
MULTIPOSITS: Universal Coding of Rn

Peter Lindstrom(B)

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

pl@llnl.gov

Abstract. Recently proposed real-number representations like Posits

and Elias codes provide attractive alternatives to IEEE floating point for
representing real numbers in science and engineering applications. Many
of these applications represent fields on structured grids that exhibit
smoothness, where adjacent scalar values are similar and often accessed
together in stencil or vector computations. This similarity results in
redundancy in representation, where several leading bits in the repre-
sentation of adjacent values are shared.

We propose a generalization of scalar “universal codes” to small, mul-
tidimensional blocks of values that exploit their similarity and underly-
ing dimensionality. Drawing upon ideas from multimedia and floating-
point compression, our approach combines a decorrelating transform
with adaptive, error-optimal interleaving of coefficient bits, which allows
increasing accuracy per bit stored by orders of magnitude. Our solution
accommodates both a fixed-length representation of blocks—facilitating
random access—and variable-length storage to within a user-prescribed
tolerance—e.g., for I/O, communication, and streaming computations.
Our approach generalizes universal coding of the reals to vectors and
tensors, and is straightforward to implement for several known number
systems by extending a previously published framework for universal
coding based on simple refinement rules.

Keywords: Number representations · Floating point · Universal
coding · Data compression · Decorrelating transform · Vector
quantization

1 Introduction

As data movement and storage have come to dominate the power and perfor-
mance landscape in high-performance computing, there has been a recent push to
investigate new real number representations that are more economical than the
ubiquitous ieee 754 floating-point format [1]. Example proposals include Brain-

Floats [11] and TensorFloats [2], which make a different tradeoff between the
number of exponent and significand bits than ieee 754. More significant depar-
tures from ieee 754 include include Unums [8], Posits [9], URRs [10], and
Elias codes [20], some of which generalize universal codes originally developed
for positive integers [7] to the reals. Many of these representations can be synthe-
sized using number system frameworks that allow experimenting with alternative
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 66–83, 2022.
https://doi.org/10.1007/978-3-031-09779-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09779-9_5&domain=pdf
http://orcid.org/0000-0003-3817-4199
https://doi.org/10.1007/978-3-031-09779-9_5

MultiPosits: Universal Coding of Rn 67

number representations [18–20,23,25], and several examples have demonstrated
the benefits of such representations in numerical applications in terms of improv-
ing the accuracy per bit stored [14,16,20]. Common to the universal number
representations is the notion of tapered accuracy [21], where commonly occur-
ring numbers near one are represented more accurately than rare numbers that
are extremely small or large in magnitude. This is achieved by allocating fewer
bits to represent the exponent in favor of retaining more bits for the significand
(or fraction) for numbers near ±1.

Many science and engineering applications model the physical world as
mostly continuous scalar fields, such as temperature and pressure, that are sam-
pled discretely onto uniform Cartesian grids and are represented as multidi-
mensional arrays of reals. In these applications, values at adjacent grid points
tend to exhibit significant correlation, which manifests as shared leading bit pat-
terns in their number representation. The conventional approach of representing
arrays as independent scalars wastes precious bits on such redundant informa-
tion, resulting in a larger than necessary memory footprint and associated costs
in moving data through the memory hierarchy. Recent efforts have attempted
to remove the redundancy using variations on block-floating-point representa-
tion [12], by partitioning arrays into small blocks of correlated scalars and elim-
inating shared information [3,16,17]. Whether explicit or not, such methods
substitute the scalar quantization of reals implied by the number representa-
tion with a vector quantization step, where each fixed-length codeword encodes
a whole block of numbers (unraveled as a vector). Current block-floating-point
representations are modeled on ieee 754—they use a fixed-length exponent com-
mon to the block and a set of significands (or coefficients) that are scaled by the
common exponent.

In this paper, we propose an alternative block-based representation that
builds upon the ideas shared by universal number representations, which use a
variable-length encoding of the exponent and that—given sufficient precision—
can represent any real. This is unlike ieee 754 and block-floating-point repre-
sentations that utilize a fixed-length exponent, which places a fixed limit on
the smallest and largest numbers representable regardless of precision. Our new
representation further reduces redundancy by performing a decorrelating linear
transformation, which in effect replaces leading bits shared among values in a
block with strings of leading zeros (or ones) that can be efficiently encoded. We
demonstrate the accuracy benefits of a tapered number system for blocks of reals
combined with a decorrelation step that eliminates shared leading bits in order
to represent more trailing bits of significands. Like most other floating-point-like
representations, we may truncate the binary representation at any point—a step
analogous to rounding—to achieve a fixed-length representation of each block
that facilitates random access (at block granularity). We may alternatively trun-
cate the representation when it satisfies an error tolerance, resulting in variable-
length records. In applications where the data is accessed sequentially, e.g., in
I/O and streaming computations, such variable-length codes ensure a uniform
level of error and avoid an excess in precision when it is not needed or when

68 P. Lindstrom

the trailing bits are already contaminated with error, e.g., due to roundoff, dis-
cretization, approximate solvers, sensor noise, etc. [6,15,28].

Our framework generalizes universal codes for R to R
n without being tied to

any particular number representation. Rather, we allow any universal code for
the reals to be used and show how to optimally interleave the bits representing
a collection of scalars from such a code to represent decorrelated real-valued
vectors or tensors. In this paper, we present results of extending Posits and
demonstrate their utility in multiple applications.

2 Preliminaries

One of our earlier insights [18] is that most real number representations are fully
described by a cumulative distribution function (CDF), F (x), with associated
probability density, f(x). F (x) maps a real, x ∈ R, to the interval (0, 1), with
F (−∞) = 0 and F (+∞) = 1.1 The binary bit string 0.b1b2 . . . bp thus represents
F (x) =

∑p
i=1 bi2−i ∈ [0, 1) using p bits of precision.2 In other words, for finite

p, F (x) is rounded to the nearest multiple of 2−p.3 This rounding may also be
viewed as linear scalar quantization with step size Δ = 2−p.

A universal code for the reals also satisfies the following properties:

1. f(x) > 0 ∀x ∈ R, which ensures that every real can be represented uniquely.
Because f(x) = 0 for x > FLT MAX, ieee 754 is not a universal code.

2. |x| ≤ |y| ⇐⇒ f(x) ≥ f(y). In other words, f(x) decreases monotonically
away from zero, with larger |x| requiring longer codewords. As a corollary,
f(x) = f(−x).

3. limx→∞
− log2 f(x)

log2 x is finite. This ensures that − log2 f(x), which governs code
length, does not increase too rapidly. Like universal codes for integers, this
property disqualifies representations like the unary code, whose length is arbi-
trarily longer than binary code.

These properties essentially generalize similar properties required for universal
integer codes; see [7].

Another key insight from [18] is that universal codes may be expressed as
two functions: a generator function, g, that is used in unbounded search to
bracket x ≥ 1 or x−1 ≥ 1, and a refinement function, r(xmin, xmax), that is
used in binary search to increase the precision by narrowing the interval con-
taining x. For Posits, g(x) = βx, where β = 22

m

is the base (also called useed
in [9]); see [19]. In the 2022 Posit standard, m = 2 for Posits regardless of
precision; thus, g(x) = 16x. The generalization of the Elias gamma code uses

1 In Posits and [20], −∞ and +∞ map to the same point, called NaR, and are
represented as F (−∞) mod 1 = F (+∞) mod 1 = 0.

2 Using two’s complement representation, it is common to translate (0, 1) to (− 1
2
, 1
2
)

by negating the b12
−1 term such that the bit string 0.000 . . . represents x = 0.

3 Special rounding modes may be used so that finite numbers are not rounded to the
interval endpoints {0, 1}, which represent ±∞.

MultiPosits: Universal Coding of Rn 69

g(x) = 2x, and is thus a particular instance of Posits with m = 0, while
Elias delta uses g(x) = 2x2; see [18]. These number systems use as refine-
ment function the arithmetic mean of the interval endpoints, r(a, b) = (a+ b)/2,
unless a and b differ in magnitude by more than 2, in which case the function
returns the geometric mean, r(a, b) =

√
ab. Thus, a whole number system may be

designed by specifying two usually very simple functions. For simplicity of nota-
tion, we will use the refinement function, r, to split intervals even when they are
unbounded. We use the convention r(−∞,∞) = 0, r(0,∞) = 1, r(a,∞) = g(a),
r(0, b) = r(b−1,∞)−1, r(−b,−a) = −r(a, b); see [18]. Each codeword bit thus
determines in which subinterval, [a, s) or [s, b), x lies, with s = r(a, b).

A näıve way of extending universal codes from R to R
n would be to interleave

the bits from the n independent codewords in round-robin fashion. Not only does
this often result in significant redundancy of identical bits, but such round-robin
interleaving is also suboptimal from an accuracy standpoint when absolute rather
than relative error matters. As we shall see later, one can significantly improve
accuracy by instead interleaving the bits in a data-dependent order.

3 Universal Coding of Vectors

Before describing our coding algorithm in detail, we first outline its key steps.
Given a d-dimensional scalar array, we first partition it into blocks. As in the
zfp [17] representation, we have chosen our blocks to be of length 4 in each
dimension. This block size has proven large enough to expose sufficient correla-
tion, yet small enough to provide sufficiently fine granularity and allow a fast and
simple implementation of decorrelation. Furthermore, a block size that is a power
of two simplifies indexing via bitwise shifting and masking instead of requiring
integer division. Hence, a d-dimensional block consists of n = 4d scalars. If array
dimensions are not multiples of four, we pad blocks as necessary; see [6].

Each block is then encoded separately, either using a fixed number of bits,
np, where p is the per-scalar precision, or by emitting only as many bits as
needed to satisfy an absolute error tolerance, ε. The encoding step begins by
decorrelating the block (Sect. 3.1) using a linear transformation. The goal of this
step is to eliminate any correlation between values and to sparsify the block such
that common leading bits in a scalar representation of the values are (usually)
replaced with leading zero-bits, with many transform coefficients having small
magnitude. We use the same transformation as in zfp, which can be imple-
mented very efficiently using addition, subtraction, and multiplication by 1

2 or
by 2. As in zfp, the resulting set of n transform coefficients is then reordered by
total sequency using a fixed permutation π(x) (Sect. 3.2).4 Finally, the reordered
coefficients are encoded by emitting one bit at a time from the universal scalar
code of one of the n coefficients selected in each iteration (Sect. 3.3). We leave

4 Sequency denotes the number of zero-crossings of a discrete 1D function. Total
sequency denotes the sum of per-component zero-crossings of basis functions in a
tensor product basis, and is analogous to total degree of a multivariate polynomial.

70 P. Lindstrom

Encode(x = (x1, . . . , xn), p, ε)
1. x ← Qx // §3.1: decorrelate x
2. x ← π(x) // §3.2: sort x on sequency
3. R ← (−∞, +∞)n // initialize hyper-rectangle
4. for k = 1, . . . , np // §3.3: encode x in up to np bits
5. i ← argmaxj |Rj | // identify widest dimension i
6. I ← Ri

7. if |I| ≤ (
4
15

)d
ε // is error tolerance met?

8. terminate
9. s ← r(Imin, Imax) // compute interval split point

10. if xi < s // is xi below the split point s?
11. output(0)
12. Imax ← s
13. else
14. output(1)
15. Imin ← s
16. Ri ← I // update narrowed interval

Listing 1: Universal coding algorithm for n-dimensional (n = 4d) vector x using
precision, p, and error tolerance, ε. If unspecified, we assume ε = 0. |I| denotes
the interval width Imax − Imin.

the choice of universal scalar code open; in our algorithm, this choice is deter-
mined solely by the interval refinement function, r. The coefficient chosen in each
iteration of the coding algorithm is data-dependent and done in a manner so as
to minimize the upper bound on the L∞ error in the reconstructed block. The
decoding algorithm performs the same sequence of steps but using their natural
inverses and in reverse order.

Listing 1 gives pseudocode for encoding a single d-dimensional block of n = 4d

real scalars. Any arithmetic performed and state variables used must have suffi-
cient precision, e.g., ieee double precision. We proceed by describing each step of
the encoding algorithm in more detail and conclude with some implementation
details.

3.1 Decorrelation

When a (mostly) continuous function is sampled onto a sufficiently fine uniform
grid, values at adjacent grid points tend to be significantly correlated. Such dis-
crete data is said to be “smooth” or to exhibit autocorrelation. Autocorrelated
data is undesirable because it introduces overhead in the representation, as expo-
nents and leading significand bits of adjacent values tend to agree. The process
of removing correlation is called decorrelation, which can be achieved using a
linear transformation (i.e., by a matrix-vector product).

Consider a partitioning of a d-dimensional array into equal-sized blocks of
n = 4d values each. Then each of the n “positions” within a block may be

MultiPosits: Universal Coding of Rn 71

(a) (b)

Fig. 1. Decorrelation of two correlated and identically distributed variables (X, Y)
with variance σ2 = 1 and covariance ρσ2 = 0.9. In this simple example, the decorre-
lating transform is merely a 45-degree rotation. These plots show contours of the joint
probability density before and after decorrelation as well as the set of representable
vectors (indicated by dots at regular quantiles) using 6 total bits of precision. In (a),
vectors are represented using 3 bits per component. In (b), 4 bits are used for the X
component (with variance 1 + ρ = 1.9), while 2 bits are used for the Y component
(with variance 1−ρ = 0.1). Notice the denser sampling and improved fit to the density
in (b). Decorrelation here removes the covariance between the two variables.

associated with a random variable, Xi, with the values from the many blocks
constituting random variates from the n random variables. The spatial corre-
lation among the {Xi} is determined by their variance and covariance. The
covariance—and therefore correlation—is eliminated by performing a transfor-
mation (or change of basis) using a particular orthogonal n × n matrix, Q. For
perfect decorrelation, this matrix Q is given by the eigenvectors of the covari-
ance matrix, and the associated optimal transform is called the Karhunen-Loève
Transform (KLT) [27]. The KLT is data-dependent and requires a complete anal-
ysis of the data, which is impractical in applications where the data evolves over
time, as in PDE solvers. Instead, it is common to use a fixed transform such as
the discrete cosine transform (DCT) employed in jpeg image compression [26],
the Walsh-Hadamard transform [27], or the Gram orthogonal polynomial basis,
which is the foundation for the transform used in the current version of zfp [6]
as well as in our encoding scheme. Such suboptimal transforms do not entirely
eliminate correlation, though in practice they tend to be very effective.

To visualize the process of decorrelation, Fig. 1 shows a cartoon illustration
using two correlated and identically distributed random variables (X,Y), rep-
resenting the relationship between pairs of adjacent grid points. In Fig. 1(a),

72 P. Lindstrom

X,Y ∼ N (0, 1) are unit Gaussians with covariance matrix

Σ = QT DQ =
(

1 ρ
ρ 1

)

, (1)

where

Q =
1√
2

(
1 1

−1 1

)

D =
(

1 + ρ 0
0 1 − ρ

)

(2)

represent the eigendecomposition of Σ. (X,Y) are decorrelated by the linear
transformation

(
X ′ Y ′)T = Q

(
X Y

)T = 1√
2

(
X + Y Y − X

)T , leaving D

as the diagonal covariance matrix, i.e., covariance and therefore correlation
have been eliminated. Furthermore, whereas X and Y have identical variance,
σ2(X ′) = 1 + ρ is far greater than σ2(Y ′) = 1 − ρ when ρ is close to one, as
is often the case. Consequently, we expect random variates from Y ′ to be small
in magnitude relative to X ′, which allows representing Y ′ at reduced precision
relative to X ′ without adverse impact on accuracy. In other words, in a Posit

or other universal coding scheme of (X ′, Y ′) as independent components, with
|X ′| � |Y ′|, the leading significand bits of X ′ carry more importance than the
leading significand bits of Y ′, which have smaller place value.

Our approach to universal encoding of Rn is to make use of the independent
scalar universal codes of the vector components (e.g., X ′ and Y ′ above), but to
interleave bits from those codes by order of importance, i.e., by impact on error.
This allows for fixed-precision representation of vectors from R

n (in our example,
n = 2) as a fixed-length prefix of the full-precision bit string of concatenated
bits. We may also use a variable-precision representation, where we keep all bits
up to some minimum place value ε = 2e, where ε represents an absolute error
tolerance.

Decorrelating Transform. The example above shows a decorrelating trans-
form for pairs of values. In practice, in numerical applications where physical
fields are represented (e.g., temperature on a 3D grid), values vary slowly and
smoothly, and correlations extend beyond just immediate neighbors. This obser-
vation is the basis for block compression schemes such as jpeg image compres-
sion [26] and zfp floating-point compression [17], where larger d-dimensional
blocks of values are decorrelated together, e.g., 8×8 in jpeg and 4×4×4 in 3D
zfp. Due to its success in science applications, we chose to base our universal
encoding scheme on the zfp framework, which relies on a fast transform that
approximates the discrete cosine transform used in jpeg:

Q =
1
16

⎛

⎜
⎜
⎝

4 4 4 4
5 1 −1 −5

−4 4 4 −4
−2 6 −6 2

⎞

⎟
⎟
⎠ Q−1 =

1
4

⎛

⎜
⎜
⎝

4 6 −4 1
4 2 4 5
4 −2 4 −5
4 −6 −4 1

⎞

⎟
⎟
⎠ (3)

This transform, which is slightly non-orthogonal, can be implemented very effi-
ciently in place using lifting steps [5] and involves only 5 additions, 5 subtrac-

MultiPosits: Universal Coding of Rn 73

tions, and 6 multiplications by 1
2 or 2, compared to 12 additions and 16 multi-

plications for a standard matrix-vector multiplication; see [6] for details. Unlike
in zfp, we perform arithmetic in floating point, e.g., using ieee double precision
or, if desired, mpfr arbitrary-precision arithmetic. Note how ‖Q‖∞ = 1, which
ensures that there is no range expansion during application of Q. Conversely,
‖Q−1‖∞ = 15

4 . Thus, rounding errors in the transform coefficients may expand

by as much as
(
15
4

)d in d dimensions, which is accounted for in Listing 1, line 7.

Fig. 2. Distributions as interquartile range of the magnitude relative to maximum for
each of the 4×4 values fi,j (left) and transform coefficients for basis functions O(xiyj)
(right). The distributions represent four million randomly sampled 2D blocks from 32
fields from seven different data sources. Notice the effectiveness of decorrelation in
compacting the signal energy into the low-order modes (vertical axis is logarithmic).

As in zfp, we make use of a tensor product basis in d > 1 dimensions, where
we apply the transform along each dimension of a block to decorrelate its 4d

values. Following decorrelation of a block, we proceed by encoding its transform
coefficients, most of which tend to be very small in magnitude. Each block is
thus transformed and encoded independent of other blocks, allowing access to
arrays at block granularity.

Figure 2 illustrates the benefits of decorrelation by plotting the distributions
of values from 2D blocks before and after decorrelation. These distributions
represent the magnitude of values in each block relative to the block’s largest
value, i.e., |fi,j |/max0≤i,j≤3 |fi,j |. The plots show how essentially identically dis-
tributed values fi,j are sparsified by decorrelation using the zfp tensor product
basis Q ⊗ Q. Each basis vector approximates a regularly sampled orthogonal
Gram polynomial, with coefficients for high-order polynomial terms being sev-
eral orders of magnitude smaller than the constant and linear terms. This implies
that the data within each block is well approximated using only a few low-order
terms. The basis functions O(xiyj) have been ordered by total degree i + j,
then by i2 + j2, resulting in a nearly monotonic decrease in each of the quartiles
(Q1 = 25%, Q2 = 50% = median, Q3 = 75%).

Using a Taylor expansion of the continuous scalar field being encoded, one
can show that the magnitude of the ith transform coefficient, f ′

i , in d = 1

74 P. Lindstrom

dimension varies as O(hi), with h being the grid spacing. The extension to
higher dimensions is straightforward, e.g., |f ′

i,j,k| = O
(
(Δx)i(Δy)j(Δz)k

)
. Thus,

|f ′
i,j,k| = O(hi+j+k) when Δx = Δy = Δz = h. This further explains why total

sequency ordering by i + j + k results in a monotonic decrease in magnitude as
h → 0. Moreover, this has implications on the variance of transform coefficients,
which could be exploited if different scalar coding schemes were used for the
transform coefficients.

3.2 Reordering

One observation from Fig. 2 is that the decorrelating transform results in trans-
form coefficients whose distributions differ widely. In particular, coefficients cor-
responding to basis functions with high total sequency (shown toward the right
in this figure) tend to be close to zero. Thus, the encoding of bits from those
coefficients tend only to confirm that their intervals should be further narrowed
toward zero. Conversely, low-sequency coefficients tend to carry most of the
information, and hence their bits (within a given bit plane) tend to be more
valuable. Thus, when tiebreaking decisions have to be made in terms of ordering
coefficients within a single bit plane, we prefer to encode bits from low-sequency
coefficients first. This is accomplished by reordering the coefficients by total
sequency, as is also done in zfp and jpeg. That is, a coefficient f ′

i,j,k in a 3D
block has total sequency i + j + k. We use as secondary sort key i2 + j2 + k2,
e.g., a trilinear term (i = j = k = 1) precedes a cubic one (i = 3, j = k = 0),
and break any remaining ties arbitrarily. Note that this ordering tends to list
coefficients roughly by decreasing magnitude.

3.3 Encoding

At this point, we have a set of decorrelated values roughly ordered by decreasing
magnitude. Because they are no longer correlated, their joint probability density
(in the idealized case) is given by the product of marginal densities:

f(X1,X2, . . . , Xn) = f1(X1)f2(X2) · · · fn(Xn). (4)

Due to this independence, vector quantization is reduced to independent scalar
quantization, where the quantization results in an n-dimensional “grid” onto
which the vector X = (X1, . . . , Xn) is quantized. Note that such a grid need not
have the same number of grid points (as implied by the per-variable precision)
along each dimension.

Though the Xi are independent, note that they are not identically dis-
tributed, as evidenced by Fig. 2. Ideally, we would design a separate code optimal
for each such distribution, however this brings several challenges:

– The actual distributions are data or application dependent. While some efforts
have been made to optimize number systems for given data distributions [13],
such approaches become impractical in computations like PDE solvers, where
the distributions are not known a priori.

MultiPosits: Universal Coding of Rn 75

– Even if the data distributions were known, finding corresponding error mini-
mizing codes is an open problem. Currently, L2 optimal codes are known for
only a few distributions, most notably the Laplace distribution [22].

– Assuming these two prior challenges can be addressed, the CDF for an error
optimal code would likely not be expressible in closed form or would involve
nontrivial math functions that would be prohibitively expensive to evaluate.
For best performance, we prefer CDFs that are linear over binades.

Faced with these challenges, we take a different approach by making use of “gen-
eral purpose” universal number representations like Posits and by optimizing
the order in which bits from the Xi are interleaved to minimize the L∞ error
norm. While representations like Posits are parameterized (on “exponent size”),
which would allow parameter selection tailored to each random variable Xi, we
do not pursue such an approach here but believe it would be a fruitful avenue
for future work.

Given a codeword c comprised of interleaved bits, c can be thought of as
encoding the path taken when traversing a k-d tree that recursively partitions the
n-dimensional space—a hyper-rectangle—in halves using a sequence of binary
cuts, each along one of the n axes. To minimize the L∞ error norm, we should
always cut the hyper-rectangle containing x along the axis in which it is widest.
Due to the expected monotonic and rapid decrease in magnitude of the xi, this
suggests that the hyper-rectangle is usually wider for small i than for large i, and
that a few leading bits for xi with large i are sufficient to determine that such
coefficients are small and contribute little to the overall accuracy. Hence, many
leading bits of the codeword will be allocated to x0,...,0—the mean value within
a block—while the bits for small, high-frequency components are deferred until
later since they have only small impact on accuracy.

Our encoding algorithm tracks the interval endpoints for each xi. In each
iteration, corresponding to the output of a single bit, it conceptually sorts the
intervals by width. For each codeword bit, we split the widest interval; when
there is a tie, we prefer xi with low index (i.e., total sequency), i. The resulting
scheme effectively reduces to bit plane coding (cf. [17,24]), where the n bits of a
bit plane are encoded together before moving on to the next significant bit. The
bracketing sequence associated with universal coding, however, quickly prunes
many bits of a bit plane by marking whole groups of bits of a coefficient as zero.5

Consequently, by simple bookkeeping (through tracking intervals), many bits of
a bit plane are known to be zero and need not be coded explicitly.

The decoding step proceeds in reverse order and progressively narrows the n
intervals based on the outcomes of single bit tests. The result of this process is a
set of intervals that x is contained in. Our current approach is to simply use the
lower interval bound along each dimension as representative. Other strategies,
such as using the next split point or by rounding the input vector during encoding
could also be used, though the latter is complicated by not knowing a priori the
precision of each vector component, which is data-dependent.
5 This marking is done in variable-radix coding [19] by testing whole digits of radix

β > 2, e.g., four bits at a time are tested in Posits with β = 24 = 16.

76 P. Lindstrom

3.4 Implementation

Although the algorithm in Listing 1 is straightforward, it involves an expensive
step to repeatedly find the widest of n = 4d intervals (line 5). A linear search
requires O(n) time, which can be accelerated (especially for d ≥ 3) to O(log n)
time using a heap data structure. In each iteration, we operate on one of the n
intervals and keep the remaining n−1 = 22d −1 intervals sorted in a heap, which
conveniently is a perfect binary tree with 2d levels. Following the narrowing of
an interval (line 16), we compare its width to the heap root’s, and if still larger,
we continue operating on the same interval in the next iteration. Otherwise, we
swap the current interval with the heap root and sift it down (using O(log n)
operations) until the heap property has been restored. For 3D data, we found
the use of a heap to accelerate encoding by roughly 4×.

We note that the implementation of universal vector codes presented here
has not been optimized for speed. The need to perform arithmetic on intervals
and to process a single bit at a time clearly comes at a substantial expense. We
see potential speedups by tracking interval widths in terms of integer exponents
instead. We may also exploit faster scalar universal coding schemes developed, for
example, for Posits, which process multiple bits at a time. Furthermore, it may
be possible to avoid data-dependent coding by exploiting expected relationships
between coefficient magnitudes such that the order in which bits are interleaved
may be fixed. Such performance optimizations are left as future work.

4 Results

We begin our evaluation by examining the rate-distortion tradeoff when encoding
static floating-point outputs from scientific simulations. Although it is common
to compare representations by plotting the signal-to-noise ratio (SNR) as a func-
tion of rate—the number of bits of storage per scalar value—we have chosen to
represent the same information in terms of what we call the accuracy gain vs.
rate. We define the accuracy gain, α, as

α = log2
σ

E
− R =

1
2

log2

∑
i(xi − μ)2

∑
i(xi − x̃i)2

− R, (5)

where σ and μ are the standard deviation and mean of the original data, xi

is one of the original data values and x̃i is its approximation in a given finite-
precision number system, E is the L2 error (distortion), and R is the rate.
Here the term log2

σ
E provides a lower bound on the rate required to encode

an (uncorrelated) i.i.d. Gaussian source within error E [4, §10.3.2], and effec-
tively serves as a baseline against which R is measured. For correlated data,
we expect R ≤ log2

σ
E for a number representation that exploits correlation,

resulting in α ≥ 0. Conversely, because scalar representations like ieee 754 and
Posits ignore such correlations, they yield α ≤ 0. We note that α is high when
the error, E, and the rate, R, are low. For effective coding schemes, α(R) tends

MultiPosits: Universal Coding of Rn 77

to increase from zero at low rates—indicating that “compression” is achieved—
until a stable plateau is reached, when each additional bit encoded results in
a halving of the error—indicating that random, incompressible significand bits
have been reached. Ultimately, E either converges to zero (α → ∞) or to some
small nonzero value, e.g., due to roundoff errors, where additional precision is not
helpful (α → −∞). The maximum α indicates the amount of redundant informa-
tion that a representation is able to eliminate. In addition, α allows comparing
the efficiency of representations when both R and E differ by a nonnegligible
amount, which using R, E, or SNR = 20 log10

σ
E alone would be difficult.

4.1 Static Data

Figure 3 plots the accuracy gain (higher is better) for various representations
of two fields (density and viscosity) from a hydrodynamics simulation.6 The
density field varies in the range [1, 3] while the viscosity field spans many orders
of magnitude and also includes negative values.

The representations compared include ieee 754 (half and float); Posits and
Elias δ; two versions of MultiPosits based on our universal vector coding
scheme; and two corresponding versions of zfp. Here the -r suffix indicates
fixed-rate representations, where each block is assigned the same number of
bits; the -a suffix indicates fixed-accuracy representations, where a given error
tolerance dictates the storage size of each block. Fixed-accuracy mode is gener-
ally preferable when emphasis is on error rather than storage size, as then errors
are roughly uniform over the entire domain, which allows for a smaller storage
budget when the tolerance is met. In fixed-rate mode, additional bits are typ-
ically spent on each block, but the total L2 error is usually dominated by the
highest-error blocks. Hence, reducing the error nonuniformly across blocks does
not appreciably reduce the total error but does increase storage. Of course, the
variable-rate storage associated with a fixed-accuracy representation complicates
memory management and random access, but we include such results here as
they serve an important use case: offline storage and sequential access.

The two plots in Fig. 3 suggest several trends. First, fixed-rate MultiPosits

generally improve on Posits by about 3.5–8 bits of accuracy across a wide range
of rates; Posits in turn perform better than ieee. The negative accuracy gain
for the scalar representations essentially corresponds to the overhead of encoding
exponents, and we see that ieee does worse when using 8 (float) rather than 5
(half) exponent bits. In all cases, zfp outperforms MultiPosits, for reasons
that will be discussed below. We also see that fixing the accuracy (-a) rather
than rate (-r) is a substantial improvement. We note that this may be of impor-
tance for I/O and communication applications, where the data is serialized and
transferred sequentially. While we have implemented fixed-accuracy mode for
MultiPosits, the same idea could be generalized to scalar representations like
Posits and ieee, i.e., by truncating any significand bits whose place value fall

6 The double-precision fields are from the Miranda code and are available from SDR-

Bench at https://sdrbench.github.io.

https://sdrbench.github.io

78 P. Lindstrom

Fig. 3. Accuracy gain as a function of rate for two 384 × 384 × 256 fields from a
hydrodynamics simulation. The small dynamic range of the density field allows it be
represented without loss using most representations, resulting in an eventual uptick
in accuracy gain as the error approaches and even reaches zero. The viscosity field
cannot be represented without loss, and the error eventually converges to a small
value, resulting in an eventual decline in accuracy gain as additional bits do not reduce
the error.

below some given power of two. Another observation is that MultiPosits-a

gives a somewhat irregular curve both in terms of rate and accuracy gain, in
contrast to zfp-a; there is a noticeable jump in both R and α every four data

MultiPosits: Universal Coding of Rn 79

points at low rates. These jumps correlate with the increase in number of Posit
regime bits [9], which occur every time the binary exponent increases or decreases
by four. Such increments introduce a flurry of additional bits for the next bit
plane that increase both rate and accuracy. We finally note that some repre-
sentations, like MultiPosits, incur additional roundoff error from the use of
double-precision arithmetic, as evidenced by the gap between MultiPosits and
zfp at high rates.

4.2 Dynamic Data

We have implemented our universal vector code within the context of the zfp

framework, which accommodates user-defined codecs for its compressed-array
C++ classes. These classes handle encoding, decoding, and caching of blocks (in
ieee double-precision format) for the user and expose a conventional multidi-
mensional array API, thus hiding all the details of how the arrays are represented
in memory. We additionally implemented a codec that uses a traditional scalar
representation of blocks to allow for an apples-to-apples comparison using a
single array implementation.

Based on these arrays, we implemented a 3D Poisson partial differential equa-
tion (PDE) solver using finite differences with Gauss-Seidel updates, i.e., array
elements are updated in place as soon as possible. The equation solved is

Δu(x, y, z) =
√

x2 + y2 + z2 = r (6)

on Ω = [−1, 1]3 with boundary condition u = 1
12r3 and initial condition u = 0

on the interior of the domain. Given this setup, the closed form solution equals
u = 1

12r3 on the entire domain. We use a standard second-order 7-point stencil
for the Laplacian finite difference operator and a grid of dimensions 643. Higher-
order stencils did not appreciably change the results.

Figure 4 plots the L2 error in Δu as a function of solver iteration. As is
evident, the low-precision scalar types quickly converge to a fixed error level as
they run out of precision to accurately resolve differences. The MultiPosit and
zfp vector types perform significantly better, both at 16- and 32-bit precision.
Compared to ieee 32-bit float, the 32-bit MultiPosit representation improves
the solution accuracy by five orders of magnitude.

5 Discussion

Our universal vector codes generalize the corresponding scalar codes for corre-
lated multidimensional fields that often arise in scientific computing. Using a
decorrelating step, we decouple the vector quantization step into independent
scalar quantization steps and later interleave the bits from their binary represen-
tation so as to minimize error. Our framework relies on the simple and general
framework from [18] to produce a codeword one bit at a time, which ensures a
straightforward if inefficient implementation.

Our framework shares several steps with the zfp number representation for
multidimensional blocks:

80 P. Lindstrom

Fig. 4. Poisson equation solution error for various representations of the evolving state
variable. Not shown is zfp32, which coincides with the curve for double.

– A decomposition of d-dimensional arrays into blocks of 4d values.
– The same fast, linear, decorrelating transform. The key difference is that we

implement our transform in floating point rather than integer arithmetic.
– The same reordering and prioritization of transform coefficients.

The two frameworks also differ in several ways:

– Whereas zfp uses a fixed-length encoding of a single per-block exponent, we
use per-coefficient tapered exponent coding.

– We inherit the same two’s complement representation used for scalar Posits,
whereas zfp encodes integer values in negabinary.

– zfp makes use of additional control bits to encode the outcome of group
tests, which apply to multiple bits within the same bit plane. Our framework
does not use group testing across vector components but rather within each
scalar to form regime bits. These bits directly refine the representation, like
all significand bits, whereas zfp’s group tests instead govern the control flow.

In head-to-head competition, zfp is a clear winner in terms of accuracy, storage,
and speed, in part due to a more sophisticated coding scheme, though the speed
advantage comes from its ability to process multiple bits simultaneously. Our
framework as designed is data-dependent and operates at the single-bit level.
zfp also has the advantage of exploiting the sparsity of transform coefficients,
which allows concise encoding of up to 4d zeros in d dimensions using a single bit.
In contrast, our scheme achieves only up to 4:1 “compression” of Posit zero-bits
and must encode at least 2 × 4d bits to finitely bound each of the 4d transform
coefficients. By comparison, zfp routinely allows a visually fair representation
of 3D blocks using one bit per value or less. In fixed-rate mode, our framework

MultiPosits: Universal Coding of Rn 81

like zfp suffers from lack of proper rounding, as the per-coefficient precision
is data-dependent and not known until encoding completes. Hence, coefficients
are always rounded toward −∞. We suggest possible strategies to combat the
effects of improper rounding above. Finally, the tapered nature of Posits and
related number systems implies that blocks whose transform coefficients differ
significantly from one may require many bits to even bracket the coefficients.
In fact, the range preserving nature of the decorrelating transform on average
causes already small coefficients to be reduced even further. zfp performs some
level of bracketing by aligning all values to a single common block exponent,
which requires only a fraction of a bit per value to encode.

From these observations, we conclude that MultiPosits offer a significant
advantage over Posits in applications that involve smooth fields while not rival-
ing the zfp number system. Nevertheless, we believe that the ideas explored here
may seed follow-on work to improve upon our framework, both with respect to
accuracy per bit stored and speed. For instance, our coding scheme ignores the
potential for intra bit plane compression and the potential to avoid data depen-
dencies by adapting codes better suited to each of the transform coefficients.

6 Conclusion

We have presented a universal encoding scheme that generalizes the Posit and
other universal scalar number systems to vectors or blocks of numbers for numer-
ical applications that involve spatially correlated fields. Our approach is to par-
tition the data arrays into blocks, decorrelate the blocks using a fast transform,
and then interleave bits from a universal coding of vector components in an
error-optimal order. Using numerical experiments with real data and partial
differential equation solvers, we demonstrated that MultiPosits may yield as
much as a six orders-of-magnitude increase in accuracy over conventional Posits
for the same storage, and even larger increases compared to ieee 754 floating
point. While our approach, as currently presented, is primarily of theoretical
interest due to its high computational cost, we envision that our results will
inspire follow-on work to address the performance issues associated with bitwise
coding of vectors. In particular, we hope to develop data-independent universal
vector codes that reap similar per-bit accuracy benefits with near-zero compu-
tational cost.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

References

1. IEEE std 754-2019: IEEE standard for floating-point arithmetic (2019). https://
doi.org/10.1109/IEEESTD.2019.8766229

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229

82 P. Lindstrom

2. Choquette, J., Gandhi, W., Giroux, O., Stam, N., Krashinsky, R.: NVIDIA A100
tensor core GPU: performance and innovation. IEEE Micro 41(2), 29–35 (2021).
https://doi.org/10.1109/MM.2021.3061394

3. Clark, M.A., Babich, R., Barros, K., Brower, R., Rebbi, C.: Solving lattice QCD
systems of equations using mixed precision solvers on GPUs. Comput. Phys. Com-
mun. 181(9), 1517–1528 (2010). https://doi.org/10.1016/j.cpc.2010.05.002

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-
Interscience (2005). https://doi.org/10.1002/047174882X

5. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J.
Fourier Anal. Appl. 4(3), 247–269 (1998). https://doi.org/10.1007/bf02476026

6. Diffenderfer, J., Fox, A., Hittinger, J., Sanders, G., Lindstrom, P.: Error analysis
of ZFP compression for floating-point data. SIAM J. Sci. Comput. 41(3), A1867–
A1898 (2019). https://doi.org/10.1137/18M1168832

7. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975). https://doi.org/10.1109/tit.1975.1055349

8. Gustafson, J.L.: The End of Error: Unum Computing. Chapman and Hall (2015).
https://doi.org/10.1201/9781315161532

9. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomput. Frontiers Innov. 4(2), 71–86 (2017). https://doi.org/10.
14529/jsfi170206

10. Hamada, H.: URR: universal representation of real numbers. N. Gener. Comput.
1, 205–209 (1983). https://doi.org/10.1007/bf03037427

11. Kalamkar, D., et al.: A study of BFLOAT16 for deep learning training (2019).
https://doi.org/10.48550/arXiv.1905.12322

12. Kalliojarvi, K., Astola, J.: Roundoff errors in block-floating-point systems. IEEE
Trans. Signal Process. 44(4), 783–790 (1996). https://doi.org/10.1109/78.492531

13. Klöwer, M.: Sonum8 and Sonum16 with maximum-entropy training (2019).
https://doi.org/10.5281/zenodo.3531887

14. Klöwer, M., Düben, P.D., Palmer, T.N.: Posits as an alternative to floats for
weather and climate models. In: Conference for Next Generation Arithmetic, pp.
2.1–2.8 (2019). https://doi.org/10.1145/3316279.3316281

15. Klöwer, M., Razinger, M., Dominguez, J.J., Düben, P.D., Palmer, T.N.: Com-
pressing atmospheric data into its real information content. Nat. Comput. Sci. 1,
713–724 (2021). https://doi.org/10.1038/s43588-021-00156-2

16. Köster, U., et al.: Flexpoint: an adaptive numerical format for efficient training of
deep neural networks. In: Conference on Neural Information Processing Systems,
pp. 1740–1750 (2017). https://doi.org/10.48550/arXiv.1711.02213

17. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual
Comput. Graphics 20(12), 2674–2683 (2014). https://doi.org/10.1109/TVCG.
2014.2346458

18. Lindstrom, P.: Universal coding of the reals using bisection. In: Conference
for Next Generation Arithmetic, pp. 7:1–7:10 (2019). https://doi.org/10.1145/
3316279.3316286

19. Lindstrom, P.: Variable-radix coding of the reals. In: IEEE 27th Symposium
on Computer Arithmetic (ARITH), pp. 111–116 (2020). https://doi.org/10.1109/
ARITH48897.2020.00024

20. Lindstrom, P., Lloyd, S., Hittinger, J.: Universal coding of the reals: alternatives to
IEEE floating point. In: Conference for Next Generation Arithmetic, pp. 5:1–5:14
(2018). https://doi.org/10.1145/3190339.3190344

https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1002/047174882X
https://doi.org/10.1007/bf02476026
https://doi.org/10.1137/18M1168832
https://doi.org/10.1109/tit.1975.1055349
https://doi.org/10.1201/9781315161532
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1007/bf03037427
https://doi.org/10.48550/arXiv.1905.12322
https://doi.org/10.1109/78.492531
https://doi.org/10.5281/zenodo.3531887
https://doi.org/10.1145/3316279.3316281
https://doi.org/10.1038/s43588-021-00156-2
https://doi.org/10.48550/arXiv.1711.02213
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1145/3316279.3316286
https://doi.org/10.1145/3316279.3316286
https://doi.org/10.1109/ARITH48897.2020.00024
https://doi.org/10.1109/ARITH48897.2020.00024
https://doi.org/10.1145/3190339.3190344

MultiPosits: Universal Coding of Rn 83

21. Morris, R.: Tapered floating point: a new floating-point representation. IEEE
Trans. Comput. C-20(12), 1578–1579 (1971). https://doi.org/10.1109/T-C.1971.
223174

22. Noll, P., Zelinski, R.: Comments on “Quantizing characteristics for signals having
Laplacian amplitude probability density function.” IEEE Trans. Commun. 27(8),
1259–1260 (1979). https://doi.org/10.1109/TCOM.1979.1094523

23. Omtzigt, E.T.L., Gottschling, P., Seligman, M., Zorn, W.: Universal numbers
library: design and implementation of a high-performance reproducible number
systems library (2020). https://doi.org/10.48550/arXiv.2012.11011

24. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set
partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3),
243–250 (1996). https://doi.org/10.1109/76.499834

25. Thien, D., Zorn, B., Panchekha, P., Tatlock, Z.: Toward multi-precision, multi-
format numerics. In: IEEE/ACM 3rd International Workshop on Software Cor-
rectness for HPC Applications (Correctness), pp. 19–26 (2019). https://doi.org/
10.1109/Correctness49594.2019.00008

26. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Con-
sum. Electron. 38(1), xviii–xxxiv (1992). https://doi.org/10.1109/30.125072

27. Wang, R.: Introduction to Orthogonal Transforms. Cambridge University Press
(2012). https://doi.org/10.1017/cbo9781139015158

28. Wilkinson, J.: Error analysis of floating-point computation. Numer. Math. 2, 319–
340 (1960). https://doi.org/10.1007/BF01386233

https://doi.org/10.1109/T-C.1971.223174
https://doi.org/10.1109/T-C.1971.223174
https://doi.org/10.1109/TCOM.1979.1094523
https://doi.org/10.48550/arXiv.2012.11011
https://doi.org/10.1109/76.499834
https://doi.org/10.1109/Correctness49594.2019.00008
https://doi.org/10.1109/Correctness49594.2019.00008
https://doi.org/10.1109/30.125072
https://doi.org/10.1017/cbo9781139015158
https://doi.org/10.1007/BF01386233

	MultiPosits: Universal Coding of Rn
	1 Introduction
	2 Preliminaries
	3 Universal Coding of Vectors
	3.1 Decorrelation
	3.2 Reordering
	3.3 Encoding
	3.4 Implementation

	4 Results
	4.1 Static Data
	4.2 Dynamic Data

	5 Discussion
	6 Conclusion
	References

