and the attribute constraint xT = T
to the initial graph of S, (c) add both variables to the graphs L, K, and R of each
underlying GT rule ρ = (�:K L, r:K R, γ) of each PTGT rule σ of S and add
xc < xT as an additional clock guard to each PTGT rule to prevent the application
of PTGT rules beyond time bound T , and (d) add a PTGT rule σBMC with a clock
guard xc ≥ xT and a clock invariant xc ≤ xT , which (in its single underlying GT

9 For example, Pmin=?(θ) = c implies satisfaction of P≥c′(θ) for any c′ ≤ c.
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rule) deletes the variable xT from the matched graph. The application of σBMC

at time xT ensures that no PTGT rule can be applied subsequently and that all
PTGT invariants are disabled due to step (c).10 For the resulting PTGTS S′, we
then solve the model checking problem for the given PMTGC χ.

Lemma 1 (Encoded BMC Bound). If π is a path of the PTGTS S′,then the
time point of the last discrete step (if any exists) precedes T .

Step 2: Construction of Symbolic State Space and Timing Specification
Following the construction of a symbolic state space for a given PTA by the
Prism model checker (where states are given by pairs of locations and zones over
the clocks of the PTA (cf. Sect. 2)), we may construct a symbolic state space
for a given PTGTS where states are given by pairs of graphs and zones over
the clocks contained in the graph. Paths π̂ through such a symbolic state space
are of the form s1[μ2〉s2[μ3〉 . . . sn consisting of states and (nondeterministically
selected) DPDs on successor states (i.e., μi(si) > 0). Note again that each such
path π̂ is symbolic itself by not specifying the amount of time that elapses in each
state. We call a path π of the form s1[δ2, μ2〉s2[δ3, μ3〉 . . . sn a timed realization
of π̂ when the added delays δi ≥ 0 are a viable selection according to the zones
contained in the states (e.g. for the symbolic state space in Fig. 1c, the zone
c1 = c2 ≤ 6 of the initial state allows any selection δ1 ≤ 6).

As a deviation from the symbolic state space generation approach for PTA,
we generate a tree-shaped symbolic state space M by not identifying isomorphic
states. The absence of loops in M guaranteed by the tree-shaped form ensures
that, as required by Step 3, every path of M is finite (on time diverging paths).
Moreover, for each path π̂ of M , guards, invariants, and clock resets have been
encoded in the zones of the states also ensuring the existence of at least one
timed realization π for each π̂. For our analysis algorithm, ultimately deriving
the resulting probabilities in Step 5, we now use the guards, invariants, and
clock resets again to derive for each path11 π̂ of M a timing specification TS(π̂).
This timing specification captures for a path π̂ when each of its states has been
reached (which may be impossible without the tree-shaped form of the symbolic
state space) thereby characterizing all viable timed realizations π of π̂. To define
TS(π̂), we use time point clocks tpci for 1 ≤ i ≤ n where n is the maximal
length of any path of M . For a path π̂, tpci then represents in TS(π̂) the time
point when state i has been just reached in π̂. Hence, TS(π̂) ranges over tpci

for 1 ≤ i ≤ m where m is the length of π̂. In the following, we also use the
notion of the total time valuation ttv(π) to be the AC equating the time point
clock tpci and the time point

∑
1≤k<i δi of the ith step in π. Using this notion,

we characterize that π is a timed realization of π̂ (performing the same discrete
steps) when TS(π̂) ∧ ttv(π) is satisfiable.

To define TS(π̂), we use a map LastReset(k, c) = k′ returning for an index
1 ≤ k ≤ m and a clock c the largest index k′ ≤ k where c was reset in π̂ (which
10 The additional PTGT rule σBMC is used since PTGT invariants cannot be disabled by

changing them from γ to γ ∨ xc ≥ T due to the limited syntax of zones.
11 We only consider paths starting in the initial state and ending in a leaf state.
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can be easily computed by iterating once through π̂). Recall that all clocks c
are reset in the initial state, i.e., LastReset(1, c) = 1. We include the ACs in
TS(π̂) as follows for each state si. Firstly, when i = 1 (i.e., si is the initial state),
we add tpc1 = 0 to TS(π̂). Secondly, when i > 1, we add tpci−1 ≤ tpci to
TS(π̂). Thirdly, when si was reached by respecting a guard ψ (implying i > 1),
we add ψ to TS(π̂) after replacing each clock c contained in ψ by tpci − tpck′

where k′ = LastReset(i− 1, c).12 Fourthly, when si was reached by respecting an
invariant ψ′, we add ψ′ to TS(π̂) after replacing each clock c contained in ψ′ by
tpci+1 − tpck′ where k′ = LastReset(i, c).13

Lemma 2 (Sound Timing Specification). If π̂ is a path of the symbolic state
space M constructed for the PTGTS S′, then there is a one-to-one correspon-
dence between valuations of the time point clocks tpci satisfying TS(π̂) and the
time points at which states are reached in the timed realizations π of π̂.

For our running example (considering the restriction to a single message in the
initial graph), for a path π̂ex where the message is sent to router R1, transmitted
to router R2, transmitted to router R3, and then received by receiver R, we derive
(after simplification) TS(π̂ex) as the conjunction of tpc1 = 0, 0 ≤ tpc2 ≤ 10,
tpc2 + 2 ≤ tpc3 ≤ tpc2 + 5, and tpc3 + 2 ≤ tpc4 = tpc5 ≤ tpc3 + 5 essentially
encoding the guards and invariants as expected.14

In the next two steps of our algorithm, we derive for the MTGC θ (contained
in the given PMTGC Pmin=?(θ) or Pmax=?(θ)) and a path π̂ an AC describing
timed realizations π of π̂ satisfying θ. For our running example and the path π̂ex

from above, this derived AC will be tpc5 − tpc2 ≤ 5 expressing that the time
elapsed between the sending of the message and its reception by the receiver
is at most 5 time units as required by θ. Then, in Step 5 of the algorithm, we
will identify (a) successful paths π̂ to be those where TS(π̂) and the derived AC
are satisfiable at once and (b) failing paths π̂ to be those where TS(π̂) and the
negated derived AC are satisfiable together.

Step 3: From MTGC Satisfaction to GC Satisfaction
Following the satisfaction checking approach for MTGL from [11,26], we trans-
late the MTGC satisfaction problem into an equivalent, yet much easier to check,
GC satisfaction problem using the operations fold and encode (presented below).
The operation fold aggregates the information about the nature and timing of
all GT steps of π̂ into a single Graph with History (GH). The operation encode
translates the MTGC into a corresponding GC.15 Technically, the MTGC θ is

12 Intuitively, tpci − tpck′ is the duration between the last reset of c and the time point
when the guard was checked upon state transition to si.

13 Intuitively, tpci+1 − tpck′ is the duration between the last reset of c and the time
point at which the invariant was no longer checked due to the state transition to
si+1.

14 Note that tpc4 = tpc5 since the message reception by R takes no time.
15 The operations fold and encode presented here are adaptations of the corresponding

operations from [11,26] to the modified MTGL satisfaction relation for PTGTSs from
Definition 3 allowing for successive discrete steps with zero-time delay in-between.
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Fig. 4. A part of the GH GH obtained using the operation fold for the path π̂ex of the
running example.

satisfied by a timed realization π of a path π̂ of M precisely when the encoded
MTGC is satisfied by the folded GH GH once the total time valuation AC ttv(π)
is added to GH (incorporating the precise timing of steps in π).

Theorem 1 (Soundness of fold and encode). If θ is an MTGC over the
empty graph, encode(θ) = φ, π̂ is a path through the symbolic state space con-
structed for the PTGTS S′, fold(π̂) = GH , π is a timed realization of π̂ (i.e., a
path through S′), and G′

H is obtained from GH by adding the AC ttv(π), then
π |= θ iff G′

H |= φ.

The operation fold generates for a path π̂ the corresponding GH GH by (a)
constructing the union of all graphs of π̂ where nodes/edges preserved in steps are
identified and (b) recording for each node/edge in the resulting GH the position
τ (cf. Definition 2) when it was created and deleted (if the node/edge is deleted at
some point) in π̂ using additional creation/deletion time stamp attributes cts/dts
and creation/deletion index attributes cidx/didx . In particular, (i) nodes/edges
contained in the initial state of π̂ are equipped with attributes cts = tpc1 and
cidx = 0, (ii) nodes/edges added in step i of π̂ are equipped with attributes
cts = tpci and cidx = i, (iii) nodes/edges deleted in step i of π̂ are equipped
with attributes dts = tpci and didx = i, and (iv) nodes/edges contained in the
last state of π̂ are equipped with attributes dts = −1 and didx = −1. For the
path π̂ex from our running example, see Fig. 4 depicting the part of the GH GH

that is matched when checking the GC encode(θ) against GH .
The operation encode generates for the MTGC θ contained in the given

PMTGC χ the corresponding GC φ (note that encode does not depend on a
path and is therefore executed precisely once). Intuitively, it recursively encodes
the requirements expressed using MTGL operators (see the items of Definition 3)
on a timed realization π of a path π̂ by using GL operators on the GH (obtained
by folding π̂) with additional integrated ACs. In particular, quantification over
positions τ = (t, s) of global time t and step index s, as for the operators exists-
new and until , is encoded by quantifying over additional variables xt and xs

representing t and s, respectively. Also, matching of graphs, as for the operators
exists and exists-new , is encoded by an additional AC alive. This AC requires
that each matched node/edge in the GH has cts, dts, cidx , and didx attributes
implying that this graph element exists for the position (xt, xs) in π. Lastly,
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matching of new graph elements using the exists-new operator is encoded by an
additional AC earliest. This AC requires that one of the matched graph elements
has cts and cidx attributes equal to xt and xs, respectively.

Step 4: Construction of AC-Restrictions for Satisfaction
In this step, we obtain for each leaf state s of M a symbolic characterization in
terms of an AC over the time point clocks tpci of all timed realizations π of the
path π̂ ending in s satisfying the given MTGC θ. Firstly, the timed realizations π
of the path π̂ ending in s are characterized by the timing specification TS(π̂) as
discussed in Step 2. Secondly, we refine the set of such timed realizations using
an AC γπ̂ over the time point clocks tpci symbolically describing when such a
timed realization satisfies the given MTGC θ. The AC γπ̂ is obtained by checking
the GC encode(θ) = φ against the GH fold(π̂) = GH . The conjunction of TS(π̂)
and γπ̂ is then recorded in the set of state conditions SC(s) and is satisfied by
precisely those valuations of the time point clocks tpci that correspond to timed
realizations π ending in s satisfying the MTGC θ.16 In Step 5, we also use the
notion of state probability SP(s) assigning a probability of 1 to a state s when
the AC in SC(s) is satisfiable and 0 otherwise.

Lemma 3 (Correct ACs). If θ is an MTGC over the empty graph, π̂ is a path
of the symbolic state space constructed for the PTGTS S′ ending in state s, and
π is a timed realization of π̂, then π |= θ iff TS(π̂) ∧ γπ̂ ∧ ttv(π) is satisfiable.

For our running example, when checking the encoded MTGC (cf. Fig. 3) for the
GH partially given in Fig. 4, (a) the graph elements S, R1, M1, e1, and e2 are
matched for the forall-new operator and (b) the graph elements M1 and e3 are
matched for the exists operator. For (a), all matched graph elements are alive at
the symbolic position (tpc2, 1) characterizing all positions (t, 1) where tpc2 = t.
The ACs in the encoded MTGC then ensure that e.g. e1 is alive since it was
created not after tpc2 (cts = tpc1 ≤ tpc2 and cidx = 0 ≤ 1) and it has never
been deleted (dts = −1) whereas e.g. e2 is alive since it was created at (tpc2, 1)
and it has been deleted strictly later (dts = tpc2 but 1 < didx ). Moreover, the
matched graph elements are not alive earlier since e2 was created at (tpc2, 1). For
(b), all matched graph elements are alive at (tpc5, 4). Overall, we obtain (after
simplification) the AC requiring that tpc5 − tpc2 ≤ 5 as the encoded MTGC
expresses the time bound ≤ 5 used in the until operator. For the last state of
the path π̂ex, we obtain the AC TS(π̂ex) ∧ tpc5 − tpc2 ≤ 5, which is e.g. satisfied
by the valuation {tpc1 = 0, tpc2 = 0, tpc3 = 2, tpc4 = 4, tpc5 = 4} representing a
timed realization πex of π̂ex where the message is transmitted as early as possible
in both transmission steps.

Step 5: Computation of Resulting Probabilities
In this step, we compute the maximal/minimal probability for the satisfaction of
the given MTGC θ, i.e., for reaching states s with clock valuation v satisfying the
AC contained in the state conditions SC(s). However, this kind of specification
of target states is not supported by Prism, which requires a clock-independent
16 For the case of Pmin=?(θ), we define SC(s) = {TS(π̂) ∧ ¬γπ̂}.
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specification of target states. Therefore, we propose a custom analysis procedure
to solve the analysis problem from above.

In the following, we first discuss, on an example, an analysis procedure for
the case of a clock-independent labeling of states and then expand this pro-
cedure to the additional use of state conditions SC(s). For the symbolic state
space in Fig. 1c, the maximal probability to reach a state labeled with success
can be computed by propagating restrictions of valuations given by zones back-
wards. Initially, each state is equipped only with the zone given in the state
space and the probability 1 when it is a target state. The zone/probability pairs
(c1 − c2 ≤ 3, 1) and (5 ≤ c1 − c2 ≤ 6, 1) of the �4-state and the �6-state are then
propagated backwards without change to the �3-state and the �5-state, respec-
tively. However, when steps have multiple target states, any subset of the target
states is considered and the probabilities of pairs for the considered target states
are summed up when the conjunction of their zones is satisfiable. For example,
we obtain (5 ≤ c1 − c2 ≤ 6, 0.75) for the �2-state since the conjunction of the
zones obtained for the �5- and �9-states is satisfiable whereas the other sub-
sets of target states result in unsatisfiable conjunctions or lower probabilities.
When multiple zone/probability pairs with a common maximal probability are
obtained, they are all retained for the source state of the step.

We now introduce our backward analysis procedure by adapting the pro-
cedure from above to the usage of the ACs contained in the state condition
SC(s) instead of zones. Technically, our (fixed-point) backward analysis proce-
dure updates the state conditions SC and state probability SP, which record the
AC/probability pairs, until no further modifications can be performed according
to the following definition.

Definition 6 (Backward Analysis Procedure). The subsequent operation
updating SC and SP is performed until a fixed-point is reached. When SC, SP,
and I assign to each state s of M a set of ACs, a probability, and the depth of s in
the tree-shaped state space M , respectively, (s, μ) is an edge of M , S′ ⊆ supp(μ)
is a subset of the target states of μ, f selects for each target state s′ ∈ S′ an AC
from SC(s′), γ = ∃tpcI(s).

∧
s′∈S′ f(s′) is the AC derived for the state s based

on the selections S′ and f , γ is satisfiable, and p =
∑

s′∈S′(μ(s′) × SP(s′)) is
the new probability for s based on the selections S′ and f , then (a) SC(s) and
SP(s) are changed to {γ} and p when p > SP(s) recording the AC γ and the
new maximal probability p derived for s and (b) SC(s) is changed to SC(s)∪{γ}
when p = SP(s) recording an additional AC γ and not changing the probability
SP(s).

Finally, using our BMC approach introduced in this section, we derive the
expected maximal probability.17

Theorem 2 (Soundness of BMC Approach). The presented BMC approach
in terms of the presented 5-step analysis algorithm returns the correct probability
for a given PTGTS S, PMTGC χ, and time bound T .
17 For Pmin=?(θ), the procedure from Definition 6 returns 1−Pmin=?(θ) maximizing the

probability of failing paths by minimizing the probability for successful paths.
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6 Evaluation

Our implementation of the presented BMC approach in AutoGraph [24]
reports for all considered variations of our running example the expected best-
case probability for timely message transmission of 0.82n (and the worst-case
probability of 0) for n messages to be transmitted. For our experiments, we
employed the time bound T = 20 corresponding to the maximum duration
required for sending the message and transmitting it via the shortest connection.
Note that an unbounded number of transmission retries for T = ∞ is unrealistic
and would not allow for a finite state space M to be generated in Step 2. Also,
any message transmission failure inevitably leads to a non-timely transmission
of that message due to the time bound used in the PMTGC χmax. However,
the size of M is exponential in the number of messages to be transmitted as
their transmission is independent from each other resulting in any resolution of
their concurrent behavior to be contained in M . Hence, allowing for up to 10
transmission attempts via time bound T = 20 resulted in 31 states for n = 1 but
exceeded our memory at 83000 states for n = 2. Using the drop rule to further
limit the number of transmission retries allowed to analyze the variation of our
running example in which two messages are transmitted but dropped after the
second transmission failure resulting in 12334 states.

However, as of now, the bottle neck of our current implementation, which
is faithful to our presentation from the previous section, is not the runtime but
the memory consumption. To overcome this limitation, we plan to generate the
tree-shaped state space M in a depth-first manner performing the subsequent
steps of the analysis algorithm (Step 3–Step 5) on entirely generated subtrees
of M (before continuing with the state space generation). This would allow to
dispose paths from M that are no longer needed in subsequent steps of the
algorithm. Also, when the memory consumption has been drastically reduced
along this line, a multithreaded implementation would be highly beneficial due
to the tree-shaped form of M and the independent analysis for its subtrees.

7 Conclusion and Future Work

We introduced PMTGL for the specification of cyber-physical systems with prob-
abilistic timed behavior modeled as PTGTSs. PMTGL combines (a) MTGL with
its binding capabilities for the specification of timed graph sequences and (b) the
probabilistic operator from PTCTL to express best-case/worst-case probabilis-
tic timed reachability properties. Moreover, we presented a novel BMC approach
for PTGTSs w.r.t. PMTGL properties.

In the future, we plan to apply PMTGL and our BMC approach to the case
study [21,23] of a cyber-physical system where, in accordance with real-time con-
straints, autonomous shuttles exhibiting probabilistic failures on demand navi-
gate on a track topology. Moreover, we plan to extend our BMC approach by
supporting the analysis of so-called optimistic violations introduced in [27].
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8. Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model transformations
by complex event processing. Softw. Syst. Model. 17(1), 135–162 (2016). https://
doi.org/10.1007/s10270-016-0533-1
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Abstract. Reverse derivative categories (RDCs) have recently been
shown to be a suitable semantic framework for studying machine learn-
ing algorithms. Whereas emphasis has been put on training method-
ologies, less attention has been devoted to particular model classes: the
concrete categories whose morphisms represent machine learning mod-
els. In this paper we study presentations by generators and equations
of classes of RDCs. In particular, we propose polynomial circuits as a
suitable machine learning model. We give an axiomatisation for these
circuits and prove a functional completeness result. Finally, we discuss
the use of polynomial circuits over specific semirings to perform machine
learning with discrete values.

1 Introduction

Reverse Derivative Categories [10] have recently been introduced as a formal-
ism to study abstractly the concept of differentiable functions. As explored
in [11], it turns out that this framework is suitable to give a categorical seman-
tics for gradient-based learning. In this approach, models–as for instance neural
networks–correspond to morphisms in some RDC. We think of the particular
RDC as a ‘model class’–the space of all possible definable models.

However, much less attention has been directed to actually defining the RDCs
in which models are specified: existing approaches assume there is some chosen
RDC and morphism, treating both essentially as a black box. In this paper,
we focus on classes of RDCs which we call ‘polynomial circuits’, which may be
thought of as a more expressive version of the boolean circuits of Lafont [17],
with wires carrying values from an arbitrary semiring instead of Z2. Because we
ensure polynomial circuits have RDC structure, they are suitable as machine
learning models, as we discuss in the second part of the paper.

Our main contribution is to provide an algebraic description of polynomial
circuits and their reverse derivative structure. More specifically, we build a pre-
sentation of these categories by operation and equations. Our approach will
proceed in steps, by gradually enriching the algebraic structures considered, and
culminate in showing that a certain presentation is functionally complete for the
class of functions that these circuits are meant to represent.
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An important feature of our categories of circuits is that morphisms are spec-
ified in the graphical formalism of string diagrams. This approach has the benefit
of making the model specification reflect its combinatorial structure. Moreover,
at a computational level, the use of string diagrams makes available the princi-
pled mathematical toolbox of double-pushout rewriting, via an interpretation of
string diagrams as hypergraphs [6–8]. Finally, the string diagrammatic presenta-
tion suggests a way to encode polynomial circuits into datastructures: an impor-
tant requirement for being able to incorporate these models into tools analogous
to existing deep learning frameworks such as TensorFlow [1] and PyTorch [19].

Tool-building is not the only application of the model classes we define here.
Recent neural networks literature [4,9] proposes to improve model performance
(e.g. memory requirements, power consumption, and inference time) by ‘quan-
tizing’ network parameters. One categorical approach in this area is [23], in
which the authors define learning directly over boolean circuit models instead
of training with real-valued parameters and then quantizing. The categories in
our paper can be thought of as a generalisation of this approach to arbitrary
semirings.

This generalisation further yields another benefit: while neural networks lit-
erature focuses on finding particular ‘architectures’ (i.e. specific morphisms) that
work well for a given problem, our approach suggests a new avenue for model
design: changing the underlying semiring (and thus the corresponding notion of
arithmetic). To this end, we conclude our paper with some examples of finite
semirings which may yield new approaches to model design.

Synopsis. We recall the notion of RDC in Sect. 2, and then study presentations of
RDCs by operations and equations in Sect. 3. We define categories of polynomial
circuits in Sect. 4, before showing how they can be made functionally complete
in Sect. 5. Finally, we close by discussing some case studies of polynomial circuits
in machine learning, in Sect. 6.

2 Reverse Derivative Categories

We recall the notion of reverse derivative category [10] in two steps. First we
introduce the simpler structure of cartesian left-additive categories. We make
use of the graphical formalism of string diagrams [20] to represent morphisms in
our categories.

Definition 1. A Cartesian Left-Additive Category ([5,10]) is a cartesian
category in which each object A is equipped with a commutative monoid and zero
map:

A

A
A A (1)
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so that

= = =

A ⊗ B

A ⊗ B
A ⊗ B =

A

B

A

A

B

B

A ⊗ B =
A

B

(2)

Note that the category being cartesian means that: (I) it is symmetric
monoidal, namely for each object A and B there are symmetries B

A

A

B
and

identities A A satisfying the laws of symmetric monoidal categories [20]; (II)
each object A comes equipped with a copy and a discard map:

A

A
A A (3)

satisfying the axioms of commutative comonoids and natural with respect to the
other morphisms in the category:

= = =

f =
f

f
f =

(4)

Remark 1. Definition 1 is given differently than the standard definition of carte-
sian left-additive categories [10, Definition 1], which one may recover by let-

ting addition of morphisms be f + g :=
f

g
, and the zero morphism

be 0 := . Equations of cartesian left-additive categories as given in [10,
Definition 1]

x � (f + g) = (x � f) + (x � g) x � 0 = 0

are represented by string diagrams

f

g
x =

f

g

x

x
x =

and follow from Definition 1 thanks to the naturality of and , respec-
tively. We refer to [5, Proposition 1.2.2 (iv)] for more details on the equivalence
of the two definitions.

Now, Reverse Derivative Categories, originally defined in [10], are cartesian
left-additive categories equipped with an operator R of the following type, and
satisfying axioms RD.1–RD.7 detailed in [10, Definition 13].
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A
f−→ B

A × B −→
R[f ]

A

Intuitively, for a morphism f : A → B we think of its reverse derivative
R[f ] : A×B → A as approximately computing the change of input to f required
to achieve a given change in output. That is, if f is a function, we should have

f(x) + δy ≈ f(x + R[f ](x, δy))

The authors of [10] go on to show that any reverse derivative category also
admits a forward differential structure: i.e., it is also a Cartesian Differential
Category (CDC). This means the existence of a forward differential operator D
satisfying various axioms, and having the following type:

A
f−→ B

A × A −→
D[f ]

B

In an RDC, the forward differential operator is defined in terms of R as the
following string diagram, with R(n) denoting the n-fold application1 of R:

D[f ] := R(2)[f ]

In contrast to the R operator, we think of D as computing a change in output
from a given change in input, whence ‘forward’ and ‘reverse’ derivative:

f(x + δx) ≈ f(x) + D[f ](x, δx)

The final pieces we need to state our definition of RDCs are the (cartesian
differential) notions of partial derivative and linearity defined in [10]. Graphi-
cally, the partial derivative of g : A × B → C with respect to B is defined as
follows:

DB [g] := D[g]
A
B

B

C

Finally we say that g is linear in B when

DB [g] = g
A

B
CB

and more generally that f : A → B is linear when

D[f ] = fB B
A

1 For example, R(2)[f ] denotes the map R[R[f ]].
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We can now formulate the definition of RDCs. Note that in the following
definition and proofs we treat D purely as a syntactic shorthand for its definition
in terms of R. We avoid use of CDC axioms to prevent a circular definition,
although one can derive them as corollaries of the RDC axioms.

Definition 2. A Reverse Derivative Category is a cartesian left-additive
category equipped with a reverse differential combinator R:

A
f−→ B

A × B −→
R[f ]

A

satisfying the following axioms:
[ARD.1] (Structural axioms, equivalent to RD.1, RD.3–5 in [10])

R [ ] = R
[ ]

= R
[ ]

=

R
[ ]

= R [ ] = R [ ] =

R[f � g] = f
R[g]

R[f ] R[f × g] =
R[f ]

R[g]

[ARD.2] (Additivity of change, equivalent to RD.2 in [10])

R[f ] =
R[f ]

R[f ]
R[f ] =

[ARD.3] (Linearity of change, equivalent to RD.6 in [10])

DB [R[f ]] = R[f ]

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [10])

D(2)[f ] = D(2)[f ]

Remark 2. Note that we may alternatively write axioms ARD.3 and ARD.4
directly in terms of the R operator by simply expanding the syntactic definition
of D.

Note that axioms ARD.1 and ARD.2 are quite different to that of [10], while
ARD.3 and ARD.4 are essentially direct restatements in graphical language of
RD.6 and RD.7 respectively.

The definition we provide best suits our purposes, although it is different
than the standard one provided in [10, Definition 13]. We can readily verify that
they are equivalent.
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Theorem 1. Definition 2 is equivalent to [10, Definition 13].

Proof. Axioms ARD.3–4 are direct statements of axioms RD.6–7, so it suffices
to show that we can derive axioms ARD.1–2 from RD.1.5 and vice-versa. The
structural axioms ARD.1 follow directly from RD.1 and RD.3–5.

– For R [ ] use RD.3 directly.
– For R

[ ]
, apply RD.4 to 〈π1, π0〉

– For R
[ ]

, apply RD.1 to π0 + π1
– For R [ ], apply RD.1 directly.
– For R

[ ]
, apply RD.4 to 〈id, id〉

– For R [ ], apply RD.4 directly.
– For composition f � g, apply RD.5 directly
– For tensor f × g, apply RD.4 to 〈π0 � f, π1 � g〉
In the reverse direction, we can obtain RD.1 and RD.3–5 by simply constructing
each equation and showing it holds given the structural equations. For example,
RD.1 says that R[f +g] = R[f ]+R[g] and R[0] = 0, which we can write graphically
as:

R

⎡
⎣ f

g

⎤
⎦ = R [f ] + R [g]

and

R [ ] =

ARD.2 can be derived from RD.2 by setting a, b, c to appropriate projections,
and in the reverse direction we can obtain RD.2 simply by applying ARD.2 to
its left-hand-side and using naturality of .

A main reason to give an alternative formulation of cartesian left-additive
and reverse derivative categories is being able to work with a more ‘algebraic’
definition, which revolves around the interplay of operations , , , and

. This perspective is particularly useful when one wants to show that the free
category on certain generators and equations has RDC structure. We thus recall
such free construction, referring to [24, Chapter 2] and [3, Sect. 5] for a more
thorough exposition.

Definition 3. Given a set Obj of generating objects, we may consider a set
Σ of generating morphisms f : w → v, where the arity w ∈ Obj � and the
coarity v ∈ Obj � of f are Obj -words. Cartesian left-additive Σ-terms are defined
inductively:

– Each f : w → v is a Σ-term.
– For each A ∈ Obj , the generators (1) and (3) of the cartesian left-additive

structure are Σ-terms.
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– If f : w → v, g : v → u, and h : w′ → v′ are Σ-terms, then f � g : w → u and
f ⊗ h : ww′ → vv′ are Σ-terms, represented as string diagrams

fw v g u
fw v

hw′ v′

Let us fix Obj , Σ and a set E of equations between Σ-terms. The cartesian
left-additive category C freely generated by (Obj , Σ,E) is the monoidal category
with set of objects Obj � and morphisms the Σ-terms quotiented by the axioms of
cartesian left-additive categories and the equations in E. The monoidal product
in C is given on objects by word concatenation. Identities, monoidal product and
sequential composition of morphisms are given by the corresponding Σ-terms and
their constructors f ⊗ h and f � g.

One may readily see that C defined in this way is indeed cartesian left-
additive. We say that C is presented by generators (Obj , Σ) and equations E.

3 Reverse Derivatives and Algebraic Presentations

As we will see in Sect. 5, our argument for functional completeness relies on
augmenting the algebraic presentation of polynomial circuits with an additional
operation. To formulate such result, we first need to better understand how
reverse differential combinators may be defined compatibly with the generators
and equations presenting a category.

Theorem 2. Let C be the cartesian left-additive category presented by gener-
ators (Obj , Σ) and equations E. If for each s ∈ Σ there is some R[s] which
is well-defined (see Remark 3) with respect to E, and which satisfies axioms
ARD.1–4, then C is a reverse derivative category.

Proof. Observe that axioms ARD.1 fix the definition of R on composition, tensor
product and the cartesian and left-additive structures. It therefore suffices to
show that axioms ARD.2–4 are preserved by composition and tensor product.
That is, for morphisms f, g of appropriate types, both f � g and f ⊗ g preserve
axioms ARD.2–4. Thus, any morphism constructed from generators must also
satisfy the axioms ARD.1–4, and C must be an RDC. Showing that ARD.2–4
are preserved by composition and tensor product can be done graphically, but
we omit the proofs here.

Remark 3. In the statement of Theorem 2, strictly speaking s ∈ Σ is just a
representative of the equivalence class of Σ-terms (modulo E plus the laws of
left-additive cartesian categories) defining a morphism in C . Because of this, we
require R[s] to be ‘well-defined’, in the sense that if s and t are representatives
of the same morphisms of C , then the same should hold for R[s] and R[t]. In a
nutshell, we are allowed to define R directly on Σ-terms, provided our definition
is compatible with E and the laws of left-additive cartesian categories.
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An immediate consequence of Theorem 2 is that if we have a presentation of
an RDC C , we can ‘freely extend’ it with an additional operation s, a chosen
reverse derivative R[s], and equations E′, so long as R is well-defined with respect
to E′ and the axioms ARD.2–4 hold for R[s]. Essentially, this gives us a simple
recipe for adding new ‘gadgets’ to existing RDCs and ensuring they retain RDC
structure.

One particularly useful such ‘extension’ is the addition of a multiplication
morphism that distributes over the addition . We define categories with
such a morphism as an extension of cartesian left-additive categories as follows:

Definition 4. A Cartesian Distributive Category is a cartesian left-
additive category such that each object A is equipped with a commutative monoid

and unit which distributes over the addition . More completely, it is
a category having generators

satisfying the cartesianity equations (4), the left-additivity equations (2), the
multiplicativity equations

= = = (5)

and the distributivity and annihilation equations

= = (6)

Just as for cartesian left-additive categories, one may construct cartesian
distributive categories freely from a set of objects Obj , a signature Σ, and equa-
tions E, the difference being that Σ-term will be constructed using also and

, and quotiented also by (5)–(6). The main example of cartesian distributive
categories are Polynomial Circuits, which we define in Sect. 4 below.

Reverse derivative categories define a reverse differential combinator on a
left-additive cartesian structure. As cartesian distributive categories properly
extend left-additive ones, it is natural to ask how we may extend the definition
of the reverse differential combinator to cover the extra operations and .
The following theorem provide a recipe, which we will use in the next section to
study RDCs with a cartesian distributive structure. Note that the definition of
R∗ below is a string diagrammatic version of the reverse derivative combinator
defined on POLY in [10].

Theorem 3. Suppose C is a left-additive cartesian category presented by
(Obj , Σ,E), and assume C is also an RDC, say with reverse differential combi-
nator R. Then the cartesian distributive category C ∗ presented by (Obj , Σ,E),
with reverse differential combinator R∗ defined as R on the left-additive cartesian
structure, and as follows

R∗
[ ]

= R∗ [ ] = (7)
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on the extra distributive structure, is also an RDC.

Proof. It suffices to check that R is well-defined with respect to the additional
equations of cartesian distributive categories, and that the new generators
and satisfy axioms ARD.2–4.

4 Polynomial Circuits

Our motivating example of cartesian distributive categories is that of polynomial
circuits, whose morphisms can be thought of as representing polynomials over a
commutative semiring. We define them as follows:

Definition 5. Let S be a commutative semiring. We define PolyCircS as the
cartesian distributive category presented by (I) one generating object 1, (II) for
each s ∈ S, a generating morphism s : 0 → 1, (III) the ‘constant’ equations

0 =
s

t
= s + t 1 =

s

t
= s · t

(8)
for s, t ∈ S, intuitively saying that the generating morphisms respect addition
and multiplication of S.

Proposition 1. PolyCircS is an RDC with R
[

s
]

= .

Proof. The type of R
[

s
]

: 1 → 0 implies that there is only one choice of
reverse derivative, namely the unique discard map . Furthermore, R is well-
defined with respect to the constant equations (8) for the same reason. Finally,
observe that the axioms ARD.2–4 hold for R

[
s

]
, precisely in the same way

as for R [ ], and so PolyCircS is an RDC.

Although our Definition 5 of PolyCircS requires that we add an axiom for each
possible addition and multiplication of constants, for some significant choices of
S an equivalent smaller finite axiomatisation is possible. We demonstrate this
with some examples.

Example 1. In the case of PolyCirc
Z2

, the equations of Definition 5 reduce to the
single equation

=

expressing that x + x = 0 for both elements of the field Z2.
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Example 2. In the case PolyCirc
N

of the semiring of natural numbers, with the
usual addition and multiplication, no extra generating morphisms or equations
are actually necessary: all those appearing in Definition 5 may be derived from
the cartesian distributive structure. To see why, notice that we may define each
constant s ∈ S as repeated addition:

s := s

where we define n inductively as

0 := n :=
n − 1

The equations expressing addition and multiplication in N are then a conse-
quence of those of cartesian distributive categories. In fact, from this observa-
tion we have that PolyCirc

N
is the free cartesian distributive category on one

generating object.

Example 3. In a straightforward generalization of PolyCirc
Z2

, we can define
PolyCirc

Zn
in the same way, but with the only additional equation as

n =

which says algebraically that (1 + n. . . + 1) · x = n · x = 0 · x = 0.

It is important to note that PolyCircS is isomorphic to the category POLYS ,
defined as follows:

Definition 6. POLYS is the symmetric monoidal category with objects the natu-
ral numbers and arrows m → n the n-tuples of polynomials in m indeterminates:

〈p1(�x), . . . , pn(�x)〉 : m → n

with each
pi ∈ S[x1, . . . , xm]

where S[x1, . . . xm] denotes the polynomial ring in m indeterminates over S.

The isomorphism PolyCircS
∼= POLYS is constructed by using that homsets

PolyCircS(m,n) and POLYS(m,n) have the structure of the free module over
the polynomial ring S[x1 . . . xm]n which yields a unique module isomorphism
between them. We do not prove this isomorphism here, other than to say that
it follows by the same argument as presented in [10, Appendix A].

Remark 4. Note in [10] POLYS is proven to be a reverse derivative category,
meaning that we could have derived Proposition 1 as a corollary of the iso-
morphism PolyCircS

∼= POLYS . We chose to provide a ‘native’ definition of the
reverse differential combinator of PolyCircS because–as we will see shortly–we
will need to extend it with an additional generator. The reason for this is to
gain the property of ‘functional completeness’, which will allow us to express
any function Sm → Sn. This new derived category will in general no longer
be isomorphic to POLYS , and so we must prove it too is an RDC: we do this
straightforwardly using Theorem 2.
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Remark 5. When S is a bonafide ring, we may account for its inverse by extend-
ing PolyCircS with a ‘negate’ generating morphism , together with the

additional equation = . Then Theorem 2 suggests us how
to extend the reverse differential combinator of PolyCircS to this new category:

R [ ] :=

5 Functional Completeness

We are now ready to consider the expressivity of the model class of polynomial
circuits. More concretely, for a given commutative semiring S, we would like to
be able to represent any function between sets Sm → Sn as a string diagram in
PolyCircS . This property, which we call ‘functional completeness’, is important
for a class of machine learning models to satisfy because it guarantees that we
may always construct an appropriate model for a given dataset. It has been
studied, for instance, in the context of the various ‘universal approximation’
theorems for neural networks (see e.g. [16,18]).

To formally define functional completeness, let us fix a finite set S. Recall the
cartesian monoidal category FinSetS , whose objects are natural numbers and a
morphism m → n is a function of type Sm → Sn.

Definition 7. We say a category C is functionally complete with respect to
a finite set S when there a full identity-on-objects functor F : C → FinSetS.

The intuition for Definition 7 is that we call a category C ‘functionally com-
plete’ when it suffices as a syntax for FinSetS—that is, by fullness of F we may
express any morphism in FinSetS . Note however that two distinct morphisms in
C may represent the same function—F is not necessarily faithful.

In general, PolyCircS is not functionally complete with respect to S. Take for
example the boolean semiring B with multiplication and addition as AND and
OR respectively. It is well known [21] that one cannot construct every function
of type B

m → B
n from only these operations.

Nonetheless, we claim that in order to make PolyCircS functionally complete
it suffices to add to its presentation just one missing ingredient: the ‘comparator’
operation, which represents the following function:

compare(x, y) =

{
1 if x = y

0 otherwise

The following result clarifies the special role played by the comparator.

Theorem 4. Let S be a finite commutative semiring. A category C is function-
ally complete with respect to S iff. there is a monoidal functor F : C → FinSetS
in whose image are the following functions:

– 〈〉 	→ s for each s ∈ S (constants)
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– 〈x, y〉 	→ x + y (addition)
– 〈x, y〉 	→ x · y (multiplication)
– compare

Proof. Suppose C is functionally complete with respect to S, where S is a finite
commutative semiring. Then by definition there is a functor F : C → FinSetS
with each of the required functions in its image.

Now in the reverse direction, we will show that any function can be con-
structed only from constants, addition, multiplication, and comparison. The idea
is that because S is finite, we can simply encode the function table of any func-
tion f : Sm → S as the following expression:

x 	→
∑

s∈Sm

compare(s, x) · f(s) (9)

Further, since C is cartesian, we may decompose any function f : Sm → Sn

into an n-tuple of functions of type Sm → S. More intuitively, for each of the
n outputs, we simply look up the appropriate output in the encoded function
table.

It follows immediately that PolyCircS is functionally complete with respect
to S if and only if one can construct the compare function in terms of constants,
additions, and multiplications. We illustrate one such case below.

Example 4. PolyCirc
Zp

is functionally complete for prime p. To see why, recall
Fermat’s Little Theorem [12], which states that

ap−1 ≡ 1(modp)

for all a > 0. Consequently, we have that

(p − 1) · ap−1 + 1 =

{
1 if a = 0
0 otherwise

We denote this function as δ(a) := (p−1) ·ap−1+1 to evoke the dirac delta ‘zero
indicator’ function. To construct the compare function is now straightforward:

compare(x1, x2) =
∑
s∈S

δ(x1 + s) · δ(x2 + s)

However, as we already observed, it is not possible in general to construct the
compare function in terms of multiplication and addition. Therefore, to guarantee
functional completeness we must extend the category of polynomial circuits with
an additional comparison operation.

Definition 8. We define by PolyCirc=S as the cartesian distributive category pre-
sented by the same objects, operations, and equations of PolyCircS, with the addi-
tion of a ‘comparator’ operation

= (10)
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and equations

=
s

s
= =

s

t
= (11)

for s, t ∈ S with s �= t.

To make PolyCirc=S a reverse derivative category, we can once again appeal
to Theorem 2. However, we must choose an apropriate definition of R[compare]
which is well-defined and satisfies axioms ARD.1–4.

A suggestion for this choice comes from the machine learning literature. In
particular, the use of the ‘straight-through’ estimator in quantized neural net-
works, as in e.g. [4]. Typically, these networks make use of the dirac delta function
in the forward pass, but this causes a catastrophic loss of gradient information
in the backwards pass since the gradient is zero almost everywhere. To fix this,
one uses the straight-through estimator, which instead passes through gradients
directly from deeper layers to shallower ones.

In terms of reverse derivatives, this amounts to setting R[δ] = R[id]. Of course,
we need to define R for the full comparator, not just the zero-indicator function
δ, and so we make the following choice:

Theorem 5. PolyCirc=S is an RDC with R as for PolyCircS, and

R
[

=
]

:=

Proof. R is well-defined with respect to the equations (11) since both sides of each
equation must equal the unique discard morphism . Further, R

[
=

]
sat-

isfies axioms ARD.2–4 in the same way that R
[ ]

does, and so by Theorem 2
PolyCirc=S is a reverse derivative category.

From Theorem 4, we may derive:

Corollary 1. PolyCirc=S is functionally complete with respect to S.

Finally, note that we recover the dirac delta function by ‘capping’ one of the
comparator’s inputs with the zero constant:

δ := =0

whose reverse derivative is equivalent to the ‘straight-through’ estimator:

R

[
=0

]
= = R [ ]
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6 Polynomial Circuits in Machine Learning: Case Studies

We now discuss the implications of some specific choices of semiring from a
machine learning perspective. Let us begin with two extremes: neural networks,
and the boolean circuit models of [23].

Neural Networks. We may think of a neural network as a circuit whose wires
carry values in R. Of course, in order to compute with such circuits we must
make a finite approximation of the reals–typically using floating-point numbers.
However, this approximation introduces two key issues. First, floating point
arithmetic is significantly slower than integer arithmetic. Second, the floating
point operations of addition and multiplication are not even associative, which
introduces problems of numerical instability. Although attempts exist to address
issues of floating point arithmetic (such as ‘posits’ [15]), these still do not sat-
isfy the ring axioms; to properly account for these approximations would require
additional work.

Boolean Circuits and Z2. One may note that since we must always eventually
deal with finite representations of values, we may as well attempt to define
our model class directly in terms of them. This is essentially the idea of [23]:
the authors use the category PolyCirc

Z2
(which they call simply PolyCirc) as

a model class since it is already functionally complete2 and admits a reverse
derivative operator. However, using a semiring of modular arithmetic in general
introduces a different problem: one must be careful to construct models so that
gradients do not ‘wrap around’. Consider for example the model below, which
can be thought of as two independent sub-models f1 and f2 using the same
parameters3 but applied to different parts of the input X1 and X2

f1

f2

P

X1

X2

Y

Since R
[ ]

= R

[ ]
, when we compute the gradient update for P we

will sum the gradients of f1 and f2. In the extreme case when the underlying
semiring is Z2, then when the gradients of f1 and f2 are both 1, the result will
‘wrap around’ to 0 and P will not be updated. This is clearly undesirable: here
we should prefer that 1 + 1 = 1 to 1 + 1 = 0.

Saturating Arithmetic. Another possible solution is to use the semiring Satn
as a model of saturating unsigned integer arithmetic for a given ‘precision’ n.
The underlying set is simply the finite set n̄, with addition and multiplication
defined as for the naturals, but ‘truncated’ to at most n − 1. We define Satn as

2 We discuss why in Example 4.
3 This approach is called ‘weight-tying’ in neural networks literature.
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follows, noting that it is equivalent to the semiring B(n, n − 1) first defined in
[2, Example 3] (see also [14]).

Definition 9. The semiring Satn has as addition and multiplication the opera-
tions

x1 + x2 := min(n − 1, x1 + x2) x1 · x2 := min(n − 1, x1 · x2)

over the set n̄ := {0 . . . n − 1}
Note that while Satn is a commutative semiring, it is certainly not a ring:

the introduction of inverses means that the associativity axiom of semirings is
violated.

Finally, note that for each of these choices of semiring S, in general PolyCircS

is not functionally complete. Thus, in order to obtain a model class which is
functionally complete and is a reverse derivative category, we must use PolyCirc=S .

7 Conclusions and Future Work

In this paper, we studied in terms of algebraic presentations categories of polyno-
mial circuits, whose reverse derivative structure makes them suitable for machine
learning. Further, we showed how this class of categories is functionally com-
plete for finite number representations, and therefore provides sufficient expres-
siveness. There remain however a number of opportunities for theoretical and
empirical work.

On the empirical side, we plan to use this work combined with data structures
and algorithms like that of [22] as the basis for practical machine learning tools.
Using these tools, we would like to experimentally verify that models built using
semirings like those presented in Sect. 6 can indeed be used to develop novel
model architectures for benchmark datasets.

There also remains a number of theoretical avenues for research. First, we
want to generalise our approach to functional completeness to the continuous
case, and then to more abstract cases such as polynomial circuits over the Burn-
side semiring. Second, we want to extend the developments of Sect. 3 in order to
provide a reverse derivative structure for circuits with notions of feedback and
delay, such as the stream functions described in [13].
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Abstract. In model-driven optimization (MDO), domain-specific mod-
els are used to define and solve optimization problems with evolution-
ary algorithms. Models are typically evolved using mutations, which can
be formally specified as graph transformations. So far, only mutations
have been used in MDO to generate new solutions from existing ones;
a crossover mechanism has not yet been elaborated. In this paper, we
present a generic crossover construction for graph-like structures that
can be used to implement crossover operators in MDO. We prove basic
properties of our construction and show how it can be used to implement
a whole set of crossover operators that have been proposed for specific
problems and situations on graphs.

Keywords: Evolutionary Computation · Crossover · Model-driven
optimization · Category Theory

1 Introduction

In software development, software engineers often make design decisions in the
context of competing constraints ranging from requirements to technology. To
efficiently find optimal solutions, Search-Based Software Engineering (SBSE) [16]
attempts to formulate software engineering problems as optimization problems
that capture the constraints of interest as objectives. By using meta-heuristic
search techniques, good solutions can often be found with reasonable effort.
Because of their generality, evolutionary algorithms, and in particular genetic
algorithms [5,17] that use mutation, crossover, and selection to perform a guided
search over the search space, are a technique of particular relevance. According
to e.g. [13], the definition of an evolutionary algorithm requires a representation
of problem instances and search space elements (i.e., solutions). It also includes
a formulated optimization problem that clarifies which of the solutions are feasi-
ble (i.e., satisfy all constraints of the optimization problem) and best satisfy the
objectives. The key ingredients of the optimization process are a procedure for
generating a start population of solutions, a mechanism for generating new solu-
tions from existing ones (e.g., by mutation and crossover), a selection mechanism
that typically establishes the evolutionary concept of survival of the fittest, and
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a condition for stopping evolutionary computations. Selecting these ingredients
so that an evolutionary algorithm is effective and efficient is usually a challenge.

Model-driven optimization (MDO) aims at reducing the required level of
expertise of users of meta-heuristic techniques. Two main approaches have
emerged in MDO: the model-based approach [7,8] performs optimization directly
on models, while the rule-based approach [1,4] searches for optimized model
transformation sequences. In this paper, we focus on the model-based approach
since it tends to be more effective [20] and refer to it as MDO for short. In MDO,
optimization problems are specified as models that capture domain-specific infor-
mation about a problem and its solutions. In that way, users can interact with a
domain-specific formulation of their problem, rather than traditional encodings
that are typically closer to implementation. While the search space consists of
models, the mutation of search space elements is specified by model transfor-
mations. In sophisticated evolutionary algorithms, mutations typically perform
local changes, while crossovers are used to generate offspring by recombining
existing search space elements. For (the model-based approach to) MDO, no
crossover mechanism has been worked out yet. This paper fills this research gap
and presents a crossover construction for graph-based models.

Several graph-based approaches to crossover have been suggested in the liter-
ature, e.g. [27,29]. In most cases, these crossovers are not generic (in the sense of
different kinds of graphs), but are designed with specific semantics of the underly-
ing graphs in mind. We aim to develop a generic construction of crossovers that can
be applied to different kinds of graph-like structures. Moreover, this construction
of crossovers is applicable regardless of the semantics of the graphs of interest. We
also prove the correctness and completeness of our crossover construction.

The paper is organized as follows: We start with an example MDO problem
and discuss a possible crossover in this context in Sect. 2. Section 3 recalls
preliminaries. The main contribution of this paper, a pushout-based crossover
construction, is presented in Sect. 4. In Sect. 5, we explain how our new crossover
construction encompasses important, more specific approaches to crossover (on
graph-like structures) that have been suggested in the literature. We close with
a discussion of related work and a conclusion in Sects. 6 and 7. All proofs are
given in Appendix A.

2 Running Example

The CRA case [6] is an optimization problem from the domain of software design
that has recently established itself as an easily understood use case in the con-
text of MDO. Given a software product represented by a set of features (i.e.,
attributes and methods) and dependency relations between them, the task is
to modularize the software by encapsulating its features into classes. Two well-
known quality aspects are used to evaluate the quality of solutions: cohesion
and coupling. Cohesion rewards classes in which features are highly interde-
pendent, while coupling captures the interdependencies of features that exist
between classes. A highly cohesive design with low coupling is considered easy to
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understand and maintain. Therefore, maximizing cohesion and minimizing cou-
pling are the opposing objectives of the CRA case.

Fig. 1. Type graph of the CRA case. White
solid elements specify invariant problem
parts, the red colored class element and its
relations are solution specific.

The structure of models in the
CRA case can be defined by the type
graph shown in Fig. 1. A problem
instance consists at least of the fea-
tures and their dependencies. These
elements form the invariant part of a
concrete problem. Classes (and their
relationships), on the other hand, can
be added, modified and removed to
explore the search space and create
new solutions. Typical mutations for
the CRA case include small changes like adding or removing a class, assigning
a feature to a class, or changing the assignment of a feature from one class to
another. Mutation usually does not consider already well optimized substruc-
tures that might be worth being shared with other solutions.

In the CRA case, a subset of features, along with their current assignment to
classes, contains potentially valuable information. The exchange of this informa-
tion between two solutions represents a promising crossover as we will see in the
following example. Consider solutions E and F in Fig. 2, for a problem instance
consisting of four methods and two attributes. Let a crossover choose to recom-
bine them by exchanging their assignment information for the features 1:Method,
2:Attribute and 3:Method. This results in two offspring solutions. Solution E1F2

keeps the original assignments of 4:Method, 5:Attribute, and 6:Method as found
in solution F and combines them with the assignments of E for the exchanged
features. The solution E2F1 is constructed in the opposite way.

Note that combining 1:Method, 2:Attribute and 3:Method into one class (as
done in solution E) seems a reasonable choice. Their pairwise dependencies pro-
mote cohesion, while splitting them would lead to coupling. The same is true
for the features of class 12: Class in solution F. Consequently, the offspring E1F2

combines the best of both worlds.

3 Preliminaries: M-Adhesive Categories

In this section, we briefly recall our central formal preliminaries, namely M-
adhesive categories and M-effective unions [12], which provide the setting in which
we formulate our contribution. M-adhesive categories with M-effective unions
are categories where pushouts along certain monomorphisms interact in a partic-
ularly nice way with pullbacks. This is of importance because our construction
of crossovers is based on pushouts. Moreover, working in the framework of M-
adhesive categories allows us to easily abstract from the concrete choice of graphs
used to formalize the models of interest (such as typed, labeled, and attributed
graphs). We only use category-theoretic concepts that are common in the context
of algebraic graph transformation, and refer to [11,12] for introductions.
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Fig. 2. Example crossover in the CRA case that creates the offspring E1F2 and E2F1 by
exchanging the assignments of features 1:Method, 2:Attribute, and 3:Method between
the solutions E and F.

Definition 1 (M-adhesive category). A category C with a morphism class
M is an M-adhesive category if the following properties hold:

– M is a class of monomorphisms closed under isomorphisms (f isomorphism
implies that f ∈ M), composition (f, g ∈ M implies g ◦ f ∈ M), and decom-
position (g ◦ f, g ∈ M implies f ∈ M).

– C has pushouts and pullbacks along M-morphisms, i.e., pushouts and pull-
backs where at least one of the given morphisms is in M, and M-morphisms
are closed under pushouts and pullbacks, i.e., given a pushout like the left
square in Fig. 3a, m ∈ M implies n ∈ M and, given a pullback, n ∈ M
implies m ∈ M.

– Pushouts in C along M-morphisms are vertical weak van Kampen squares,
i.e., for any commutative cube in C (as in the right part of Fig. 3a) where we
have the pushout with m ∈ M in the bottom, b, c, d ∈ M, and pullbacks as
back faces, the top is a pushout if and only if the front faces are pullbacks.

We speak of M-adhesive categories (C,M) and indicate arrows from M as
hooked arrows in diagrams. Examples of categories that are M-adhesive include
sets with injective functions, graphs with injective graph morphisms and various
varieties of graphs with special forms of injective graph morphisms. In particu-
lar, typed attributed graphs form an M-adhesive category (where the class M
consists of injective morphisms where the attribute part is an isomorphism).

The existence of M-effective unions ensures that the M-subobjects of a given
object form a lattice.

Definition 2 (M-effective unions). An M-adhesive category (C,M) has
M-effective unions if for each pushout of a pullback of a pair of M-morphisms
the induced mediating morphism belongs to M as well, i.e., if in each diagram like
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Fig. 3. Defining M-adhesive categories with M-effective unions

the one depicted in Fig. 3b where the outer square is a pullback of M-morphisms
and the inner one a pushout, the induced morphism x is an M-morphism.

4 A Pushout-Based Crossover Construction

In this section, we develop our approach to crossover. We start with introducing
the objects to which crossover will be applied.

Fig. 4. Computation ele-
ments and ce-morphism

In MDO, optimization problems are defined based
on modeling languages, typically specified with meta-
models. Various MDO approaches in the literature
such as [7,8] have chosen to represent problem
instances and solutions by models. Both can contain
invariant problem parts as well as solution specific
parts, a distinction typically embedded in the associ-
ated meta-model. In our formalization, this is reflected
in the fact that a computation element is given by
an object that conforms to a computation type object.
The type object specifies which parts of a computation element are invariant
and which parts contribute to the solution. A concrete problem to be optimized
is given by a problem instance; every computation element can serve as such.
The search space of a problem instance includes all computation elements with
the same problem object as specified by the given problem instance. In MDO,
problem instances and solutions are typically further constrained by additional
conditions. We leave this refinement to future work.

Definition 3 (Computation element. Problem instance. Search space).
Let (C,M) be an M-adhesive category. A computation type object in C is an
M-morphism tp : TP ↪→ T; TP is called the problem type object. A computation
element E = (e : EP ↪→ E, tEP

, tE) over tp is an M-morphism e together with
typing morphisms tEP

: EP → TP and tE : E → T such that the induced square
(over tp) is a pullback. The pair (EP , tEP

) is the problem object of E. If defined,
the initial pushout over e yields the solution part of E, written E \ EP .

A computation-element morphism m = (mP ,m), short ce-morphism, from
computation element E to computation element F is a pair of morphisms
mP : EP → FP and m : E → F that are compatible with typing, i.e., tFP

◦mP =
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tEP
and tF ◦ m = tE (see Fig. 4). A ce-morphism m is problem-invariant if mP

is an isomorphism between EP and FP .
Given a computation type object tp : TP ↪→ T in C, a problem instance PI of

tp is a computation element PI = (p : PI P ↪→ PI , tPIP
, tPI ) over tp. It defines

the search space

S(PI ) := {E = (e : EP ↪→ E, tEP
, tE) ∈ CS |

there exists an isomorphism aP : PI P
∼−→ EP s.t. tEP

◦ aP = tPIP
}.

Each element of the search space S(PI ) is called solution (object) for PI .
Given a solution E for PI , a subsolution of E is a solution E1 from the

search space S(PI ) such that there exists a problem-invariant ce-morphism s1

from E1 to E where s1 ∈ M.

Before providing an example, some remarks with respect to the above defini-
tion and notation are in order. Since the typing of the problem object of a com-
putation element is defined via a pullback, pullback decomposition implies that
a ce-morphism is indeed a pullback square (compare Fig. 4). Thus, in abstract
terms, we fix an M-morphism TP ↪→ T from a given M-adhesive category C.
We then work in the category that has pullback squares over TP ↪→ T as objects
and pullbacks between such pullback squares as arrows. The results in [23, Theo-
rem 1] ensure that this category is again M-adhesive, provided that the original
category C is also partial-map adhesive (as defined in [18]); a property that is
satisfied by the category of attributed graphs; see, for example, [23, Corollary 1].
However, in this paper it will suffice to consider the arising diagrams as diagrams
in the M-adhesive category C.

To shorten the presentation, we often only speak of computation elements E
and ce-morphisms m and use their components (such as EP , tEP

, or m) freely
without introducing them explicitly. Furthermore, we often let the typing be
implicit; in particular, we omit it in almost all diagrams. In our examples, we
use the category of graphs as the underlying M-adhesive category C. Finally, we
specify problem instances in terms of the actual computation elements (and not
just in terms of their problem objects) to account for the fact that in practice
the problem of interest may be given as part of a (suboptimal) solution.

Example 1. The graph T in Fig. 1 can be viewed as a compact representation of
a computation type graph where the black part marks the embedded problem
type graph. Similarly, the typed graphs of Fig. 2 are interpreted as computation
elements over T , with the black parts typed over the problem type graph; the
typing is indicated by the names of the nodes. Since the typing morphisms
form pullbacks, these black parts represent the problem graphs of the respective
computation elements. Having identical problem graphs, all four graphs belong
to the same search space, which can be defined using either of them. This reflects
that a user might want to optimize an existing assignment of features to classes,
rather than just specifying the features and their interdependencies.
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Fig. 5. Split of solution E

Taking two computation elements (from the same
search space) and splitting their solution parts, two
offspring solutions are constructed by recombining
the resulting subsolutions crosswise. In the follow-
ing, we formally develop this intuition (based on the
category-theoretic concept of pushouts) and prove
basic properties of this construction of crossovers. We
begin by defining the split of a given solution.

Definition 4 (Split). Given a problem instance PI and a solution E for PI , a
split of E is a commuting cube as depicted in Fig. 5 where the bottom square is a
pushout, the vertical squares constitute ce-morphisms, all morphisms come from
M, and all problem objects (the objects in the square at the top) are isomorphic
to PI P . The bottom square is called solution split and EI is a split point of E.
The subsolutions E1 and E2 of E are called (solution) split objects of E.

A solution can be split in several ways; the central idea is that each solution
item of E occurs in (at least) one of the solution parts of E1 or E2. We next
present a concrete construction that implements the above declarative definition.

Definition 5 (Split construction). Given a solution E, the split construc-
tion consists of the following steps:

1. Choose an M-subobject s1 : E1 ↪→ E from E (in C) such that when pulling
back s1 along e, the morphism s1P opposite to s1 is an isomorphism (in par-
ticular, E1

P
∼= EP

∼= PI P , where E1
P is the object computed by this pullback).

The typing morphisms tE1
P

and tE1 are defined as tEP
◦s1P and tE ◦s1, respec-

tively.
2. Choose another such M-subobject s2 : E2 ↪→ E from E such that s1, s2 are

jointly epi (again, typing is defined by composition).
3. Complete the cube by constructing pullbacks. That is, determine EI as the

pullback of s1 and s2, EI
P as the pullback of the isomorphisms at the top of

the cube, and eI : EI
P ↪→ EI as the morphism that is induced by the univer-

sal property of the bottom pullback. Again, when considered as computation
element, the typing of EI is defined by composition.

Remark 1. While in general categories the above construction need not be con-
structive, it is when the underlying category is one of the familiar categories of
graphs (being, e.g. typed, labeled, or attributed). Then, the choice of E1 amounts
to extending (an isomorphic copy of) EP by a choice of solution elements from E;
s1 extends the isomorphism accordingly. Since pullbacks of injective morphisms
compute intersections, the pullback of s1 along e computes the chosen isomorphic
copy (up to unique isomorphism). For the choice of E2, one again extends an iso-
morphic copy of EP by a choice of solution elements from E. To ensure that s1 and
s2 become jointly epi (that is, jointly surjective in our case), one must include at
least all solution elements of E not chosen in the construction of E1.
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Fig. 6. A split of solution E

Example 2. Given the two degrees of freedom for a split, different splits can be
constructed from solution E shown in Fig. 2. In steps (1) and (2) we have all possi-
bilities to extend its problem graph EP (or an isomorphic copy) with solution parts
that yield E1 and E2 as long as E1 and E2 form graphs and jointly cover E.

A possible split of the solution E is shown in Fig. 6. Here, E is split by first
inserting the assignment relations of 1:Method, 2:Attribute, and 3:Method into E1

along with the associated class 7:Class. The rest of the feature assignments and the
necessary classes become part of E2. The pullback EI of E1 and E2 contains their
common solution element 7:Class. To simplify the presentation, the problem graph
EP is reused in all four graphs. Note that the morphisms in Fig. 6 are indicated by
equal numbers in the corresponding nodes. They uniquely induce the mapping of
edges. We use these conventions in all of the following examples.

Proposition 1 (Correctness and completeness of split construction).
In an M-adhesive category with M-effective unions, the split construction in
Definition 5 is correct and complete: it always yields a split of the given solution
and every possible split can be realized through it. Moreover, for each choice of
an M-subobject s1 : E1 ↪→ E there exists at least one possible split.

Fig. 7. Crossover point

Given a problem instance PI and two solutions
E and F for it, a crossover of E and F can be per-
formed. Their offspring are basically constructed
by recombining solution split objects crosswise.
Variations of recombinations are possible, since
solution-split objects resulting from solution splits
of E and F can be recombined with more or less
overlap. To uniquely determine a crossover of E
and F , we define a crossover point that specifies
the overlap of their solution split objects.
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Definition 6 (Crossover point). Given a problem instance PI , two solu-
tions E and F for PI , with splits having split points EI and F I , respectively, a
crossover point CP is a common subsolution of EI and F I . That is, a crossover
point is a span of problem-invariant ce-morphisms as depicted in Fig. 7 (with
bottom components coming from M).

We will explain crossover points later along with the crossover operation as
such. Next we briefly mention that it is always possible to find a crossover point
in a trivial way – the problem object of the given problem instance can always
serve as such.

Lemma 1 (Existence of crossover points). Given a problem instance
PI = (p : PI P ↪→ PI , tPIP

, tPI ) over type object tp, two solutions E and F

for PI , and splits with split points EI and F I , respectively, CP := (id : PI P ↪→
PI P , tPIP

, tp ◦ tPIP
) is always a crossover point for them. In particular, for

each two splits of solutions for the same problem instance there always exists a
crossover point.

Taking two solutions E and F for a common problem instance and splitting
them into subsolutions E1, E2 and F 1, F 2, we choose a crossover point for these
splits and now define a crossover of these solutions. It basically recombines the
subsolutions of E and F crosswise at the crossover point and yields the com-
putation elements E1F 2 and E2F 1. We show in Proposition 2 that these two
offspring are also solutions to the joint problem instance.

Definition 7 (Crossover). Let a problem instance PI , two solutions E and
F for PI , splits of these two solutions with split objects E1, E2, F 1, F 2 and split
points EI and F I , respectively, and a crossover point CP for these splits be
given. Then, a crossover of solutions E and F (at CP and these splits) yields
the two offspring solutions O1 and O2 of E and F that are shown in Fig. 8 and
constructed as follows:

1. The ce-morphisms from CP to E1 and E2 are obtained by composing the
ce-morphism from CP to EI (given by the crossover point) with the ce-
morphisms from EI to E1 and E2 (given by the solution split of E), respec-
tively. The ce-morphisms from CP to F 1 and F 2 are obtained analogously.

2. The top and bottom squares of the cubes are computed as pushouts (in C) yielding
the objects (E1F 2)P , E1F 2, (E2F 1)P , and E2F 1. The typing morphisms for
these objects are obtained from the universal properties of the respective pushout.

3. The morphisms o1 : (E1F 2)P ↪→ E1F 2 and o2 : (E2F 1)P ↪→ E2F 1 are also
induced by the universal property of the pushout squares at the top of the
cubes. These morphisms form the objects of O1 and O2.

We illustrate the construction before establishing some of its basic properties
such as its correctness.

Example 3. A split of solution F (introduced in Fig. 2) is shown in Fig. 9. Again,
the split point extends the problem graph by a Class element. Therefore, a
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Fig. 8. Crossover of solutions E and F

crossover point for E and F (with the splits given in Figs. 6 and 9) consists
either of their common problem graph only, or of this problem graph extended
by a single Class. Figure 2 already shows the two offspring graphs that result from
applying crossover to E and F where the problem graph is chosen as crossover
point. In contrast, adding a Class to the crossover point would merge 7:Class and
11:Class during the recombination and result in the offspring shown in Fig. 10.

Fig. 9. A split of solution F originally presented in Fig. 2

The next proposition shows that a crossover calculate the offspring correctly,
i.e. all offspring calculated represent solutions (for the given problem instance).

Proposition 2 (Correctness of offspring). Given a problem instance PI ,
two solutions E and F for PI , splits with split objects E1, E2, F 1, F 2 and split
points EI and F I , respectively, and a crossover point CP for these splits, then
there is always a crossover and the two offspring solutions O1 and O2 are solu-
tions for PI .

Next we characterize the expressiveness of the presented crossover construc-
tion: Given two solutions E and F , all solutions that can be understood as
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Fig. 10. Two offspring models E1F2, E2F1, based on the splits of Figs. 6 and 9 and a
crossover point containing an additional class

results of splitting E and F and their recombination can indeed be generated
as offspring of the construction in Definition 7 (by different choices of solution
splits and crossover points). This is reminiscent of the expressiveness of uniform
crossover when using arrays of, e.g., bits as genotype [13].

Proposition 3 (Completeness of crossover). Let the underlying M-
adhesive category C have M-effective unions, and let a problem instance PI
and solutions E, F , and O for PI be given. The solution O can be obtained as
offspring from a crossover of E and F if and only if there are subsolutions E1 of
E and F 2 of F with problem-invariant ce-morphisms ī : E1 → O and j̄ : F 2 → O
such that i and j are jointly epic M-morphisms.

Discussion. As mentioned earlier, M-adhesive categories include various cat-
egories of (typed, labeled, or attributed) graphs that can be used to formal-
ize modeling approaches. In particular, our construction supports crossovers of
graphs with inheritance and attribution – concepts that are regularly used in
modeling. As for the construction of splits and crossover points, our approach
provides several degrees of freedom. In principle, for any implementation of these
variation points, the definitions and results in this section are sufficient to com-
plement evolutionary computations in model-based MDO with crossovers. More-
over, our proposed crossover construction is generic in the sense that it can be
applied to any meta-model; it only needs to be possible to formalize the optimiza-
tion problem of interest and its search space according to Definition 3. Then,
whenever two solution models are chosen for crossover, Proposition 1 ensures
that both can be split. Next, Lemma 1 ensures that regardless of which splits
are chosen, a crossover point exists for these splits. Finally, Proposition 2 ensures
that, for two splits and a crossover point, there is always a crossover that provides
solutions of the search space.

Beyond typing, meta-modeling typically employs integrity constraints that
express further requirements for instances being considered well-formed; multi-
plicities are a typical example. We do not consider such constraints so far. This
means that given a meta-model with additional integrity constraints and two of
its instance models satisfying these constraints, computing crossover as specified
in this work may result in offspring models that violate the constraints. We illus-
trate this with our running example: In practical applications, the meta-model
(type graph) from Fig. 1 would have a constraint requiring each Method and
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each Attribute to be associated with at most one Class. A slight adjustment of
the split and crossover points in Examples 2 and 3 results in the offspring shown
in Fig. 11; both graphs violate the considered constraint. The splits of E and
F were adjusted to additionally include the edge to 5:Attribute in E1 as well as
in F 1 (from 7:Class and 11:Class, respectively); the problem part served as the
crossover point. Computing offspring that violate such additional constraints is
not in itself a problem; several methods have been developed in evolutionary
algorithm research to deal with this. For example, such infeasible solutions can
be eliminated by the selection operator, or they can be tolerated (with a reduced
fitness assigned to them); after all, even an infeasible solution can lead to a feasi-
ble solution of high quality later during the evolutionary computation. However,
producing too many infeasible solutions can waste valuable resources and slow
down the evolutionary computation process.

Summarizing, we expect evolutionary search to profit most if domain-specific
knowledge is used to direct the choices of splits and crossover points, that is, if
these choices are adapted to the problem at hand (possibly including the preser-
vation of additional constraints). Thus, while our construction can principally
yield problem-agnostic crossovers, it can also (and maybe better) be understood
as a generic construction that offers a unifying framework for the implemen-
tation of specific crossovers on graph-like structures. In the next section, we
substantiate the claim that our construction offers such a unifying framework.

Fig. 11. Offspring violating an integrity constraint

5 Instantiating Existing Approaches to Graph-Based
Crossover

In this section, we exemplify how our generic construction includes existing
crossover operators that can be applied to graph-like structures. We discuss uni-
form, k-point and subtree crossover, as these are classic operators that are com-
monly applied [13,24]. In addition, we consider horizontal gene transfer (HGT),
which was recently introduced in a setting similar to ours [2].

Uniform and k-Point Crossover are crossover operators commonly used when
solutions are encoded as strings (arrays) of bits (or other alphabets) [13]. In
k-point crossover, two given parent strings of equal length are split into k + 1
substrings at k randomly selected crossover points (at equal positions in both
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strings). The two offspring solutions are obtained by alternately concatenating a
substring from each parent, resulting in solutions of the same length as the given
parents. In uniform crossover, a new decision is made at each position (according
to a given probability) which offspring gets the entry from which parent. This
can be understood as k-point crossover with varying k.

Strings can be represented as graphs by simply considering each character of
a string as an edge typed or labeled with that character; see, e.g., [30]. Using
this representation, our construction of crossovers can be used to implement
uniform and k-point crossover. Here, the problem object (graph) is given by the
nodes of the graphs (which encode the length of the given strings). The splits
are chosen such that (i) the edges are partitioned (disjointly) into the solution
splits and (ii) the same partitions are chosen for both parents (i.e., if the first
edge of the first parent is included in its first subsolution, the first edge of the
second parent is also included in its first subsolution). This partitioning can be
done according to the rules of k-point or uniform crossover. The only available
crossover point is the set of nodes (i.e. the problem graph), since the edges are
distributed disjointly. The calculation of the crossover, i.e.performing the two
pushouts, results in two offspring solutions with the same length as the parents.

Fig. 12. Implementing classic 2-point crossover

For the k-point crossover, we consider the concrete example of a 2-point
crossover of the strings s1 : 0|0|0 and s2 : 1|1|1, where | represents the chosen
crossover points. The computed offspring strings are o1 : 010 and o2 : 101.
Figure 12 outlines how this calculation is implemented in our approach.

Subtree Crossover is the recombination operator commonly used in genetic pro-
gramming [24]. In genetic programming, a program is represented by its syntax
tree. Such a tree serves as a genotype for an evolutionary computation that
aims at finding an (optimal) program for the given task. Given two syntax trees,
subtree crossover (randomly) selects and exchanges one subtree from each of
them. With our approach, we can implement subtree crossover if we use a lit-
tle trick in representing the trees: We explicitly encode the edges of the trees
as nodes (for a representation of (hyper)edges as special kinds of nodes, see,
e.g., their (visual) representation in [31]). The problem tree (graph) is always
empty. A split divides a tree into a subtree and the remaining tree, where the
node encoding the reference to the subtree is common in both split objects. This
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node serves as a crossover point to exchange subtrees crosswise at the correct
positions. Figure 13 schematically represents a subtree crossover, where R1 is
the root node of the first tree, all STi represent subtrees, and nodes of type ref
represent edges. Note that representing edges as nodes allows us to split an edge
into two parts and distribute it between the two split parts. In this way, we can
redirect edges.

Fig. 13. Implementing subtree crossover

Fig. 14. Example of the horizontal gene transfer (HGT) proposed in [2]. o is the fixed
output node. Active nodes are depicted in white, passive nodes are gray. i1 and i2
are input nodes. The marked nodes of the receiver (including outgoing edges) are
substituted by the marked parts of the donor.

Horizontal Gene Transfer (HGT) was proposed by Atkinson et al. in [2] as a non-
recombinative method for transferring genetic information between individuals.
In their work, graphs are used to represent functions (or, with small adaptations,
neural networks); the reachability of fixed output nodes determines the active
component of a graph. As indicated in Fig. 14, HGT takes the active component
of one graph (the donor) and copies it to the passive component of another graph
(the receiver); to maintain a fixed number of nodes, an appropriate number of
passive nodes is deleted from the receiver beforehand. Input nodes representing
parameters are identified during that process. In our construction the output
and input nodes would be considered the problem part. Choosing the active
component as the solution split for the donor, the subgraph that remains after
deleting the passive nodes as the solution split of the receiver, and the problem
part as crossover point, our approach can compute HGT as a crossover.
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6 Related Work

In addition to the approaches presented in detail above in Sect. 5, we now relate
our crossover construction to other variants of crossover on graph-like structures.
For each approach, we clarify whether it can be simulated by our approach and
how expressive it is. We then discuss the crossover variants used so far in MDO.

6.1 Further Approaches for Graph-Based Crossover

The two most general crossover variants on graph-like structures that we are
aware of are those proposed by Niehaus [27] and Machado et al. [26]. Niehaus
introduces random crossover on directed graphs, where a subgraph of one graph
is removed and replaced by a subgraph of another graph; in particular, only one
offspring is computed. To avoid dangling edges, the exchanged subgraphs must
have the same in- and out-degrees with respect to the edges that connect them
to the rest of the graph. By using the trick of representing edges as a special
kind of node, we can realize this crossover with our approach.

Machado et al. [26] also exchange subgraphs between graphs. The sub-
graphs are constructed as radii around randomly chosen nodes. To connect the
exchanged subgraphs to their new host graphs, a correspondence is established
between the nodes that were adjacent to them in their former host graphs. If
this correspondence is one-to-one, we can implement this operator in our app-
roach by again representing edges by a special type of node. However, Machado
et al. also allow for correspondences that are not one-to-one. To implement this
feature, we would need to allow non-injective mappings from the crossover point
to the splits in our approach. Unlike this approach, our approach is not limited
to choosing subgraphs as radii around randomly chosen nodes.

Other approaches are less general since they depend to a greater extent on
the chosen representation or semantics of the graphs used [9,10,19,21,22,28]. In
these cases, it does not seem straightforward to apply the proposed crossovers in
other contexts. The kind of computations that can be performed using crossover
may also be less expressive than those in the approaches already discussed [19,21,
22,28,29]. We can implement the crossovers proposed in [9,10,19,28,29] in our
approach, often by representing edges as a special type of node. The approach by
Kantschik and Banzhaf [22] cannot be implemented for reasons similar to those
discussed for [26]. Furthermore, we cannot implement the subgraph crossover
proposed in [21], because this approach allows random insertion of new edges
into an offspring and these edges do not come from any parent.

In summary, our generic approach to crossover on graph-like structures
encompasses most of the approaches proposed for more specific situations.
Our approach allows more general exchanges of subgraphs than most of the
approaches discussed. Moreover, our Theorem 3 is the first result (that we know
of) that formally clarifies the expressiveness of the proposed crossover. We have
identified two reasons why our approach is not able to encompass an existing
approach: First, crossover could cause two (or more) edges that targeted differ-
ent nodes in their original graph to target the same node in their new context.
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Second, elements that do not originate from either parent are reintroduced in
the offspring. However, both kinds of changes can be realized in our approach by
the subsequent application of mutation operators. We could also solve the first
problem by allowing non-injective mappings from crossover points to the splits
when performing crossover. However, this would complicate the theory we can
provide for our construction: Pushouts along any two morphisms need not exist
in M-adhesive categories, and even if the necessary pushouts did exist, ensuring
that the computed results come from the search space under consideration (i.e.,
represent an M-morphism) would only be possible for certain morphisms.

6.2 Crossover in MDO

In the rule-based approach to MDO, the solutions are represented as sequences
of model transformations [1,4]. This allows traditional crossovers (e.g., k-point
crossover, uniform crossover) to be applied seamlessly. However, they have been
shown to be disruptive because the transformations can depend on each other [20]
and repair strategies must be used to mitigate this problem. As for the effects
of crossover in the rule-based approach, no theoretical results are available. To
date, neither a formal basis nor alternatives to traditional crossover have been
developed in this context.

Burton et al. were the first to perform optimization directly on models as
search space elements [8]. Their specific use case allows for the adaptation of
single-point crossover through model transformations. However, their crossover
implementation is not described in detail. Recent applications of the model-
based approach neglect crossover and stick to mutation as their only change
operator, such as [7]. In [32], Zschaler and Mandow present a generalized view
on the model-based approach to MDO and point out the challenge of specifying
crossover in such a setting. They briefly discuss model differencing and model
merging as related concepts, but do not elaborate on this idea. To our knowledge,
this paper presents the first approach to address this issue.

7 Conclusion

There is theoretical and practical evidence that evolutionary algorithms in gen-
eral benefit from the use of crossover [2,9,19] in the sense that the search for
optimal solutions can be more effective and efficient. However, in the absence
of suitable crossover approaches for (the model-based approach to) MDO, the
effect of crossover in this context has not yet been studied. Our proposed generic
crossover construction can serve as a basis to start with.

How existing solutions are split and the selection of common crossover points
for such splits are critical design decisions. Which of these decisions are benefi-
cial to the effectiveness and efficiency of an optimization remains to be explored.
Apart from the typing of objects, our approach neglects additional constraints
of an optimization problem, i.e., crossover may lead to violations of constraints.
Whether our approach needs to be refined to guarantee constraint-preserving
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offspring remains for future work. In addition to theoretical exploration of our
approach, an implementation is needed to enable empirical analysis. Addition-
ally, specification concepts need to be elaborated to allow users to conveniently
specify different split strategies and crossover points that fit their domain.

Acknowledgements. This work has been partially supported by the German
Research Foundation (DFG), grant no. TA 294/19-1. We thank the anonymous review-
ers for their insightful comments.

A Proofs

The following lemma is the central ingredient for the proof of Proposition 1
and also used in the one of Theorem 3. For adhesive categories, it has already
been stated in the extended version of [14]. Here, we present it in the more gen-
eral context of M-adhesive categories. Because of that, we need to additionally
assume the existence of M-effective unions.

Lemma 2 (Pullbacks as pushouts). In an M-adhesive category (C,M) with
M-effective unions, let (e1, e2) : L1, L2 ↪→ E be a pair of jointly epimorphic M-
morphisms. Then the pullback of (e1, e2) is also a pushout.

Proof. Given the diagram below, where P arises as pullback of (e1, e2), Q as
pushout of (p1, p2), and the morphism h from the universal property of Q, we
show that h is an isomorphism.

L1

P Q E X

L2

p1

p2

q1
e1

q2
e2

h

f

g

First, since e1, e2 are M-morphisms, the morphism h is an M-morphism,
assuming M-effective unions. This means that h is a regular monomorphism
(compare [25, Lemma 4.8], which is easily seen to also hold in M-adhesive cat-
egories).

Secondly, given two morphisms f, g : E → X with f ◦ h = g ◦ h, it follows
that f ◦h◦q1 = g ◦h◦q1 which implies f ◦e1 = g ◦e1; analogously, f ◦e2 = g ◦e2
holds. Since e1, e2 are jointly epimorphic, it follows that f = g, and h is an
epimorphism. Thus, h is epi and regular mono and therefore an isomorphism. ��
Proof (of Proposition 1). Given a solution split as depicted in Fig. 5, it is straight-
forward to realize this split via the split construction. One just chooses the
already given morphisms s1 and s2. As the bottom square in Fig. 5 is a pushout,
s1 and s2 are jointly epimorphic. Moreover, in an M-adhesive category that
square is also a pullback because EI ↪→ E1 (or, equally, EI ↪→ E2) ∈ M.
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To show that the construction always computes a solution split, we have to
show that it produces a commuting cube of M-morphisms (with isomorphisms
at the top) such that the bottom square is a pushout and the four vertical
squares constitute ce-morphisms (i.e., are also pullbacks and are compatible
with typing). It is well-known that, in every category, in a cube that is computed
via pullbacks as stipulated by our construction, all squares are pullbacks; see,
e.g., [3, 5.7 Exercises, 2. (b)]. By closedness of M-morphism under pullbacks,
this in turn implies that all morphisms are M-morphisms (because e, s1, and
s2 are). The two morphisms at the front of the top square are isomorphisms by
assumption; the other two become isomorphisms by closedness of isomorphisms
under pullback. Finally, in an M-adhesive category with M-effective unions, the
pullback of jointly epimorphic M-morphisms is always a pushout (see Lemma 2
above). Therefore, the bottom square (computed as pullback of the jointly epic
M-morphisms s1 and s2) is a pushout as desired. The typing of E1 and E2 is
compatible with the typing of E by definition; moreover, the squares obtained
from the typing morphisms are pullbacks by pullback composition.

For the last statement, it suffices to observe that E2 can always be chosen
as E, embedded via the identity morphism (which then leads to EI ∼= E1). ��
Proof (of Lemma 1). To prove the statement, we have to show that there exists
a ce-morphism (aP , a) from CP := (id : PI P ↪→ PI P , tPIP

, tp ◦ tPIP
) to EI such

that aP is an isomorphism and a ∈ M; the analogous statement for F I is proved
in exactly the same way.

Fig. 15. Showing CP to constitute a crossover point

We define such a ce-morphism using the isomorphism aP with tEI
P
◦aP = tPIP

that exists since EI is an element of the search space of PI . Figure 15 depicts this.
The square commutes and a, eI ◦a ∈ M by closedness of M under isomorphisms
and composition. Moreover, using the fact that eI is a monomorphism, it is also
easy to check that the square constitutes a pullback. Finally, using tEI

P
◦ aP =

tPIP
we compute

tEI ◦ eI ◦ aP = tp ◦ tEI
P

◦ aP

= tp ◦ tPIP

which shows (aP , eI ◦ aP ) to be type-compatible. ��
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Proof (of Proposition 2). First, in an M-adhesive category, pushouts along M-
morphisms exist. This means that, given two solution splits and a crossover point,
crossover is always applicable. Since isomorphisms are closed under pushout,
the top squares in the construction consist of isomorphisms only. In particular,
(E1F 2)P ∼= PI P

∼= (E2F 1)P (because E1
P

∼= PI P
∼= E2

P by assumption).
By definition, o1 is the unique morphism such that

o1 ◦ aP = a ◦ e1 and o1 ◦ bP = b ◦ f2,

where (aP , a) and (bP , b) denote the ce-morphisms from e1 and f2 to o1 (see Fig. 8).
A standard diagram chase (using the facts that the top squares in Fig. 8 consist
of isomorphisms only and that diagrams remain commutative if one replaces iso-
morphisms by their inverses) then shows that a ◦ e1 ◦a−1

P (or, equally, b ◦ f2 ◦ b−1
P )

exhibits this universal property. Therefore, o1 = a ◦ e1 ◦ a−1
P ∈ M as composition

of M-morphisms. Again, this uses the fact that M contains all isomorphisms.
Finally, that the typing morphisms of O1 induce even a pullback square over

tp (and not merely a commuting one) follows exactly as in the proof of Lemma 2.2
in [15], using the facts that the ambient category C is M-adhesive and tp ∈ M. ��
Proof (of Proposition 3). Let solution O be computed via a crossover from E and
F . It is immediately clear from the construction that there exist the two required
ce-morphisms ī and j̄ such that i, j are jointly epic M-morphisms because the pro-
jections of a pushout are jointly epi and M-morphisms are closed under pushout.

For the converse direction, O is jointly covered by E1 and F 2, which stem from
subsolutions E1 and F 1 of E and F by assumption. If the underlying category has
M-effective unions, pulling these morphisms back results in a pushout. Let CP be
the object resulting from that pullback (exactly as in the proof of Proposition 1).
We merely have to show that there exist solution splits of E and F that split up
E into E1 and some suitable subsolution E2 of E and F into F 2 and some suit-
able subsolution F 1 of F for which CP can serve as a crossover point. As in (the
proof of) the second part of Proposition 1, we can use E as E2 and, because of the
symmetric nature of a solution split, F as F 1 and obtain splits of E and F with
EI = E1 and F I = F 2. Hence, CP , together with the morphisms that stem from
its computation as a pullback, can serve as a crossover point for these splits, and
applying the crossover construction computes the given solution O. ��
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Abstract. Developing complex software requires thatmultiple views and
versions of the software can be developed in parallel and merged as sup-
ported by views and managed by version control systems. In this context,
this paper considers permanent monitoring of merging and related consis-
tency problems at the level of models and abstract syntax. The presented
approach introducesmulti-versionmodels based on typed graphs that per-
mit to store changes and multiple versions in one graph in a compact form
and allow (1) to study well-formedness for all versions without the need
to extract each version individually, (2) to report all possible merge con-
flicts without the need to merge all pairs of versions, and (3) to report
all violations of well-formedness conditions that will result for merges of
any two versions independent of any merge decisions without the need to
merge all pairs of versions. Thereby, the approach aims to permit early and
frequent conflict detection while developing in parallel. The paper defines
the related concepts and algorithms operating on multi-version models,
proves their correctness w.r.t. the usually employed three-way-merge, and
reports on preliminary experiments concerning the scalability.

1 Introduction

Developing complex software nowadays requires that multiple views and versions
of the software can be developed in parallel and merged as supported by views and
managed by version control systems [12]. For complex software, living with incon-
sistencies at least temporarily is inevitable, as enforcing consistency may lead to
loss of important information [11] and is hence neither always possible nor desir-
able. However, working with multiple versions in parallel and changing each ver-
sion on its own for longer periods of time can introduce substantial conflicts that
are difficult and expensive to resolve. Therefore, it is necessary to manage consis-
tency when combining views and versions using merge approaches [12,20].

This paper considers permanent monitoring of merging and related consis-
tency problems at the level of models and abstract syntax. This aims to permit
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early and frequent conflict detection while developing in parallel, as suggested
in approaches to detect conflicts early and to enable collaboration to manage
conflicts and their risks [4].

The presented approach therefore introduces multi-version models based on
typed graphs, which permit to store changes and multiple versions in one graph
in a compact form and allow to study the different versions and their merge com-
binations. The following capabilities are considered: (1) Study well-formedness
for all versions at once without the need to extract and explicitly consider each
version individually. (2) Report all possible merge conflicts that may result for
merges of any two versions without the need to extract and explicitly merge all
pairs of versions. (3) Report all violations of well-formedness conditions that will
result for merges of any two versions independent of any merge decisions without
the need to extract and explicitly merge all pairs of versions.

The approach thus promises to support early conflict detection and collabo-
ration for managing conflicts and their risks, while not having to decide how to
later merge conflicting versions. The technique also aims for a better scalability
in case there are many versions that are considered in parallel.

Furthermore, the developed multi-version models permit to study the phe-
nomena of versions, merging, and well-formedness conditions in the unifying
framework of typed graphs. This enables us to (a) formulate algorithms that can
obtain several analysis results without the need to consider a specific version,
merge of a pair of versions, or strategy for conflict resolution and (b) prove that
the algorithms compute the same results as if we would explicitly consider all
specific versions, merges of pairs of versions, or strategies for conflict resolution.

The paper defines the related concepts and algorithms operating on multi-
version models, proves their correctness w.r.t. the usually employed three-way-
merge, and reports on first experiments concerning the scalability. In Sect. 2,
we summarize the preliminaries of the presented approach, including basic def-
initions for typed graphs, well-formedness conditions, and graph modifications.
Then, as a baseline, single-version models in the form of typed graphs with
well-formedness conditions are defined in Sect. 3, before multi-version models
are introduced in Sect. 4. Determining all merge conflicts and checking well-
formedness for all merge results based on multi-version models is then consid-
ered in Sect. 5. Results of first experiments for our prototypical implementation
of the algorithms are presented in Sect. 6. A summary of related work is given
in Sect. 7. Finally, the conclusions of the paper and an outlook of planned future
work are presented in Sect. 8.

2 Preliminaries

We briefly reiterate the basic concepts of graphs, graph modifications, and well-
formedness conditions used in the remainder of the paper.

A graph G = (V G, EG, sG, tG) consists of a set of nodes V G, a set of edges
EG and two functions sG : EG → V G and tG : EG → V G assigning each edge its
source and target, respectively. We assume that graph elements have identities
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and source and target of an edge are invariant if an edge is part of multiple
graphs, that is, for two graphs G and H and an edge e ∈ EG ∩EH , it holds that
sG(e) = sH(e) and tG(e) = tH(e). This also implies that, in the context of this
paper, (V G = V H ∧ EG = EH) → (G = H).

A graph morphism m : G → H is given by a pair of functions mV : V G → V H

and mE : EG → EH that map elements from G to elements from H such that
sH ◦ mE = mV ◦ sG and tH ◦ mE = mV ◦ tG [9].

A graph G can be typed over a type graph TG via a typing morphism type :
G → TG, forming the typed graph GT = (G, typeG). A typed graph morphism
between two typed graphs GT = (G, typeG) and HT = (H, typeH) with the same
type graph then denotes a graph morphism mT : G → H such that typeG =
typeH ◦ mT . A (typed) graph morphism m is a monomorphism iff its functions
mV and mE are injective.

Figure 1 shows an example typed graph M1 and associated type graph TM
from the software development domain. M1 represents an abstract syntax graph
for a program written in an object-oriented language that contains four classes
represented by nodes. The type graph also allows representing superclass rela-
tionships with edges.

Fig. 1. Example graph, type graph, and violation pattern

The structure of a typed graph G can be restricted by a well-formedness
condition φ, which in the context of this paper is characterized by a typed
graph Q typed over the same type graph. G then satisfies the condition φ,
denoted G |= φ, iff there exists no monomorphism m : Q → G. We also call such
monomorphisms matches and Q the violation pattern of φ.

Figure 1 shows a violation pattern Q for an example well-formedness con-
straint that forbids a class having two outgoing superclass relationships.

A graph modification as defined by Taentzer et al. [26] formalizes the dif-
ference between two graphs G and H and is characterized by an intermediate
graph K and a span of monomorphisms (G ← K → H). In this paper, we assume
that the two morphisms are always subgraph inclusions. K then characterizes
the subgraph that is preserved through the modification, whereas elements in G
that are not in K are deleted and elements in H but not in K are created.

Figure 2 shows an example graph modification from the graph M1 from Fig. 1
to a new graph M2, where a superclass edge from class c1 to class c3 is created
and the class c4 is deleted. The morphisms are implied by node labels.



Towards Development with Multi-version Models 121

Fig. 2. Example graph modification

Graphs and graph modifications correspond to versions and differences in
conventional, line-based version control systems like Git [16], where versions of a
development artifact and intermediate differences form a directed acyclic graph.

3 Single-Version Models

In this paper, we consider models in the form of typed graphs that are required
to adhere to a set of well-formedness conditions. Effectively, the combination
of type graph and well-formedness conditions then acts as a metamodel with
potential further constraints. Note that attributes, as usually employed in real-
world models, can in this context be modeled as dedicated nodes [17].

For Φ the set of well-formedness conditions, a model Mi is well-formed iff
∀φ ∈ Φ : Mi |= φ. We assume pcheck(Mi, φ) to report all violations to property
φ with violation pattern Q for model Mi in the form of matches for Q, essentially
realizing |= as pcheck(Mi, φ) = ∅ ⇐⇒ Mi |= φ. If violations exist, the model
Mi is also called ill-formed.

For the notion of models as typed graphs, model modifications correspond to
graph modifications as presented in Sect. 2. We say a model modification (Mi ←
K → Mj) with subgraph inclusions is maximally preserving iff it does not delete
and recreate identical elements. Formally, K = (V Mi ∩V Mj , EMi ∩EMj , sK , tK),
where sK and tK are uniquely defined assuming invariant edge sources and
targets. Consequently, for two models Mi and Mj , the maximally preserving
model modification (Mi ← K → Mj) is uniquely defined.

For a set of model modifications ΔM{1,...,n} between models M{1,...,n} =
{M1, . . . ,Mn}, with ∀(G ← K → H) ∈ ΔM{1,...,n} : G ∈ M{1,...,n} ∧ H ∈
M{1,...,n}, we can define the set of predecessors pre(i) ⊂ M{1,...,n} of a version Mi

as the set of versions Mj such that there exists a sequence of model modifications
(Mx1 ← Kx1 → Mx2), (Mx2 ← Kx2 → Mx3), . . . , (Mxn−1 ← Kxn−1 → Mxn

)
where x1 = j, xn = i, and (Mxk

← Kxk
→ Mxk+1) ∈ ΔM{1,...,n} for 1 ≤ k < n.

ΔM{1,...,n} describes a correct version history if all morphisms in the indi-
vidual model modifications are subgraph inclusions, all model modifications are
maximally preserving, the pre relation is acyclic and there exists a model Mα

such that Mα ∈ pre(i) for all models Mi �= Mα. Effectively, a correct version
history describes a directed acyclic graph of model versions M{1,...,n} that are
derived from an original model Mα via the model modifications in ΔM{1,...,n} ,
and therefore closely corresponds to the versioning of some development artifact
in a conventional version control system.
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Taentzer et al. [26] define a merge operation for model modifications m1 =
(Mc ← Ki → Mi) and m2 = (Mc ← Kj → Mj) with common source Mc, which
unifies m1 and m2 into a merged model modification mm = merge(m1,m2) =
(Mc ← Km → Mm). We denote the merged model by Mm = mergeG(m1,m2).
This merge operation is similar to a three-way-merge in conventional version
control systems [20], since mm in the default case (i) preserves an element x ∈ Mc

iff it is preserved by both m1 and m2 (ii) deletes an element x ∈ Mc iff it is deleted
by m1 or m2 (iii) creates an element x ∈ Mm iff it is created by m1 or m2.

However, according to [26], model modifications can be in conflict in two
cases: (i) insert-delete conflict and (ii) delete-delete conflict. Taentzer et al. state
that only (i), where one modification creates an edge connected to a node deleted
by the other modification, is an actual conflict, which has to be resolved to create
a correct merge result. In this case, the merge result may deviate from the default
case. Such conflicts will be reported by mcheck((Mc ← Ki → Mi), (Mc ← Kj →
Mj)) in the form (e, v), where e is an edge created by one of the modifications
and v is a node deleted by the other modification.

For a correct version history ΔM{1,...,n} , we say that two sequences of model
modifications Mc ⇒∗ Mi and Mc ⇒∗ Mj are in conflict iff their corresponding
maximally preserving model modifications (Mc ← Kc,i → Mi) and (Mc ←
Kc,j → Mj) are in conflict. In this case, we also say that Mi and Mj are in
conflict for the common predecessor Mc.

Insert-delete conflicts can be resolved by equipping the merge operation with
a manual or automatic strategy for conflict resolution. We consider such a strat-
egy valid if it decides for each conflict whether to either revert the edge creation
or the node deletion and always produces a proper merged graph. The approach
in [26] effectively proposes an automatic strategy that favors insertion over dele-
tion in order to preserve as many model elements as possible. Therefore, it reverts
any deletions of nodes that would lead to insert-delete conflicts.

In contrast, a strategy for conflict resolution may favor deletion over insertion
by reverting any creations of edges that would lead to insert-delete conflicts.
Specifically, for model modifications m1 = (Mc ← Ki → Mi) and m2 = (Mc ←
Kj → Mj), the model modification mmin = mergemin(m1,m2), with mergemin

a merge operation equipped with this strategy, only creates an edge created by
m1 or m2 if neither its source nor target is deleted by the other modification.

If all well-formedness conditions are specified by simple violation patterns,
mmin also yields a model where all well-formedness violations are also present
in the merge result for any other conflict resolution strategy:

Theorem 1. For two model modifications m1 = (Mc ← Ki → Mi) and m2 =
(Mc ← Kj → Mj) and a well-formedness constraint φ with violation pattern Q,
it holds that

pcheck(mergemin
G (m1,m2), φ) =

⋂

str∈S

pcheck(mergestr
G (m1,m2), φ),

with S the set of all valid conflict resolution strategies.
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Proof. (Sketch) Follows directly from the fact that mergemin
G (m1,m2) is the

smallest common subgraph of all graphs produced by the operation merge for
any valid conflict resolution strategy. ��

If there are no conflicts in the merged model operations, the merge operation
produces the same result regardless of the chosen strategy for conflict resolution.

For a correct version history, two model versions Mi and Mj , and the set of
versions P = pre(i) ∩ pre(j), we define the function

preC(i, j) =

{
∅ Mi ∈ pre(j) ∨ Mj ∈ pre(i)
{Mc ∈ P | ∀Mx ∈ P : Mc /∈ pre(x)} otherwise

,

which returns the set of latest common predecessors of Mi and Mj . Note that
our definition of preC corresponds to the definition of a best common ancestor in
conventional version control systems such as Git [16], which is used to compute
the base for three-way merges in these systems.

Figure 3 shows an exemplary version history based on the graph M1 from
Fig. 1. The initial graph Mα = M1 contains four classes. The modification m1

(not to be confused with a morphism) to M2 creates a superclass edge from c1 to
c3 and deletes the node c4. The modification m2 to graph M3 creates superclass
edges from c1 to c2 and from c4 to c2. There is an insert-delete conflict between
the two modifications, since the modification to M2 deletes a node that is needed
as the source of an edge created by the modification to M3. Furthermore, the
result of the merge of the two modifications would violate the well-formedness
constraint with the violation pattern Q from Fig. 1, since without additional
modifications, the node c1 would have two outgoing superclass edges.

Fig. 3. Example version history

4 Multi-version Models as Typed Graphs

A correct version history ΔM{1,...,n} with model versions M{1,...,n} conforming
to a type graph TM can be represented by a multi-version model in the form of
a single graph that is typed over an adapted type graph.

The adapted type graph TMmv contains a node for each node and edge in
TM . It also contains edges connecting each node in TMmv that represents an



124 M. Barkowsky and H. Giese

edge in TM to the nodes representing the edge’s source and target in TM .
This yields a bijective function corrmv : V TM ∪ ETM → V TMmv , which maps
elements from TM to the corresponding node in TMmv, and two bijective func-
tions corrs

mv, corrt
mv : ETM → ETMmv mapping edges from TM to the edges

in TMmv encoding the source and target relation in TM . In addition, TMmv

contains a node version, an edge suc with source and target version, and two
edges cvv and dvv from each other node v ∈ V TMmv to the version node.

A multi-version model MVM for ΔM{1,...,n} is then constructed by an oper-
ation comb as follows: A subgraph PM

mv encodes structural information about
all model versions and is constructed by translating PM =

⋃
Mi∈M{1,...,n} Mi to

conform to TMmv using an operation transmv. Since source and target functions
are invariant in a correct version history, PM is well-defined.

For each v ∈ vPM

, transmv creates a node of type corrmv(v) in V PM
mv . For

each e ∈ EPM

, a node of type corrmv(e) is created. This yields a bijection origin :
PM

mv → PM mapping translated elements to their original representation.
In addition, for each edge e ∈ EPM

, an edge of type corrs
mv(e) with source

origin−1(e) and target origin−1(sPM

(e)) and an edge of type corrt
mv(e) with

source origin−1(e) and target origin−1(tP
M

(e)) are created in EPM
mv . Since edge

sources and targets are invariant, the corresponding node ve = origin−1(e) in
the end has exactly one edge of type corrs

mv(e) and one of type corrt
mv(e).

We thus have two functions smv : origin−1(EPM

) → EPM
mv respectively tmv :

origin−1(EPM

) → EPM
mv encoding these mappings.

Another, distinct subgraph PV
mv contains versioning information and is con-

structed as follows: For each Mi ∈ M{1,...,n}, PV
mv contains a corresponding node

of type version. For each (Mi ← K → Mj) ∈ ΔM{1,...,n} , PV
mv contains an edge

of type suc from the node representing Mi to the node representing Mj .
For each modification (Mi ← K → Mj), a cv-edge with the node correspond-

ing to Mj as its target is added to all nodes corresponding to elements created
by the modification. A dv-edge with the node corresponding to Mj as its target
is added to all nodes corresponding to elements deleted by the modification.
Additionally, a cv edge with the node corresponding to the initial version Mα as
its target is added to all nodes corresponding to elements in Mα.

Since attributes can be encoded by dedicated nodes and assignment edges
[17], the construction can be performed analogously for attributed graphs.

For v ∈ PM
mv and Mi ∈ M{1,...,n}, we say that v is mv-present in Mi, iff for

a node mcv connected to v via a cv edge, there exists a path from mcv to the
node representing Mi via suc edges that does not go through a node connected
to v via a dv edge. We denote the set of versions where v is mv-present by p(v).

A model version Mi can then be derived from MVM via an operation proj as
follows: Collect all nodes Vp = {vp ∈ V PM

mv |Mi ∈ p(vp)}, that is, all nodes that
are mv-present in Mi, and translate the induced subgraph into the single-version
model Mi with V Mi = {origin(vv)|vv ∈ V MV M ∧ corr−1

mv(typeMV M (vv)) ∈
V TM}, EMi = {origin(ve)|ve ∈ V MV M ∧ corr−1

mv(typeMV M (ve)) ∈ ETM},
sMi = origin ◦ tMV M ◦ smv ◦origin−1, and tMi = origin ◦ tMV M ◦ tmv ◦origin−1.
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Correctness

Theorem 2. For a correct version history ΔM{1,...,n} holds concerning comb
and proj:

∀i ∈ {1, . . . , n} : Mi = proj(comb(ΔM{1,...,n}), i).

Proof. (Sketch) Any element in a version Mi has a corresponding node v in
comb(ΔM{1,...,n}). By construction, v is connected to a node corresponding to
some version Mj via a cv edge, for which there exists a path of suc edges to the
node corresponding to Mi. That path does not go through a node connected to v
by a dv edge. v is thus mv-present in Mi and hence contained in the projection.

Inclusion of elements in the opposite direction can be shown analogously.
Because edge sources and targets are invariant over all graphs, the edges in
comb(M1, . . . ,Mn) correctly encode the source and target functions by construc-
tion. Thus, ∀i ∈ {1, . . . , n} : Mi = proj(comb(M1, . . . ,Mn), i). ��

More detailed proofs for this and other theorems in the paper can be found
in the appendix of the preprint version [2].

A maximally preserving model modification (Mi ← K → Mj) with Mi,Mj ∈
M{1,...,n} (and thus any model modification in ΔM{1,...,n}) can be derived from
MVM via projΔ as follows: Mi and Mj can be derived via the operation proj.
K is then the graph containing all elements from Mi ∩ Mj , with sK and tK

uniquely defined by the corresponding functions from Mi and Mj and partial
identities as morphisms into Mi and Mj .

Theorem 3. For a correct version history ΔM
{1,...,n} holds concerning comb and

projΔ:

∀Mi,Mj ∈ M{1,...,n} : mi,j = projΔ(comb(ΔM{1,...,n}), i, j),

with mi,j the maximally preserving model modification from Mi to Mj.

Proof. Follows trivially from Theorem 2 and the definition of the maximally
preserving model modification (Mi ← Ki,j → Mj). ��

Figures 4 and 5 visualize the multi-version model MV M constructed for the
example history in Fig. 3 and the associated adapted type graph TMmv. MV M
contains a node for each node and edge in the models of the example history, one
node of type version for each of the graphs M1, M2, and M3, and appropriate
edges as created by comb.

4.1 Directly Checking Well-Formedness for Multi-version Models

We can use a multi-version model to directly find all well-formedness viola-
tions in all individual versions via an operation pcheckmv. For a multi-version
model MVM with a bijective mapping into a union of original model versions
originM and a well-formedness constraint φ with associated violation pattern Q,
pcheckmv(MVM , φ) works as follows:
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Fig. 4. Multi-version model for the history in Fig. 3

Fig. 5. Adapted type graph for type graph in Fig. 1

First, the graph Q typed over the original type graph is translated into a
corresponding graph Qmv typed over the adapted type graph using transmv.
This yields a bijective mapping originQ : Qmv → Q.

Then, all matches for Qmv in MVM are found. For each such match mmv,
pcheckmv computes all versions for which all vertices in the image of the match
are mv-present by P =

⋂
v∈V Qmv p(mmv(v)). If P �= ∅, the match into the

original model versions m = originM ◦mmv◦origin−1
Q is constructed and reported

as a violation in all versions in P .

Correctness

Theorem 4. For a well-formedness constraint φ with violation pattern Q, a
correct version history ΔM{1,...,n} , and MVM = comb(ΔM

{1,...,n}) holds:

pcheckmv(MVM , φ) =
⊎

i∈{1,...,n}
{(i,m)|m ∈ pcheck(proj(MVM , i), φ)}.

Proof. (Sketch) A match m : Q → Mi for any version Mi has one correspond-
ing match mmv with m = originM ◦ mmv ◦ origin−1

Q , where edges created by
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transmv ensure correct connectivity. P =
⋂

v∈V Qmv p(mmv(v)) contains exactly
the versions containing all elements in m(Q). This yields the stated equality. ��

Complexity. The effort for searching all versions M{1,...,n} of some version
history ΔM{1,...,n} for a pattern Q using pcheck is in O(

∑
Mi∈M{1,...,n} C(Mi, Q)),

with C(Mi, Q) the effort for finding all matches of Q into Mi.
PM

mv = transmv(PM ) and Qmv = transmv(Q) are only different encodings
of PM =

⋃
Mi∈M{1,...,n} Mi and Q. Considering computation of the mv-present

predicate, the effort for pcheckmv is hence in O(C(
⋃

Mi∈M{1,...,n} Mi, Q) + X ·
|V Qmv | · |ΔM1,...,n |), with X the number of matches for Qmv into PM

mv.

Discussion. If many elements are shared between individual versions and modi-
fications only perform few changes, the size of the union of all model versions will
be small compared to the sum of the sizes of all individual versions. If pattern
matching is efficient with respect to the size of the considered model, pattern
matching over the union of all model versions will then likely require less effort
than matching over each individual version. Intuitively, pcheckmv avoids redun-
dant searches over model parts that are shared between multiple versions and
thus saves the related effort. If the number of matches for violation patterns is
low, the associated checks performed by pcheckmv will likely be more efficient
than the pattern matching over the individual versions.

Overall, pcheckmv will thus likely be more efficient than using pcheck in
scenarios where pattern matching is efficient, the number of changes between
versions is low, and the number of violations in the union of versions is low.

5 Directly Checking Merge Results for Multi-version
Models

We can consider multi-version models to directly detect whether (a) merge
conflicts exist for any valid pair of encoded model modifications via an oper-
ation mcheckmv and (b) any resulting merged model is ill-formed via an oper-
ation pcheckm

mv, where a pair of model modifications (Mc ← Ki → Mi) and
(Mc ← Kj → Mj) is valid iff Mc ∈ preC(Mi,Mj).

5.1 Directly Checking for Merge Conflicts

mcheckmv can be realized for a multi-version model MVM = comb(ΔM{1,...,n})
as follows: First, the operation collects all nodes in MVM representing edges
that are created by some model modification. This means all nodes ve ∈ V MV M

where corr−1
mv(typeMV M (v)) ∈ ETM connected to a node mx via a cv edge, where

mx does not correspond to Mα and with TM the original type graph. Then, for
each node ve, we compute the set of versions P = p(ve) where it is mv-present.
If P �= p(vs), where vs = sMVM (smv(ve)), we then compute a set of versions D
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that correspond to nodes reachable via suc edges from a node connected to vs

via a dv edge without going through nodes connected to vs via a cv edge.
Afterwards, for each pair of versions Mi ∈ P and Mj ∈ D, we check for each

latest common predecessor Mc ∈ preC(i, j) whether Mc ∈ p(vs) ∧ Mc /∈ P . For
any triplet of versions (i, j, c) where this is the case, the edge origin(ve) is then in
an insert-delete conflict with its source. To facilitate formalization, this conflict is
reported in the normalized form (min(i, j),max(i, j), c, (origin(ve), origin(vs))).
Insert-delete conflicts with the edge’s target are computed analogously.

Correctness

Theorem 5. For a version history ΔM{1,...,n} and the associated multi-version
model MVM = comb(ΔM

{1,...,n}) holds:

mcheckmv(MVM ) =
⊎

(i,j,c)∈Y

{(i, j, c,m)|m ∈ mcheck(mc,i,mc,j)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and with
mc,i = projΔ(MVM , c, i) and mc,j = projΔ(MVM , c, j).

Proof. (Sketch) The collected nodes representing edges correspond to a superset
of edges that may be involved in a conflict. The construction of the sets P and
D for a collected node ve ensures that any pair of versions where one may create
e = origin(ve) and the other may delete the source (or target) of e is considered.
The condition checked for each common predecessor of a version pair then yields
exactly the triplets of versions where e is part of an insert-delete conflict. Because
of the normalization of the results of mcheckmv, we have the stated equality. ��

Complexity. The function preC
mv can be precomputed in O(|M{1,...,n}|4).

Since information about creation and deletion of elements is not explicitly
available in a näıve representation, finding all insert-delete conflicts between two
model modifications via mcheck has to be done by checking for each edge in
either modification’s resulting model whether it is created by that modification
and its source or target is deleted by the other modification. Since there may
exist up to O(|M{1,...,n}|3) possible merges in a version history, in the worst case,
this implies effort in O(|M{1,...,n}|4 + |EMmax | · |M{1,...,n}|3), where |EMmax | is
the maximum number of edges present in a single model version.

Created edges can be retrieved efficiently from a multi-version model given
appropriate data structures. Computing and checking the required version sets
takes O(|M{1,...,n}|3) steps per edge. Therefore, the overall computational com-
plexity of mcheckmv is in O(|M{1,...,n}|4 + Δ+ · |M{1,...,n}|3), where Δ+ is the
overall number of elements created in the version history.
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Discussion. The efficiency of mcheckmv compared to using mcheck mostly
depends on the number of edges created by some model modification compared
to the number of edges in the individual versions. If most edges are present
in the original model version and are shared between many model versions,
mcheckmv will be more efficient. Otherwise, mcheckmv will not achieve a signif-
icant improvement and might even perform worse than the operation based on
mcheck.

Version control systems such as Git typically select a single latest common
predecessor as the base for a three way merge [16]. Using a corresponding partial
function preC

1 : N × N → M{1,...,n} with preC
1 (i, j) ∈ preC(i, j) if preC(i, j) �= ∅

and preC
1 (i, j) =⊥ to select a single latest common predecessor of two versions

i and j rather than preC in mcheckmv, by the same logic as used in the proof
of correctness, we instead have an analogous equality for preC

1 . Disregarding the
computational effort for precomputing preC

1 , replacing preC by preC
1 reduces the

remaining computational complexity of mcheckmv to O(Δ+ · |M{1,...,n}|2).

5.2 Directly Checking Well-Formedness for Merge Results

To find all violations of a well-formedness constraint φ characterized by a pat-
tern Q via pcheckm

mv in merge results of a multi-version model MV M , we first
translate Q into Qmv = transmv. We then find all matches for Qmv in MV M .

For a match mmv for Qmv, we determine the set of versions Pv = p(v) for each
v ∈ mmv(V Qmv ). For each pair of versions Mi ∈ arg minP∈{p(v)|v∈mmv(V Qmv} |P |
and Mj ∈ ⋃

v∈V Qmv p(v), we check whether ∀v ∈ mmv(V Qmv ) : Mi ∈ p(v)∨Mj ∈
p(v). We then check for each latest common predecessor Mc ∈ preC(i, j) if for all
v ∈ V Qmv , it holds that v ∈ V Mc → (v ∈ V Mi∧v ∈ V Mj ), that is, v is not deleted
in Mi or Mj . If this is the case, the match m into

⋃
Mx∈M{1,...,n} Mx corresponding

to mmv represents a violation in mergemin((Mc ← Ki → Mi), (Mc ← Kj →
Mj)). We report results in the normalized form (min(i, j),max(i, j), c,m).

Correctness

Theorem 6. Given a well-formedness constraint φ, a correct version history
ΔM{1,...,n} , and the multi-version model MVM = comb(ΔM

{1,...,n}), it holds that:

pcheckm
mv(MVM , φ) =

⊎

(i,j,c)∈Y

{(i, j, c,m)|m ∈ pcheck(Mmin
i,j,c , φ)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and
Mmin

i,j,c = mergemin
G (projΔ(MVM , c, i), projΔ(MVM , c, j)).

Proof. (Sketch) For two versions Mi,Mj with latest common predecessor Mc, a
match m : Q → mergemin

G (projΔ(MVM , c, i), projΔ(MVM , c, j)) has one cor-
responding match mmv : transmv(Q) → MVM by construction, where the edges
created by transmv ensure the correct connectivity. The set of version pairs con-
sidered by pcheckm

mv contains all version pairs such that each matched element
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is contained in at least one of the versions. The condition checked for every
latest common predecessor ensures that only version triplets are reported where
the merge result also contains all matched elements if there are no merge con-
flicts. Since mergemin resolves conflicts by prioritizing deletion and, as ensured
by the check, no matched node is deleted by the merge, conflict resolution cannot
invalidate the match or create new matches. We thus have the stated equality. ��

By Theorem 1 and Theorem 6, we also have that pcheckm
mv yields the set of

violations that cannot be avoided by any conflict resolution strategy:

Corollary 1. Given a well-formedness constraint φ, a correct version history
ΔM{1,...,n} , and the multi-version model MVM = comb(ΔM{1,...,n}), it holds that:

pcheckm
mv(MVM , φ) =

⊎

(i,j,c)∈Y

⋂

str∈S

{(i, j, c,m)|m ∈ mcheck(Mstr
i,j,c, φ)},

where Y = {(i, j, c) | i, j ∈ {1, . . . , n} : i < j, c ∈ {c|Mc ∈ preC(i, j)}} and
Mstr

i,j,c = mergestr
G (projΔ(MVM , c, i), projΔ(MVM , c, j)), and with S the set of

all valid conflict resolution strategies.

Complexity. The function preC
mv can be precomputed in O(|M{1,...,n}|4).

With C(Mi, Q) the effort for finding all matches of Q into Mi, finding viola-
tions characterized by a pattern Q in all results of a set of possible merges Y using
pcheck takes effort in O(O(|M{1,...,n}|4+

∑
(m1,m2)∈Y C(mergemin

G (m1,m2), Q)).
The computation and checking of version triplets for a match in pcheckm

mv

takes effort in O(|M{1,...,n}|3). For X matches for Qmv, the effort for pcheckm
mv

is thus in O(|M{1,...,n}|4 + C(
⋃

Mi∈M{1,...,n} Mi, Q) + X · |V Qmv | · |M{1,...,n}|3).

Discussion. By the same argumentation as for pcheckmv, pcheckm
mv will likely

be more efficient than the corresponding operation using pcheck in scenarios
where pattern matching is efficient, the number of changes between versions is
low, and the number of violations in the union of model versions is low.

Using some partial function preC
1 : N × N → M{1,...,n} to select a single

latest common predecessor rather than preC in pcheckm
mv, by the same logic as

in the proof of correctness, we have an analogous equality for preC
1 . Disregarding

the effort for precomputing preC
1 , replacing preC by preC

1 reduces the remaining
complexity of pcheckm

mv to O(C(
⋃

Mi∈M{1,...,n}
Mi, Q)+X · |V Qmv | · |M{1,...,n}|2).

6 Evaluation

For an initial empirical evaluation of the performance and scalability of the pre-
sented operations, we experiment with an application scenario from the software
development domain. Therefore, we extract abstract syntax graphs from a small
previous research project (rete) and a larger open source project (henshin
[1]) written in Java using the EMF-based [10] MoDisco tool [5]. We store the
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extracted models in a graph format and fold each of the projects into a multi-
version model, using a mapping strategy based on hierarchy and element names.

We then run implementations of the presented operations for conflict detec-
tion and well-formedness checking based on multi-version models (MVM) and
baseline implementations using corresponding single-version models (SVM).1

We consider three well-formedness constraints: uniqueness of a class’s superclass,
uniqueness of a method’s return type, and consistency of an overriden method’s
return type. We employ our own EMF-based tool [14] for pattern matching.

Figure 6 shows the measured execution times for the operations pcheckmv,
mcheckmv, and pcheckm

mv and related single-version-model-based operations over
the example models. The execution times for pcheckmv and pcheckm

mv correspond
to the combined pattern matching time for all considered well-formedness con-
straints. All reported times exclude the time for computing any merge results
required by SVM and the time required to precompute the preC function, since it
is required by both the MVM and the SVM implementation. Precomputing preC

took about 5 ms for the smaller project and about 3.5 s for the larger project.
For the tasks related to well-formedness checking, the MVM variant performs

better (up to factor 50) than SVM. Since there are only few to no matches for
the violation patterns of the considered constraints, the MVM implementation
only performs few of the potentially expensive checks over the version graph,
while avoiding most of the redundancy in the pattern matching of SVM.

Fig. 6. Measurement results for pcheckmv, mcheckmv, and pcheckm
mv

For conflict detection, MVM performs better than SVM for the smaller
project (factor 5), but has a substantially higher execution time for the larger
project (factor 10). The reason for the bad performance is that most edges are
not present in the initial model version. In fact, the number of edges created
throughout the version history is much higher than the number of edges in any
individual version. Furthermore, in contrast to the solution using mcheck, the
operation mcheckmv considers versions where the source or target of an edge
1 All experiments were executed on a Linux SMP Debian 4.19.67-2 machine with
Intel Xeon E5-2630 CPU (2.3GHz clock rate) and 386GB system memory running
OpenJDK version 1.8.0 242. Reported execution times correspond to the minimum of
at least five runs of the respective experiment. Memory measurements were obtained
in a single run using the native Java library. Our implementation and datasets are
available under https://github.com/hpi-sam/multi-version-models.

https://github.com/hpi-sam/multi-version-models
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is not present. Due to the high number of versions in the project and because
many elements are only present in few versions, this leads to the processing of
large version sets, which deteriorates the performance of MVM in this scenario.

The memory consumption of the multi-version models and their represen-
tations as collections of single-version models is displayed in Fig. 7. For both
projects, the representation as a multi-version model affords a more compact
representation compared to a näıve encoding (factor 30 for the larger project).

Fig. 7. Measurement results for memory consumption

Threats to Validity. Unexpected JVM behavior poses a threat to internal
validity, which we tried to mitigate by performing multiple runs of each experi-
ment measuring execution time and profiling time spent on garbage collection. To
address threats to external validity, we used real-world data and well-formedness
constraints in our experiments. While we used our own tool for pattern matching,
said tool has already been used in our previous works and has shown adequate
performance [14].

However, the example constraints are not representative and the folding of
individual model versions extracted from source code may yield a larger-than-
necessary multi-version model. Our results are thus not necessarily generalizable,
but instead constitute an early conceptual evaluation of the presented approach.

7 Related Work

While most practical version control systems operate on text documents [20],
versioning and merging of models has also been subject to extensive research.

There already exist several formal and semi-formal approaches to model
merging, which compute the result of a three-way-merge of model modifica-
tions [26,27]. Notably, the approach by Taentzer et al. [26] represents a formally
defined solution that works on the level of graphs, which is why for our app-
roach, we build on their notion of model merging. In their work, Taentzer et al.
also consider checking of well-formedness constraints by constructing a tentative
merge result over which the check is executed. While this allows their approach
to handle arbitrary constraints rather than just simple graph patterns, the check
has to be executed for each individual merge.
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Some approaches consider detection of merge conflicts [19] or model incon-
sistencies [3] based on the analysis of sequences of primitive changes. However,
these approaches do not consider the case of multiple versions and pairwise
merges and naturally do not employ a graph-based definition of inconsistencies.

For the more general problem of model versioning, both formal solutions
[8,24] and tool implementations [18,21] have been introduced. Similar to our
approach, some of these techniques are based on a joint representation of multiple
model versions [21,24]. However, to the best of our knowledge, joint conflict
detection or well-formedness checking for all merges at once is not considered.

Model repositories such as Hawk [13] allow storing the evolution of models
over time and enable the execution of queries equipped with temporal operators.
Folding and joint querying of the temporal evolution of graphs has also been
studied in previous work of our group [15,25]. However, these solutions focus on
sequences of graph modifications without diverging branches and hence do not
consider merging.

The presented encoding of different model versions in a unified multi-version
model bears similarity to so-called 150% models from software product lines
[6]. A 150% model represents different configurations of a software system as
a single unified model, where annotations determine the presence of individual
model elements in certain configurations. The derivation of a model instance for
a specific configuration from a 150% model then corresponds to the projection
from a multi-version model to a specific model version. A realization of 150%
models in the context of model-driven engineering is presented in [23].

Westfechtel and Greiner [28] present a solution for propagating presence
information from a unified encoding of multiple product line configurations along
model transformations. While their approach bears some similarity to the col-
lective well-formedness checking in our solution, the technique in [28] focuses on
product lines and hence does not consider version histories and merging.

[7] introduces a new semantics for OCL in the context of software product
lines, which allows the collective checking of well-formedness constraints over
a unified encoding of product line configurations. However, the application of
this approach to model versioning would require a translation of version graphs
and model modifications to an encoding of valid configurations and presence
annotations. This seems nontrivial, especially if the compression of version his-
tories achieved by multi-version models is to be preserved. However, by relying
on OCL as a specification language, the approach in [7] allows a much higher
expressiveness when formulating well-formedness conditions compared to simple
graph patterns. Adopting some of the ideas in [7] may therefore enable lifting
our definition of well-formedness to more expressive formalisms in future work.

A solution to conflict detection for features in software product lines is pre-
sented in [22]. In [22], product variability is encoded by so-called delta modules,
which represent operations for extending a basic version of the software by cer-
tain features and are thus similar to model modifications. The approach checks
for syntactic conflicts via pair-wise comparison of delta-modules and thus relates
to detection of merge conflicts in the context of model merging. The approach
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in [22] also considers the case where a third delta module fixes conflicts between
two other modules. Considering merges of more than two versions could also be
an interesting direction for future work in the context of multi-version models.

8 Conclusion

In this paper, we have presented an approach for encoding a model’s version
history as a single typed graph. Based on this representation, we have intro-
duced operations for finding merge conflicts and violations of well-formedness
conditions in the form of graph patterns in the entire history and related merge
results. We have conducted an initial empirical evaluation, which demonstrates
potential benefits of the approach, but also highlights shortcomings in unfavor-
able scenarios.

In future work, we plan to address these shortcomings by studying how to
compress the version graph or restrict the set of considered versions to those
most relevant to users. We also plan to explore how such a restriction may allow
the pruning of superfluous elements from a multi-version model and thereby pre-
vent performance degradation as more versions are introduced. Furthermore, we
want to investigate how to lift our notion of well-formedness constraints to more
expressive formalisms such as nested graph conditions and develop an incremen-
tal version of the approach. Finally, we will extend our empirical evaluation to
better characterize our technique’s performance.
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Abstract. The Digital Asset Modelling Language (DAML) enables low-
code development of smart contract applications. Starting from a high-
level but textual notation, DAML thus implements the lower end of
a model-driven development process, from a platform-specific level to
implementations on a range of blockchain platforms. Existing approaches
for modelling smart contracts support a domain-oriented, conceptual
view but do not link to the same technology-specific level.

We develop a notation based on class diagrams and visual con-
tracts that map directly to DAML smart contracts. The approach is
grounded in an operational semantics in terms of graph transformation
that accounts for the more complex behavioural features of DAML, such
as its role-based access control and the order of contract execution and
archival. The models, with their mappings to DAML and their opera-
tional semantics, are introduced via the Doodle case study from a DAML
tutorial and validated through testing the graph transformation system
against the DAML code using the Groove model checker.

Keywords: smart contracts · DAML · model-based development ·
UML · visual contracts · graph transformation · Groove

1 Introduction

Smart contracts are transactions that automate workflows or document legally
relevant events and actions, reducing the need for trusted intermediaries to pre-
vent malicious or accidental deviations from agreed protocols [18]. Since the
adoption of smart contracts for transactions on blockchains, an increasing num-
ber of platforms are emerging (listed e.g., in [12]), supporting a variety of con-
cepts and languages for different application domains and business models.

This diversity causes familiar challenges, both strategic (which platform to
adopt for maturity, long-term stability and support) and short-term (how to
find or train qualified developers for specific technologies, integrate with specific
technology stacks used, etc.). Moreover, the use of smart contracts to automate
workflows demands input from domain experts not trained in the languages
employed to program them.

Some of these challenges are addressed by low-code domain-specific lan-
guages. The Distributed Asset Modelling Language (DAML) [3] supports a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Behr and D. Strüber (Eds.): ICGT 2022, LNCS 13349, pp. 137–154, 2022.
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model-driven approach to smart contact development. It provides primitives for
data management, contract creation, execution and archival with fine-grained
role-based access control, and supports cross-platform deployment by mapping
to a range of smart contract platforms, such as the Ethereum family [19], but also
traditional databases. While this supports platform-independence, it does so at
programming level, like Java running on virtual machines on different operating
systems.

In this sense, DAML code can be seen as a technology-specific model, analo-
gous to object-oriented class diagrams that map to OO languages such as Java,
C#, C++, etc., hence supporting the lower part of a model-driven approach
to smart contract development: the mapping from technology-specific models
(DAML code) to implementation. However, it lacks

1. alignment with object- and component-oriented concepts, to support a seam-
less design process across applications using smart contracts in conjunction
with other technologies and languages;

2. visualisation in mainstream modelling language, to allow the use of common
notation across and between projects;

3. comprehensive operational semantics, to give formal explanations of features
such as the order of contract execution and archival, which impacts on parties’
ability to access different versions of a contract.

The first problem arises from a technology-oriented domain-specific language
that supports the concepts of a family of target platforms (e.g. blockchains and
smart contracts) but risks creating process silos by forcing early design decisions
on how certain requirements should be implemented (e.g. what data to store on
a blockchain vs. a centralised database; what functionality to provide through
smart contracts vs. a traditional API). By providing a common notation and
semantics to address 2, we can defer such decisions, increasing the potential for
reuse of conceptual models.

Starting from requirements and domain models, other authors have addressed
the conceptual design of smart contract applications using familiar UML dia-
grams, however without mapping to the technology-specific level (see Sect. 2).
This means that we lack a clear understanding of how a conceptual model should
be implemented using the concepts of the technological space or, vice versa, how
the concepts and behaviours in that space can be expressed precisely and seman-
tically correctly in our designs.

In this paper, we address these shortcomings by providing the link between
the upper part of a model-based approach to smart contract development and the
technology-specific level. In particular, we develop a mapping between DAML
and the object-oriented concepts and notations in UML based on a semantic
understanding of DAML’s behaviour in terms of formal, visual and executable
graph transformation systems [7]. The executable semantics supports DAML’s
complex operational model and, in the future, will enable formal analysis in
particular of access control properties.

Our visual modelling approach relies on



Visual Smart Contracts for DAML 139

– class diagrams, as standard object-oriented notation for data and operations,
augmented by features for modelling DAML parties [3] and their roles and
access rights in relation to the contracts;

– visual contracts modelling pre- and postconditions of operations in an object-
based notation [4], with annotations for contract creation, update and archi-
val, and nested executions.

Together, these constituents form an integrated DAML model subject to con-
sistency requirements that ensure the model can be mapped to a graph trans-
formation system as operational semantics. In the following section we outline
this approach in more detail and discuss the state of the art and related work
in modelling blockchains and smart contracts. Then, Sect. 3 describes how the
structure and operations of smart contracts are represented in class diagrams,
Sect. 4 captures pre- and postconditions of operations as visual contracts. In
Sect. 5 we introduce the operational semantics in terms of graph transforma-
tions before Sect. 6 shows the application of Groove to analyse properties of the
model and Sect. 7 concludes the paper.

2 Visual Models for Smart Contracts

Most current approaches to visual modelling of blockchains and smart contacts
are based on combinations of entity-relationship, UML and BPMN diagrams. [17]
aims to develop modelling standards at a conceptual, technology-independent
level based on the idea of implementing smart contracts in object-oriented lan-
guages. [14] proposes the use of agile methodology, such as user stories, and
data models in the form of UML diagrams to design blockchain applications.
The short paper [6] uses class diagrams to describe data and application struc-
ture and sequence diagrams for communication. [20] demonstrates the use of
two requirements-level frameworks, i* and UML use case and sequence diagrams.
These proposals target a high-level view of applications focusing on functionality
and processes without mapping to the technology level.

[21] proposes UML diagrams to model architecture and business processes
of blockchain applications. [13] elaborates this by an integrated approach to
model-driven engineering of blockchain applications, including business process
modelling and management and the generation of registries for the digital assets
the processes interact with. Their focus is on asset management, rather then a
general approach to DAML smart-contract modelling we are going to propose.

There are tools to visualise structural features of smart contracts. [1] gener-
ates class diagrams from Solidity code, where a Solidity variable is an attribute
and a function an operation. The DAML tool set can generate a form of call
graph from the code. Neither support visualisation of functional behaviour.

A common obstacle to a more formal and comprehensive use of visual mod-
els is the lack of a semantic model integrating structural, functional and pro-
cess views. One such integrated model has been provided in the form of visual
contracts (VCs) for the modelling of service-oriented systems and component



140 R. Heckel et al.

interfaces [4]. However, VCs do not support nested operations (the invocation of
operations from inside others), nor any specific features of smart contracts.

Our approach is based on visual contracts, extending them with the required
features, thus creating an integrated DAML model with operational semantics
in graph transformations. In particular we formalise

– class diagrams as structural and data model, by attributed type graphs;
– visual contracts as functional model, by graph transformation rules;

In the following sections we first describe the notations used and then the seman-
tic model.

3 Templates as Classes

In this section, we introduce DAML and establish a link with object-oriented
concepts by “reverse engineering” DAML code into UML class diagrams. A class
can be seen as a template for creating an object with certain features. In DAML,
a template describes the features of a contract, including its ownership and access
rights, attributes, and operations called choices. A contract is a transaction
that is created from a template, like an object from a class, by a committed
transaction. It remains active until it is archived. A contract is immutable. To
update its field we create a new version of the contract and archive the old
one [3].

To represent a template with its access rights as a class, we need the concept
of a party. If referenced by a template’s attributes, a party can be declared as
signatory (that can create and archive a contract), controller (with execution
rights), or observer (with read access to the contract and able to observe its
creation and archival).

In class diagrams we model parties by an special type Party. The specific
roles of parties in relation to a contract are specified using derived attributes
/signatory, /controller, /observers and /maintainer.

A contract key is like the primary key in a database table, providing a way to
identify the contract based on its attributes. The key is stable from one version
of the contract to the next, in contrast to the contract id, which is specific to
one version. The contract key contains at least one maintainer, i.e., a signatory
of the contract that owns the key [3].

We use the Doodle case study [11] from the introductory DAML papers
[9,10] to illustrate DAML’s features and their representation in visual models.
A doodle is a voting system to schedule meetings, where an organiser invites
voters to vote on a set of options, recording their preferences in voting slots.
Everyone can vote at most once for each option, and votes are visible to all.

The DAML code [11] has one data structure and two contract templates: As
shown in the listing below, a VotingSlot record represents the data about an
option, including the vote count and the list of parties who voted for it. The line
deriving (Eq, Show) states that record equality is based on identity and they
support serialisation. A Doodle contract (created by the organiser as signatory)
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offers choices (i.e., operations invoked by the specified controllers) to add and
remove voters and issue invites (organiser), and to cast votes (voters). Individual
DoodleInvite contracts will allow voters to access the CastVote choice.
1 data VotingSlot = VotingSlot
2 with
3 count : Int
4 voted : [Party]
5 deriving (Eq, Show)
6

7 template Doodle
8 with
9 name: Text

10 organizer : Party
11 voters : [Party]
12 options : [Text]
13 votes : TextMap VotingSlot
14 open: Bool
15 where
16 signatory organizer
17 observer voters
18 ensure (unique voters ) && (unique options)
19 key ( organizer , name): (Party, Text)
20 maintainer (fst key)
21 ...

We illustrate the mapping by creating a class diagram from the DAML code.
The result is shown in Fig. 1. A template maps to a class with the same name,
and template parameters become its attributes or associations. In particular,
role declarations in DAML templates become derived attributes of type Party
in the respective classes. In the Doodle template, the organiser is the signatory
and the voters are observers.

Attributes of native type such as Text and Bool are shown as common class
attributes while attributes referring to contracts or records are associations.
DAML uses assembly types such as lists and maps, which require special treat-
ment. E.g., attribute votes is of type TextMap VotingSlot, which we represent
as a class VotingSlot with an attribute option: Text. Each instance vs:VotingSlot
represents a pair 〈index, object〉 of the map with index = vs.option and object =
vs. An association with a �list� stereotype represents a list-valued attribute
of the contract. Attributes and associations that jointly form the key or are
individually declared unique are prefixed with corresponding stereotypes. E.g.,
(organizer, name) jointly form a key for a Doodle contract, and voters is a
unique list (without repetition of elements).

A choice is shown as a method with a stereotype indicating whether it is
post-consuming, pre-consuming or non-consuming. For example, AddVoter is a
consuming choice: when executing it we archive the contract and replace it with a
new version. By default, the choice is executed after the archival of the contract.
This is pre-consuming mode, in contrast to a post-consuming choice where the
current version of the contract is archived after executing the choice.



142 R. Heckel et al.

Fig. 1. Class diagram for the Doodle case study

1 template Doodle
2 ...
3 choice AddVoter : ContractId Doodle
4 with
5 voter : Party
6 controller organizer
7 do
8 assertMsg
9 ”this doodle has been opened for voting,

10 cannot add voters”
11 (not open)
12 create this with voters = voter :: voters
13

14 choice RemoveVoter : ContractId Doodle
15 with
16 voter : Party
17 controller organizer
18 do
19 assertMsg
20 ”this doodle has been opened for voting,
21 cannot remove voters”
22 (not open)
23 create this with voters = DA.List.delete voter voters
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24 preconsuming choice IssueInvites : ContractId Doodle
25 controller organizer
26 do
27 assertMsg
28 ”this doodle has been opened for voting,
29 cannot issue any more invites”
30 (not open)
31 DA.Traversable.mapA
32 (\voter −> create DoodleInvite with
33 doodleName = this.name,
34 organizer = this . organizer , voter = voter)
35 voters
36 −− archive self
37 create this with open = True
38

39 preconsuming choice CastVote: ContractId Doodle
40 with
41 voter : Party
42 option : Text
43 inviteId : ContractId DoodleInvite
44 controller voter
45 do
46 invite <− fetch inviteId
47 assertMsg
48 ”this invite was issued for a different doodle”
49 ( invite .doodleName == name)
50 assertMsg
51 ”the voter casting the vote does not match the voter
52 who received the invite”
53 ( invite . voter == voter)
54 assertMsg
55 ”the organizer who issued the invite is not the one
56 who created this doodle”
57 ( invite . organizer == organizer)
58 assertMsg ”this doodle not is open” open
59 assertMsg ”voters is not one of the invited voters”
60 (elem voter voters)
61 assertMsg ”this is not a valid option ” (elem option options)
62 let
63 crtVotes = fromOptional
64 (VotingSlot with count = 0, voted = [])
65 (DA.TextMap.lookup option this.votes)
66 updatedVotes = DA.TextMap.insert option
67 (VotingSlot with count = crtVotes.count + 1,
68 voted = voter :: crtVotes .voted)
69 this . votes
70 assertMsg
71 ”each voter is only allowed to cast one vote per option”
72 (notElem voter crtVotes.voted)
73 create this with votes = updatedVotes
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There are four choices in the Doodle template, which we represent as class
methods treating their with fields as input parameters and using stereotypes
�con�, �noncon� and �precon� to indicate their mode of execution.

Table 1 summarises our mapping from DAML templates to class diagrams.
Recall that data structures are special contracts, without choices, used to declare
complex data types and their access rights.

4 Choices as Visual Contracts

The behaviour of an operation can be specified as a visual contract (VC) over
the class diagram [2,4]. VCs are model-level representations of the design-by-
contract paradigm [15] specifying pre- and postconditions of operations.

The operations defined by a DAML template are its choices. Based on our
mapping of the structural features of DAML code to class diagrams, we model
DAML choices by VCs.

VCs are derived from the choice’s interface, its with and do blocks, see Fig. 2.
Fields declared in the with block are input parameters and we specify the con-
troller who can execute the choice. We indicate creation and deletion by cor-
responding constraints new, delete as well as green and blue colour [7]. Note
that deleting a contract in a VC represents archival, because contracts are never
deleted in DAML.

Table 1. Mapping DAML templates to class diagrams



Visual Smart Contracts for DAML 145

Fig. 2. Components of AddVoter choice: organizer > d.AddVoter(voter) = d’

Fig. 3. Choice AddVoter as visual contract

In the VC in Fig. 3 we indicate this in the label of the diagram: organizer >
d.AddVoter(voter) = d’ means that organizer is the controller. The execution of
the choice archives the current version d and replaces it with a new version d’
indicated by object id d → d’. The choice adds the given voter to list voters.

AddVoter is a consuming choice by default since no qualifier is given left of
the choice name. Hence, the contract will be archived before the body of the
choice is executed. The id d → d’ represents the creation a new contract d’ and
the archival of the old one d.

Fig. 4. Choice IssueInvites as visual contract

In Fig. 4 we show the VC for the IssueInvites choice, which creates a new
DoodleInvite contract for each party in the voters list. The stack notation is used
to represent the set of new invites to be generated, one for each voter ∈ voters.
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The arrow labelled DoodleInvite(d.name, org, voter) represents the invocation of
the constructor for DoodleInvite contracts. Besides choices, a template implic-
itly defines a constructor for contracts, which takes the template’s attributes as
parameters and creates a new contract with this data. Template constructors
can also be modelled by VCs, as shown in Fig. 5. According to the code below,
the VC has to create the DoodleInvite object, initialise its attributes and asso-
ciations according to the input parameters and return the new contract’s id di.
We require the contract’s signatory as the caller of the constructor, here the
organizer in organizer > d.issueInvites() = d’, in analogy to the controller of a
choice.

1 template DoodleInvite
2 with
3 doodleName: Text
4 organizer : Party
5 voter : Party
6 where
7 signatory organizer
8 observer voter
9 key ( organizer , voter , doodleName) : (Party, Party , Text)

10 ...

Note that input parameters and returns of constructors derive from the class’s
attributes, associations and name, along with the creation and initialisation
actions required. Therefore, this default constructor VC is wholly derivable from
the class definition and would not have to be defined explicitly. It is included here
for illustrating the principle and to show the possibility of defining customised
constructors.

Fig. 5. Constructor for template DoodleInvite

5 Graph Transformation Semantics

In this section we translate the class diagram and VCs introduced above to a
typed graph transformation system. This provides them with operational seman-
tics for the analysis of state invariants and reachability properties expressed in
temporal logics, which we will cover in the next section. Since we will use the
Groove model checker [5], we present type graph and rules in Groove notation.
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Disregarding operations, a class diagram can be seen as an attributed type
graph with inheritance [7]. Such a type graph defines a set of attributed instance
graphs representing object structures, the possible data states of our system.

A type graph derived from the class diagram in Fig. 1 is shown in Fig. 6. The
node and edge types in the centre of the type graph, shown in grey and black,
derive directly from the class diagram. They represent the DAML templates with
their attributes. Note that we introduce a single node type Party to represent
attributes of this type as edge types.

The blue node and edge types in the left and right margins are runtime
structures for calls to choices and constructors. Each call is represented by a call
node with attributes and edges representing the call’s parameters including the
caller (the controller of the choice or the signatory of the constructor), the this
contract executing the call, input parameters and return. In the case of recursive
calls we also include a call edge from the calling to the called operation. For
example, where IssueInvites calls DoodleInvite, this is represented by a call edge
from IssueInvitesCall to DoodleInviteCall.

Visual contracts [4] are formalised as (sets of) attributed graph transforma-
tion rules over operation signatures and conforming to the type graph. They

Fig. 6. Type graph of the Doodle case study
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capture the pre- and postconditions of the operations and provide an executable
model where operations are represented as transformations over instances of the
type graph.

The model in [4] supports a view of operations in an interface acting over the
data state of a component or service. However, it does not allow to specify the
invocation of one operation from inside another one, such as the execution of
DoodleInvite::Vote calling Doodle::CastVote. Visual contracts also do not
account for the specific features of smart contracts in DAML, such as contract
archival and update, or the different effects of pre-, post- or non-consuming
choices. In this section we address these features by showing how the straight-
forward interpretation of VCs as graph transformation rules can be extended to
smart visual contracts for DAML.

Fig. 7. Semantic rules for the call, execution and return of AddVoter

We start with the simple contract for AddVoter, a case without nested invo-
cation. Figure 7 shows its corresponding semantic graph transformation rules,
one for calling the choice, one for executing it and one for the return from the
operation. The call rule reflects that AddVoter can be called at any time. It is
part of the interface the Doodle contract offers to the organizer of the poll. The
rule creates an AddVoterCall node representing the call, which points to the con-
troller, the latest version this of the contract d indicated by the last loop, and the
input parameter voter. Using the small !0 in its top left corner, the AddVoter-
Call node is declared an output parameter of the rule, to be used in a control
expression restricting the generation of the state space.

The precondition of the execution rule, shown in solid black (required but
unchanged), dashed blue (required and deleted) and dotted red (forbidden),
specifies the structure that must exist before the operation, including the call
node. The postcondition, which specifies the changes to the graph, is shown
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in solid black (unchanged) and dashed blue (deleted). Attribute values can be
tested in conditions and updated using assignments. The AddVoterCall node is
a rule parameter as indicated by the small 0 in its the top left.

In the execution rule, the call node is unlinked from its input parameters
and linked to its return, the new version d’ of the contract. This is created and
linked to the old version, and the last marker is moved to this new version. Data
and links are copied from the old to the new version. To facilitate this for an
unlimited number of voters, the Party node referred to by the voters edge from
d is universally quantified using the @-labelled edge to the ∀ node. That means,
new voters edges from the new Doodle node will be created for all Party nodes
with an incoming voters edge from d. Any updates, such as the addition of the
link to the voter, are applied to the new version d’. This is because the choice is
preconsuming, i.e., the contract is archived before changes are applied.

The return rule just deletes the call node. In this case, this could have been
done in the same rule because there are no nested calls, but declaring the call
node as a rule parameter, and with the help of the Groove recipe below, we ensure
that the sequence of call, execution and return rules is executed atomically,
avoiding intermediate states.

// atomic execution of AddVoter rules
recipe removeVoter (out node callNode) {

callRemoveVoter(out callNode); // call rule
execRemoveVoter(callNode); // execution rule
retRemoveVoter(callNode); // return rule

}

Fig. 8. Semantic rules for call, execution and return of IssueInvites
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Fig. 9. Semantic rules for call, execution and return of DoodleInvite

Choice IssueInvites features an invocation of another operation, the con-
structor for DoodleInvite contracts. Again, the IssueInvites VC is translated into
three separate graph transformation rules, for call, execution and return. The
recipe is below, utilising a sub-recipe for executing the calls to the DoodleInvite
constructor.

// atomic execution of IssueInvites rules
recipe issueInvites (out node callNode) {

callIssueInvites(out callNode); // call rule
execIssueInvites(callNode); // execution rule
#subDoodleInvite(); // as long as possible
retIssueInvites(callNode); // return rule

}

// executing the DoodleInvite calls from rule execIssueInvites()
recipe subDoodleInvite(){.

node callNode; // DoodleInviteCall var
execDoodleInvite(out callNode); // execution rule
retDoodleInvite(callNode); // return rule

}

The execution rule is shown in the top right of Fig. 8. It consumes the this
edge from the call node, preventing the rule from being applied again on the
same call. In the postcondition, we create a set of DoodleInviteCall nodes, one
for each Party node linked to by a voters edge. This is achieved by a universally
qualified subrule denoted by a ∀ node with @-labelled edges from all nodes that
are part of that rule. The rules for the DoodleInvite constructor are given in
Fig. 9. The return rule for IssueInvites is shown in the bottom of Fig. 8. It uses
a negative application condition (in bold red, dotted) to check that there are
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no constructor calls that haven’t returned yet, and deletes its own call node,
enabling any other return rules waiting for this call to IssueInvites to finish.

Note that, since archival takes place before executing the choice code, the
contract is archived before calling the constructors, which are invoked with the
new version of the Doodle contract as context. While the overall effect is the
same, the distinction is important for the visibility of invites. Quoting from [10]:

“If the choice were not preconsuming, the version of the Doodle contract
on which you exercise the choice would still exist when the contracts
are created. [This] . . . means that parties which are neither signatories
or observers of the VotingInvite contract, will see a copy of it once, when
the contract is created.”

In particular, once a contract is archived we can no longer use its contract id to
access it. In our semantic rules this is reflected by the restriction that we cannot
have a contract on the left-hand side that is not tagged by a last edge.

The separation of execution and return rules allows us to model also post-
consuming behaviour, where the contract is archived in the return rule, after
executing the choice and receiving the returns from any invoked choices.

6 Validation

We analysed the model in Groove [5] both to validate the soundness of the
overall approach to mapping smart VCs into graph transformation systems and
to experiment with model checking to analyse different types of properties.

First, we tested the semantic graph transformation system against the DAML
code. We used the Groove control expression below to specify a range of scenarios
and then executed them in Groove. We implemented selected scenarios as DAML
test scripts and compared the results.

// creating Doodle for existing DoodleCall
node cnDoodle; // var for DoodleCall
execDoodle(out cnDoodle); // execute Doodle constructor
retDoodle(cnDoodle); // Doodle constructor return

// adding voters
node cnAddVoter; // var for AddVoterCall node
addVoter(out cnAddVoter)*; // add any subset of parties

// issuing invites
node cnIssueInvites; // variable for IssueInvitesCall
issueInvites(out cnIssueInvites); // execute issueInvites recipe

// voting
node cnVote; // var for VoteCall
vote(out cnVote)*; // any subset of voters vote
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Tests were executed on a state space of 516 states and 1908 transitions gener-
ated from a start graph with a single DoodleCall node, three Party nodes and two
VotingSlot nodes. Recipes as shown in Sect. 5 were used to prevent interleaving
on intermediate states, significantly reducing the size of the state space. One
notable result was a mismatch of how constraints are handled. For example, the
DAML code ensure (unique voters) guarantees that the same party cannot
occur twice in the list of voters. This is checked at runtime and when trying to
add the same party twice using AddVoter, an exception is thrown. To achieve
the same behaviour in our semantics, we added to the execution rule in the top
right of Fig. 7 a negative application condition ensuring this constraint by stat-
ing the absence of a voters link from d to the top-right Party node. This is an
example of a constraint-guaranteeing negative application condition, which can
be constructed automatically from the rule and the constraint [8,16].

Then, we analysed safety properties deriving from constraints declared in
the class diagram, such as key properties for DoodleInvite (doodleName, orga-
nizer, voter are jointly unique), Doodle (name, organizer are jointly unique), and
VotingSlot (option is unique), and uniqueness of edges (voters edges represent a
collection with unique entries). From the logic of the problem domain we derive
requirements such as: A party can vote at most once for each voting slot.

We formalised these constraints as property rules (without effect) express-
ing the forbidden patterns in their precondition, and verified them in Groove
as a CTL formula AG (!propNotDoodleInviteKey & !propNotDoodleKey & !prop-
NotVotingSlotKey & !propNotUniqueVoters & !propNotUniqueVote). In addition,
we checked the lifeness property, that it is always possible to reach a state where
voting is not enabled anymore (because all invited parties have voted for all
possible voting slots), written in CTL as AF !execVote.

This shows that model checking is feasible on graph transformation models
derived from visual smart contracts, with many of the properties defined directly
by the constraints in the class diagram and other safety and lifeness properties
derived from requirements of the problem domain.

A full version of the model including all VCs, transformation and property
rules is available at https://www.cs.le.ac.uk/people/rh122/mdd4daml both as
pdf and graph grammar in Groove, which we are planning to explore in the
future.

7 Conclusion

To support the development of smart contract applications in DAML, we pro-
posed an integrated modelling approach consisting of DAML-specific class dia-
grams and visual contracts. We established a mapping between DAML and such
integrated models, which can be used in both forward and reverse engineering,
and demonstrated its use by a case study. We defined operational semantics
in terms of graph transformation systems with control expressions in Groove,
discussed how they capture the specific behavioural features of DAML’s access
control mechanisms, and demonstrated the possibility of analysing these seman-
tic models.

https://www.cs.le.ac.uk/people/rh122/mdd4daml
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The mappings in our case study from smart contracts to smart VCs and from
smart VCs to graph transformation rules are designed to be generalisable, but
have not been formalised and automated. Apart from the usefulness of visual
smart contracts for modelling smart contract applications, the automation of
these mappings is essential for a range of model-based development activities,
including formal analysis, simulation and model checking, and model-based test-
ing, which we are planning to explore in the future.
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Abstract. We demonstrate how category theory provides specifications
that can efficiently be implemented via imperative algorithms and apply
this to the field of graph transformation. By examples, we show how this
paradigm of software development makes it easy to quickly write correct
and performant code. We provide a modern implementation of graph
rewriting techniques at the level of abstraction of finitely-presented C-
sets and clarify the connections between C-sets and the typed graphs
supported in existing rewriting software. We emphasize that our open-
source library is extensible: by taking new categorical constructions (such
as slice categories, structured cospans, and distributed graphs) and relat-
ing their limits and colimits to those of their underlying categories, users
inherit efficient algorithms for pushout complements and (final) pullback
complements. This allows one to perform double-, single-, and sesqui-
pushout rewriting over a broad class of data structures. Graph transfor-
mation researchers, scientists, and engineers can then use this library to
computationally manipulate rewriting systems and apply them to their
domains of interest.
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1 Introduction and Motivation

Term rewriting is a foundational technique in computer algebra systems, pro-
gramming language theory, and symbolic approaches to artificial intelligence.
While classical term rewriting is concerned with tree-shaped terms in a logi-
cal theory, the field of graph rewriting extends these techniques to more general
shapes of terms, typically simple graphs, digraphs, multigraphs, or typed graphs.
Major areas of graph rewriting are graph languages (rewriting defines a graph
grammar), graph relations (rewriting is a relation between input and output
graphs), and graph transition systems (rewriting evolves a system in time) [14].

When considering the development of software for graph rewriting, it is
important to distinguish between studying rewriting systems as mathematical
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objects and building applications on top of rewriting as infrastructure. The for-
mer topic can answer inquiries into confluence, termination, reachability, and
whether certain invariants are preserved by rewriting systems. In contrast, we
will focus on answering questions that involve the application of concretely spec-
ified rewrite systems to particular data.

Category theory is a powerful tool for developing rewriting software, as the
numerous and heterogeneous applications and techniques of rewriting are ele-
gantly unified by categorical concepts. Furthermore, the semantics of categorical
treatments of graph rewriting are captured by universal properties of limits and
colimits, which are easier to reason about than operational characterizations of
rewriting. This is an instance of a broader paradigm of computational applied
category theory, which begins by modeling the domain of interest with cate-
gory theory, such as using monoidal categories and string diagrams to model
processes. One is then free (but not required) to implement the needed cate-
gorical structures in a conventional programming language, where the lack of a
restrictive type system facilitates a fast software development cycle and enables
algorithmic efficiency. For example, arrays can be used to represent finite sets,
and union-find data structures can compute equivalence classes.

Our approach takes the domain of interest modeled by category theory to be
the field of graph transformation. This was first suggested by Minas and Schnei-
der [20] and is distinguished from existing tools by working at a higher level of
abstraction and developing rewriting capabilities within a broader framework of
categorical constructions. While current software tools are connected to category
theory through their theoretical grounding in adhesive categories [17], they are
specialized to graphs in their implementation.

Connection to ExACT. An orthogonal technique of applying category theory to
rewriting software development encodes category theory into the type system of
the program itself. This strategy, sometimes called executable applied category
theory (ExACT), allows type checking to provide static guarantees about the
correctness of rewriting constructions. At present, it is not feasible to execute
provably-correct programs on large problems, as they generally have poor perfor-
mance [24]. Translation-based approaches offer an alternative to proof assistants
by encoding graph rewriting into first-order logic and computing answers with
SMT solvers, which likewise suffer from scalability concerns when used as an
engine to compute rewrites at scale [14]. We distinguish computational applied
category theory from this paradigm by analogy to the distinction between com-
putational linear algebra and formalizations of linear algebra, a distinction visu-
alized in Fig. 1. One area in which these paradigms can interact is through mak-
ing the testing of unverified software more robust: extracted programs from for-
malized proofs can serve as a test oracle and a basis for generating test cases [25].

Structure of the Paper. We will first introduce C-sets and typed graphs, the latter
of which has been the focus of preexisting graph rewriting software. Our first
contribution is to elucidate the subtle relationships between these two mathe-
matical constructs, and we argue on theoretical and performance grounds that
C-sets are more directly applicable to many problems where typed graphs are
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Fig. 1. Two broad strategies for computational category theory. Applied category the-
ory is used to represent the program’s subject matter in the upper path, while category
theory is encoded in the program’s structure or type system in the lower path. This is
not a commutative diagram.

currently applied. Our next contribution draws from previous theoretical work
of Löwe, who developed theory for DPO and SPO of C-sets [19]. We present the
first software implementation of this rewriting on C-sets and extend it with algo-
rithms for SqPO and homomorphism finding. Our last contribution also draws
from preexisting theoretical work of Minas and Scheider as mentioned above -
we describe a modern realization of computational applied category theory and
show how this paradigm allowed for these rewriting techniques to be 1.) efficient,
2.) programmed at a high level, closely matching the mathematical specification,
and 3.) extensible to new categories. We lastly outline extensions of rewriting
beyond C-sets, which highlight the flexibility of our technique. A supplemental
notebook1 is provided with code to accompany all figures. We assume familiarity
with the basic concepts of categories, functors, and natural transformations.

2 Important Categories in Computational Graph
Transformation

2.1 Graphs and Their Homomorphisms

We take graphs to be finite, directed multigraphs. Thus, a graph G is specified
by two finite sets, GE and GV , giving its edges and vertices, and two functions
Gsrc, Gtgt : GE → GV , defining the source and target vertex of each edge.

We can compactly represent sets and functions by working in the skeleton
of FinSet, where a natural number n is identified with the set [n] := {1, ..., n}.
A function f : [n] → [m] can be compactly written as a list [x1, x2, ..., xn], such
that f sends the element i ∈ [n] to the element xi ∈ [m]. This leads to the edge
list representation of graphs, which are encoded as two natural numbers and two
lists of natural numbers (Fig. 2).

1 https://nbviewer.org/github/kris-brown/Computational-Category-Theoretic-Rewri
ting/blob/main/Computational Category Theoretic Rewriting.ipynb.

https://nbviewer.org/github/kris-brown/Computational-Category-Theoretic-Rewriting/blob/main/Computational_Category_Theoretic_Rewriting.ipynb
https://nbviewer.org/github/kris-brown/Computational-Category-Theoretic-Rewriting/blob/main/Computational_Category_Theoretic_Rewriting.ipynb
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Fig. 2. A graph G, defined by GV = [3], GE = [3], Gsrc = [1, 2, 2], and Gtgt = [2, 3, 3].

Given two graphs G and H, a graph homomorphism G
h−→ H consists of a

mapping of edges, GE
hE−−→ HE and a mapping of vertices, GV

hV−−→ HV , that
preserve the graph structure, i.e., Gsrc;hV = hE ;Hsrc and Gtgt;hV = hE ;Htgt.
Regarding the source graph as a pattern, the homomorphism describes a pattern
match in the target. A graph homomorphism can also be thought of as a typed
graph, in which the vertices and edges of G are assigned types from H. For a
fixed typing graph X, typed graphs and type-preserving graph homomorphisms
form a category, namely the slice category Grph/X [9].

2.2 C-Sets and Their Homomorphisms

Graphs are a special case of a class of structures called C-sets.2 Consider the

category C freely generated by the graph E
s

⇒
t

V . A C-set is a functor from the

category C to Set, which by definition assigns to each object a set and to each
arrow a function from the domain set to the codomain set. For this choice of
C, the category of C-sets is isomorphic to the category of directed multigraphs.
Importantly, we recover the definition of graph homomorphisms between graphs
G and H as a natural transformation of functors G and H.

The category C is called the indexing category or schema, and the functor
category [C,Set] is referred to as C-Set or the category of instances, models, or
databases. Given a C-set X, the set that X sends a component c ∈ Ob C to is
denoted by Xc. Likewise, the finite function X sends a morphism f ∈ HomC(a, b)
to is denoted by Xf . We often restrict to [C,FinSet] for computations.

In addition to graphs, Set itself can be thought of as a C-set, where the
schema C is the terminal category 1. We can change C in other ways to obtain
new data structures, as illustrated in Fig. 3. C-sets can also be extended with
a notion of attributes to incorporate non-combinatorial data [21,27], such as
symbolic labels or real-valued weights. For simplicity of presentation, we focus
on C-sets without attributes in our examples.

2.3 Relationships Between C-Sets and Typed Graphs

One reason to prefer modeling certain domains using typed graphs or C-sets
rather than graphs is that the domain of interest has regularities that we wish
to enforce by construction, rather than checking that these properties hold of
inputs at runtime and verifying that every rewrite rule preserves them. There
are close connections but also important differences between modeling with typed
graphs or with C-sets.
2 C-sets are also called copresheaves on C or presheaves on Cop, and are what Löwe

studied as graph structures or unary algebras.
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Fig. 3. The schema of two-dimensional semi-simplicial sets, Δ2, and an example semi-
simplicial set, i.e. an object of Δ2-Set. The equations enforce the connectivity of edges
to be a triangle. Note that MacLane defines Δ as our Δop.

Every C-set instance X can be functorially transformed into a typed graph.
One first applies the category of elements construction,

∫
X : C-Set → Cat/C,

to produce a functor into C. Then the underlying graph functor Cat → Grph
can be applied to this morphism in Cat to produce a graph typed by C, i.e., a
graph homomorphism into the underlying graph of C. Figure 4a shows a concrete
example. However, a graph typed by C is only a C-set under special conditions.
The class of C-typed graphs representable as C-set instances are those that satisfy
the path equations of C and are, moreover, discrete opfibrations over C. Discrete
opfibrations are defined in full generality in Eq. 1.3

Given a functor F : E → C : for all x
φ−→ y ∈ Hom C, and for all ex ∈ F−1(x),

there exists a unique ex
eφ−→ ey ∈ Hom E such that F (eφ) = φ (1)

However, there is a sense in which every typed graph is a C-set: there exists
a schema X such that X -Set is equivalent to Grph/X. By the fundamental
theorem of presheaf toposes [15], X is the category of elements of the graph X,
viewed as a C-set on the schema for graphs. Note this procedure of creating a
schema to represent objects of a slice category works beyond graphs, which we
use to develop a framework of subtype hierarchies for C-sets, as demonstrated
in Fig. 5.

Because every typed graph category is equivalent to a C-set category but not
the converse, C-sets are a more general class of structures. The C-set categories
equivalent to typed graph categories are those whose instances represent sets and
relations, in contrast with the general expressive power of C-sets to represent sets
and functions. Concretely for some edge a

f−→ b in a type graph X, graphs typed
over X can have zero, one, or many f edges for each vertex of type a, while C-sets

3 When specialized to typed graphs, E F−→ C is a graph homomorphism and the graphs
are regarded as their path categories.
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Fig. 4. a.) The semi-simplicial set of Fig. 3, represented as a typed graph, i.e. a labelled
graph with a homomorphism into Δ2. b.) Another valid typed graph which is not a
C-set for three independent reasons: 1.) T1 has multiple edges assigned for ∂2, 2.) e1
has no vertices assigned for src, and 3.) the last equation of Δ2 is not satisfied. c.)
A labelled graph which is not well-typed with respect to Δ2, i.e. no labelled graph
homomorphism exists into Δ2.

Fig. 5. Beginning with a theory of graphs, we derive a theory of whole-grain Petri
nets (or bipartite graphs) by considering two distinct kinds of vertices (states and
transitions) and two kinds of edges (inputs and outputs). ThPetri is constructed the
category of elements of G2. Then, taking a slice in Petri over an instance, Interact,
which asserts three kinds of transitions and two kinds of states, we define a type
system encoding certain domain knowledge about host-vector interactions, such as the
impossibility of a transition which converts a host into a vector. As an example of
subtyping, we can interpret hosts as a type of state, implying they are also a type of
vertex. This process can be repeated, such as considering SIS disease dynamics for both
hosts and vectors. Note that for ease of visualization, C-set components at the apex of
a span of morphisms (e.g. E, I, O) are represented as directed edges.

come with a restriction of there being exactly one such edge. While functions
can represent relations via spans, the converse is not true.

There are practical consequences for this in graph rewriting software, if one
is using typed graph rewriting to model a domain that truly has functional
relationships. Because rewrite rules could take one out of the class of discrete
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opfibrations, as in Fig. 4b, this becomes a property that one has to verify of inputs
and check all rewrite rules preserve. Typed graph rewriting software can allow
declaring these constraints and enforce them, but this becomes an additional
engineering task outside of the underlying theory. In contrast, C-sets are discrete
opfibrations by construction.

Path equations are another common means of modeling a domain that are
not represented in the theory of typed graph rewriting. This means, for example,
that the equation ∂1; tgt = ∂2; src in a semi-simplicial set must be checked of
all runtime inputs as well as confirmed to be preserved by each rewrite rule.
This property is not straightforward to guarantee in the case of sesqui-pushout
rewriting. As an upcoming example will demonstrate, it is not sufficient to just
check that one’s rewrite rule satisfies the path equalities: the rewriting itself
must take path equalities into account in order to compute the correct result.

Furthermore, there are performance improvements made possible by work-
ing with C-sets, rather than typed graphs. Borrowing terminology from rela-
tional databases, we first note that data in a C-set is organized into distinct
tables, so queries over triangles of a semi-simplicial set do not have to con-
sider vertices or edges, for example. Secondly, the uniqueness of foreign keys
allows them to be indexed, which is crucial to performance when performing
queries that require table joins. This mirrors the well-known performance differ-
ences between queries of data organized in relational databases versus knowledge
graphs [5]. We compare both representations within the same rewriting tool in a
single benchmark experiment, described in Fig. 6. This preliminary benchmark
evaluates the performance of a single rewrite on semi-simplicial sets in a planar
network of tessellated triangles. The rewrite locates a pair of triangles sharing an
edge (i.e. a quadrilateral with an internal diagonal edge) and replaces them with
a quadrilateral containing the opposite internal diagonal edge. We also chart the
performance of finding all quadrilateral instances (homomorphisms) in variously
sized grids. The results in Fig. 6 demonstrate a lower memory footprint as well
as improved rewrite and match searching for C-sets.

Fig. 6. Semisimplicial set edge flip benchmark results. Time was measured on an AMD
EPYC 75F3 Milan 3.0 GHz Core with 4GB of allocated RAM.
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3 Category-Theoretic Rewriting

Pushout Complements. Given a pair of arrows A
f−→ B

g−→ C, one constructs
a pushout complement by finding a pair of morphisms A → D → C such that
the resulting square is a pushout. While any category of C-sets has pushouts,
pushout complements are more subtle because they are not guaranteed to exist
or be unique [4]. These are both desirable properties to have when using the
pushout complement in rewriting, so we will demand that identification and
dangling conditions (Eqs. 2–3 [19]) hold, which guarantee its existence, and that
the first morphism f be monic, which forces it to be unique [18].

∀X ∈ Ob C,∀x1, x2 ∈ BX :
gX(x1) = gX(x2) =⇒ x1 = x2 ∨ {x1, x2} ⊆ fX(AX)

(2)

∀φ : X → Y ∈ Hom C,∀x ∈ CX :
φ(x) ∈ gY (BY − fY (AY )) =⇒ x ∈ gX(BX − fX(AX))

(3)

DPO, SPO, SqPO. The double-pushout (DPO) algorithm [10] formalizes a
notion of rewriting a portion of a C-set, visualized in Fig. 7. The morphism m is
called the match morphism. The meaning of L is to provide a pattern that m will
match to a sub-C-set in G, the target of rewriting. R represents the C-set which
will be substituted back in for the matched pattern to yield the rewritten C-set,
and I indicates what fragment of L is preserved in the rewrite and its relation to
R. To perform a rewrite, first, a pushout complement computes K, the original
C-set with deletions applied. Second, the final rewritten C-set is computed via
pushout along r and i.

Fig. 7. Left: DPO rewriting. Here and in the following figures, the initial data is
in black, intermediate computations in grey, and the final result in green. Right:
Application of a rewrite rule to flip the internal edge of a quadrilateral in a semi-
simplicial set with two adjacent quadrilaterals. Here and in the following figures, colors
are used to represent homomorphism data. (Color figure online)

Single-pushout (SPO) rewriting [19] generalizes DPO rewriting, as every
DPO transformation can be expressed as a SPO transformation. The additional
expressivity allows us to delete in an unknown context, as demonstrated in Fig. 8.
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The name comes from the construction being a single pushout in the category of

partial C-set morphisms, C-Par. A partial C-set morphism is a span L
l←↩ I

r→ R
where l is monic. Lastly, sesqui-pushout (SqPO) rewriting [8] is the most recently
developed of the three rewriting paradigms we discuss here. It is defined in terms
of the notions of partial map classifiers and final pushout complements, and it
further generalizes SPO by allowing both deletion and addition in an unknown
context, as demonstrated in Fig. 9.

Fig. 8. Left: SPO rewriting Right: An instance of deletion in an unknown context.

Fig. 9. Left: SqPO rewriting Right: an instance of creation in an unknown context.
Note that there are multiple possible pushout complements because l is not monic,
but performing DPO using any of these would leave the original graph unchanged.
Also note that enforcing the Δ2 equations (in Fig. 3) when computing the partial
object classifier affects the results: without equations, there are four resulting ‘triangle’
objects, although two of these clearly do not form triangles.

4 Design and Implementation of Generic Categorical
Rewriting

Within the paradigm of computational category theory, Catlab.jl is an open
source framework for applied category theory at the center of an ecosystem of
software packages called AlgebraicJulia [11,21]. We have recently extended Cat-
lab to support the categorical rewriting paradigms described above for C-sets
on finitely presented schemas C. This class of structures balances expressivity
and efficiency of manipulation, given that C-sets are representable in the con-
crete language of relational databases [27], modulo equations in C. In Catlab,
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each C-set is automatically specialized to an efficient Julia data type; for exam-
ple, when specialized to graphs, Catlab’s implementation of C-sets, performs
competitively against libraries optimized for graphs [21]. Catlab now occupies
a unique point in the space of rewriting software tools (Table 1). For perfor-
mance in pattern matching (often the typical bottleneck of rewriting), Catlab
outperforms ReGraph, the nearest alternative in terms of expressive capabilities
(SqPO) and usability (Table 2).

Table 1. High-level comparison with contemporary graph rewriting software pack-
ages. Rewrite type refers to whether DPO (D), SPO (S), and SqPO (Sq) are explicitly
supported. CT Env refers to whether the software was implemented within a general
environment of categorical abstractions beyond those immediately useful for graph
rewriting. Last update refers to the year of the last minor version release (i.e. X.Y.0).

Software
Typed C-sets Rewrite CT Last

GUI
Scripting Library

Graphs type Env update Env vs. App

AGG [29] Y N S N 2017 Y N Both

Groove [23] Y N S N 2021 Y N App

Kappa [13] N N N 2021 Y Y App

VeriGraph [1] Y N D Y 2017 N Y Lib

ReGraph [12] Y N Sq N 2018 N Y Lib

Catlab [11] Y Y D,S,Sq Y 2022 N Y Lib

Table 2. Catlab C-set homomorphism search compared to ReGraph typed graph homo-
morphism search. The task was to find all quadrilateral patterns in meshes of increasing
size. Tests were conducted on a single AMD EPYC 75F3 Milan 3.0 GHz Core with 4GB
of RAM.

Mesh size Catlab (s) ReGraph (s)

2 by 2 1.2 × 10−4 5.3 × 10−3

2 by 3 2.7 × 10−4 8.0

2 by 4 4.7 × 10−4 1313.3

2 by 5 6.7 × 10−4 44979.8

The development of Catlab has emphasized the separation of syntax and
semantics when modeling a domain. This facilitates writing generic code, as
diverse applications can share syntactic features, e.g. representability through
string diagrams and hierarchical operad composition, with different semantic
interpretations of that syntax for diverse applications. One result of this is that
library code becomes very reusable and interconnected, such that new features
can be built from the composition of old parts with minimal additions, which
reduces both developer time and the surface area for new bugs.
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This point is underscored by the developer experience of implementing the
above rewriting algorithms: because colimits already existed for C-sets, the addi-
tion of DPO to Catlab only required pushout complements. Like limits and col-
imits, pushout complements are computed component-wise for C-sets, meaning
that only basic code related to pushout complements of finite sets was required.
More work was needed to implement SPO because no infrastructure for the
category C-Par existed at the time. However, with a specification of partial
morphism pushouts in terms of pushouts and pullback complements of total
morphisms [16, Theorem 3.2], the only engineering required for this feature was
an efficient pullback complement for C-sets. Lastly, for SqPO, an algorithm for
final pullback complements for C-sets was the only nontrivial component that
needed to be implemented, based on [7, Theorem 1] and [2, Theorem 2]. This
required generalizing examples of partial map classifiers from graphs to C-sets.
Because the partial map classifier can be infinite for even a finitely presented
C-set, this type of rewriting is restricted to acyclic schemas, which nevertheless
includes graphs, Petri nets, semi-simplicial sets, and other useful examples.

As shown by the supplemental notebook, because Catlab is a library rather
than a standalone application, users have a great deal of freedom in defining
their own abstractions and automation techniques, using the full power of the
Julia programming language. A great deal of convenience follows from having the
scripting language and the implementation language be the same: we can specify
the pattern of a rewrite rule via a pushout, or we can programmatically gener-
ate repetitive rewrite rules based on structural features of a particular graph.
Providing libraries rather than standalone black-box software makes integration
into other projects (in the same programming language) trivial, and in virtue
of being open-source library, individuals can easily extend the functionality. By
making these extensions publicly available, all members of the AlgebraicJulia
ecosystem can mutually benefit from each other’s efforts. As examples of this,
the following additional features that have been contributed to Catlab.jl all serve
to extend its utility as a general rewriting tool:

Computation of Homomorphisms and Isomorphisms of C-Sets. For
rewriting algorithms to be of practical use, morphisms matching the left-hand-
side of rules must somehow be supplied. The specification of a C-set morphism
requires a nontrivial amount of data that must satisfy the naturality condition.
Furthermore, in confluent rewriting systems, manually finding matches is an
unreasonable request to make of the end user, as the goal is to apply all rewrites
possible until the term reaches a normal form. For this reason, DPO rewriting
of C-sets benefits from a generic algorithm to find homomorphisms, analogous
to structural pattern matching in the tree term rewriting case.

The problem of finding a C-set homomorphism X → Y , given a finitely
presented category C and two finite C-sets X and Y , is generically at least as hard
as the graph homomorphism problem, which is NP-complete. On the other hand,
the C-set homomorphism problem can be framed as a constraint satisfaction
problem (CSP), a classic problem in computer science for which many algorithms
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are known [26, Chapter 6]. Since C-sets are a mathematical model of relational
databases [28], the connection between C-set homomorphisms and constraint
satisfaction is a facet of the better-known connection between databases and
CSPs [30].

To make this connection precise, we introduce the slightly nonstandard notion
of a typed CSP. Given a finite set T of types, the slice category FinSet/T
is the category of T -typed finite sets. A typed CSP then consists of T -typed
finite sets V and D, called the variables and the domain, and a finite set of
constraints of form (x, R), where x = (x1, . . . , xk) is a list of variables and
R ⊆ D−1(V (x1)) × · · · × D−1(V (xk)) is a compatibly typed k-ary relation. An
assignment is a map φ : V → D in FinSet/T . The objective is to find a solution
to the CSP, namely an assignment φ such that (φ(x1), . . . , φ(xk)) ∈ R for every
constraint (x, R).

The problem of finding a C-set morphism X → Y translates to a typed
CSP by taking the elements of X and Y to be the variables and the domain of
the CSP, respectively. To be precise, let the types T be the objects of C. The
variables V : {(c, x) : c ∈ C, x ∈ X(c)} → Ob C are given by applying the objects
functor Ob : Cat → Set to

∫
X → C, the category of elements of X with its

canonical projection. Similarly, the domain is D := Ob(
∫

Y → C). Finally, for
every generating morphism f : c → c′ of C and every element x ∈ X(c), introduce
a constraint ((x, x′), R) where x′ := X(f)(x) and R := {(y, y′) ∈ Y (c) × Y (c′) :
Y (f)(y) = y′} is the graph of Y (f). By construction, an assignment φ : V → D
is the data of a C-set transformation (not necessarily natural) and φ is a solution
if and only if the transformation is natural. Thus, the solutions of the typed CSP
are exactly the C-set homomorphisms X → Y .

With this reduction, CSP algorithms are straightforwardly ported to algo-
rithms for finding C-set morphisms, where the types and special structure permits
optimizations, one example being the use of the discrete opfibration condition
to accelerate the search. We only consider assignments that satisfy the typing
relations. We have adapted backtracking search [26, Section 6.3], a simple but
fundamental CSP algorithm, to find C-set homomorphisms. By also maintaining
a partial inverse assignment, this algorithm is easily extended to finding C-set
monomorphisms, an important constraint when matching for rewriting. Since a
monomorphism between finite C-sets X and Y is an isomorphism if and only if
X(c) and Y (c) have the same cardinality for all c ∈ C, this extension also yields
an algorithm for isomorphism testing, which is useful for checking the correctness
of rewrites.

Typed Graph Rewriting with Slice Categories. Slice categories offer a
form of constraining C-sets without altering the schema. Consider the example
of rewriting string diagrams encoded as hypergraph cospans [3]. These can be
used to represent terms in a symmetric monoidal theory, where it is important
to restrict diagrams to only those which draw from a fixed set of boxes with
particular arities, given by a monoidal signature Σ, which induces the unique
hypergraph HΣ which has all box types from Σ and a single vertex. Working
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within the slice category Hyp/HΣ prevents us from performing rewrites which
violate the arities of the operations specified by Σ.

There are two ways to implement rewriting in C-Set/X for a particular
C: the computation can be performed with the objects L, I,R,G being C-set
morphisms, or it can be performed in [

∫
X,Set]. Programming with generic cat-

egorical abstraction greatly lowered the barrier to implementing both of these:
for the former, what was needed was to relate the pushout and pushout comple-
ment of C-Set/X to the corresponding computations in C-Set. The barrier to
the latter was to compute the category of elements and migrate data between the
two representations, code which had already been implemented. As the former
strategy requires less data transformation, it is preferred.

Open System Rewriting with Structured Cospans. The forms of rewrit-
ing discussed up to this point have concerned rewriting closed systems. Struc-
tured cospans are a general model for open systems, which formalize the notion
of gluing together systems which have designated inputs and outputs. Open sys-
tems are modeled as cospans of form La → x ← Lb, where the apex x represents
the system itself and the feet La and Lb represent the inputs and outputs, typi-
cally discrete systems such as graphs without edges. Here, L : A → X is a functor
that maps from the system category A to the system interface category X, and
L must be a left adjoint between categories with finite colimits.4 Larger systems
are built up from smaller systems via pushouts in X, which glue systems together
along a shared interface: (La → x ← Lb → y ← Lc) 	→ (La → x +Lb y ← Lc).

When L, I, and R are each structured cospans, there is extra data to con-
sider when rewriting, as shown in Fig. 10. In ordinary DPO rewriting, if the R
of one rewrite rule equals the L of another, a composite rewrite rule can be con-
structed, which could be called vertical composition. In the case of structured
cospans, horizontal composition emerges from composing the L, I, and R of two
structured cospan rules pairwise, visualized in Fig. 11. These two forms of com-
position together yield a double category of structured cospan rewrites, where
horizontal arrows are in correspondence with structured cospans and squares are
in correspondence with all possible rewrites [6].

While this compositional approach to building open systems can be an illu-
minating way to organize information about a complex system, there can also
be computational benefits. When searching for a match in a large C-set, the
search space grows as O(nk) where k is the size of the pattern L and n is the
size of G. However, after decomposing G into a composite of substructures and
restricting matches to homomorphisms into a specific substructure, the search
space is limited by O(mk) where m < n is the size of the substructure. Not only
does this accelerate the computation, but it can be semantically meaningful to
restrict matches to those which do not cross borders.

4 The L of structured cospans should not be confused with the L of the rewrite rule
L ← I → R.
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Fig. 10. Applying a structured cospan rewrite rule. C-sets and morphisms in black are
the initial data: the upper face represents the open rewrite rule, the upper left edge rep-
resents the open pattern to be matched, and the left face represents the matching. Green
morphisms are computed by pushout complement in C-Set. The purple morphisms are
computed by the rewriting pushouts and red morphisms are computed by the structured
cospan pushouts. Figure adapted from [6, Section 4.2]. (Color figure online)

Fig. 11. a.) Example of horizontal composition of structured cospan rewrite rules. The
L and R structured cospans are positioned on the top and bottom, respectively. For
clarity, I cospans are omitted. b.) The result of composition.

Distributed Graph Rewriting. Distributed graphs offer an alternative for-
malism that allows one to decompose a large graph into smaller ones while
maintaining consistency at the boundaries, and thus it is another strategy for
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parallelizing computations over graphs. The content of a distributed graph can
be succinctly expressed in the language of category theory as a diagram in Grph.
Because Catlab has sophisticated infrastructure in place for manipulating cat-
egories of diagrams, it merely takes specializing the codomain of the Diagram
datatype to Grph to represent distributed graphs and their morphisms. Note
that we can easily generalize to distributed semi-simplicial sets or other C-sets
(Fig. 12). A future plan will be to implement algorithms for colimits of diagrams
as specified in [22], which would lead to a rewriting tool for distributed graphs.

Fig. 12. Constructing the surface of a cube compositionally with a distributed graph.
We construct the assembled cube as a C-set simply by taking the colimit of the diagram.

Further Extensions. Examples of further features, such as negative applica-
tion conditions, parallel rewriting, rewriting with functions applied to attributes,
matching variables on attributes, (e.g. one rule which can identify any triangle
that has exactly two edges with an equal length attribute and rewrite to make
all three edges have that length) are found in the supplemental notebook.

5 Conclusions and Future Work

There are many desiderata for software development in academic and industrial
settings alike, such as velocity of development, robustness to future changes in
design, and correctness. We demonstrated how designing software with category-
theoretic abstractions facilitates the achievement all three of these, using the
mature field of graph rewriting software as a case study.

While current graph transformation software in use is often very specialized
to particular domains, such as chemistry, we show that DPO, SPO, and SqPO
rewriting can be efficiently performed on C-sets, which are viewed as a subset of
typed graphs (discrete opfibrations) with desirable theoretical and performance
characteristics, and we have presented the first practical implementation for this.
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This result allows generic rewrite operations to be used in a variety of contexts,
when it would otherwise be time-consuming and error-prone to develop cus-
tom rewrite algorithms for such a multitude of data structures or to work with
typed graphs and enforce the discrete opfibration condition by other means. We
also extended these implementations to the first practical implementations of
homomorphism search, structured cospan rewriting, and distributed graphs for
arbitrary C-sets. Our internal benchmark showed that C-set rewriting can lever-
age the discrete opfibration condition to outperform typed graphs in memory
and speed, and an external benchmark showed a significant speedup relative to
comparable graph rewriting software.

Catlab could be extended to a tool for graph transformation researchers to
computationally validate and explore new ideas. Researchers interested devel-
oping tools to be directly consumed by others could produce a performant and
easily interoperable instantiation of their work. Even those interested in rewrit-
ing systems as mathematical objects can benefit from this process by gaining
intuition and empirically testing conjectures about their constructions. However,
many useful concepts from graph rewriting have yet to be added, such as rule
control mechanisms and rule algebras, but the extensibility of Catlab allows
researchers to do this on their own or with the support of Catlab’s active user
community.

To create tools for practicing scientists and engineers, our future work
involves building practical scientific software that applies rewriting in each its
main areas, i.e. graph relations, languages, and transition systems: respectively, a
theorem prover for symmetric monoidal categories by performing e-graph equal-
ity saturation [31] with rewriting, a tool for defining and exploring a language
of open epidemiological models, and a general agent-based model simulator.
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vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

30. Vardi, M.Y.: Constraint satisfaction and database theory: a tutorial. In: Proceed-
ings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pp. 76–85 (2000). https://doi.org/10.1145/335168.
335209

31. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: EGG:
fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL), 1–29
(2021)

http://arxiv.org/abs/1602.03501
https://doi.org/10.1016/j.ic.2012.05.001
https://doi.org/10.1016/j.ic.2012.05.001
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1145/335168.335209
https://doi.org/10.1145/335168.335209


Invariant Analysis for Multi-agent Graph
Transformation Systems Using

k-Induction

Sven Schneider(B) , Maria Maximova , and Holger Giese

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{sven.schneider,maria.maximova,holger.giese}@hpi.de

Abstract. The analysis of behavioral models such as Graph Transfor-
mation Systems (GTSs) is of central importance in model-driven engi-
neering. However, GTSs often result in intractably large or even infinite
state spaces and may be equipped with multiple or even infinitely many
start graphs. To mitigate these problems, static analysis techniques based
on finite symbolic representations of sets of states or paths thereof have
been devised. We focus on the technique of k-induction for establish-
ing invariants specified using graph conditions. To this end, k-induction
generates symbolic paths backwards from a symbolic state represent-
ing a violation of a candidate invariant to gather information on how
that violation could have been reached possibly obtaining contradictions
to assumed invariants. However, GTSs where multiple agents regularly
perform actions independently from each other cannot be analyzed using
this technique as of now as the independence among backward steps may
prevent the gathering of relevant knowledge altogether.

In this paper, we extend k-induction to GTSs with multiple agents
thereby supporting a wide range of additional GTSs. As a running exam-
ple, we consider an unbounded number of shuttles driving on a large-
scale track topology, which adjust their velocity to speed limits to avoid
derailing. As central contribution, we develop pruning techniques based
on causality and independence among backward steps and verify that
k-induction remains sound under this adaptation as well as terminates
in cases where it did not terminate before.

Keywords: k-inductive invariant checking · causality · parallel and
sequential independence · symbolic analysis · bounded backward model
checking

1 Introduction

The verification of formal models of dynamic systems featuring complex concur-
rent behavior w.r.t. formal specifications is one of the central problems in model
driven engineering. However, the required expressiveness of modeling and speci-
fication formalisms that must be used for these complex dynamic systems often
leads to undecidable analysis problems. For example, the formalism of GTSs
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considered in this paper is known to be Turing complete. Hence, fully-automatic
procedures for the analysis of meaningful properties on the behavior of such
GTS-based systems returning definite correct judgements cannot always termi-
nate. Analysis becomes even more intricate when the start graph is not precisely
known or when the system behavior is to be verified for a large or even infinite
number of start graphs.

The technique of (forward) model checking generates the entire state space
and checks this state space against the given specification. However, this tech-
nique is inapplicable when the state space is intractably large or even infinite.
To mitigate this problem, large or even infinite sets of concrete states that are
equivalent w.r.t. the property to be analyzed may be aggregated into symbolic
states. Model checking then generates symbolic state spaces consisting of sym-
bolic states and symbolic steps between them. However, these symbolic state
spaces may still be intractably large depending on the size of the models1 and
there is usually no adequate support for multiple symbolic start states.

In backward model checking, a backward state space is generated from a
set of target states derived from the specification by incrementally adding all
steps leading to states that are already contained in the backward state space.
For invariant properties, the target states are given by the states not satisfying
the candidate invariant. As for model checking, sets of concrete states may be
aggregated into symbolic states, which may also lead to a single symbolic target
state. Clearly, in backward model checking, only backward paths containing
exclusively reachable states are significant but during the analysis also paths
containing unreachable states may be generated requiring techniques to prune
such paths as soon as possible.

The technique of k-induction is a variant of bounded backward model check-
ing for establishing state invariants. In k-induction, generated backward paths
are (a) limited to length k and (b) end in a state violating the candidate invari-
ant. Definite judgements are derived in two cases. A backward path extended to
a start state leads to candidate invariant refutation and the candidate invariant
is confirmed when no backward path of length k is derivable.

In this paper, we extend earlier work on k-induction from [6,19] by solving
the following open problem. When the system under analysis features concur-
rency such as in a multi-agent context, backward steps may be independent
as k backward steps may be performed by k different agents that may be log-
ically/spatially apart. In that case, the k backward steps do not accumulate
knowledge on why the violating graph could be reached preventing the deriva-
tion of a definite judgement. This problem can even occur when every target
state contains a single agent since backward steps can still introduce further
agents. To solve this problem, we introduce several novel GTS-specific pruning
techniques. Firstly, we prune backward paths in which the last added step does
not depend on the already accumulated knowledge. This causality pruning avoids
the inclusion of steps of unrelated agents in a backward path. Secondly, we prune
states containing an agent that is permanently blocked from further backward

1 Approaches such as CEGAR [4] also aim at minimizing symbolic state spaces.
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steps. This evolution pruning (assuming that agents existed in the start graph or
are created in some step) is required when all backward steps of a certain agent
have been pruned by some other pruning technique (while other agents are still
able to perform backward steps). Thirdly, when a state is removed in evolution
pruning, we propagate this state prunability forward across backward steps until
the blocked agent has an alternative backward step. This evolution-dependency
pruning is, in conjunction with our explicit handling of independent steps, able
to prune also other backward paths (with common suffix) where independent
steps of other agents are interleaved differently. For these three novel pruning
techniques, we ensure that they do not affect the correctness of derived judge-
ments and that our approach presented here is a conservative extension in the
sense that it terminates whenever the single-agent approach terminated before.2

As a running example, we consider an unbounded number of shuttles driving
on a large-scale track topology, which avoid collisions with each other. As a can-
didate invariant to be confirmed, shuttles in fast driving mode should not drive
across construction sites to avoid derailing. To ensure this candidate invariant,
warnings are installed at a certain distance in front of construction sites. Agents
in this running example are the shuttles and backward steps can be performed
by different shuttles on the track topology. However, only the steps of the single
shuttle violating the speed limit at a construction site as well as (possibly) the
steps of shuttles that forced the shuttle to navigate to that construction site are
in fact relevant to the analysis. Any other steps (possibly of shuttles far away on
the considered track topology) should not be considered during analysis. Hence,
the novel pruning techniques are designed to focus our attention on the relevant
steps of relevant agents only.

Invariant analysis for GTSs has been intensively studied. Besides the approach
from [19], which is restricted to single-agent GTSs, earlier approaches for estab-
lishing invariants for GTSs lack a formal foundation such as [2] or are restricted to
k-induction for k = 1 such as [7] or to syntactically limited nested conditions such
as [6]. Moreover, tools such as Groove [12], Henshin [11], and AutoGraph [18]
can be used for invariant analysis if the considered GTSs induce small finite state
spaces. However, there are some approaches that also support invariant analysis
for infinite state spaces. For example, the tool Augur2 [1] abstracts GTSs by
Petri nets but imposes restrictions on graph transformation rules thereby limit-
ing expressiveness. Moreover, static analysis of programs for GTSs w.r.t. pre/post
conditions has been developed in [16] and [17]. Finally, an approach for the ver-
ification of invariants (similar to k-induction) is considered in [24] where graphs
are abstracted by single so-called shape graphs, which have limited expressiveness
compared to the nested graph conditions used in this work.

2 Intuitively, GTSs have no built-in support for different agents as opposed to other
non-flat formalisms (such as e.g. process calculi) where a multi-agent system is lazily
constructed using a parallel composition operation where interaction steps between
agents are then resolved at runtime. For such different formalisms, causality is much
easier to analyze but it is one of the many strengths of GTSs that agents can interact
in complex patterns not restricted by the formalism at hand.
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The representation of causality and the focus on causally connected steps dur-
ing analysis is important in various domains. For example, for Petri nets where
tokens can be understood as agents, event structures and causal/occurrence
nets have been used extensively to represent causality in a given run (see e.g.
[15,22,23]). Similarly, causality-based analysis can also be understood as cone
of influence-based analysis [3] where events are derived to be insignificant when
they are logically/spatially disconnected from considered events.

This paper is structured as follows. In Sect. 2, we recapitulate the technique
of k-induction based on labeled transition systems. In Sect. 3, we recall prelim-
inaries on graph transformation and introduce our running example. In Sect. 4,
we present an abstraction of GTSs to symbolic states and steps. In Sect. 5, we
extend existing notions capturing causality and compatibility among steps to
the employed symbolic representation. In Sect. 6, we discuss the k-induction
procedure with the novel pruning techniques relying on causality and fairness
among multiple agents in the GTS. Finally, in Sect. 7, we close the paper with a
conclusion and an outlook on future work. Further details are given in a technical
report [21].

2 Labeled Transition Systems and k-Induction

A Labeled Transition System (LTS) L = (Q,Z : Q B, L,R ⊆ Q × L × Q)
consists of a set of states Q, a state predicate Z identifying start states in Q,
a set L of step labels, and a binary step relation R on Q where each step has
a step label from L. An LTS L represents a state space and induces paths
π̃ ∈ Π(L) traversing through its states. We write L1 ⊆ L2 and L1 ∪ L2 for their
componentwise containment and union, respectively.

A state predicate P : Q B is an invariant of L when P is satisfied by all
states reachable from start states. A shortest violation of an invariant is given
by a path π̃ of length n traversing through states si when (a) π̃ starts in a start
state and never revisits a start state (i.e., Z(si) iff i = 0) and (b) π̃ ends in a
violating state and never traverses another violating state (i.e., ¬P (si) iff i = n).

The k-induction procedure attempts to decide whether a shortest violation
for a candidate invariant P exists. For shortest violations, in iteration 0 ≤ i ≤ k
the paths of length i that may be suffixes of shortest violations are generated.
That is, in iteration i = 0, all paths of length 0 consisting only of states q satisfy-
ing ¬P (q) are generated. In iterations i > 0, each path π̃ of length i− 1 starting
in state q is extended to paths π̃′ of length i by prepending all backward steps
(q′, a, q) ∈ R such that P (q′) is satisfied. The k-induction procedure (a) rejects
the candidate invariant P when in some iteration a path starting in a start state
is generated, (b) confirms the candidate invariant P when in some iteration no
path is derived, and (c) terminates without definite judgement when in the last
iteration i = k some path is generated.
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Pruning techniques restrict the set of generated paths in each iteration to a
relevant subset and only the retained paths are then considered for the abortion
criteria (a)–(c). While the additional computation that is required for pruning
can be costly, pruning can speed up the subsequent iterations by reducing the
number of paths to be considered in the next iteration. More importantly, prun-
ing may prevent the generation of paths of length k, which lead to an indefinite
judgement. For example, when A :Q B is an assumed invariant (either estab-
lished in an earlier application of the same or another technique or assumed
without verification), all paths in which some state q satisfies ¬A(q) are pruned
as in [6,19] attempting to limit constructed paths to reachable states. Further
pruning techniques introduced later on are designed specifically for the case of
GTSs taking the content of states and the nature of steps among them into
account.3

3 Graph Transformation and Running Example

Our approach generalizes to the setting of M-adhesive categories and M-
adhesive transformation systems with nested application conditions as intro-
duced in [10]. Nevertheless, to simplify our presentation, we consider the M-
adhesive category of typed directed graphs (short graphs) using the fixed type
graph TG from Fig. 1a (see [8–10] for a detailed introduction). In visualizations
of graphs such as Fig. 1b, types of nodes are indicated by their names (i.e., Si and
Ti are nodes of type Shuttle and Track) whereas we only use the type names for
edges. We denote the empty graph by ∅, monomorphisms (monos) by f :H H ′,
and the initial morphism for a graph H by i(H) : ∅ H. Moreover, a graph is
finite when it has finitely many nodes and edges and a set S of morphisms with
common codomain X is jointly epimorphic, if morphisms g, h :X Y are equal
when ∀f ∈ S. g ◦ f = h ◦ f holds.

In our running example, we consider an unbounded number of shuttles driv-
ing on a large-scale track topology where subsequent tracks are connected using
next edges (see again TG in Fig. 1a and the example graph in Fig. 1b). Each
shuttle either drives fast or slow (as marked using fast or slow loops). Shuttles
approaching track-forks (i.e., a track with two successor tracks) decide non-
deterministically between the two successor tracks. Certain track-forks consist
of a regular successor track and an emergency exit successor track (marked
using an ee loop) to be used only to avoid collisions with shuttles on the regu-
lar successor track. Construction sites may be located on tracks (marked using
cs loops) and, to inform shuttles about construction sites ahead, warnings are
installed four tracks ahead of them (marked using warn edges instead of next
edges). To exclude the possibility of shuttles derailing, analysis should confirm

3 The computational trade-off between pruning costs and costs for continued analysis
of retained paths will play out differently for each example but, due to the usually
exponential number of paths of a certain length, already the rather simple pruning
technique based on assumed invariants was highly successful in [6,19] where it was
also required to establish a definite judgement at all.
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Fig. 1. Running example.

the candidate invariant P stating that shuttles never drive fast on construction
sites. Assumed invariants are used to rule out track topologies with undesired
characteristics such as missing warn edges. We model this shuttle scenario using
a GTS with rules featuring application conditions as well as assumed and candi-
date invariants all given by (nested) Graph Conditions (GCs). For this purpose,
we now recall GCs and GTSs in our notation.
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The graph logic GL from [10] allows for the specification of sets of graphs and
monos using GCs. Intuitively, for a host graph G, a GC over a finite subgraph
H of G given by a mono m : H G states the presence (or absence) of graph
elements in G based on m. In particular, the GC ∃(f : H H ′, φ′) requires that
m must be extendable to a match m′ :H ′ G of a larger subgraph H ′ where the
nested sub-GC φ′ restricts m′. The combination of propositional operators and
the nesting of existential quantifications results in an expressiveness equivalent
to first-order logic on graphs [5].

Definition 1 (Graph Conditions (GCs)). If H is a finite graph, then φ is
a graph condition (GC) over H, written φ ∈ GC(H), if an item applies.

• φ = ¬φ′ and φ′ ∈ GC(H).
• φ = ∨(φ1 , . . . , φn) and {φ1 , . . . , φn} ⊆ GC(H).
• φ = ∃(f : H H ′, φ′) and φ′ ∈ GC(H ′).

Note that the empty disjunction ∨() serves as a base case not requiring the prior
existence of GCs. We obtain the derived operators false ⊥, true �, conjunction
∧(φ1 , . . . , φn), and universal quantification ∀(f, φ) in the expected way.

We now define the two satisfaction relations of GL capturing (a) when a
mono m : H G into a host graph G satisfies a GC over H and (b) when a
graph G satisfies a GC over the empty graph ∅.

Definition 2 (Satisfaction of GCs). A mono m : H G satisfies a GC φ
over H, written m |= φ, if an item applies.

• φ = ¬φ′ and ¬(m |= φ′).
• φ = ∨(φ1 , . . . , φn) and ∃1 ≤ i ≤ n. m |= φi.
• φ = ∃(f : H H ′, φ′) and ∃m′ : H ′ G. m′ ◦ f = m ∧ m′ |= φ′.

A graph G satisfies a GC φ over the empty graph ∅, written G |= φ, if the
(unique) initial morphism i(G) : ∅ G satisfies φ.

For our running example, (a) the GC φAI from Fig. 1h expresses the assumed
invariant stating that there is always a warning preceding each construction
site4, (b) the GC φCI from Fig. 1i expresses the candidate invariant P stating
that there is no fast shuttle at a track with a construction site, and (c) the GC
φSC from Fig. 1g expresses that there is no fast shuttle already in the critical
section between a warning and a construction site. Note that in visualizations of
GCs, we represent monos f : H H ′ in quantifications by only visualizing the
smallest subgraph of H ′ containing H ′ − f(H).

We rely on the operation shift from e.g. [10] for shifting a GC φ over a graph
H across a mono g :H H ′ resulting in a GC shift(g, φ) over H ′. The following
fact states that GC shifting essentially expresses partial GC satisfaction checking
for a morphism decomposition f ◦ g.

4 To ease the presentation, we omit further assumed invariants excluding graphs with
duplicate next edges or tracks with more than two successor/predecessor tracks.
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Fig. 2. Visualizations for definitions.

Fact 1 (Operation shift [10]). f |= shift(g, φ) iff f ◦ g |= φ

GTSs with multiple start graphs are now defined by specifying these start graphs
using aGCover the empty graph.We employ theDoublePushout (DPO) approach
to graph transformation with nested application conditions (see [8–10] for details)
in which rules contain two morphisms � : K L and r : K R describing the
removal of the elements in L − �(K) and the addition of elements in R − r(K) as
well as a left-hand side (nested) application condition given by a GC over L to be
satisfied by the match morphism.

Definition 3 (Graph Transformation System (GTS)). ApairS = (φ0 , P )
is a graph transformation system (GTS), if φ0 is a GC over the empty graph ∅
and P is a finite set of graph transformation rules (short rules) of the form ρ =
(� : K L, r : K R,φ) where L, K, and R are finite and φ is a GC over L.

If G, G′ are graphs, σ = (ρ,m : L G,n : R G′) is a step label containing
a rule ρ = (� : K L, r : K R,φ) of S, a match m,5 and a comatch n, the
DPO diagram in Fig. 2a exists, and m |= φ, then G σ G′ is a (GT) step of the
LTS Lgraphs induced by the GTS S. Also, the notion of derived rules drule(σ) =
(f, g, shift(m,φ)) captures the transformation span of the step and the instantiated
application condition.

For our running example, we employ the GTS S = (φSC ∧ φCI, {ρdrive, ρdriveEE,
ρwarnS, ρwarnF}) using the GCs and rules from Fig. 1. For each rule, we use an
integrated notation in which L, K, and R are given in a single graph where graph
elements marked with � are from L − �(K), graph elements marked with ⊕ are
from R − r(K), and where all other graph elements are in K. The application
condition of each rule is given on the left side of the � symbol. The rule ρdrive
states that a shuttle can advance to a next track T2 when no other shuttle is on
T2 and when T2 is not marked to be an emergency exit. The rule ρdriveEE states
5 Note that our approach extends to the usage of general match morphisms.
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that a shuttle can advance to a next track T2 marked to be an emergency exit
when the regular successor track T3 is occupied by another shuttle. The rule
ρwarnS states that a slow shuttle can advance to a next track T2 passing by a
warning when no other shuttle is on T2. Finally, the rule ρwarnF states that a
fast shuttle can slow down and advance to a next track T2 passing by a warning
when no other shuttle is on T2.

To accumulate the knowledge captured in application conditions and the
candidate invariant over steps of a backward path, we employ the operation L
from e.g. [10] for shifting a GC φ′ over a graph R across a rule ρ = (� :K L, r :
K R,φ) resulting in a GC L(ρ, φ′) over L. The following fact states that the
operation L translates post-conditions of steps into equivalent pre-conditions.

Fact 2 (Operation L [10]). G ρ,m,n G′ implies (m |= L(ρ, φ′) iff n |= φ′).

For our running example, we expect the k-induction procedure to confirm the
candidate invariant φCI for k ≥ 4 realizing that a fast shuttle at a construction
site must have passed by a warning 4 steps earlier due to the assumed invari-
ant φAI, which ensures that the shuttle drives slowly onto the construction site
later on.6 When applying the k-induction procedure, we start with the minimal
graph Gvio representing a violation (see the graph used in φCI in Fig. 1i). To
extend a given backward path from G to Gvio by prepending a backward step
using a certain rule, we first extend G to a graph E by adding graph elements
to be then able to apply the rule backwards to E (as discussed in more detail
in the next section based on a symbolic representation of states and steps).
Consider the graph Gex in Fig. 1b, which can be reached using this iterative
backward extension from Gvio by a path of length 5 (see Fig. 5a). Since the
relevant shuttle S1 has no further enabled backward step from Gex according to
the rules of the GTS (because fast shuttles cannot advance backwards over warn
edges), any path leading to Gex and any other path that varies by containing
additional/fewer/differently ordered independent steps can be pruned (as dis-
cussed in more detail in Sect. 6). For example, the similar path (see Fig. 5b)
where the shuttle S2 has only been moved backwards to T6 is pruned as well.
Hence, with such additional pruning techniques, we mitigate the problem that
the relevant shuttle S1 does not move backwards in every backward step of every
path. Instead, it is sufficient that S1 is being moved backwards three times in
some path. Still, all interleavings of backward steps must be generated (since, for
arbitrary GTSs, it cannot be foreseen which interleaving results in a prunable
path later on) but pruning one of these paths can result in the pruning of many
further paths.

6 The candidate invariant φCI could also be violated because (a) it is not satisfied by all
start graphs (which is excluded since φSC ∧ φCI captures the start graphs of the GTS),
(b) a slow shuttle becomes a fast shuttle between a warning and a construction site
(for which no rule exists in the GTS), and (c) a pair of a warning and a construction
site could wrap a fast shuttle at runtime (for which no rule exists in the GTS).
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4 Symbolic States and Steps

Following [19], concrete states of a GTS are given by graphs and its symbolic
states are given by pairs (G,φ) of a graph G and a GC φ over G. A symbolic
state (G,φ) represents all graphs H for which some m : G H satisfies φ.

This symbolic representation extends to GT steps and symbolic steps and
paths thereof. To obtain a backward step from a state (G,φ) (cf. Fig. 2b), (i) G is
overlapped with the right-hand side graph R of some rule ρ where the overlapping
consists of the comatch n of the backward step and the embedding morphism e
and (ii) the GC φ and the application condition φac of the rule are shifted to
the resulting symbolic state (G′, φ′). As discussed before, further graph elements
are added using e as required for the k-induction procedure in which we start
with (usually very small) graphs representing violations and then accumulate
additional context also in terms of additional graph elements.

Definition 4 (Symbolic Step). If (G′, φ′) and (G,φ) are symbolic states, ρ =
(�:K L, r :K R,φac) is a rule, σ = (ρ,m:L G′, n:R E) is a step label,
G′

σE is a DPO step, e:G E is a mono, e and n are jointly epimorphic, and
φ′ = L(drule(σ), shift(e, φ)) ∧ shift(m,φac), then is a symbolic
step of the LTS Lsymb induced by the GTS S (see Fig. 2b).

To obtain concrete paths π̂ represented by a symbolic path π, the implicit
requirements given by the GCs in symbolic states and the incremental con-
text extensions via monos e are resolved. This entails a forward propagation of
additional graph elements resulting in a consistent perspective throughout all
graphs traversed in π̂. However, making these additional graph elements explicit
may change satisfaction judgements for application conditions and assumed or
candidate invariants implying that a symbolic path may represent no concrete
path relevant in the context of k-induction or even no concrete path at all. Since
some pruning techniques require that we are able to operate on the symbolic
step relation, we only concretize symbolic paths using forward propagation that
may represent concrete paths being shortest violations.

Definition 5 (Concretization of Symbolic Path). A concrete path π̂ is
a concretization of a symbolic path π with first state (G′, φ′) for a mono m′ :
G′ H ′ satisfying φ′, written π̂ ∈ refine(π,m′), if an item applies.

• π = (G′, φ′) and π̂ = H ′.
• π = (G′, φ′) ·σ ·e · (G,φ) ·π′, σ = (ρ,m, n), σ′ = (ρ,m′ ◦m,n′ ◦n), H ′

σ′ H,
π̂′ ∈ refine((G,φ) · π′, n′ ◦ e), and π̂ = H ′ · σ′ · π̂′ (see Fig. 2b).

The symbolic representation given by symbolic paths is complete in the sense of
the following lemma stating that the concrete paths of a GTS correspond to the
concretizations of all symbolic paths.

Lemma 1 (Full Coverage). Π(Lgraphs) =
⋃{refine(π,m′) | π ∈ Π(Lsymb)}

Proof (Sketch). By mutual inclusion of the sets and induction over the length of
paths in both cases. Every concrete path of the GTS is represented by a symbolic



Invariant Analysis for Multi-agent GTSs Using k-Induction 183

Fig. 3. Linearization of parallel independent backward steps.

path where monos e are identities and GCs are �. Every symbolic path only
represents concrete paths of the GTS since the operation refine checks satisfaction
of the GCs with the additional contexts accumulated via the e monos.

For our running example, the violating symbolic state used for the symbolic paths
of length 0 during k-induction is (Gvio,�) (see Fig. 1i). Note that we implicitly
rewrite symbolic states (G,φ) into symbolic states (G′, φ′) using the symbolic
model generation technique from [20] to accumulate all positive requirements
of G and φ in the graph G′ and to store the remaining negative requirements
(stating how G′ cannot be extended) in φ′. Without this technique, k-induction
would be limited to candidate invariants of the form ¬∃(i(G),�) and graph
patterns required by positive application conditions would not be explicitly con-
tained in the graph and could therefore not be overlapped leading to indefinite
judgements in some cases. However, if multiple states (G′, φ′) are obtained using
this rewriting, we would perform k-induction for each of these states separately.
For the running example, (Gvio,�) is obtained by rewriting (∅,¬¬∃(i(Gvio),�))
using this technique.

5 Causality and Independence in GTS

According to [8, p. 8] in the context of GTSs, causal independence of rule appli-
cations allows for their execution in arbitrary order.

In the general setting of an LTS L, considering Fig. 3a, (a) the two parallel
steps with source s3 (to s1 and s2), (b) the two parallel steps with target s0
(from s1 and s2), (c) the two sequential steps traversing through s1 (from s3
and to s0), or (d) the two sequential steps traversing through s2 (from s3 and to
s0) are independent iff the respective remaining two steps exist resulting in the
square given in Fig. 3a (which we represent by ((s3, b2, s1), (s1, a1, s0), (s3, a2, s2),
(s2, b1, s0)) ∈ SQ(L)) where, for x ∈ {a, b}, the labels x1 and x2 are required to
be equivalent in an LTS specific sense in each case (a)–(d). Clearly, in such an
obtained square, each pair of sequential steps is sequentially independent and
each pair of parallel steps (with common source/target) is parallel independent.
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Subsequently, we call two successive steps causally connected when they are
sequentially dependent and, correspondingly, two alternative steps incompatible
when they are parallel dependent. In the context of k-induction where steps are
derived backwards, we primarily consider parallel independence for steps with
common target graph.

Sequential and parallel independence for common source graphs have been
formalized for GTSs in [10]. The reverse notion of parallel independence for
common target graphs is derived as expected essentially relying on the fact that
GT steps can be reversed by applying the reversed rule. The Local Church-
Rosser Theorem (see [10, Theorem 4.7]) provides the results corresponding to
the discussion for LTSs from above. Technically, for concrete GT steps, for x ∈
{a, b}, two step labels σx1

and σx2
must then use the same rule and must match

essentially the same graph elements.7 Moreover, for symbolic steps, for x ∈ {a, b},
we additionally require that the step labels σx1

, ex1 and σx2
, ex2 state the same

extensions using ex1 and ex2 .
8

We use the operation linearize to obtain all linearizations for a given set of
parallel steps with common target. For example, given the two parallel steps
with target s0 in Fig. 3a, linearize constructs the two further backward steps
and the square given in Fig. 3a when the two steps are parallel independent
and no further backward steps and no square otherwise. In general, for a given
LTS L and a subset δ ⊆ Q × L × Q of size n ≥ 0 of parallel steps of L with
common target, linearize(δ) = (sq, δ′) generates the set sq ⊆ SQ(L) of all squares
that can be constructed by rearranging those parallel steps into corresponding
sequences of length at most n and a set δ′ of all generated steps including δ.
More precisely, linearize iteratively constructs a square for each pair of distinct
parallel independent steps with common target (considering for this the steps
from δ and all steps generated already).9 For the cases of n = 0 and n = 1
no additional steps are generated. For the cases of n = 2 and n = 3, Fig. 3a
and Fig. 3b depict the maximal set δ′ of resulting steps that may be generated
when all pairs of distinct parallel steps are parallel independent throughout the
application of linearize (note that we omit in Fig. 3b the differentiation between
different ai, bi, and ci steps for improved readability).

When some pair of steps with common target is not parallel independent
(which is often the case), fewer squares and steps are generated.

7 The considered GT steps must preserve the matched graph elements and thereby
explain how one match is propagated over a GT step resulting in the other match.

8 Similarly to the requirement on matches, which must essentially match the same
graph elements, the extension monos must extend the graphs with the same graph
elements up to the propagation along the considered symbolic steps.

9 For concrete GT steps, we rely on [10, Theorem 4.7] to obtain a construction proce-
dure for the operation linearize. Also, this construction procedure extends to the case
of symbolic steps as the additional GCs in symbolic states are extended precisely by
the application conditions of the two involved rules in exchanged order only.
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Fig. 4. Fragment of backward state space constructed for running example. We abbre-
viate symbolic states by only providing a tuple of the track numbers on which shuttles
are located. See Fig. 1b or Fig. 5a for the graph part of state (4,8).

Fig. 5. Two backward paths. We abbreviate symbolic states by providing a tuple of
the track numbers on which shuttles are located as used in Fig. 4 and the graph part
of the symbolic state.
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6 Causality-Based k-Induction and Pruning Techniques

We now present our adaptation of the k-induction procedure from Sect. 2 defined
on an arbitrary LTS Lc but apply this procedure later on only to the LTS Lsymb

induced by the symbolic step relation from Sect. 4. Hence, Lc is only assumed to
be available in terms of its step relation and a method for identifying start states
as well as states satisfying the assumed invariant.10 Hereby, we rely on the notion
of parallel independence of steps with common target and linearizations of such
steps resulting in sequences of sequentially independent steps as introduced in
the previous section. The paths derived within this procedure consist then of
steps from Lc and are given in the procedure by a partial LTS Lp contained
in the complete LTS Lc. The k-induction procedure has a start state q0 and
modifies this state up to k times using a single step of type Q Q as explained
subsequently in more detail.

States of k-induction: The traversed states q∈ Q are of the form (Lc,Lp,
N, sq) where Lc = (Qc, Zc, Lc, Rc) is the complete LTS as discussed above, Lp =
(Qp, Zp, Lp, Rp) ⊆ Lc is a partial LTS contained in Lc recording the steps derived
so far, N ⊆ Qp is the subset of states to be considered next, and sq ⊆ SQ(Lc)
records the derived squares of independent steps.

Start state of k-induction: For a given complete LTS Lc and a state q0 ∈ Qc

violating the candidate invariant from which backward paths are constructed,
the start state q0 of k-induction is given by q0 = (Lc, ({q0}, ∅, ∅, ∅), {q0}, ∅).

Single step of k-induction: The single step of k-induction executes (a) the
operation extend : Q Q generating additional steps with target in N , extend-
ing the LTS Lp by these steps and all further steps obtained using lineariza-
tion, and then (b) the operation prune : Q Q applying pruning techniques.
The operation extend first derives the set δ = {(q, a, q′) ∈ Rc | q′ ∈ N} of all
backward steps with target in N and generates all linearizations linearize(δ) =
(sqext, δext) of these steps.11 The operation extend then returns extend(q) =
q′ = (Lc,L′

p, N
′, sq′) where L′

p = Lp ∪ Lext is obtained by merging the pre-
vious partial LTS with the extension Lext = (Q′

p, {q �→ Zc(q) | q ∈ Q′
p}, {a |

(q, a, q′) ∈ δ}, δext) containing all steps derived in the current iteration using
the set of all states Q′

p = {q | (q, a, q′) ∈ δext} derived in the current itera-
tion, N ′ = {q | (q, a, q′) ∈ δ} contains all predecessor states of those in N , and

10 A symbolic state (G, φ) satisfies the start state condition φSC (or analogously an
assumed invariant φAI) iff φ ∧ φSC is satisfiable. The model generation procedure
from [20] implemented in the tool AutoGraph [18] can be used to check GCs for
satisfiability (if it returns unknown, the problem must be delegated to the user for
φSC and satisfiability may be assumed for φAI). If φ∧¬φSC (or, analogously, φ∧¬φAI)
is also satisfiable, not every concretization of paths (G, φ) ·π will be a violation. This
source of overapproximation can be eliminated using splitting of states as in [19].

11 Note that, due to linearization, Rp may already contain some of the steps derived
here. By implicitly comparing steps derived here to those in Rp, we ensure to not
derive isomorphic copies of steps. Also, two distinct parallel independent steps do
not need to be linearized if not both steps are already contained in Rp.
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sq′ = sq ∪sqext additionally includes all squares derived in the current iteration.
The operation prune is then applied to q′ and discussed separately below.

For our running example, consider Fig. 4 where, initially in state (1), there
is a single (fast) shuttle S1 located on track T1. A second shuttle S2 is then
added onto track T6 in the first backward step to (2, 6). When reaching the state
(4, 8), of which the graph part is given in Fig. 1b, the shuttles S1 and S2 moved
backwards 3 and 2 times, respectively. See also Fig. 5a for this backward path
from (4, 8) to (1) and an additional backward path in Fig. 5b from (4, 6) to (1),
which is also included in abbreviated form in Fig. 4. The pruning of state (4, 6)
in Fig. 5b due to the blocked agent (given by the shuttle S1) leads to the pruning
of also the states (3, 6), (2, 6), and (1) in Fig. 5b and consequently also the path
in Fig. 5a.

Termination condition of k-induction: The k-induction procedure applies the
single step up to k times on the start state q0 . When a state is derived with
N = ∅, the procedure concludes satisfaction of the candidate invariant. When a
state is derived with Zp mapping some state q to �, the procedure concludes non-
satisfaction of the candidate invariant and returns (Lp, q) as a counterexample.
When the single step has been applied k times and none of the previous two
cases applies, the procedure returns an indefinite judgement.

GTS-specific pruning: For the GTS setting where Lc = Lsymb as discussed
above, we now present five pruning techniques (where the first two have been
used already in [6,19]), which are used to remove certain states (and all steps
depending on these states) recorded in the partial LTS L′

p.
For assumed invariant pruning, we remove all states not satisfying the

assumed invariant φAI as in prior work on GTS k-induction. For our running
example, when moving the shuttle S1 backwards from (4, 6), a next edge is
added leading to track T4, which is forbidden by the assumed invariant φAI from
Fig. 1h. Hence, this backward step of that shuttle is pruned.

For realizability pruning, we first determine states q that are identified to be
start states via Zp(q) = �. Since each such state q represents a violating path
leading to the refutation of the candidate invariant at the end of the iteration, we
attempt to exclude false positives where each symbolic path π in Lp from q to the
violating state q0 cannot be concretized to a GTS path according to Definition 5.
For this purpose, for q = (G,φ), we use the model generation procedure from
[20] to generate extensions m : G G′ satisfying φ∧φSC∧φAI. We then attempt
to concretize some symbolic path π from q to q0 to a concrete path π̂ using m. If
some π̂ is obtained representing a shortest violation, the k-induction procedure
terminates after this iteration refuting the candidate invariant. If the model
generation procedure does not terminate, q may be a false positive and the k-
induction procedure terminates with an indefinite judgement. However, if both
cases do not apply, q is removed from L′

p.
Certainly, any derived state q may not allow for a concretization along the

same lines. However, not checking each such state for realizability along the same
lines may only lead to indefinite judgements and there is a trade off between
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the cost for realizability pruning and the cost of exponentially more backward
extensions leading to q to be generated and analyzed.

For causality pruning, a state q′ is pruned when there is some symbolic back-
ward step where n and e have non-overlapping images. We thereby
ensure that the number of weakly connected components12 of the graph under
transformation does not increase over backward steps. For our running exam-
ple, we prune states where further shuttles are added that are structurally not
connected to the subgraph originating from the start state. Note that further
shuttles can still be included as for the graph in Fig. 1b where the shuttle S2

has been added according to the rule ρdriveEE used in the first backward step.
For evolution pruning, a state q is pruned when it contains an agent (given in

our running example by shuttles) for which permanent blockage is detected. Note
that, as explained in Sect. 1, the inability of some agent to partake in a backward
step does not preclude the ability of some other agent to partake in a backward
step. Hence, when not removing such states, irrelevant steps of additional agents
may prolong analysis or even prevent definite judgements. Also note that an
agent is in general allowed to be blocked forever when it reaches its local config-
uration in a start graph of the GTS allowing other agents to perform backward
steps to jointly reach a start graph. Since GTSs are Turing complete, no precise
identification of such agents can be achieved and, to preclude the derivation of
incorrect judgements, we must underapproximate the set of such agents. Tech-
nically, we attempt to identify all agents in states q that will unexpectedly never
again be able to partake in a backward step using an additional blocked agent
GC φBA. Such a blocked agent GC is (a finite disjunction of GCs) of the form
∃(i(H),�) where H represents a minimal pattern containing a blocked agent.
For our running example, see Fig. 1j for the GC φBA capturing a fast shuttle (i.e.,
an agent) that is blocked by not being able to move backwards across a warn
edge. To maintain soundness of k-induction, we can verify the blocked agent GC
φBA by checking that there is no symbolic backward step from (H,�) preventing
that any further backward steps from q can reach a state where the matched
agent can partake in a backward step. A state q = (G,φ) is then pruned using
the blocked agent GC φBA when ∃(i(G), φ)∧ φAI ∧ φBA is satisfiable. For our run-
ning example, the shuttle S1 is blocked according to the GC φBA in the states
(4, 6), (4, 7), and (4, 8) (marked blue in Fig. 4), which are therefore pruned.

For evolution-dependency pruning, we extend the state-based evolution prun-
ing to a step- and square-based pruning technique propagating the information
about blocked agents forward across steps. In particular, given a step (q′, a, q)
where q′ was pruned (due to a blocked agent), q is also pruned unless there is
a backward step (q′′, b, q) to a non-pruned state q′′ that is parallel dependent to
(q′, a, q). The step (q′′, b, q) then potentially represents an alternative backward
path not leading to a blocked agent.13 However, only relying on the notion of

12 Two nodes n1 and n2 of a graph G are in a common weakly connected component
(given by a set of nodes of G) of G iff there is a sequence of the edges of G from n1

to n2 where edges may be traversed in either direction.
13 Parallel independent backward steps are always performed by different agents.
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parallel independence considering steps from a global perspective and not track-
ing which agents actually participated in the two backward steps can lead to an
underapproximation of the steps that can be pruned potentially leading to avoid-
able indefinite returned judgements.14 That is, backward steps of two distinct
agents can be parallel dependent, which would then not allow to propagate the
knowledge of one of them being blocked forwards. Constructing explicitly the
squares in our backward state space generation procedure is essential for dissect-
ing alternative backward steps. The forward propagation of prunability thereby
allows to prune states and hence also all other paths traversing through these
additionally pruned states where different step interleavings (of other agents)
are executed (hence assuming that the blocked agent would be treated unfairly
in all these other paths).

The usage of squares in k-induction supports evolution-dependency pruning
since pruning a state also prunes all paths traversing through it, which would
not be the case when we would construct a set of (disconnected) backward
sequences or a tree (or forest) of backward steps. Moreover, minimizing the size
of the state space representation using squares reduces the number of states for
which blocked agents must be detected and from which evolution-dependency
pruning must be performed. Also, when only constructing backward sequences
instead, there would e.g. in our running example be a backward path not moving
the initially given shuttle S1 backwards to a situation where that shuttle would
be blocked. Hence, employing a directed acyclic graph given by the square-
based compressed backward state space, we can easily detect states occurring
in different backward paths and thereby do not need to treat fairness among
different agents beyond generating the backward state space using breadth-first
search.

For our running example, the pruning of the state (4, 6) and the non-existence
of a backward step parallel dependent to the step from (4, 6) to (3, 6) leads to
the pruning of the state (3, 6) as well. Analogously, the states (2, 6) and then (1)
are also pruned leaving an empty state space, which leads to termination and
candidate invariant confirmation at the end of the iteration.

Finally, we state that the presented k-induction procedure is sound and at
least as complete as the previous variants from [6,19].

Theorem 1 (Soundness of k-Induction). For a given GTS S, a candidate
invariant φCI, an assumed invariant φAI, and a blocked agent GC φBA, the k-
induction procedure confirms/refutes φCI only if φCI is an invariant/is no invari-
ant. Also, it returns such a definite judgement whenever the k-induction proce-
dure from [6,19] without the novel pruning techniques and the use of causality
and independence did.

Proof (Sketch). Extending [6,19], we only need to ensure that the novel prun-
ing techniques never prune states/paths that would otherwise be extended to
shortest violations (the pre-existing assumed invariant pruning and realizability
14 This pruning technique can be refined by attributing agents to steps to then deter-

mine prunable states with greater precision complicating forward propagation.
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pruning do not need to be reexamined here). Causality pruning only removes
steps where a disconnected agent is introduced: these steps can never help
in gathering knowledge about the past of the actors involved in the violation
and, moreover, the inclusion of such disconnected agents can always be delayed
to later steps where they are then connected to a part of the current graph.
The validity of the blocked agent GC φBA ensures that evolution pruning only
prunes states containing an agent permanently blocked precluding the reach-
ability of a start graph of the GTS. Evolution-dependency pruning then only
prunes states/paths from which that agent unavoidably reaches such a blocking
situation lacking alternative backward steps.

7 Conclusion and Future Work

We extended the k-induction procedure from [6,19] to support the verification
of state invariants also for multi-agent GTSs. The presented extension relies on
novel pruning techniques determining generated backward paths that cannot be
extended to paths capturing a violation of the candidate invariant. It only returns
sound judgements on candidate invariants, succeeds when the prior versions in
[6,19] did, and succeeds for additional multi-agent GTSs.

In the future, we will extend our approach to Probabilistic Timed Graph
Transformation Systems (PTGTSs) [13] in which dependencies among agents
are also induced by the use of clocks (as in timed automata). This additional
coupling among agents will complicate our analysis but will also reduce the
number of possible backward paths to be constructed. Moreover, we will extend
our prior implementations on k-induction to the presented approach and will
evaluate the expected performance gain when restricting backward steps to a
fixed underlying static topology fragment as in [14].
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Abstract. Existing graph transformation (GT) tools treat graphs as
ephemeral data structures, i.e., the successful application of a GT rule
to a graph G rewrites that graph to produce a modified graph G′. The
original graph G is lost during that update. In contrast to ephemeral
data structures, persistent data structures preserve access to all previ-
ous versions when data is modified and fully persistent data structures
even allow all previous versions to be modified. In earlier work, we intro-
duced the Graph Rewriting and Persistence Engine Grape as a tool for
specifying and executing transformations on large-scale graphs and inte-
grated it with a computational notebook platform (GrapePress). While
the term “persistence” has been in the tool’s acronym from the start,
it was chosen to indicate that graphs were maintained in a database
with transactional support. Until now, Grape (and GrapePress) treated
graphs as ephemeral data structures, i.e., previous graph versions were
not retained upon modification. This paper presents a major revision of
the tool (called GrapeVine) to support functional graph rewriting based
on a fully persistent data structure.

Keywords: Graph transformations · Grape · GrapeVine · persistent
data structures · tools · graph processes · computational notebook ·
tools

1 Introduction

Graphs and graph transformation (GT) systems have been applied to a variety
of problems with industrial relevance [12,17–19]. GT tools play an important role
in making this feasible. A considerable number of such tools have been developed
over the last decades [1,15]. Some of these tools aim to closely implement results
from GT theory, e.g., results from algebraic graph rewriting [16,20]). Other tools
are more concerned with incorporating a notion of GTs with practical applica-
tions, e.g., software design [10] and verification [13]. However, one aspect where
all current GT tools fall short of reflecting mathematical theory is that they main-
tain graphs in ephemeral data structures, i.e., graphs are maintained in stateful
objects that are updated when GT rules are applied and previous version of graphs
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are lost. The use of ephemeral data structures for maintaining graphs is partic-
ularly limiting for example when an application needs to “look back” into graph
derivation histories [8] or if it needs to perform some type of reasoning about graph
processes [4]. Significant extensions of GT theory, such as the definition of trans-
actional graph transformation systems as processes [2], cannot readily be imple-
mented with current GT tools. From a more mundane perspective, it is well known
from the programming languages and software engineering domains that stateless
computation avoids complexity and is easier to understand and test.

All data in functional programming is immutable. Under the hood, this is
implemented with persistent data structures which, in contrast to ephemeral
data structures, retain all previous versions upon update [9]. A data structure
is partially persistent if all versions can be accessed but only the latest version
can be modified. Data structures where all versions can be modified are referred
to as fully persistent.

In this paper, we present GrapeVine, a GT tool that maintains graphs in
a fully persistent data structure and treats graphs as immutable data objects.
GrapeVine is based on our earlier work on Grape (the Graph Rewriting And
Persistence Engine) [21] and its integration with computational notebook tech-
nology (GrapePress) [22]. Like other tools, Grape (and GrapePress) uses an
ephemeral data structure to store graphs, i.e., graphs are destructively rewritten
“in-place”. (The term “persistence” in the tool’s name was originally chosen to
indicate that data structure was persisted in a database with transactional sup-
port.) While GrapeVine is based on these earlier works, it constitutes a complete
reimplementation of its core engine and data structures to achieve support for
truly functional graph rewriting.

The rest of this paper is structured as follows: We discuss related work in the
following section. Section 3 provides an overview of GrapeVine and its new per-
sistent data structure. Section 4 comments on the tool demonstration provided in
the appendix and Sect. 5 offers concluding remarks and an outlook to future work.

2 Related Work

Our current work on GrapeVine can be seen as a major revision of our earlier
work on Grape [21] and GrapePress [22], with the fundamental difference that
GrapeVine uses a “functional programming” paradigm and treats graphs as
immutable objects. Historically, the name Grape referred to the GT engine and
the domain-specific language for defining and controlling GTs, while the name
GrapePress was used to refer to the computational notebook platform that
integrates with Grape. While GrapeVine inherited the same architecture (i.e., its
language and engine can be used without the computational notebook platform),
we use a single name for the tool, going forward. Similarly, we will use the name
GrapePress in this paper to also include the Grape engine.

GrapeVine has the ability to concurrently explore and compare many (all) pos-
sible derivations of arbitrarily many graphs. This feature is related to functionality
provided by the GROOVE tool, which provides support for state-space exploration
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of GT systems [13]. However, GROOVE does not persist different versions of a graph
but only fingerprints for the purpose of detecting collisions during model-checking
(which is the primary function of graph process exploration in GROOVE).

The functionality provided by the fully persistent data structure implemented
in GrapeVine resembles that of model versioning and indexing system like
Hawk [3]. However, those approaches are primarily used for model management
but they are not integrated with the computational model of the transformation
tool. In contrast, GrapeVine realizes a truly functional computation model based
on its fully-persistent graph data structure.

The data structure implemented in GrapeVine was inspired by the theoretical
concept of a graph process, as defined by Corradini et al. [4], which is an a graph of
graph transformation occurrences. Moreover, transaction-handling in GrapeVine
is based on graph processes, as proposed by Baldan et al. [2].

3 GrapeVine Concepts

3.1 Overview

A core objective in the design of GrapeVine (and its predecessor GrapePress)
has been to make it easy to integrate GT programming with common software
engineering tools and processes. As such, GrapeVine was developed as an inter-
nal domain-specific language (DSL) to a general purpose programming language
(Clojure). Regular tools like text editors, IDEs and configuration management
systems can be used, without the need to install and learn a particular graph-
ical tool for GT development and execution [21]. GrapeVine comes integrated
with an optional computational notebook user interface, which provides graph-
ical visualization of rules, graphs and graph history [22]. GrapeVine computa-
tional notebooks are an excellent way to quickly explore and document GT-based
computations and systems. Notebook worksheets can be shared as “executable”
papers, but they can also be saved as regular program code, to be used as part
of larger software applications.

Under the hood, GrapeVine uses the Neo4J graph database management sys-
tem, which makes it highly scalable to ultra-large graphs. GrapeVine is available
as a Docker image and installs with a single command.

Graph Model. The tool uses directed, attributed, node- and edge-labeled
(danel) graphs. Graphs do not need to be typed but it is possible to define con-
straints on graphs, which are enforced whenever rules are applied. GrapeVine
comes with a number of predefined constraint types (e.g., for allowed node and
edge types, cardinalities, and uniqueness of attribute values) but also allows
users to define complex, user-defined constraints based on Oreja et al.’s logic of
graph constraints [11].

Graph Transformation Rules. In the previous version of the tool
(GrapePress), each GT rule could be defined with either single-pushout (SPO)
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or double-pushout (DPO) semantics [6]. The main difference concerned the way
how any “dangling” edges would be handled during the execution of rules that
delete nodes. SPO rules would delete such dangling edges, while the application
of a DPO rule is simply not permitted in a context that would cause dangling
edges to arise. GrapeVine has removed this choice and adopted SPO seman-
tics throughout. We found that the complexities caused by providing this option
(both in terms of tool implementation as well as in terms of reasoning about such
“mixed” GT systems) are not justified, since the behaviour of DPO rules can be
simulated in the SPO approach, given the availability of additional mechanisms,
like negative application conditions.

The user can still choose between homomorphic and isomorphic matching
semantics for each rule. Rules can be equipped with applications conditions
(i.e., conditions that must be true for a rule to be applicable) [5] and negative
application conditions (i.e., conditions that prevent rule application) [7].

Rules can be parameterized and rule parameters can be used to define or
restrict the labels and attributes of graph elements. The previous version of the
tool (GrapePress) treated attributes as variables and therefore also provided an
assignment operator to change their values. The concept of variables no longer
applies to the functional computation paradigm implemented in GrapeVine.
Since graphs are immutable, attributes also have that property. This means
that GTs that seek to “modify” attributes of a graph element (node or edge)
need to replace that graph element with a new graph element of the same type,
while copying the unchanged attributes and (re)defining the “changed” ones.

Control Structures. Since GrapeVine rules are defined with an internal DSL
to a general purpose programming language (Clojure), the control structures of
the host language are available for programming with GTs. The previous version
of the tool (GrapePress) also provided a set of dedicated control structures (e.g.,
atomic blocks, loops, non-deterministic choice), which could be used to define
composite transactions with ACID properties and backtracking for dealing with
non-determinism during rule applications [21]. Given the paradigm shift to a
purely functional model of computation in GrapeVine, these control structures
have been revised completely. All GrapeVine control structures are defined as
functions on graph sets rather than graphs. This allows the definition of deter-
ministic operators for rule application. (Non-deterministic operators are also still
available.) GrapeVine therefore no longer needs complex backtracking mecha-
nisms to “undo” unsuccessful derivations. Similarly, there is no longer a need for
a dedicated transaction manager to achieve ACID properties for programmed
transformation units, since unsuccessful (partial) execution of such units can
simply be “forgotten” [2].

Graph Queries. Graph queries are pattern-based matches for the purpose of
returning data from the graph or testing the existence of conditions. The previ-
ous version of the tool (GrapePress) did not have a dedicated syntactic form for
graph queries; graph queries were merely defined as rules that do not alter the
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graph. Instead, GrapeVine has a dedicated syntax for defining graph queries and
enforces their read-only semantics. This is important because, in contrast to rule
applications, the application of queries does not generate a new graph.

3.2 A Fully-Persistent Data Structure for Functional Graph
Rewriting

There are several choices that can be made when designing a fully persistent
data structure. Of course, there is always the näıve approach of copying a data
item upon modification. However, that approach makes sense only for relatively
small data items. Since in our application, each occurrence of a GT creates a new
graph, one choice is to record only the differences from the “previous” graph in
our data structure. We haven chosen that option and Fig. 1 presents the model
that was implemented for this purpose.

Nodes of type Graph reference the graph elements (nodes and edges) that
were created or deleted when the “last” transformation occurred. We also record
which graph elements where read (preserved) when a transformation occurred.
While the latter is not needed for implementing a versioned data structure,
we capture this data for the purpose of using the tool for reasoning about the
provenance of applied transformation rules.

Graphs are uniquely identified by a globally unique hash code (id). Graphs
are arranged in a partial order, which is induced by the previous relationship.
Computing the elements of a given graph G simply requires retrieving all ele-
ments that have been created by any graph in the history of G minus those
elements that have been deleted in G’s history. This query can efficiently be
executed in the Neo4J graph database. The Neo4J query language is well under-
standable and we provide it below instead of creating our own mathematical
formulation. The query looks up a graph (g) with the given id and collects all
graphs gs in its history by repeatedly traversing previous edges. The query then
collects all graph elements e that have a created edge from any node in gs without
also having a deleted edge from any node in gs.

MATCH(g:Graph{id:".."})-[:previous*0..]->(gs)-[:created]->(e)
WHERE NOT (e)<-[:deleted]-(gs) RETURN e

label: String

attrs: String -> VAL

Graph Element

Node Edge
src

tar

(key, nn) id: UUID

(key) ctag: String

Graph create

read

delete

* *

*1

* *

*1

*1

rule: String

previous

pred: Predicate

Constraint

1

*

constraints
*

1

Fig. 1. Meta-model for persistent graph data structure in GrapeVine
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Now that we have described the design chosen for implementing the persis-
tent data structure for graphs in GrapeVine, we briefly want to comment on
a disadvantage of the chosen approach, i.e., GrapeVine graphs are no longer
represented “varbatim” in the Neo4J graph database. While the previous ver-
sion of the tool (GrapePress) was able to operate on any any graph in a Neo4J
database, independently of its origin, GrapeVine now requires graphs to conform
to the meta-model in Fig. 1. For example, we note that GrapeVine now repre-
sents graph edges as Neo4J graph nodes, to allow incoming provenance edges
from Graph nodes. (Neo4J does not support hypergraphs.)

We could have represented GrapeVine edges directly as edges in the Neo4J
database if we replaced the provenance edges (create, delete, read) by “for-
eign key” attributes (createdBy, deletedBy, readBy) on edges. (Neo4J allows
attributes on edges.) These attributes could store the IDs of the corresponding
graphs (that created, deleted or read the edge), respectively. However, such a
design would be inefficient as each graph lookup would then involve value-based
“join” operations on potentially large sets of elements. Moreover, the benefit
of such a design would be small, as other external tools accessing the graph
database directly would still need to use a projection to assemble a concrete
graph from its history. The only alternative that would avoid the need for such a
projection would be the näıve approach of copying the graph upon each change,
which does not appear scalable.

As mentioned in the previous section, GrapeVine no longer requires a sophis-
ticated transaction manager like the one used on the previous (stateful) version
of the tool (GrapePress). Rather, GrapeVine implements transactions based
on the notion of graph processes. [2] Unsuccessful or incomplete executions of
composite GT programs can simply be “forgotten”. Of course, from a practical
point of view, these graphs would still fill up the database over time. GrapeVine
therefore provides a mechanism to purge them. Any graph of interest can be
“committed” to the database by tagging it with a commit tag (ctag) in Fig. 1.
Conversely, GrapeVine offers a rollback operation that deletes all graphs that
are not in the history of any committed graph.

4 A Taste of Interacting with GrapeVine

Like the previous version of the tool, GrapeVine can be used as a library in
software programming projects or it can be used as a stand-alone tool with its
integrated computational notebook. The demo in the appendix uses the latter.

At first glance, GrapeVine looks similar to the previous version of the tool
(GrapePress). Worksheets consist of sequences of static segments and dynamic
segments. Dynamic segments consist of executable code and a display for the
output of the computation. A major advantage of the functional (side-effect
free) computational model in GrapeVine is, however, that it is now much eas-
ier to create idempotent dynamic segments. In the previous version of the tool,
code segments needed to be executed “in the right order” to produce the desired
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output result. For example, if a graph was rewritten by a graph transforma-
tion once, applying that transformation another time would usually result in a
different output.

The demo shows how using sets of graphs rather than single graphs as a data
type for computation simplifies the composition of (GT) operations and allows
for the definition of a deterministic operator for rule application (which simply
return the set of all possible direct derivations). Another advantage of this choice
of data type is that unsuccessful rule applications simply return an empty set
rather than requiring special handling of failure.

Finally, the demo illustrates how GrapeVine’s data structure maintains the
derivation history of all graphs as a graph of graphs. We demonstrate how such
history graphs can be reflected as regular GrapeVine graphs and how the tool
supports visualizing and reasoning about derivation histories.

5 Conclusions and Future Work

The fact that current GT tools maintain graphs in ephemeral data structures
limits their usefulness in practice. Applications that require knowledge of the
derivation history of graphs cannot readily be supported. Current tools do not
support computing with and reasoning about graph derivation history. Even in
applications where this is not needed, stateful computation is harder to under-
stand and test. Stateless computation is also preferrable when working with
GrapeVine as a computational notebook. Users of the predecessor tool had to
remember to execute code segments in worksheets “in the right order” since GTs
had side-effects on the shared graph and few code segments would be idempotent.

Finally, from a tool developer’s point of view, the associated stateful com-
putation model is complex and prone to problems. For example, the transaction
manager developed for the (stateful) prior version of this tool (GrapePress) was
by far the most complex module of the tool. Removing it from GrapeVine was
liberating, but also painful because of all the work that had gone into it.

Our current plan for evolving GrapeVine has two near-term objectives.
Firstly, we will evolve the persistent data structure to make it confluently per-
sistent. A data structure is called confluently persistent if there is a “merge”
operation to join two branches originating from a common version [9]. While
we did not talk about it in this paper, GrapeVine already has an operator to
filter out “duplicate” graphs in a graph set (up to isomorphism). That opera-
tor is implemented along a similar mechanism as described by Rensink [14]. We
are working on using this operator as a basis for defining a “merge” operation
for GrapeVine’s data structure. Our second objective is to integrate theoretical
results for verifying properties of graph transformation systems, in particular
with respect to the confluence of rule sets, i.e., critical pair analysis.
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