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 Introduction

Hybrid positron emission tomography (PET) and 
magnetic resonance (MR) (PET/MR) is rapidly 
gaining momentum as a powerful imaging 
modality for both clinical and basic research 
applications. The first clinical whole-body PET/
MR systems were FDA-cleared and installed in 
2010. Since then, the number of systems in use 
worldwide has grown steadily, with ~260 fully 
integrated PET/MRs installed globally at the end 
of 2020 (Fig.  2.1a). The expanding base of 
installed scanners in the last decade has been 
accompanied with very active research, both fun-
damental and clinical, with over 4250 articles 
referencing PET/MR by the end of 2020 
(Fig.  2.1b). At its most basic level, PET/MR 
combines the strengths of each modality, enabling 
imaging of physiology with the exceptional 
molecular sensitivity of PET complemented with 
the high-resolution structural information of MRI 
and its multitude of complementary functional 
(e.g., perfusion) and molecular (e.g., spectros-
copy) measurements. Besides the superior soft- 
tissue contrast of MRI as compared to computed 
tomography (CT) as well as its unique ability to 
probe tissue composition, the use of MRI as the 

anatomical complement to PET comes with the 
benefit of a lower effective radiation exposure in 
PET/MR as compared to PET/CT, which is a sig-
nificant advantage for pediatric applications and 
protocols that require serial imaging, e.g., for 
staging and monitoring response to therapy. 
Furthermore, the intrinsic spatial and temporal 
alignment of PET and MR data in fully integrated 
PET/MR machines can be exploited to perform 
MR-based motion correction of PET [1] and ana-
tomically guided PET reconstruction [2] for par-
tial volume effect correction and noise control, 
yielding substantial improvements in PET image 
quality and accuracy. Last but not least, simulta-
neous PET/MR offers opportunities to quantify 
physiological processes that would otherwise be 
difficult to assay with either modality alone as 
demonstrated in cardiac imaging with quantita-
tive mapping of mitochondrial membrane poten-
tial using a voltage-sensitive PET tracer and 
MRI-based measurement of myocardial extracel-
lular volume fraction [3–5].

PET/MR has been the subject of active inter-
disciplinary research aimed at developing solu-
tions for many of the physical (e.g., 
instrumentation) and practical (e.g., attenuation 
correction) challenges associated with this hybrid 
imaging modality. Furthermore, thorough 
research has been undertaken to take full advan-
tage of the unique opportunities (e.g., motion 
correction) of this imaging technique in specific 
clinical applications. The aim of this chapter is to 
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Fig. 2.1 (a) Number of PET/MR scanners installed worldwide. (Source: Siemens Healthineers, GE Healthcare, United 
Imaging). (b) Number of PET/MR publications. (Source: PubMed)

provide a brief overview of the challenges and 
opportunities associated with PET/MR, with a 
particular emphasis given to cardiac imaging 
applications. We also briefly present current clin-
ical applications as well as future directions in 
cardiac MR imaging in the context of PET/MR.

 PET/MR Instrumentation

The integration of PET and MRI scanners into a 
single machine represents a significant engineer-
ing achievement owing to the mutual interfer-
ences and crosstalk between the two systems [6, 
7]. Indeed, all components needed for the forma-
tion and acquisition of MR signals (e.g., static 
main magnetic field (B0), radiofrequency field 
(B1), and gradient fields) can affect the normal 
operation of standard PET detectors and elec-
tronics, therefore necessitating the development 
of specific MRI compatible instrumentation for 
combined PET/MR scanners. For example, the 
photomultiplier tubes (PMTs) that had tradition-
ally been used in PET detectors for signal ampli-
fication cannot be operated in the presence of 
even small magnetic fields, as electromagnetic 
forces perturb the movement of electrons down 
the chain of dynodes in the PMT and significantly 
impair its amplification power [6]. Integrated 
PET/MR scanners instead rely on a different type 
of photodetector technologies such as avalanche 

photodiodes (APDs) [8] or silicon photomultipli-
ers (SiPMs) [9], which are largely insensitive to 
magnetic fields. Likewise, the introduction of 
PET instrumentation (e.g., scintillation crystals, 
electronics, shielding) into the bore of the magnet 
can affect MRI data acquisition by distorting the 
B0 and B1 fields and the linearity of the gradient 
fields, resulting in image artifacts. For example, 
PET scintillation crystals that contain gadolinium 
such as LGSO (lutetium gadolinium orthosili-
cate) are not suitable for use in PET/MR due to 
their high magnetic susceptibility [10]. Hybrid 
PET/MR systems thus employ detectors made 
with materials such as lutetium-yttrium oxyor-
thosilicate (LYSO). There are also physical con-
straints associated with integrating a PET scanner 
within an MRI gantry since the two systems have 
outer bores in the range of ~1 m diameter, requir-
ing the PET instrumentation to be very compact 
in order to fit into the bore. In this regard, APDs 
and SiPMs are not only MRI compatible but also 
much less voluminous than PMTs and therefore 
represent a particularly well-suited technology 
for PET/MR.  Nevertheless, combined PET/MR 
systems all have narrow bores (about 60  cm 
diameter), which can cause practical difficulties 
for studying large or claustrophobic patients.

Four clinical whole-body (WB) PET/MR 
scanners have been introduced commercially so 
far. The first WB PET/MR machine was released 
by Philips Healthcare in 2010 with the TF 
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Ingenuity [11]. Unlike the systems that followed, 
the TF Ingenuity PET/MR allowed for sequen-
tial—as opposed to simultaneous—PET and 
MRI scanning, with each system physically sepa-
rated from the other to minimize interferences, 
and a rotating bed shuttling the patient between 
the two gantries. In spite of the physical separa-
tion between the two scanners, magnetic shield-
ing still had to be introduced within the design of 
the PET scanner to allow its detectors—based on 
conventional PMTs and LYSO crystals (size: 
4  ×4  ×22  mm3)—to properly function. Shortly 
after, Siemens Healthcare introduced the 
Biograph mMR, the first fully integrated WB sys-
tem capable of simultaneous PET and MR acqui-
sition [12]. The Biograph mMR is a hybrid PET/
MR system consisting of a 3-T whole-body MRI 
scanner and a PET gantry installed between the 
gradient and body coils. The PET detector sys-
tem employs lutetium oxyorthosilicate (LSO) 
scintillators (4 ×4 ×20 mm3) coupled with APD 
arrays and allows an axial coverage of 25.8-cm, 
compared to the 18-cm axial FOV of the Ingenuity 
TF. In 2015, General Electric (GE) released the 
Signa PET/MR [13, 14] the first integrated PET/
MR machine with time-of-flight (TOF) capabil-
ity. The MRI component of the Signa is based on 
3-T Discovery 750w MRI platform and the PET 
detector system employs lutetium-based scintil-
lators (“LBS,” size: 3.95× 5.3× 25 mm3) coupled 
to SiPMs, offering a 394 ps TOF timing resolu-
tion and a 25 cm axial FOV [14]. The uPMR 790 
is another integrated TOF PET/MR system 
recently introduced by United Imaging 
Healthcare [15]. The scanner comprises a 3-T 
superconducting magnet and a PET system con-
sisting of LYSO crystals (size: 
2.76× 2.76× 15.5 mm3) also coupled with SiPMs. 
The system has a timing resolution at ~540  ps 
[15] and its axial field of view is 32 cm long, the 
largest among all currently available commercial 
PET/MR scanners.

As mentioned above, all integrated clinical 
WB PET/MR scanners rely on solid-state photo-
detectors such as APDs or SiPMs. Both devices 
are silicon semiconductor photodetectors, based 
on a modified p-n junction with an external bias 
voltage applied for charge carrier acceleration 
[9]. Because the distances traveled by the charges 

in the APD and SiPM are small, these photode-
tectors are largely insensitive to magnetic fields 
[6, 16, 17]. Though APDs are MRI compatible 
and highly compact, their amplification perfor-
mance strongly depends on the temperature and 
the strength of the applied voltage [6], which 
requires very tight control of these parameters for 
stable operation. Furthermore, APDs have a 
much lower gain than conventional PMTs as well 
as a poor timing resolution, precluding measure-
ment of photon TOF. The SiPM is an alternative 
photodetector technology consisting of a 2-D 
array of thousands of APDs operated in Geiger 
mode (i.e., with a bias voltage higher than the 
breakdown voltage). In the SiPM, each Geiger 
APD within the detector array effectively oper-
ates as a single photon counter and is processed 
independently and simultaneously with the other 
ones [6, 9]. SiPMs have a very high gain, equiva-
lent or higher than that of conventional PMTs, as 
well as an excellent timing resolution, which 
enables TOF measurement.

 Attenuation Correction

Attenuation correction (AC) is critical to obtain 
quantitatively accurate PET images. Until the 
introduction of hybrid PET/computed tomogra-
phy (CT) systems in the early 2000s, standalone 
PET cameras employed rotating positron- 
emitting transmission sources to directly measure 
attenuation of annihilation photons. In PET/CT 
scanners, attenuation maps are derived from low- 
dose CT images by exploiting the linear relation-
ships that exist between CT Hounsfield units 
(HU) and attenuation coefficients at 511  keV 
[18]. However, none of the commercially avail-
able PET/MR systems is equipped with a CT 
gantry or a transmission source, meaning that 
attenuation maps must be obtained from MR 
images [19, 20]. Generating accurate MR-based 
attenuation maps for human tissues is technically 
very challenging as there is no direct relationship 
between the tissue properties measured by MRI 
(e.g., proton density, relaxation times) and the 
underlying electron densities which determine 
the linear attenuation coefficients. For instance, 
tissues such as bone and lung exhibit drastic dif-
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ferences in the degree to which they attenuate 
annihilation photons, yet both show very low 
MRI signals when imaged by conventional pulse 
sequence because of their ultra-short T2* relax-
ation times (<1 ms) and low proton densities.

MR-based AC (MRAC) in PET/MR has been 
the subject of extensive research and several 
approaches have been investigated. The most 
widely used MRAC method consists in segment-
ing MR images of the subject into different tissue 
classes and then to assign a discrete attenuation 
coefficient to each tissue type [19, 20]. The most 
commonly used segmentation-based MRAC 

method relies on a fast 3D two-point Dixon 
acquisition for water/fat separation. The acquired 
in-phase and out-phase images are then used to 
generate piecewise constant PET attenuation 
maps with four compartments: air, lung, fat and 
non-fat soft tissue [19]. Though widely used in 
PET/MR scanners, this approach has several lim-
itations, the principal one being that it incorrectly 
assigns the attenuation coefficient of soft tissue 
to cortical bones. This underestimation of attenu-
ation effects introduces substantial quantitation 
errors within the bones themselves and in tissues 
located in their vicinity [21, 22] (Fig.  2.2). 
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Fig. 2.2 Whole-body 
atlases of mean (a), 
standard deviation (b), 
and root mean-squared 
error (“RMSE,” c) 
18F-FDG SUV bias 
computed based on 23 
patient data sets for 
different segmentation- 
based attenuation 
correction methods. 
3-classes (“3C”: air, 
lung, soft-tissue), 
4-classes (“4C”: air, 
lung, fat, non-fat 
soft-tissue), and 
5-classes (“5C”: air, 
lung, fat, non-fat 
soft-tissue, bone) 
attenuation maps. 
(Reproduced from [24], 
with permission)
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Besides bones, tissue misclassification errors 
have been reported in other body locations such 
as the bronchus, causing further image artifacts 
[23]. Nevertheless, the bias in activity estimates 
reported within soft tissue organs such as the 
heart, liver, and kidney remains relatively small 
with these approaches, in the range of a few per-
cent typically [24]. To obtain bone information 
for MRAC, methods leveraging special pulse 
sequences with very short echo times such as 
UTE (ultrashort-echo-time), ZTE (zero-echo- 
time), or combination of UTE/ZTE with Dixon 
acquisitions have been investigated in brain [25–
28] and pelvic [29] imaging applications. 
However, these approaches come at the price of 
longer acquisition times and often require some 
level of human intervention, e.g., during bone 
segmentation [29]. A second type of approach to 
MRAC generates attenuation maps that can 
account for bones by registering image data from 
individual subjects to pre-computed attenuation 

atlases/templates, as shown in brain [30–32] and 
whole-body [33] imaging. These methods have 
been found to offer accurate results in the brain 
[34]; however, their application in body imaging 
remains challenging due to the larger subject-to- 
subject variability in terms of anatomy, body 
mass index, and/or disease [35]. Furthermore, 
atlas-based methods are intrinsically limited in 
their ability to account for subject-specific varia-
tions in bone density and structure. A third cate-
gory of MRAC techniques employs machine 
learning to synthesize pseudo-CT distributions 
from MR images in a fully automated fashion 
[36–40] (Fig. 2.3). These methods usually rely on 
deep convolutional neural networks (CNNs) to 
learn a nonlinear mapping between input MRI 
data (e.g., Dixon data only [36, 40], Dixon-ZTE 
[37], multi-echo Dixon/UTE [38]) and ground- 
truth CT attenuation during a training step, using 
patch- [37] or slice-based [36, 38] approaches. 
CNNs are a specific kind of artificial neural net-

a b c d e f
1800 cm-1

Sagittal

Coronal

Axial

20

-20
REGAN+augREU-Net+augREU-NetREdixon+boneREdixon

µ-mapGAN+augµ-mapU-net+augµ-mapU-netµ-mapdixon+boneµ-mapdixonµ-mapct

R
E

 [%
]

L
A

C
[cm

-1]

450

Fig. 2.3 Comparison of attenuation maps in the pelvic 
region obtained using (a): CT (μ-mapCT); (b): the standard 
Dixon MRI-based method (μ-mapdixon), (c): Dixon MRI 
with atlas-based bone information (μ-mapdixon + bone); and 
(d–f): deep learning based algorithms (μ-mapU-net, μ-mapU- 

net + aug, and μ-mapGAN + aug). Overall, there is excellent cor-
relation between CT and the different deep-learning 
approaches. The lower panel displays images of relative 
differences between the different attenuation maps and the 
reference CT. (Reproduced from [40], with permission)
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works specialized for the analysis of image data. 
Deep CNNs typically operate by applying a 
series of filtering and down/upsampling opera-
tions designed to extract the most relevant fea-
tures of the input data for the task at hand. The 
parameters of the deep CNN (e.g., filters’ coeffi-
cients) are learned during a training phase in 
which a cost-function measuring the discrepancy 
between outputs of the deep CNN (e.g., “pseudo-
 CT” image) and the labels (e.g., ground-truth CT 
image) is minimized. Deep learning based 
MRAC algorithms have been shown to provide 
accurate results in the pelvis [36, 37, 40] and 
brain [38, 39], typically within a few percent of 
the reference CT-based results. However, their 
performance has yet to be fully evaluated in large 
patient cohorts.

The challenge of attenuation correction in 
PET/MR is further complicated by the so-called 
truncation artifacts [20]. Indeed, the transaxial 
FOV of MRI is usually restricted to a sphere of 
25 cm radius around the isocenter where the B0 
field has the best uniformity, meaning that attenu-
ating tissues positioned toward the edges of the 
bore cannot be imaged accurately and display 
severe geometric distortions or even signal voids 
and truncation [41]. For instance, thoracic PET/
MR studies with arms-down often truncate the 
MR signal from the arms, complicating the esti-
mation of attenuation effects from the truncated 
tissues. If uncorrected, truncation artifacts in the 
attenuation maps can lead to bias in the recon-
structed activity distributions that extend well 
beyond the missing tissues. Different methods 
have been developed to address this problem. 
PET-based approaches, such as maximum likeli-
hood estimation of activity and attenuation 
(MLAA) [42, 43], seek to estimate body contours 
from the emission data themselves. However, the 
quality of MLAA-based correction depends on 
the type of tracer used and inaccurate results have 
been reported with tracers that show low accu-
mulation in the extremities such as 68Ga-PSMA 
[41]. MR-based methods for truncation correc-
tion include “B0 Homogenization Using Gradient 
Enhancement” (HUGE) [41, 44], which effec-
tively extends the MR FOV beyond its traditional 
limits. Unlike MLAA, this approach is agnostic 

to the radiotracer used during the study and was 
found to provide more robust performance than 
(non-TOF) MLAA-based methods across differ-
ent tracers [41].

Finally, PET/MR scanning of the body often 
requires the use of flexible radiofrequency (RF) 
surface coils for MR data acquisition, which are 
made of various materials such as plastic and 
rubber as well as high attenuating components 
such as the hardware used for electronic circuitry 
[45]. These RF coils are located in the PET FOV 
during the acquisition but are not accounted for 
by current attenuation correction schemes since 
their position and individual geometries are in 
practice unknown in whole-body scans. Studies 
have reported PET count losses in the range of 
2–5% due to these flexible RF coils and substan-
tial underestimation of the reconstructed activity 
concentration in the vicinity of the high attenuat-
ing electronic hardware components [46].

 Motion Correction

Signal-to-noise ratio (SNR) in PET primarily 
depends on the number of coincidence events 
acquired during the scan. Consequently, acquisi-
tion times typically extend over several minutes 
for each bed position (and even up to 1 or 2 h for 
some dynamic studies), making PET particularly 
susceptible to patient movement, both involun-
tary (e.g., respiration and cardiac contractions) 
and voluntary (e.g., body motion). Cardiac PET 
studies are especially subject to motion effects as 
the heart undergoes the simultaneous action of 
respiratory motion, shifting the heart by more 
than 1  cm along the superior–inferior direction 
[47], and cardiac contractions, moving the base 
of the heart toward the apex by an average of 
~12  mm [48] while thickening the wall by 
~4–6 mm [49]. In addition to these pseudo-cyclic 
physiologic displacements, subjects may move in 
a completely unpredictable manner during the 
PET scan, e.g., due to discomfort, pain, cough-
ing, or deep breathing, and such body movements 
are more likely to occur during longer acquisi-
tions, e.g., dynamic PET studies. The continuous 
motion of organs during scanning introduces arti-
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facts that alter quantification of tracer concentra-
tion in moving tissues and deteriorate the 
diagnostic quality of PET images. Two types of 
image artifacts result from motion. One presents 
as a spatially dependent smearing (or blurring) of 
the reconstructed activity distributions, reducing 
the effective PET spatial resolution and introduc-
ing errors in estimates of local radioactivity con-
centration. The other stems from spatial 
inconsistencies between the attenuation map—
acquired during a breath-hold in standard PET/
CT and PET/MR protocols—and the emission 
data, which can be treated as acquired at an aver-
age position over many motion phases, cardiac/
respiratory cycles, and body poses. Motion- 
induced emission/attenuation discrepancies can 
introduce severe image artifacts primarily in 
regions adjacent to large attenuation gradients 
(e.g., heart/lung and liver/lung interfaces), dete-
riorating the diagnostic value of PET [50, 51].

Integrated PET/MR systems are uniquely 
capable of providing an accurate and robust solu-
tion to the motion problem in PET [1, 52–57]. 
Indeed, owing to its lack of ionizing radiation, 
excellent soft-tissue contrast, high SNR, and very 
good spatiotemporal resolution, MRI has ideal 
characteristics for measuring organ motion. 
Furthermore, because of the simultaneity and 
inherent alignment between the two modalities, 
MRI-derived motion information can be lever-
aged to compensate motion effects in PET 
images. MR-based motion correction of PET has 
been investigated extensively in recent years, 
with applications in imaging of the brain [58, 59], 
thoracic or abdominal malignancies [60–69], and 
heart [64, 70–79].

MR-based PET motion correction approaches 
are generally quite complex, involving a coordi-
nated set of MR sequences, PET acquisitions, 
and data postprocessing steps that often need to 
be customized depending on the targeted body 
region (e.g., brain vs. heart) and the type of 
motion to be corrected (e.g., physiologic vs. bulk 
motion) [55]. Figure 2.4 presents a general PET/
MR data acquisition and processing pipeline for 
cardiac/respiratory motion correction. The first 
step is a PET/MR scan involving the acquisition 
of an attenuation map followed by a special pulse 

sequence designed to capture organ motion dur-
ing PET data acquisition in list mode, in which 
each coincidence event is recorded as to its time 
of acquisition. Motion measurement sequences 
are usually customized for capturing the specific 
motion of the organ or body region of interest. 
For instance, tagged MRI [80] can be employed 
to measure contractile motion of the myocardium 
[81, 82] but it is not practical to use tagging for 
measuring respiratory motion of the heart as tag 
patterns fade more rapidly than a typical respira-
tory cycle. Alternatively, T2-prepared bright 
blood MRI sequences might be better suited for 
measuring heart respiratory displacements [77]. 
Another critical aspect of the PET/MR acquisi-
tion scheme pertains to the tracking of motion 
phases as a function of scan time, such that each 
coincidence event and MR k-space readout can 
be gated, i.e., assigned a specific motion phase. 
Cardiac motion phase tracking can be achieved 
quite robustly with electrocardiogram (ECG) 
devices. For respiratory motion, phase tracking 
can be performed via 1-D navigator echoes [63, 
83] or low-resolution 2-D image navigator mod-
ules [69, 77] inserted in the motion measurement 
sequence, or using respiratory bellows or list- 
mode PET-driven signals [62, 81, 84]. Phase 
tracking signals are then used to construct 
motion-resolved MR volumes, i.e., 3D images of 
the subject’s anatomy in the different motion 
instants, and to bin the PET coincidence events 
into the different phases. The next step is motion 
estimation which is typically performed by regis-
tering the MR volumes from the different phases 
to a reference one, although some groups have 
also investigated registration algorithms that 
make use of both PET and MR images [79]. This 
step produces motion vector fields (i.e., dense 
sets of 3D displacements), describing the voxel- 
to- voxel spatial coordinate correspondence 
between each motion phase and the reference 
phase. A motion-dependent attenuation map can 
then be synthesized by applying the estimated 
motion vector fields to the acquired attenuation 
map after aligning it to the reference MR volume 
to compensate for potential discrepancies. At 
last, the motion fields and motion-dependent 
attenuation maps can be integrated within itera-
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tive PET reconstruction [85, 86] to correct motion 
effects. An alternative approach that is also easier 
to implement is to independently reconstruct 
each gated PET volume using standard algo-
rithms and then to apply the estimated motion 
fields to align them to the reference phase, fol-
lowed by averaging of the resulting images. 
Figure  2.5 illustrates the impact of MR-based 
PET motion correction in myocardial perfusion 
imaging [82] using 18F-flurpiridaz [87].

It is worth noting that the pulse sequences 
used for motion field measurement are usually 
not part of the diagnostic MR protocol and clini-
cal sequences are thus played either before or 
after these acquisitions. In theory, it is possible 

to make use of the PET data acquired during 
diagnostic MR imaging for motion correction 
by continuing the acquisition of motion phase 
tracking signals as illustrated in Fig. 2.4a. As for 
respiratory motion phase tracking, while it is 
technically possible to incorporate MR naviga-
tors into clinical pulse sequences, modifying 
every sequence across all manufacturers is 
impractical; additionally, navigator acquisitions 
can interfere with the normal operation of other 
sequences. A more practical approach is to rely 
on external sensors or methods that do not inter-
fere with the MR or PET acquisition such as 
respiratory bellows or list-mode driven respira-
tory gating [84].
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Owing to the unpredictability of body motion, 
its tracking and measurement using MRI would 
effectively require playing a dedicated structural 
(or navigator) sequence continuously during the 
PET acquisition [88]. An alternative and arguably 
more practical strategy is to rely on PET-driven 
methods [89–91]. One possible approach is to 
divide the PET list-mode data into temporal 
frames of relatively short duration (a few sec-
onds, typically) and then to reconstruct the data 
in each frame using ultra-fast list-mode based 
reconstruction algorithms [89]. The resulting 
images can then be used to determine motion 
fields between each frame and a selected refer-
ence one using image registration. In cases where 
the activity distribution changes rapidly, during a 
dynamic study, for instance, registration can be 
performed between temporally adjacent frames 

to improve motion estimation. Note that the same 
approach could be used to account for both body 
and respiration motion if very short time frames 
(e.g., <1  s) are employed, although PET image 
noise may degrade the performance of motion 
estimation and correction. An alternative PET- 
driven strategy for body motion correction con-
sists in computing the coordinates of the activity 
distribution’s center of mass (“COM”) [91] or 
center of detection [90] (“COD”—if TOF is 
available) from the list-mode data as a function of 
scan time. Analysis of the extracted traces can 
then be used to detect motion under the assump-
tion that body movements cause abrupt changes 
in COM or COD coordinates. List-mode scan 
data can then be parsed into frames accordingly, 
reconstructed and registered for motion estima-
tion and correction [90, 91].

2 Cardiac PET/MR Basics
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 Radiation Dose Reduction

PET/MRI offers a substantially reduced radia-
tion exposure compared with PET/CT owing to 
the elimination of CT and the associated radia-
tion dose from the patient workup. For whole 
body examinations, a potential reduction in 
effective radiation exposure of up to 80% can be 
achieved with PET/MRI relative to standard 
PET/CT [92–94]. This represents a significant 
benefit for children and young adult populations 
considering the cumulative dose associated with 
multiple examinations, e.g. for staging, therapy 
monitoring, and follow-up, and the risk of devel-
oping secondary malignancies later in life due to 
radiation exposure [95, 96]. Furthermore, with 
MR acquisition protocols generally requiring 
longer time per bed position, it may also be pos-
sible to further reduce the injected tracer dose in 
PET/MR examinations [95].

 Cardiac MRI

Because of its high spatial and temporal resolu-
tion and excellent soft-tissue contrast, cardiac 
MRI is recognized as the reference method for 
myocardial tissue characterization and ventricu-
lar function assessment, providing structural and 
functional information of the heart complemen-
tary to the molecular information from PET [97]. 
Conventional T1- and T2-contrast weighted car-
diac MR sequences, such as late gadolinium 
enhancement (LGE) and fast spin-echo (FSE), 
provide qualitative assessment of the myocar-
dium but are limited in their ability to detect and 
grade diffuse diseases. Cardiac parametric map-
ping methods, including T1, T2, and T2* map-
ping, can address these limitations by providing 
quantitative characterization of myocardial tissue 
composition [98]. The longitudinal relaxation 
time (T1) characterizes alterations in the struc-
ture and intra/extracellular components of the 
myocardium. Modified Look-Locker inversion 
recovery (MOLLI) is a widely used method for 
cardiac T1 mapping [99]. It utilizes inversion 
recovery (IR) pulses followed by ECG-gated bal-
anced steady-state free precession (bSSFP) 

acquisitions over multiple cardiac cycles to allow 
estimation of myocardial T1  in a single breath- 
hold. A variety of inversion- and/or saturation- 
recovery schemes have been developed to 
improve the accuracy of T1 mapping [100]. The 
extracellular volume fraction (ECV), measured 
from pre- and post-contrast T1 values, is an 
emerging biomarker for diffuse fibrosis, e.g., in 
heart failure, dilated cardiomyopathy, and amy-
loidosis, which is known to be particularly chal-
lenging to detect using the conventional LGE 
method [98]. The transverse relaxation time (T2) 
is sensitive to changes in water content of the 
myocardium, e.g. in presence of edema [101]. In 
cardiac T2 mapping, T2 preparation modules 
with different durations are inserted in each car-
diac cycle followed by ECG-gated bSSFP or 
spoiled gradient echo (GRE) acquisitions with 
breath-holding [98]. The T2* relaxation time 
reflects the decay of the transverse magnetization 
in the presence of local B0 field inhomogeneity 
and is used for assessment of myocardial iron 
load. Cardiac T2* mapping is often performed 
using ECG-gated GRE acquisitions at different 
echo times with breath-holding [98]. Finally, car-
diac cine MR imaging is the gold standard 
approach to assessing ventricular function, 
including ejection fraction, myocardial mass, and 
myocardial wall motion [102].

All current commercial PET/MR scanners 
operate at 3 T. Compared to 1.5 T, cardiac MR at 
3 T faces several unique challenges. Due to the 
more severe B0 inhomogeneity at 3 T, sequences 
using bSSFP acquisitions are prone to the well- 
known banding artifacts, imposing challenges in 
B0 shimming and preventing from 3D cardiac 
imaging. In addition, transmit B1 variations on 
the order of 30–60% over the left ventricle have 
been reported [103], causing bias in the estimated 
T1 values at 3  T.  Besides the above hardware- 
related challenges, cardiac and respiratory 
motions cause significant difficulties in cardiac 
MR. As a result, commercially available cardiac 
parametric mapping sequences are 2D imaging 
sequences with breath-holding acquisitions, 
which limit both the resolution and spatial cover-
age in the slice selective direction. Furthermore, 
acquiring multiple parametric maps (T1, T2, etc.) 
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prolongs the total imaging time. Therefore, very 
active research efforts are being undertaken to 
achieve 3D, high-resolution, multi-parametric 
cardiac imaging with free-breathing or even 
ECG-gating free acquisitions, including respira-
tory and cardiac gating-based free-breathing 
methods [104], sparse sampling methods with 
constrained image reconstruction [105, 106], MR 
multitasking [107], and MR fingerprinting [108].
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