
Visual-Inertial Navigation Systems
and Technologies

Jorge Alejandro Valdez-Rodríguez, Julio César Rodríguez-Quiñonez,
Wendy Flores-Fuentes, Luis Roberto Ramírez-Hernández,
Gabriel Trujillo-Hernández, Oscar Real-Moreno, Moisés J. Castro-Toscano,
Jesús Elías Miranda-Vega, and Paolo Mercorelli

Abbreviations

CCW Counterclockwise
CW Clockwise
DCM Direction cosine matrix
FOV Field of view
GNSS Global navigation satellite system
IMU Inertial measurement unit
INS Inertial navigation system
LSS Laser scanner system
NED North, east, down
NEU North, east, up
OSV Omnidirectional stereo video
OVINS Omnidirectional visual-inertial navigation system
RMIS Robot-assisted minimally invasive surgery
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SNR Surgical navigation robot
SVS Stereoscopic vision system
VINS Visual-inertial navigation system
VIO Visual-inertial odometry

1 Introduction

Navigation is an ancient activity of the human history, originated from the necessity
of travel from a region to another in the search for a better environment, better
resources, or better opportunities [57]. It is a task that not everyone is able to
achieve; even the most experienced person can get lost in a trip and never arrive
at the desired location. Therefore, a diversity of tools and methods are developed as
an aid for travelers; those elements are known in navigation as references.

The use of references as support in navigation could be interpreted as an
external object used for orientation. Landscapes are some of the oldest and effective
references, but as the task becomes more complicated, the instrumentation used in
navigation grows in precision and complexity.

However, navigation is not exclusive to travel; in the present days, a robot
performing the specific task of placing objects in a diversity of defined points is part
of the navigation problem. The possibilities of following a track, evading objects,
and mapping a room are elements of navigation; they require a robot which has the
capability of orientating in unknown environments.

For example, a pipeline inspection gauge is a system which has the capacity of
performing navigation to inspect a gas or oil pipeline to locate and detect critical
deformations [6]. The system propelled possesses a navigation system conformed
of inertial sensors and/or GPS signals, allowing to track and enlist the places
where a failure exists. Other tasks demand low error orientation as a result of the
consequences in a poor navigation. For instance, the field of medicine requires
manipulators capable of performing meticulous operation procedures in humans
[61]. Teleoperated robot-assisted minimally invasive surgery (RMIS) is more
common and an important part of medical surgery. RMIS systems require precision
in their movements, sometimes to compensate the inexperienced movements of
novice surgeons or simply to balance between high clinical importance and technical
complexity.

Different resources are implemented as reference for INS, although a popular
and continuously growing solution is the addition of visual references as cameras
and laser scanners [46, 71]. Vehicles, such as cars, planes, and teleoperated RMIS,
are technologies taking advantage of INS with visual sensors. The chapter presented
discusses how INS are aided by visual references and the benefits gained in modern
technologies.
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2 VINS

Navigation is the science of maneuvering from one point to another using references
to know the current position [8]. Tools, as maps or compasses, are commonly used
when someone has in mind the word navigation, but more sophisticated devices are
applied nowadays and the integration of two or more forms a “navigation system.”
Popular gadgets as cameras, instrumentation as accelerometers and gyroscopes, or
systems as laser scanners are elements included in navigation systems.

The combination of two or more navigation references with navigation tech-
niques, physics, and mathematical analysis receives the name of “navigation
system” [42]. Navigation references are classified according to the coordinate ref-
erence frame, where devices with a fixed origin are known as “absolute references”
[81]; otherwise, instruments with a relative coordinate reference frame where the
position and attitude require to be constantly calculated over time are called “inertial
references” [20].

A widely implemented instrument in inertial navigation is the inertial measure-
ment unit (IMU) which is conformed by inertial instruments as accelerometers
and gyroscopes. The combination of IMUs and mathematical navigation calculus
is known as inertial navigation system (INS) [11] Fig. 1.

As a result of the mathematical integration required to obtain position and atti-
tude, inertial sensors have an inherent bias that reduces precision in the navigation
calculation. A common effect in INS is the presence of “drift,” a deviation in the
estimated position and orientation. Drift is an accumulative multifactorial error
which predicts a different location from the actual body position as time elapses.

In order to reduce the drift error, a variety of solutions are recommended in
literature to assist INS. Kalman filters help to improve the computational efficiency
and diminish the error in navigation applying two weighting factors to compute a
new estimation: the previous estimation in accordance with the known equations of
motion and the obtained measurement from the IMU [16, 76]. The new estimation
calculated by the Kalman filter increments the accuracy but is not capable of
reducing all the drift error of an inertial sensor and computational miscalculations.
It is possible to enhance the data accuracy of Kalman filter by complementing it
with a different type of filters to correct computation.

Fig. 1 Inertial navigation system
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Another approach to reduce drift error in INS is the implementation of external
navigation references such as GNSS (global navigation satellite systems), magne-
tometers (electronic compass), and visual systems as cameras to the INS. Visual
sensors provide information about the environment where the body is located;
however, they are sensitive to illumination conditions and motions [60]. An INS
complemented with a visual system is called visual-inertial navigation system
(VINS); the structure is an INS combined with one or more visual references as
cameras, visual odometry [25], or laser scanner techniques.

The used approach in image-based navigation to complement INS is sup-
plying and processing images using visual systems to provide accurate data of
the surrounding environment or navigation object [59]. In addition, image-based
navigation emulates the sense of orientation and navigation in human beings,
allowing to determine object attitude and position in addition to object recognition
[24].

In navigation is required a coordinate reference frame to express the position
of a point in relation to some reference [43]. A coordinate reference frame is a
Cartesian, right-handed axis set defined by a reference. Objects, the point of view,
the Earth, and sensors are examples of references adopted to create a reference frame
and with the aid of mathematical transformations are possible to translate from one
coordinate reference frame to another.

One example of coordinate reference frame is the body frame. The body frame is
the coordinate reference frame related to the vehicle or navigation object. The axes
are related to the direction of the movements of the body, where X is the forward
direction, Y is the right direction, and Z is related to the gravity pointing in the down
direction (Fig. 2). In navigation, the body frame is assumed to have the axes in the
same direction as the inertial frame to align the inertial sensors with the navigation
vehicle. There is a wide variety of coordinate reference frames in navigation and

Fig. 2 Body frame
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some of the related visual systems are going to be discussed further in the present
chapter.

The translation from a coordinate reference frame to another is commonly solved
through two different rotations in a plane, using methodologies such as the DCM
and quaternion.

DCM is applied in a three-dimensional space R3 where rotations are given
through a coordinate angle called Euler angle [26, 62]. The rotations follow the
right-handed coordinate frame rule where every rotation is defined, e.g., a CW
rotation as positive and CCW rotation as negative.

A rotation in the Z axis is called yaw and the Euler angle is represented with ψ

letter. The Cψ rotation matrix is represented as follows:

Cψ =
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦ (1)

The X axis rotation is represented by ϕ the Euler angle and is defined as roll. Eq.
(2) shows the corresponding rotation matrix Cϕ:

Cϕ =
⎡
⎣

1 0 0
0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ

⎤
⎦ (2)

And for a rotation in the Y axis, the θ Euler angle is used and the rotation is
named pitch. The Cθ rotation matrix is described below:

Cθ =
⎡
⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ (3)

Therefore, for a succession of three rotations in each of the mentioned axis is
created a DCM which represents a general translation from an A frame to a B frame:

CB
A =

⎡
⎣

cos θ cos ψ − cos ϕ sin ψ + sin ϕ sin θ cos ψ sin ϕ sin ψ + cos ϕ sin θ cos ψ

cos θ sin ψ cos ϕ cos ψ + sin ϕ sin θ sin ψ − sin ϕ cos ψ + cos ϕ sin θ sin ψ

− sin θ sin ϕ cos θ cos ϕ cos θ

⎤
⎦

(4)

It is important to take into consideration that any translation between frames
could perform two or more successive rotations involving Eqs. (1, 2, and 3). In this
chapter are presented some examples applied for specific cases.

However, there exists another form to interpret navigation translations; this is
by using quaternions [30, 41]. As the name suggests, a quaternion is formed by
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four elements, an “s” scalar value and a vector −→v conformed of three scalars
representing an axis x, an axis y, and an axis z as shown below:

q =
[

s−→v
]

=

⎡
⎢⎢⎣

s

vx

vy

vz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

qs

qx

qy

qz

⎤
⎥⎥⎦ (5)

Therefore, every rotation in a quaternion is governed by the following equation:

qB↔A =

⎡
⎢⎢⎣

qs

qx

qy

qz

⎤
⎥⎥⎦ =

⎡
⎣ cos θ

/
2∥∥−→

e
∥∥ • sin θ

/
2

⎤
⎦ (6)

where:

• qB ↔ A defines a translation from an A reference frame to a B reference frame and
backward. Furthermore, the expression could represent a one-sided rotation if it
is necessary.

•
∥∥−→

e
∥∥ vector represents a rotation in the axis of interest, which could be described

as one of the following vectors shown in Eq. (7):

∥∥−→
x

∥∥ =
⎡
⎣

1
0
0

⎤
⎦ ; ∥∥−→

y
∥∥ =

⎡
⎣

0
1
0

⎤
⎦ ; ∥∥−→

z
∥∥ =

⎡
⎣

0
0
1

⎤
⎦ (7)

Additionally, it is possible for mentioned vectors
∥∥−→

e
∥∥ to represent a combina-

tion of two or three simultaneous rotations.
Hence, to rotate θ degrees a three-dimensional vector −→va and finalize in a −→vb

position, the equation is described as quaternion multiplication
⊗

as shown in Eq.
(8):

−→vb = qB←A

⊗ [
s−→va

]⊗
qB←A

−1 (8)

Therefore, for every reference frame, different sequences of rotations are realized
according to the planes and elements involved. Consequently, it is possible to
convert the information from a DCM structure to a quaternion representation.

A quaternion is described by the diagonal elements of a DCM, where the
equations applied are:
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qs =
√

1

4
• (1 + C11 + C22 + C33) (9)

qx =
√

1

4
• (1 + C11 − C22 − C33) (10)

qy =
√

1

4
• (1 − C11 + C22 − C33) (11)

qz =
√

1

4
• (1 − C11 − C22 + C33) (12)

Thus, some elements of the DCM matrix required for one of the quaternion
values may be equal to zero. Consequently, it is necessary to involve the elements
in the other subdiagonals of the matrix [5].

The process followed indicates the evaluation of the recently computed qs, qx,
qy, and qz, where the one with the greatest absolute value is selected. The other
elements are recalculated accordingly to the selected value.

For a selected qs, the other elements are estimated as:

qx = C32 − C23

4 • qs

(13)

qy = C13 − C31

4 • qs

(14)

qz = C21 − C12

4 • qs

(15)

If the determined greatest absolute value is qx, then the equations for the other
elements are:

qs = C32 − C23

4 • qx

(16)
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qy = C21 + C12

4 • qx

(17)

qz = C13 + C31

4 • qx

(18)

When the greatest absolute value is qy, the equations for the other values are:

qs = C13 − C31

4 • qy

(19)

qx = C21 + C12

4 • qy

(20)

qz = C32 + C23

4 • qy

(21)

And finally, if the greatest absolute value is qz, the equations are determined as
follows:

qs = C21 − C12

4 • qz

(22)

qx = C13 + C31

4 • qz

(23)

qy = C32 + C23

4 • qz

(24)

Furthermore, the elements in a quaternion can describe a DCM matrix if
necessary [22]. The equation is described as:

CB
A =

⎡
⎢⎣

q2
s + q2

x − q2
y − q2

z 2 • (
qx • qy − qy • qs

)
2 • (

qx • qz + qy • qs

)
2 • (

qx • qy + qz • qs

)
q2
s − q2

x + q2
y − q2

z 2 • (
qy • qz − qx • qs

)
2 • (

qx • qz − qy • qs

)
2 • (

qy • qz + qx • qs

)
q2
s − q2

x − q2
y + q2

z

⎤
⎥⎦

(25)
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It is important to indicate that the information presented in the chapter to translate
from one reference frame to another is expressed in DCM, but as previously
described, it is possible to handle the rotations with quaternions.

Stereoscopic vision systems and laser scanner systems are two examples of visual
systems applied in VINS. They are widely used in navigation applications along
with popular technologies as LIDAR and are part of current methodologies. The
aim of both systems is to provide absolute references to diminish the inherent drift
error of INS using visual sensors as cameras or photoelectric sensors.

3 Stereoscopic Vision Systems

The cameras in navigation attempt to recreate the eyes’ function, giving information
about the surrounding environment. One single camera will only offer some
information of the environment, but for terms of depth, surface shape, and curvature,
it is necessary to add two or more cameras.

Stereoscopic vision systems, or SVS, acquire visual information from two
or more cameras to obtain features of a specific scene [50]. SVS are portable
systems with a wide field of view (FOV), capable of obtaining distance and object
information, and also, SVS have advantages over other navigation devices as sonar
and radar, because they do not require mechanical components and attain the pixels
of the image at the same point in time [39, 80] (Fig. 3).

On the other hand, if SVS loss information in the image digitalization, there is a
distortion in the lens or the system cannot find the corresponding points in the two
(or multiple) images; they will not be available to achieve the triangulation process
[51].

The integration of SVS to a VINS states a system capable of performing visual
odometry, where two or more cameras work in conjunction with inertial references
as an IMU to navigate in real time [21]. The SVS acts as an absolute reference for
the INS, helping the inertial references with information about the surroundings to
diminish drift and reduce the error in position and attitude.

Fig. 3 Stereoscopic vision
system
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For a navigation environment, SVS systems are subject to constant motion, fast
dynamics, limited computation on board (for small vehicles or bodies), and the
constant necessity of odometry [1]. In VINS, a SVS system must operate in a self-
positioning configuration, where a camera is part of the body hardware and provides
images of the current environment where the body is navigating [72].

In order to navigate implementing a VINS arrangement with an SVS as the visual
sensor, the system acquires a set of images according to the number of cameras
available. Therefore, it initiates the detection of significant points and recognizes
geometries in the set of images, gets information of the surrounding, and then
finds the similarities. Afterward, a pattern match process begins where points are
localized in each image to subsequently identify the same points but in the previous
iteration of the set of images. Finally, the system identifies the variations of the
pixels in the sequence of the images to perform the estimation of the motion [48,
56].

Figure 4 shows a block diagram where an SVS process is integrated in an
INS, resulting in VINS. The SVS process is followed by a block transforming the
information to body reference frame, allowing the data to properly be compared
with the INS dead reckoning and feedback the system.

Figure 4 shows that it is necessary to transform the data coming from the SVS
process to a body reference frame. As other references, the cameras in a SVS own a
reference frame according to their properties. A camera coordinate reference frame
is shown in Fig. 5; the axis is aligned following the right-hand rule. In the presented
frame, Z axis is pointing to the object or the environment in direction of the depth,
which is the view of the camera; X and Y axes, on the other hand, follow the image
axis.

As noted, the camera frame is formed by a different coordinate reference frame
in comparison with the body frame (Fig. 2), a common situation when diverse
references are integrated in any navigation system. Therefore, the axis is aligned
through a mathematical transformation matrix to avoid misinterpretations during the
navigation. A particular solution for multiple coordinate reference frames is rotating
through the coordinate frames until arriving at the navigation frame, where the
navigation is interpreted and related to a remarkable amount of coordinate reference

Fig. 4 SVS in an INS
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Fig. 5 Camera coordinate
reference frame

Fig. 6 Navigation frame

frames. The navigation frame is configurated with earth gravity and the cardinal
points north and east. X axis is pointing to north; Y axis is aligned to east; and Z axis
is pointing up or down, creating a NEU and a NED configuration. The arrangement
is specified by the user (Fig. 6).

According to Wang et al. [73] and Veth [69], the camera is modeled after the
camera perspective as showed in Fig. 7, where the presented frame shows the virtual
frame in substitution of the focal plane to correct the inversion in the directions of
the X and Y axes [74]. Also, Eq. (26) shows the line of sight vector from the camera
pinhole in navigation coordinates (sn):

sn = [xi − xc yi − yc − f ] (26)

The line of sight vector sn is the difference between the image target location (i)
and the camera position (c) in X, Y coordinates; xi and yi are the image coordinates
and xc and yc are the camera coordinates. The vector also includes the camera’s
focal length f which is the distance between the camera and the image.

sn
c , describes the cameras position transformed from camera frame to navigation

frame. Therefore, the equation describes two DCM and considers the distance
between the image target location and the camera position (27):
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Fig. 7 Camera pinhole

sn
c = Cb

c Cn
bsn (27)

Cn
b is the DCM to transform from body frame to navigation frame. It is defined

in Eqs. (28) and (29), where ϕ expresses the roll angle in X axis, θ is the pitch angle
in Y axis, and ψ is the yaw angle in Z axis:

Cn
b = Rx (ϕ) Ry (θ) Rz (ψ) (28)

Cn
b =

⎡
⎣

cos ψ cos θ sin ψ cos θ − sin θ

− sin ψ cos φ + cos ψ sin θ sin φ cos ψ cos φ + sin ψ sin θ sin φ cos θ sin φ

sin ψ sin φ + cos ψ sin θ cos φ − cos ψ sin φ + sin ψ sin θ cos φ cos θ cos φ

⎤
⎦

(29)

Cb
c DCM represent the camera to body transformation and involve rotations in

Z and Y axes, transforming the attitude from the camera frame to the body frame
(Eq. 30) [7]. The equation shows an azimuth angle expressed as α for Z axis and an
elevation angle expressed as β for the rotation in Y axis:

Cb
c =

⎡
⎣

cos (α) sin (α) 0
− sin (α) cos (α) 0

0 0 1

⎤
⎦

⎡
⎣

cos (β) 0 − sin (β)

0 1 0
sin (β) 0 cos (β)

⎤
⎦

Cb
c =

⎡
⎣

cos (β) cos (α) sin (α) − sin (β) cos (α)

− sin (α) cos (β) cos (α) sin (α) sin (β)

sin (β) 0 cos (β)

⎤
⎦ (30)
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Fig. 8 Binocular disparity (a) and epipolar geometry (b)

Fig. 9 Active stereo
coordinate frame

As mentioned before, an SVS implements two or more cameras in order to
estimate depth of objects and planes in a scene. The calculation of depth is produced
by a binocular disparity created between the cameras [12]. Each camera possesses
its own projection of the image, a triangulation between the points of each camera,
and a point in the object of view creates an epipolar plane and determines a pair of
epipolar lines in the two images, where the epipole point is the center of projection
of the other camera [15, 29] (Fig. 8).

Consequently, to integrate a SVS in an INS, both cameras’ frames are located in
a midpoint frame where the two encounters. The active stereo coordinate reference
frame CAS describes the relation of left and right cameras, Cl and Cr, respectively;
to an origin position, the calculation is made through a cross product as shown in
Eq. (31) and Fig. 9 [31, 40].

CAS = (Cr − Cl) (Co − Cl) (31)
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The active stereo coordinate reference frame is located in the center and provides
the data used in dead reckoning, where the CASk is compared with the CASk-1 to
compute a new attitude and position estimation.

4 Mobile Binocular Visual Inertial Odometry

Visual-inertial odometry (VIO) is a method employed in navigation to estimate
motion using images acquired by camera sensors [64].

VIO systems are capable of functioning with a monocular camera; however, it is
recommended to use a binocular camera to get better results in terms of environment
recognition and motion due to its ability to perform depth determination [33]. There-
fore, it is possible to implement a VIO system in vehicles or robotic manipulators
to perform navigation tasks and work in conjunction with inertial instruments.

Vehicles as planes, drones, all-terrain mobile robots, or humanoid robots rely on
binocular vision for navigation. For example, explorer vehicles take advantages of
the cameras to travel across unknown environments and avoid collisions, or being
positioned in a dangerous place [78].

All-terrain mobile robots are common in emergency situations in which there
is no opportunity for persons to enter buildings. Binocular VIO aids not only to
navigate through the place but also to provide opportunity to recognize and locate
objects. A similar situation applies for drones where it is necessary to fly and
identify landmarks [28] (Fig. 10).

However, VIO binocular mobile robots require obtaining non-blurry images to
properly execute the process between frames and calculate the current distance and
attitude [52]. Hence, VIO binocular mobile systems could be affected by the same
surrounding environment they are exploring. Weather conditions, non-plain floors,

Fig. 10 SVS binocular rescue mobile vehicle (left) and binocular educational mobile vehicle
(right) [10]
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Fig. 11 Calibration and correction for blurry images

absence of light, or the cameras being directly affected by light are some of the
drawbacks impeding the cameras to accurately get images.

VIO binocular mobile robots follow the majority of the steps in the process
of VINS. However, in some systems, at the beginning a camera calibration phase
and in a subsequent state a learning technique for parameter estimation through
random samples are added [23, 66]. The methodologies mentioned work as a help
to diminish the errors for the image taken by the binocular cameras.

Besides the feature point extraction of the image, the parameter estimation
compares the current image with the previous one in order to obtain the current
position and attitude of the navigation body or the relative motion Tk of the camera
[4, 77]. Relative motion Tk is the computation of the current position and attitude
of the navigation body, where every new data k obtained from the SVS process is
concatenated with the previous data k − 1. Tk is expressed as:

Tk,k−1 =
[

Rk,k−1 tk,k−1

0 1

]
(32)

where Rk,k – 1 is a rotation matrix. Tk is a translation vector between frames taken at
timesteps. Therefore, Tk is employed to determine a global estimate Gk to transform
the information to the body reference frame in the particular case of VINS, as shown
in Fig. 11 and afterward, compare the information with inertial instruments as IMU.
Gk is obtained with the previous Gk − 1 and the relative motion Tk referenced at the
initial frame G0 at k = 0:

Gk = Gk−1Tk (33)

5 Omnidirectional Visual-Inertial Navigation Systems

OVINS are navigation systems build with two omnidirectional cameras or two
rotating cameras; their purpose is to measure depth in the horizontal plane of the
cameras additionally to horizontal and vertical distances. In navigation, the device
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Fig. 12 OVINS: Two omnidirectional cameras in a vehicle to calculate depth (left) and Google
Maps car (right) [9]

Fig. 13 OVINS detecting points in two omni-images

employed must be able to record omnidirectional stereo video (OSV) and create
panoramic images to estimate distance and attitude in real time (Fig. 12)

In a city, OVINS allow INS to be aware of the different obstacles a mobile
vehicle may encounter. From small places as malls or amusement parks to a bigger
environment as the street, OVINS have the possibility to determine the distance
between the mobile vehicle and the object (Fig. 13).

In OVINS, the FOV they possess is bigger than the one proportioned in
conventional cameras; it allows the possibility to perform navigation tasks in a
large environment. UAV as drones perform specific tasks such as recognition and
reconstruction of the surroundings where the mobile vehicle is navigating. The
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Fig. 14 Panoramic image and axis

Fig. 15 Left and right
camera FOV over a point
p(x, y)

OVINS also realize odometry work with the images, defining coordinates for the
points demonstrated in the captured spherical images [49].

OVINS takes panoramic images of the surroundings, where the image shows the
horizontal and vertical axis through the pixels. A panoramic image is able to display
between 0◦ and 360◦ in the horizontal axis and from −90◦ to 90◦ in the vertical axis
[32] (Figs. 14 and 15).

There are various methods to create panoramic images as mentioned by Peleg et
al. [47]. Circular projections or rotating cameras are some of the most common and
still, as mentioned SVS, it exists a vertical disparity. The vertical disparity is created
when the pixel is not founded in the same location of the vertical axis. The points
are computed from Eq. (34):

θ = cos−1
(

r

px

)
φ = tan−1

(
py√

p2
x − r2

)
(34)

where a point (px, py, 0) is projected in the image. The panorama possesses a radius
r, and due to the rotational capacities of the cameras, a pair of perspective images is
generated from the left and right cameras, Cl and Cr, respectively. Also, an α angle
represents the direction of view from the camera [3, 75]:
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Cl =
⎡
⎣

cos φ sin
(

π
2 − θ − α

)
sin (φ)

cos φ cos
(

π
2 − θ − α

)

⎤
⎦ Cr =

⎡
⎣

cos φ sin
(
θ − π

2 − α
)

sin (φ)

cos φ cos
(
θ − π

2 − α
)

⎤
⎦ (35)

6 Laser Scanner Systems

The object recognition through laser scanner systems (LSS) is a methodology
employing photoelectronic instruments capable of detecting the light emitted by
a laser. There exist different types of LSS and a diversity of photoelectronic sensors
that detect light at different speeds. Therefore, it is important to note the impact of
the methodologies in the precision of the point estimation; the different strategies
improve the resolution incrementing the number of detected points during the
scanning.

One approach to compute measurements is with the help of triangulation
methods. Laser triangulation can be static, where the method requires an adjusted
and fixed laser and camera to capture the light. Hence, a dynamic laser triangulation
method requires a moving laser until the point of light goes through the selected area
or object, and then the triangulation is calculated and the measurement is obtained
[53, 54].

The LSS process produces a point cloud representing the object surface, where
the points generated must present a low dispersion to reflect the true form of
the scanned object. Therefore, despite mainstream methods for registering the
measurements as triangulation laser scanner, an error in the estimation of the
object’s shape is still present. Methodologies as artificial neural networks (ANN)
are a helpful solution to LSS, thanks to their capacity to detect and predict patterns
also applied in image classification [58, 67] (Fig. 16).

In a navigation system, LSS provides information about the surrounding envi-
ronment, shapes, size, and depth of objects. As discussed previously, the photoelec-
tronic sensors and laser are key factors in distance measurement, where some lasers
are designed to measure large distances. Aerial vehicles as drones require LSS to
create maps and determine features for the study of ecologic areas. On the other
hand, terrestrial vehicles as cars implement LSS to recognize the road, helping self-
driving vehicles avoid collision and measure distances (Fig. 17).

Nevertheless, there exist some lasers in LSS for short distances, applied in the
high-precision detection, where they help in differentiation of near objects with
detail and provide support for navigation body until they find the desired point.
Close-range navigation with laser is applied for microsurgery systems where the
level of precision required is high to properly complete the procedure on people.
Mobile robots in pipelines realize a mapping of structures to extract features to
detect damaged elements such as elbows, T-junctions, or corrosion in the pipeline.

For an LSS working with an INS, the inertial navigation process gets feedback
from the last iteration of position and attitude in conjunction with the data coming
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Fig. 16 Laser scanning (upper image) and point cloud (below image)

Fig. 17 Aerial mapping with
laser scanners [55]

from the LSS. The LSS system performs a point triangulation to measure the
distances and then proceed to apply a transformation of the data in LSS to the body
reference frame (Fig. 18).

LSS coordinate reference frame as other reference frames follows the right-hand
rule, where Z axis is parallel to the scanning aperture of a laser scanner system and
is pointing up, Y axis is the pointing direction of the scanning aperture laser, and X
axis is orthogonal to Z axis and Y axis and pointing to the left [68] (Fig. 19).

And to transform the LSS coordinate reference frame to body coordinate refer-
ence frame, the system as other references can employ a quaternion transformation
matrix or a direction cosine matrix. The present chapter shows a direction cosine
matrix required to transform the LSS frame. However, the LSS frame requires
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Fig. 18 LSS and INS integration

Fig. 19 LSS coordinate reference frame

aligning the laser scanner; the process presents the following equations to properly
center the scanner [36, 65]:

P L =
⎡
⎣

pi sin φi cos θi

pi sin φi sin θi

pi cos φi

⎤
⎦ (36)

For Eq. (6), PL is the offset to properly align the laser scanner to the system, φ is
the mirror angle, θ is the laser scanning axis, and pi is an offset of the pulse on the
distance measurement. The DCM complements the aligning process. As a result, to
transform the LSS measurement to body reference frame, the equation requires the
rotation in X and Y axis:
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Cb
la = Cb

l P L (37)

where Cb
la is the DCM of the aligned laser in the body reference frame and Cb

l
represents only the rotation from laser frame to body frame. The transformation
performs a rotation in X, Y, and Z axis as shown before in Eq. (38):

Cb
l =

⎡
⎣

cos ψ cos θ sin ψ cos θ − sin θ

− sin ψ cos φ + cos ψ sin θ sin φ cos ψ cos φ + sin ψ sin θ sin φ cos θ sin φ

sin ψ sin φ + cos ψ sin θ cos φ − cos ψ sin φ + sin ψ sin θ cos φ cos θ cos φ

⎤
⎦

(38)

7 LIDAR Odometry and Mapping

The motion estimation is a task discussed in different parts of the present chapter.
INS has the capability to perform odometry through different means and work in
real time. LSS systems are capable of executing the task, and due to their capacity
to characterize forms and their measurements, mapping in real-time using LSS is
still a popular technology.

On the other hand, light detection and ranging (LIDAR) is a measurement tech-
nology based on laser technology. The system principle consists of a transmitter and
a receiver; LIDAR measures the time it takes for the laser to travel to a point and go
back to the receptor. Therefore, a common practice for the improvement of precision
is comparing the measurements to other instruments’ data. Consequently, LIDAR
technology is used for mapping in topography and exploration [70] (Fig. 20).

The mapping process requires the LIDAR system in movement; as a conse-
quence, there are a series of problems affecting the precision in the measurements.
In order to implement a LIDAR in an INS for a mapping process in real time, it is

Fig. 20 LIDAR system and
FOV
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Fig. 21 Traveling time ts of a
laser pulse

Fig. 22 Body and LIDAR coordinate reference frame and car with a LIDAR [18]

necessary to consider the synchronization of the data received. LIDAR measures the
timestep a light pulse takes to reach the target and back to the receiver [44, 79].

The range of LIDAR pulse of light is calculated as follows:

R = 1

2
c • ts (39)

where R is the range or distance between the laser transmitter and the surface object,
c is the speed of light, and ts is the traveling time of the laser pulse (Fig. 21). The
amplitudes of the laser pulse in Fig. 22 demonstrate the traveling time ts [17]. AT
and AR are the amplitude transmitted and the amplitude received, respectively.

The information proportioned by LIDAR is matched with the inertial instruments
as in other INS. Besides the synchronization in time of the data samples, the LIDAR
information must be in the body reference [34]. Henceforth, due to LIDAR scanning
laser process, the system can share the same coordinate reference frame for X and Y
axis. Z axis is pointing in the opposite direction.
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After LIDAR initiates the scanning, the data is stored in submaps to form the
map of the scanned zone. A variety of methodologies [17, 45, 63] are well known
to proceed with the mapping, but in an INS, the information is complemented
with inertial references as IMU. Hence, the map created and later stored is an
accompaniment for the navigation process; it is still necessary for the technology
to properly calculate and process the information coming from the inertial sensor to
afterward receive feedback from the mapping process.

Therefore, for the integration of LIDAR with an INS, Su et al. [63] propose to
employ the timestep i difference as a reference coordinate, where in a next timestep,
j is describing the system trajectory cij according to the IMU data. Then, it is
calculated a component vector of the cij followed by the body and the current pitch
and yaw variation, represented with dθ and dϕ, respectively. In the particular case
of ground vehicles, c is considered as the ground roughness. The component vector
possesses a chord length of the trajectory:

lij = cij cos (c ∗ dϕ) (40)

Thus, a motion vector pij is determined with the chord length lij to obtain the
variation between the i and j timesteps:

pij =
⎡
⎣

cij cos (c ∗ dϕ) cos (dθ) cos (dϕ)

cij cos (c ∗ dϕ) cos (dθ) sin (dϕ)

− cij cos (c ∗ dϕ) sin (dθ)

⎤
⎦ (41)

8 Surgical Navigation Robots

To perform a surgery, accuracy is a key element for surgeons. It takes years of
practice to meticulously realize a complex surgery. Thus, new technologies to
perform surgeries with precision are now part of some hospitals and are a helpful
tool for inexperienced surgeons. Surgical navigation robots (SNR) are manipulated
by trained surgeons and built with inertial sensors as accelerometers or IMU to
support the movements and improve the precision.

Surgical navigation robots (SNR) are structures composed of robotic arms, INS
system, and complementary sensors to increase the precision. A SNR in conjunction
with a LSS allows the systems to perform scans and obtain detailed information of
the body part in depth and mapping. Thus, the LSS is capable of realizing a mapping
process to create a mesh and to compute finite element calculation [19] (Fig. 23).

LSS is implemented at the end of the link of SNR where the surgical tool is
located; in some systems, the laser points directly to the position where it is going
to be performed the surgical work. The laser position is corrected through inertial
sensors and with the help of cameras where the image is displayed to the surgeon.
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Fig. 23 Laser surgical navigation robot and the Minolta VI-900 class I laser scanner [38]

Robust SNR applies additional optical tracking systems to adjust the laser position
[14] [37].

SNR are robots with a variety of configurations depending on the surgery to be
performed. Specifications as the number of links for the robotic arm, coupling with
other robotic manipulators to improve the precision in the surgery, are elements to
consider where the mathematical model is described. For the purposes of the present
chapter, the following Eqs. (42, 43, and 44) correspond to the final link of a robotic
arm where an LSS could be found. Thus, elements as the body coordinate reference
frame and distances for offset laser must be considered.

For a mapping coordinate frame m, Liao et al. [35], Jerbić et al. [27], and Al-
Durgham et al. [2] suggest:

rm
p (t) = rm

b (t) + Cm
b (t)

{
ab

IMU/s + Cb
s rs

p(t)
}

(42)

where rpm, rbm, and rps are the positions of the body frame, point p at the end of the
arm and a function of the observed range, respectively. Cb

m and Cs
b are DCM for

the rotations; thus, the equations can vary depending on the arm configuration. And
ab

IMU/s is the lever arm offset (if exists) between the laser and the body frame.
Finally, for a validation in the accuracy of measurements Chen et al. [13] propose

a pivot P and axis A calibration, where the actual i points collected are compared to
the estimated pivotal points P*, to obtain a distance error:
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Pierr =
√

(Pix − P∗ix)
2 + (

Piy − P∗iy

)2 + (Piz − P∗iz)
2 (43)

And for the angle error are included the actual angles A and the calculated angle
A*:

Aierr = cos−1

⎡
⎢⎣ Aix − A∗ix + Aiy − A∗iy + Aiz − A∗iz√

Aix
2 + Aiy

2 + Aiz
2 ×

√
A∗ix

2 + A∗iy
2 + A∗iz

2

⎤
⎥⎦ (44)

9 Conclusions

For the integration of a reference to INS, even for similar types of instrumentation,
proper identification of the coordinate reference frame and interpretation of the data
expressed are required. The data from both SVS and LSS must be transformed to the
navigation frame or the measurement frame where it is needed for analysis. All the
transformation matrices in this chapter are DCM, but the described methodologies
could also be applied for quaternions if the reader is more familiar with them.

When a SVS is incorporated into an INS, it enhances the possibility to attach
two or more cameras in a different set of configurations for the system. For a proper
interpretation of the data obtained from the image, it is necessary to define where
the epipolar line is located with their epipolar points and consider the line of sight
and FOV demanded for every camera at the moment to fix them in their location.

Besides, when more cameras are added to the system, a robust calibration is
demanded in order to diminish errors in the measurements.

SVS are more common to be implemented with INS or navigation systems; the
reason is their low complexity in data interpretation, and they are fast systems. Thus,
SVS have the property to determine the objects in the environment even without the
involvement of a methodology; the user can simply get the image and correct the
trajectory if the system is sending information in real time.

LSS, on the other hand, is more useful for mapping in navigation. The mapping
possibility helps the system to recognize a familiar environment, avoid collisions,
and improve the navigation. Two of the mentioned LSS own different methodologies
to perform measurements during navigation were triangulation and time of flight.

LSS systems could require more time than SVS to perform their scanning and be
able to recognize the objects or the structure in front of the body. But a properly
scanned object can provide useful information and help the system to perform
precise movements as required in medical surgeries.

For both systems, it is necessary to remember that the body could make
movements that can distort the camera image and the laser reception, generating
measurement errors and increments in the INS drift. The absolute references aid the
IMU of the INS, but in other situations, the IMU is helping the vision systems in the
navigation, as in the LIDAR case. During the integration of the vision system with
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INS, it is desirable to define which system is the one receiving feedback through the
navigation process or if both systems are going to work parallel to each other.
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