
ACTION: Automated Hardware-Software
Codesign Framework for Low-precision

Numerical Format SelecTION in TinyML

Hamed F. Langroudi(B), Vedant Karia, Tej Pandit, Becky Mashaido,
and Dhireesha Kudithipudi

Neuromorphic AI Lab, University of Texas at San Antonio, San Antonio, TX, USA

seyedhamed.fatemilangroudi@utsa.edu

Abstract. In this paper, a new low-precision hardware-software code-
sign framework is presented, to optimally select the numerical formats
and bit-precision for TinyML models and benchmarks. The selection is
performed by integer linear programming using constraints mandated by
tiny edge devices. Practitioners can use the proposed framework to reduce
design costs in the early stages of designing accelerators for TinyML mod-
els. The efficacy of various numerical formats is studied within a new low-
precision framework, ACTION. Results assert that generalized posit and
tapered fixed are suitable numerical formats for TinyML when the trade-
off between accuracy and hardware complexity is desired.

Keywords: Deep neural networks · Low-precision arithmetic ·
Hardware-Software Codesign

1 Introduction

TinyML is an emerging machine learning (ML) field that aims to bring intelli-
gence on ubiquitous tiny edge platforms with ≤ 1 MB memory footprint, 100
MOPS (million operations per second) throughput, and ≤ 1 mW power con-
sumption [1]. The capability to perform ML inference on edge devices enabled by
TinyML, can expand the scope of ML applications to new areas such as nature
conservation [2], and STEM education [3]. Moreover, the on-device inference
capabilities provided by TinyML bypass the latency and energy consumption of
data transition between the device and cloud to enhance privacy and security.
However, the resource limitations of edge devices introduce significant challenges
to perform on-device ML inference on current TinyML models with thousands
of parameters and millions of computations [4].

Quite often, to deploy TinyML models on tiny edge devices, the ML inference is
performed with low-precision numerical formats [5–11]. The low-precision numeri-
cal format offers complexity reduction in multiple dimensions, such as computa-
tional resources, energy and memory footprint [5,11]. However, the benefits of

H.F. Langroudi and V. Karia—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 50–65, 2022.
https://doi.org/10.1007/978-3-031-09779-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09779-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-09779-9_4


ACTION: Automated Hardware-Software Codesign Framework 51

low-precision numerical format come at the expense of model performance [12].
The trade-off between hardware complexity and accuracy loss differs between dif-
ferent numerical format configurations [13]. The non-uniform numerical format
such as posit [14] has better accuracy and more hardware complexity compared
to a hardware-oriented and equispaced numerical format such as fixed-point. This
incongruence in accuracy and hardware complexity offered by various numerical
formats introduces a broad and large design space for numerical format explo-
ration. Tangential to this, the hardware and model performance constraints are
varied from one edge device to another. The process of manual selection of numeri-
cal format is ad-hoc and sub-optimal due to the large design exploration space and
variability in constraints. Therefore, the process of selecting the optimal numer-
ical format for a TinyML target requires an automatic hardware-software co-
design framework that considers model performance and hardware complexity con-
straints. Such a framework can be used by practitioners and startups as an Early-
DSE [15] (early stage design space exploration) framework that generates the tem-
plate for a suitable accelerator, including the numerical format specification (to aid
in reducing the cost of the accelerator’s design). Other frameworks that automat-
ically select an appropriate low-precision numerical format based on constraints
that are mandated by TinyML model performance and tiny edge platform limi-
tations have been previously proposed in literature [5–7,11]. However, the scope
of these existing hardware-software co-design frameworks have been limited to
the selection of a bit-precision of the fixed-point numerical format for a particular
layer of a TinyML model [5,6]. Moreover, the current frameworks to select a low-
precision numerical format use computationally intensive reinforcement learning
(RL) algorithms with high sensitivity to initial parameter selection [5,6].

Therefore, we propose a hardware-software co-design framework, called
ACTION, that finds the optimal numerical format configuration through integer
linear programming (ILP) inspired from recent studies in mixed-precision quan-
tization [16,17]. Using ILP optimization instead of RL reduces the search time,
bypasses the need for hyperparameter optimization, and reduces computational
overheads [16]. Specifically, the optimal numerical format configuration achieved
through the ILP solver minimizes or maximizes one of the objective metrics (e.g.,
accuracy) while the other subjective constraints (e.g., latency, memory footprint)
are met. Unlike the existing frameworks, ACTION, supports a broad range of
numerical formats including posit and generalized posit, summing up to a total
of 60 possible numerical format configurations.

The key contributions of this work are as follows:

1. We develop a low-precision hardware-software co-design framework to con-
strain the early stage design space exploration which selects an appropriate
numerical format based on the custom user defined constraints through inte-
ger linear programming optimization.

2. Various configurations and dataflows in a systolic array based architecture
are studied to evaluate the performance of the numerical formats when incor-
porated in an accelerator.



52 H. F. Langroudi et al.

2 Background

A non-zero finite real number y is represented by Eq. (1) where s is the sign, L
is the bit array, φ is a function mapping the bit array f ∈ [0, 1) as a fraction to
a real value, and � is an arbitrary function between the integer and the fraction
(in this study � ∈ {×,+})

y = (−1)s × ψ(L) � φ(f) (1)

The numerical format used in this study is summarized in Table 1, based
on Eq. (1). Note that all numerical formats use a two’s complement representa-
tion to represent a negative number except for the floating point numerical for-
mat, which uses a sign-magnitude representation. The main difference between
these numerical formats is the way that the bit array L is encoded. In tradi-
tional numerical formats such as fixed and floating point, L is binary(B) and
offset-binary(OB) encoded respectively while in recent numerical formats such
as tapered fixed-point (taper [18]), L is signed unary encoded or regime encoded
(RE) where the runlength m of identical bits (l...l) is terminated by either an
compliment bit l where m ≤ n or by a final bit. Hence the value R in regime
encoding is computed as (2).

R =

{
−m, l = 0
m − 1, l = 1

(2)

In posit and generalized posit numerical formats the bit string l is divided
into two parts, the regime and the exponent. The regime bit array is singed
unary encoded and the exponent bit array is binary encoded. The signed unary
encoding is a variable encoding that adds a tapered accuracy attribute to the
posit, generalized posit and tapered fixed-point formats. In numerical formats
with tapered-accuracy, the density of values is highest near 0 and then tapers
towards the maximum-representable number as shown in Fig. 1.

Table 1. Description of numerical formats that are explored in this study.

Format L Encode ψ(L) � φ(f) Parameters

Fixed-point B L + f –

Tapered fixed-point RE R + f Is, sc

Floating point OB 2e−2es−1−1 × 1 + f –

Posit RE, B 22esR+e × 1 + f –

Generalized posit RE, B 22esR+e+eb × 1 + f rs,eb

The numerical formats with a tapered-accuracy characteristic are more appro-
priate to represent TinyML model parameters (weights) due to their bell-shaped
distribution [9].



ACTION: Automated Hardware-Software Codesign Framework 53

Among numerical formats with the tapered-accuracy characteristic, only gen-
eralized posit and tapered fixed-point can accommodate the variability observed
in a layer’s parameter distribution by assigning two additional hyperparameters
that can modify it’s dynamic range and tapered precision [7,19]. Ordinarily, the
maximum accuracy is located at 1 in posit, generalized posit and tapered fixed-
point formats. The Exponent bias (eb) and scaling factor (sc) can re-center the
location of maximum accuracy from 1 to 2eb or 2sc. The dynamic range and shape
of the numerical format values’ distribution (maximum tapered to uniform) is
controlled by a maximum regime/integer run-length (rs/Is) parameter.

Fig. 1. The relative decimal accuracy [14] for various 8-bit numerical formats Float 8 5
, Float 8 4, Float 8 3 are 8-bit floating format with 5, 4 and 3 exponent bits, respec-
tively, and Posit 8 0, Posit 8 1, and Posit 8 2 are 8-bit posit format with 0, 1, and 2
exponent bits respectively. The Fixed 8 5 indicates fixed-point numerical format with
5-bit integer and 3 fraction bits, and Generalized posit 8 1 4 0 is 8-bit generalize posit
numerical format with es = 1, rs = 4, and eb = 0.

3 Related Work

In recent years, the impact of various low-precision numerical formats on deep
learning inference accuracy has been studied thoroughly [12,13,20–22]. For
instance, Gysel et al. proposed the Ristretto framework to explore the effect
of fixed-point, minifloat (8-bit floating point format with arbitrary exponent
and fraction bit-width), and block floating point (where each block of floating
point numbers used a shared exponent) on classification accuracy [20]. The out-
come of this study on the CIFAR-10 corpus shows negligible accuracy difference
between DNN inference with an AlexNet model using 8-bit and 32-bit floating
point format parameters.

However, a few works proposed empirical frameworks that demonstrate the
effect of numerical formats on the trade-off between performance and hardware
complexity. For instance, Hashemi et al. demonstrate that DNN inference with
8-bit fixed-point using AlexNet (on CIFAR-10 dataset) results in a 6.8× improve-
ment in energy consumption with <2% accuracy degradation compared to a



54 H. F. Langroudi et al.

DNN inference with 32-bit floating point [13]. Following this work, Langroudi et al.
introduce the Cheetah framework where the trade-off between inference accuracy
and hardware complexity (e.g., energy-delay product (EDP)) is provided for DNN
inference with [5, 8] precision posit, float and fixed-point formats [12]. The optimal
bit-precision for each numerical format in this framework is obtained through a top-
down iterative process where the accuracy and hardware complexity achieved by
a numerical format is compared with the specified design constraints provided by
practitioners. Through this study, posit shows better accuracy and EDP trade-off
as compared to float and fixed-point numerical formats. Recently, Thierry Tambe
et al. [22] and Langroudi et al. [21] introduce two novel numerical formats (adaptive
float and adaptive posit) to represent DNN parameters. With negligible hardware
overhead, these numerical formats are able to adapt to the dynamic range and dis-
tribution of DNN parameters and thus improve inference accuracy [21,22].

The efficacy of numerical formats in terms of hardware complexity and infer-
ence accuracy is also evaluated on TinyML models and benchmarks [5–8,10].
However, the variants of fixed-point numerical formats used for these studies
and other numerical formats is not evaluated on TinyML models and bench-
marks. For instance, Rusci et al. demonstrate a mixed 2-, 4-, 8-bits precision
fixed-point numerical format to perform TinyML inference on MCU devices
with low-memory constraints (e.g., 2 MB) [6]. In this study, the automatic bit
precision assignment policy for parameters across layers are selected through
a reinforcement learning algorithm. On MobileNet V2 and ImageNet dataset,
the aforementioned mixed-precision quanization approach results in about 1.3%
inference accuracy degradation as compared to inference accuracy with 32-bit
floats. Recently, Langroudi et al. introduce an efficient method of quantizing
TinyML models using a novel tapered fixed-point numerical format that lever-
ages the benefit of both posit (in terms of accuracy performance) and fixed-point
(in terms of hardware efficiency) [7]. The tapered fixed-point has shown better
EDP and accuracy trade-off over fixed-point on various benchmarks [7].

This research proposes the ACTION, framework for TinyML models where
the numerical format and bit-precision of model parameters is automatically
selected through ILP optimization. A notable difference between this work and
previous works is that the ACTION framework supports a broad range of numer-
ical formats and its search space exploration time is an order of magnitude faster
than previous RL approach [6].

4 ACTION Framework

The goal of ACTION framework is to automatically and swiftly select the appro-
priate numerical format based on constraints required by TinyML benchmarks
and tiny edge devices. This platform can be generalized for use on other DNN
models and edge devices since it provides the ability for practitioners to choose
their own constraints. This framework comprises of four key aspects as shown
in Fig. 2: User Interface, Initialization, Optimizer, and Evaluator.



ACTION: Automated Hardware-Software Codesign Framework 55

Fig. 2. The ACTION high-level low-precision hardware & software co-design frame-
work for TinyML models on tiny edge platforms

4.1 User Interface

The goal of the user interface is to preselect the metrics and parameters given
as input to the framework. These include benchmark specifications, models,
datasets (e.g., TinyML v0.5 benchmark), metrics, constraints, and variables
(summarized in Table 2, and 3). The framework then generates specifications
of the accelerator such as numerical format configuration, PE configurations,
memory requirements and data flows, that are summarized in an output file.
The input and output of the user interface are specified in YAML format.

4.2 Initialization

In the initialization step, the model is trained with 32-bit floating point values.
The high-precision 32-bit floating point trained weights and activations are trans-
ferred to the evaluator. The specification of the TinyML model that is used by
the accuracy and hardware complexity evaluator is automatically generated.

4.3 Evaluator

The Evaluator unit is explained with the help of an example of a single hidden
layer convolutional neural network to highlight its key components and operation
clearly, although it can be generalized for any TinyML model.

Software Design and Exploration: A computational node in a single hidden
layer convolutional neural network computes (3) where B indicates the bias
vector, W is the weight tensor with numerical values that are associated with
each connection, A represents the activation vector as input values to each node,
θ is the activation function, Q denotes the quantization function, Y is a feature
vector consisting of the output of each node, and M is equal to the product of
(C,R, S) filter parameters: the number of filter channels, the filter heights, and



56 H. F. Langroudi et al.

the filter weights respectively. The computation in (3) is performed N times,
where N is a product of batch size, output activation size (height and width)
and the number of filters.

Yj = θ(Q(Bj) +
M∑
i=0

Q(Ai) × Q(Wij)) (3)

In this work, each 32-bit floating point TinyML parameter (xi) is mapped to a
l-bit low-precision numerical format value (x′

i) through the quantization function
as defined in (4), where s and z are the scaling factor and zero point, respectively.
Large magnitude 32-bit floating point numbers that are not expressible in [l, u]
(low-precision numerical format values range) are clipped either to the format
lowerbound (l) and upperbound (u). Moreover, the clipped values that lie in
interval [a, b] (the two consecutive low-precision numerical format values) are
rounded to the nearest even number.

x′
i = Q(xi, q, l, u, s, z) = Round(Clip(s × xi + z, l, u)) (4)

The product of quantized activations and weights are computed with a
low-precision numerical format multiplier without rounding the end products.
The products are then accumulated over wide signed fixed-point register, the
quire [14]. Note that this MAC operation for m operands is error free since quire
size, as shown in (5), is selected in a way that the dynamic range of partial
accumulated values are captured. The Dl in (5) represents the dynamic range of
the low-precision numerical format.

wquire = �log2(m)� + 2 × �log2(Dl)� + 2 (5)

Hardware System Design and Architecture: To evaluate the area, energy
and latency of the hardware accelerator, analyzing only the hardware complexity
introduced by various numerical formats can be misleading. Existing frameworks
that evaluate the performance of the numerical formats compare only the energy
consumption of the MAC operations which overlooks the constraints imposed by
memory and dataflow in the accelerator.

In order to evaluate the area, and power of an accelerator which incorporates
a particular numerical format, we limit the evaluation to an architecture compris-
ing of Processing Elements (PE) arranged in a 2D systolic array configuration.
The compute efficiency of the systolic array architectures depends highly on the
dataflow and the PE array size since the matrix multiplication operation of a
TinyML model is mapped to the PEs arranged in the 2D matrix structure. To
estimate the latency of the system we bridge our framework with the SCALE-
Sim tool [23] by simulating the TinyML models for various configurations of PE
and dataflows as illustrated in Fig. 3.



ACTION: Automated Hardware-Software Codesign Framework 57

To analyze the energy consumption and the area of the system, each PE is
replaced with the multiply and accumulate (MAC) unit of the numerical formats
stated in Table 3. The MAC units for various numerical formats and different
configurations were synthesized on the Synopsys 32 nm CMOS technology node.
Power consumption and the area of individual MAC units were combined with
the cycle count and memory access details obtained from SCALE-Sim to analyze
the hardware complexity of the accelerators with various incorporated numerical
format configurations.

Fig. 3. The overview of the accelerator’s system architecture used to evaluate the
efficacy of the numerical formats on accelerators.

4.4 Optimizer

Integer Linear Programming (ILP): The ILP in this work is defined as (6)
where yi and xi are objective and subjective metrics selected from Table 2, A as
configuration sets from Table 3, Cj are constraints with respect to subjective xj .

min
yi

k=1∑
i=0

yi(A)

s.t. xj(A) < cj , 0 < j < 6

(6)



58 H. F. Langroudi et al.

For instance the accuracy degradation (ACCd) is selected as an objective, and
area, EDP, memory footprint, and MAC frequency are chosen as subjectives, the
(6) as in (7). In this study, we set the maximum number of subjective metrics
to 4. On occasion, the subjective metrics have some overlap, such as power and
EDP.

min
ACCd

ACCd(A)

s.t. EDP(A) < EDP Constraint
Area(A) < Area Constraint
Memory footprint(A) < Memory footprint. Constraint
MAC Frequency(A) < MAC Frequency Constraint

(7)

5 Experimental Setup, Results and Analysis

The ACTION framework is implemented in TensorFlow [24]. A summary of
the metrics and constraints specifications are presented in Table 2. The current
version of ACTION framework supports 8 metrics crucial for TinyML appli-
cations. For specific metrics, constraints are selected at 3 intervals between the
best and worst performance yielding values. Note that in some cases, the best
possible result for a specific metric may not meet the TinyML target. This shows
that the low-precision arithmetic needs to combine with other hardware/software
optimizations such as pruning [25] and processing in memory [26] to meet that
specific metric for TinyML. The specification of key variables and their configu-
rations are summarized in Table 3. Note that the generalized posit hyperparam-
eters (rs ∈ [1..n − 1] and eb ∈ [−3, 3]) and tapered fixed-point (Is ∈ [1..n] and
sc ∈ [−3, 3]) are not mentioned in Table 3 since these values are fixed and pre-
determined based on the dynamic range and distribution of parameters [7,19].
The specifications of the tasks and inference performance with 32-bit floats are
summarized in Table 4. To estimate latency, we bridge our framework with the
SCALE-Sim tool [23]. SCALE-Sim, however, does not consider the cycles con-
sumed while shuttling data back and forth between the global buffer and the
DRAM. Therefore, the total latency is re-approximated by considering PE array
execution time and DRAM access time (Micron MT41J256M4). For the energy
estimation analysis, execution time, and power consumption, we consider the
use of the 32-nm CMOS technology node.

5.1 Numerical Formats’ Performance on TinyML Benchmark

The Table 5 are summarized the performance of various numerical formats on
TinyML v0.5 benchmark that evaluated using ACTION framework. Amongst
the evaluated numerical formats, generalized posit shows the best performance.
For instance, the inference accuracy on the image classification benchmark using
generalized posit is improved by an average of 6.70%, 19.92%, 8.66%, 30.02%, as
compared to posit, float, tapered fixed-point and fixed-point respectively. The



ACTION: Automated Hardware-Software Codesign Framework 59

Table 2. The metrics and constraints specification.

Categ Metrics Constraints TinyML target

1 EDP [mean-std,mean,mean+std] –

Energy –

Power ≤ 1mw [1]

2 MAC Frequency 10–100 MHz [27]

3 PE utilization –

4 Area < 20 mm2 [27]

6 Accuracy Degradation 1–6% [1]

7 Memory footprint ≤ 100KB + 0.5MB [28]

Table 3. The key variable specification (P:Posit, FP:Floating point, FX: Fixed-point,
GP: generalized posit, and TFX: tapered fixed-point).

Variable Configuration Search space

Formats P(n ∈ [5..8], es = [0..2]) 60

FP(n ∈ [5..8], e = [3..n − 2])

FX(n ∈ [5..8], f = [1..n − 1])

GP(n ∈ [5..8], es = [0..2])

TFX(n ∈ [5..8])

PE 32 × 32, 32 × 16, 16 × 16, 12 × 14, 8 × 8 5

Data-flow OS, WS, IS 3

Total – 900

Table 4. The TinyML v0.5 [4] models and benchmarks using 32-bit float parameters
description.

Application Dataset DNN Model # Parameters # Ops Performance

Keyword spotting Speech commands v2 DS-CNN 24.91 K 5.54 M 92.15%

Visual wake words VWW dataset MobileNetV1 221.79 K 15.69 M 82.72%

Image classification CIFAR10 ResNet-8 78.67 K 25.27 M 86.26%

high performance of the generalized posit numerical format on TinyML bench-
marks can be credited to the capability of this numerical format to auto-adjust
to the dynamic range and distribution of the weights and activations. Moreover,
we observed that the performance of tapered fixed-point is not only better than
fixed-point, but also, on average, comparable with floats and posit formats, which
has not been previously observed [7]. This finding emphasizes that tapered fixed-
point is a good candidate for TinyML models and applications. Moreover, as the
number of bits is decreased to 7-bits and below, the float, fixed-point and tapered
fixed-point formats show poor accuracy performance. This can be attributed to



60 H. F. Langroudi et al.

Table 5. The TinyML inference performance using various numerical formats on
TinyML v0.5 benchmark (P:Posit, FP:Floating point, FX: Fixed-point, GP: Gener-
alized posit, and TFX: Tapered fixed-point).

Format
Keyword Spotting Image classification

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 91.97% 85.33% 48.62% 23.79% 85.31% 77.28% 53.78% 26.19%
FP 86.45% 46.29% 13.72% 8.50% 82.10% 69.45% 11.28% 10.79%
FX 12.70% 8.87% 8.39% 8.22% 37.00% 21.80% 15.97% 12.90%
GP 92.10% 91.39% 88.14% 49.62% 85.81% 83.90% 76.36% 42.72%
TFX 79.20% 43.75% 8.52% 8.43% 85.24% 82.10% 38.60% 17.72%

32-bit FP 92.15% 86.26%

Format
Visual Wake Words

8-bit 7-bit 6-bit 5-bit

P 83.02% 80.58% 74.53% 66.28%
FP 80.02% 68.25% 59.95% 59.37%
FX 76.43% 72.06% 61.86% 60.71%
GP 83.02% 82.14% 76.72% 69.97%
TFX 82.97% 81.92% 76.00% 66.76%

32-bit FP 82.26%

discrepancy between the dynamic range provided by these numerical formats
and the actual dynamic range of weights and activations.

5.2 ACTION Framework Results

Figures 4 and 5 illustrate the performance of each numerical format incorporated
on the various configurations of accelerator and dataflows. The ILP optimization
identified the optimal numerical format much quicker (≤1 s, performed on Intel
i9-9960X) than the tedious and iterative process undertaken by reinforcement
learning optimization algorithms (which can take several hours [5]). When con-
straints are selected in the region beyond the mean plus standard deviation of
metrics (highlighted region), generalized posit was most frequently selected as
the optimal numerical format. Note that except the accuracy vs. MAC frequency
trade-off (Figs. 4.b and 5.b), the numerical formats are selected in way that to
maximize accuracy when the accuracy and hardware constraints (e.g., EDP)
are met. In the case of MAC frequency, the numerical formats are selected to
maximize frequency when the accuracy constraints are satisfied.

To evaluate the efficacy of the numerical formats on a custom accelerator, the
framework uses the SCALE-Sim simulator which outputs the estimated cycle



ACTION: Automated Hardware-Software Codesign Framework 61

Fig. 4. (a) EDP vs Accuracy (b) MAC frequency vs. Accuracy (c) Power vs. Accuracy
(d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy for an image
classification task with an accelerator configured with PEs arranged in a 16 × 16
systolic array and output stationary dataflow. The constraint was derived by adding
the mean with the standard deviation of the metric. The numerical format selected
by the ILP optimizer (marked by the large dark blue oval) in the highlighted region
identifies the format for which the best accuracy and metric combination is achieved.
GP n es is n-bit generalized posit with es-bit exponent.



62 H. F. Langroudi et al.

Fig. 5. (a) EDP vs Accuracy (b) MAC frequency vs. Accuracy (c) Power vs. Accuracy
(d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy for keyboard
spotting task with an accelerator configured with PEs arranged in a 16 × 16 systolic
array and output stationary dataflow. The constraint was derived by adding the mean
with the standard deviation of the metric. The numerical format selected by the ILP
optimizer (marked by the large dark blue oval) in the highlighted region identifies the
format for which the best accuracy and metric combination is achieved. GP n es is
n-bit generalized posit with es-bit exponent.



ACTION: Automated Hardware-Software Codesign Framework 63

count and the memory data movement sequences for executing a CNN model
on a custom configuration. The cycle count and the data movement are com-
bined with results obtained by synthesizing the MAC unit of each numerical
format to generate the EDP and latency of the accelerator. Various dataflows
and PE matrix array configurations were compared against the output stationary
dataflow, which outperformed the other dataflows and offered a 24% reduction in
latency as compared to the weight stationary dataflow in particular, for a single
inference cycle. It has also shown significant improvement in EDP and utiliza-
tion factor as compared to the input stationary and weight stationary dataflows.
Moreover, generalized posit has outperformed all the other formats in Keyword
Spotting and Image Classification tasks with minor overhead in EDP.

6 Conclusions

Through the ACTION framework, we propose a hardware-software co-design
framework for early stage design space exploration to discover the optimal numer-
ical formats and accelerator configurations based on custom user defined con-
straints. The configuration selection problem is solved by integer linear program-
ming (ILP), which allows us to identify the optimal numerical format and acceler-
ator configuration faster than reinforcement learning approaches. We show that
generalized posit yields a 16% improvement in the average inference accuracy
over the other numerical formats that are considered in this paper.

Acknowledgement. This research was supported by the Matrix AI Consortium for
Human Well-Being at UTSA. The authors would like to thank Dr. John Gustafson, who
is the inventor of Posit, Generalized posit and Tapered Fixed-point and has provided
valuable insights over the years. The authors would also like to express gratitude to
NUAI lab members at RIT and UTSA who supported this research study.

References

1. Banbury, C., et al.: Mlperf tiny benchmark. In: Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks (2021)

2. Curnick, D.J., et al.: Smallsats: a new technological frontier in ecology and conser-
vation? Remote Sens. Ecol. Conserv. 8(2), 139–150 (2021)

3. Reddi, V.J., et al.: Widening access to applied machine learning with tinyml. arXiv
preprint arXiv:2106.04008 (2021)

4. Banbury, C.R., et al.: Benchmarking tinyml systems: Challenges and direction.
arXiv preprint arXiv:2003.04821 (2020)

5. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: hardware-aware automated quan-
tization with mixed precision. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8612–8620 (2019)

6. Rusci, M., Fariselli, M., Capotondi, A., Benini, L.: Leveraging automated mixed-
low-precision quantization for tiny edge microcontrollers. In: Gama, J., et al. (eds.)
ITEM/IoT Streams -2020. CCIS, vol. 1325, pp. 296–308. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-66770-2 22

http://arxiv.org/abs/2106.04008
http://arxiv.org/abs/2003.04821
https://doi.org/10.1007/978-3-030-66770-2_22


64 H. F. Langroudi et al.

7. Langroudi, H.F., Karia, V., Pandit, T., Kudithipudi, D.: Tent: Efficient quantiza-
tion of neural networks on the tiny edge with tapered fixed point. arXiv preprint
arXiv:2104.02233 (2021)

8. Ghamari, S., et al.: Quantization-guided training for compact tinyml models. arXiv
preprint arXiv:2103.06231 (2021)

9. Fahim, F., et al.: hls4ml: an open-source codesign workflow to empower scientific
low-power machine learning devices. arXiv preprint arXiv:2103.05579 (2021)

10. Ravaglia, L., Rusci, M., Nadalini, D., Capotondi, A., Conti, F., Benini, L.: A tinyml
platform for on-device continual learning with quantized latent replays. IEEE J.
Emerg. Sel. Top. Circuits Syst. 11(4), 789–802 (2021)

11. Lin, J., Chen, W.M., Cai, H., Gan, C., Han, S.: Mcunetv2: memory-efficient patch-
based inference for tiny deep learning. arXiv e-prints pp. arXiv-2110 (2021)

12. Langroudi, H.F., Carmichael, Z., Pastuch, D., Kudithipudi, D.: Cheetah: mixed
low-precision hardware & software co-design framework for dnns on the edge. arXiv
preprint arXiv:1908.02386 (2019)

13. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the
impact of precision quantization on the accuracy and energy of neural networks.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1474–1479. IEEE (2017)

14. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomputing Front. Innov. 4(2), 71–86 (2017)

15. Brumar, I., Zacharopoulos, G., Yao, Y., Rama, S., Wei, G.Y., Brooks, D.: Early
DSE and automatic generation of coarse grained merged accelerators. arXiv
preprint arXiv:2111.09222 (2021)

16. Yao, Z., et al.: Hawq-v3: Dyadic neural network quantization. In: International
Conference on Machine Learning, pp. 11875–11886. PMLR (2021)

17. Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., Soudry, D.: Improving post train-
ing neural quantization: layer-wise calibration and integer programming. arXiv
preprint arXiv:2006.10518 (2020)

18. Gustafson, L.J.: A generalized framework for matching arithmetic format to appli-
cation requirements. https://posithub.org/ (2020)

19. Langroudi, H.F., et al.: Alps: adaptive quantization of deep neural networks with
generalized posits. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3100–3109 (2021)

20. Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S.: Ristretto: a framework for empir-
ical study of resource-efficient inference in convolutional neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 29(11), 5784–5789 (2018)

21. Langroudi, H.F., Karia, V., Gustafson, J.L., Kudithipudi, D.: Adaptive posit:
parameter aware numerical format for deep learning inference on the edge. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 726–727 (2020)

22. Tambe, T., et al.: Algorithm-hardware co-design of adaptive floating-point encod-
ings for resilient deep learning inference. In: 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1–6. IEEE (2020)

23. Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., Krishna, T.: Scale-sim: Sys-
tolic CNN accelerator simulator. arXiv preprint arXiv:1811.02883 (2018)

24. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/, software available from tensorflow.org

25. Li, S., Romaszkan, W., Graening, A., Gupta, P.: Swis-shared weight bit sparsity
for efficient neural network acceleration. arXiv preprint arXiv:2103.01308 (2021)

http://arxiv.org/abs/2104.02233
http://arxiv.org/abs/2103.06231
http://arxiv.org/abs/2103.05579
http://arxiv.org/abs/1908.02386
http://arxiv.org/abs/2111.09222
http://arxiv.org/abs/2006.10518
https://posithub.org/
http://arxiv.org/abs/1811.02883
https://www.tensorflow.org/
http://arxiv.org/abs/2103.01308


ACTION: Automated Hardware-Software Codesign Framework 65

26. Zhou, C., et al.: Analognets: Ml-hw co-design of noise-robust tinyml models and
always-on analog compute-in-memory accelerator. arXiv preprint arXiv:2111.06503
(2021)

27. Gousev, E.: Recent progress on tinyml technologies and opportunities. https://
www.youtube.com/ (2021)

28. Banbury, C., et al.: Micronets: neural network architectures for deploying tinyml
applications on commodity microcontrollers. In: Proceedings of Machine Learning
and Systems, vol. 3 (2021)

http://arxiv.org/abs/2111.06503
https://www.youtube.com/
https://www.youtube.com/

	ACTION: Automated Hardware-Software Codesign Framework for Low-precision Numerical Format SelecTION in TinyML
	1 Introduction
	2 Background
	3 Related Work
	4 ACTION Framework
	4.1 User Interface
	4.2 Initialization
	4.3 Evaluator
	4.4 Optimizer

	5 Experimental Setup, Results and Analysis
	5.1 Numerical Formats' Performance on TinyML Benchmark
	5.2 ACTION Framework Results

	6 Conclusions
	References




