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The proliferation of computing across more diverse use cases drives applica-
tion and algorithm innovation in more varied goals. Performance continues to
be a key driver in product differentiation, but energy efficiency is essential for
embedded and edge computing. Moreover, reliable and reproducible computing
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Abstract. Universal provides a collection of arithmetic types, tools, and
techniques for performant, reliable, reproducible, and energy-efficient
algorithm design and optimization. The library contains a full spec-
trum of custom arithmetic data types ranging from memory-efficient
fixed-size arbitrary precision integers, fixed-points, regular and tapered
floating-points, logarithmic, faithful, and interval arithmetic, to adaptive
precision integer, decimal, rational, and floating-point arithmetic. All
arithmetic types share a common control interface to set and query bits
to simplify numerical verification algorithms. The library can be used to
create mixed-precision algorithms that minimize the energy consumption
of essential algorithms in embedded intelligence and high-performance
computing. Universal contains command-line tools to help visualize and
interrogate the encoding and decoding of numeric values in all the avail-
able types. Finally, Universal provides error-free transforms for floating-
point and reproducible computation and linear algebra through user-
defined rounding techniques.
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Introduction

is paramount in safety applications such as autonomous vehicles.
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In embedded systems, energy is at a premium, and the application must
deliver a solution within a strict power constraint to be viable. In hyperscaled
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cloud data centers, the cost of electricity has overtaken the acquisition cost of
IT equipment, making energy efficiency even an economic driver for the cloud.

The reproducibility of computational results is essential to applications that
impact human safety and collaboration. Reproducible computation is required
for forensic analysis to explain a recorded failure of an autonomous vehicle.
Collaborative projects that leverage computational science are more efficient
when two different research groups can reproduce simulation results on different
platforms. Universal provides the deferred rounding machinery to implement
reproducibility. Lastly, numerically sensitive results require verification or quality
assertions. Reliable computing provides such guarantees on accuracy or bounding
boxes of error.

The Universal library offers custom arithmetic types and utilities for opti-
mizing energy efficiency, performance, reproducibility, and reliability of computa-
tional systems. Once the arithmetic solution has been found, Universal provides
a seamless transition to create and leverage custom compute engines to accelerate
the execution of the custom arithmetic. And finally, Universal provides a unified
mechanism to extend other language environments, such as MATLAB /Simulink,
Python, or Julia, with validated and verified custom arithmetic types.

2 Background and Motivation

Deep learning algorithms transform applications that classify and characterize
patterns in vision, speech, language, and optimal control. This so-called Soft-
ware 2.0 transformation uses data and computation to synthesize and manage
the behavior and capability of the application. In deep learning applications,
computational demand is high, and data supplied is varied, making performance
and energy efficiency paramount for success. The industry has responded with a
proliferation of custom hardware accelerators running energy-conserving numeric
systems.

These hardware accelerators need to be integrated into embedded, network,
and cloud ecosystems. For example, Google TPUs [16], and Intel CPUs [15] sup-
port a type called a brain float, which is a 16-bit floating-point format that trun-
cates the lower 16-bits of a standard IEEE-754 single-precision float. NVIDIA, on
the other hand, implements their unique data type, the TensorFloat-32 (TF32)
[17], which is a 19-bit format with 8 bits encoding the exponent, and 10 bits
encoding the mantissa.

This proliferation of vendor-specific types creates demand for solutions that
enable software designers to create, run, test, and deploy applications that take
advantage of custom arithmetic while, at the same time, integrating seamlessly
with a broad range of hardware accelerators. Software that can evaluate, adapt,
or replace different arithmetic types requires an upfront investment in architec-
ture design and implementation. Universal offers an environment where anyone
can deploy custom arithmetic types while maintaining complete flexibility to
adapt to better hardware from a different vendor when available.
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As the research and development community learns more about the com-
putational dynamics of Software 2.0 applications, novel number system repre-
sentations will be invented to enable new application capabilities. For example,
massive multiple-input multiple-output (MIMO) systems in cellular networks
will benefit from optimized arithmetic [21]. Convolutional Neural Networks are
showing attributes that favor logarithmic number systems [27]. Safety systems
require arithmetic that is reproducible and numeric algorithms that are reliable
[22]. Large scale high-performance computing applications that model physical
phenomena leverage continuity constraints to compress fields of metrics to lower
power consumption and maximize memory performance [13,18] This list of cus-
tom number systems and their arithmetic type representations will only grow,
igniting a renewed focus on efficiency of representation and computation.

Numerical environments such as Boost MultiPrecision [19], MPFR [5], and
GMP [7] have been focused on providing extensions to IEEE-754. They are not tai-
lored to providing new arithmetic types and encodings as required for improving
Software 2.0 applications. In contrast, Universal is purposefully designed to offer
and integrate new arithmetic types for the emerging applications in embedded
intelligence, mobile, and cloud computing.

Universal started in 2017 as a hardware verification library for the emerging
posit standard [9]. It provided a hardware model of a bit-level implementation
of arbitrary configuration posits, parameterized as posit<nbits,es> and pre-
sented as a plug-in arithmetic type for C++ linear-algebra libraries [6,25,26].
Since then, Universal has grown into a research and development platform for
multi-precision algorithm optimization and numerical analysis.

More recently, it has been instrumental in developing applications that
exhibit strong cooperation between general-purpose processing on the CPU and
special-purpose processing on accelerators. As Universal arithmetic types oper-
ate with the same encoding and memory layout as the hardware accelerator,
applications can use the general-purpose CPU to serialize, prepare, and manage
the data structures on behalf of the custom hardware accelerator without the
need for conversions to and from native types.

In this paper, we provide a status update to the third edition of the Univer-
sal library [23]. In Sect. 3, we discuss the various arithmetic types available in
Universal and where they fit in the set hierarchy representing abstract algebraic
number systems. Section 4 discusses the design flow for creating new arithmetic
types that have proven to be productive. Universal is still very much a hard-
ware/software co-design library, so Sect.5 describes the standard application
programming interface of the arithmetic types in Universal that simplify inte-
gration into verification and regression test suites. Finally, Sect. 6 demonstrates
different algorithm and application framework integration examples. We con-
clude in Sect. 7 with a summary and future work.

3 Universal Arithmetic Type Organization

Figure 1 shows the cover of the different arithmetic types available in Universal
relative to the known algebraic sets.
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Fig. 1. Abstract algebraic sets and Universal arithmetic types

Universal classifies arithmetic types into fized and adaptive types. Fized
types are arithmetic types that have a fixed memory layout when declared. In
contrast, the memory layout of adaptive types varies during the computation.
Fixed types are intended for energy-efficient, performant, and linear-algebra-
focused applications. Adaptive types are more suitable for accuracy and reliable
computing investigations.

For the fized arithmetic types, Universal strives to offer sizes that are con-
figurable by individual bits as the target are custom hardware implementations
in specialized hardware accelerators. The parameterization space of fized arith-
metic types is:

sampling profile and encoding

size in bits

dynamic range

arithmetic behavior (modulo, saturate, clip etc.)

- N

The most informative example is the classic floating-point type: cfloat. It is
parameterized in all dimensions:

cfloat<nbits, es, BlockType,
hasSubnormals, hasSupernormals, isSaturating>

We will discuss the details in Sect. 3.3.

3.1 Definitions

In Universal a custom arithmetic type is defined by a memory layout of the data
type, an encoding, and a set of operators that approximate an abstract algebra.
For example, a simple algebra on a ring where the data encoding is constrained
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to an 8-bit signed integer. Alternatively, a decimal floating-point type that emu-
lates a field with arithmetic operators, addition, subtraction, multiplication, and
division (4, —, X, +).

Most arithmetic types in Universal represent such fields, albeit with a limited
range, and arithmetic rules that express how results are handled when they fall
outside of the representable range. Universal provides a rich set of types that
are very small and are frequently found in hardware designs to maximize silicon
efficiency.

3.2 Energy Efficiency, Performance, Accuracy, Reliability,
and Reproducibility

The energy consumption of a digital logic circuit is proportional to the silicon
area occupied. For an arithmetic type over a field, the silicon area of its Arith-
metic Logic Unit (ALU) circuit is directly proportional to the square of the size
of the encoding. Therefore, the constraint on the range covered by an arithmetic
type is a crucial design parameter for energy efficiency optimization.

However, in sub-micron chip manufacturing technology, the energy consump-
tion of data movement is more significant [14]. In 45nm technology, an 8-bit
addition consumes about 0.03pJ, and a 32-bit floating-point multiply consumes
0.9pJ. However, reading a 32-bit operand from a register file is 5pJ, and read-
ing that same word from external memory is 640pJ. This discrepancy of energy
consumption between operator and data movement worsens with smaller man-
ufacturing geometries, adding additional importance to maximize information
content in arithmetic types to make them as dense and small as possible.

The performance of arithmetic types is also strongly impacted by data move-
ment. Any memory-bound algorithm will benefit from moving fewer bits to and
from external memory. Therefore, arithmetic types and algorithms must be co-
designed to minimize the number of bits per operation to maximize performance.

For applications constrained by accuracy, such as simulation and optimiza-
tion, arithmetic types need to cover the precision and dynamic range of the
computation. The precision of a type is the difference between successive values
representable by its encoding. The dynamic range is the difference between the
smallest and the largest value representable by the encoding.

The domain of reliable numerical computing must provide verified answers.
Arithmetic types for reliable computing need to guarantee numerical properties
of the result [4]. For example, interval arithmetic can assert that the true com-
putation answer lies in some interval and is an example of reliable computing.

Reproducible computation guarantees that results are the same regardless
of the execution order. Reproducible computing is particularly pertinent for
high concurrency environments, such as GPUs and High-Performance Comput-
ing (HPC) clusters.
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3.3 Fixed Size, Arbitrary Precision

Fixed-size, arbitrary precision arithmetic types are tailored to energy-efficiency
and memory bandwidth optimization.

integer<nbits, BlockType, NumberType> The integer arithmetic type can
represent Natural Numbers, Whole Numbers, and integers of nbits. Natu-
ral and Whole Numbers are encoded as 1’s complement numbers, and the
Integers are encoded as a 2’s complement numbers. Figure2 shows a 16-
bit incarnation. Its closure semantics are modulo, and effectively extend the
C++ language with arbitrary precision signed integers of arbitrary fixed-size.
This type is very common in hardware designs.

16-bit integer

11110010101 10011

Fig. 2. A 16-bit integer.

fixpnt<nbits, rbits, arithmetic, BlockType> The fixpnt arithmetic
type is a 2’s complement encoded fixed-point of nbits with the radix point set
at bit rbits. Figure 3 shows a 16-bit incarnation with the radix point at bit
8. Its closure semantics are configurable: either modulo or saturating. The
fixpnt is constructed with blocks of type BlockType, and a fixpnt value is
aligned in memory on BlockType boundaries.

integer fraction (8 bits)

T
1]1]1]oJoJ1]1]oé1]1]1]1]ofo]1]1

Fig. 3. A 16-bit fixed-point with 8 fraction bits.

cfloat<nbits, es, BlockType, sub, super, saturating> The cfloat arithmetic
type is a floating-point type of size nbits bits, with 1 sign bit, an exponent
field of es bits, and nbits — 1 — es number of mantissa bits. The exponent
is encoded as a biased integer. The mantissa is encoded with a hidden bit
for normal and supernormals numbers. Subnormal numbers are numbers
with all exponent bits set to 0s. Supernormal numbers are numbers with all
exponent bits set to 1s. Normal numbers are all encodings that are not sub-
normal or supernormal. Closure semantics can be saturating or clipping to
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+o00. Figure4 shows a 16-bit cfloat with 5 bits of exponent. When subnor-
mals are selected and supernormals and saturating are deselected, this would
represent a half-precision IEEE-754 FP16. If subnormals are deselected, it
will represent the NVIDIA and AMD FP16 arithmetic type. Figure 5 shows a
single-precision floating-point. The cfloat type can represent floating-point
types ranging from 3 bits to thousands of bits, with or without subnor-
mals, with or without supernormals, and with clipping or saturating closure
semantics.

sign exponent  mantissa (10 bits)
[ T T 1

1/1{1/0|0¢1/1|21({1/0|0(1]|0|1|O0

Fig. 4. Half-precision 16-bit floating-point representation, fp16.

sign exponent mantissa (23 bits)
! T T 1
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Fig. 5. Single precision 32-bit floating-point representation, fp32.

posit<nbits, es, BlockType> The posit arithmetic type represents a tapered
floating-point type using the posit encoding. It offers a parameterized size
of nbits, with 1 sign bit, es exponent bits, and nbits — 3 — es mantissa bits
around 1.0. Figure 6 shows a 16-bit posit with 3 exponent bits in regime —3.

sign regime exp mantissa (8 bits)
[ T T T 1

ofofoJofz]1]of1s1]1]of1][1]1]0]1

Fig.6. A posit<16,3>.

Ins<nbits, base, BlockType> The Ins arithmetic type implements a logarithmic
number system of size nbits, with base as the base.

The type set integer, fixpnt, cfloat, posit, and Ins provide a productive
baseline of arithmetic types that most developers are familiar with. Universal
contains other types as well, including faithful types with uncertainty bits, type
I and II unums, and interval posits, called valids. These more advanced arith-
metic types provide facilities for reliable computing and numerical analysis.
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3.4 Variable Size, Adaptive Precision

Adaptive precision arithmetic types are tailored to questions regarding numerical
precision and computational accuracy. This has been the traditional domain of
numerical research platforms, such as Boost Multiprecision, MPFR, and GMP
[5,7,19]. Universal currently offers only two adaptive precision arithmetic types:

— decimal
— rational

Implementation work has started on adaptive precision floating-point based on
Douglas Priest’s work [24], and the lazy exact arithmetic type proposed by Ryan
McCleeary [20].

4 Creating a New Arithmetic Type

The experience with implementing a dozen or so arithmetic types has exposed
a typical pattern of how to quickly and reliably bring up a new arithmetic type.
The first step is to define the memory layout of the parameterized type. This
step blocks the storage required to contain the encoded bits. Universal exposed
the block type used for storage and alignment. For example, using a uint8_t
as the building block, the memory layout of the individual value would be the
minimum number of blocks to contain the encoding. The memory alignment
would be on byte boundaries.

Once the memory layout has been designed, the next step is to implement
the conversion from encoding to native types, such as float or double. Provide
a simple set of convert_to_ methods to test the interpretation of bits in the
encoding to generate tables to validate the encoding.

The next step is to implement the inverse transformation - the conversion
from native types to the encoding of the new arithmetic type. This conversion
tends to be the most involved algorithmic task as sampling the native type values
by the new arithmetic type requires robust rounding decisions. The conversion
regression suite of this step is also involved as one needs to enumerate all possible
rounding situations across all possible encodings.

Once we have the memory layout, encoding, and the two conversion direc-
tions, the type can be used for computation by simply converting the value to
a native type, calling arithmetic operators or math library functions, and con-
verting the result back into the encoding.

The final two implementation tasks are native arithmetic operators and
native implementations of the elementary functions. Native implementations are
the only safeguard against double-conversion errors. Native implementations are
also crucial for performance and hardware validation. The arithmetic operators
vary by which algebraic system the arithmetic type is associated. Still, in general,
we need to implement the following set:

— addition
— subtraction
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— multiplication
— division

— remainder

— square root

The final step in creating a new arithmetic type is to provide native imple-
mentations of the elementary functions. To do this for parameterized types is still
an open research question, as the approximation polynomials, albeit minimaz
or Minefield, are specific to each configuration.

5 Arithmetic Type API

5.1 Construction

All Universal arithmetic types have a default, copy, and move constructor. This
allows the application to create, copy, and efficiently call return values.

// required constructors

constexpr posit() noexcept

constexpr posit(const posit&) noexcept
constexpr posit(posit&&) noexcept

To support efficient conversions between native types and the user defined
type, we encourage to provide converting constructors for all native types. Cast-
ing to the largest native type would create inefficiency specifically for small
encodings where performance is most desired.

// signed native integer types
constexpr posit(signed char) noexcept
constexpr posit(short) noexcept
constexpr posit(int) noexcept
constexpr posit(long) noexcept
constexpr posit(long long) noexcept

// unsigned native integer types

constexpr posit(char) noexcept

constexpr posit(unsigned short) noexcept
constexpr posit(unsigned int) noexcept
constexpr posit(unsigned long) noexcept
constexpr posit(unsigned long long) noexcept

// native floating-point types
constexpr posit(float) noexcept
constexpr posit(double) noexcept
constexpr posit(long double) noexcept

Some compilers, Clang in particular, treat type aliases as different types.
Aliases such as uint8_t, uint16_t, uint32_t, uint64_t are not equivalent to
char, unsigned short, unsigned int, and unsigned long long, respectively.
This causes potential compilation problems when using type aliases in converting
constructors. Instead of matching the appropriate constructor, your code will go
through an implicit conversion, which can cause latent bugs that are hard to
find. Best is to specialize on the native language types, short, int, long, etc.
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5.2 Assignment

Assignment operators follow the same structure as the converting constructors.

// assignment operators for native types

// signed native integer types

constexpr fixpnt& operator=(signed char rhs) noexcept
constexpr fixpnt& operator=(short rhs) noexcept
constexpr fixpnt& operator=(int rhs) noexcept
constexpr fixpnt& operator=(long rhs) noexcept
constexpr fixpnt& operator=(long long rhs) noexcept

// unsigned native integer types

constexpr fixpnt& operator=(char rhs) noexcept
constexpr fixpnt& operator=(unsigned short rhs) noexcept
constexpr fixpnt& operator=(unsigned int rhs) noexcept
constexpr fixpnt& operator=(unsigned long rhs) noexcept

constexpr fixpnt& operator=(unsigned long long rhs) noexcept

// mnative floating-point types
constexpr fixpnt& operator=(float rhs) noexcept
constexpr fixpnt& operator=(double rhs) noexcept

Another compiler environment constraint, particularly for embedded envi-
ronments, is support for long double. Embedded ARM and RISC-V compiler
environments do not support long double, so Universal guards the long double
construction/conversion and must be explicitly enabled.

// guard long double support to enable

// ARM and RISC-V embedded environments
#if LONG_DOUBLE_SUPPORT

constexpr fixpnt(long double initial_value) noexcept
constexpr fixpnt& operator=(long double rhs) noexcept
constexpr explicit operator long double() const noexcept
#endif

5.3 Conversion

Operators that convert from native types to the custom type are provided
through converting constructors and assignment operators. However, the con-
version from custom type to native types is marked explicit to avoid implicit
conversions that can hide rounding errors that are impossible to isolate.

// make conversions to native types explicit

explicit operator int() const
explicit operator long long() const
explicit operator double () const
explicit operator float () const

explicit operator long double() const
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5.4 Logic Operators

The Universal arithmetic types are designed to be plug-in replacements for
native types. Notably, for the logic operators in the language, it is common
to come across this code:

cfloat<16,5> a, b, c;

Z:I.f“(b 1= 0) ¢ = a / b;

Porting existing codes to use Universal types provided evidence that all and
every combination of literal comparisons are used. The logic operator design
must thus be complete and capture all combinations of arithmetic type and
literal type that are native to the language.

The design in Universal uses a strongly typed set of operator signatures
that provide an optimized implementation for the comparison leveraging the
size of the literal. Typically, we only need to implement operator==() and
operator< () with native encoding knowledge. The other logic operators can
be expressed in terms of these two operators. The exception to this rule is the
IEEE-754 derived arithmetic types with NaN encodings. In those systems, the
logic operators are not complementary, and each operator requires decision code
to deal with this particular type.

// base logic operators are defined as friends

template<size_t nbits, size_t es>

friend bool operator==(const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

template<size_t nbits, size_t es>

friend bool operator!=(const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

template<size_t nbits, size_t es>

friend bool operator< (const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

template<size_t nbits, size_t es>

friend bool operator> (const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

template<size_t nbits, size_t es>

friend bool operator<=(const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

template<size_t nbits, size_t es>

friend bool operator>=(const valid<nbits, es>& lhs,
const valid<nbits, es>& rhs);

There are three signed integers (int, long and long long), three unsigned,
and three floating-point (float, double, and long double) literals. This creates
the need for 6 x 3 x 3 x 3 x 2 = 324 free functions to capture all the combina-
tions between arithmetic type and literal. These free functions will transform
the literal to the arithmetic type and then call the operational layer to execute
the comparison. Judicious use of implicit conversion rules can be used to reduce
that number, but care must be taken to avoid double rounding errors.
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5.5 Arithmetic Operators

Binary arithmetic operators are implemented through free binary functions that
capture literals and type conversions coupled with in-place update class opera-
tors.

// update operators

cfloat& operator+=(const cfloat& rhs)
cfloat& operator-=(const cfloat& rhs)
cfloat& operator*=(const cfloat& rhs)
cfloat& operator/=(const cfloat& rhs)

// free binary functions to transform literals
template<size_t nbits, size_t es, typename bt,
bool hasSubnormals, bool hasSupernormals, bool isSaturating>
cfloat<nbits, es, bt,
hasSubnormals, hasSupernormals, isSaturating>
operator+(const double lhs,
const cfloat<nbits, es, bt,
hasSubnormals, hasSupernormals,
isSaturating>& rhs) {
cfloat<nbits, es, bt, hasSubnormals, hasSupernormals,
isSaturating> sum(lhs);
sum += rhs;
return sum;

5.6 Serialization

All arithmetic types in Universal support serialization through the stream
libraries.

std::ostream& operator<<(std::ostream& ostr,
const decimal& 4d)
std::istream& operator>>(std::istream& istr, decimal& p)

Such conversions may introduce rounding errors, so Universal types also
support a error free ASCII format. This is controlled by a compilation guard:

1117171717777777

// enable/disable special posit format I/O
#if !'defined (POSIT_ERROR_FREE_IO_FORMAT)
// default is to print double values
#define POSIT_ERROR_FREE_IO_FORMAT O
#endif

When error-free printing is enabled, values are printed with a designation
and a hex format to represent the bits. Here is an example of a posit use case:
posit<32,2> p(1.0);
cout << "Error,free posityvalue: " << p << endl;

> Error free posit value: 32.2x40000000p
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5.7 Set and Query Interface

To support efficient verification and validation of an arithmetic type, the regres-
sion suites need to be able to set and query bits.

// modifiers

inline constexpr void clear () noexcept

inline constexpr void setzero() noexcept

inline constexpr void setbit(size_t i, bool v = true)

inline constexpr void setbits(uint64_t raw_bits) noexcept
inline constexpr void setblock(size_t b, const BlockType& data) noexcept

The methods setbit() and setbits() make it possible to write generic
regression tests for arithmetic types, thus drastically reducing the amount of
code that needs to be written to validate the arithmetic types in Universal.
This basic API can be augmented to set special encodings for specific arithmetic
types. For example, here is the extended set for cfloat:

inline constexpr void setinf(bool sign = true) noexcept
inline constexpr void setnan(int NaNType = NAN_TYPE_SIGNALLING) noexcept
inline constexpr void setsign(bool sign = true)

inline constexpr bool setexponent(int scale)
inline constexpr void setfraction(uint64_t raw_bits)

The verification phase is aided by a productive reflection interface. The Uni-
versal arithmetic types have a standard set of state query methods to simplify
the verification algorithms.

// selectors

inline constexpr bool sign() const noexcept
inline constexpr int scale() const noexcept
inline constexpr bool ispos() const noexcept
inline constexpr bool iszero() const noexcept
inline constexpr bool isone() const noexcept

Just like the modifiers, the basic API can be augmented to capture specific
state: here is the extended set for cfloat.

// special value queries for cfloat
inline constexpr bool isinf(int InfType) const noexcept
inline constexpr bool isnan(int NaNType) const noexcept

// range queries for cfloat

inline constexpr bool isnormal() const noexcept
inline constexpr bool isdenormal () const noexcept
inline constexpr bool issupernormal() const noexcept

5.8 Support Functions and Manipulators

Working with bit encodings is challenging, so Universal provides a collection of
manipulators and support functions to ease queries and interpret bit encodings.
The manipulator color_print color-codes different segments of encoding so that
it is easier to decipher and compare, as is shown in Fig.7 for different posit
configurations.
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01101001 : 3.125

01011001 : 3.125

01001101 : 3.25

01000110 : 3

0101100100100010 : 3.1416

0100110010010001 : 3.1416

0100011001001000 : 3.1406

010110010010000111111011 : 3.141592

010011001001000011111110 : 3.141594

010001100100100001111111 : 3.141594
01011001001000011111101101010100 : 3.14159265
01001100100100001111110110101010 : 3.14159265
01000110010010000111111011010101 : 3.14159265
010110010010000111111011010101000100010000101101 : 3.1415926535898
010011001001000011111101101010100010001000010111 : 3.1415926535899
010001100100100001111110110101010001000100001011 : 3.1415926535897

posit< 8,0>
posit< 8,1>
posit< 8,2>
posit< 8,3>
posit<l6,1>
posit<l6,2>
posit<16,3>
posit<24,1>
posit<24,2>
posit<24,3>
posit<32,1>
posit<32,2>
posit<32,3>
posit<48,1>
posit<48,2>
posit<48,3>

posit<64,1> 0101100100100001111110110101010001000100001011010001100000000000 : 3.14159265358979312
posit<64,2> 0100110010010000111111011010101000100010000101101000110000000000 : 3.14159265358979312
posit<64,3> 0100011001001000011111101101010100010001000010110100011000000000 : 3.14159265358979312
posit<64,4> 0100001100100100001111110110101010001000100001011010001100000000 : 3.14159265358979312

Fig. 7. Demonstration of the color_print(p) function.

6 Example: Matrix Scaling and Equilibrating

Several multi-precision iterative-based algorithms for solving Ax = b have been
developed [2,3,8,10] showing speedup over double precision solvers (e.g., [11]).
In those studies, the algorithms round the entries of A to lower precision (i.e.,
half precision), perform LU decomposition, compute a solution using the low
accuracy LU factors, then use iterative refinement back to working precision.
The results are highly dependent on the condition number of the matrix. It is
worth noting that even well-conditioned matrices can become ill-conditioned in
lower precision. Because when scaling to lower precision, underflow may pro-
duce a singular matrix, the percentage of nonzero elements after scaling to lower
precision is critical. Rounding to lower precision also can result in overflow (or
subnormals); however, overflow is far less likely in scientific computing applica-
tions [12]. Next, we outline three algorithms (see Appendix A) presented in [12]
using slightly different notation.

Let p represent the precision (e.g., £p16), Gmax = max; ; |ai,j|7 and z,ax the
largest positive value represented in the lower precision arithmetic. The goal
of scaling is to reduce the condition number and to increase speed in solving.
Table 1 lists key characteristics of half precision, double precision, and posit<
16,2>.

Algorithm 1 converts all entries to lower precision format. Any entry that
rounds to infinity is replaced by the maximum signed value. However, Algo-
rithm 1 does not handle underflow or subnormal situations. Furthermore, it
alters the matrix significantly when |a;;| > Zmax, (see [12]). Algorithm 2 on the
other hand, scales then rounds in such a way to avoid overflow, however shrinks
the magnitude of each increasing the chance of underflow, thus increasing the
possibility of producing a singular matrix. Algorithm 3 addresses those issues
by equilibrating rows and columns so that the maximum entry is 1 in each row
and column. We note it is not possible to underflow using posit configurations,
so there will be no reduction in the number nonzero elements. As such, more
research on how and when to scale is needed. Universal permits testing multiple
configurations and provides a vehicle for this research.
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Table 1. Specifications of multiple binary formats. Precision of the arithmetic is mea-
sured by the unit round off, which is 277, where p is the number of fraction bits.

Format Fraction | Exponent | ulp Min Max
posit<16,2> | < 11 2 4.88¢—04 | 1.39e—17 | 7.21e+16
fp16 11 5 4.88e—04 | 6.10e—05 | 6.55e+-04
fp64 53 11 1.11e—16 | 2.22e—308 | 1.80e+308

7 Conclusions and Future Work

We have presented the current status of the Universal library v3. The third edi-
tion of the library contains the core arithmetic types that cover the algebraic sets
and contains a unified API to simplify validation and regression testing. We pro-
vided some examples of the arithmetic types’ intended use and reported on some
framework integrations for research and development of computational science
and engineering applications. Much work remains. The Oracle-style arithmetic
types need to be fleshed out so that the mathematical library work can move for-
ward. Math libraries that are parameterized with arithmetic type attributes such
as precision and dynamic range are still an open research question and, when
resolved, would dramatically improve the code-efficiency of Universal. Many new
arithmetic types are being proposed for Deep Learning and Optimal control
that need representations that are more energy-efficient. Moreover, many next-
generation application platforms are written in Python, Julia, Golang, and Rust,
and will need integration facilities to leverage the arithmetic types in Universal.
The current incarnation of the library provides productive facilities to research
and develop energy-efficient and high-performance algorithms through custom
arithmetic. The Universal library development is managed as an open-source
community project [1] where all contributions are welcome.

Appendix A: Squeezing Algorithms

Algorithm 1: Round and replace overflow with ' ax.
Input: An n x n Matrix A
Output: Rounded matrix B

1 B=1,(A)

IS
2 Set a;; = sign(aij)Xmax
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Algorithm 2: Scaled matrix entries

1
2

3

Input: An n x n Matrix A
Output: Rounded matrix A®

Amax = Max;,j |a;j]
n= xmax/amax

AP = flp (1nA)

Algorithm 3: Double side scaling using row and column equilibration

© 00 N O ok W N

P
N = O

Input: An n x n Matrix A
Output: Rounded matrix A®

Set R=0
for i =1 to n do
| R(, 1)« [|AG, )]
end
B=RA
Set S =0
for j =1 tondo
| 80i.) < I1AG, )15
end

Set / = maximum absolute entry in RAS

Set n= xmax/ﬂ
Return fl, (11(RAS)
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