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Abstract. Posit arithmetic has caught the attention of the research
community as one of the most promising alternatives to the IEEE 754
standard for floating-point arithmetic. However, the recentness of the
posit format makes its hardware less mature and thus more expen-
sive than the floating-point hardware. Most approaches proposed so far
decode posit numbers in a similar manner as classical floats. Recently, a
novel decoding approach has been proposed, which in contrast with the
previous one, considers negative posits to have a negative fraction. In
this paper, we present a generic implementation for the latter and offer
comparisons of posit addition and multiplication units based on both
schemes. ASIC synthesis reveals that this alternative approach enables
a faster way to perform operations while reducing the area, power and
energy of the functional units. What is more, the proposed posit oper-
ators are shown to improve the state-of-the-art of implementations in
terms of area, power and energy consumption.

Keywords: Computer arithmetic · Posit · Decoding · Addition ·
Multiplication

1 Introduction

Historically, most scientific applications have been built on top of the IEEE 754
standard for floating-point arithmetic [10], which has been for decades the format
for representing real numbers in computers. Nevertheless, the IEEE 754 format
possesses some problems that are inherent to its construction, such as rounding,
reproducibility, the existence of signed zero, the denormalized numbers or the
wasted patterns for indicating Not a Number (NaN) exceptions [6]. All in all,
IEEE 754 is far from being perfect, as different CPUs may produce different
results, and all these special cases must be dynamically checked, which increases
the hardware cost of IEEE 754 units.

Recently, several computer arithmetic encodings and formats, such as the
High-Precision Anchored (HPA) numbers from ARM, the Hybrid 8-bit Floating
Point (HFP8) format from IBM, bfloat16, and many more have been considered
as an alternative to IEEE 754-2019 compliant arithmetic [7], which has also
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recently included a 16-bit IEEE 754 version. Nonetheless, the appearance of the
disruptive posit arithmetic [8] in 2017 has shaken the board. While the aforemen-
tioned approaches, except for the half-precision IEEE 754, are vendor-specific,
posits aim to be standard. This novel way of representing reals mitigates and
even solves the previously mentioned IEEE 754 drawbacks. Posits only possess
one rounding mode, and there are just two special cases to check (zero and
infinity). Also, posits are ordered in the real projective line, so comparisons are
basically as the integer ones, and even conceive the use of fused operations in
order to avoid losing precision. This is done by avoiding rounding of individual
operations and accumulating the partial results in a large register called quire,
which can even speed up computations with a large number of operands [15].
Another interesting property of posits is their tapered precision, that is, they are
more accurate when their magnitude is in the proximity of zero, that is, their
absolute value is near 1. These last properties have attracted a lot of attention
from the community because they suit Deep Learning applications [3,9,12,17].
These applications leverage the multiply-accumulate (MAC) operations in order
to accelerate the computation of matrix and dot products [2,23]. Furthermore,
the numbers employed are typically normalized and thus fall in the proximities
of zero. According to some authors, 32-bit posits can provide up to 4 orders
of magnitude improvement in terms of accuracy [14,19] when comparing with
the equivalent single-precision floating-point format. Nevertheless, this accuracy
enhancement comes at a cost. The quire occupies a vast portion of the resulting
posit functional unit [14,19,22].

Since 2017, several designs have appeared which implement individual
[4,11,16] and fused [3,19,24] posit operators. While their implementations are
different, either because of the functionality or due to the design, the unpack-
ing/decoding of posits is common to all of them. This paper presents a study
about the different ways of decoding posit numbers in literature, which directly
affects how these decoding units unpack posit operands and that could also
impact some other portions of the functional unit itself. Results show that decod-
ing posits in a different manner to the classical one inspired by floating-point
arithmetic can substantially reduce the hardware resources used by functional
units. In addition, this work presents an implementation of posit functional
units that follows the alternative decoding scheme aforementioned. The pro-
posed implementation outperforms state-of-the-art designs of posit adders and
multipliers in terms of performance and hardware requirements.

The rest of the paper is organized as follows: Section 2 introduces the neces-
sary background about the posit format, and details the two different approaches
for decoding posits that have been proposed so far. Section 3 describes the dif-
ferent components of fundamental posit arithmetic units (adders and multipli-
ers), as well as the existing design differences when using each of the decoding
approaches. The performance and resource utilization of both approaches are
compared in Sect. 4, which shows ASIC synthesis results for different compo-
nents and arithmetic units from the literature. Finally, Sect. 5 concludes this
work.
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Fig. 1. Posit〈n, es〉 binary encoding. The variable-length regime field may cause the
exponent to be encoded with less than es bits, even with no bits if the regime is wide
enough. The same occurs with the fraction.

2 Posit Arithmetic

A posit format is defined as a tuple 〈n, es〉, where n is the total bitwidth of the
posits and es is the maximum number of bits reserved for the exponent field. As
Fig. 1 shows, posit numbers are encoded with four fields: a sign bit (s), several
bits that encode the regime value (k), up to es bits for the unsigned exponent (e),
and the remaining bits for the unsigned fraction (f). The regime is a sequence of
l identical bits r finished with a negated bit r̄ that encodes an extra scaling factor.
As this field does not have a fixed length, some exponent or fraction bits might
not fit in the n-bit string, so 0 would be assigned to them. The variable length
of this field allows posit arithmetic to have more fraction bits for values close
to ±1 (which increases the accuracy within that range), or to have less fraction
bits for the sake of more exponent bits for values with large or small magnitudes
(increasing this way the range of representable values). This is known as tapered
accuracy, and contrasts with the constant accuracy that IEEE 754 floats present,
due to the fixed length of the exponent and fraction fields, as can be seen in Fig. 2
(here, the left part of the IEEE floating-point format corresponds to the gradual
underflow that subnormal numbers produce).

Posit arithmetic only considers two special cases: zero, that is represented
with all bits equal to 0, and Not a Real (NaR) exception, represented by all
the bits except the sign bit equal to 0. The rest of the bit patterns are used to
represent a different real value. However, at the time of writing this paper, two
main different ways of understanding how posit bit strings represent real values
have been proposed: using the sign-magnitude format, as floating-point numbers,
or considering posits in two’s complement notation. While both approaches are
equivalent from a mathematical sense (i.e. the same bit patterns represent the
same values, regardless of the approach), they present implementation differ-
ences that should be considered when implementing such arithmetic format in a
physical device. Other alternative interpretations of posits are discussed in [13].

2.1 Sign-Magnitude Posit Decoding

Posit arithmetic is a floating-point format for representing real numbers. Thus,
the numerical value X of a normal posit datum was initially defined in [8] by (1)
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Fig. 2. Accuracy binary digits for 32-bit formats

X = (−1)s × (useed)k × 2e × (1 + f), (1)

where useed = 22
es

, e is the integer encoded by the exponent field, k is l−1 when
r = 1, or −l when r = 0, and f is the normalized fraction (this is, the value
encoded by the fraction bits divided by 2F , so 0 ≤ f < 1). Under this decoding
approach, if a value is negative (when the sign bit is 1), its two’s complement
is computed before extracting the regime, exponent, and fraction, so values k, e
and f in Eq. (1) are always considered from the absolute value of the posit.

The main differences with the standard floating-point format are the utiliza-
tion of an unsigned and unbiased exponent, the hidden bit of the significand
is always “1” (no subnormal numbers are considered), and the existence of the
variable-length regime field. However, notice that this decoding is quite similar
to the one for classical floating-point numbers: it deals with a sign bit, a signed
exponent (regime and exponent can be gathered in a single factor) and a signifi-
cand with a hidden bit. As a consequence, the circuit design for both arithmetic
formats would be similar too. In fact, this float-like decoding scheme is the one
used by most of the posit arithmetic units from the literature [4,11,16], as well
as by the approximate posit units proposed so far [18,20].

Apparently, trying to implement posits by first forcing them to look more
like floats and then converting back does not seem optimal, and the community
is still in the early stages of discovering new decodings and circuit shortcuts that
leverage this recently proposed format.

2.2 Two’s Complement Posit Decoding

The previous decoding scheme of posit numbers deals with negative numbers in
a similar manner as signed integers do. From a hardware perspective, converting
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posits to their absolute value before decoding them adds extra area and per-
formance overhead, specially when compared with IEEE 754 floats. To address
this issue, Isaac Yonemoto, co-author of [8], proposes a different way of decoding
posit numbers: for negative values, the most significant digit of the significand
is treated as “−2” instead of “1”. The rest of the fields remain the same, but
under this approach there is no need to compute the two’s complement (abso-
lute value) of each negative posit. This is consistent with the way posits were
initially intended, as a mapping of the signed (two’s complement) integers to the
projective reals. The value X of a posit number is now given by (2)

X = (useed)k̃ × 2ẽ × (1 − 3s + f), (2)

where again useed = 22
es

, but now ẽ is equal to e XOR-ed bitwise with s and k̃
is −l when r = s, or l − 1 otherwise.

Theorem 1. For any given posit bit string that encodes a number other than
zero or NaR, the expressions (1) and (2) are equivalent.

Proof. When the sign bit is 0 (i.e. the bit string encodes a positive number), it
is trivial that both expressions evaluate the same.

On the other hand, the case when s = 1 requires more attention. First,
note that in such a case, two’s complement of the bit string must be computed
before evaluating expression (1). Hence, all the bits at the left of the rightmost
“1” are inverted. Let us consider three cases, depending on which field that bit
belongs to.

(i) If the rightmost “1” bit belongs to the fraction field, the fraction f �= 0.
Hence, it is evident that k = k̃ and e = ẽ, since k and e are obtained from
the inverted regime and exponent bits in the original bit string, respectively.
It remains to check whether the significands from expressions (1) and (2)
have an opposite value. But recall that the fraction from expression (1)
is two’s complemented, and due to the fact that 0 ≤ f < 1, the two’s
complement of f is f̃ = 1 − f . From this last property it follows that
(1 + f̃) = −(−2 + f).

(ii) If the rightmost “1” bit belongs to the exponent field, then f = 0 and e �= 0.
For the same reason as in the previous case, k = k̃. But now the exponent
field for expression (1) is two’s complemented rather than inverted, so we
have that e = ẽ + 1. However, since f = 0, the significand in expression
(1) evaluates 1, while expression (2) evaluates (1 − 3s + f) as −2, which
compensates the difference in the exponents.

(iii) If the rightmost “1” bit belongs to the regime, then e = f = 0. Also, it
should be noted that such a bit corresponds to the last (inverted) regime bit
(in case the regime is a sequence of 0’s) or to the bit immediately preceding
the inverted one (when the regime is a sequence of 1’s). In both cases, taking
two’s complement for computing (1) reduces the length of the regime field in
1, so it follows that k = k̃+1. In addition, note that in this situation e = 0,
while ẽ = 2es − 1. Nevertheless, a similar situation as in the previous case
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occurs with the fraction: the significand from expression (2) is evaluated as
−2, which compensates the difference of exponents previously mentioned.
Note that the multiplicands of both expressions are powers of 2, so it suffices
to check that both expressions have the same exponent. Indeed: (2es)k̃ + ẽ+
1 = (2es)k−1 + (2es − 1) + 1 = (2es)k. ��

When dealing with the hardware implementation, the significand of (1) can
be represented in fixed-point with a single (hidden) bit that always takes the
value “1”. On the other hand, when considering expression (2), the significand
(1 − 3s + f) belongs to the interval [−2,−1) for negative posits and to [1, 2)
for positive ones, so such signed fixed-point representation requires two integer
(or hidden) bits that depend on the sign of the posit. More precisely, in this
case, negative posits prepend “10” to the fraction bits as the 2’s complement
hidden bits, and positive posits prepend “01”. Note how this contrasts with the
unsigned fixed-point representation of the significand in the floating-point and
classical sign-magnitude posit decoding formats. Therefore, this approach elimi-
nates complexity in the decoding and encoding stages, but requires redesigning
some of the logic when implementing posit operators.

There are not many works that implement this two’s complement decoding
approach for posit numbers. The first implementation of posit adders and mul-
tipliers based on this decoding appeared in [24], and more details about such a
scheme were introduced in [7]. Also, [19] presents different energy-efficient fused
posit MAC units that follow the same approach as [24].

In this paper we present a generic implementation of posit functional units
based on two’s complement decoding. Furthermore, we compare different state-
of-the-art posit units based on both decoding schemes.

Finally, it is noteworthy that previous works have examined the effect of
two’s complement notations in floating-point arithmetic [1]. However, in such a
case, some features or properties are lost with respect to the IEEE standard for
floats. In this work we prove that both sign-magnitude and two’s complement
coding of posit numbers are equivalent, and therefore all properties are preserved
regardless of the used approach. The impact of each decoding scheme is found
on the hardware implementation, as will be discussed in Sect. 4.

3 Posit Operators

The advantage of using sign-magnitude decoding for posit numbers is that arith-
metic operations can be performed in a similar way to standard floating-point
ones (except for the bitwidth of the fields and exception handling). While this
can leverage the already designed circuits for floating point, forcing posits to
look like floats and then converting back adds some overhead to the operators.
However, considering the posit significand as a signed fixed-point value elimi-
nates the need for absolute value conversion, but requires some redesign of the
arithmetic cores.

This section describes in detail and compares the design of different arith-
metic operations when dealing with each posit decoding scheme.



90 R. Murillo et al.

3.1 Decoding and Encoding Stages

Unlike floating-point hardware that ignores subnormal numbers, the variable-
length regime does not allow the parallel decoding of posit numbers, that is,
the fraction and exponent cannot be extracted until the length of the regime
is known. Thus, when implementing posit operators in hardware, it is usually
necessary to extract the four fields presented in Sect. 2 (s, k, e and f , plus a
flag for zero/NaR exceptions) from a compact posit number before starting the
real computation, as well as packing again the resulting fields after that. The
components that perform such processes are usually known as decoders and
encoders, respectively, and those are the modules that present more differences
in their design according to the decoding mode used.

The classical decoding scheme considers negative posits to be in two’s com-
plement. Hence, in such a case, it is necessary to first take a two’s complement
of the remaining bit string before decoding the regime (which is usually done
with a leading ones/zeros detector), exponent and fraction bits, as detailed in
Algorithm 1 (zero/NaR exception checking is omitted for the sake of clarity).
Then, all the computation is performed with the absolute value of the posits,
leaving aside the sign logic until the end, where it requires to take again the
two’s complement of the bit string according to the sign of the result. The pro-
cess of encoding a posit from its different fields mainly consists of performing
Algorithm 1 backwards, plus handling possible rounding and overflow/underflow
situations.

Algorithm 1 Classical posit decoding algorithm
Require: X ∈ Posit〈n, es〉, F = n − es − 3
Ensure: (−1)s × (useed)k × 2e × (1 + f) = X

s ← X[n − 1]
if s = 1 then

p ← ∼X[n − 2 : 0] + 1 � Take two’s complement
else if s = 0 then

p ← X[n − 2 : 0]
end if
r ← p[n − 2]
l ← LZOC(p) � Count regime length
if r = 1 then

k ← l − 1
else if r = 0 then

k ← −l
end if
q ← p[n − l − 3 : 0] � Extend with 0’s to the right, if necessary
e ← q[F + es − 1 : F ]
f ← q[F − 1 : 0]

On the other hand, the alternative scheme proposed by Yonemoto handles
both positive and negative posit numbers simultaneously, without the need of



Comparing Different Decodings for Posit Arithmetic 91

computing the absolute value of the posits. Determining the sign of the regime’s
value requires checking if the posit sign bit is equal to the MSB of the regime, and
the exponent value for this case requires XOR-ing es bits with the sign bit. The
decoding process for this approach is described in Algorithm 2. Also, as already
mentioned, handling the significand in signed fixed-point format for computation
requires one extra bit for the sign, since this decoding considers the significand
of positive values to be in the interval [1, 2) (as in the previous decoding), or in
[−2,−1) when the number is negative. This approach can reduce the latency of
the decoding and encoding stages, specially for larger bitwidths, since it requires
XOR-ing just es bits (generally es is not greater than 3) instead of computing
the two’s complement of the n-bit posits as in Algorithm 1. However, the signed
fixed-point significand introduces extra complexity in the core of the arithmetic
operations, as will be discussed below.

Algorithm 2 Alternative posit decoding algorithm
Require: X ∈ Posit〈n, es〉, F = n − es − 3
Ensure: (useed)k × 2e × (1 − 3s + f) = X

s ← X[n − 1]
p ← X[n − 2 : 0]
r ← p[n − 2]
l ← LZOC(p) � Count regime length
if r �= s then

k ← l − 1
else if r = s then

k ← −l
end if
q ← p[n − l − 3 : 0] � Extend with 0’s to the right, if necessary
e ← q[F + es − 1 : F ] ⊕ {es{s}} � Sign bit is replicated to perform XOR
f ← q[F − 1 : 0]

3.2 Addition

In posit arithmetic, as well as in the case of floating-point arithmetic, when
performing the addition (or subtraction) of two numbers, it is necessary to shift
one of the fractions so both exponents are equal. If the first exponent is smaller
than the second, the first fraction is shifted to the right by a number of bits
given by the absolute difference of the exponents. Otherwise, the same is done
to the second fraction. Then, the aligned significands are added, and the result
is normalized, so the larger exponent is adjusted if needed.

When using a classical sign-magnitude decoding approach, some extra logic
is needed to handle the sign of the result. But such logic is eliminated when deal-
ing with signed significands, since the sign of the result can be inferred from the
leftmost bit of the addition of the significands, without initially comparing the
magnitude of the inputs. Dealing with signed significands also avoids the need
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of performing subtraction or taking two’s complement when the sign of both
addends differ, which makes up for using one extra bit in the addition of signifi-
cands. On the other hand, normalization of the significand in two’s complement
deserves special attention, since it needs to count not only the leading zeroes,
but the leading ones when the result is negative. However, as will be shown in
Sect. 4, this does not involve hardware overhead for this particular module.

3.3 Multiplication

In a similar manner as in the case of addition, posit multiplication takes inspi-
ration from the floating-point algorithm: both significands are multiplied and
normalized, and the exponents are added together. Additionally, the result from
significand multiplication must be normalized to fit in the corresponding inter-
val, which involves shifting the fraction plus adding to the exponent the number
of shifted bits.

When the significands have a single hidden bit, i.e., using the sign-magnitude
posit decoding, the leftmost bit of the multiplication indicates if the resulting
fraction must be shifted and 1 must be added to the exponent. Note that in this
case, both multiplicands follow the expression (1 + f) ∈ [1, 2), so the product
must be in the interval [1, 4). Thus, normalizing the result might require shifting
one bit at most.

On the other hand, when dealing with the two’s complement decoding scheme,
even though the multiplication can be performed directly (just one more bit for
each operand is necessary), the normalization of the result is more complex in
this case. As each multiplicand (1 − 3s+ f) can be in the range [−2,−1) ∪ [1, 2),
the result will fall within the range (−4,−1) ∪ [1, 4]. In terms of fixed-point
arithmetic, the operand has two integer bits, so the multiplication has four bits
that represent the integer part of the number and that should be examined
in the normalization process. Note that the resulting sign is also implicit in
the multiplication result. However, this approach introduces one extra case that
needs special attention: when the two multiplicands are equal to −2, the result
is 4, which requires adding 2, rather than 1, to the exponent when normalizing
the result.

Finally, note that similar considerations should be taken into account for the
case of the division operation, although it is beyond the scope of this paper.

4 Hardware Evaluation

This section evaluates the hardware impact of each posit decoding scheme. In
addition to standard comparison of arithmetic units, in order to provide a more
fine-grained evaluation, this section compares the hardware requirements of each
individual component when using each of the decodings. To achieve an accurate
evaluation, all the results given in this work were generated to be purely combi-
national and synthesized targeting a 45 nm TSMC standard-cell library with no
timing constraint and typical case parameters using Synopsys Design Compiler.
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4.1 Components Evaluation

To have a better understanding of how the different ways of decoding posit num-
bers impact on the hardware resource utilization, we compared ASIC synthesis
results for each single component of the posit operators described in Sect. 3 when
implemented under each of the decoding schemes presented in this paper. For
the sign-magnitude decoding, we extracted the different components from Flo-
Posit [16], which includes open-source1 designs implemented using FloPoCo [5]
and requires less hardware resources than other implementations based on the
same classical decoding scheme. With respect to the two’s complement decoding,
there are no available designs other than those proposed in [24], which consist
of a C++ header library for HLS that implement a modified posit format. Thus,
in order to make as fair a comparison as possible, we implemented the designs
described in Sect. 3 using Yonemoto’s decoding scheme and using FloPoCo as
well, which allows to generate parameterized units for any number of bits and
exponent size.

In order to verify the correctness of the proposed architectures, exhaustive
tests for units with 16 bits or less, as well as random tests with corner cases
for larger bitwidths, were performed using a VHDL simulator. The results were
compared against two software libraries: the Universal number library [21], which
supports arithmetic operations for any arbitrary posit configuration, and GNU
MPFR, which was modified with support for posit binary representation. All
these tests were successful. Then, each module (decoder, encoder, core adder
and core multiplier) was synthesized separately, so the area, power, datapath
delay and energy (power-delay product) could be compared in detail. Results
were normalized with respect to the classical decoding scheme.

As can be seen in Fig. 3, which shows the cost of just the decoding stage
rather than the cost of the whole arithmetic operation, considerable savings
are obtained when decoding the posits by using Yonemoto’s two’s complement
proposal. Under this approach, the decoder module requires about 66% of the
area, 45% of power, 59% of delay and 27% of the energy than the same module
implemented using the classical sign-magnitude decoding approach. Also, it is
noteworthy that for many of the most common operations, like addition or mul-
tiplication, two operands need to be decoded, so this module is often duplicated.

Similar figures are obtained for the encoder module. As Fig. 4 shows, using
Yonemoto’s approach requires about 33% less area than the classical one, but in
this case the power and delay savings are not as pronounced as for the decoder
module. Nevertheless, using the alternative decoding scheme reduces energy con-
sumption of this process by half.

As already mentioned, dealing with signed significands avoids the need of
negating one of the operands when performing addition of different sign values.
This is demonstrated in Fig. 5, which compares the hardware requirements of
both approaches for just the logic of posit addition (without circuitry for decod-
ing operands nor for rounding/encoding the result). The extra bit for dealing

1 https://github.com/artecs-group/Flo-Posit/tree/6fd1776.

https://github.com/artecs-group/Flo-Posit/tree/6fd1776
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Fig. 3. Relative hardware performance metrics of Posit〈32, 2〉 decoder components.

Fig. 4. Relative hardware performance metrics of Posit〈32, 2〉 encoder components.

with the significand in two’s complement adds negligible overhead to this com-
ponent, and together with the reduction of logic to handle addition of different
sign operands, makes this scheme to use 91% of the area, 86% of the power and
84% of the datapath delay of the analogous component based on the classical
decoding.

The case of the multiplier module is different from the previous ones. Here,
handling the significands in two’s complement requires one extra bit for each
operand, and a total of four more bits for storing the multiplication result, when
compared with the sign-magnitude approach. This translates into approximately
7% more area and power, but similar delay, as shown in Fig. 6.

4.2 Comparison with the State-of-the-Art

The components using two’s complement decoding scheme seem to provide
smaller and faster implementations. However, it is important to verify that whole
operators follow the same trend, and that the proposed implementations are not
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Fig. 5. Relative hardware performance metrics of Posit〈32, 2〉 adder components

Fig. 6. Relative hardware performance metrics of Posit〈32, 2〉 multiplier components.

sub-optimal. For this purpose, three different implementations of posit opera-
tors from the state-of-the-art were compared: PACoGen [11]2 and Flo-Posit [16],
which use the sign-magnitude decoding scheme given by (1), and MArTo [24]3,
which is based in the decoding scheme proposed by Yonemoto with slight dif-
ferences. In particular, the designs presented in [24] perform conversion to/from
the so-called posit intermediate format (PIF), a custom floating-point format
that stores the significand in two’s complement (just like the approach evalu-
ated in this work) and takes an exponent (including the regime) which is biased
with respect to the minimum exponent, as in the IEEE 754 standard. The PIF
simplifies the critical path of the operators, at the cost of small additions in the
decoding/encoding of posits. Also, the proposed implementation that has been
discussed in the preceding section was added to the comparison, so there are two
implementations for each posit decoding approach. Unlike MArTo, the proposed
operators implement the logic in pure posit format, without conversion of posits

2 https://github.com/manish-kj/PACoGen/tree/5f6572c.
3 https://gitlab.inria.fr/lforget/marto/tree/2f053a56.

https://github.com/manish-kj/PACoGen/tree/5f6572c
https://gitlab.inria.fr/lforget/marto/tree/2f053a56
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to a float-like format. For a more detailed analysis of how the different decod-
ing approaches scale according to the number of bits, posit operators for 〈8, 1〉,
〈16, 1〉 and 〈32, 2〉 formats were synthesized. Despite the fact that Posit〈8, 0〉 is
a more common format in the literature, the PACoGen core generator does not
allow to generate posit operators with no exponent bits (es = 0), so Posit〈8, 1〉
is selected instead for a fair comparison. Finally, note that MArTo is an HLS-
compliant C++ library, rather than a RTL-based implementation as the rest of
the libraries used in this work. Thus, the C++ to HDL compilation of MArTo
operators is done using Vitis HLS 2021.1 with default options.

Synthesis results for the adder and multiplier units are shown in Fig. 7 and
Fig. 8, respectively. Both cases present a clear gap between the designs based
on the sign-magnitude posit decoding (PACoGen and Flo-Posit) and the ones
using the two’s complement scheme (MArTo and the one proposed in this paper),
specially for the power-delay product (energy) results. Except for the adder
delay, Flo-Posit designs present better figures than the analogous designs from
PACoGen, which seems to be far from an optimal implementation. Exactly the
same occurs for the proposed designs with respect to those from MArTo library,
but in this case the difference between both implementations is much smaller.
This might be due to the fact that both MArTo and the proposed units follow
quite similar designs but with certain differences in the implementation, since
the former designs are generated by a commercial HLS tool, while the latter are
directly designed at the RTL level. In accordance with these results, we took

Fig. 7. Synthesis results for different Posit〈n, es〉 adder designs.
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Fig. 8. Synthesis results for different Posit〈n, es〉 multiplier designs.

the best designs of each decoding scheme (Flo-Posit and the proposed one) as a
baseline for detailed comparison.

In the case of posit adders, the greatest resource savings are obtained for
32-bit operators: when using the alternative decoding, the area is reduced by
22.70%, the power by 32.90%, the delay by 10.22% and the energy by 39.77%.

On the other hand, and in line with the results shown previously, the alterna-
tive two’s complement decoding scheme for posit multiplier units also presents
less resource utilization when compared with the classical float-like scheme, but
these savings are not as pronounced as in the case of posit addition. As can be
seen in Fig. 8, the 32-bit multipliers based on Yonemoto’s decoding approach
reduce area, power, datapath delay and energy by 8.17%, 7.72%, 21.54%, and
27.60%, respectively.

5 Conclusions

Multiple designs of posit arithmetic units have been proposed since the appear-
ance of this alternative format. While those units might present several optimiza-
tions for area or energy efficiency, one of the main design differences is the way
posit strings are decoded. The first works on posit arithmetic presented a sign-
magnitude decoding scheme similar to floating-point arithmetic, with a sign bit,
a signed exponent and a fraction with a hidden bit equal to 1. But recently, a
two’s complement decoding for posits proposed by I. Yonemoto, which considers
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that the hidden bit means −2 for negative posits, seems to provide more efficient
implementations of functional units, at the cost of a more complex circuit design.

This paper aims to shed some light on the different ways of decoding posit
numbers presented in literature so far, and how such decodings affect the hard-
ware resources of posit operators. To that purpose, we implemented custom-size
posit adder and multiplier units following the alternative decoding scheme pro-
posed by Yonemoto. Synthesis evaluations show that posit units based on classi-
cal float-like decoding schemes require generally more hardware resources than
analogous units using the two’s complement decoding. In addition, the proposed
units are shown to improve previous posit implementations in terms of area and
energy consumption.
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